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ABSTRACT 
 
Contrary to the assertion of Special Relativity, the speed 
of light is not always constant relative to a moving 
observer.  The Global Positioning System (GPS) shows 
that the speed of light in the Earth Centered Inertial (ECI) 
non-rotating  frame remains at c relative to the frame—but 
not relative to an observer or receiver moving in that 
frame. When a GPS receiver changes its translation speed 
relative to the ECI frame, the speed of light measured 
relative to the receiver changes . A crucial experiment of 
the constancy of the speed of light relative to a moving 
receiver could be conducted in the following way: Let two 
GPS satellites and two airplanes be positioned in a straight 
line. Let the two airplanes travel at the same speed directly 
toward one of the two satellites and directly away from the 
other satellite. The travel time differences of  GPS signals 

arriving at the two airplanes is measured and recorded 
with the airplanes flying first toward one of the satellites 
and then flying the opposite direction toward the other 
satellite. The travel time differences obtained as the 
airplanes fly in opposite directions are compared. If the 
travel time difference is the same when the velocity of the 
airplanes is changed, then the speed of light is indeed 
constant relative to the moving airplanes, otherwise it is 
not. The calculation using the GPS range equation and the 
results of a Real-Time Kinematic (RTK) differential GPS 
test have shown that the constancy of the speed of light 
relative to moving airplanes is not correct. The change of 
the time difference could reach about 10 ns for subsonic 
airplanes and 30 ns for supersonic airplanes. The result of 
this crucial experiment is not only important scientifically, 
but also indicates the possibility of a new way to directly 
measure vehicle speed relative to the ECI frame. 

 
INTRODUCTION 
 
The principle of the constancy of the speed of light 
asserts that in vacuum light always has a definite speed of 
propagation that is independent of the motion of the 
observer [1]. That is, no matter whether the observer is 
moving or at rest, and no matter how fast the observer is 
moving, 0.000001c or 0.999999c, the speed of light is 
always c. This assertion in fact is the most controversial 
part of Special Relativity. Relativistic physicists claim that 
people who refuse to accept the constancy of the speed of 
light simply cannot give up their common sense acquired 
through slow speed experiences. However, this is not true. 
Human beings are intelligent and they are flexible as well. 
Once people have been exposed to solid experimental 
facts, they are willing to adopt new ideas. The common 
sense that a falling body descends at a rate that is 
proportional to its weight has changed to the common 
sense that, if there is no air resistance, all bodies fall at the 
same rate. This change in perception is a direct result of 
the experimental data.  The reason some do not believe in 
the constancy of the speed of light relative to a moving 
observer is in fact that there are experimental facts which 
indicate otherwise. 



   

 
One of the few experiments which directly supports the 
constancy of the speed of light relative to a moving 
observer is the Michelson-Morley type of experiment [2]. 
However, there are some unique features of the 
Michelson-Morley experiment which do not apply to GPS 
type experiments. First, the Michelson-Morley experiment 
is a function of the round-trip (two-way) speed of light. 
This means that it is a second-order experiment, i.e., the 
possible time difference in the two light paths is 
proportional to (v/c)2. Second, the distance the light path 
travels is determined by a physical structure which is also 
moving at the same velocity. Clearly, if movement causes a 
length contraction in the direction of motion as FitzGerald 
and Lorentz postulated, then the Michelson-Morley 
experiment will yield null results even when the speed of 
light is not affected by motion. 
 
Moreover, there are some experiments, such as the Sagnac 
experiment [3], which yield different results. In the GPS 
system, when the observer is moving relative to the center 
of the earth, the speed of light relative to that observer is 
not equal to c.  
 
The truth can only be determined by experiment. Today, 
the global positioning system provides us with a very big 
laboratory, a global laboratory, for experiments regarding 
the speed of light. We do not need the imaginary long 
Einstein train any more. In this paper, we propose a crucial 
experiment to examine the constancy of the speed of light 
relative to a moving observer. However, we wish first to 
comment on some claims recently presented in a paper by 
Ashby [4]. According to that paper, the only reason that 
GPS does not  confirm the constancy of the speed of light 
relative to a moving receiver is that the receiver is moving 
in a circular path—or that the computation is done in a 
rotating coordinate frame. We disagree with his claims.  

 
GPS AND THE CONSTANCY OF THE SPEED OF 
LIGHT 
 
The operations of GPS navigation are based on the 
propagation delay equation in an earth centered inertial 
(ECI) non-rotating frame: 

|rr(tr)–rs(ts)| = c(tr – ts). 
Here ts is the instant of transmission of the signal from the 
source, and tr is the instant of reception at the receiver; 
rs(ts) is the position of the source at the transmission time, 
and rr(tr) is the position of the receiver at the reception 
time. Ashby [4] said that the propagation delay equation 
is a simple application of the principle of the constancy of 
the speed of light. Wolf and Petit [5] concluded that if the 
equation is correct, Special Relativity is correct. Are these 
true? 
  

Let us express the propagation delay equation completely: 

measured in the ECI frame, the speed of light is isotropic 
and is equal to c (light wave is a spherical wave) no matter 
whether the source or the receiver is moving relative to the 
ECI frame or not (fig. 1). On the surface, this looks like the 
constancy of the speed of light, because only c appears in 
the equation. However, the assertions that the speed of 
light is constant in just one inertial frame, the ECI frame, 
really is not what the constancy of the speed of light 
means.  
 

Let us first consider the propagation of sound in the 
air. When the disturbance caused by the motion of the 
source and the receiver can be neglected, measured in a 
frame stationary in the air, the propagation of sound wave 
is isotropic with a speed of sound a (a spherical wave). 
We have the propagation delay equation for the sound in 
the frame of the air (fig. 2):  

|rr(tr)–rs(ts)| = a(tr – ts). 
Obviously, the equation is the same as the GPS 
propagation delay equation except there is a constant 
speed of sound a instead of the constant speed of light c.  

 
Do we have a principle of the constancy of the speed 

of sound because of the constant speed of sound a 
appearing in the propagation delay equation? No, we do 
not. Contrarily, we say that the speed of sound is not 
independent of the motion of the receiver (observer). 
Why? In fact, when we judge whether the speed of sound 
is or is not independent of the motion of the observer, the 
speed of sound is measured in the frame of the observer, 
not the frame of the air. From the physics textbook [6], we 
can find these: 
“The fact that the speed of light is independent of the 
motion of the source is not at all troublesome, but is it also 
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Fig. 1 The propagation of light in the 
earth centered inertial frame   



   

independent of the motion of the detector (i.e., the 
observer)? Certainly, the speed of sound is not; if the 
detector rushes toward the source, moving with respect to 
the air, the measured speed of sound increases. Just 
imagine two identical ships headed toward a motionless 
sound-emitting buoy, one steaming along at full speed 
and the other dead in the water. On both ships, the time it 
takes a blast of sound to sweep from bow to stern is 
measured, and the speed of the wave is computed in that 
inertial system. Clearly, for the ship moving toward the 
buoy, that time will be shorter (during the interval it takes 
the sound to traverse the ship, the stern will advance 
somewhat toward the pulse, shortening the effective 
length) and the wave speed will be determined to be 
faster.” (fig. 3) 
 

Clearly, measured in the frame of the air, the sound 
wave propagates with a constant speed of a for both 
ships, no matter whether the ship is moving or at rest. 
However, measured in the frame of the observer in the 
moving ship, the traveling distance of sound wave is still 
the distance between bow and stern, but the traveling time 

is shorter. Therefore, measured by this observer, the 
speed of sound is faster. Hence, we never have a principle 
of the constancy of the speed of sound. Contrarily, we say 
that the speed of sound is not independent of the motion 
of the observer. 

 
When the principle of the constancy of the speed of light 
asserts that in vacuum, light always has a definite speed 
of propagation that is independent of the motion of the 
observer, it means the same as above. That is, not only the 
speed of light is c in the ECI frame, but also the speed of 
light is c for any observer, no matter whether the observer 
is moving or at rest relative to the ECI frame, and no matter 
how fast the observer is moving relative to the ECI frame. 
Now let us examine whether these are true, i.e. whether or 
not they are consistent with GPS observations.  

 
We can still use the similar example, the ship and the 
wave-emitting buoy, and just modify it in the following 
way: mount a GPS receiver on each of the two ends of the 
ship and the two receivers receive the GPS signals from a 
differential GPS station. To avoid the effect from the 
rotation of the earth, the DGPS station and the ship are on 
the same meridian. We compare two cases. First, the ship 
is dead in water and the speed of the signal is measured 
by the observer on the ship. Then, the ship steams at full 
speed and the speed of the signal is measured again. 
Anyone familiar with GPS can quickly indicate that in the 
first case, the traveling time of the GPS signal from bow to 
stern is L/c, where L is the distance from bow to stern. 
Then in the second case, during the interval it takes the 
signal to traverse the ship, the stern will advance 
somewhat, although very short, toward the signal, 
shortening the effective length. Therefore, the 
propagation time of GPS signal from bow to stern is 
shorter than L/c. We can calculate these as follows. 
Suppose GPS signals are emitted toward a ship located at 
a distance from the DGPS station. When will the two 

receivers on the ship receive the signal emitted at t0 from 
the source in the first case according to the propagation 
delay equation (fig. 4a)?  
      
For receiver 1: 

O 

rs(ts) 
rs(tr) 

rr(ts) 

rr(tr) 

v 

|rr(tr)–rs(ts)|=a(tr-ts) 

R 

The Air  

a a 
a 

vs 

S 

Fig. 2 The propagation of sound in 
the air   

L 

L 

(a) 

(b) 

Source 

Source 

Fig. 3 The propagation of sound 

v 

L l 

L l' 

(a) 

(b) 

DGPS 
Station 

DGPS 
Station 
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Hence, t1 = t0 + l/c. 
 
For receiver 2: 
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Hence, t2 = t0 + (l + L)/c and the propagation time from 
bow to stern is  t2 – t1 = L/c.  
 
When will the two receivers on the ship receive the signal 
emitted at t’0 from the source in the second case according 
to the propagation delay equation  (fig. 4b)? 
 
For receiver 1: 
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 Hence, t’1 = t’0 +l’/(c + v). 
 
For receiver 2: 
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Hence, t’2 = t’0 +(l’+L)/(c + v) and the propagation time 
from bow to stern is t’2 – t’1 = L/(c + v). 

 
Therefore, according to the propagation delay equation, 
the propagation time of GPS signal from bow to stern in 
case 2 is shorter than that in case 1 and the time difference 
between two cases, ∆t = (t2 – t1) - (t’2 – t’1) = L/c - L/(c + 
v) = vL/c2, neglecting the quantities of the second and 
higher order of v/c.  However, for an observer within the 
system, i.e. the ship, the distance between bow and stern 
is a constant L. Thus, measured by this observer, the 
speed of light is not constant. The speed of light is not 
independent of the motion of the observer relative to the 
ECI frame. This is what GPS tells us.  

 
The people who are familiar with Special Relativity would 
argue that the relativity of the simultaneity, an important 
aspect of Special Relativity, is not considered in the 
previous analysis. Now, let us consider the relativity of 
the simultaneity. In fact, the synchronization of the clocks 
is not needed here. Suppose the GPS receiver on bow has 
a clock bias of δt1 and the GPS receiver on stern has a 
clock bias of δt2 (neither of the two clocks uses GPS time, 
nor are they synchronized with each other). Clearly, with 
these clock biases, the measurement in case 1 will not be t2 
– t1 = L/c, but t2 – t1 = δt2 - δt1 + L/c; the measurement in 
case 2 will not be t’2 – t’1 = L/(c + v), but t’2 – t’1 =δt2 - δt1 
+ L/(c + v). Then the time difference with these two clock 
biases will be ∆t = (t2 – t1) - (t’2 – t’1) =[δt2 - δt1 +  L/c] – 
[δt2 - δt1 +  L/(c + v)] = vL/c2, the same as before. As for 
the time dilation, the rate change of the clocks caused by 

the motion, the two clocks have the same rate change, so 
there will not be a net effect. Thus, the relativity of the 
simultaneity will not change the conclusion.  

 
Another argument would be the Lorentz contraction 
related to the motion of the system. However, Lorentz 
contraction is a second-order effect: ∆L = (L/2)(v/c)2. The 
time difference measured here is a first-order effect, ∆t ∝  
(v/c)1.  Obviously, the second-order Lorentz contraction 
could not change the conclusion either.  

 
People who are familiar with the history of Special 
Relativity know that the constancy of the speed of light 
has its experimental foundation, as mentioned before, in 
the null result of the Michelson-Morley experiment. 
Therefore, they would question why GPS experiences 
contradict the Michelson-Morley experiment. In fact, the 
GPS experiences do not contradict the Michelson-Morley 
experiment. First, the Michelson-Morley experiment has 
never been conducted in a lab moving relative to the earth. 
Second, as argued above, the length contraction of the 
physical structure is all that is needed for the Michelson-
Morley experiment to give a null result.  

 
The correct conclusion from the GPS propagation delay 
equation is that the ECI frame is the preferred frame near 
the earth. The speed of light measured in the ECI frame is 
always c whether the receiver is moving relative to the ECI 
frame or not. When a GPS receiver changes its 
translational speed relative to the ECI frame, light does not 
change its speed relative to the ECI frame. Therefore, the 
speed of light relative to the receiver moving with respect 
to the ECI frame changes. 
 
THE SAGNAC EFFECT 
 
Background 

Georges Sagnac [3] in 1913 published a paper in which he 
showed that the speed of light relative to a detector on the 
edge of a spinning disk was a function of whether the light 
traveled with or against the rotation of the disk. The 
phenomenon is the basis of all modern laser and fiber 
optic gyrocompasses. The simplest interpretation of the 
result is that the speed of light remains constant relative to 
the center of rotation and, thus, not of constant speed 
relative to the rotating detector.  

Special Relativity (SRT) claims the Sagnac effect is due to 
the rotation. Since rotation is not relative, the Sagnac 
effect can be due to non-isotropic light speed and still be 
consistent with Special Relativity. The effect of the 
movement of the receiver during the transit time of a GPS 
signal is referred to in the GPS system as the one-way 
Sagnac effect.  



   

However, it is not at all evident that the Sagnac effect is 
due to rotation.  Ives [7] claimed in 1938 that the effect is 
not due to rotation and proposed an experiment in which 
the light followed a hexagonal path. Ives claimed that the 
detector could be moved linearly along one side of the 
hexagonal path and the effect would still be present. 
Recently, Wang [8, 9] has proposed some first-order 
interferometric experiments and their results will show that 
the Sagnac effect exists not only in circular motion, but 
also in translational motion.  

GPS, Sagnac Effect, and Ashby Claims 

At this point we want to consider a number of claims that 
Ashby [4] has recently made in regard to GPS and the 
Sagnac effect. We address three specific comments which 
Ashby made and respond to each below. 

(1) Ashby claimed, “The fundamental principle on which 
GPS navigation works is an apparently simple 
application of the second postulate of special 
relativity—namely, the constancy of c, the speed of 
light.” This claim has already been addressed above. 
Clearly, the GPS range equation does not depend on 
the constancy of the speed of light relative to the 
receiver, which is the SRT claim. Yes, the GPS 
equation depends on the constancy of the speed of 
light relative to the earth-centered inertial (ECI) non-
rotating frame—but that is contrary to SRT. A 
receiver moving in the ECI frame does not see an 
isotropic light speed of c. 

(2) Ashby’s second claim is: “Observers in the non-
rotating ECI inertial frame would not see a Sagnac 
effect. Instead, they would see that receivers are 
moving while a signal is propagating.” This claim is a 
bit humorous. It would have been nice if this were the 
last claim in contention—since Ashby in effect 
concedes the argument here. Receiver motion during 
the transit time is the Sagnac effect. The only way 
that Ashby can claim that the Sagnac effect is not 
seen by a receiver in the ECI frame while admitting 
that the receiver moves during the transit time is to 
define the effect of a moving receiver differently 
depending upon the description of the receivers 
position—a bit of a sophistry. 

(3) The final claim by Ashby, which we contest, is: “Of 
course if one works entirely in the nonrotating (sic) 
ECI frame there is no Sagnac effect.” The only way 
this claim can be true is if we adopt the definition 
sophistry of the prior claim. But we have even more 
convincing data that Ashby’s claim is false.  NavCom 
Technology, Inc. has licensed software developed by 
the Jet Propulsion Lab (JPL) which, because of 

historical reasons, does the entire computation in the 
ECI frame. Because of some discrepancies between 
our standard earth-centered earth-fixed solution 
results and the JPL results, we investigated the input 
parameters to the solution very carefully. The 
measured and theoretical ranges computed in the two 
different frames agreed precisely, indicating that the 
Sagnac correction had been applied in each frame. 

The Fundamental Question 

As the discussion of the Sagnac effect indicates the 
fundamental question regarding the speed of light is the 
following: Is the speed of light constant with respect to 
the observer (receiver) or is it  constant with respect to the 
chosen inertial (isotropic light speed) ECI frame? 

Clearly the GPS range equation indicates the speed of light 
is constant with respect to the chosen frame. The receiver 
position in the range equation is its position at the time 
the signal is received. This means that the pattern of 
motion of the receiver during the signal transit time is 
completely immaterial. The receiver could have moved in a 
huge series of loops during the transit time. It would not 
matter—it is the receivers position at the time of reception 
of the signal which matters.  

The JPL equations [10], used to track signals from 
interplanetary space probes, verify that the speed of light 
is with respect to the chosen frame. In the JPL equations, 
the chosen frame is  the solar system barycentric frame. 
The motion of receivers during the signal transit time from 
earth to probe and from probe to earth is taken into 
account. Even the motion of the earth around the 
moon/earth center of mass is taken into account. Clearly, 
the JPL equations treat the speed of light as constant with 
respect to the frame—not as constant with respect to the 
receivers. In the GPS nomenclature, the one-way Sagnac 
effect must be accounted for on all signal paths.  

The other question one might ask is at what level 
curvature is important—if it is circular motion which 
causes the Sagnac effect as Ashby claims, how much 
does the path have to deviate from a straight line to cause 
the effect?  At Los Angeles the earth rotates about 27 
meters during the nominal 70 millisecond transit time of the 
signal from satellite to receiver. The deviation of the 27 
meter movement from the straight line chord distance is 
only 35 microns at its largest point. It certainly seems 
incredible that a 35 micron deviation from a straight line 
could induce a 27 meter change in the measured range. 

As a final proof that it is movement of the receiver which 
is significant—not whether that movement is in a curved 
or straight line path—a test was run using the highly 



   

precise differential carrier phase solution. The reference 
site was stationary on the earth and assumed to properly 
apply the Sagnac effect. However, at the remote site the 
antenna was moved up and down 32 centimeters (at Los 
Angeles) over an eight second interval. The result of the 
height movement was that the remote receiver followed a 
straight line path with respect to the center of the earth. 
The Sagnac effect was still applied at the remote receiver. 
The result was solved for position that simply moved up 
and down in height the 32 centimeters with rms residuals 
which were unchanged (i.e. a few millimeters). If a straight 
line path did not need the Sagnac adjustment to the 
ranges the rms residuals should have increased to multiple 
meters. This shows again that it is any motion—not just 
circular motion which causes the Sagnac effect. 

CRUCIAL EXPERIMENT 
 
Crucial experiment of the constancy of the speed of light 
 
To examine whether or not the speed of light measured in 
the system changes when a system changes its 
translational speed relative to the ECI frame, a crucial 
experiment could be conducted. It is crucial especially 
because in this experiment, simultaneity, or the 
synchronization of the clocks, is not a concern. This is 
very important, because in any debate about the speed of 
light, the problem of simultaneity has always been a focus. 

 

Mount two atomic clocks with the same construction, 
signal transmitters, reflectors, and receivers on the two 
ends, points A and B, of a vehicle, e.g., a helicopter (fig. 
5). First, the vehicle moves due South  (eliminating the 
effect of the rotation of the earth) with a speed of v. The 
two clocks are not synchronized with each other. A signal 
is transmitted from A at t1(A) (according to clock A) to B 
(arriving at t1(B) according to clock B) and reflected back 
to A (arriving at t’1(A) according to clock A). By the 
readings of clocks, we can calculate the difference of the 

nominal traveling times for two directions, ∆t1 = [t’1(A) – 
t1(B)] – [t1(B) – t1(A)]. (We say that the traveling times 
t1(B) – t1(A) and t’1(A) – t1(B) are nominal because the two 
clocks are not synchronized. For example, t1(B) – t1(A) 
could be negative if clock B is too much behind clock A.) 
Then let the vehicle decelerate, stop, and accelerate in the 
other direction, finally moving due North with the speed v. 
We repeat the same measurement, and we will obtain ∆t2 = 
[t’2(A) – t2(B)] – [t2(B) – t2(A)]. If the readings of the 
clocks show that ∆t1 is different  from ∆t2, we think 
everybody would agree that the experiment refutes the 
principle of the constancy of the speed of light, especially 
noting that the relativity of simultaneity is not a problem 
here, because the synchronization of clocks is not 
required. If ∆t1 is equal to ∆t2, then the experiment verifies 
the constancy of the speed of light.  
 
This experiment is crucial also because if the experiment 
shows that the speed of light in a system moving relative 
to the ECI frame is different from that in another system, 
we can invent a new kind of speed detectors that can 
measure the translational speed of the system relative to 
the ECI frame directly [11]. 

 
It is suggested [12] that this experiment can be 
implemented by mounting the two clocks not in one 
moving object, but in two separate objects, e.g., two 
helicopters, that move in a straight line, one after another, 
with the same velocity (fig. 6). This way, L, the distance 
between the two clocks can be increased substantially, 
and hence, the possible time difference can reach several 
nanoseconds, a value that is relatively easy to detect with 
current technology. Also, the effect of moving clocks, 
including time dilation, and the effect resulting from the 
fact that L is not strictly constant are dis cussed there in 
detail, and it has been indicated that these effects will not 
prevail over the time difference we are trying to detect. In 
fact, ∆t is the time difference of light propagation between 
two directions and between two cases. Therefore, even if 
the light paths of the two cases are slightly different, as 
long as the difference is the same for both directions, the 
time difference will still exist. 
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Fig. 5 The crucial experiment 
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Fig. 6 Crucial experiment with two objects  



   

 
The Sagnac effect arises because of the motion of the 
receiver during propagation of the signal from transmitter 
to receiver as mentioned above. If the Sagnac effect is 
positive when A is the transmitter and B is the receiver, 
then it is negative when B is the transmitter and A is the 
receiver (fig. 7a), and vise versa  (fig. 7b). Therefore, the 
propagation times in two opposite directions are not the 
same, and the total time difference in the experiment is 
4vL/c2. It is a first-order effect, and the Lorentz 
contraction, a second-order effect, is not a factor in the 
experiment.   
 
Simplified crucial experiment using GPS 
 
In the crucial experiment, first, A is a signal source and B 
is a signal receiver, then B becomes a source and A 
becomes a receiver. But it does not necessarily mean that 
we must mount transmitters to A and B. What we need are 
two signals, a signal that leaves A and arrives B and 
another signal that leaves B and arrives A. Obviously,  
powerful airborne transmitters are expensive and not 
easily available. However in GPS, there are already 
powerful transmitters in place, the transmitters in GPS 
satellites and on ground stations. We can utilize the 
existing powerful transmitters to do the same thing we 
need for the crucial experiment. As a matter of fact, if the 
two GPS receivers, A and B, and a GPS satellite, S1, are on 

the same straight line, the signal propagation time from A 
to B is the difference between the signal propagation time 
from S1 to B and the signal propagation time from S1 to A 
if A and B receive the same signal from the satellite. 
Therefore, for conducting the crucial experiment, we do 
not need powerful airborne transmitters on A and B; we 
just need two GPS satellites, S1 and S2 on the horizon and 
put two airborne GPS receivers, A and B, on line S1S2. 
Clearly, the crucial experiment will be greatly simplified by 
replacing airborne transmitters with airborne GPS receivers 
when it is conducted in the global lab provided by GPS. 

 
We can conduct the crucial experiment with two 

airplanes mounted with GPS receivers and two GPS 
satellites (Fig. 8), all of them are in the same meridian to 
eliminate the effect of rotation of the earth (one of the 
satellites could be a geostationary satellite). At first, two 
airplanes fly due South with a distance of L. Each GPS 
receiver records the arrival times of signals from S1 and S2. 
Then, at certain time, two airplanes respectively do a 
climbing turn or a regular turn, and then both fly North 
and record the arrival times again. When two airplanes 
return to ground, we can post-process the recordings and 
find whether or not there is a time difference between the 
two moving states, moving North and moving South. We 
can find [(tS2A2 – tS2B2) - (tS1B2 – tS1A2)] - [(tS2A1 – tS2B1) - 
(tS1B1 – tS1A1)], and since A and B are located on the 
straight line S1S2, it becomes (tB2A2 – tA2B2) – (tB1A1 – tA1B1) 
≡ ∆t2 – ∆t1 in the crucial experiment. 
 
The expected time difference, 4vL/c2, is proportional to the 
speed of airplanes, v, and the distance between them, L. L 
mainly is restricted by the height of the flight path due to 
the curvature of the earth.  (In meters, L = 3,572[(h1)

1/2 + 
(h2)

1/2] = 7,144(h)1/2 if h1 = h2 = h.) The possible flight 
heights and the expected time differences are listed as 
follows: 
 
 
Height 5 km 10 km 20 km 
L 500 km 700 km 1,000 km 

4vL/c2 for v = 300 m/s 6.7 ns 9.3 ns 13.3 ns 

4vL/c2 for v = 700 m/s 15.6 ns 21.8 ns 31.1 ns 
 
 With the current GPS technologies, it is not difficult to 
decide whether these 10 ns or 30 ns time differences exist.  
 
Calculation of the crucial experiment 
 
We can calculate the expected time difference in the 
experiment using complete range equation with the biases 
considered in GPS (See Appendix).  
 

B vt A 

(a) 

|rB + vt - rA| 

A B 

A B 

rA rB 

rA rB rA rB 

v 

vt 

v 

B 

|rB + vt - rA| 

A B 

A A B 

rA rB 

rA rB rA rB 

vt 

v 

vt 

v 

|rA + vt - rB| 

(b) 

Fig. 7 The Sagnac corrections in the crucial 
experiment 
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Some practical aspects of the crucial experiment 
 

Since it was desired that receiver A, receiver B and S1 (or 
S2) be on the same straight line, then a proper question 
will be how much position deviation is allowed, i.e. how 
much error will be induced if A, B and S1 (or S2) is in fact 
not on a straight line. This is a critical part of the 
experiment. On the surface, if A, B and S1 are not on a 
straight line, it will induce a large error. However, 
analyzing this problem carefully, one finds that, contrary 
to what one might expect, any deviation of the position of 
A from line S1B will cause only a very small difference in 
the propagation time. (The same for the analysis of 
relationship between A, B and S2.) Suppose receiver A is 
not at the ideal position of A, but at the position of A’, 
and AA’ = ∆h. (fig. 9) The distance between S1 and A will 
change from S1A to S1A’. What is the difference between 
these two distances? We have S1A’ = [S1A2 +  ∆h2]1/2 . 
Hence, the difference between two distances, ∆S1A = SA’ 
- S1A ≈ (1/2)( ∆h2 /S1A) . Since S1A is about 26,000 km, 
we could have the following list: 
 
∆h 100 m 1 km 5 km 10 km 
∆S1A 0.2 mm 2 cm 0.5 m 2 m 
∆S1A/c 0.67 ps 0.067 ns 1.7 ns 6.7 ns 
 

Actually, since the signal source S1 is far away from the 
two receivers, the transverse position deviation of the 

receivers will not cause any noticeable error unless the 
deviation reaches as much as 5 km. 
 
Another practical problem of the crucial experiment is that 
GPS satellites are moving and they change their  position 
relative to the receivers during the test. What is the impact 
of this position change upon the test? A reasonable 
duration of the experiment is about 30 seconds, and in this 
short interval the angle of a GPS satellite only changes by 
about 0.250 or moves about 27 km. The change in the 
position of the GPS satellite will cause another deviation 
from the straight line between A and S1B. This deviation 
is 27 km*700 km/26,000 km ≈ 0.74 km. Obviously, it will 
not cause any noticeable error to the experiment. 
 
We also note that in normal GPS operations, those 
satellites that are only a few degrees above the horizon are 
not considered as usable satellites. But here we use the 
GPS satellites at zero degrees to the horizon. Is this a 
problem? No, it is not. First, we need a satellite on the 
horizon because that is required for it to be aligned with 
the line-of-sight between the two receivers. Second, we 
are not computing a position. We are only interested in 
the time difference between two arrival times at two 
receivers. Therefore, the tropospheric refraction 
associated with small elevation angles above the horizon 
is an effect which cancels when the difference is taken. As 
a matter of fact, this experiment is similar to Differential 
GPS. Almost all the factors, satellite position bias, satellite 
clock bias, ionospheric delay and tropospheric delay 
which affect the accuracy of the GPS measurements will be 
cancelled when the difference in measurements is taken. 
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Moreover, it is a multiple-differential GPS experiment. 
Differences are taken between two receivers, between two 
propagation directions (from A to B and from B to A), and 
between two moving states. We can be sure that the 
experiment will have a high accuracy since most error 
sources are cancelled in the differencing process. 
  
In the reality, the speed of an airplane will not be the same 
in two moving states. But this should not be a problem at 
all. As we mentioned, what we need are two moving states 
and in fact, any two moving states. Having two states with 
the same speed, but in opposite directions is just a 
convenient way to conduct and analyze the experiment. In 
fact, if two different speeds, V1 and V2, are used in the two 
opposite directions, the expected time difference is ∆t = 
2L(V1+V2)/c

2. 
 
In order to avoid the effect of the rotation of the earth, we 
select a pair of satellites in the direction of North-South 
and the motions of the airplanes are in the same meridian. 
Although here the satellite is not necessarily a GPS 
satellite, it could be a GLONASS satellite or a WAAS 
geostationary satellite, the selection of only North-South 
pairs of satellites presents a significant restriction on the 
selection of the time at which the experiment can be 
conducted. If this restriction can be eliminated and a pair 
of satellites in any direction can be used, it will be much 
easier to find a time at which to conduct the experiment. In 
fact a pair of satellites in any direction can be chosen. 
 
When a pair of satellites in an arbitrary direction is 

selected and the motions of the airplanes are in the same 
direction, the velocity of the airplane relative to ECI frame 
will have an added velocity caused by the rotation of the 
earth. This velocity depends primarily on the latitude. This 
earth spin velocity is no longer necessarily perpendicular 
to the direction of the flight, therefore it adds a component 
velocity, V1cosθ  (or V2cosθ), to the airplane’s velocity 
relative to the earth center. (Fig. 10) Generally, the 
component velocity is not small and cannot be neglected. 
But in the experiment, we only measure the difference 
between two motion states. Fortunately, the component of 
the earth’s spin velocity affects both motion states 
equally as long as the airplane is at the same latitude. 
Therefore, the net effect of the component velocity caused 
by the rotation of the earth is zero in the experiment. Thus, 
while a pair of satellites in North-South direction is 
preferred, the experiment is not constrained by this 
restriction and a pair of satellites aligned in any direction 
can be used. 
 
CONCLUSIONS 

The strong evidence is that the constancy of the speed of 
light is wrong. The speed of light is not always c relative 
to a moving observer (receiver). Instead, the speed of light 
is always c relative to the chosen inertial (isotropic light 
speed) frame. A crucial experiment using GPS has been 
proposed to verify this claim.  This  isotropy of light speed 
relative to the chosen frame is strongly supported by the 
one-way Sagnac effect. It is clear from the GPS range 
equation that the motion of the observer during the signal 
transit time implies that the speed of light relative to a 
moving observer is not isotropic and clearly differs from c 
due to the receiver motion.  This is also evidenced by the 
JPL space probe equations described by Moyer. 

In other words, the Sagnac effect is not due to rotational 
motion. Contrary to Ashby’s claims, the Sagnac effect is 
caused by any motion of the observer or receiver relative 
to the chosen inertial frame. 

The measurement of the travel time differences between 
two receivers in motion first one way and then the other 
can be used as a crucial experiment. Virtually all of the 
measurement error sources are canceled by the multiple 
differencing involved in the experiment. This means that 
the proposed crucial experiment should be capable of 
easily resolving the fundamental question: “Is the speed 
of light constant relative to the receiver or is it constant 
relative to the chosen inertial frame?”  

Finally, assuming the crucial test verifies that the speed of 
light is constant with respect to the chosen inertial frame, 
it shows that a new method of measuring the velocity is 
possible. Specifically, measuring the time difference 
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between the signal transit time in the forward and 
backward direction should give a direct measure of the 
velocity.  

APPENDIX  
 
The calculations of signal propagation time difference  
 
Please notice that here only one satellite is utilized and the 
result will be doubled when two satellites are utilized.  
Suppose the satellite S2 is on the origin of the x axis (fig. 
11).    
 

 
From the GPS theory [13, 14], we know  
c(Tr – Ts) = |rr(Tr) - rs(Ts)| 
ρ = c(tr – ts) = c(Tr – Ts) + cδr – cδs + ∆D + c∆I + c∆T 
 
|rr(Tr) - rs(Ts)| is the real range from the satellite to the 
receiver; Ts and Tr are the transmission time and reception 
time in GPS time. 
ρ = c(tr – ts) is the pseudorange;  δr and δs are receiver 
and satellite clock biases; ∆D is satellite position bias and 
∆I and ∆T are ionospheric and tropospheric delays.   
 
We investigate the following four cases.  
 
1) Case 1, at t1, the signal is transmitted from the satellite 
and then arrives at A2: 
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We have c(Tr – t1)(1) = (l + L)c/(c – v) and 
ρ(1) = c(tr – ts)(1) = (l + L)c/(c – v) + cδr(1) – cδs(1) + 
∆D(1) + c∆I(1) + c∆T(1)  
 
2) Case 2, at t1, the signal is transmitted from the satellite 
and then arrives at B2: 
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We have c(Tr – t1)(2) = lc/(c – v)  and 
ρ(2) = c(tr – ts)(2) = lc/(c – v) + cδr(2) – cδs(2) + ∆D(2) 
+ c∆I(2) + c∆T(2)  
 

3) Case 3, at t2, the signal is transmitted from the satellite 
and then arrives at A1: 
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We have c(Tr – t2)(3) = (l + L)c/(c + v) and 
ρ(3) = c(tr – ts)(3) = (l + L)c/(c + v)  + cδr(3) – cδs(3) + 
∆D(3) + c∆I(3) + c∆T(3)  
 
4) Case 4, at t2, the signal is transmitted from the satellite 
and then arrives at B1: 





−−=
−=−

 2

2

)(
|0|)(

tTrvlx
xtTrc

  

We have c(Tr – t2)(4) = lc/(c + v) and 
ρ(4) = c(tr – ts)(4) = lc/(c + v) + cδr(4) – cδs(4) + 
∆D(4) + c∆I(4) + c∆T(4)  
 
Therefore, we have 
c∆t = [c(tr – ts)(1) - c(tr – ts)(2)] – [c(tr – ts)(3) - c(tr – 
ts)(4)] =  
[(l + L)c/(c – v)+ cδr(1) – cδs(1) + ∆D(1) + c∆I(1) + 
c∆T(1)] – 
[lc/(c – v) + cδr(2) – cδs(2) + ∆D(2) + c∆I(2) + c∆T(2)] 
– 
[(l + L)c/(c + v) + cδr(3) – cδs(3) + ∆D(3) + c∆I(3) + 
c∆T(3)] + 
[lc/(c + v) + cδr(4) – cδs(4) + ∆D(4) + c∆I(4) + c∆T(4)] 
 
Let us check these items. For receiver clock bias δr, we 
have δr(1) = δr(3) for clock A and δr(2) = δr(4) for clock 
B because a clock bias will be the same in 30 seconds, a 
reasonable duration of the experiment.   
For satellite clock bias, δs, we have δs(1) ≡  δs(2) and 
δs(3) ≡  δs(4). 
For ∆D, the satellite position bias, we have ∆D(1) ≡  
∆D(2) and ∆D(3) ≡  ∆D(4). 
For ∆I, the ionospheric delay, we have ∆I(1) = ∆I(3) and 
∆I(2) = ∆I(4), and for ∆T, the tropospheric delay, we have 
∆T(1) = ∆T(3) and ∆T(2) = ∆T(4), since ∆I and ∆T will be 
the same in 30 seconds.  
 
Therefore, finally we have 
c∆t = [(l + L)c/(c – v)- lc/(c – v)] –[(l + L)c/(c + v)- lc/(c 
+ v)]   
= [Lc/(c – v)- Lc/(c + v)]  
=2Lv/c, neglecting the quantities of the second and higher 
order of v/c.   
That is,   
∆t = 2Lv/c2 
As mentioned before, if two satellites, S1 and S2, are 
utilized, the result will be doubled to 4Lv/c2. 
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The University of Calgary simulated the scenario 
described in the section on the crucial experiment. We 
thank them for their effort in the simulation. Unfortunately, 
the precision of the transmit time was not sufficient to 
resolve the measured time differences to the precision 
needed. 
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