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Few people still believe that the Earth is flat or is hollow. Or flat and hollow. Among
the models available some flat-earthers subscribe to the notion that the Earth is a disc whose
center is at the North Pole. On the boundary of this disc there is a thick wall of ice, the
Antarctica, that prevent the waters of going over the border. Notice that there is no South Pole
in this model. There are other variants of this flat Earth model, e.g., the terrestrial disc could
lie on an infinite plane. The Flat Earth model is a good exercise on the application of Gauss’
law in a gravitational context.

Most of our students meet Gauss’ law for the first time in an electrostatic context where
they learn that the flux of the electric field E through a closed smooth surface S is directly
proportional to the net charge q(S) inside the surface. The electrical flux is defined by

ΦE =

∫
S

E · n̂ da, (1)

where n̂ is the normal unit vector and da is a surface element of S. Notice that S is not
necessarily closed. If the surface is closed, then Gauss’ law states that (SI units)

ΦE =

∮
S

E · n̂ da =
q(S)

ε0
, (2)

where ε0 is the vacuum permittivity. Gauss’ law is very useful when we want to evaluate
the electric field associated with a highly symmetrical configuration, see [1] for details and
examples. Remark that the problem we are about to discuss can be also approached by
considering its electrostatic counterpart as in [2]. Here in order to emphasize the notion
that Gauss’ law holds for gravitation, in fact for any field that depends on 1/r2 we chose
to consider its formulation for the gravitational field from the beginning.

Suppose we want to know how the gravitational field varies inside and outside the
flat Earth. Gauss’ law is the easiest way the answer these questions. After making the
replacements E→ g and 1/ε0 → −4πGM(S), Gauss’ law for gravitation reads

Φg = −4πGM(S), (3)

where Φg is the flux of the gravitational field g through a closed smooth surface S defined by

Φg =

∮
S

g · n̂ da, (4)

G is the Newtonian gravitational constant and M(S) is the mass enclosed by S. The minus
sign is due to the fact that the Gaussian surface has an orientation. The unit normal vector on
any point on this surface points outwards and because g always points inwards it follows that
the flux is also always negative. If the mass distribution has a high degree of symmetry, e.g.,
spherical, cylindrical or planar then the flux can be easily calculated provided that we choose
a Gaussian surface that respects the symmetry of the configuration at hand. If this is the case
g · n̂ can be factored out and the gravitational flux will be given by

Φg = −gA, (5)

where g is the magnitude of the field on the closed Gaussian surface whose area is A.

Though flat-earthers do not believe in gravity we round-earthers do hence let us see how
Gauss’ law applies to the flat Earth model. First of all we must realize that the terrestrial disc
is really a highly flattened cylinder. This means that if a is the radius of the cylinder and H is
its height, or better, its thickness, then the condition a � H holds. If we additionally agree
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to consider points far away from the border of the cylinder then planar symmetry applies
provided that the mass distribution ρ is uniform or a function of the thickness of the (flat)
Earth only. Notice that this means that the field is perpendicular to the mass distribution.
For simplicity will suppose also that ρ is uniform and its numerical value equal to the mean
density of the spherical Earth. If we adopt these assumptions we can adopt the cylindrical
surfaces S1 and S2 as Gaussian surfaces as sketched in Figure 1. Consider for example S1.
The flux through this surface is

Φg = −2gAtop, (6)

and the mass enclosed by S1 is

M(S1) = ρAtopx. (7)

Gauss’ law then leads to

g(x) = 4πGρx, (8)

for the field inside the distribution. For the evaluation of the field outside the distribution we
make use of S2. Then, proceeding in the same way we find Φg = −2gAtop, but this time the
mass enclosed is M(S2) = ρHAtop. It follows from Gauss’ law that in magnitude outside the
mass distribution g = 2πGσ, where we have defined σ = ρH as mean surface density of
the (flat) Earth. We can collect these results taking into account their domain of validity and
direction in the formula given below (notice that the field is continuous on the surface of the
distribution)

g(x) = −


2πGσ, x ≤ −H

2 ;

−4πGρx, −H
2 ≤ x+ ≤ H

2 ;

−2πGσ, x ≥ +H
2

, (9)

And what if the Earth is flat and hollow? In this case the reader can easily verify that
gravitational field reads

g(x) =


4πGσ, x ≤ −H

2 ;

0, −H
2 ≤ x ≤

H
2 ;

−4πGσ, x ≥ H
2

. (10)

The Flat Earth Model or the Hollow Flat Earth Model must reproduce the measured value of
the gravitational acceleration on the surface of the Earth. In the case of the former model it is
reasonable to ask ourselves how its thickness H compares to the radius R of the spherical
Earth [2]. The mass enclosed by the Gaussian cylinder will be M = ρAH where as
mentioned before ρ is the mean density of the spherical Earth. On the surface of the (flat)
Earth

g = 2πGρH, (11)
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Figure 1. Flat Earth and Gaussian surfaces.

Since g must be equal to the gravitational acceleration on the surface of the (spherical) Earth
we have

g =
GMEarth

R2
, (12)

where R is the mean radius of the terrestrial sphere. But MEarth = ρ(4π/3)R3 hence we can
also write

g = G
4πRρ

3
. (13)

Setting Eq. (11) equal to Eq. (13) it follows that

H =
2

3
R =

2

3
6371 km ≈ 4 247 km. (14)

Notice that this result does not depend on the mean density of the Earth. If the Earth were a
‘lighter’or ‘heavier’ planet this result would still hold. As a consistency check the reader can
infer the value of ρ from the measured value of g on the surface of the Earth.

The thickness of the flat Earth can be also inferred from experimental data. Suppose
we measure g on the surface of the Earth and find 9.807 m/s2, and the from rock samples we
conclude that the mean mass density ρ is 5 515 kg/m3. Then from Eq. (11) we can write

H =
g

2πGρ
=

9.807

2π 6.673 × 10−11 × 5.515
m

= 4 241 208.91 m ≈ 4241 km, (15)

in good agreement with the theoretical result given by Eq. (14). Suppose flat Earth engineers
decide to bore a tunnel to communicate with flat-earthers on the other side of the world. A
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tunnel boring machine working round the clock can progress more or less 15 meters/day. A
simple calculation will show that the engineers will need 775 years to reach the other side of
the Earth!

Notice that in order to take full advantage of Gauss’ law as a tool for evaluating the
gravitational field we have considered in practice unlimited planar mass distributions. If,
for instance, our models are substituted by really finite discs then Gauss’ law though still
holding in a general way looses its effectiveness as a calculation tool and other methods, e.g.
gravitational potential expansion techniques, are more advisable. Infinite mass and charge
distributions can lead us quickly into mathematical and physical troubles though they are
useful as approximations [3].

Flat Earth models have a long history and there are many variants of them. Here we
have discussed just two of those models. The reader can find more information on flat Earth
theories at, for example, [4]. See also Sir Patrick Moore’s Can You Speak Venusian? for a
delightful point of view on this subject [5]. If the reader wants the real thing she/he can try
for example [6].
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