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XiV  PREFACE

F,y.B

Preface

I was motivated from the beginning to write a textbook different from others that
present physics as a sequence of facts, like a Sears catalog: “here are the facts and
you better learn them.” Instead of that approach in which topics are begun
formally and dogmatically, | have sought to begin each topic with concrete
observations and experiences students can relate to: start with specifics and only then
go to the great generalizations and the more formal aspects of a topic, showing why
we believe what we believe. This approach reflects how science is actually practiced.

Why a Fourth Edition?

Two recent trends in physics texbooks are disturbing: (1) their revision cycles
have become short—they are being revised every 3 or 4 years; (2) the books are
getting larger, some over 1500 pages. | dont see how either trend can be of
benefit to students. My response: (1) It has been 8 years since the previous
edition of this book. (2) This book makes use of physics education research,
although it avoids the detail a Professor may need to say in class but in a book shuts
down the reader. And this book still remains among the shortest.

This new edition introduces some important new pedagogic tools. It contains
new physics (such as in cosmology) and many new appealing applications (list on
previous page). Pages and page breaks have been carefully formatted to make the
physics easier to follow: no turning a page in the middle of a derivation or Example.
Great efforts were made to make the book attractive so students will want to read it.

Some of the new features are listed below.

What's New

Chapter-Opening Questions: Each Chapter begins with a multiple-choice question,
whose responses include common misconceptions. Students are asked to answer
before starting the Chapter, to get them involved in the material and to get any
preconceived notions out on the table. The issues reappear later in the Chapter,
usually as Exercises, after the material has been covered. The Chapter-Opening
Questions also show students the power and usefulness of Physics.

APPROACH paragraph in worked-out numerical Examples.A short introductory
paragraph before the Solution, outlining an approach and the steps we can take to
get started. Brief NOTES after the Solution may remark on the Solution, may give
an alternate approach, or mention an application.

Step-by-Step Examples: After many Problem Solving Strategies (more than 20 in
the book), the next Example is done step-by-step following precisely the steps just
seen.

Exercises within the text, after an Example or derivation, give students a chance to
see if they have understood enough to answer a simple question or do a simple
calculation. Many are multiple choice.

Greater clarity : No topic, no paragraph in this book was overlooked in the search
to improve the clarity and conciseness of the presentation. Phrases and sentences
that may slow down the principal argument have been eliminated: keep to the
essentials at first, give the elaborations later.

Vector notation, arrows: The symbols for vector quantities in the text and Figures
now have a tiny arrow over them, so they are similar to what we write by hand.
Cosmological Revolution: With generous help from top experts in the field,
readers have the latest results.



Page layout: more than in the previous edition, serious attention has been paid to
how each page is formatted. Examples and all important derivations and
arguments are on facing pages. Students then dont have to turn back and forth.
Throughout, readers see, on two facing pages, an important slice of physics.

New Applications’. LCDs, digital cameras and electronic sensors (CCD, CMOS),
electric hazards, GFCIls, photocopiers, inkjet and laser printers, metal detectors,
underwater vision, curve balls, airplane wings, DNA, how we actually see images.
(Turn back a page to see a longer list.)

Examples modified: more math steps are spelled out, and many new Examples
added. About 10% of all Examples are Estimation Examples.

This Book is Shorter than other complete full-service books at this level. Shorter
explanations are easier to understand and more likely to be read.

Content and Organizational Changes

* Rotational Motion: Chapters 10 and 11 have been reorganized. All of angular
momentum is now in Chapter 11.

»  First law of thermodynamics, in Chapter 19, has been rewritten and extended.
The full form is given: AK + AU + AEint = Q —W, where internal energy is
Ete, and U ispotential energy; the form Q —W s kept so that dW = P dV.

» Kinematics and Dynamics of Circular Motion are now treated together in
Chapter 5.

*  Work and Energy, Chapters 7 and 8, have been carefully revised.

*  Work done by friction is discussed now with energy conservation (energy
terms due to friction).

» Chapters on Inductance and AC Circuits have been combined into one:
Chapter 30.

»  Graphical Analysis and Numerical Integration is a new optional Section 2-9.
Problems requiring a computer or graphing calculator are found at the end
of most Chapters.

» Length of an object is a script £ rather than normal /, which looks like 1 or |
(moment of inertia, current), as in F = I1IB. Capital L is for angular
momentum, latent heat, inductance, dimensions of length [L\.

» Newton’s law of gravitation remains in Chapter 6. Why? Because the 1/r2
law is too important to relegate to a late chapter that might not be covered
at all late in the semester; furthermore, it is one of the basic forces in nature.
In Chapter 8 we can treat real gravitational potential energy and have a fine
instance of using U = - JF «di.

* New Appendices include the differential form of Maxwell’s equations and
more on dimensional analysis.

* Problem Solving Strategies are found on pages 30, 58, 64, 96,102,125,166,
198,229,261,314,504,551,571, 685,716,740,763,849, 871, and 913.

Organization

Some instructors may find that this book contains more material than can be
covered in their courses. The text offers great flexibility. Sections marked with a
star * are considered optional. These contain slightly more advanced physics
material, or material not usually covered in typical courses and/or interesting
applications; they contain no material needed in later Chapters (except perhaps in
later optional Sections). For a brief course, all optional material could be dropped
as well as major parts of Chapters 1, 13, 16, 26, 30, and 35, and selected parts of
Chapters 9,12,19,20, 33, and the modern physics Chapters. Topics not covered in
class can be a valuable resource for later study by students. Indeed, this text can
serve as a useful reference for years because of its wide range of coverage.

Versions of this Book

Complete version: 44 Chapters
including 9 Chapters of modern
physics.

Classic version: 37 Chapters
including one each on relativity
and quantum theory.

3 Volume version: Available
separately or packaged together
(Vols. 1 & 2 or all 3 Volumes):

Volume 1: Chapters 1-20 on
mechanics, including fluids,
oscillations, waves, plus heat
and thermodynamics.

Volume 2: Chapters 21-35 on
electricity and magnetism, plus
light and optics.

Volume 3: Chapters 36-44 on
modern physics: relativity,
quantum theory, atomic physics,
condensed matter, nuclear
physics, elementary particles,
cosmology and astrophysics.
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PREFACE

To Students

HOW TO STUDY

1

2.

Read the Chapter. Learn new vocabulary and notation. Try to respond to
questions and exercises as they occur.

Attend all class meetings. Listen. Take notes, especially about aspects you do
not remember seeing in the book. Ask questions (everyone else wants to, but
maybe you will have the courage). You will get more out of class if you read
the Chapter first.

Read the Chapter again, paying attention to details. Follow derivations and
worked-out Examples. Absorb their logic. Answer Exercises and as many of
the end of Chapter Questions as you can.

Solve 10 to 20 end of Chapter Problems (or more), especially those assigned.
In doing Problems you find out what you learned and what you didn’t. Discuss
them with other students. Problem solving is one of the great learning tools.
Don't just look for a formula—it won't cut it.

NOTES ON THE FORMAT AND PROBLEM SOLVING

1

Sections marked with a star (*) are considered optional. They can be omitted
without interrupting the main flow of topics. No later material depends on
them except possibly later starred Sections. They may be fun to read, though.

The customary conventions are used: symbols for quantities (such as m for
mass) are italicized, whereas units (such as m for meter) are not italicized.
Symbols for vectors are shown in boldface with a small arrow above: F.

Few equations are valid in all situations. Where practical, the limitations of
important equations are stated in square brackets next to the equation. The
equations that represent the great laws of physics are displayed with a tan
background, as are a few other indispensable equations.

At the end of each Chapter is a set of Problems which are ranked as Level I, 11, or
111, according to estimated difficulty. Level | Problems are easiest, Level Il are
standard Problems, and Level Il are “challenge problems.” These ranked

Problems are arranged by Section, but Problems for a given Section may depend
on earlier material too. There follows a group of General Problems, which are not
arranged by Section nor ranked as to difficulty. Problems that relate to optional
Sections are starred (*). Most Chapters have 1 or 2 Computer/Numerical
Problems at the end, requiring a computer or graphing calculator. Answers to
odd-numbered Problems are given at the end of the book.

Being able to solve Problems is a crucial part of learning physics, and provides
a powerful means for understanding the concepts and principles. This book
contains many aids to problem solving: (a) worked-out Examples and their
solutions in the text, which should be studied as an integral part of the text;
(b)some of the worked-out Examples are Estimation Examples, which show
how rough or approximate results can be obtained even if the given data are
sparse (see Section 1-6); (c) special Problem Solving Strategies placed
throughout the text to suggest a step-by-step approach to problem solving
for a particular topic—but remember that the basics remain the same;
most of these “Strategies” are followed by an Example that is solved by
explicitly following the suggested steps; (d) special problem-solving Sections;
(e) “Problem Solving” marginal notes which refer to hints within the text for
solving Problems; (f) Exercises within the text that you should work out imme-
diately, and then check your response against the answer given at the bottom of
the last page of that Chapter; (g) the Problems themselves at the end of each
Chapter (point 4 above).

Conceptual Examples pose a question which hopefully starts you to think and
come up with a response. Give yourself a little time to come up with your own
response before reading the Response given.

Math review, plus some additional topics, are found in Appendices. Useful data,
conversion factors, and math formulas are found inside the front and back covers.
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Image of the Earth from a NASA satellite. The sky
appears black from out in space because
there are so few molecules to
reflect light (Why the sky
appears blue to us on
Earth has to dowith
scattering of light by

Introduction,
Measurement, Estimating

CHAPTER-OPENING QUESTION —Guess now!
Suppose you wanted to actually measure the radius of the Earth, at least roughly,
rather than taking other people’s word for what it is. Which response below
describes the best approach?

(a) Give up; it is impossible using ordinary means.

(b) Use an extremely long measuring tape.

(c) Itisonly possible by flying high enough to see the actual curvature of the Earth.

(d) Use a standard measuring tape, a step ladder, and a large smooth lake.

(e) Use a laser and a mirror on the Moon or on a satellite.
\We start each Chapter with a Question, like the one above. Try to answer it right away. Dont worry
about getting the right answer now—the idea is to get your preconceived notions out on the table. If they
are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get another

chance at the Question later in the Chapter when the appropriate material has been covered. These
Chapter-Opening Questions will also help you to see the power and usefulness of physics. ]
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(b)

FIGURE 1-1 (a) This Roman
aqueduct was built 2000 years ago
and still stands, (b) The Hartford
Civic Center collapsed in 1978, just
two years after it was built.

2 CHAPTER 1

hysics is the most basic of the sciences. It deals with the behavior and

structure of matter. The field of physics is usually divided into classical physics

which includes motion, fluids, heat, sound, light, electricity and magnetism;

and modem physics which includes the topics of relativity, atomic structure,
condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics.
We will cover all these topics in this book, beginning with motion (or mechanics, as it
is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is crucial for anyone making a career in science
or technology. Engineers, for example, must know how to calculate the forces within
a structure to design it so that it remains standing (Fig. 1-1a). Indeed, in Chapter 12
we will see a worked-out Example of how a simple physics calculation—or even
intuition based on understanding the physics of forces—would have saved
hundreds of lives (Fig. 1-1b). We will see many examples in this book of how
physics is useful in many fields, and in everyday life.

1— The Nature of Science

The principal aim of all sciences, including physics, is generally considered to be
the search for order in our observations of the world around us. Many people
think that science is a mechanical process of collecting facts and devising theories.
But it is not so simple. Science is a creative activity that in many respects resem-
bles other creative activities of the human mind.

One important aspect of science is observation of events, which includes the
design and carrying out of experiments. But observation and experiment require
imagination, for scientists can never include everything in a description of what
they observe. Hence, scientists must make judgments about what is relevant in
their observations and experiments.

Consider, for example, how two great minds, Aristotle (384-322 b.c.) and
Galileo (1564-1642), interpreted motion along a horizontal surface. Aristotle
noted that objects given an initial push along the ground (or on a tabletop) always
slow down and stop. Consequently, Aristotle argued that the natural state of an
object is to be at rest. Galileo, in his reexamination of horizontal motion in the
1600s, imagined that if friction could be eliminated, an object given an initial
push along a horizontal surface would continue to move indefinitely without
stopping. He concluded that for an object to be in motion was just as natural as for
it to be at rest. By inventing a new approach, Galileo founded our modern view of
motion (Chapters 2,3, and 4), and he did so with a leap of the imagination. Galileo
made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of the
scientific process. The other side is the invention or creation of theories to explain
and order the observations. Theories are never derived directly from observations.
Observations may help inspire a theory, and theories are accepted or rejected based
on the results of observation and experiment.

The great theories of science may be compared, as creative achievements, with
great works of art or literature. But how does science differ from these other
creative activities? One important difference is that science requires testing of its
ideas or theories to see if their predictions are borne out by experiment.

Although the testing of theories distinguishes science from other creative
fields, it should not be assumed that a theory is “proved” by testing. First of all, no
measuring instrument is perfect, so exact confirmation is not possible. Further-
more, it is not possible to test a theory in every single possible circumstance. Hence
a theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can be replaced by new ones.

1-2 Models, Theories, and Laws

When scientists are trying to understand a particular set of phenomena, they often
make use of a model. A model, in the scientist’s sense, is a kind of analogy or
mental image of the phenomena in terms of something we are familiar with. One



example is the wave model of light. We cannot see waves of light as we can water
waves. But it is valuable to think of light as made up of waves because experiments
indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual picture—
something to hold on to—when we cannot see what actually is happening. Models
often give us a deeper understanding: the analogy to a known system (for instance,
water waves in the above example) can suggest new experiments to perform and can
provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. Usually
a model is relatively simple and provides a structural similarity to the phenomena
being studied. A theory is broader, more detailed, and can give quantitatively testable
predictions, often with great precision.

It is important, however, not to confuse a model or a theory with the real
system or the phenomena themselves.

Scientists give the title law to certain concise but general statements about
how nature behaves (that energy is conserved, for example). Sometimes the state-
ment takes the form of a relationship or equation between quantities (such as
Newton’s second law, F = ma).

To be called a law, a statement must be found experimentally valid over a wide
range of observed phenomena. For less general statements, the term principle is
often used (such as Archimedes’ principle).

Scientific laws are different from political laws in that the latter are
prescriptive: they tell us how we ought to behave. Scientific laws are descriptive:
they do not say how nature should behave, but rather are meant to describe how
nature does behave. As with theories, laws cannot be tested in the infinite variety
of cases possible. So we cannot be sure that any law is absolutely true. We use the
term “law” when its validity has been tested over a wide range of cases, and when
any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were
true. But they are obliged to keep an open mind in case new information should
alter the validity of any given law or theory.

1-3 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relationships
among physical quantities that can be measured.

Uncertainty

Reliable measurements are an important part of physics. But no measurement is
absolutely precise. There is an uncertainty associated with every measurement. Among
the most important sources of uncertainty, other than blunders, are the limited accuracy
of every measuring instrument and the inability to read an instrument beyond some
fraction of the smallest division shown. For example, if you were to use a centimeter
ruler to measure the width of a board (Fig. 1-2), the result could be claimed to be
precise to about 0.1cm (1 mm), the smallest division on the ruler, although half of this
value might be a valid claim as well. The reason is that it is difficult for the observer to
estimate (or interpolate) between the smallest divisions. Furthermore, the ruler itself
may not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the estimated
uncertainty in the measurement. For example, the width of a board might be
written as 88 + 0.1cm. The + 0.1cm (“plus or minus 0.1cm”) represents the
estimated uncertainty in the measurement, so that the actual width most likely lies
between 8.7 and 8.9 cm. The percent uncertainty is the ratio of the uncertainty
to the measured value, multiplied by 100. For example, if the measurement is 8.8
and the uncertainty about 0.1 cm, the percent uncertainty is

1%,

where ~ means “is approximately equal to.’

FIGURE 1-2 Measuring the width

of a board with a centimeter ruler.
The uncertainty is about = 1 mm.

SECTION 1-3
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FIGURE 1-3 These two calculators
show the wrong number of significant
figures. In (a), 2.0 was divided by 3.0.
The correct final result would be 0.67.
In (b), 25 was multiplied by 3.2. The
correct result is 8.0.

p PROBLEM SOLVING

Significantfigure rule:

Number ofsignificantfigures in final
resultshould be same as the least
significant input value

A CAUTION

Calculators err with significantfigures

I PROBLEIVI SOLVING

Reportonly theproper number of
significantfigures in the final result.
Keep extra digits during

the calculation

FIGURE 1-4 Example 1-1.
A protractor used to measure an angle.

4 CHAPTER 1

Often the uncertainty in a measured value is not specified explicitly. In such cases,
the uncertainty is generally assumed to be one or a few units in the last digit specified.
For example, if a length is given as 8.8 cm, the uncertainty is assumed to be about
0.1cm or 0.2cm. It is important in this case that you do not write 8.80cm, for this
implies an uncertainty on the order of 0.01 cm; it assumes that the length is probably
between 8.79 cm and 8.81 cm, when actually you believe it is between 8.7 and 8.9cm.

Significant Figures

The number of reliably known digits in a number is called the number of
significant figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place holders
that show where the decimal point goes). The number of significant figures may
not always be clear. Take, for example, the number 80. Are there one or two signif-
icant figures? We need words here: If we say it is roughly 80km between two
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we can
often assume (as we will in this book) that it is 80 km within an accuracy of about
1 or 2km, and then the 80 has two significant figures. If it is precisely 80 km, to
within + 0.1 km, then we write 80.0 km (three significant figures).

When making measurements, or when doing calculations, you should avoid the
temptation to keep more digits in the final answer than is justified. For example, to
calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of multiplication would
be 76.84 cm2 But this answer is clearly not accurate to 0.01 cm2 since (using the
outer limits of the assumed uncertainty for each measurement) the result could be
between 11.2cm X 6.7cm = 75.04cm2 and 11.4cm X 6.9cm = 78.66 cm2 At best,
we can quote the answer as 77 cm2, which implies an uncertainty of about 1 or 2 cm2
The other two digits (in the number 76.84 cm2) must be dropped because they are not
significant. As a rough general rule (i.e., in the absence of a detailed consideration
of uncertainties), we can say that the final result of a multiplication or division should
have only as many digits as the number with the least number of significant figures
used in the calculation. In our example, 6.8 cm has the least number of significant
figures, namely two. Thus the result 76.84 cm2needs to be rounded off to 77 cm2

EXERCISE A The area of a rectangle 4.5cm by 3.25cm is correctly given by (a) 14.625 cm2;
(b) 14.63cm2; () 14.6 cm2; (d) 15cm2

When adding or subtracting numbers, the final result is no more precise than
the least precise number used. For example, the result of subtracting 0.57 from 3.6
is 3.0 (and not 3.03).

Keep in mind when you use a calculator that all the digits it produces may not
be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not some
such thing as 0.666666666. Digits should not be quoted in a result, unless they are
truly significant figures. However, to obtain the most accurate result, you should
normally keep one or more extra significant figures throughout a calculation, and
round off only in the final result. (With a calculator, you can keep all its digits in
intermediate results.) Note also that calculators sometimes give too few significant
figures. For example, when you multiply 2.5 X 3.2, a calculator may give the
answer as simply 8. But the answer is accurate to two significant figures, so the proper
answer is 8.0. See Fig. 1-3.

CONCEPTUAL EXAMPLE 1-1 | Significantfigures. Usingaprotractor (Fig. 1-4),
you measure an angle to be 30°. (a) How many significant figures should you quote in
this measurement? (b) Use a calculator to find the cosine of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision with
which you can measure an angle is about one degree (certainly not 0.1°). So you
can quote two significant figures, namely, 30° (not 30.0°). (b) If you enter cos 30°
in your calculator, you will get a number like 0.866025403. However, the angle
you entered is known only to two significant figures, so its cosine is correctly
given by 0.87; you must round your answer to two significant figures.

NOTE Cosine and other trigonometric functions are reviewed in Appendix A.



| EXERCISE B Do 0.00324 and 0.00056 have the same number of significant figures?
Be careful not to confuse significant figures with the number of decimal places.

EXERCISE C For each of the following numbers, state the number of significant figures
and the number of decimal places: {a) 1.23; (b) 0.123; (c) 0.0123.

Scientific_Notation

We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as 3.69 X 104 or 0.0021 as 2.1 X 10-3. One advantage of scientific
notation is that it allows the number of significant figures to be clearly expressed.
For example, it is not clear whether 36,900 has three, four, or five significant
figures. With powers of ten notation the ambiguity can be avoided: if the number is
known to three significant figures, we write 3.69 X 104, but if it is known to four,
we write 3.690 X 104

I EXERCISE D Write each of the following in scientific notation and state the number of
| significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures

The significant figures rule is only approximate, and in some cases may underestimate
the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92:

97
92
Both 97 and 92 have two significant figures, so the rule says to give the answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of + 1 if no other
uncertainty is stated. Now 92 + 1 and 97 + 1 both imply an uncertainty of
about 1% (1/92 « 0.01 = 1%). But the final result to two significant figures
is 1.1, with an implied uncertainty of + 0.1, which is an uncertainty of
0.1/1.1 « 0.1 ~ 10%. In this case it is better to give the answer as 1.05 (which is
three significant figures). Why? Because 1.05 implies an uncertainty of + 0.01
which is 0.01/1.05 « 0.01 ~ 1%, just like the uncertainty in the original
numbers 92 and 97.
SUGGESTION: Use the significant figures rule, but consider the % uncer-
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

= 105 « 11

Approximations

Much of physics involves approximations, often because we do not have the
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are present in the real
world, and then our calculation is only an approximation. In doing Problems, we
should be aware of what approximations we are making, and be aware that the
precision of our answer may not be nearly as good as the number of significant
figures given in the result.

Accuracy versus Precision

There is a technical difference between “precision” and “accuracy.” Predsion in a strict
sense refers to the repeatability of the measurement using a given instrument. For
example, if you measure the width of a board many times, getting results like 8.81 cm,
8.85¢cm, 8.78 cm, 8.82cm (interpolating between the 0.1 cm marks as best as possible
each time), you could say the measurements give a precision a bit better than 0.1 cm.
Accuracy refers to how close a measurement is to the true value. For example, if the
ruler shown in Fig. 1-2 was manufactured with a 2% error, the accuracy of its
measurement of the board’s width (about 8.8cm) would be about 2% of 8.8cm or
about + 0.2 cm. Estimated uncertainty is meant to take both accuracy and precision
into account.

SECTION 1-3 Measurement, Uncertainty; Significant Figures
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TABLE 1-1 Some Typical
Lengths or Distances
(order of magnitude)

Length Meters
(or Distance)

Neutron or proton
(diameter) 1015

Atom
(diameter)

Virus [see Fig. I-5a]
Sheet of paper

(thickness) 10-4
Finger width 102
Football field length 102
Height of Mt. Everest

[see Fig. 1-5b] 104
Earth diameter 107
Earth to Sun 101
Earth to nearest star 1016

Earth to nearest galaxy 102

Earth to farthest
galaxy visible 105

FIGURE 1-5 Some lengths:

(a) viruses (about 10-7 m long)
attacking a cell; (b) Mt. Everest’s
height is on the order of 104 m
(8850 m, to be precise).

@

(b)

(approximate)

1—4 Units, Standards, and the SI System

The measurement of any quantity is made relative to a particular standard or unit,
and this unit must be specified along with the numerical value of the quantity. For
example, we can measure length in British units such as inches, feet, or miles, or in
the metric system in centimeters, meters, or kilometers. To specify that the length
of a particular object is 18.6 is meaningless. The unit must be given; for clearly,
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we
need to define a standard which defines exactly how long one meter or one second
is. It is important that standards be chosen that are readily reproducible so that
anyone needing to make a very accurate measurement can refer to the standard in
the laboratory.

Length

The first truly international standard was the meter (abbreviated m) established as
the standard of length by the French Academy of Sciences in the 1790s. The stan-
dard meter was originally chosen to be one ten-millionth of the distance from the
Earth’s equator to either pole,f and a platinum rod to represent this length was
made. (One meter is, very roughly, the distance from the tip of your nose to the tip
of your finger, with arm and hand stretched out to the side.) In 1889, the meter was
defined more precisely as the distance between two finely engraved marks on a
particular bar of platinum-iridium alloy. In 1960, to provide greater precision and
reproducibility, the meter was redefined as 1,650,763.73 wavelengths of a particular
orange light emitted by the gas krypton-86. In 1983 the meter was again redefined,
this time in terms of the speed of light (whose best measured value in terms of the
older definition of the meter was 299,792,458 m/s, with an uncertainty of Im/s).
The new definition reads: “The meter is the length of path traveled by light in
vacuum during a time interval of 1/299,792,458 of a second.”*

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as precisely 2.54 centimeters (cm; 1cm = 0.01 m).
Other conversion factors are given in the Table on the inside of the front cover
of this book. Table 1-1 presents some typical lengths, from very small to very
large, rounded off to the nearest power of ten. See also Fig. 1-5. [Note that the
abbreviation for inches (in.) is the only one with a period, to distinguish it from
the word “in” ]

Time

The standard unit of time is the second (s). For many years, the second was defined as
1/86,400 of a mean solar day (24h/day X 60min/h X 60s/min = 86,400 s/day).
The standard second is now defined more precisely in terms of the frequency of radi-
ation emitted by cesium atoms when they pass between two particular states.
[Specifically, one second is defined as the time required for 9,192,631,770 periods of
this radiation.] There are, by definition, 60s in one minute (min) and 60 minutes in
one hour (h). Table 1-2 presents a range of measured time intervals, rounded off to
the nearest power of ten.

Mass

The standard unit of mass is the kilogram (kg). The standard mass is a particular
platinum-iridium cylinder, kept at the International Bureau of Weights and
Measures near Paris, France, whose mass is defined as exactly 1kg. A range of
masses is presented in Table 1-3. [For practical purposes, 1kg weighs about
2.2 pounds on Earth.]

tModern measurements of the Earth’s circumference reveal that the intended length is off by about
one-fiftieth of 1% Not bad!

*The new definition of the meter has the effect of giving the speed of light the exact value of
299,792,458 m/s.

6 CHAPTER 1 Introduction, Measurement, Estimating



TABLE 1-2 Some Typical Time Intervals

TABLE 1-3 Some Masses

Kilograms (approximate)

Time Interval Seconds (approximate) Object
Lifetime of very unstable subatomic particle 10-23s Electron
Lifetime of radioactive elements 10~22s to 1028s Proton, neutron
Lifetime of muon 1(T6 s DNA molecule
Time between human heartbeats 10° s(= 1s) Bacterium
One day 105 s Mosquito

One year 3 X 107 Plum

Human life span 2 X 109 Human
Length of recorded history 101 Ship

Humans on Earth 1014 Earth

Life on Earth 1017 Sun

Age of Universe 1018 Galaxy

When dealing with atoms and molecules, we usually use the unified atomic
mass unit (u). In terms of the kilogram,
lu = 1.6605 X 10-Zkg.
The definitions of other standard units for other quantities will be given as we
encounter them in later Chapters. (Precise values of this and other numbers are
given inside the front cover.)

Unit Prefixes

In the metric system, the larger and smaller units are defined in multiples of 10 from
the standard unit, and this makes calculation particularly easy. Thus 1 kilometer (km)
is 1000m, 1 centimeter is ifem, 1 millimeter (mm) is or “cm, and so on.
The prefixes “centi-,” “kilo-,” and others are listed in Table 1-4 and can be applied
not only to units of length but to units of volume, mass, or any other metric unit.
For example, a centiliter (cL) is”~ liter (L)>and a kilogram (kg) is 1000 grams (g).

Systems of Units

When dealing with the laws and equations of physics it is very important to use a
consistent set of units. Several systems of units have been in use over the years.
Today the most important is the Systeme International (French for International
System), which is abbreviated SI. In Sl units, the standard of length is the meter,
the standard for time is the second, and the standard for mass is the kilogram. This
system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and
second are the standard units of length, mass, and time, as abbreviated in the title.
The British engineering system has as its standards the foot for length, the pound
for force, and the second for time.

We use Sl units almost exclusively in this book.

Base versus Derived Quantities

Physical quantities can be divided into two categories: base quantities and derived
quantities. The corresponding units for these quantities are called base units and
derived units. A base quantity must be defined in terms of a standard. Scientists, in the
interest of simplicity, want the smallest number of base quantities possible consistent
with a full description of the physical world. This number turns out to be seven, and
those used in the Sl are given in Table 1-5. All other quantities can be defined in terms
of these seven base quantities/ and hence are referred to as derived quantities. An
example of a derived quantity is speed, which is defined as distance divided by the time
it takes to travel that distance. A Table inside the front cover lists many derived
quantities and their units in terms of base units. To define any quantity, whether base or
derived, we can specify a rule or procedure, and this is called an operational definition.

trThe only exceptions are for angle (radians—see Chapter 8) and solid angle (steradian). No general
agreement has been reached as to whether these are base or derived quantities.

SECTION 1-4

1(T30 kg
10-27 kg
1(T17 kg
1(T15 kg
1(T5 kg
101 kg
102 kg
108 kg
1024 kg
1030 kg
1041 kg

6 X
2 X

TABLE 1-4 Metric (SI) Prefixes

Prefix Abbreviation Value
yotta Y 104
zetta z 102
exa E 1018
peta P 1015
tera T 1012
giga G 109
mega M 106
kilo k 103
hecto h 102
deka da 101
deci d KT1
centi c 1(T2
milli m 1(T3
microf Vv 1(T6
nano n KT9
pico P 1(T12
femto f 1(TH
atto a KT8
zepto z (T2
yocto y KT2

fjuis the Greek letter “mu.”

TABLE 1-5

Sl Base Quantities and Units

Quantity

Length
Time
Mass

Electric
current

Temperature
Amount
of substance

Luminous
intensity

Unit
Unit Abbreviation
meter m
second s

kilogram kg

ampere A
kelvin K
mole mol
candela cd

Units, Standards, and the SI System 7
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FIGURE 1-6 The world’s second
highest peak, K2, whose summit is
considered the most difficult of the

PHYSICS

The world} tallest peaks

APPLIED

“8000-ers.” K2 is seen here from

the north (China).
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TABLE 1-6

The 8000-m Peaks

Peak

Mt. Everest
K2
Kangchenjunga
Lhotse

Makalu

Cho Oyu
Dhaulagiri
Manaslu
Nanga Parbat
Annapurna
Gasherbrum |
Broad Peak
Gasherbrum 11
Shisha Pangma

CHAPTER 1

Height (m)

8850
8611
8586
8516
8462
8201
8167
8156
8125
8091
8068
8047
8035
8013

1-5 Converting Units

Any quantity we measure, such as a length, a speed, or an electric current, consists
of a number and a unit. Often we are given a quantity in one set of units, but we
want it expressed in another set of units. For example, suppose we measure that a
table is 21.5 inches wide, and we want to express this in centimeters. We must use a
conversion factor, which in this case is (by definition) exactly

lin. = 254cm

or, written another way,

1 = 254cmlin.

Since multiplying by one does not change anything, the width of our table, in cm, is

215inches = (21.5 X N2.54/~N = 54.6cm.

Note how the units (inches in this case) cancelled out. A Table containing many unit
conversions is found inside the front cover of this book. Let’s consider some Examples.

EXAMPLE 1-2 The 8000-m peaks. The fourteen tallest peaks in the world
(Fig. 1-6 and Table 1-6) are referred to as “eight-thousanders,” meaning their
summits are over 8000 m above sea level. What is the elevation, in feet, of an
elevation of 8000 m?

APPROACH We need simply to convert meters to feet, and we can start with the
conversion factor 1lin. = 2.54 cm, which is exact. That is, 1in. = 2.5400 cm to
any number of significant figures, because it is defined to be.

SOLUTION One foot is 12in., so we can write

1ft = (12is.)(2.542" 3 = 3048cm = 03048m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this
equation to find the number of feet in 1 meter:

Im = auUs = 328084ft

We multiply this equation by 8000.0 (to have five significant figures):

8000.0m = (8000.0la.)~3.28084;~ = 26,247ft.

An elevation of 8000 m is 26,247 ft above sea level.
NOTE We could have done the conversion all in one line:

annum - - 260T«.

The key is to multiply conversion factors, each equal to one (= 1.0000), and to
make sure the units cancel.

EXERCISE E There are only 14 eight-thousand-meter peaks in the world (see Example 1-2),
and their names and elevations are given in Table 1-6. They are all in the Himalaya moun-
tain range in India, Pakistan, Tibet, and China. Determine the elevation of the world’s
three highest peaks in feet.

Introduction, Measurement, Estimating



EXAMPLE 1-3 Apartment area. You have seen a nice apartment whose
floor area is 880 square feet (ft2. What is its area in square meters?

APPROACH We use the same conversion factor, 1in. = 2.54cm, but this time
we have to use it twice.

SOLUTION Because lin. = 2.54cm = 0.0254m, then Ift2= (12in.)2(0.0254 m/in.)2 =
0.0929 m2 So 880 ft2 = (880ft2)(0.0929 m2ft2) « 82m2

NOTE As a rule of thumb, an area given in ft2is roughly 10 times the number of
square meters (more precisely, about 10.8 X).

EXAMPLE 1-4 Speeds. Where the posted speed limit is 55 miles per hour
(mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) in
kilometers per hour (km/h)?

APPROACH We again use the conversion factor 1in. = 2.54 cm, and we recall
that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains
(60min/h) x (60s/min) = 3600 s/h.

SOLUTION (&) We can write 1 mile as

oo . JGirr 1m _
1mi = (5280ir)( 2'54TR/./\1OOjG"IT = 1609 m.
We also know that 1 hour contains 3600 s, so
mi. m JT
57 = B, 9 jwee00s = 25%.

where we rounded off to two significant figures.
(b) Now we use 1 mi = 1609 m = 1.609 km; then
i km km

55— = 5 " 1609
h mi

NOTE Each conversion factor is equal to one. You can look up most conversion j PROBLEM SOLVING
factors in the Table inside the front cover. Conversion factors = 1

EXERCISE F Would a driver traveling at 15m/s in a 35 mi/h zone be exceeding the speed
limit?

When changing units, you can avoid making an error in the use of conversion \PROBLEM SOLVING
factors by checking that units cancel out properly. For example, in our conversion Unit conversion is wrong if units do
of 1 mi to 1609 m in Example 1-4(a), if we had incorrectly used the factor (n”) not cancel
instead of (ujoSn), the centimeter units would not have cancelled out; we would not
have ended up with meters.

1—6 Order of Magnitude: Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check an accurate calculation made
on a calculator, to make sure that no blunders were made when the numbers
were entered. A
A rough estimate is made by rounding off all numbers to one significant figure \ \PROBLEM SOLVING
and its power of 10, and after the calculation is made, again only one significant How to make a rough estimate
figure is kept. Such an estimate is called an order-of-magnitude estimate and can
be accurate within a factor of 10, and often better. In fact, the phrase “order of
magnitude” is sometimes used to refer simply to the power of 10.

SECTION 1-6  Order of Magnitude: Rapid Estimating 9
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Estimating the volume (or mass) of

10

PHYSICS APPLIED

a lake; see also Fig. 1-7

PROBLEM SOLVING
Use symmetry when possible

r=500in
10m

(b)

FIGURE 1-7 Example 1-5. (a) How
much water is in this lake? (Photo is of
one of the Rae Lakes in the Sierra
Nevada of California.) (b) Model of
the lake as a cylinder. [We could go one
step further and estimate the mass or
weight of this lake. We will see later
that water has a density of 1000 kg/m 3,
so this lake has a mass of about
(103kg/m3)(107m3) « 1010kg, which is
about 10 billion kg or 10 million metric
tons. (A metric ton is 1000 kg, about
2200 Ibs, slightly larger than a British
ton, 2000 Ibs.)]

EXAMPLE 1-5 ESTIMATE | Volume of a lake. Estimate how much water
there is in a particular lake, Fig. I-7a, which is roughly circular, about 1km
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume, we
can use a simple model of the lake as a cylinder: we multiply the average depth
of the lake times its roughly circular surface area, as if the lake were a cylinder
(Fig. I-7b).

SOLUTION The volume V of a cylinder is the product of its height h times the
area of its base: V = hirr2 where ris the radius of the circular base.f The radius r
is \ km = 500 m, so the volume is approximately

V = hirr2 M (10m) X (3) X (5 X 102m)2 m 8 X 106m3 « 107m3,

where tt was rounded off to 3. So the volume is on the order of 107m3 ten
million cubic meters. Because of all the estimates that went into this calculation,
the order-of-magnitude estimate (107m3) is probably better to quote than the
8 X 106m3figure.

NOTE To express our result in U.S. gallons, we see in the Table on the inside
front cover that 1liter = 10-3m3 « \ gallon. Hence, the lake contains
(8 x 106m3 (I gallon/4 X 10 3m3 « 2 x 109gallons of water.

EXAMPLE 1-6 ESTIMATE I Thickness of a page. Estimate the thickness
of a page of this book.

APPROACH At first you might think that a special measuring device, a micrometer
(Fig. 1-8), is needed to measure the thickness of one page since an ordinary
ruler clearly won't do. But we can use a trick or, to put it in physics terms, make
use of a symmetry, we can make the reasonable assumption that all the pages of
this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you
measure the thickness of the first 500 pages of this book (page 1 to page 500),
you might get something like 1.5cm. Note that 500 numbered pages,

fFormulas like this for volume, area, etc., are found inside the back cover of this book.
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counted front and back, is 250 separate sheets of paper. So one page must have
a thickness of about

15cm
250 pages
or less than a tenth of a millimeter (0.1 mm).

6 X 10-3cm = 6 X 10“2mm,

EXAMPLE 1-7 ESTIMATE-! Height by triangulation. Estimate the height
of the building shown in Fig. 1-9, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of

the pole to be 3m. You next step away from the pole until the top of the pole is in

line with the top of the building, Fig. I-9a. You are 5ft 6in. tall, so your eyes are FIGURE 1-8 Example 1-6. Micrometer
about 1.5m above the ground. Your friend is taller, and when she stretches out her used for measuring small thicknesses.
arms, one hand touches you, and the other touches the pole, so you estimate that
distance as 2m (Fig. 1-9a). You then pace off the distance from the pole to the
base of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m.
SOLUTION Now you draw, to scale, the diagram shown in Fig. [-9b using these
measurements. You can measure, right on the diagram, the last side of the
triangle to be about x = 13m. Alternatively, you can use similar triangles to
obtain the height x:

15m
2m 18m

Finally you add in your eye height of 1.5m above the ground to get your final
result: the building is about 15m tall.

FIGURE 1-9 Example 1-7.
Diagrams are really useful!

SO 134m.

EXAMPLE 1-8 ESTIMATE | Estimating the radius of Earth. Believe it or
not, you can estimate the radius of the Earth without having to go into space (see
the photograph on page 1). If you have ever been on the shore of a large lake,
you may have noticed that you cannot see the beaches, piers, or rocks at water
level across the lake on the opposite shore. The lake seems to bulge out between
you and the opposite shore—a good clue that the Earth is round. Suppose you
climb a stepladder and discover that when your eyes are 10 ft (3.0 m) above the
water, you can just see the rocks at water level on the opposite shore. From
a map, you estimate the distance to the opposite shore as d ~ 6.1 km. Use
Fig. 1-10 with h = 3.0m to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,

c2= a2 + b2 where cis the length of the hypotenuse of any right triangle, and a

and b are the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1-10, the two sides are the radius of the FIGURE 1-10 Example 1-8, but
Earth R and the distance d = 6.1km = 6100m. The hypotenuse is approxi-  notto scale.You can see small rocks

mately the length R + h, where h = 3.0m. By the Pythagorean theorem, atwater level on the opposite shore
of alake 6.1 km wide if you stand on

R2+ d2 « (R + h)2 a stepladder.
« R2+ 2hR + h2

18m

We solve algebraically for R, after cancelling R2on both sides:
d2- h2  (6100m)2 - (3.0m)2

2h 6.0m
NOTE Precise measurements give 6380 km. But look at your achievement! With a
few simple rough measurements and simple geometry, you made a good estimate

of the Earth’s radius. You did not need to go out in space, nor did you need a very long
measuring tape. Now you know the answer to the Chapter-Opening Question on p. 1.

= 6.2 X 106m = 6200 km.

SECTION 1-6 Order of Magnitude: Rapid Estimating 11
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SOLVING

Estimating how many piano tuners

12 CHAPTER 1

there are in a city

EXAMPLE 1-9 ESTIMATE-! Total number of heartbeats. Estimate the
total number of beats a typical human heart makes in a lifetime.

APPROACH A typical resting heart rate is 70beats/min. But during exercise it
can be a lot higher. A reasonable average might be 80 beats/min.

SOLUTION One year in terms of seconds is (24h)(3600s/h)(365 d) « 3 X 107s.
If an average person lives 70years = (70yr)(3 X 107s/yr) « 2 X 109s, then the
total number of heartbeats would be about

min /\ 6os (2 X 1095) « 3 x 109

or 3 trillion.

Another technique for estimating, this one made famous by Enrico Fermi to
his physics students, is to estimate the number of piano tuners in a city, say,
Chicago or San Francisco. To get a rough order-of-magnitude estimate of the
number of piano tuners today in San Francisco, a city of about 700,000 inhabitants,
we can proceed by estimating the number of functioning pianos, how often each
piano is tuned, and how many pianos each tuner can tune. To estimate the number
of pianos in San Francisco, we note that certainly not everyone has a piano.
a guess of 1 family in 3 having a piano would correspond to 1 piano per 12 persons,
assuming an average family of 4 persons. As an order of magnitude, let’s say
1 piano per 10 people. This is certainly more reasonable than 1 per 100 people, or
1 per every person, so let’s proceed with the estimate that 1 person in 10 has a
piano, or about 70,000 pianos in San Francisco. Now a piano tuner needs an hour
or two to tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day.
A piano ought to be tuned every 6 months or a year—Iet’s say once each year.
A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune
about 1000 pianos a year. So San Francisco, with its (very) roughly 70,000 pianos,
needs about 70 piano tuners. This is, of course, only a rough estimated It tells us
that there must be many more than 10 piano tuners, and surely not as many as 1000.

1— Dimensions and Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of base
units or base quantities that make it up. The dimensions of area, for example, are
always length squared, abbreviated [L2], using square brackets; the units can be
square meters, square feet, cm2 and so on. Velocity, on the other hand, can be
measured in units of km/h, m/s, or mi/h, but the dimensions are always a length [L]
divided by a time [T\: that is, [L/T].

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height h is
A =\bh, whereas the area of a circle of radius ris A = irr2 The formulas are
different in the two cases, but the dimensions of area are always [L2].

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimensions
to check if a relationship is incorrect. Note that we add or subtract quantities only
if they have the same dimensions (we dont add centimeters and hours); and
the quantities on each side of an equals sign must have the same dimensions. (In
numerical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation v = v0 + | at2 where v is the
speed of an object after a time t, vOis the object’s initial speed, and the object
undergoes an acceleration a. Let’s do a dimensional check to see if this equation

tA check of the San Francisco Yellow Pages (done after this calculation) reveals about 50 listings. Each
of these listings may employ more than one tuner, but on the other hand, each may also do repairs as
well as tuning. In any case, our estimate is reasonable.

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor, and they are marked with an asterisk (*). See the Preface for more details.
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could be correct or is surely incorrect. Note that numerical factors, like the \ here,
do not affect dimensional checks. We write a dimensional equation as follows,
remembering that the dimensions of speed are [L/T\ and (as we shall see in
Chapter 2) the dimensions of acceleration are [L/T2]:

LM+ +

The dimensions ar&incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made in
the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor (such
as\ or 2tt) could be missing.

Dimensional analysis can also be used as a quick check on an equation you are
not sure about. For example, suppose that you can’t remember whether the equa-
tion for the period of a simple pendulum T (the time to make one back-and-forth
swing) of length i is T =2uVtjg or T = 2wV g/l, where g is the acceleration
due to gravity and, like all accelerations, has dimensions [L/T2]. (Do not worry
about these formulas—the correct one will be derived in Chapter 14; what we are
concerned about here is a person’s recalling whether it contains £/g or g/L)
A dimensional check shows that the former (i/g) is correct:

[rl] - '\NSk] - vW - m,

whereas the latter (g/l) is not:
M/t = nr =1
S () IS T (3

Note that the constant 2tthas no dimensions and so can't be checked using dimensions.
Further uses of dimensional analysis are found in Appendix C.

[25J212H HH Planck length. The smallest meaningful measure of length is
called the “Planck length,” and is defined in terms of three fundamental constants
in nature, the speed of light ¢ = 3.00 X 108m/s, the gravitational constant
G = 6.67 X 10-11m3kg+s2 and Planck’s constant h = 6.63 X 10_34kg*mZ2s.
The Planck length AP (Ais the Greek letter “lambda”) is given by the following
combination of these three constants:

AP —

Show that the dimensions of APare length [L], and find the order of magnitude of AP.
APPROACH We rewrite the above equation in terms of dimensions. The dimen-
sions of c are [L/T], of G are [LIM T2], and of h are [ML2T].

SOLUTION The dimensions of AP are

IL,/” rl-v P I -w

which is a length. The value of the Planck length is

[Gfc (6.67 X 10-11m3Ag-s2(6.63 X 10-34kg-m2s)
Md=AN— =al X e A ~ 4 X 10 "m,
vCc3 Vv (3.0 x 10sm/s)3
which is on the order of 10-34 or 10-35m.
NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest particles
(quarks, leptons) have sizes on the order of the Planck length, 10 35m. These
theories also suggest that the “Big Bang,” with which the Universe is believed to
have begun, started from an initial size on the order of the Planck length.

*SECTION 1-7 Dimensions and Dimensional Analysis
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Summary

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve to give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Physics, like other sciences, is a creative endeavor. It is not
simply a collection of facts. Important theories are created with
the idea of explaining observations. To be accepted, theories are
tested by comparing their predictions with the results of actual
experiments. Note that, in general, a theory cannot be “proved”
in an absolute sense.

Scientists often devise models of physical phenomena. A
model is a kind of picture or analogy that helps to describe the
phenomena in terms of something we already know. A theory,
often developed from a model, is usually deeper and more
complex than a simple model.

A scientific law is a concise statement, often expressed in
the form of an equation, which quantitatively describes a wide
range of phenomena.

Questions

1. What are the merits and drawbacks of using a person’s foot
as a standard? Consider both (a) a particular person’s foot,
and (b) any person’s foot. Keep in mind that it is
advantagous that fundamental standards be accessible (easy
to compare to), invariable (do not change), indestructible,
and reproducible.

2. Why is it incorrect to think that the more digits you
represent in your answer, the more accurate it is?

3. When traveling a highway in the mountains, you may see
elevation signs that read “914 m (3000 ft).” Critics of the
metric system claim that such numbers show the metric
system is more complicated. How would you alter such
signs to be more consistent with a switch to the metric
system?

4. What is wrong with this road sign:

Memphis 7 mi (11.263 km)?

5. For an answer to be complete, the units need to be speci-
fied. Why?

| Problems

[The Problems at the end of each Chapter are ranked I, Il, or 11l
according to estimated difficulty, with (I) Problems being easiest.
Level (I11) Problems are meant mainly as a challenge for the best
students, for “extra credit.” The Problems are arranged by Sections,
meaning that the reader should have read up to and including that
Section, but not only that Section—Problems often depend on
earlier material. Each Chapter also has a group of General Problems
that are not arranged by Section and not ranked.]

1-3 Measurement, Uncertainty, Significant Figures
{Note: In Problems, assume a number like 6.4 is accurate to +0.1;
and 950 is + 10 unless 950 is said to be “precisely” or “very nearly”
950, in which case assume 950 + 1.)
1. (1) The age of the universe is thought to be about 14 billion
years. Assuming two significant figures, write this in powers
of ten in (a) years, (b) seconds.

14 CHAPTER 1
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Measurements play a crucial role in physics, but can never
be perfectly precise. It is important to specify the uncertainty
of a measurement either by stating it directly using the =+
notation, and/or by keeping only the correct number of
significant figures.

Physical quantities are always specified relative to a partic-
ular standard or unit, and the unit used should always be stated.
The commonly accepted set of units today is the Systeme
International (Sl), in which the standard units of length, mass,
and time are the meter, kilogram, and second.

When converting units, check all conversion factors for
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination of
base quantities that comprise it. Velocity, for example, has
dimensions of [length/time] or [L/T]. Dimensional analysis can
be used to check a relationship for correct form.]

6. Discuss how the notion of symmetry could be used to
estimate the number of marbles in a 1-liter jar.

7. You measure the radius of a wheel to be 4.16 cm. If you
multiply by 2 to get the diameter, should you write the
result as 8 cm or as 8.32 cm? Justify your answer.

8. Express the sine of 30.0° with the correct number of
significant figures.

9. A recipe for a souffle specifies that the measured ingredients
must be exact, or the souffle will not rise. The recipe calls for
6 large eggs. The size of “large” eggs can vary by 10%,
according to the USDA specifications. What does this tell you
about how exactly you need to measure the other ingredients?

10. List assumptions useful to estimate the number of car
mechanics in (a) San Francisco, (b) your hometown, and
then make the estimates.

11. Suggest a way to measure the distance from Earth to the Sun.

*12. Can you set up a complete set of base quantities, as in
Table 1-5, that does not include length as one of them?

2. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03,
(e) 0.0086, (/) 3236, and (g) 8700?

3. (I) Write the following numbers in powers of ten notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, and (/) 444.

4. (1) Write out the following numbers in full with the
correct number of zeros: (a) 8.69 x 104, (b) 9.1 x 103
(c)8.8 x 10_1, (d) 4.76 x 102, and (e) 3.62 X 10“5.

5. (I1) What is the percent uncertainty in the measurement
548 + 0.25m?

6. (1) Time intervals measured with a stopwatch typically have
an uncertainty of about 0.2s, due to human reaction time at
the start and stop moments. What is the percent uncertainty
of a hand-timed measurement of (a) 55, (b) 50, (c) 5min?

7. (1) Add (9.2 X 103s) + (8.3 X 104s) + (0.008 X 106s).



10.

(1) Multiply 2.079 x 102m by 0.082 x 10-1, taking into
account significant figures.

(1) For small angles 6, the numerical value of sin0 is
approximately the same as the numerical value of tanO.
Find the largest angle for which sine and tangent agree to
within two significant figures.

(111) What, roughly, is the percent uncertainty in the volume
of a spherical beach ball whose radius is r = 0.84 = 0.04 m?

1-4 and 1-5 Units, Standards, SI, Converting Units

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(1) Write the following as full (decimal) numbers with stan-
dard units: (a) 286.6 mm, (b) 85/jlV, (¢) 760 mg, (d) 60.0 ps,
(e) 22.5fm, (/) 2.50 gigavolts.

(1) Express the following using the prefixes of Table 1-4:
(a) 1 x 106volts, (b) 2 x 10-6 meters, (c) 6 X 103days,
(id) 18 x 102bucks, and (e) 8 X 10-8 seconds.

(I) Determine your own height in meters, and your mass in kg.
(1) The Sun, on average, is 93 million miles from Earth. How
many meters is this? Express (a) using powers of ten, and
(b) using a metric prefix.

(I1) What is the conversion factor between (a) ft2 and yd2,
(b) m2and ft2?

(1) An airplane travels at 950 km/h. How long does it take
to travel 1.00 km?

(I1) A typical atom has a diameter of about 1.0 X 10-10m.
(a) What is this in inches? (b) Approximately how many
atoms are there along a 1.0-cm line?

(I1) Express the following sum with the correct number of
significant figures: 1.80m + 1425cm + 5.34 X 105/xm.

(1) Determine the conversion factor between (a) km/h
and mi/h, (b) m/s and ft/s, and (c) km/h and m/s.

(1) How much longer (percentage) is a one-mile race than
a 1500-m race (“the metric mile”)?

(I1) A light-year is the distance light travels in one year
(at speed = 2.998 x 108m/s). (a) How many meters are
there in 1.00 light-year? (b) An astronomical unit (AU) is
the average distance from the Sun to Earth, 1.50 X 108km.
How many AU are there in 1.00 light-year? (c) What is the
speed of light in AU/h?

(1) 1f you used only a keyboard to enter data, how many
years would it take to fill up the hard drive in your
computer that can store 82 gigabytes (82 X 109bytes) of
data? Assume “normal” eight-hour working days, and that
one byte is required to store one keyboard character, and
that you can type 180 characters per minute.

(111) The diameter of the Moon is 3480 km. (a) What is the
surface area of the Moon? (b) How many times larger is the
surface area of the Earth?

1-6 Order-of-Magnitude Estimating

{Note: Remember that for rough estimates, only round numbers are
needed both as input to calculations and as final results.)

24.

25.

26.

27.

() Estimate the order of magnitude (power of ten) of: (a) 2800,
(b) 86.30 x 102, (c) 0.0076, and (d) 15.0 X 108.

(1) Estimate how many books can be shelved in a college
library with 3500 m2 of floor space. Assume 8 shelves high,
having books on both sides, with corridors 1.5m wide.
Assume books are about the size of this one, on average.
(1) Estimate how many hours it would take a runner to run (at
10km/h) across the United States from New York to California.
(I1) Estimate the number of liters of water a human drinks
in a lifetime.

28.

(I1) Estimate how long it would take one person to mow a
football field using an ordinary home lawn mower (Fig. 1-11).
Assume the mower moves with a 1-km/h speed, and has a
0.5-m width.

FIGURE 1-11
Problem 28.

29.

30.

31.

32.

33.

34.

(1) Estimate the number of dentists (a) in San Francisco
and (b) in your town or city.

(1) The rubber worn from tires mostly enters the atmos-
phere as particulate pollution. Estimate how much rubber
(in kg) is put into the air in the United States every year.
To get started, a good estimate for a tire tread’s depth is 1cm
when new, and rubber has a mass of about 1200 kg per m3of
volume.

(1) You are in a hot air balloon, 200 m above the flat Texas
plains. You look out toward the horizon. How far out can
you see—that is, how far is your horizon? The Earth’s
radius is about 6400 km.

(1) 1 agree to hire you for 30 days and you can decide between
two possible methods of payment: either (1) $1000 a day, or
(2) one penny on the first day, two pennies on the second day
and continue to double your daily pay each day up to day 30.
Use quick estimation to make your decision, and justify it.

(1) Many sailboats are moored at a marina 4.4km away on
the opposite side of a lake. You stare at one of the sailboats
because, when you are lying flat at the water’s edge, you can
just see its deck but none of the side of the sailboat. You
then go to that sailboat on the other side of the lake and
measure that the deck is 1.5m above the level of the
water. Using Fig. 1-12, where h = 1.5m, esti-

mate the radius R of the Earth.

FIGURE 1-12 Problem 33.
You see a sailboat across a
lake (not to scale). R is the
radius of the Earth. You are a
distance d = 4.4 km from the
sailboat when you can see only
its deck and not its side.
Because of the curvature of the
Earth, the water “bulges out”
between you and the boat.

(111) Another experiment you can do also uses the radius of
the Earth. The Sun sets, fully disappearing over the horizon as
you lie on the beach, your eyes 20cm above the sand. You
immediately jump up, your eyes now 150 cm above the sand,
and you can again see the top of the Sun. If you count the
number of seconds (= t) until the Sun fully disappears again,
you can estimate the radius of the Earth. But for this Problem,
use the known radius of the Earth and calculate the time t.

Problems 15



1-7 Dimensions

*35.

*36.

*37.

| General Problems

39.

40.

41.
42.
43.

44,

45.
46.

47.
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(I) What are the dimensions of density, which is mass per
volume?

(1) The speed v of an object is given by the equation
v = At3 —Bt, where t refers to time, (a) What are the
dimensions of A and 5? (b) What are the Sl units for the
constants A and 5?

(1) Three students derive the following equations in which
x refers to distance traveled, v the speed, a the acceleration
(m/s2), t the time, and the subscript zero (0) means a quantity
attime t = 0: (a) x = vt2 + 2at, (b) x = vO0t +\at2, and
(c) x =v0t + 2at2. Which of these could possibly be
correct according to a dimensional check?

Global positioning satellites (GPS) can be used to deter-
mine positions with great accuracy. If one of the satellites is
at a distance of 20,000 km from you, what percent uncertainty
in the distance does a 2-m uncertainty represent? How
many significant figures are needed in the distance?
Computer chips (Fig. 1-13) etched on circular silicon wafers
of thickness 0.300 mm are sliced from a solid cylindrical
silicon crystal of length 25cm. If each wafer can hold
100 chips, what is the maximum number of chips that can be
produced from one entire cylinder?

FIGURE!-13 Problem 40.

The wafer held by the hand (above)
is shown below, enlarged and
illuminated by colored light. Visible
are rows of integrated circuits (chips).

{a) How many seconds are there in 1.00year? (b) How
many nanoseconds are there in 1.00year? (c) How many
years are there in 1.00 second?

American football uses a field that is 100 yd long, whereas a
regulation soccer field is 100 m long. Which field is longer,
and by how much (give yards, meters, and percent)?

A typical adult human lung contains about 300 million tiny
cavities called alveoli. Estimate the average diameter of
a single alveolus.

One hectare is defined as 1.000 X 104m2 One acre is
4.356 X 104ft2 How many acres are in one hectare?
Estimate the number of gallons of gasoline consumed by
the total of all automobile drivers in the United States,
per year.

Use Table 1-3 to estimate the total number of protons or
neutrons in (a) a bacterium, (b) a DNA molecule, (c) the
human body, (d) our Galaxy.

An average family of four uses roughly 1200L (about
300 gallons) of water per day (I L = 1000 cm3). How much
depth would a lake lose per year if it uniformly covered an
area of 50 km2 and supplied a local town with a population
of 40,000 people? Consider only population uses, and
neglect evaporation and so on.

Introduction, Measurement, Estimating

8.

48.

49.

50.

51

52.

53.

(1) Show that the following combination of the three funda-
mental constants of nature that we used in Example 1-10
(that is G, ¢, and h) forms a quantity with the dimensions
of time:

h =

This quantity, tP, is called the Planck time and is thought to
be the earliest time, after the creation of the Universe, at
which the currently known laws of physics can be applied.

Estimate the number of gumballs in the machine of Fig. 1-14.

FIGURE 1-14 Problem 48.
Estimate the number of
gumballs in the machine.

Estimate how many kilograms of laundry soap are used in
the U.S. in one year (and therefore pumped out of washing
machines with the dirty water). Assume each load of
laundry takes 0.1 kg of soap.

How big is a ton? That is, what is the volume of something
that weighs a ton? To be specific, estimate the diameter of a
1-ton rock, but first make a wild guess: will it be 1ft across,
3ft, or the size of a car? [Hint: Rock has mass per volume
about 3 times that of water, which is 1kg per liter (I03cm3)
or 62 1b per cubic foot.]

A certain audio compact disc (CD) contains 783.216 megabytes
of digital information. Each byte consists of exactly 8 bits.
When played, a CD player reads the CD’s digital information
at a constant rate of 1.4megabits per second. How many
minutes does it take the player to read the entire CD?

Hold a pencil in front of your eye at a position where its
blunt end just blocks out the

Moon (Fig. 1-15). Make appro-

priate measurements to estimate

the diameter of the Moon, given

that the Earth-Moon distance is

3.8 X 105km.

FIGURE 1-15 Problem 52.
How big is the Moon?

A heavy rainstorm dumps 1.0 cm of rain on a city 5 km wide
and 8km long in a 2-h period. How many metric tons
(I metric ton = 103kg) of water fell on the city? (1 cm3 of
water has a mass of 1g = 10-3kg.) How many gallons
of water was this?



54.

55.

56.

57.

58.

59.

Noah’s ark was ordered to be 300 cubits long, 50 cubits wide,
and 30 cubits high. The cubit was a unit of measure equal to
the length of a human forearm, elbow to the tip of the
longest finger. Express the dimensions of Noah’s ark in
meters, and estimate its volume (m3).

Estimate how many days it would take to walk around the
world, assuming 10 h walking per day at 4 km/h.

One liter (1000 cm3) of oil is spilled onto a smooth lake. If
the oil spreads out uniformly until it makes an oil slick just
one molecule thick, with adjacent molecules just touching,
estimate the diameter of the oil slick. Assume the oil mole-
cules have a diameter of 2 X 10-10m.

Jean camps beside a wide river and wonders how wide it is.
She spots a large rock on the bank directly across from her.
She then walks upstream until she judges that the angle
between her and the rock, which she can still see clearly, is
now at an angle of 30° downstream (Fig. 1-16). Jean
measures her stride
to be about 1 yard
long. The distance
back to her camp is
120 strides. About
how far across, both
in yards and in

meters, is the river? \'m
v
FIGURE 1-16
Problem 57. 120 Strides

A watch manufacturer claims that its watches gain or lose
no more than 8seconds in a year. How accurate is this
watch, expressed as a percentage?

An angstrom (symbol A) is a unit of length, defined as
10-10 m, which is on the order of the diameter of an atom,
(&) How many nanometers are in 1.0 angstrom? (b) How
many femtometers or fermis (the common unit of length in
nuclear physics) are in 1l.0angstrom? (c) How many
angstroms are in 1.0 m? (d) How many angstroms are in
1.0 light-year (see Problem 21)?

Answers to Exercises

A:
B:
C:

(d).

No: they have 3 and 2, respectively.

All three have three significant figures, although the
number of decimal places is (a) 2, (b) 3, (c) 4.

61.

62.
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65.

66.

67.

68.

69.

. The diameter of the Moon is 3480 km. What is the volume

of the Moon? How many Moons would be needed to create
a volume equal to that of Earth?

Determine the percent uncertainty in 6, and in sin 6, when
(@) 6 = 15.0° + 0.5°, (b) 6 = 75.0° + 0.5°.

If you began walking along one of Earth’s lines of longi-
tude and walked north until you had changed latitude by
1 minute of arc (there are 60 minutes per degree), how far
would you have walked (in miles)? This distance is called a
“nautical mile.”

. Make a rough estimate of the volume of your body (in m3).
. Estimate the number of bus drivers (a) in Washington, D.C.,

and (b) in your town.

The American Lung Association gives the following formula
for an average person’s expected lung capacity V (in liters,
where 1L = 103cm3):

V = 41H - 0.018A - 2.69,

where H and A are the person’s height (in meters), and
age (in years), respectively. In this formula, what are the
units of the numbers 4.1, 0.018, and 2.69?

The density of an object is defined as its mass divided by its
volume. Suppose the mass and volume of a rock are
measured to be 89 and 2.8325cm3. To the correct number
of significant figures, determine the rock’s density.

To the correct number of significant figures, use the infor-
mation inside the front cover of this book to determine the
ratio of (a) the surface area of Earth compared to the
surface area of the Moon; (b) the volume of Earth
compared to the volume of the Moon.

One mole of atoms consists of 6.02 X 1023individual atoms. If
a mole of atoms were spread uniformly over the surface of the
Earth, how many atoms would there be per square meter?
Recent findings in astrophysics suggest that the observable
Universe can be modeled as a sphere of radius
R = 13.7 X 109 light-years with an average mass density of
about 1 X 10 _26kg/m3, where only about 4% of the
Universe’s total mass is due to “ordinary” matter (such as
protons, neutrons, and electrons). Use this information to
estimate the total mass of ordinary matter in the observable
Universe. (1 light-year = 9.46 X 1015m.)

D: (a) 2.58 x 10“2 3; (b) 4.23 X 104, 3 (probably);

(c) 3.4450 x 102 5.
Mt. Everest, 29,035 ft; K2,28,251 ft; Kangchenjunga, 28,169 ft.

F: No: 15m/s ~ 34 mi/h.

General Problems 17



A high-speed car has released a parachute to reduce
its speed quickly. The directions of the car’s velocity and
acceleration are shown by the green (v) and gold (a) arrows.

Motion is described using
the concepts of velocity and
acceleration. In the case shown
here, the acceleration a is in the
opposite direction from the
velocity v, which means the object
is slowing down. We examine
in detail motion with constant
acceleration, including the vertical
motion of objects falling under
gravity.
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CHAPTER-OPENING QUESTION—Guess now!
[Dont worry about getting the right answer now—you will get another chance later in
the Chapter. See also p. 1 of Chapter 1 for more explanation.]
Two small heavy balls have the same diameter but one weighs twice as much as the
other. The balls are dropped from a second-story balcony at the exact same time.
The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.

(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.

(e) nearly the same for both balls.

he motion of objects—baseballs, automobiles, joggers, and even the Sun
and Moon—is an obvious part of everyday life. It was not until the
sixteenth and seventeenth centuries that our modern understanding of
motion was established. Many individuals contributed to this
understanding, particularly Galileo Galilei (1564-1642) and Isaac Newton (1642-1727).



The study of the motion of objects, and the related concepts of force and

energy, form the field called mechanics. Mechanics is customarily divided into two

parts: kinematics, which is the description of how objects move, and dynamics,

which deals with force and why objects move as they do. This Chapter and the next

deal with kinematics.
For now we only discuss objects that move without rotating (Fig. 2-1a). Such

motion is called translational motion. In this Chapter we will be concerned

with describing an object that moves along a straight-line path, which is

one-dimensional translational motion. In Chapter 3 we will describe translational

motion in two (or three) dimensions along paths that are not straight. O/ &
We will often use the concept, or model, of an idealized particle which is O

considered to be a mathematical point with no spatial extent (no size). A point particle

can undergo only translational motion. The particle model is useful in many real

situations where we are interested only in translational motion and the object’s

size is not significant. For example, we might consider a billiard ball, or even a

spacecraft traveling toward the Moon, as a particle for many purposes. (( %

2—1 Reference Frames and Displacement o "

Any measurement of position, distance, or speed must be made with respectto @ L cure 2.1 The pinecone in ()
reference frame, or frame of reference. For example, while you are on a train trav- | ndergoes pure translation as it falls,
eling at 80 km/h, suppose a person walks past you toward the front of the train at  whereas in (b) it is rotating as well as
a speed of, say, 5km/h (Fig. 2-2). This 5km/h is the person’s speed with respectto translating.

the train as frame of reference. With respect to the ground, that person is moving

at a speed of 80km/h + 5km/h = 85km/h. It is always important to specify the

frame of reference when stating a speed. In everyday life, we usually mean “with

respect to the Earth” without even thinking about it, but the reference frame must

be specified whenever there might be confusion.

FIGURE 2-2 A person walks
toward the front of a train at 5 km/h.
The train is moving 80 km/h with
respect to the ground, so the walking
person’s speed, relative to the
ground, is 85 km/h.

When specifying the motion of an object, it is important to specify not only the
speed but also the direction of motion. Often we can specify a direction by using
the cardinal points, north, east, south, and west, and by “up” and “down.” In
physics, we often draw a set of coordinate axes, as shown in Fig. 2-3, to represent  FIGURE 2-3  Standard set of xy
a frame of reference. We can always place the origin 0, and the directions of the x ~ coordinate axes.
and y axes, as we like for convenience. The x and y axes are always perpendicular
to each other. Objects positioned to the right of the origin of coordinates (0) on
the x axis have an x coordinate which we usually choose to be positive; then points
to the left of 0 have a negative x coordinate. The position along the y axis is usually
considered positive when above 0, and negative when below 0, although the
reverse convention can be used if convenient. Any point on the plane can be +X
specified by giving its x and y coordinates. In three dimensions, a z axis perpendicular
to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position of an object at any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we
usually use the y axis.

+V

SECTION 2-1  Reference Frames and Displacement 19



A CAUTION

The displacement may not equal the
total distance traveled

70 m
West 0 40 m 30m East

Displacement

FIGURE 2-4 A person walks 70 m
east, then 30 m west. The total
distance traveled is 100 m (path is
shown dashed in black); but the
displacement, shown as a solid blue
arrow, is 40 m to the east.

FIGURE 2-5 The arrow represents
the displacement x2 —x\ . Distances
are in meters.

*1 *2

10 20 30 40
Distance (m)

FIGURE 2-6 For the displacement
Ax = x2 —x1=100m - 30.0m,
the displacement vector points to
the left.

x2 x|

jk—Ax—

10 20 30 40
Distance (m)
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We need to make a distinction between the distance an object has traveled and
its displacement, which is defined as the change in position of the object. That is,
displacement is how far the object is from its starting point. To see the distinction
between total distance and displacement, imagine a person walking 70 m to the
east and then turning around and walking back (west) a distance of 30m
(see Fig. 2-4). The total distance traveled is 100m, but the displacement is only
40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such quan-
tities are called vectors, and are represented by arrows in diagrams. For example, in
Fig. 2-4, the blue arrow represents the displacement whose magnitude is 40 m and
whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with
motion in one dimension, along a line. In this case, vectors which point in one
direction will have a positive sign, whereas vectors that point in the opposite direc-
tion will have a negative sign, along with their magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it tx, the object is on the x axis at the position x1in the
coordinate system shown in Fig. 2-5. At some later time, t2, suppose the object has
moved to position x2. The displacement of our object is x2- x1, and is repre-
sented by the arrow pointing to the right in Fig. 2-5. It is convenient to write

AX = X2 —XX,

where the symbol A (Greek letter delta) means “change in.” Then Ax means “the

change in x,” or “change in position,” which is the displacement. Note that the “change

in” any quantity means the final value of that quantity, minus the initial value.
Suppose xI = 10.0m and x2 = 30.0m. Then

AX = x2- x1 = 300m - 10.0m = 20.0m,

so the displacement is 20.0m in the positive direction, Fig. 2-5.

Now consider an object moving to the left as shown in Fig. 2-6. Here the
object, say, a person, starts at xx =30.0m and walks to the left to the point
x2 = 10.0m. In this case her displacement is

Ax = x2- X = 100m - 300m = -20.0m,

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right has a
positive sign, whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at x = 20cm on a piece of graph paper and walks along the
X axis to x = -20 cm. It then turns around and walks back to x = -10 cm. What is
the ant’s displacement and total distance traveled?

2—2 Average Velocity

The most obvious aspect of the motion of a moving object is how fast it is
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval,
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say its
average speed was 80 km/h. In general, the average speed of an object is defined as the
total distance traveled along its path divided by the time it takes to travel this distance:

distance traveled
R et v e 2-1

average speed time eiapsed (2-1)
The terms “velocity” and “speed” are often used interchangeably in ordinary

language. But in physics we make a distinction between the two. Speed is simply a

Describing Motion: Kinematics in One Dimension



positive number, with units. Velocity, on the other hand, is used to signify both the
magnitude (numerical value) of how fast an object is moving and also the direction
in which it is moving. (Velocity is therefore a vector.) There is a second difference
between speed and velocity: namely, the average velocity is defined in terms of
displacement, rather than total distance traveled:

displacement final position - initial position

average velocity = — = J—
9 y time elapsed time elapsed

Average speed and average velocity have the same magnitude when the
motion is all in one direction. In other cases, they may differ: recall the walk we
described earlier, in Fig. 2-4, where a person walked 70 m east and then 30 m west.
The total distance traveled was 70m + 30m = 100m, but the displacement was
40 m. Suppose this walk took 70s to complete. Then the average speed was:

distance  _ 100m

time elapsed ~ 70s 1dms,

The magnitude of the average velocity, on the other hand, was:

displacement  40m 0 /
time efapsed 705 0>/ MS
This difference between the speed and the magnitude of the velocity can occur
when we calculate average values.

To discuss one-dimensional motion of an object in general, suppose that at
some moment in time, call it , the object is on the x axis at position jexin a coor-
dinate system, and at some later time, t2, suppose it is at position x2. The elapsed
time is At = t2—t™ during this time interval the displacement of our object is
Ax = x2~ x1. Then the average velocity, defined as the displacement divided by
the elapsed time, can be written

= = A%,
2 - tx At

where v stands for velocity and the bar (-) over the v is a standard symbol
meaning “average.”

For the usual case of the +x axis to the right, note that if x2is less than xx, the
object is moving to the left, and then Ax = x2- x1 is less than zero. The sign of
the displacement, and thus of the average velocity, indicates the direction: the
average velocity is positive for an object moving to the right along the +x axis and
negative when the object moves to the left. The direction of the average velocity is
always the same as the direction of the displacement.

Note that it is always important to choose (and state) the elapsed time, or time
interval, t2 —tx, the time that passes during our chosen period of observation.

Runner's average velocity. The position of a runner as a
function of time is plotted as moving along the x axis of a coordinate system.
During a 3.00-s time interval, the runner’s position changes from xx = 50.0m to
x2 = 30.5m, as shown in Fig. 2-7. What was the runner’ average velocity?

APPROACH We want to find the average velocity, which is the displacement
divided by the elapsed time.

SOLUTION The displacement is Ax = x2- xx=305m - 50.0m = -19.5 m.
The elapsed time, or time interval, is At = 3.00s. The average velocity is

AX -19.5m
= F = 3.00s = -6.50 m{’S.

The displacement and average velocity are negative, which tells us that the
runner is moving to the left along the x axis, as indicated by the arrow in Fig. 2-7.
Thus we can say that the runner’s average velocity is 6.50m/s to the left.

SECTION 2-2

/)\ CAUTION

Average speed is not necessarily
equal to the magnitude ofthe
average velocity

\\PROBLEM SOLVING

+ or - sign can signify the direction
for linear motion

FIGURE 2-7 Example 2-1.

A person runs from xi = 50.0m to
x2 = 30.5 m. The displacement

is -19.5 m.

y

Finish  Start
(x2) )
MrAx-k

k—\“—\—r« i v—u

u

10 20 30 40 50 60
Distance (m)
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FIGURE 2-8 Car speedometer
showing mi/h in white, and km/h in
orange.

FIGURE 2-9 Velocity of acar as a
function of time: (a) at constant
velocity; (b) with varying velocity.

60
&40-
3 20--
> 0 H---- #---1----h
0 01 02 03 04 05
(@) Time (h)
60-

Average velocity

| 20J \
Nonl-——-%-—--u
0 01 02 03 04 05
(b) Time (h)

EXAMPLE 2-2 Distance a cyclist travels. How far can a cyclist travel in
2.5 h along a straight road if her average velocity is 18 km/h?

APPROACH We want to find the distance traveled, so we solve Eq. 2-2 for Ax.
SOLUTION We rewrite Eq. 2-2 as Ax = v At, and find

Ax = v At = (18km/h)(2.5h) = 45km.

EXERCISE B A car travels at a constant 50 km/h for 100 km. It then speeds up to
100 km/h and is driven another 100 km. What is the car’s average speed for the 200 km
trip? (a) 67 km/h; (b) 75 km/h; (c) 81 km/h; (d) 50 km/h.

2—3 Instantaneous Velocity

If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of your
average velocity is 75km/h. It is unlikely, though, that you were moving at
precisely 75 km/h at every instant. To describe this situation we need the concept
of instantaneous velocity, which is the velocity at any instant of time. (Its magni-
tude is the number, with units, indicated by a speedometer, Fig. 2-8.) More
precisely, the instantaneous velocity at any moment is defined as the average
velocity over an infinitesimally short time interval. That is, Eq. 2-2 is to be evalu-
ated in the limit of At becoming extremely small, approaching zero. We can write
the definition of instantaneous velocity, v, for one-dimensional motion as

. Ax
- AIHDO At (2-3)

The notation limA* Omeans the ratio Ax/At is to be evaluated in the limit of At
approaching zero. But we do not simply set At = 0 in this definition, for then Ax
would also be zero, and we would have an undefined number. Rather, we are
considering the ratio Ax/At, as a whole. As we let At approach zero, Ax
approaches zero as well. But the ratio Ax/At approaches some definite value,
which is the instantaneous velocity at a given instant.

In Eqg. 2-3, the limit as At — 0 is written in calculus notation as dx/dt and is
called the derivative of x with respect to t:

. dx
= N -
AT at (2-4)

This equation is the definition of instantaneous velocity for one-dimensional
motion.

For instantaneous velocity we use the symbol v, whereas for average velocity
we use v, with a bar above. In the rest of this book, when we use the term “velocity”
it will refer to instantaneous velocity. When we want to speak of the average
velocity, we will make this clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the instan-
taneous velocity. Why? Because distance traveled and the magnitude of the
displacement become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity during a particular
time interval, then its instantaneous velocity at any instant is the same as its
average velocity (see Fig. 2-9a). But in many situations this is not the case. For
example, a car may start from rest, speed up to 50 km/h, remain at that velocity for
a time, then slow down to 20 km/h in a traffic jam, and finally stop at its destina-
tion after traveling a total of 15km in 30 min. This trip is plotted on the graph of
Fig. 2-9b. Also shown on the graph is the average velocity (dashed line), which is
v = Ax/At = 15km/0.50h = 30 km/h.

22 CHAPTER 2 Describing Motion: Kinematics in One Dimension



To better understand instantaneous velocity, let us consider a graph of the
position of a particular particle versus time (x vs. t), as shown in Fig. 2-10. (Note
that this is different from showing the “path” of a particle on an x vs.y plot.) The
particle is at position x1at a time tx, and at position x2at time t2. Pi and P2repre-
sent these two points on the graph. A straight line drawn from point Pi(x1, to
point P2(x2, t2) forms the hypotenuse of a right triangle whose sides are Ax and M.
The ratio Ax/At is the slope of the straight line PiP2. But Ax/At is also the
average velocity of the particle during the time interval At = t2- tx. Therefore, | I

we conclude that the average velocity of a particle during any time interval o & * 1
At = t2—h is equal to the slope of the straight line (or chord) connecting the two
points (xx, and (x2,t2) on an x vs. t graph. FIGURE 2-10 Graph of a particle’s

Consider now a time tx, intermediate between tx and t2, at which time the position x vs. time t. The slope of the
particle is at x{(Fig. 2-11). The slope of the straight line P ~ is less than the slope  straight line PiP2represents the
of PxP2in this case. Thus the average velocity during the time interval /» - txis less  average velocity of the particle during
than during the time interval t2 —tx. the time interval At = 12 —t\.
Now let us imagine that we take the point Pj in Fig. 2-11 to be closer and
closer to point Pj. That is, we let the interval tx—tx, which we now call At, to
become smaller and smaller. The slope of the line connecting the two points  FIGURE 2-11  Same position vs.
becomes closer and closer to the slope of a line tangent to the curve at point .  time curve as in Fig. 2-10, but note
The average velocity (equal to the slope of the chord) thus approaches the slope of ~ that the average velocity over the time
the tangent at point Px. The definition of the instantaneous velocity (Eq. 2-3) is ~ interval ff —tx(which is the slope of
the limiting value of the average velocity as At approaches zero. Thus the  PiPi)is less than the average velocity
instantaneous velocity equals the slope of the tangent to the curve at that point ' th? ttf:mfh'.m‘:.rva'ttz _]f'tﬂ:;:
(which we can simply call “the slope of the curve” at that point). zuorp\)/z (;t poeim';j ;:Zainfheen o the
Because the velocity at any instant equals the slope of the tangent to the X vs.t ;,iantaneous velocity at time t .
graph at that instant, we can obtain the velocity at any instant from such a graph.
For example, in Fig. 2-12 (which shows the same curve as in Figs. 2-10 and 2-11), X
as our object moves from x1to x2, the slope continually increases, so the velocity is
increasing. For times after t2, however, the slope begins to decrease and in fact
reaches zero (so v = 0) where x has its maximum value, at point P3in Fig. 2-12.
Beyond this point, the slope is negative, as for point P4. The velocity is therefore
negative, which makes sense since x is now decreasing—the particle is moving
toward decreasing values of x, to the left on a standard xy plot.
If an object moves with constant velocity over a particular time interval, its ;
instantaneous velocity is equal to its average velocity. The graph of x vs. t in this _ | |1
case will be a straight line whose slope equals the velocity. The curve of Fig. 2-10
has no straight sections, so there are no time intervals when the velocity is constant.

X Po

FIGURE 2-12 Same x vs. t curve as in

Figs. 2-10 and 2-11, but here showing the slope
at four different points: At P3, the slope is zero,
so v = 0. At P4the slope is negative,sov < 0.

EXERCISE C What is your speed at the instant you turn around to move in the opposite
direction? {a) Depends on how quickly you turn around; (b) always zero; (c) always
negative; (d) none of the above.

The derivatives of various functions are studied in calculus courses, and this
book gives a summary in Appendix B. The derivatives of polynomial functions
(which we use a lot) are:

4-(Ctn) = nCt"-1 and », =
dt(Ct ) Ct and ut 0,
where C is any constant.
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Tangent at P2 whose
slope is v2=21.0 m/s

FIGURE 2-13 Example 2-3.
(a) Engine traveling on a straight track.
(b) Graph ofx vs. t: x = At2 + B.

EXAMPLE 2-3 Given x as a function of t. A jet engine moves along an
experimental track (which we call the x axis) as shown in Fig. 2-13a. We will treat
the engine as if it were a particle. Its position as a function of time is given by the
equation x = At2+ B, where A =210m/s2 and B = 2.80m, and this equa-
tion is plotted in Fig. 2-13b. (a) Determine the displacement of the engine during
the time interval from to t2=5.00s. (b) Determine the average
velocity during this time interval, (c) Determine the magnitude of the instanta-
neous velocity at t = 5.00s.

APPROACH We substitute values for txand t2in the given equation for x to obtain
x1land x2. The average velocity can be found from Eq. 2-2. We take the deriva-
tive of the given x equation with respect to t to find the instantaneous velocity,
using the formulas just given.

SOLUTION (a) At tx = 3.005s, the position (point Pxin Fig. 2-13b) is
X = At\ + B = (2.10m/s2(3.00s)2 + 280m = 21.7m.
At t2=5.00s, the position (P2in Fig. 2-13b) is
X2 = (2.10m/s2)(5.00s)2 + 2.80m = 55.3m.
The displacement is thus
X2 - x1 =553m - 2L.7m = 336m.
(b) The magnitude of the average velocity can then be calculated as

AxX Xi 33.6m
v = A o 200s - 16.8 m/s.

This equals the slope of the straight line joining points and P2 shown in
Fig. 2-13b.

(c) The instantaneous velocity at t = t2 = 5.00s equals the slope of the tangent
to the curve at point P2shown in Fig. 2-13b. We could measure this slope off the
graph to obtain v2. But we can calculate v more precisely for any time t, using
the given formula

X = At2 + B,
which is the engine’s position x as a function of time t. We take the derivative of
x with respect to time (see formulas at bottom of previous page):

., ="~ = 1-[At2+ B .
dt dt[ ) oAt

We are given A =2.10m/s2 so for t =1t2=15.00s,
v2 = 2At = 2(2.10m/s2)(5.00s) = 21.0ml/s.

2—4 Acceleration

An object whose velocity is changing is said to be accelerating. For instance, a car
whose velocity increases in magnitude from zero to 80km/h is accelerating.
Acceleration specifies how rapidly the velocity of an object is changing.

Average Acceleration

Average acceleration is defined as the change in velocity divided by the time taken
to make this change:

. change of velocity
average acceleration = -— Z---mmi—mm
time elapsed

In symbols, the average acceleration over a time interval AE = t2 —tx during
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which the velocity changes by Av = v2 —v1, is defined as

v2- M Au n
= e = . 2-5
2 - tx At (2-5)

Because velocity is a vector, acceleration is a vector too. But for one-dimensional

motion, we need only use a plus or minus sign to indicate acceleration direction
relative to a chosen coordinate axis.

EXAMPLE 2-4 Average acceleration. A car accelerates along a straight road
from rest to 90km/h in 5.0s, Fig. 2-14. What is the magnitude of its average
acceleration?

APPROACH Average acceleration is the change in velocity divided by the elapsed
time, 5.0s The car starts from rest, so vx=0. The final velocity is
v2=90km/h = 90 X 103m/3600s = 25m/s.

SOLUTION From Eqg. 2-5, the average acceleration is
V2~ vx _ 25m/s - Om/s _ ~~ml/s

- x 505 = 50—

This is read as “five meters per second per second” and means that, on
average, the velocity changed by 5.0 m/s during each second. That is, assuming
the acceleration was constant, during the first second the car’s velocity
increased from zero to 5.0 m/s. During the next second its velocity increased
by another 5.0 m/s, reaching a velocity of 10.0m/s at t = 2.0s, and so on. See
Fig. 2-14.

v, ::% Acceleration
\n - 5.0msH

FIGURE 2-14 Example 2-4. The car is
shown at the start with vi = 0 at t\ = 0.

dit* 10s The car is shown three more times, at

r =50ms t =1.0s, t =20s, and at the end of our
time interval, 2 =5.0s. We assume the
acceleration is constant and equals
5.0 m/s2. The green arrows represent the

il 1 -20s velocity vectors; the length of each arrow
if = 100 m's represents the magnitude of the velocity
at that moment. The acceleration vector

is the orange arrow. Distances are not

to scale.

We almost always write the units for acceleration as m/s2 (meters per second
squared) instead of m/s/s. This is possible because:

m/is _ m _ m
S SeS s2

According to the calculation in Example 2-4, the velocity changed on average by
5.0 m/s during each second, for a total change of 25 m/s over the 5.0, the average
acceleration was 5.0 m/s2

Note that acceleration tells us how quickly the velocity changes, whereas
velocity tells us how quickly the position changes.
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Acceleration

af =0 ft=-2,0 mis2

m STfiSE

at =50s
- 5.0 m/s

FIGURE 2-15 Example 2-6,
showing the position of the car at
times t\ and t2, as well as the car’s
velocity represented by the green
arrows. The acceleration vector
(orange) points to the left as the car
slows down while moving to the right.

A CAUTION
Deceleration means the magnitude
of the velocity is decreasing; a is not
necessarily negative

CONCEPTUAL EXAMPLE 2-5 | Velocity and acceleration, (a) If the velocity of
an object is zero, does it mean that the acceleration is zero? (b) If the acceleration is
zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration is
zero, nor does a zero acceleration mean that the velocity is zero, (a) For example,
when you put your foot on the gas pedal of your car which is at rest, the velocity
starts from zero but the acceleration is not zero since the velocity of the car
changes. (How else could your car start forward if its velocity werent changing—
that is, accelerating?) (b) As you cruise along a straight highway at a constant
velocity of 100km/h, your acceleration is zero: a = 0,v # 0.

EXERCISE D A powerful car is advertised to go from zero to 60 mi/h in 6.0s. What does
this say about the car: (a) it is fast (high speed); or (b) it accelerates well?

EXAMPLE 2-6 Car slowing down. An automobile is moving to the right
along a straight highway, which we choose to be the positive x axis (Fig. 2-15).
Then the driver puts on the brakes. If the initial velocity (when the driver hits the
brakes) is vx = 15.0m/s, and it takes 5.0 s to slow down to v2 =5.0m/s, what
was the car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed time,
into Eq. 2-5 for a.

SOLUTION In Eqg. 2-5, we call the initial time tx=0, and set t2=50s.
(Note that our choice of tx= 0 doesn’t affect the calculation of a because only
At = t2 —ti appears in Eq. 2-5.) Then

50m/s - 15.0m/s
5.0s

The negative sign appears because the final velocity is less than the initial
velocity. In this case the direction of the acceleration is to the left (in the negative

x direction)—even though the velocity is always pointing to the right. We say that the
acceleration is 2.0 m/s2to the left, and it is shown in Fig. 2-15 as an orange arrow.

-2.0 m/s'

Deceleration

When an object is slowing down, we can say it is decelerating. But be careful: deceler-
ation does not mean that the acceleration is necessarily negative. The velocity of an
object moving to the right along the positive x axis is positive; if the object is slowing
down (as in Fig. 2-15), the acceleration is negative. But the same car moving to the left
(decreasing x), and slowing down, has positive acceleration that points to the right, as
shown in Fig. 2-16. We have a deceleration whenever the magnitude of the velocity is
decreasing, and then the velocity and acceleration point in opposite directions.

FIGURE 2-16 The car of Example 2-6,

now moving to the
The acceleration is

left and decelerating.

v2 - Vi
A = s
At
(-5.0m/s) - (-15.0m/s)
505 a
—5.0m/s + 15.0m/s 2.0m/
= +2.0mf/s.
5X)s

EXERCISE E A car moves along the x axis. What is the sign of the car’s acceleration if it is
moving in the positive x direction with (a) increasing speed or (b) decreasing speed? What
is the sign of the acceleration if the car moves in the negative direction with (c) increasing
speed or (d) decreasing speed?
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Instantaneous Acceleration

The instantaneous acceleration, a, is defined as the limiting value of the average
acceleration as we let At approach zero:

(2-6)

This limit, dv/dt, is the derivative of v with respect to t. We will use the term
“acceleration” to refer to the instantaneous value. If we want to discuss the
average acceleration, we will always include the word “average.”

If we draw a graph of the velocity, v, vs. time, t, as shown in Fig. 2-17, then the
average acceleration over a time interval At =12 - tx is represented by the slope
of the straight line connecting the two points Pland P2as shown. [Compare this to
the position vs. time graph of Fig. 2-10 for which the slope of the straight line
represents the average velocity.] The instantaneous acceleration at any time, say t\,
is the slope of the tangent to the v vs. t curve at that time, which is also shown in
Fig. 2-17. Let us use this fact for the situation graphed in Fig. 2-17; as we go from
time ti to time t2the velocity continually increases, but the acceleration (the rate at
which the velocity changes) is decreasing since the slope of the curve is decreasing.

Acceleration given x(t). A particle is moving in a straight
line so that its position is given by the relation x = (210m/s2)?2 + (2.80 m), as
in Example 2-3. Calculate (a) its average acceleration during the time interval from
ti = 3.00s to t2=5.00s, and (b) its instantaneous acceleration as a function of time.

APPROACH To determine acceleration, we first must find the velocity at txand t2
by differentiating x: v = dx/dt. Then we use Eq. 2-5 to find the average
acceleration, and Eqg. 2-6 to find the instantaneous acceleration.

SOLUTION (a) The velocity at any time t is
2.80m] = (4.20m/s2t,

as we saw in Example 2-3c. Therefore, at tx = 3.00s, vl = (4.20m/s2)(3.00s) =
12.6m/s and at t2=5.00s,v2= 21.0m/s. Therefore,

Av _ 210m/s - 126m/s
At 5.00s - 3.00s
(b) With v = (4.20m/s2?, the instantaneous acceleration at any time is

= 4.20m/s2

U= 4 = = 4.20m/s2

The acceleration in this case is constant; it does not depend on time. Figure 2-18
shows graphs of (a) x vs. t (the same as Fig. 2-13b), (b) v vs. t, which is linearly
increasing as calculated above, and (c) a vs. t, which is a horizontal straight line
because a = constant.

Like velocity, acceleration is a rate. The velocity of an object is the rate at
which its displacement changes with time; its acceleration, on the other hand, is the
rate at which its velocity changes with time. In a sense, acceleration is a “rate of a
rate.” This can be expressed in equation form as follows: since a = dv/dt and
v = dx/dt, then

dv _ d fdx\ dX

dt dt\dt) dt2
Here dZ/dt2is the second derivative of x with respect to time: we first take the
derivative of x with respect to time (dx/dt), and then we again take the derivative
with respect to time, (d/dt) (dx/dt), to get the acceleration.

EXERCISE F The position of a particle is given by the following equation:
(2.00 m/s3)?3 + (2.50 m/s)t.

What is the acceleration of the particle at t = 2.00s? (a) 13.0m/s2; (b) 22.5m/s2;
(c) 24.0 m/s2; (d) 2.00 m/s2.

X =

Slope is average acceleration
during At =12- 4

Slope is
instantaneous
acceleration

FIGURE 2-17 A graph of velocity v
vs. time t. The average acceleration
over atime interval At = t2 - ti is
the slope of the straight line PiP2:

a = Av/At. The instantaneous
acceleration at time t\ is the slope of
the v vs. t curve at that instant.

FIGURE 2-18 Example 2-7.
Graphs of (a) x vs. t, (b) v vs. t,

and (c) a vs. t for the motion

x = At2 + B. Note thatv increases
linearly with t and that the
acceleration a is constant. Also, v is
the slope of the x vs. t curve, whereas
ais the slope of the v vs. t curve.

m=+—1- 11— 1 b-t(s)
123 45 6
(a)

(b)

a =4.20 m/s2

— 111+ 11 b-t{s)
123 45 6
©
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A CAUTION

Average velocity, butonly if
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a = constant

CONCEPTUAL EXAMPLE 27°8~1 Analyzing with graphs. Figure 2-19 shows
the velocity as a function of time for two cars accelerating from 0to 100km/h in a
time of 10.0s. Compare () the average acceleration; (b) instantaneous acceleration;
and (c) total distance traveled for the two cars.

RESPONSE («) Average acceleration is Av/At. Both cars have the same Av
(100 km/h) and the same At (10.05s), so the average acceleration is the same for
both cars. (b) Instantaneous acceleration is the slope of the tangent to the v vs. t
curve. For about the first 45, the top curve is steeper than the bottom curve, so
car A has a greater acceleration during this interval. The bottom curve is steeper
during the last 65, so car B has the larger acceleration for this period, (c) Except
at t =0 and t = 10.0s, car A is always going faster than car B. Since it is going
faster, it will go farther in the same time.

2-5 Motion at Constant Acceleration

We now examine the situation when the magnitude of the acceleration is
constant and the motion is in a straight line. In this case, the instantaneous and
average accelerations are equal. We use the definitions of average velocity and
acceleration to derive a set of valuable equations that relate x, v, a,and t when ais
constant, allowing us to determine any one of these variables if we know the others.
To simplify our notation, let us take the initial time in any discussion to be zero,

and we call it t0: tx =t0 = 0. (This is effectively starting a stopwatch at t0.) We can
then let 2 = t be the elapsed time. The initial position and the initial velocity (i)
of an object will now be represented by x0and v0, since they represent x and v
at t = 0. At time t the position and velocity will be called x and v (rather than
x2and v2. The average velocity during the time interval t —tOwill be (Eq. 2-2)

~_ Ax _ x-x0_ x- x0

Vv At t- 10 t
since we chose t0= 0. The acceleration, assumed constant in time, is (Eq. 2-5)

v - v0

A common problem is to determine the velocity of an object after any elapsed
time t, when we are given the object’s constant acceleration. We can solve such
problems by solving for v in the last equation to obtain:

v = v0 + at. [constant acceleration] (2-7)
If an object starts from rest (vO = 0) and accelerates at 4.0 m/s2 after an elapsed
time t = 6.0s its velocity will be v = at = (4.0m/s2(6.0s) = 24 m/s.

Next, let us see how to calculate the position x of an object after a time t when
it undergoes constant acceleration. The definition of average velocity (Eq. 2-2) is
v = (x —x0)/t, which we can rewrite as

X = x0+ vt. (2-8)

Because the velocity increases at a uniform rate, the average velocity, v, will be
midway between the initial and final velocities:

Vg + V .
v = 22 [constant acceleration] (2-9)

(Careful: Equation 2-9 is not necessarily valid if the acceleration is not constant.)
We combine the last two Equations with Eq. 2-7 and find

X = x0+ vt
x0 + W0
N+ N0+ at

or
v0l + \at2 [constant acceleration] (2-10)

Equations 2-7, 2-9, and 2-10 are three of the four most useful equations for



motion at constant acceleration. We now derive the fourth equation, which is useful
in situations where the time  is not known. We substitute Eq. 2-9 into Eq. 2-8:
v + v0
x = X0+ vt = x0+
Next we solve Eq. 2-7 for 1, obtaining
V- W

and substituting this into the previous equation we have

v + vo)fv ~ vo V2 - Vaq
x0 2 j\ a x0 2a
We solve this for v2and obtain
v2 = vl + 2a(x —x0, [constant acceleration] (2-11)

which is the useful equation we sought.

We now have four equations relating position, velocity, acceleration, and time,
when the acceleration a is constant. We collect these kinematic equations here in one
place for future reference (the tan background screen emphasizes their usefulness):

v = v0+ at [a = constant] (2-12a)

= xQ+ v0Ot + \at2 [a = constant] (2-12b)

v2 = Vg+ 2a(x - x0 [a = constant] (2-12c)
\ Vo

[a = constant] (2-12d)

These useful equations are not valid unless a is a constant. In many cases we can set
x0 =10, and this simplifies the above equations a bit. Note that x represents posi-
tion, not distance, that x —x0is the displacement, and that t is the elapsed time.

Runway design. You are designing an airport for small
planes. One kind of airplane that might use this airfield must reach a speed
before takeoff of at least 27.8 m/s (100 km/h), and can accelerate at 2.00 m/s2
(a) If the runway is 150 m long, can this airplane reach the required speed for
takeoff? (b) If not, what minimum length must the runway have?

APPROACH The plane’s acceleration is constant, so we can use the kinematic
equations for constant acceleration. In (a), we want to find v, and we are given:

Known Wanted
*0=0 v
o = o
X = 150 m
a = 2.00m/s2

SOLUTION (a) Of the above four equations, Eq. 2-12c will give us v when we
know vQ a, x, and x0:
v2 = vl + 2a(x —x0
= 0 + 2(2.00m/s2)(150m) = 600m2s2

v = \/600m2s2 = 245m/s.
This runway length is not sufficient.
(b) Now we want to find the minimum length of runway, x —xO0, given
v =27.8m/s and a = 200 m/s2 So we again use Eq. 2-12c, but rewritten as

x - %) = (278m/s)2- 0 _ 193m

T 2a 2(200m/s2) '

A 200-m runway is more appropriate for this plane.
NOTE We did this Example as if the plane were a particle, so we round off our
answer to 200 m.

EXERCISE G A car starts from rest and accelerates at a constant 10 m/s2 during a \ mile
(402 m) race. How fast is the car going at the finish line? (a) 8090 m/s; (b) 90m/s;
(c) 81 m/s; (d) 809 m/s.

Kinematic equations
for constant acceleration

(we’ll use them a lot)

(aj physics applied
Airport design

\PROBLEM SOLVING
Equations2-12 are valid only when

the acceleration is constant, which
assume in this Example
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2-6 Solving Problems

Before doing more worked-out Examples, let us look at how to approach problem
solving. First, it is important to note that physics is not a collection of equations to
be memorized. Simply searching for an equation that might work can lead you to a
wrong result and will surely not help you understand physics. A better approach is
to use the following (rough) procedure, which we put in a special “Problem
Solving Strategy.” (Other such Problem Solving Strategies, as an aid, will be found

(QSO B i

throughout the book.)

c,OLV/

. Read and reread the whole problem carefully before

trying to solve it.

. Decide what object (or objects) you are going to

study, and for what time interval. You can often
choose the initial time to be t = 0.

. Draw a diagram or picture of the situation, with

coordinate axes wherever applicable. [You can place
the origin of coordinates and the axes wherever you
like to make your calculations easier.]

. Write down what quantities are “known” or “given,”

and then what you want to know. Consider quanti-
ties both at the beginning and at the end of the
chosen time interval.

. Think about which principles of physics apply in this

problem. Use common sense and your own experi-
ences. Then plan an approach.

. Consider which equations (and/or definitions) relate

the quantities involved. Before using them, be sure
their range of validity includes your problem (for
example, Egs. 2-12 are valid only when the accelera-
tion is constant). If you find an applicable equation
that involves only known quantities and one desired
unknown, solve the equation algebraically for the

unknown. Sometimes several sequential calculations,
or a combination of equations, may be needed. It is
often preferable to solve algebraically for the desired
unknown before putting in numerical values.

. Carry out the calculation if it is a numerical problem.

Keep one or two extra digits during the calculations,
but round off the final answer(s) to the correct
number of significant figures (Section 1-3).

. Think carefully about the result you obtain: Is it

reasonable? Does it make sense according to your
own intuition and experience? A good check is to do
a rough estimate using only powers of ten, as
discussed in Section 1-6. Often it is preferable to do
a rough estimate at the start of a numerical problem
because it can help you focus your attention on
finding a path toward a solution.

. A very important aspect of doing problems is

keeping track of units. An equals sign implies the
units on each side must be the same, just as the
numbers must. If the units do not balance, a mistake
has no doubt been made. This can serve as a check
on your solution (but it only tells you if youre
wrong, not if you’re right). Always use a consistent
set of units.

EXAMPLE 2-10 Acceleration of a car. How long does it take a car to cross
a 30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 2.00 m/s2?

APPROACH We follow the Problem Solving Strategy above, step by step.

SOLUTION

FIGURE 2-20 Example 2-10.

a- 200m/s2

Vo=0

30 CHAPTER 2

a=2.00ma2

300m

1. Reread the problem. Be sure you understand what it asks for (here, a time
interval).

2. The object under study is the car. We choose the time interval: t =0, the
initial time, is the moment the car starts to accelerate from rest (v0= 0);
the time t is the instant the car has traveled the full 30.0-m width of the
intersection.

3. Draw a diagram: the situation is shown in Fig. 2-20, where the car is shown
moving along the positive x axis. We choose x0= 0 at the front bumper of the
car before it starts to move.

Describing Motion: Kinematics in One Dimension



4. The “knowns” and the “wanted” are shown in the Table in the margin, and we Known Wanted
choose x0 = 0. Note that “starting from rest” means v = 0 at t = 0; that is,

_ *0 =0 t
vo=0. X = 30.0m
5. The physics: the motion takes place at constant acceleration, so we can use the a = 2.00m/s2
kinematic equations, Eqs. 2-12. q =°
6. Equations: we want to find the time, given the distance and acceleration; Eqg.
2-12b is perfect since the only unknown quantity is t. Setting vO= 0 and
jd =0 in Eq. 2-12b (x = xQ+ vOt + \at2), we can solve for t:
>
2X
tl = —
a
SO
t = A—
7. The calculation:
2(30.0m) 548
= — = = J2.40S.
t=A 2.00m/s2
This is our answer. Note that the units come out correctly.
8. We can check the reasonableness of the answer by calculating the final velocity
v = at = (2.00m/s2)(5.48s) = 10.96 m/s, and then finding x = x0+ vt =
0 +\(10.96m/s + 0)(5.48s) = 30.0m, which is our given distance.
9. We checked the units, and they came out perfectly (seconds).
NOTE In steps 6 and 7, when we took the square root, we should have
written t = £ \"2x/a = + 5.48s. Mathematically there are two solutions. But
the second solution, t = -5.48 s, is a time before our chosen time interval and
makes no sense physically. We say it is “unphysical” and ignore it.
We explicitly followed the steps of the Problem Solving Strategy for Example 2-10.
In upcoming Examples, we will use our usual “Approach” and “Solution” to avoid
being wordy.
EXAMPLE 2-11  ESTIMATE"! Air bags. Suppose you want to design an air- PHYSICS APPLIED

bag system that can protect the driver at a speed of 100 km/h (60 mph) if the car Car safety—air bags
hits a brick wall. Estimate how fast the air bag must inflate (Fig. 2-21) to effec-

tively protect the driver. How does the use of a seat belt help the driver? FIGURE 2-21 Example 2-11.

. . An air bag deploying on impact.
APPROACH We assume the acceleration is roughly constant, so we can use

Eqgs. 2-12. Both Eqgs. 2-12a and 2-12b contain t, our desired unknown. They both
contain a, so we must first find a, which we can do using Eqg. 2-12c if we know the
distance x over which the car crumples. A rough estimate might be about 1 meter. We
choose the time interval to start at the instant of impact with the car moving at
v0 = 100 km/h, and to end when the car comes to rest (v = 0) after traveling 1 m.
SOLUTION We convert the given initial speed to SI units: 100km/h =
100 X 103m/3600 s = 28 m/s. We then find the acceleration from Eq. 2-12c:
(28m/s)2

= — S = -390 m/s.

This enormous acceleration takes place in a time given by (Eq. 2-12a):

v 3 0- 28ml/s
L= a 390ms2 007

To be effective, the air bag would need to inflate faster than this.

What does the air bag do? It spreads the force over a large area of the chest
(to avoid puncture of the chest by the steering wheel). The seat belt keeps the
person in a stable position against the expanding air bag.

a = -
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FIGURE 2-22 Example 2-12:
stopping distance for a braking car.

0O PHYSICS APPLIED
Braking distances

Part1: Reaction time

Known Wanted
t = 050s X
Vg= 14m/s
v = 14m/s

=0
*0 =0

Part2: Braking

Known Wanted
Xag = 7.0m X
Vg = 14m/s

=0

= -6.0 m/s2

FIGURE 2-23 Example 2-12.
Graphs of (a) v vs. t and (b) x vs. t.
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Tmvet during — Tnivel during

reaction litne n FOTmJ
v = constant = 14 m/s v decreases from 14 m/s to zero
t=0.50s a =-6.0m/s2
a=0

EXAMPLE 2-12 ESTIMATE"! Braking distances. Estimate the minimum
stopping distance for a car, which is important for traffic safety and traffic design.
The problem is best dealt with in two parts, two separate time intervals. (1) The
first time interval begins when the driver decides to hit the brakes, and ends
when the foot touches the brake pedal. This is the “reaction time” during which
the speed is constant, so a = 0. (2) The second time interval is the actual
braking period when the vehicle slows down (a » 0) and comes to a stop. The
stopping distance depends on the reaction time of the driver, the initial speed of
the car (the final speed is zero), and the acceleration of the car. For a dry road
and good tires, good brakes can decelerate a car at a rate of about 5m/s2to
8m/s2 Calculate the total stopping distance for an initial velocity of 50 km/h
(= 14m/s « 31mi/h) and assume the acceleration of the car is -6.0 m/s2 (the
minus sign appears because the velocity is taken to be in the positive x direction
and its magnitude is decreasing). Reaction time for normal drivers varies from
perhaps 0.3 s to about 1.0 s; take it to be 0.50s.

APPROACH During the “reaction time,” part (1), the car moves at constant
speed of 14 m/s, so a = 0. Once the brakes are applied, part (2), the acceleration
is a=-6.0m/s2 and is constant over this time interval. For both parts a is
constant, so we can use Eqgs. 2-12.

SOLUTION Part (1). We take x0= 0 for the first time interval, when the driver
is reacting (0.50s): the car travels at a constant speed of 14m/s so a = 0. See
Fig. 2-22 and the Table in the margin. To find x, the position of the car at
t = 0.50s (when the brakes are applied), we cannot use Eq. 2-12c because x is
multiplied by a, which is zero. But Eq. 2 -12b works:

x = v0t + 0 = (14m/s)(0.50s) = 7.0m.

Thus the car travels 7.0 m during the driver’s reaction time, until the instant the
brakes are applied. We will use this result as input to part (2).

Part (2). During the second time interval, the brakes are applied and the car is
brought to rest. The initial position is x0=7.0m (result of part (1)), and other
variables are shown in the second Table in the margin. Equation 2-12a doesn’t
contain x; Eq. 2-12b contains x but also the unknown t. Equation 2-12c,
v2 —vl = 2a(x —jo), is what we want; after setting x0= 7.0 m, we solve for x,
the final position of the car (when it stops):

x0
2a
0 - (14ml/s)2 -196 m /s
= 7.0m H-—---re-— = 70mM H--— —~
2(- 6.0m/s2) -12 m/s2

= 70m + 16m = 23m.

The car traveled 7.0 m while the driver was reacting and another 16 m during the
braking period before coming to a stop, for a total distance traveled of 23 m.
Figure 2-23 shows graphs of (a) v vs. t and (b) x vs. t.

NOTE From the equation above for x, we see that the stopping distance after the
driver hit the brakes (= x - x0) increases with the square of the initial speed, not
just linearly with speed. If you are traveling twice as fast, it takes four times the
distance to stop.



EXAMPLE 2-13 ESTIMATE"! Two Moving Objects: Police and Speeder.
A car speeding at 150 km/h passes a still police car which immediately takes off
in hot pursuit. Using simple assumptions, such as that the speeder continues at
constant speed, estimate how long it takes the police car to overtake the speeder.
Then estimate the police car’s speed at that moment and decide if the assump-
tions were reasonable.

APPROACH When the police car takes off, it accelerates, and the simplest
assumption is that its acceleration is constant. This may not be reasonable, but
let’s see what happens. We can estimate the acceleration if we have noticed
automobile ads, which claim cars can accelerate from rest to 100 km/h in 5.0s. So
the average acceleration of the police car could be approximately

) 100km/h 20 km/h 11000 m Ih = 56m/s2

P~ 50s 1km j\3600s _
SOLUTION We need to set up the kinematic equations to determine the unknown
quantities, and since there are two moving objects, we need two separate sets of
equations. We denote the speeding car’s position by xs and the police car’s
position by xP. Because we are interested in solving for the time when the two
vehicles arrive at the same position on the road, we use Eq. 2-12b for each car:

Xs = vost + "ast2 = (150 km/h)? = (42m/s)?
xP = vOPt + \aYt2 = 5.6 m/s2?2
where we have set tP= 0 and as = 0 (speeder assumed to move at constant
speed). We want the time when the cars meet, so we set xs = xF and solve for 2
(42m/s)? = (28m/s2?2
The solutions are

42 mls

0 and 28m/s2

15s

The first solution corresponds to the instant the speeder passed the police car.
The second solution tells us when the police car catches up to the speeder, 155
later. This is our answer, but is it reasonable? The police car’s speed at ? = 15s is

Vo = 9%+ aft = 0+ (5.6m/s(15s) = 84m/s

or 300 km/h (« 190 mi/h). Not reasonable, and highly dangerous.

NOTE More reasonable is to give up the assumption of constant acceleration. The
police car surely cannot maintain constant acceleration at those speeds. Also, the
speeder, if a reasonable person, would slow down upon hearing the police siren.
Figure 2-24 shows (a) x vs. ?and (b) v vs. ?graphs, based on the original assumption
of = constant, whereas (c) shows v vs. ? for more reasonable assumptions.

@) (b) ©

A CAUTION

Initial assumptions need to be
checked outfor reasonableness

FIGURE 2-24 Example 2-13.
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FIGURE 2-25 Galileo Galilei
(1564-1642).

/\ CAUTION

A freely falling object increases
in speed, butnot inproportion
to itsmass or weight

FIGURE 2-26 Multiflash
photograph of a falling apple, at equal
time intervals. The apple falls farther
during each successive interval, which
means it is accelerating.

Acceleration due to gravity

M M
@ >

2-7 Freely Falling Objects

One of the most common examples of uniformly accelerated motion is that of an
object allowed to fall freely near the Earth’s surface. That a falling object is accel-
erating may not be obvious at first. And beware of thinking, as was widely believed
before the time of Galileo (Fig. 2-25), that heavier objects fall faster than lighter
objects and that the speed of fall is proportional to how heavy the object is.

Galileo made use of his new technique of imagining what would happen in
idealized (simplified) cases. For free fall, he postulated that all objects would fall with
the same constant acceleration in the absence of air or other resistance. He showed
that this postulate predicts that for an object falling from rest, the distance traveled
will be proportional to the square of the time (Fig. 2-26); that is, d oc t2 We can see
this from Eq. 2-12b; but Galileo was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall, Galileo
made use of a clever argument: a heavy stone dropped from a height of 2m will
drive a stake into the ground much further than will the same stone dropped from
a height of only 0.2 m. Clearly, the stone must be moving faster in the former case.

Galileo claimed that all objects, light or heavy, fall with the same acceleration, at
least in the absence of air. If you hold a piece of paper horizontally in one hand and
a heavier object—say, a baseball—in the other, and release them at the same time as
in Fig. 2-27a, the heavier object will reach the ground first. But if you repeat the
experiment, this time crumpling the paper into a small wad (see Fig. 2-27b), you will
find that the two objects reach the floor at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have a
large surface area. But in many ordinary circumstances this air resistance is negli-
gible. In a chamber from which the air has been removed, even light objects like a
feather or a horizontally held piece of paper will fall with the same acceleration as
any other object (see Fig. 2-28). Such a demonstration in vacuum was not possible
in Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is
often called the “father of modern science,” not only for the content of his science
(astronomical discoveries, inertia, free fall) but also for his approach to science
(idealization and simplification, mathematization of theory, theories that have
testable consequences, experiments to test theoretical predictions).

Galileo’s specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all objects
fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity on the surface of the
Earth, and we give it the symbol g. Its magnitude is approximately

g = 9.80m/s2 [at surface of Earth]

In British units g is about 32 ft/s2 Actually, g varies slightly according to latitude and
elevation, but these variations are so small that we will ignore them for most

FIGURE 2-27 (a) A ball and a

light piece of paper are dropped at

the same time, (b) Repeated, with <
the paper wadded up.

FIGURE 2-28 A rock <
and a feather are dropped
simultaneously (a) in air,

(b) in a vacuum.
Air-filled lube Evacuated lube

@ b
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purposes. The effects of air resistance are often small, and we will neglect them for
the most part. However, air resistance will be noticeable even on a reasonably heavy
object if the velocity becomes large.1Acceleration due to gravity is a vector as is any
acceleration, and its direction is downward, toward the center of the Earth.

When dealing with freely falling objects we can make use of Egs. 2-12, where
for a we use the value of g given above. Also, since the motion is vertical we will
substitute y in place of x, and yOin place of jd. We take yO= 0 unless otherwise
specified. It is arbitrary whether we choose y to be positive in the upward direction
or in the downward direction; but we must be consistent about it throughout a
problems solution.

EXERCISE H Return to the Chapter-Opening Question, page 18, and answer it again now.
Try to explain why you may have answered differently the first time.

U2EHHHEB Falling from a tower. Suppose that a ball is dropped
(v0=0) from a tower 70.0m high. How far will it have fallen after a time
ti = 1.00s,t2=200s, and t3=3.00s? Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is
a=g =+9.80m/s2 Weset v0O=0 and = 0. We want to find the position y
of the ball after three different time intervals. Equation 2-12b, with x replaced
by y, relates the given quantities (t, a, and v0 to the unknowny.

SOLUTION We set t =tx= 1.00s inEq.2-12b:

yi = vOH +\at\ = 0 + \at\ = 7(9.80m/s2)(1.00s)2 = 4.90 m.
The ball has fallen a distance of 4.90m during the time interval t =0 to
tx = 1.00s. Similarly, after 2.00s (= t2), the ball’s position is

y2 = \at\ = |(9.80m/s2)(2.005)2 = 19.6 m.
Finally, after 3.00s (= t3), the ball’s position is (see Fig. 2-29)

y3 = \at\ = |(9.80m/s2(3.005)2 = 44.1m.

- Thrown down from a tower. Suppose the ball in Example 2-14
is thrown downward with an initial velocity of 3.00 m/s, instead of being dropped.
(@) What then would be its position after 1.00s and 2.00s? (b) What would its
speed be after 1.00s and 2.00s? Compare with the speeds of a dropped ball.
APPROACH Again we use Eqg. 2-12b, but now vO0is not zero, it is vO = 3.00 m/s.
SOLUTION (a) At t = 1.00s, the position of the ball as given by Eq. 2-12b is
y = vOt + \at2 = (3.00m/s) (1.00s) + [(9.80m/s2)(1.00s)2 = 7.90 m.
At t =2.00s, (timeinterval t = 0 to t = 2.005s), the position is
y = vOt + \at2 = (3.00m/s) (2.00s) + [(9.80m/s2)(2.00s)2 = 25.6 m.
As expected, the ball falls farther each second than if it were dropped with vQ= 0.
(b) The velocity is obtained from Eq. 2 -12a:
v = v0 + at
= 3.00m/s + (9.80m/s2)(1.00s) 128m/s [attx = 1.00]
= 3.00m/s + (9.80m/s2)(2.00s) 22.6m/s. [at 2= 2.009]

In Example 2-14, when the ball was dropped (vO= 0), the first term (v0 in
these equations was zero, so

v =0+ at
= (9.80m/s2(1.00s) = 9.80m/s [at~ = 1.009]
= (9.80m/s2(2.00s) = 19.6m/s. [at 2 = 2.00]

NOTE For both Examples 2-14 and 2-15, the speed increases linearly in time by
9.80 m/s during each second. But the speed of the downwardly thrown ball at any
instant is always 3.00 m/s (its initial speed) higher than that of a dropped ball.

trThe speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls far
enough, it will reach a maximum velocity called the terminal velocity due to air resistance.

j PROBLEM SOLVING

You can choosey to be positive
either up or down

FIGURE 2-29 Example 2-14.

(a) An object dropped from a tower
falls with progressively greater
speed and covers greater distance
with each successive second. (See
also Fig. 2-26.) (b) Graph ofy vs. t.

Acceleration

due to
A
(After 1.00 s)
'y2=19.6 m
(After 2.00 s)
B=441m
(After 3.00 s)
@
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B(u = 0)

FIGURE 2-30 An object thrown
into the air leaves the thrower’s
hand at A, reaches its maximum
height at B, and returns to the
original position at C. Examples
2-16,2-17,2-18, and 2-19.

A CAUTION
Quadratic equations have two
solutions. Sometimes only one
corresponds to reality,
sometimes both

EXAMPLE 2-16 Ball thrown upward, I. A person throws a ball upward into the
air with an initial velocity of 15.0m/s. Calculate (a) how high it goes, and (b) how
long the ball is in the air before it comes back to the hand. Ignore air resistance.

APPROACH We are not concerned here with the throwing action, but only with
the motion of the ball after it leaves the thrower’ hand (Fig. 2-30) and until it
comes back to the hand again. Let us choose y to be positive in the upward direc-
tion and negative in the downward direction. (This is a different convention from
that used in Examples 2-14 and 2-15, and so illustrates our options.) The acceleration
due to gravity is downward and so will have a negative sign, a = —g = -9.80 m/s2
As the ball rises, its speed decreases until it reaches the highest point (B in Fig. 2-30),
where its speed is zero for an instant; then it descends, with increasing speed.
SOLUTION (a) We consider the time interval from when the ball leaves the
thrower’s hand until the ball reaches the highest point. To determine the
maximum height, we calculate the position of the ball when its velocity equals
zero (v =0 at the highest point). At t =0 (point A in Fig. 2-30) we have

=0, v0=150m/s, and a = -9.80m/s2 At time t (maximum height),
v =0, a=-9.80m/s2 and we wish to find y. We use Eq. 2-12c, replacing x
withy: v2 =\ + 2ay. We solve this equation for y:

vE - v§ 0 - (15.0m/s)2

- = 115m.
Y= 2a 2(-9.80 m/s?)

The ball reaches a height of 11.5m above the hand.

(b) Now we need to choose a different time interval to calculate how long the
ball is in the air before it returns to the hand. We could do this calculation in two
parts by first determining the time required for the ball to reach its highest point,
and then determining the time it takes to fall back down. However, it is simpler
to consider the time interval for the entire motion from A to B to C (Fig. 2-30)
in one step and use Eq. 2-12h. We can do this because y represents position or
displacement, and not the total distance traveled. Thus, at both points A and C,
y = 0. We use Eq. 2-12b with a = -9.80 m/s2 and find

y = y0+ vOt + \at2

0 = 0+ (15.0m/s)™ + 1(-9.80 m/s2t2
This equation is readily factored (we factor out one t):

(15.0m/s - 4.90m/s2t)t = O.

There are two solutions:

15.0m/s
t 0 and t 4.90m/s2 3.06s.
The first solution (t = 0) corresponds to the initial point (A) in Fig. 2-30, when
the ball was first thrown from y = 0. The second solution, t = 3.06 s, corresponds
to point C, when the ball has returned to y = 0. Thus the ball is in the air 3.06s.
NOTE We have ignored air resistance, which could be significant, so our result is
only an approximation to a real, practical situation.

We did not consider the throwing action in this Example. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a rate
unknown to us—the acceleration is not g. We consider only the time when the ball
is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physics, sometimes only one solution corresponds to the
real situation, as in Example 2-10, in which case we ignore the “unphysical”
solution. But in Example 2-16, both solutions to our equation in t2are physically
meaningful: t = 0 and t = 3.06s.
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CONCEPTUAL EXAMPLE 2-171 Two possible misconceptions. Give examples
to show the error in these two common misconceptions: (1) that acceleration and
velocity are always in the same direction, and (2) that an object thrown upward has
zero acceleration at the highest point (B in Fig. 2-30).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily in
the same direction. When the ball in Example 2-16 is moving upward, its velocity
is positive (upward), whereas the acceleration is negative (downward). (2) At the
highest point (B in Fig. 2-30), the ball has zero velocity for an instant. Is the
acceleration also zero at this point? No. The velocity near the top of the arc
points upward, then becomes zero (for zero time) at the highest point, and then
points downward. Gravity does not stop acting, so a = —g = -9.80 m/s2 even
there. Thinking that a = 0 at point B would lead to the conclusion that upon
reaching point B, the ball would stay there: if the acceleration (= rate of change
of velocity) were zero, the velocity would stay zero at the highest point, and the
ball would stay up there without falling. In sum, the acceleration of gravity always
points down toward the Earth, even when the object is moving up.

EXAMPLE 2-18 Ball thrown upward, Il. Let us consider again the ball thrown
upward of Example 2-16, and make more calculations. Calculate (a) how much
time it takes for the ball to reach the maximum height (point B in Fig. 2-30), and
(b) the velocity of the ball when it returns to the thrower’s hand (point C).

APPROACH Again we assume the acceleration is constant, so we can use
Egs. 2-12. We have the height of 11.5m from Example 2-16. Again we take y as
positive upward.

SOLUTION (a) We consider the time interval between the throw (t =0,

= 15.0m/s) and the top of the path (y = +11.5m, v = 0), and we want to
find t. The acceleration is constant at a = —g = -9.80 m/s2 Both Egs. 2-12a
and 2-12b contain the time t with other quantities known. Let us use Eq. 2-12a
with a = -9.80 m/s2 v0O = 15.0m/s, and v = O:

v = V0 + at;

setting v = 0 and solving for t gives

v0 15.0m/s
f = Vo Boms e
a 79.80 mis2 s

This is just half the time it takes the ball to go up and fall back to its original
position [3.06s, calculated in part (b) of Example 2-16]. Thus it takes the same
time to reach the maximum height as to fall back to the starting point.

(by Now we consider the time interval from the throw (t =0, vO= 15.0m/s)
until the ball’s return to the hand, which occurs at t = 3.06s (as calculated in
Example 2-16), and we want to find v when t = 3.06s:

v = vQ+ at = 150m/s - (9.80m/s2)(3.06s) = -15.0 m/s.

NOTE The ball has the same speed (magnitude of velocity) when it returns to the
starting point as it did initially, but in the opposite direction (this is the meaning
of the negative sign). And, as we saw in part (a), the time is the same up as down.
Thus the motion is symmetrical about the maximum height.

The acceleration of objects such as rockets and fast airplanes is often given as
a multiple of g = 9.80m/s2 For example, a plane pulling out of a dive and under-
going 3.00g’ would have an acceleration of (3.00)(9.80m/s2) = 29.4 m/s2

| EXERCISE | If a car is said to accelerate at 0.50 g, what is its acceleration in m/s2?

/\ CAUTION

(1) Velocity and acceleration are
not always in the same direction;

the acceleration (ofgravity) always

points down

(2) a  0even atthe highestpoint

ofatrajectory
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B(v =0)

FIGURE 2-30
(Repeated for Example 2-19)

EXAMPLE 2-19 Ball thrown upward. lll; the quadratic formula. For the
ball in Example 2-18, calculate at what time t the ball passes a point 8.00 m
above the person’s hand. (See repeated Fig. 2-30 here).

APPROACH We choose the time interval from the throw (t =0, = 15.0m/s)
until the time t (to be determined) when the ball is at position y = 8.00m, using
Eq. 2-12b.
SOLUTION We want to find t, given y =8.00m, y0= 0, vQ= 15.0m/s, and
a = -9.80m/s2 We use Eq. 2-12b:
y y0 + vOt + \at2
8.00m 0 + (15.0m/s)f + \(-9.80 m/s2)t2

To solve any quadratic equation of the form at2 + bt + ¢ = 0, where 0, b, and ¢
are constants (a is not acceleration here), we use the quadratic formula:

b+\fb2 dac
2a
We rewrite our y equation just above in standard form, at2+ bt ¢ =0:
(4.90m/s2t2 - (15.0m/s)t + (8.00m) = 0.
So the coefficient ais 490 m/s2 b is -15.0 m/s, and c is 8.00 m. Putting these into
the quadratic formula, we obtain
150m/s + m/s)2 - 4(4.90m/s2)(8.00m)
2(4.90 m/s2)
which givesus t = 0.69s and t = 2.37s. Are both solutions valid? Yes, because
the ball passes y =8.00m when it goes up (t = 0.69s) and again when it
comes down (t = 2.375).

NOTE Figure 2-31 shows graphs of (a) y vs. t and (b) v vs. t for the ball thrown
upward in Fig. 2-30, incorporating the results of Examples 2-16,2-18, and 2-19.

t =

FIGURE 2-31 Graphs of (a) y vs. t, (b) v vs. t for a ball thrown upward,
Examples 2-16,2-18, and 2-19.

EXAMPLE 2-20 Ball thrown upward at edge of cliff. Suppose that the
person of Examples 2-16, 2-18, and 2-19 is standing on the edge of a cliff, so
that the ball can fall to the base of the cliff 50.0 m below as in Fig. 2-32. (a) How
long does it take the ball to reach the base of the cliff? (b) What is the total
distance traveled by the ball? Ignore air resistance (likely to be significant, so
our result is an approximation).

APPROACH We again use Eq. 2-12b, but this time we set y = -50.0 m, the
bottom of the cliff, which is 50.0 m below the initial position (y0 = 0).
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SOLUTION (a) We use Eq. 2-12b with a = -9.80 m/s2, vO= 15.0m/s, y0= 0,
and y = -50.0 m:

y = yo + vOt +\at2
-50.0m = 0 + (15.0m/s)? - |(9.80m/s2t2
Rewriting in the standard form we have
(4.90m/s2?2 - (15.0m/s)? - (50.0m) = O. A M

Using the quadratic formula, we find as solutions ? = 5.07s and ?= -2.01s.
The first solution, ? = 5.07s, is the answer we are seeking: the time it takes
the ball to rise to its highest point and then fall to the base of the cliff.
To rise and fall back to the top of the cliff took 3.06 s (Example 2-16); so it
took an additional 2.01 s to fall to the base. But what is the meaning of the other
solution, ? = -2.01s? This is a time before the throw, when our calculation
begins, so it isn’t relevant here.*

(b) From Example 2-16, the ball moves up 11.5m, falls 11.5m back down to the
top of the cliff, and then down another 50.0 m to the base of the cliff, for a total
distance traveled of 73.0m. Note that the displacement, however, was -50.0 m.
Figure 2-33 shows the y vs. ? graph for this situation. w=-50m

EXERCISE J Two balls are thrown from a cliff. One is thrown directly up, the other directly FIGURE 2-32 Example 2-20.

down, each with the same initial speed, and both hit the ground below the cliff. Which The person in Fig. 2-30 stands on
ball hits the ground at the greater speed: (a) the ball thrown upward, (b) the ball thrown the edge of a cliff. The ball falls to
downward, or (c) both the same? Ignore air resistance. the base of the cliff, 50.0 m below.

FIGURE 2-33 Example 2-20,

2—8 Variable Acceleration; Integral Calculus . v »gran

In this brief optional Section we use integral calculus to derive the kinematic equa-
tions for constant acceleration, Egs. 2-12a and b. We also show how calculus can
be used when the acceleration is not constant. If you have not yet studied simple
integration in your calculus course, you may want to postpone reading this Section
until you have. We discuss integration in more detail in Section 7-3, where we
begin to use it in the physics.

First we derive Eq. 2-12a, assuming as we did in Section 2-5 that an object
has velocity at ? = 0 and a constant acceleration a. We start with the definition
of instantaneous acceleration, a = dv/dt, which we rewrite as

dv = adt. of cliff

We take the definite integral of both sides of this equation, using the same nota-
tion we did in Section 2-5:

{\dv | adt
Jv=Vn Jt=0

which gives, since a = constant,
v - v0 = at
This is Eq. 2-12a, v = v0 + at.
Next we derive Eq. 2-12b starting with the definition of instantaneous
velocity, Eq. 2-4, v = dx/dt. We rewrite this as
dx = vdt
or
dx (V0 + at)dt
where we substituted in Eq. 2-12a.

trThe solution t = -2.01s could be meaningful in a different physical situation. Suppose that a
person standing on top of a 50.0-m-high cliff sees a rock pass by him at t = 0 moving upward at
15.0 m/s; at what time did the rock leave the base of the cliff, and when did it arrive back at the base
of the cliff? The equations will be precisely the same as for our original Example, and the answers
t=-2.01s and t = 5.07s will be the correct answers. Note that we cannot put all the information
for a problem into the mathematics, so we have to use common sense in interpreting results.

*SECTION 2-8 Variable Acceleration; Integral Calculus 39
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Now we integrate:

rx rt
\dx = (v0 + at)dt
JIx=x0 Jt=0
{v0dt + \atdt
Jt=0 Jt=0

x - X0 = vOt + \at2

since v0 and a are constants. This result is just Eq. 2-12b, x = x0+ vOt + l at2
Finally let us use calculus to find velocity and displacement, given an accelera-
tion that is not constant but varies in time.

mfrfJuU m Integrating a time-varying acceleration. An experimental
vehicle starts from rest (vO= 0) at t = 0 and accelerates at a rate given by
a = (7.00m/s3t. What is (a) its velocity and (b) its displacement 2.00 s later?
APPROACH We cannot use Eqgs. 2-12 because a is not constant. We integrate the
acceleration a = dv/dt over time to find v as a function of time; and then
integrate v = dx/dt to get the displacement.

SOLUTION From the definition of acceleration, a = dv/dt, we have

dv = adt

We take the integral of both sides from v =0 at t = 0 to velocity v at an arbi-
trary time t:

fdv = Cadt
Jo Jo
f (7.00m/s3t dt
Jo
(7.00m/s3)( - = (7.00m/s3"y - 0j = (3.50m/s3t2

At t =200s, v =(3.50m/s3(2.00s)2 = 14.0m/s.

(b) To get the displacement, we assume jo = 0 and start with v = dx/dt which
we rewrite as dx = v dt. Then we integrate from x = 0 at t =0 to position
X at time t:

v dt
omy
PZODS F3 200s
x = (350m/s3t2dt = (3.50m/s3) - = 9.33m.
Jo

Insum,at t =2.00s, v =14.0m/s and x = 9.33m.

*2—9 Graphical Analysis and
Numerical Integration

This Section is optional. It discusses how to solve certain Problems numerically,
often needing a computer to do the sums. Some of this material is also covered in
Chapter 7, Section 7-3.

If we are given the velocity v of an object as a function of time t, we can obtain the
displacement, x. Suppose the velocity as a function of time, v(t), is given as a graph
(rather than as an equation that could be integrated as discussed in Section 2-8), as
shown in Fig 2-34a. If we are interested in the time interval from txto t2, as shown, we
divide the time axis into many small subintervals, , At2, kt3, ..., which are indicated
by the dashed vertical lines. For each subinterval, a horizontal dashed line is drawn to
indicate the average velocity during that time interval. The displacement during any
subinterval is given by A.xt, where the subscript i represents the particular subinterval

Describing Motion: Kinematics in One Dimension



(i = 1,2 3,...). From the definition of average velocity (Eq. 2-2) we have

Axt = vt?
Thus the displacement during each subinterval equals the product of vt and Att,
and equals the area of the dark rectangle in Fig. 2-34a for that subinterval. The
total displacement between times txand t2is the sum of the displacements over all
the subintervals:

h
X2 X\ = 2 Vit (2-13a)
h

where x1is the position at txand x2is the position at t2. This sum equals the area
of all the rectangles shown.

It is often difficult to estimate vt with precision for each subinterval from the
graph. We can get greater accuracy in our calculation of x2 —x1by breaking the
interval t2 —tx into more, but narrower, subintervals. Ideally, we can let each Aff
approach zero, so we approach (in principle) an infinite number of subintervals. In
this limit the area of all these infinitesimally thin rectangles becomes exactly equal
to the area under the curve (Fig. 2-34b). Thus the total displacement between any
two times is equal to the area between the velocity curve and the t axis between the
two times txand t2. This limit can be written

h
X2 —xi = lim ViLAf
z 1 At—0 "h 11
or, using standard calculus notation,
x2 - x1 = [v(t)dt. (2-13b)
I,

We have let At — 0 and renamed it dt to indicate that it is now infinitesimally small.
The average velocity, v, over an infinitesimal time dt is the instantaneous velocity at
that instant, which we have written v(t) to remind us that v is a function of t.
The symbol J is an elongated S and indicates a sum over an infinite number of
infinitesimal subintervals. We say that we are taking the integral of v(t) over dt from
time txto time t2, and this is equal to the area between the v(t) curve and the t axis
between the times txand t2 (Fig. 2-34b). The integral in Eq. 2-13b is a definite integral,
since the limits txand t2are specified.

Similarly, if we know the acceleration as a function of time, we can obtain the
velocity by the same process. We use the definition of average acceleration
(Eg. 2-5) and solve for Av:

Av = aAt
If a is known as a function of t over some time interval t\ to t2, we can subdivide
this time interval into many subintervals, Att, just as we did in Fig. 2-34a. The
change in velocity during each subinterval is Avt = atAtt. The total change in
velocity from time txuntil time t2is

h
v2 ~ vl = "afAti, (2-14a)

where v2represents the velocity at t2and vxthe velocity at tl . This relation can be written
as an integral by letting AE —>0 (the number of intervals then approaches infinity)
h

or
v2- vx = aft)dt. (2-14b)
it
Equations 2-14 will allow us to determine the velocity v2 at some time t2 if the
velocity is known at txand a is known as a function of time.

If the acceleration or velocity is known at discrete intervals of time, we can use the
summation forms of the above equations, Egs. 2-13a and 2-14a, to estimate velocity
or displacement. This technique is known as numerical integration. We now take an
Example that can also be evaluated analytically, so we can compare the results.

(b)

FIGURE 2-34 Graph of v vs. t for
the motion of a particle. In (a), the
time axis is broken into subintervals

of width Ati, the average velocity

during each A is V(,and the area of

all the rectangles, 27; AN, is
numerically equal to the total

displacement (x2 - jci) during the

total time (t2 - 1). In (b), A —
and the area under the curve is
equal to (x2 —xi).

*SECTION 2-9  Graphical Analysis and Numerical Integration
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FIGURE 2-35 Example 2-22.
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EXAMPLE 2-22  Numerical integration. An object starts from rest at t = 0
and accelerates at a rate a(t) = (8.00m/s4)?2 Determine its velocity after 2.00s
using numerical methods.

APPROACH Let us first divide up the interval t = 0.00s to ? = 2.00s into four
subintervals each of duration Att =0.50s (Fig. 2-35). We use Eq. 2-14a with
v2=v,vl=0, t2=200s, and tx= 0. For each of the subintervals we need to
estimate at. There are various ways to do this and we use the simple method of
choosing at to be the acceleration a{t) at the midpoint of each interval (an even
simpler but usually less accurate procedure would be to use the value of a at the
start of the subinterval). That is, we evaluate a(t) = (8.00m/s4?2 at ? = 0.25s
(which is midway between 0.00 s and 0.505s), 0.75s, 1.25s, and 1.75s.

SOLUTION The results are as follows:

i 1 2 3 4
M m/s2) 0.50 4.50 12.50 24.50
Now we use Eq. 2-14a, and note that all A? equal 0.50s (so they can be factored out):
=200
v(t =200s) = 2
t=0

= (050m/s2 + 4.50m/s2 + 1250 m/s2 + 24.50 m/s2)(0.50s)
= 21.0m/s.

We can compare this result to the analytic solution given by Eq. 2-14b since the
functional form for a is integrable analytically:

ra2ms 8.00m/s4  200s
(8.00 m/s4) 22dt
Jo 3
8.00m/s4

[(2005)3 - (0)* - 21.33m/s

or 21.3m/s to the proper number of significant figures. This analytic solution is
precise, and we see that our numerical estimate is not far off even though we only
used four A? intervals. It may not be close enough for purposes requiring high accu-
racy. If we use more and smaller subintervals, we will get a more accurate result. If
we use 10 subintervals, each with A? = 2.00s/10 = 0.20s, we have to evaluate
a(t) at? = 0.10s, 0.30s,..., 1.90sto get the at, and these are as follows:

I 1 2 3 4 5 6 7 8 9 10
fl/(m/s2) 0.08 0.72 2.00 3.92 6.48 9.68 13.52 18.00 23.12 28.88

Then, from Eq. 2-14a we obtain

(27)(°-200s)

(106.4m/s2)(0.200s) = 21.28m/s,

where we have kept an extra significant figure to show that this result is much
closer to the (precise) analytic one but still is not quite identical to it. The
percentage difference has dropped from 1.4% (0.3 m/s221.3 m/s2) for the four-
subinterval computation to only 0.2% (0.05/21.3) for the 10-subinterval one.

v(t = 2.00s) =

In the Example above we were given an analytic function that was integrable, so
we could compare the accuracy of the numerical calculation to the known precise one.
But what do we do if the function is not integrable, so we can’t compare our numerical
result to an analytic one? That is, how do we know if weVve taken enough subintervals
so that we can trust our calculated estimate to be accurate to within some desired uncer-
tainty, say 1 percent? What we can do is compare two successive numerical calculations:
the first done with n subintervals and the second with, say, twice as many subintervals
(2n). If the two results are within the desired uncertainty (say 1 percent), we can usually
assume that the calculation with more subintervals is within the desired uncertainty of
the true value. If the two calculations are not that close, then a third calculation, with
more subintervals (maybe double, maybe 10 times as many, depending on how good
the previous approximation was) must be done, and compared to the previous one.

The procedure is easy to automate using a computer spreadsheet application.



If we wanted to also obtain the displacement x at some time, we would have to
do a second numerical integration over v, which means we would first need to
calculate v for many different times. Programmable calculators and computers are

very helpful for doing the long sums.

Problems that use these numerical techniques are found at the end of many
Chapters of this book; they are labeled Numerical/Computer and are given an

asterisk to indicate that they are optional.

Summary

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve to give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Kinematics deals with the description of how objects move.
The description of the motion of any object must always be
given relative to some particular reference frame.

The displacement of an object is the change in position of
the object.

Average speed is the distance traveled divided by the
elapsed time or time interval, At, the time period over which we
choose to make our observations. An object’s average velocity
over a particular time interval At is its displacement Ax during
that time interval, divided by At:

Vv = § (2-2)

The instantaneous velocity, whose magnitude is the same as
the instantaneous speed, is defined as the average velocity taken
over an infinitesimally short time interval (At —» 0):

_ . Axo_ dx
Ve e T w

where dx/dt is the derivative of x with respect to t.

Questions

1. Does a car speedometer measure speed, velocity, or both?

2. Can an object have a varying speed if its velocity is
constant? Can it have varying velocity if its speed is
constant? If yes, give examples in each case.

3. When an object moves with constant velocity, does its
average velocity during any time interval differ from its
instantaneous velocity at any instant?

4. If one object has a greater speed than a second object, does
the first necessarily have a greater acceleration? Explain,
using examples.

5. Compare the acceleration of a motorcycle that accelerates
from 80km/h to 90 km/h with the acceleration of a bicycle
that accelerates from rest to 10km/h in the same time.

6. Can an object have a northward velocity and a southward
acceleration? Explain.

7. Can the velocity of an object be negative when its accelera-
tion is positive? What about vice versa?

8. Give an example where both the velocity and acceleration
are negative.

9. Two cars emerge side by side from a tunnel. Car A is trav-
eling with a speed of 60 km/h and has an acceleration of
40km/h/min. Car B has a speed of 40km/h and has an
acceleration of 60 km/h/min. Which car is passing the other
as they come out of the tunnel? Explain your reasoning.

10. Can an object be increasing in speed as its acceleration
decreases? If so, give an example. If not, explain.

(2-4)

On a graph of position vs. time, the slope is equal to the
instantaneous velocity.
Acceleration is the change of velocity per unit time. An
object’s average acceleration over a time interval At is
a= "™ (2-5)
where Av is the change of velocity during the time interval At.
Instantaneous acceleration is the average acceleration
taken over an infinitesimally short time interval:
a = lim AV dv,
- M dt
If an object moves in a straight line with constant acceleration, the
velocity v and positionx are related to the acceleration a, the elapsed
time t, the initial position x0, and the initial velocity vOby Egs. 2-12:

v = v0 + at, x = x0 + vOt + \at2

(2-6)

vE = wé+ 28(x - x0), v = L (2-12
Objects that move vertically near the surface of the Earth,
either falling or having been projected vertically up or down,
move with the constant downward acceleration due to gravity,
whose magnitude is g = 9.80 m/s2 if air resistance can be ignored.
[*The kinematic Equations 2-12 can be derived using inte-
gral calculus.]

11. A baseball player hits a ball straight up into the air. It leaves the
bat with a speed of 120km/h. In the absence of air resistance,
how fast would the ball be traveling when the catcher catches it?

12. As a freely falling object speeds up, what is happening to its
acceleration—does it increase, decrease, or stay the same?
(a) Ignore air resistance, (b) Consider air resistance.

13. You travel from point A to point B in a car moving at a
constant speed of 70km/h. Then you travel the same
distance from point B to another point C, moving at a constant
speed of 90km/h. Is your average speed for the entire trip
from A to C 80km/h? Explain why or why not.

14. Can an object have zero velocity and nonzero acceleration
at the same time? Give examples.

15. Can an object have zero acceleration and nonzero velocity
at the same time? Give examples.

16. Which of these motions is not at constant acceleration: a
rock falling from a cliff, an elevator moving from the second
floor to the fifth floor making stops along the way, a dish
resting on a table?

17. In alecture demonstration, a 3.0-m-long vertical string with ten
bolts tied to it at equal intervals is dropped from the ceiling of
the lecture hall. The string falls on a tin plate, and the class
hears the clink of each bolt as it hits the plate. The sounds will
not occur at equal time intervals. Why? Will the time between
clinks increase or decrease near the end of the fall? How could
the bolts be tied so that the clinks occur at equal intervals?

Questions 43



18. Describe in words the motion plotted in Fig. 2-36 in terms
of v, a, etc. [Hint: First try to duplicate the motion plotted
by walking or moving your hand.]

FIGURE 2-36 Question 18, Problems 9 and 86.
| Problems
[The Problems at the end of each Chapter are ranked I, I, or 111

according to estimated difficulty, with (1) Problems being easiest.
Level 111 are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Finally,
there is a set of unranked “General Problems” not arranged by
Section number.]

2-1 to 2-3 Speed and Velocity

1

(1) If you are driving 110km/h along a straight road and
you look to the side for 2.0s, how far do you travel during
this inattentive period?

. (I) What must your car’s average speed be in order to travel

235km in 3.25h?

. (1) A particle at t\ = -2.0s is at x\ = 43cm and at

t2=45s is at x2=85cm. What is its average velocity?
Can you calculate its average speed from these data?

. (1) A rolling ball moves from x1=34cm to x2= —4.2cm

during the time from t\ = 3.0s to t2=51s What is its
average velocity?

. (I1) According to a rule-of-thumb, every five seconds between

a lightning flash and the following thunder gives the distance
to the flash in miles. Assuming that the flash of light arrives in
essentially no time at all, estimate the speed of sound inm/s
from this rule. What would be the rule for kilometers?

. (1) You are driving home from school steadily at 95km/h

for 130 km. It then begins to rain and you slow to 65 km/h.
You arrive home after driving 3 hours and 20 minutes.
(a) How far is your hometown from school? (b) What was
your average speed?

. (1) A horse canters away from its trainer in a straight line,

moving 116 m away in 14.0s. It then turns abruptly and
gallops halfway back in 4.8 s. Calculate (a) its average speed
and (b) its average velocity for the entire trip, using “away
from the trainer” as the positive direction.

Sy T

x = 34 + 10t —213, where t is in seconds and x in meters.
{a) Plot jc as a function of t from t =0 to f= 30s.
(b) Find the average velocity of the object between 0
and 3.0s. (c) At what time between 0 and 3.0s is the
instantaneous velocity zero?

19

9

10.

11.

12.

. Describe in words the motion of the object graphed in Fig. 2-37.

0 10 20 30 40 50 60( )70 80 90 100 110 120
t(s

FIGURE 2-37 Question 19, Problem 23.

. (I) The position of a rabbit along a straight tunnel as a
function of time is plotted in Fig. 2-36. What is its instanta-
neous velocity (a) at t =100s and (b) at t =30.0s?
What is its average velocity (c) between t =0 and
t = 50s, ) between t=250s and t=300s and
(e) between t = 40.0s and t = 50.0s?

(11) On an audio compact disc (CD), digital bits of information
are encoded sequentially along a spiral path. Each bit occupies
about 0.28 /xm. A CD player’ readout laser scans along the
spiral’s sequence of bits at a constant speed of about 1.2m/s as
the CD spins, (a) Determine the number N of digital bits that a
CD player reads every second, (b) The audio information is
sent to each of the two loudspeakers 44,100 times per second.
Each of these samplings requires 16 bits and so one would (at
first glance) think the required bit rate for a CD player is

samplings” bits

second )(m

where the 2 is for the 2 loudspeakers (the 2 stereo channels).
Note that No is less than the number N of bits actually read
per second by a CD player. The excess number of bits
(= N —NO) is needed for encoding and error-correction.
What percentage of the bits on a CD are dedicated to
encoding and error-correction?

(1) A car traveling 95km/h is 110m behind a truck trav-
eling 75 km/h. How long will it take the car to reach the
truck?

(1) Two locomotives approach each other on parallel
tracks. Each has a speed of 95km/h with respect to the
ground. If they are initially 8.5 km apart, how long will it be
before they reach each other? (See Fig. 2-38).

Nn=2 44,100
second

-8,5 km—-

vV =
95 kmvh

FIGURE 2-38 Problem 12.
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13.

14,

15.

16.

17.

18.

19.

(1) Digital bits on a 12.0-cm diameter audio CD are
encoded along an outward spiraling path that starts at
radius Ri = 25cm and finishes at radius R2= 58cm.
The distance between the centers of neighboring spiral-
windings is 1.6/xm(= 1.6 X 10-6m). (a) Determine the
total length of the spiraling path. [Hint: Imagine
“unwinding” the spiral into a straight path of width 1.6 *m,
and note that the original spiral and the straight path both
occupy the same area.] (b) To read information, a CD
player adjusts the rotation of the CD so that the player’s
readout laser moves along the spiral path at a constant
speed of 1.25m/s. Estimate the maximum playing time of
such a CD.

(1) An airplane travels 3100 km at a speed of 720 km/h,
and then encounters a tailwind that boosts its speed to
990 km/h for the next 2800 km. What was the total time for
the trip? What was the average speed of the plane for this
trip? [Hint: Does Eq. 2-12d apply, or not?]

(I1) Calculate the average speed and average velocity of a
complete round trip in which the outgoing 250 km is
covered at 95km/h, followed by a 1.0-h lunch break, and
the return 250 km is covered at 55 km/h.

(I1) The position of a ball rolling in a straight line is given by
X =20 - 3.61+ 1.112, where x is in meters and t in
seconds, (a) Determine the position of the ball at t = 1.0,
2.0s, and 3.0s. (b) What is the average velocity over the
interval t = 1.0s to t =3.0s? (c) What is its instanta-
neous velocity at t = 2.0s and at t = 3.0s?

(I1) A dog runs 120 m away from its master in a straight line
in 8.4s, and then runs halfway back in one-third the time.
Calculate (a) its average speed and (b) its average velocity.
(1) An automobile traveling 95 km/h overtakes a 1.10-km-
long train traveling in the same direction on a track parallel
to the road. If the train’s speed is 75 km/h, how long does it
take the car to pass it, and how far will the car have traveled
in this time? See Fig. 2-39. What are the results if the car
and train are traveling in opposite directions?

1JOkm

vV - 75 kmv/h

« 4 *

— 4 -
i' * t=95kmih

FIGURE 2-39 Problem 18.

(1) A bowling ball traveling with constant speed hits the
pins at the end of a bowling lane 16.5m long. The bowler
hears the sound of the ball hitting the pins 2.50 s after the
ball is released from his hands. What is the speed of the ball,
assuming the speed of sound is 340 m/s?

2-4 Acceleration

20.

21.

22.

(1) A sports car accelerates from rest to 95km/h in 4.5s.
What is its average acceleration in m/s2?

(1) At highway speeds, a particular automobile is capable of
an acceleration of about 1.8 m/s2 At this rate, how long
does it take to accelerate from 80 km/h to 110 km/h?

(1) A sprinter accelerates from rest to 9.00m/s in 1.28s.
What is her acceleration in (a) m/s2; (b) km/h2?

23.

24,

25.

26.

27.

28.

t{s) 0
jtm) 0

f(s)

x(m)

29.

(1) Figure 2-37 shows the velocity of a train as a function of
time, (a) At what time was its velocity greatest? (b) During
what periods, if any, was the velocity constant? (c) During
what periods, if any, was the acceleration constant?
) When was the magnitude of the acceleration greatest?

(1) A sports car moving at constant speed travels 110 m in
5.0s. If it then brakes and comes to a stop in 4.0 s, what is
the magnitude of its acceleration in m/s2, and in g’s
(g = 9.80m/s2)?

(1) A car moving in a straight line startsat x = 0 at t = 0.
It passes the point x = 25.0m with a speed of 11.0 m/s at
t = 3.00s. It passes the point x = 385m with a speed of
450m/s at t = 20.0s. Find (a) the average velocity and
(b) the average acceleration between t = 3.00s and
t = 20.0s.

(I1) A particular automobile can accelerate approximately
as shown in the velocity vs. time graph of Fig. 2-40. (The
short flat spots in the curve represent shifting of the gears.)
Estimate the average acceleration of the car in (a) second
gear; and (b) fourth gear, (c) What is its average accelera-
tion through the first four gears?

50

40

A 20
10

0
0 10 20 30 40

FIGURE 2-40 Problem 26. The velocity of a
high-performance automobile as a function of time,
starting from a dead stop. The flat spots in the curve
represent gear shifts.

(I1) A particle moves along the x axis. Its position as a func-
tion of time is given by x = 6.81 + 85t2, where t is in
seconds and x is in meters. What is the acceleration as a
function of time?

(I1) The position of a racing car, which starts from rest at
t = 0 and moves in a straight line, is given as a function of
time in the following Table. Estimate (a) its velocity and
(b) its acceleration as a function of time. Display each in a
Table and on a graph.

0.75
1.06

4.50
48.37

1.00
1.94

5.00
60.30

1.50
4.62

5.50
73.26

2.00 250
8,55 13.79

6.00
87.16

025 0.50
011 046

3.00 350 4.00
20.36 28.31 37.65

(I1) The position of an object is given by x = At + Bt2,
where x is in meters and t is in seconds, (a) What are the
units of A and B? (b) What is the acceleration as a function
of time? (c) What are the velocity and acceleration at
t = 5.0s? (d) What is the velocity as a function of time if
x = At + Bt~3
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2-5 and 2-6 Motion at Constant Acceleration

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

46

() A car slows down from 25m/s to rest in a distance of
85 m. What was its acceleration, assumed constant?

(1) A car accelerates from 12m/s to 21 m/s in 6.0s. What
was its acceleration? How far did it travel in this time?
Assume constant acceleration.

() A light plane must reach a speed of 32m/s for takeoff.
How long a runway is needed if the (constant) acceleration
is 3.0m/s2?

(1) A baseball pitcher throws a baseball with a speed of
41 m/s. Estimate the average acceleration of the ball during
the throwing motion. In throwing the baseball, the pitcher
accelerates the ball through a displacement of about 3.5m,
from behind the body to the point where it is released
(Fig. 2-41).

FIGURE 2-41
Problem 33.

(1) Show that v = (v + v0)/2 (see Eq. 2-12d) is not valid
when the acceleration a = A + Bt, where A and B are
constants.

(1) A world-class sprinter can reach a top speed (of about
11.5m/s) in the first 15.0m of a race. What is the average
acceleration of this sprinter and how long does it take her to
reach that speed?

(1) An inattentive driver is traveling 18.0m/s when he
notices a red light ahead. His car is capable of decelerating
at a rate of 3.65m/s2 If it takes him 0.200s to get the
brakes on and he is 20.0m from the intersection when he
sees the light, will he be able to stop in time?

(1) A car slows down uniformly from a speed of 18.0m/s to
rest in 5.00s. How far did it travel in that time?

(1) In coming to a stop, a car leaves skid marks 85m long
on the highway. Assuming a deceleration of 4.00 m/s2, esti-
mate the speed of the car just before braking.

(1) A car traveling 8km/h slows down at a constant
0.50 m/s2 just by “letting up on the gas.” Calculate (a) the
distance the car coasts before it stops, (b) the time it takes
to stop, and (c) the distance it travels during the first and
fifth seconds.

(1) A car traveling at 105 km/h strikes a tree. The front end
of the car compresses and the driver comes to rest after
traveling 0.80 m. What was the magnitude of the average
acceleration of the driver during the collision? Express the
answer in terms of “g’s,” where 1.00g = 9.80 m/s2

(I1) Determine the stopping distances for an automobile
with an initial speed of 95km/h and human reaction time of
10s: (a) for an acceleration a= -5.0m/s2 (b) for
a= —4.0m/s2

(1) A space vehicle accelerates uniformly from 65m/s at
t=0 to 162m/s at t =10.0s. How far did it move
between t =2.0s and t = 6.0s?

43.

45.

46.

47.

Mary
. 40mA

(1) A 75-m-long train begins uniform acceleration from rest.
The front of the train has a speed of 23 m/s when it passes a
railway worker who is standing 180 m from where the front
of the train started. What will be the speed of the last car as
it passes the worker? (See Fig. 2-42.)

v =23 /s

t

f
FIGURE 2-42 Problem 43.

. (1) An unmarked police car traveling a constant 95 km/h is

passed by a speeder traveling 135km/h. Precisely 1.00s
after the speeder passes, the police officer steps on the
accelerator; if the police car’s acceleration is 2.00 m/s2, how
much time passes before the police car overtakes the
speeder (assumed moving at constant speed)?

(111) Assume in Problem 44 that the speeder’s speed is not
known. If the police car accelerates uniformly as given
above and overtakes the speeder after accelerating for
7.00s, what was the speeder’s speed?

(1) A runner hopes to complete the 10,000-m run in less
than 30.0 min. After running at constant speed for exactly
27.0min, there are still 1100 m to go. The runner must then
accelerate at 0.20 m/s2 for how many seconds in order to
achieve the desired time?

(1) Mary and Sally are in a foot race (Fig. 2-43). When
Mary is 22 m from the finish line, she has a speed of 4.0m/s
and is 5.0m behind Sally, who has a speed of 5.0 m/s. Sally
thinks she has an easy win and so, during the remaining
portion of the race, decelerates at a constant rate of
0.50 m/s2to the finish line. What constant acceleration does
Mary now need during the remaining portion of the race, if
she wishes to cross the finish line side-by-side with Sally?

Sully
, 5.0 mv/s

FIGURE 2-43 Problem 47.

2-7 Freely Falling Objects
[Neglect air resistance.]

48.

49.

50.

51

(1) A stone is dropped from the top of a cliff. It is seen to hit
the ground below after 3.75 s. How high is the cliff?

(I) If acarrolls gently (vO= 0) off a vertical cliff, how long
does it take it to reach 55 km/h?

(1) Estimate (a) how long it took King Kong to fall straight
down from the top of the Empire State Building (380 m
high), and (b) his velocity just before “landing.”

(1) A baseball is hit almost straight up into the air with a
speed of about 20 m/s. (a) How high does it go? (b) How
long is it in the air?

CHAPTER 2  Describing Motion: Kinematics in One Dimension



52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

(1) A ball player catches a ball 3.2 s after throwing it verti-
cally upward. With what speed did he throw it, and what
height did it reach?

(I1) A kangaroo jumps to a vertical height of 1.65m. How
long was it in the air before returning to Earth?

(I1) The best rebounders in basketball have a vertical leap
(that is, the vertical movement of a fixed point on their
body) of about 120cm. (a) What is their initial “launch”
speed off the ground? (b) How long are they in the air?
(1) A helicopter is ascending vertically with a speed of
5.10 m/s. At a height of 105 m above the Earth, a package is
dropped from a window. How much time does it take for
the package to reach the ground? [Hint: vOfor the package
equals the speed of the helicopter.]

(1) For an object falling freely from rest, show that the
distance traveled during each successive second increases in
the ratio of successive odd integers (1, 3, 5, etc.). (This was
first shown by Galileo.) See Figs. 2-26 and 2-29.

(I1) A baseball is seen to pass upward by a window 23 m
above the street with a vertical speed of 14 m/s. If the ball
was thrown from the street, (a) what was its initial speed,
(ib) what altitude does it reach, (c) when was it thrown, and
(d) when does it reach the street again?

(1) A rocket rises vertically, from rest, with an acceleration
of 3.2m/s2 until it runs out of fuel at an altitude of 950 m.
After this point, its acceleration is that of gravity, down-
ward. (a) What is the velocity of the rocket when it runs out
of fuel? (b) How long does it take to reach this point?
(c) What maximum altitude does the rocket reach? (d) How
much time (total) does it take to reach maximum altitude?
(e) With what velocity does it strike the Earth? (/) How
long (total) is it in the air?

(1) Roger sees water balloons fall past his window. He
notices that each balloon strikes the sidewalk 0.83s after
passing his window. Roger’s room is on the third floor, 15m
above the sidewalk, (a) How fast are the balloons traveling
when they pass Roger’s window? (b) Assuming the balloons
are being released from rest, from what floor are they being
released? Each floor of the dorm is 5.0 m high.

(1) A stone is thrown vertically upward with a speed of
24.0m/s. (a) How fast is it moving when it reaches a height
of 13.0m? (b) How much time is required to reach this
height? (c) Why are there two answers to (b)l

(1) A falling stone takes 0.33s to travel past a window
2.2m tall (Fig. 2-44). From what height above the top of the
window did the stone fall?

To travel
this
Ydistance
took
0.33s

22m

FIGURE 2-44 Problem 61.

62.

63.

64.

65.

66.

(1) Suppose you adjust your garden hose nozzle for a hard
stream of water. You point the nozzle vertically upward at a
height of 1.5m above the ground (Fig. 2-45). When you
quickly turn off the nozzle, you

hear the water striking the

ground next to you for another

2.0s. What is the water speed

as it leaves the nozzle?

15m

FIGURE 2-45
Problem 62.

(1) A toy rocket moving vertically upward passes by a
2.0-m-high window whose sill is 8.0m above the ground. The
rocket takes 0.15s to travel the 2.0m height of the window.
What was the launch speed of the rocket, and how high will it
go? Assume the propellant is burned very quickly at blastoff.
(11) A ball is dropped from the top of a 50.0-m-high cliff. At
the same time, a carefully aimed stone is thrown straight up
from the bottom of the cliff with a speed of 24.0m/s. The
stone and ball collide part way up. How far above the base
of the cliff does this happen?

(1) A rock is dropped from a sea cliff and the sound of it
striking the ocean is heard 3.4 s later. If the speed of sound
is 340 m/s, how high is the cliff?

(1) A rock is thrown vertically upward with a speed of
12.0m/s. Exactly 1.00s later, a ball is thrown up vertically
along the same path with a speed of 18.0m/s. (a) At what
time will they strike each other? (b) At what height will the
collision occur? (c) Answer (a) and (b) assuming that the
order is reversed: the ball is thrown 1.00 s before the rock.

*2-8 Variable Acceleration; Calculus

*67.

*68.

*69.

(1) Given v(t) = 25 + 181 where visin m/s and tisin s,
use calculus to determine the total displacement from
ti = 15s to t2=31s.

(1) The acceleration of a particle is given by a = A\/i
where A =2.0m/s52. At t =0,v=75m/s and x = 0.
(@) What is the speed as a function of time? (b) What is the
displacement as a function of time? (c) What are the accel-
eration, speed and displacement at t = 5.0s?

(1) Air resistance acting on a falling body can be
taken into account by the approximate relation for the
acceleration:

dv
a = -

=g-kv,

where Ais a constant, (a) Derive a formula for the velocity
of the body as a function of time assuming it starts from rest
(v=0 at t=0). [Hint: Change variables by setting
u =g —kv.] (b) Determine an expression for the terminal
velocity, which is the maximum value the velocity reaches.

*2-9 Graphical Analysis and Numerical Integration
[See Problems 95-97 at the end of this Chapter.]

Problems 47



70. A fugitive tries to hop on a freight train traveling at a 78. Consider the street pattern shown in Fig. 2-47. Each inter-
constant speed of 5.0 m/s. Just as an empty box car passes section has a traffic signal, and the speed limit is 50 km/h.
him, the fugitive starts from rest and accelerates at Suppose you are driving from the west at the speed limit.
a = 12m/s2 to his maximum speed of 6.0m/s. (a) How When you are 10.0 m from the first intersection, all the lights
long does it take him to catch up to the empty box car? turn green. The lights are green for 13.0's each, (a) Calculate
(b) What is the distance traveled to reach the box car? the time needed to reach the third stoplight. Can you make

71. The acceleration due to gravity on the Moon is about one- it through all three lights without stopping? (b) Another car
sixth what it is on Earth. If an object is thrown vertically was stopped at the first light when all the lights turned
upward on the Moon, how many times higher will it go than green. It can accelerate at the rate of 2.00 m/s2to the speed
it would on Earth, assuming the same initial velocity? limit. Can the second car make it through all three lights

72. A person jumps from a fourth-story window 15.0m above a without stopping? By how many seconds would it make it
firefighter’s safety net. The survivor stretches the net 1.0m or not?
before coming to rest, Fig. 2-46. (a) What was the average
deceleration experienced by the survivor when she was

slowed to rest by the net? (b) What would you do to
make it “safer” (that is, to generate a smaller
deceleration): would you stiffen or loosen
the net? Explain.
FIGURE 2-47 Problem 78.

79. In putting, the force with which a golfer strikes a ball is

planned so that the ball will stop within some small distance

150m of the cup, say 1.0 m long or short, in case the putt is missed.

Accomplishing this from an uphill lie (that is, putting the

ball downhill, see Fig. 2-48) is more difficult than from a

downhill lie. To see why, assume that on a particular green

FIGURE 2-46 the ball decelerates constantly at 1.8 m/s2 going downhill,

10m Problem 72. and constantly at 2.8 m/s2 going uphill. Suppose we have an

uphill lie 7.0 m from the cup. Calculate the allowable range

of initial velocities we may impart to the ball so that

it stops in the range 1.0m short to 1.0m long of the

. . cup. Do the same for a downhill lie 7.0m from the cup.

73. A person who is properly restrained by an over-the- What in your results suggests that the downhill putt is
shoulder seat belt has a good chance of surviving a car colli- e
i i ; R more difficult?
sion if the deceleration does not exceed 30 “g%s
(1.0Og = 9.80 m/s2). Assuming uniform deceleration of thi$
value, calculate the distance over which the front end of the
car must be designed to collapse if a crash brings the car tq
rest from 100 km/h.

74. Pelicans tuck their wings and free-fall straight down whei}
diving for fish. Suppose a pelican starts its dive from g Ubhil
height of 16.0m and cannot change its path once "5
committed. If it takes a fish 0.20 s to perform evasive action, *
at what minimum height must it spot the pelican to escape?

Assume the fish is at the surface of the water. .

75. Suppose a car manufacturer tested its cars for front-en4 Downhill
collisions by hauling them up on a crane and dropping then; -Jjato
from a certain height, (a) Show that the speed just before
a car hits the ground, after falling from rest a vertical
distance H, is given by \/2gH . What height corresponds tq
a collision at (b) 50 km/h? (c) 100km/h? FIGURE 2-48 Problem 79.

76. A stone is dropped from the roof of a high building. A second
stone is dropped 1.50s later. How far apart are the stones 80, A robot used in a pharmacy picks up a medicine bottle at
when the second one has reached a speed of 12.0m/s? t = 0. It accelerates at 0.20m/s2 for 5.0s, then travels

77. A bicyclist in the Tour de France crests a mountain pass as without acceleration for 68s and finally decelerates at
he moves at 15km/h. At the bottom, 4.0km farther, his —0.40 m/s2for 2.5 to reach the counter where the pharma-
speed is 75km/h. What was his average acceleration cist will take the medicine from the robot. From how far
(in m/s2 while riding down the mountain? away did the robot fetch the medicine?
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8L A stone is thrown vertically upward with a speed of 125 m/s

from the edge of a cliff

\Y 75.0m high (Fig. 2-49).

[ (8) How much later does
it reach the bottom of

={ the cliff? (b) What is its
speed just before hitting?

(c) What total distance did

it travel?
y=-15m FIGURE 2-49
Problem 81.

82. Figure 2-50 is a position versus time graph for the motion of an

object along the x axis. Consider the time interval from A to B.
(a) Is the object moving in the positive or negative direc-
tion? (b) Is the object speeding up or slowing down? (c) Is
the acceleration of the object positive or negative? Next,
consider the time interval from D to E. () Is the object
moving in the positive or negative direction? (e) Is the
object speeding up or slowing down? (/) Is the acceleration

of the object posi-
30 tive or negative?
A (9) Finally, answer

25 these same three
questions for the
20 time interval from
E CtoD.
15 \
10
c
C D
0 “(s) FIGURE 2-50
0 1 Problem 82.

. In the design of a rapid transit system, it is necessary to
balance the average speed of a train against the distance
between stops. The more stops there are, the slower the
train’s average speed. To get an idea of this problem, calcu-
late the time it takes a train to make a 9.0-km trip in two
situations: (a) the stations at which the trains must stop are
1.8km apart (a total of 6 stations, including those at the
ends); and (b) the stations are 3.0km apart (4 stations
total). Assume that at each station the train accelerates at a
rate of 1.1 m/s2 until it reaches 95 km/h, then stays at this
speed until its brakes are applied for arrival at the next
station, at which time it decelerates at -2.0 m/s2. Assume it
stops at each intermediate station for 22s.

84. A person jumps off a diving board 4.0 m above the water’s

surface into a deep pool. The person’s downward motion
stops 2.0m below the surface of the water. Estimate the
average deceleration of the person while under the water.

8b.

86.

87.

88.

91

92

Bill can throw a ball vertically at a speed 1.5 times faster than
Joe can. How many times higher will Bill’s ball go than Joe’s?
Sketch the v vs. t graph for the object whose displacement
as a function of time is given by Fig. 2-36.

A person driving her car at 45 km/h approaches an intersec-
tion just as the traffic light turns yellow. She knows that the
yellow light lasts only 2.0 s before turning to red, and she is
28 m away from the near side of the intersection (Fig. 2-51).
Should she try to stop, or should she speed up to cross the
intersection before the light turns red? The intersection is
15m wide. Her car’s maximum deceleration is -5.8 m/s2,
whereas it can accelerate from 45 km/h to 65 km/h in 6.0s.
Ignore the length of her car and her reaction time.

FIGURE 2-51 Problem 87.

A car is behind a truck going 25 m/s on the highway. The
driver looks for an opportunity to pass, guessing that his car
can accelerate at 1.0m/s2, and he gauges that he has to
cover the 20-m length of the truck, plus 10-m clear room at
the rear of the truck and 10 m more at the front of it. In the
oncoming lane, he sees a car approaching, probably also
traveling at 25 m/s. He estimates that the car is about 400 m
away. Should he attempt the pass? Give details.

. Agent Bond is standing on a bridge, 13m above the road

below, and his pursuers are getting too close for comfort. He
spots a flatbed truck approaching at 25m/s, which he
measures by knowing that the telephone poles the truck is
passing are 25m apart in this country. The bed of the truck
is 1.5 m above the road, and Bond quickly calculates how
many poles away the truck should be when he jumps down
from the bridge onto the truck, making his getaway. How
many poles is it?

. A police car at rest, passed by a speeder traveling at a

constant 130 km/h, takes off in hot pursuit. The police
officer catches up to the speeder in 750 m, maintaining a
constant acceleration, (a) Qualitatively plot the position vs.
time graph for both cars from the police car’s start to the
catch-up point. Calculate (b) how long it took the police officer
to overtake the speeder, (c) the required police car accelera-
tion, and (d) the speed of the police car at the overtaking point.
A fast-food restaurant uses a conveyor belt to send the
burgers through a grilling machine. If the grilling machine is
1.1m long and the burgers require 2.5min to cook, how fast
must the conveyor belt travel? If the burgers are spaced 15cm
apart, what is the rate of burger production (in burgers/min)?
Two students are asked to find the height of a particular
building using a barometer. Instead of using the barometer
as an altitude-measuring device, they take it to the roof of the
building and drop it off, timing its fall. One student reports a
fall time of 2.0s, and the other, 2.3 s. What % difference does
the 0.3 s make for the estimates of the building’s height?
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93. Figure 2-52 shows the position vs. time graph for two
bicycles, A and B. (a) Is there any instant at which the
two bicycles have the same velocity? (b) Which bicycle
has the larger acceleration? (c) At which instant(s) are the
bicycles passing each other? Which bicycle is passing
the other? (d) Which bicycle has the highest instantaneous
velocity? (e) Which bicycle has the higher average
velocity?

FIGURE 2-52 Problem 93.

94. You are traveling at a constant speed vM, and there is a car
in front of you traveling with a speed vA. You notice that
> va>so you start slowing down with a constant acceler-
ation a when the distance between you and the other car
is x. What relationship between a and x determines whether
or not you run into the car in front of you?

*Numerical/Computer

*95. (1) The Table below gives the speed of a particular drag
racer as a function of time, (a) Calculate the average
acceleration (m/s2) during each time interval. (b) Using
numerical integration (see Section 2-9) estimate the total
distance traveled (m) as a function of time. [Hint, for v in
each interval sum the velocities at the beginning and end
of the interval and divide by 2; for example, in the second
interval use v = (6.0 + 13.2)/2 = 9.6] (c) Graph each of
these.

7(s)

Answers to Exercises

: -30 cm; 50 cm.

(@)

(b).

: (b).
(fM)+:(£,)-;(Q-;(d)+.

moo®w >

0 050 1.00 150 2.00 250 3.00 350 4.00 4.50 5.00
v(km/h) 00 60 132 223 322 430 535 626 706 784 851

*96. (I11) The acceleration of an object (in m/s2) is measured
at 1.00-s intervals starting at t = 0 to be as follows: 1.25,
1.58, 1.96, 2.40, 2.66, 2.70, 2.74, 2.72, 2.60, 2.30, 2.04, 1.76,
1.41,1.09, 0.86, 0.51, 0.28, 0.10. Use numerical integration
(see Section 2-9) to estimate (a) the velocity (assume that
v =0 at t =0) and (b) the displacement at t = 17.00s.

(1) A lifeguard standing at the side of a swimming pool
spots a child in distress, Fig. 2-53. The lifeguard runs with
average speed VR along the pool’s edge for a distance x,
then jumps into the pool and swims with average speed v$
on a straight path to the child, (a) Show that the total time t
it takes the lifeguard to get to the child is given by

X Vo2+ (d- )2
1 + Vs
(b) Assume VR =40m/s and vs=15m/s. Use a
graphing calculator or computer to plot t vs. x in part (a),
and from this plot determine the optimal distance x the life-
guard should run before jumping into the pool (that is, find
the value of x that minimizes the time t to get to the child).

*97.

d=100m

D=80m

FIGURE 2-53 Problem 97.

F: ().
G: 0b).
H: (*).
I: 49m/s2
J. (c).
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This snowboarder flying through the
air shows an example of motion in
two dimensions. In the absence of
air resistance, the path would be a
perfect parabola. The gold arrow
represents the downward acceleration
of gravity, . Galileo analyzed the
motion of objects in 2 dimensions
under the action of gravity near the
Earth’s surface (now called “projectile
motion”) into its horizontal and
vertical components.

We will discuss how to manipulate
vectors and how to add them. Besides
analyzing projectile motion, we will
also see how to work with relative
velocity.

Kinematics in Two or
Three Dimensions; \ectors

CHAPTER-OPENING QUESTION—Guess now!
[Dont worry about getting the right answer now—you will get another chance later in
the Chapter. See also p. 1 of Chapter 1 for more explanation.]
A small heavy box of emergency supplies is dropped from a moving helicopter at
point A as it flies along in a horizontal direction. Which path in the drawing below best
describes the path of the box (neglecting air resistance) as seen by a person
standing on the ground? CONTENTS

3-1 Vectors and Scalars

3-2 Addition of Vectors—
Graphical Methods

3-3 Subtraction of Vectors, and
Multiplication of aVector
by a Scalar

3-4 Adding Vectors by
Components

3-5 Unit Vectors
3-6 Vector Kinematics
3-7 Projectile Motion

3-8 Solving Problems Involving
Projectile Motion

n Chapter 2 we dealt with motion along a straight line. We now consider the 3-9 Relative Velocity
description of the motion of objects that move in paths in two (or three)
dimensions. To do so, we first need to discuss vectors and how they are added.
We will examine the description of motion in general, followed by an
interesting special case, the motion of projectiles near the Earth’s surface. We also
discuss how to determine the relative velocity of an object as measured in different
reference frames.
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Scale for velocity:
1cm =90 km/h

H

FIGURE 3-1 Car traveling on a
road, slowing down to round the
curve. The green arrows represent
the velocity vector at each position.

FIGURE 3-2 Combining vectors in
one dimension.

Resultant = 14 km (east)

L 1*r 1 1> b---x (km)
8 km 6 km East
@
Resultant = 2 km (east)
6 km
x (km)
8 km East

(b)

3—1 Vectors and Scalars

We mentioned in Chapter 2 that the term velocity refers not only to how fast an
object is moving but also to its direction. A quantity such as velocity, which has
direction as well as magnitude, is a vector quantity. Other quantities that are also
vectors are displacement, force, and momentum. However, many quantities have no
direction associated with them, such as mass, time, and temperature. They are spec-
ified completely by a number and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in
physics, and this is especially true when dealing with vectors. On a diagram, each
vector is represented by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents. The length of the arrow is drawn
proportional to the magnitude of the vector quantity. For example, in Fig. 3-1,
green arrows have been drawn representing the velocity of a car at various places
as it rounds a curve. The magnitude of the velocity at each point can be read off
Fig. 3-1 by measuring the length of the corresponding arrow and using the scale
shown (1cm = 90km/h).

When we write the symbol for a vector, we will always use boldface type, with
a tiny arrow over the symbol. Thus for velocity we write v. If we are concerned
only with the magnitude of the vector, we will write simply v, in italics, as we do
for other symbols.

3-2 Addition of Vectors— Graphical
Methods

Because vectors are quantities that have direction as well as magnitude, they must
be added in a special way. In this Chapter, we will deal mainly with displacement
vectors, for which we now use the symbol D, and velocity vectors, v. But the results
will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
used for adding vectors if they are in the same direction. For example, if a
person walks 8km east one day, and 6 km east the next day, the person will
be 8km + 6km = 14km east of the point of origin. We say that the net or
resultant displacement is 14 km to the east (Fig. 3-2a). If, on the other hand,
the person walks 8km east on the first day, and 6 km west (in the reverse
direction) on the second day, then the person will end up 2 km from the origin
(Fig. 3-2b), so the resultant displacement is 2km to the east. In this case, the
resultant displacement is obtained by subtraction: 8km —6km = 2km.

But simple arithmetic cannot be used if the two vectors are not along the same
line. For example, suppose a person walks 10.0 km east and then walks 5.0 km
north. These displacements can be represented on a graph in which the positive
y axis points north and the positive x axis points east, Fig. 3-3. On this graph, we
draw an arrow, labeled Dx, to represent the 10.0-km displacement to the east.
Then we draw a second arrow, D2, to represent the 5.0-km displacement to the
north. Both vectors are drawn to scale, as in Fig. 3-3.

y (km)
North
FIGURE 3-3 A person walks 10.0 km east and then 5.0 km north.
These two displacements are represented by the vectors £5! and D2,
which are shown as arrows. The resultant displacement vector, DR,
which is the vector sum of Dxand D2, is also shown. Measurement on
the graph with _ruler and protractor shows that DR has a magnitude of West X (km)
11.2 km and points at an angle 6 = 27° north of east. East
South
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After taking this walk, the person is now 10.0 km east and 5.0 km north of the
point of origin. The resultant displacement is represented by the arrow labeled DR
in Fig. 3-3. Using a ruler and a protractor, you can measure on this diagram that
the person is 11.2 km from the origin at an angle 6 = 27° north of east. In other
words, the resultant displacement vector has a magnitude of 11.2 km and makes an
angle 6 = 27° with the positive x axis. The magnitude (length) of DRcan also be
obtained using the theorem of Pythagoras in this case, since D1, D2, and DRform a
right triangle with DR as the hypotenuse. Thus

Dr = \/ID\ + D\ = ~(10-Okm)2 + (5.0km)2

yj125km2 = 11.2 km.

You can use the Pythagorean theorem, of course, only when the vectors are
perpendicular to each other.

The resultant displacement vector, DR, is the sum of the vectors Di and D2.
That is,

pr = Dx+ D2.

This is a vector equation. An important feature of adding two vectors that are not
along the same line is that the magnitude of the resultant vector is not equal to the
sum of the magnitudes of the two separate vectors, but is smaller than their sum.
That is,

dr- A + A >

where the equals sign applies only if the two vectors point in the same direction.
In our example (Fig. 3-3), Dr = 11.2km, whereas D1+ D2 equals 15km,
which is the total distance traveled. Note also that we cannot set DR equal
to 11.2km, because we have a vector equation and 11.2km is only a part of
the resultant vector, its magnitude. We could write something like this, though:
Dr = Dj + D2= (11.2km, 27° N of E).

EXERCISE A Under what conditions can the magnitude of the resultant vector above be
Dr = B + 227

Figure 3-3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—call it £5—to scale.

2. Next draw the second vector, D2, to scale, placing its tail at the tip of the first
vector and being sure its direction is correct.

3. The arrow drawn from the tail of the first vector to the tip of the second
vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can
be translated parallel to themselves (maintaining the same length and angle) to
accomplish these manipulations. The length of the resultant can be measured with
a ruler and compared to the scale. Angles can be measured with a protractor. This
method is known as the tail-to-tip method of adding vectors.

The resultant is not affected by the order in which the vectors are added. For
example, a displacement of 5.0km north, to which is added a displacement of
10.0 km east, yields a resultant of 11.2km and angle 6 = 27° (see Fig. 3-4), the
same as when they were added in reverse order (Fig. 3-3). That is, now using V to
represent any type of vector,

VX + V2 = V2 + Vi, [commutative property] (3-1a)

which is known as the commutative property of vector addition.

FIGURE 3-4

If the vectors are

added in reverse order, the resultant
is the same. (Compare to Fig. 3-3.)

y (km)
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FIGURE 3-5 The resultant of three vectors:

VR=Vi+v2+v3.

The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector to the tip of the
last one added. An example is shown in Fig. 3-5; the three vectors could repre-
sent displacements (northeast, south, west) or perhaps three forces. Check for
yourself that you get the same resultant no matter in which order you add the
three vectors; that is,

Vi + V2 + V3 = Vi+ (V2+ V3, [associative property] (3-1b)
which is known as the associative property of vector addition.

A second way to add two vectors is the parallelogram method. It is fully equiv-
alent to the tail-to-tip method. In this method, the two vectors are drawn starting
from a common origin, and a parallelogram is constructed using these two vectors
as adjacent sides as shown in Fig. 3-6b. The resultant is the diagonal drawn from
the common origin. In Fig. 3-6a, the tail-to-tip method is shown, and it is clear that
both methods yield the same result.

A =

FIGURE 3-6 Vector addition by
two different methods, (a) and (b).
Part (c) is incorrect.

A CAUTION

Be sure to use the correct diagonal
on parallelogram to get the resultant

FIGURE 3-7 The negative of a
vector is a vector having the same
length but opposite direction.

[]e

y g g ? (c) Wrong

It is a common error to draw the sum vector as the diagonal running between
the tips of the two vectors, as in Fig. 3-6¢. This is incorrect: it does not represent
the sum of the two vectors. (In fact, it represents their difference, V2 - Vj, as we
will see in the next Section.)

CONCEPTUAL EXAMPLE 37i~l Range of vector lengths. Suppose two vectors
each have length 3.0 units. What is the range of possible lengths for the vector repre-
senting the sum of the two?

RESPONSE The sum can take on any value from 6.0 (= 3.0 + 3.0) where the
vectors point in the same direction, to 0 (= 3.0 - 3.0) when the vectors are
antiparallel.

EXERCISE B If the two vectors of Example 3-1 are perpendicular to each other, what is
| the resultant vector length?

3-3 Subtraction of Vectors, and
Multiplication of a VVector by a Scalar

Given a vector V, we define the negative of this vector (—v) to be a vector with
the same magnitude as V but opposite in direction, Fig. 3-7. Note, however, that
no vector is ever negative in the sense of its magnitude: the magnitude of every
vector is positive. Rather, a minus sign tells us about its direction.
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-V,

y - =y + — = v, ,-K "7

We can now define the subtraction of one vector from another: the difference
between two vectors V2 - Vi is defined as

v2- Vi = V2+ (-V)).

That is, the difference between two vectors is equal to the sum of the first plus the
negative of the second. Thus our rules for addition of vectors can be applied as
shown in Fig. 3-8 using the tail-to-tip method.

A vector V can be multiplied by a scalar c. We define their product so that cV
has the same direction as V and has magnitude cV. That is, multiplication of a vector
by a positive scalar ¢ changes the magnitude of the vector by a factor ¢ but doesnt
alter the direction. If c is a negative scalar, the magnitude of the product cY is
still \c\V (where \&\ means the magnitude of c), but the direction is precisely opposite
to that of V. See Fig. 3-9.

EXERCISEC What does the “incorrect” vector in Fig. 3-6¢c represent? (a) V2- Vi,
(b) Vi —V2, (c) something else (specify).

3—4 Adding Vectors by Components

Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a more
powerful and precise method for adding vectors. But do not forget graphical
methods—they are useful for visualizing, for checking your math, and thus for
getting the correct result.

Consider first a vector V that lies in a particular plane. It can be expressed as the
sum of two other vectors, called the components of the original vector. The compo-
nents are usually chosen to be along two perpendicular directions, such as
the x and y axes. The process of finding the components is known as
resolving the vector into its components. An example is shown in Fig. 3-10;
the vector V could be a displacement vector that points at an angle 6 = 30°
north of east, where we have chosen the positive x axis to be to the east
and the positive y axis north. This vector V is resolved into its x and y compo-
nents by drawing dashed lines out from the tip (A) of the vector (lines AB and AC)
making them perpendicular to the x and y axes. Then the lines OB and OC represent
the x and y components of V, respectively, as shown in Fig. 3-10b. These vector
components are written V* and \ y.We generally show vector components as arrows,
like vectors, but dashed. The scalar components, Vx and Vi, are the magnitudes of the
vector components, with units, accompanied by a positive or negative sign depending
on whether they point along the positive or negative x or y axis. As can be seen
in Fig. 3-10, V* + \ 'y =V by the parallelogram method of adding vectors.

FIGURE 3-8 Subtracting two

vectors: V? —Vi.

FIGURE 3-9 Multiplying a vector V
by a scalar c gives a vector whose

magnitude is ¢ times greater and in
the same direction as V (or opposite

direction if c is negative).

/

=-2.0V

FIGURE 3-10 Resolving avector V into its components
along an arbitrarily chosen set of x and y axes. The

components, once found, themselves represent the vector.
That is, the components contain as much information as the

vector itself.

@ (b)
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tan0=v
v2=y2

<N

FIGURE 3-11 Finding the
components of a vector using
trigonometric functions.

Space is made up of three dimensions, and sometimes it is necessary to resolve a
vector into components along three mutually perpendicular directions. In rectangular
coordinates the components are V*, \ 'y, and \ z. Resolution of a vector in three
dimensions is merely an extension of the above technique.

The use of trigonometric functions for finding the components of a vector is
illustrated in Fig. 3-11, where a vector and its two components are thought of as
making up a right triangle. (See also Appendix A for other details on trigonometric
functions and identities.) We then see that the sine, cosine, and tangent are as given in
Fig. 3-11. If we multiply the definition of sin0 = W/V by V on both sides, we get

W = Vsind. (3-2a)
Similarly, from the definition of cos 0, we obtain
VWx = VcosO. (3-2b)

Note that 0 is chosen (by convention) to be the angle that the vector makes with
the positive x axis, measured positive counterclockwise.

The components of a given vector will be different for different choices of
coordinate axes. It is therefore crucial to specify the choice of coordinate system
when giving the components.

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, Vx and Vy.
2. We can give its magnitude V and the angle 0 it makes with the positive x axis.

We can shift from one description to the other using Egs. 3-2, and, for the reverse,
by using the theorem of Pythagoras* and the definition of tangent:

V = Vv} + W (3-3a)

Wnr = - (3-3b)

as can be seen in Fig. 3-11.

We can now discuss how to add vectors using components. The first step is to
resolve each vector into its components. Next we can see, using Fig. 3-12, that the
addition of any two vectors Yxand V2to give a resultant, V = % + V2, implies that

Vr = VIr + V7
(3-4)
vy = iy V2y-
That is, the sum of the x components equals the x component of the resultant, and
the sum of the y components equals the y component of the resultant, as can be
verified by a careful examination of Fig. 3-12. Note that we do not add x components
to y components.

tin three dimensions, the theorem of Pythagoras becomes V = \/vE + W + V?, where Vz is the
component along the third, or z, axis.
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If the magnitude and direction of the resultant vector are desired, they can be
obtained using Egs. 3-3.

The components of a given vector depend on the choice of coordinate axes.
You can often reduce the work involved in adding vectors by a good choice of
axes—for example, by choosing one of the axes to be in the same direction as one
of the vectors. Then that vector will have only one nonzero component.

EXAMPLE 3-2  Mail carrier's displacement. A rural mail carrier leaves the
post office and drives 22.0 km in a northerly direction. She then drives in a direc-
tion 60.0° south of east for 47.0 km (Fig. 3-13a). What is her displacement from
the post office?

APPROACH We choose the positive x axis to be east and the positive y axis to
be north, since those are the compass directions used on most maps. The origin
of the xy coordinate system is at the post office. We resolve each vector into its
x and y components. We add the x components together, and then the y components
together, giving us the x and y components of the resultant.

SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 3-13b. Since 6 1has magnitude 22.0 km and points north, it has only a
y component:

= 0, Dly = 22.0km.
D2has both x and y components:
D2 = +(47.0 km)(cos60°) = +(47.0 km) (0.500) +23.5 km
D% = -(47.0 km)(sin60°) = -(47.0 km) (0.866) -40.7 km.

Notice that D2y is negative because this vector component points along the nega-
tive y axis. The resultant vector, D, has components:

DIx + Dy Okm + 235km = +23.5km
Dy = Diy Dy 22.0km + (-40.7 km) -18.7 km.
This specifies the resultant vector completely:
Dx = 23.5km, Dy = -18.7 km.

We can also specify the resultant vector by giving its magnitude and angle using
Egs. 3-3:

D = vagl OR=yj@35km)2+ (-18.7km)2 = 30.0km

A 18.7 km
tan = — = = -0. .
an 6 Dy 235 km 0.796
A calculator with aninv tan, anarc tan, or atan-1 key gives 6 = tan-1(-0.796) =
-38.5°. The negative sign means 0 = 38.5° below the x axis, Fig. 3-13c. So, the
resultant displacement is 30.0 km directed at 38.5° in a southeasterly direction.

NOTE Always be attentive about the quadrant in which the resultant vector
lies. An electronic calculator does not fully give this information, but a good
diagram does.

The signs of trigonometric functions depend on which “quadrant” the angle
falls in: for example, the tangent is positive in the first and third quadrants (from 0°
to 90°, and 180° to 270°), but negative in the second and fourth quadrants; see
Appendix A. The best way to keep track of angles, and to check any vector result,
is always to draw a vector diagram. A vector diagram gives you something tangible
to look at when analyzing a problem, and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescription.
Rather it is a summary of things to do to get you thinking and involved in the
problem at hand.

WNorth

post O \ East
office

@

d 2x

0 ngoe

Dy
(b)

fir*
©

FIGURE 3-13 Example 3-2.

(a) The two displacement vectors,
Diand D2. (b) D2is resolved into
its components, (c) Dx and D2 are
added graphically to obtain the
resultant D. The component method
of adding the vectors is explained in
the Example.

~“PROBLEM SOLVING

Identify the correct quadrant by
drawing a careful diagram
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Adding Vectors
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Here is a brief summary of how to add two or more

vectors using components:

1. Draw a diagram, adding the vectors graphically by
either the parallelogram or tail-to-tip method.

2. Choose x and y axes. Choose them in a way, if possible,
that will make your work easier. (For example, choose
one axis along the direction of one of the vectors so
that vector will have only one component.)

3. Resolve each vector into its x and y components,
showing each component along its appropriate (x ory)
axis as a (dashed) arrow.

4. Calculate each component (when not given) using
sines and cosines. If  is the angle that vector
makes with the positive x axis, then:

Vix = Vlcosdl, Vly = VAsin/.

Pay careful attention to signs: any component that
points along the negative x or y axis gets a minus
sign.

. Add the x components together to get the x compo-

nent of the resultant. Ditto fory:
VWX = VIx + V2 + any others
W = Viy + V2 + any others.
This is the answer: the components of the resultant

vector. Check signs to see if they fit the quadrant
shown in your diagram (point 1 above).

. If you want to know the magnitude and direction of

the resultant vector, use Egs. 3-3:
J—
V = Vvf+V}, tanfl = \7

The vector diagram you already drew helps to obtain
the correct position (quadrant) of the angle 0.

EXAMPLE 3-3 Three short trips. An airplane trip involves three legs, with
two stopovers, as shown in Fig. 3-14a. The first leg is due east for 620 km; the
second leg is southeast (45°) for 440 km; and the third leg is at 53° south of west,
for 550 km, as shown. What is the plane’s total displacement?

APPROACH We follow the steps in the Problem Solving Strategy above.

SOLUTION

1. Draw a diagram such as Fig. 3-14a, where

,D2, and D3represent the three

legs of the trip, and DRIis the plane’s total displacement.
2. Choose axes: Axes are also shown in Fig. 3-14a: x is east, y north.
3. Resolve components: It is imperative to draw a good diagram. The components
@ are drawn in Fig. 3-14b. Instead of drawing all the vectors starting from a
common origin, as we did in Fig. 3-13b, here we draw them “tail-to-tip” style,
which is just as valid and may make it easier to see.
4. Calculate the components:
Di:AY — +A cos0° Di = 620km

Ay = +DXsin0° Okm
D2:DX = + A cos45c + (440 km) (0.707) +311 km
Ay = -D2sinds®  -(440 km)(0.707)  -311 km
D3:D3k = -D 3cos53c -(550 km) (0.602) -331 km
®) Ay = -D3sin5%  -(550 km)(0.799)  -439 km.
We have given a minus sign to each component that in Fig. 3-14b points in the
FIGURE 3-14  Example 3-3. —x or —y direction. The components are shown in the Table in the margin.
5. Add the components: We add the x components together, and we add the
Vector Components y components together to obtain the x and y components of the resultant:
x (km) y (km) Dx = DX + DX + DX = 620km + 311km —331km = 600 km
Di 620 0 Dv = Dly +AQ9 + Ay = Okm - 311km - 439km = -750 km.
D2 811 -311 The x and y components are 600 km and -750 km, and point respectively to
a3 -331 -439 the east and south. This is one way to give the answer.
Dr 600 -750 6. Magnitude and direction: We can also give the answer as
Dr \jD | + Dy = \/(600)2 + (-750)2km = 960km
ang + T780km 125, soe = -51°.

Thus, the total displacement has magnitude 960 km and points 51° below the
58 CHAPTER 3 X axis (south of east), as was shown in our original sketch, Fig. 3-14a.



3—5 Unit Vectors

Vectors can be conveniently written in terms of unit vectors. A unit vector is defined
to have a magnitude exactly equal to one (1). It is useful to define unit vectors that
point along coordinate axes, and in an x, y, z rectangular coordinate system these
unit vectors are called i, j, and k. They point, respectively, along the positive X, v,
and z axes as shown in Fig. 3-15. Like other vectors, i, j, and k do not have to be
placed at the origin, but can be placed elsewhere as long as the direction and unit
length remain unchanged. It is common to write unit vectors with a “hat”:1i, j, k
(and we will do so in this book) as a reminder that each is a unit vector.

Because of the definition of multiplication of a vector by a scalar (Section 3-3), the

components of a vector V can be written \ x = i, =Wj, and \z = Vzk.
Hence any vector V can be written in terms of its components as
V = W\ + Wi + VZL (3-5)

Unit vectors are helpful when adding vectors analytically by components. For
example, Eq. 3-4 can be seen to be true by using unit vector notation for each
vector (which we write for the two-dimensional case, with the extension to three
dimensions being straightforward):

v = (vx)i + (vy)i = Vi + V2
= {v] +viy)) + (V2 +V3))
Vi + VR\ + a\ly + W)

Comparing the first line to the third line, we get Eq. 3-4.

EXAMPLE 3-4 Using unit vectors. Write the vectors of Example 3-2 in unit
vector notation, and perform the addition.

APPROACH We use the components we found in Example 3-2,
DIx =0, Dly=220km, and DIx = 235km, D2 = -40.7 km,
and we now write them in the form of Eq. 3-5.
SOLUTION We have
Dx = G + 22.0kmj

£2 = 235kmi - 40.7 kmj.
Then

D =&+ D2= (0+ 235 kmi + (22.0 - 40.7) kmj
235kmi - 187 kmj.

The components of the resultant displacement, D, are Dx = 23.5km and Dy =
-18.7 km. The magnitude of D is D = V(23.5km)2+ (18.7km)2 = 30.0 km,
just as in Example 3-2.

3—6 Vector Kinematics

We can now extend our definitions of velocity and acceleration in a formal way to
two- and three-dimensional motion. Suppose a particle follows a path in the xy plane
as shown in Fig. 3-16. At time tx, the particle is at point Px, and at time t2, it is at
point P2. The vector rl is the position vector of the particle at time t1 (it represents
the displacement of the particle from the origin of the coordinate system). And r2
is the position vector at time t2.

In one dimension, we defined displacement as the change in position of the
particle. In the more general case of two or three dimensions, the displacement
vector is defined as the vector representing change in position. We call it Arf
where

Ar = r2 —7i.
This represents the displacement during the time interval At = t2- tx.

fWe used D for the displacement vector earlier in the Chapter for illustrating vector addition. The new
notation here, A?, emphasizes that it is the difference between two position vectors.

z

FIGURE 3-15 Unit vectors i, j, and
k along the x, y, and z axes.

FIGURE 3-16 Path of a particle in
the xy plane. At time t\ the particle is

at point Pi given by the position

vector ?!; at t2 the particle is at point

P2 given by the position vector r2.

The displacement vector for the time

interval 2 ~ his A? = r2 —?i.

y
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FIGURE 3-17 (a) As we take At
and Ar smaller and smaller [compare
to Fig. 3-16] we see that the direction
of Ar and of the instantaneous
velocity (Ar/At, where At — 0) is
(b) tangent to the curve atPj.

FIGURE 3-18 (a) Velocity vectors \i
and v2at instants fj and t2 for a particle
at points Pi and P2, as in Fig. 3-16.

(b) The direction of the average
acceleration is in the direction of

Av=v2—\1

y

(b)

In unit vector notation, we can write
A = xxi +yj + zik, (3-6a)
where xI,yl, and 2\ are the coordinates of point . Similarly,

r2 = x2i +y2 + z2k.
Hence
Ar = (x2- xji + (y2- yjj + (z2- Zik. (3-6b)

If the motion is along the x axis only, then y2—yx =0, z2—2\ =0, and the
magnitude of the displacement is Ar = x2 —xx, which is consistent with our
earlier one-dimensional equation (Section 2-1). Even in one dimension, displace-
ment is a vector, as are velocity and acceleration.

The average velocity vector over the time interval At = t2 —tx is defined as

Ar
average velocity = — e 3-7)

Now let us consider shorter and shorter time intervals—that is, we let At approach
zero so that the distance between points P2and  also approaches zero, Fig. 3-17.
We define the instantaneous velocity vector as the limit of the average velocity as
At approaches zero:

A S @)

The direction of v at any moment is along the line tangent to the path at that
moment (Fig. 3-17).

Note that the magnitude of the average velocity in Fig. 3-16 is not equal to the
average speed, which is the actual distance traveled along the path, A£, divided by
At. In some special cases, the average speed and average velocity are equal (such
as motion along a straight line in one direction), but in general they are not.
However, in the limit At — 0, Ar always approaches A£, so the instantaneous
speed always equals the magnitude of the instantaneous velocity at any time.

The instantaneous velocity (Eq. 3-8) is equal to the derivative of the position
vector with respect to time. Equation 3-8 can be written in terms of components
starting with Eq. 3-6a as:

dr dx- dy~ dz- ? -
v:a:al+gytb+ak:v§f+v§g+l>z7k, \(/3-9)
where vx = dx/dt, vy = dy/dt, vz = dz/dt are the x, y, and z components of the
velocity. Note that di/dt = dj/dt = di/dt = 0 since these unit vectors are
constant in both magnitude and direction.

Acceleration in two or three dimensions is treated in a similar way. The

average acceleration vector, over a time interval At = t2- tx is defined as

average acceleration = A TR > (3-10)
where Av is the change in the instantaneous velocity vector during that time
interval: Av = v2- vx. Note that v2in many cases, such as in Fig. 3-18a, may not
be in the same direction as \ 1. Hence the average acceleration vector may be in a
different direction from either \ 1or v2 (Fig. 3-18b). Furthermore, v2and \ 1may have
the same magnitude but different directions, and the difference of two such vectors
will not be zero. Hence acceleration can result from either a change in the magnitude
of the velocity, or from a change in direction of the velocity, or from a change in both.

The instantaneous acceleration vector is defined as the limit of the average
acceleration vector as the time interval At is allowed to approach zero:

_ . Av _ dy
8= MR T @10y

and is thus the derivative of v with respect to t.
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We can write a using components:

d\ dvx- dvy* dvz*
= — = —1+ | +—
dt dt dt J dt
= axi + ayj + azk, (3-12)

where 0* = dvx/dt, etc. Because vx = dx/dt, then ax =dvjdt = dX/dt2 as
we saw in Section 2-4. Thus we can also write the acceleration as

dZ(.- d T dZ -~
a = i Hrt W (3-120)

The instantaneous acceleration will be nonzero not only when the magnitude of
the velocity changes but also if its direction changes. For example, a person riding
in a car traveling at constant speed around a curve, or a child riding on a merry-go-
round, will both experience an acceleration because of a change in the direction of
the velocity, even though the speed may be constant. (More on this in Chapter 5.)
In general, we will use the terms “velocity” and “acceleration” to mean the instan-
taneous values. If we want to discuss average values, we will use the word “average.”

] Position given as a function of time. The position of a
particle as a function of time is given by

r = [(5.0m/s)* + (6.0m/s2£2]i + [(7.0m) - (3.0m/s3"3]j,
where ris in meters and t is in seconds, {a) What is the particle’s displacement

between tx=20s and t2=3.0s? (b) Determine the particle’s instantaneous
velocity and acceleration as a function of time, (c) Evaluate vand aat t = 3.0s.

APPROACH For (a), we find Ar = r2- ?i, inserting tx =2.0s for finding * ,
and t2=3.0s for ?2. For (b), we take derivatives (Egs. 3-9 and 3-11), and for
(c) we substitute t = 3.0s into our results in (b).

SOLUTION (a) At tx=20s,
2 [(5.0m/s)(2.0s) + (6.0m/s2)(2.0s)2]i + [(7.0m) - (3.0m/s3(2.0s)3]j
(34m)i - (A7m)j.
Similarly, at 2= 3.0s5,
f2 = (15m + 54m)i + (7.0m - 81m)j = (69m)i - (74m)j.

Thus
Ar = 1r2-T = 69m - 34m)i + (-74m + 17m)j = (3Bm)i - (57m)j.

Thatis, Ax = 35m, and Ay = -57 m.
(b) To find velocity, we take the derivative of the given ? with respect to time,
noting (Appendix B-2) that d(t2/dt = 21 and d(f)/dt = 312

v="Ff = [60m/s + (I2Zm/s2f]i + [0 - (9.0m/s3?2j.
The acceleration is (keeping only two significant figures):
a = — = (I2m/s2i - (18m/s3fj.

Thus ax = 12m/s2 is constant; but ay = -(18 m/s3? depends linearly on
time, increasing in magnitude with time in the negative y direction.
(c) We substitute t = 3.0s into the equations we just derived for v and a:

v = 5.0m/s +36m/s)i - 8L m/s)j = (4Llm/s)i - (81 m/s)j
a = (I2m/s2i - (54 m/s2)j.
Their magnitudes at t = 3.0s are v = (41 m/s)2+ (81 m/s)2= 91 m/s, and
a=V(2m/s22+ (54m/s22 = 55m/s2

SECTION 3-6 Vector Kinematics
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FIGURE 3-19 This strobe
photograph of a ball making a series
of bounces shows the characteristic
“parabolic” path of projectile motion.
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Constant Acceleration

In Chapter 2 we studied the important case of one-dimensional motion for
which the acceleration is constant. In two or three dimensions, if the acceleration
vector, a, is constant in magnitude and direction, then ax = constant, ay = constant,
az = constant. The average acceleration in this case is equal to the instantaneous
acceleration at any moment. The equations we derived in Chapter 2 for one
dimension, Eqgs. 2-12a, b, and c, apply separately to each perpendicular component
of two- or three-dimensional motion. In two dimensions we let v0 = + vyoi
be the initial velocity, and we apply Egs. 3-6a, 3-9, and 3-12b for the position
vector, r, velocity, v, and acceleration, a. We can then write Egs. 2-12a, b, and c, for
two dimensions as shown in Table 3-1.

TABLE 3-1 Kinematic Equations for Constant Acceleration in 2 Dimensions

x Component (horizontal) y Component (vertical)
vx = VX0 + axt (Eq. 2-12a) g= of

x = *0 + vx01+ \axt2 (Eq. 2-12b) y = yo + vyOt + \ayt2
v\ =V\0 + 2ax(X ~ *0) (Eq. 2-12¢) vg = vgo + 2ay(y - YY)

The first two of the equations in Table 3-1 can be written more formally in
vector notation.

Y V0 + af fa = constant] (3-13a)
r fo + %t + (2 [a = constant] (3-13b)

Here, r is the position vector at any time, and rQis the position vector at t = 0.
These equations are the vector equivalent of Egs. 2-12a and b. In practical situa-
tions, we usually use the component form given in Table 3-1.

3—f Projectile Motion

In Chapter 2, we studied one-dimensional motion of an object in terms of displace-
ment, velocity, and acceleration, including purely vertical motion of a falling object
undergoing acceleration due to gravity. Now we examine the more general transla-
tional motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These are all examples of projectile motion (see Fig. 3-19),
which we can describe as taking place in two dimensions.

Although air resistance is often important, in many cases its effect can be
ignored, and we will ignore it in the following analysis. We will not be concerned now
with the process by which the object is thrown or projected. We consider only its
motion after it has been projected, and before it lands or is caught—that is, we
analyze our projected object only when it is moving freely through the air under the
action of gravity alone. Then the acceleration of the object is that due to gravity,
which acts downward with magnitude g = 9.80 m/s2, and we assume it is constant.1

Galileo was the first to describe projectile motion accurately. He showed that
it could be understood by analyzing the horizontal and vertical components of the
motion separately. For convenience, we assume that the motion begins at time
t = 0 at the origin of an xy coordinate system (so x0= y0 = 0).

Let us look at a (tiny) ball rolling off the end of a horizontal table with an
initial velocity in the horizontal (x) direction, vxQ. See Fig. 3-20, where an object
falling vertically is also shown for comparison. The velocity vector v at each instant
points in the direction of the ball’s motion at that instant and is always tangent to
the path. Following Galileo’s ideas, we treat the horizontal and vertical compo-
nents of the velocity, vx and vy, separately, and we can apply the kinematic
equations (Egs. 2-12a through 2-12c) to the x and y components of the motion.

First we examine the vertical (y) component of the motion. At the instant the
ball leaves the table’stop (t = 0), it has only an x component of velocity. Once the

trThis restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).



FIGURE 3-20 Projectile motion of a small ball projected
horizontally. The dashed black line represents the path of the
object. The velocity vector v at each point is in the direction of
motion and thus is tangent to the path. The velocity vectors are
green arrows, and velocity components are dashed. (A vertically
falling object starting at the same point is shown at the left for
comparison; vy is the same for the falling object and the projectile.)

ball leaves the table (at t = 0), it experiences a vertically downward acceleration g,
the acceleration due to gravity. Thus vy is initially zero {wQ = 0) but increases
continually in the downward direction (until the ball hits the ground). Let us take y
to be positive upward. Then ay = —g, and from Eq. 2-12a we can write vy = —gt
since we set vyQ = 0. The vertical displacement is given by y = —\gt2
In the horizontal direction, on the other hand, the acceleration is zero (we are
ignoring air resistance). With ax = 0, the horizontal component of velocity, vx , remains
constant, equal to its initial value, vx0, and thus has the same magnitude at each
point on the path. The horizontal displacement is then given by x = vxOt. The two
vector components, \x and \y, can be added vectorially at any instant to obtain the
velocity v at that time (that is, for each point on the path), as shown in Fig. 3-20.
One result of this analysis, which Galileo himself predicted, is that an object
projected horizontally will reach the ground in the same time as an object dropped
vertically. This is because the vertical motions are the same in both cases, as
shown in Fig. 3-20. Figure 3-21 is a multiple-exposure photograph of an experi-
ment that confirms this.
EXERCISE D Return to the Chapter-Opening Question, page 51, and answer it again now.
Try to explain why you may have answered differently the first time.

If an object is projected at an upward angle, as in Fig. 3-22, the analysis is
similar, except that now there is an initial vertical component of velocity, vy{).
Because of the downward acceleration of gravity, the upward component of
velocity vy gradually decreases with time until the object reaches the highest point
on its path, at which point vy = 0. Subsequently the object moves downward
(Fig. 3-22) and vy increases in the downward direction, as shown (that is,
becoming more negative). As before, vx remains constant.

FIGURE 3-21 Multiple-exposure
photograph showing positions of
two balls at equal time intervals.
One ball was dropped from rest at
the same time the other was
projected horizontally outward. The
vertical position of each ball is seen
to be the same at each instant.

FIGURE 3-22 Path of a projectile fired with
initial velocity v0 at angle 0Cto the horizontal. Path
is shown dashed in black, the velocity vectors are
green arrows, and velocity components are
dashed. The acceleration a = d\/dt is downward.
Thatis, @ = g = -gj where j is the unit vector in
the positive y direction.
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PROBLEM SOLVING
Choice oftime interval

3—8 Solving Problems Involving
Projectile Motion

We now work through several Examples of projectile motion quantitatively.

We can simplify Egs. 2-12 (Table 3-1) for the case of projectile motion
because we can set ax = 0. See Table 3-2, which assumes y is positive upward,
so ay = —g = -9.80 m/s2 Note that if O is chosen relative to the +x axis, as in
Fig. 3-22, then

v) = vq 0os0o,

Vyo = \bsin 0Q

In doing problems involving projectile motion, we must consider a time interval
for which our chosen object is in the air, influenced only by gravity. We do not
consider the throwing (or projecting) process, nor the time after the object lands
or is caught, because then other influences act on the object, and we can no

Bz

ng.°
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longer set a = g.

TABLE 3-2 Kinematic Equations for Projectile Motion
(y positive upward; ax =0, ay = -g = -9.80 m/s2)

Horizontal Motion
(ax = 0,vx = constant)

W <«
X = X0+ vx0t

Vertical Motion®
[ay = —g = constant)

(Eq.2-12a) Q. =Lo—g
(Eq.2-12b) - teo %@
(Eq. 2-12c) Vy = Vyo - 2g(y - y0)

*Ify is taken positive downward, the minus (—) signs in front of g become plus (+) signs.

Projectile Motion

Our approach to solving problems in Section 2-6 5.

also applies here. Solving problems involving projec-
tile motion can require creativity, and cannot be done
just by following some rules. Certainly you must
avoid just plugging numbers into equations that seem
to “work.”

1

As always, read carefully; choose the object (or
objects) you are going to analyze.

. Draw a careful diagram showing what is happening

to the object.

. Choose an origin and an xy coordinate system.
. Decide on the time interval, which for projectile

motion can only include motion under the effect of
gravity alone, not throwing or landing. The time
interval must be the same for the x and y analyses.

The x and y motions are connected by the common
time.

Examine the horizontal (x) and vertical (y) motions
separately. If you are given the initial velocity, you
may want to resolve it into its x and y components.

. List the known and unknown quantities, choosing

ax =0 and ay = —g or +g, where g = 9.80m/s2,
and using the + or - sign, depending on whether
you choose y positive down or up. Remember that vx
never changes throughout the trajectory, and that
vy = 0 at the highest point of any trajectory that
returns downward. The velocity just before landing is
generally not zero.

. Think for a minute before jumping into the equations.

A little planning goes a long way. Apply the relevant
equations (Table 3-2), combining equations if neces-
sary. You may need to combine components of a vector
to get magnitude and direction (Egs. 3-3).

Kinematics in Two or Three Dimensions; Vectors



EXAMPLE 3-6 Driving off a cliff. A movie stunt driver on a motorcycle
speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave
the cliff top to land on level ground below, 90.0 m from the base of the cliff where
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy above.
SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the
motorcycle and driver, taken as a single unit. The diagram is shown in Fig. 3-23.

3. Choose a coordinate system. We choose the y direction to be positive upward, =g
with the top of the cliff as y0= 0. The x direction is horizontal with x0 =0
at the point where the motorcycle leaves the cliff.

50.0 m
4. Choose a time interval. We choose our time interval to begin (t = 0) just as
the motorcycle leaves the cliff top at position x0= 0, 0= 0; our time 8 - 500
interval ends just before the motorcycle hits the ground below. . y=-0
90.0m H

5. Examine x and y motions. In the horizontal (x) direction, the acceleration
ax =0, so the velocity is constant. The value of x when the motorcycle
reaches the ground is x = +90.0m. In the vertical direction, the accelera-
tion is the acceleration due to gravity, ay = —g = -9.80 m/s2 The value of
y when the motorcycle reaches the ground is y = -50.0 m. The initial
velocity is horizontal and is our unknown, vx0; the initial vertical velocity is

FIGURE 3-23 Example 3-6.

zero, vy0 = 0.

6. List knowns and unknowns. See the Table in the margin. Note that in addition Known Unknown
to not knowing the initial horizontal velocity vx0 (which stays constant until o =t mO Vo
landing), we also do not know the time t when the motorcycle reaches the X = 90.0m t
ground. y = -50.0m

7. Apply relevant equations. The motorcycle maintains constant vx as long as it is x=°
in the air. The time it stays in the air is determined by the y motion— when it~ @ = -¢ = -9.80m/s2

hits the ground. So we first find the time using the y motion, and then use this
time value in the x equations. To find out how long it takes the motorcycle to
reach the ground below, we use Eq. 2-12b (Table 3-2) for the vertical (y)
direction with y0o=0 and vy0 O:

WQt + \ayt2
or
y = -is*2-
We solve for t and set y = -50.0 m:
2(-50.0 m)
Z = 319s
-9.80 m/s2

To calculate the initial velocity, vx0, we again use Eq. 2-12b, but this time for
the horizontal (x) direction, with ax = 0 and x0= 0

X = XQ+ vx01 + \axt2
= 0 + vOt+ o0

X = vxO0t.
Then
X 90.0m _
v = A 3195 - 28.2mls,

which is about 100 km/h (roughly 60mi/h).

NOTE In the time interval of the projectile motion, the only acceleration is g in
the negative y direction. The acceleration in the x direction is zero.
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FIGURE 3-24 Example 3-7.
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Sports

EXAMPLE 3-7 A kicked football. A football is kicked at an angle 00= 37.0°
with a velocity of 20.0m/s, as shown in Fig. 3-24. Calculate (a) the maximum
height, (b) the time of travel before the football hits the ground, (c) how far away
it hits the ground, (d) the velocity vector at the maximum height, and (e) the
acceleration vector at maximum height. Assume the ball leaves the foot at
ground level, and ignore air resistance and rotation of the ball.

APPROACH This may seem difficult at first because there are so many questions.
But we can deal with them one at a time. We take the y direction as positive
upward, and treat the x and y motions separately. The total time in the air is again
determined by the y motion. The x motion occurs at constant velocity. The y
component of velocity varies, being positive (upward) initially, decreasing to zero
at the highest point, and then becoming negative as the football falls.

SOLUTION We resolve the initial velocity into its components (Fig. 3-24):
vxo = ¢0s37.0° = (20.0m/s)(0.799) = 16.0m/s
= Mosin 37.0° = (20.0m/s) (0.602) = 12.0m/s.
(a) We consider a time interval that begins just after the football loses contact
with the foot until it reaches its maximum height. During this time interval, the
acceleration is g downward. At the maximum height, the velocity is horizontal
(Fig. 3-24), so vy = 0; and this occurs at a time given by vy =vy0 - gt with
=0 (see Eq. 2-12a in Table 3-2). Thus
_wyo (12.0m/s)
s (9.80 m/s2)
From Eq. 2-12b, with yQ= 0, we have
y = Wot - \gt2
= (12.0m/s)(1.224s) —j(9.80m/s2(1.224s)2 = 7.35m.

Alternatively, we could have used Eq. 2-12c, solved for y, and found

Vyo - vy (12.0m/s)2 - (Om/s)2
Y= 2 2(9.80m/s2)

The maximum height is 7.35 m.

(b) To find the time it takes for the ball to return to the ground, we consider a

different time interval, starting at the moment the ball leaves the foot

(t =0, y0=0) and ending just before the ball touches the ground (y =0

again). We can use Eq. 2-12b with y0=0 and also set y = 0 (ground level):

= 1224s « 1.22s.

= 7.35m.

y = y» + vy0t - \gt2
0 = 0+ wot - \gt2
This equation can be easily factored:
t(kgt - Wo) = 0.
There are two solutions, t = 0 (which corresponds to the initial point, y0), and
A 2(12.0m/s)
g (9.80m/s2)
which is the total travel time of the football

= 2455,

Kinematics in Two or Three Dimensions; Vectors



NOTE The time needed for the whole trip, t = 2vy0/g = 2455, is double the
time to reach the highest point, calculated in (a). That is, the time to go up equals
the time to come back down to the same level (ignoring air resistance).

(c) The total distance traveled in the x direction is found by applying Eq. 2-12b
with Xq= 0, ax = 0, vxg= 16.0m/s:

X = vxot = (16.0m/s)(2.45s) = 39.2m.

(d) At the highest point, there is no vertical component to the velocity. There is
only the horizontal component (which remains constant throughout the flight),
S0 V = VX0 = V0cos 37.0° = 16.0m/s.

(e) The acceleration vector is the same at the highest point as it is throughout the
flight, which is 9.80 m/s2 downward.

NOTE We treated the football as if it were a particle, ignoring its rotation. We
also ignored air resistance. Because air resistance is significant on a football, our
results are only estimates.

EXERCISE E Two balls are thrown in the air at different angles, but each reaches the same
height. Which ball remains in the air longer: the one thrown at the steeper angle or the
one thrown at a shallower angle?

CONCEPTUAL EXAMPLE 5-8 | Where does the apple land? A child sits v

upright in a wagon which is moving to the right at constant speed as shown in

Fig. 3-25. The child extends her hand and throws an apple straight upward (from t L
her own point of view, Fig. 3-25a), while the wagon continues to travel forward

at constant speed. If air resistance is neglected, will the apple land (a) behind
the wagon, (b) in the wagon, or (c) in front of the wagon?

RESPONSE The child throws the apple straight up from her own reference frame
with initial velocity \y0 (Fig. 3-25a). But when viewed by someone on the
ground, the apple also has an initial horizontal component of velocity equal to
the speed of the wagon, v”. Thus, to a person on the ground, the apple will
follow the path of a projectile as shown in Fig. 3-25b. The apple experiences no A

(a) Wagon reference frame

horizontal acceleration, so v*o will stay constant and equal to the speed of the

wagon. As the apple follows its arc, the wagon will be directly under the apple at

all times because they have the same horizontal velocity. When the apple comes (h) Ground reference frame
down, it will drop right into the outstretched hand of the child. The answer is (D).  FIGURE 3-25 Example 3-8.

CONCEPTUAL EXAMPLE 3-9 The wrong strategy. A boy on a small hill aims
his water-balloon slingshot horizontally, straight at a second boy hanging from a tree
branch a distance d away, Fig. 3-26. At the instant the water balloon is released, the
second boy lets go and falls from the tree, hoping to avoid being hit. Show that he
made the wrong move. (He hadn't studied physics yet.) Ignore air resistance.
RESPONSE Both the water balloon and the boy in the tree start falling at the
same instant, and in a time t they each fall the same vertical distance y =\gt2,
much like Fig. 3-21. In the time it takes the water balloon to travel the horizontal
distance d, the balloon will have the same y position as the falling boy. Splat. If
the boy had stayed in the tree, he would have avoided the humiliation.

y=0 FIGURE 3-26 Example 3-9.
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(b)

FIGURE 3-27 Example 3-10.

(a) The range R of a projectile;

(b) there are generally two angles 00
that will give the same range. Can
you show that if one angle is 0Q >
the other is 0 = 90° - 6017

EXAMPLE 3-10 Level horizontal range. (a) Derive a formula for the hori-
zontal range R of a projectile in terms of its initial speed vQand angle 0Q The
horizontal range is defined as the horizontal distance the projectile travels
before returning to its original height (which is typically the ground); that is,
y (final) = yQ See Fig. 3-27a. (b) Suppose one of Napoleon’ cannons had a
muzzle speed, vO, of 60.0m/s. At what angle should it have been aimed (ignore
air resistance) to strike a target 320 m away?

APPROACH The situation is the same as in Example 3-7, except we are now not
given numbers in (a). We will algebraically manipulate equations to obtain our
result.

SOLUTION (@) We set x0=0 and y0= 0 at t = 0. After the projectile travels
a horizontal distance R, it returns to the same level, y = 0, the final point. We
choose our time interval to start (t = 0) just after the projectile is fired and to
end when it returns to the same vertical height. To find a general expression for R,
we set both y =0 and yO= 0 ill Eq. 2-12b for the vertical motion, and obtain

y yo + vyOt + \ayt2
SO

0 =0+ wot - \gt2

We solve for t, which gives two solutions: t =0 and t = 2vyJg. The first solu-
tion corresponds to the initial instant of projection and the second is the time
when the projectile returns to y = 0. Then the range, R, will be equal to x at the
moment t has this value, which we put into Eq. 2-12b for the horizontal motion
(x = vx0t, with x0= 0).Thus we have:

(2vy0\  2vxOvy0  2vgsin 0Ccos 00 r n
r =vx0t = vxoy— J = —-— = --meem —emeeeee- b = yol

where we have written vx0 = vOcos 00 and vy0 = v0sin 0Q This is the result we
sought. It can be rewritten, using the trigonometric identity 2sin0cos0 = sin 20
(Appendix A or inside the rear cover):

R _..\Wosin200 fonly if y (final) = ya

We see that the maximum range, for a given initial velocity , is obtained when
sin 20 takes on its maximum value of 1.0, which occurs for 200 = 90°; so

00 = 45° for maximum range, and Rmex = vl/g.
[When air resistance is important, the range is less for a given v0, and the
maximum range is obtained at an angle smaller than 45°]
NOTE The maximum range increases by the square of v0, so doubling the muzzle
velocity of a cannon increases its maximum range by a factor of 4.

(b) We put R = 320m into the equation we just derived, and (assuming, unreal-
istically, no air resistance) we solve it to find

700 = Rg _ (320 m)(9.80 m_/sZ) -
M= va T TTeoomisyz T T O

We want to solve for an angle 0Cthat is between 0° and 90°, which means 200
in this equation can be as large as 180°. Thus, 200= 60.6° is a solution, but
200 = 180° - 60.6° = 119.4° is also a solution (see Appendix A-9). In general
we will have two solutions (see Fig. 3-27b), which in the present case are given by

00 = 30.3° or 59.7°.

Either angle gives the same range. Only when sin200= 1 (so 00= 45°) is there
a single solution (that is, both solutions are the same).
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EXERCISE F The maximum range of a projectile is found to be 100 m. If the projectile
strikes the ground a distance of 82 m away, what was the angle of launch? (a) 35° or 55°;
(b) 30° or 60°; (c) 27.5° or 72.5°; (d) 13.75° or 76.25°.

The level range formula derived in Example 3-10 applies only if takeoff
and landing are at the same height (y = y0r Example 3-11 below considers a
case where they are not equal heights (y * yO-

EXAMPLE 3-11 A punt. Suppose the football in Example 3-7 was puntedand o pPHYSICS APPLIED
left the punter’s foot at a height of 1.00m above the ground. How far did the Sports
football travel before hitting the ground? Set x0 =0, y0 = 0.

APPROACH The x and y motions are again treated separately. But we cannot use j31§| PROBLEM SOLVING
the range formula from Example 3-10 because it is valid only if y (final) = y0, Do not use any formula unless you
which is not the case here. Now we have y0 = 0, and the football hits the ground are sure its range ofvalidity fits the
where y = -1.00 m (see Fig. 3-28). We choose our time interval to start when ~ Problems the rangeformula does
the ball leaves his foot (t = 0,y0= 0,x0=0) and end just before the ball hits notapply here becausey * yo
the ground (y = -1.00 m). We can get x from Eq. 2-12b, x = vx0t, since we

know that vx0 = 16.0m/s from Example 3-7. But first we must find t, the time

at which the ball hits the ground, which we obtain from the y motion.

FIGURE 3-28 Example 3-11: the football
leaves the punter’s foot aty = 0, and reaches
the ground wherey = —1.00 m.

Ground

SOLUTION With y = -1.00m and vy0 = 12.0m/s (see Example 3-7), we use
the equation

y = yo +vyol - \gt2
and obtain
-1.00m = 0 + (12.0m/s)f - (4.90m/s2f2

We rearrange this equation into standard form (ax2 + bx + ¢ = 0) so we can
use the quadratic formula:

(4.90m/s2t2 — (12.0m/s)t - (1.00m) = O.
The quadratic formula (Appendix A -1) gives
12.0m/s + \/(-Y2tim/s)2 - 4(4.90m/s2)(-1.00m)
1~ 2(4.90m/s2)
= 253s or -0.081s

The second solution would correspond to a time prior to our chosen time interval
that begins at the kick, so it doesnt apply. With t = 2.53 s for the time at which
the ball touches the ground, the horizontal distance the ball traveled is (using
vX0 = 16.0m/s from Example 3-7):

X = vxot = (16.0m/s)(253s) = 40.5m.

Our assumption in Example 3-7 that the ball leaves the foot at ground level
would result in an underestimate of about 1.3 m in the distance our punt traveled.

SECTION 3-8 Solving Problems Involving Projectile Motion 69



200 m

FIGURE 3-29 Example 3-12.

PHYSICS APPLIED

Reaching a target
from a moving helicopter

“Dropped”
v (> =0

200 m Thrown downward?
(><0)

J h 400 m

EXAMPLE 3-12 Rescue helicopter drops supplies. A rescue helicopter
wants to drop a package of supplies to isolated mountain climbers on a rocky
ridge 200m below. If the helicopter is traveling horizontally with a speed of
70m/s (250 km/h), {a) how far in advance of the recipients (horizontal distance)
must the package be dropped (Fig. 3-29a)? (b) Suppose, instead, that the heli-
copter releases the package a horizontal distance of 400 m in advance of the
mountain climbers. What vertical velocity should the package be given (up or down)
so that it arrives precisely at the climbers’ position (Fig. 3-29b)? (c) With what
speed does the package land in the latter case?

APPROACH We choose the origin of our xy coordinate system at the initial position
of the helicopter, taking +y upward, and use the kinematic equations (Table 3-2).
SOLUTION (&) We can find the time to reach the climbers using the vertical distance of
200m. The package is “dropped” so initially it has the velocity of the helicopter,
vX0 = 70m/s, vyo= 0. Then, since y = - \gt2 we have
-2y -2(-200m)
8 9.80 m/s2

The horizontal motion of the falling package is at constant speed of 70 m/s. So

X = vxot = (70m/s)(6.39s) = 447m ~ 450m,
assuming the given numbers were good to two significant figures.
(p) We are given x = 400m, vx0 = 70m/s, y = -200 m, and we want to find vyQ
(see Fig. 3-29b). Like most problems, this one can be approached in various
ways. Instead of searching for a formula or two, let’s try to reason it out in a
simple way, based on what we did in part (a). If we know t, perhaps we can get vy0.
Since the horizontal motion of the package is at constant speed (once it is released
we dont care what the helicopter does), we have x = vx0t, so

(= X 400 m

WO 70m/s
Now let’s try to use the vertical motion to get wQy = y0+ vy0Ot - \gt2 Since
0= 0 and y = -200m, we can solve for vy0:
y +\gt2 -200m +\(9.80m/s2)(5.715)2 _

Wo = i - N = -7.0 m/s.
Thus, in order to arrive at precisely the mountain climbers’ position, the package
must be thrown downward from the helicopter with a speed of 7.0 m/s.
(c) We want to know v of the package at t = 5.71s. The components are:

vx = vxo = 70m/s

vy = vyo ~Qgt = -7.0m/s - (9.80m/s2(5.71s) = -63 m/s.

So v =x/(10m/s)2+ (-63 m/s)2= 94m/s. (Better not to release the package
from such an altitude, or use a parachute.)

t = = 6.39s.
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Projectile Motion Is_Parabolic

We now show that the path followed by any projectile is a parabola, if we can
ignore air resistance and can assume that g is constant. To do so, we need to find y
as a function of x by eliminating t between the two equations for horizontal and
vertical motion (Eq. 2-12b in Table 3-2), and for simplicity we set x0 =y0= 0:

* = vxOt
y = Vyo0ot - Jg12

From the first equation, we have t = x/vx0, and we substitute this into the second
one to obtain

We see that y as a function of x has the form
y = Ax - Bx2

where A and B are constants for any specific projectile motion. This is the well-known
equation for a parabola. See Figs. 3-19 and 3-30.

The idea that projectile motion is parabolic was, in Galileo’s day, at the forefront
of physics research. Today we discuss it in Chapter 3 of introductory physics!

FIGURE 3-30 Examples of projectile motion— sparks (small hot glowing pieces of metal), water, and fireworks. The

parabolic path characteristic of projectile motion is affected by air resistance.

3—9 Relative Velocity

We now consider how observations made in different frames of reference are
related to each other. For example, consider two trains approaching one another,
each with a speed of 80 km/h with respect to the Earth. Observers on the Earth
beside the train tracks will measure 80 km/hr for the speed of each of the trains.
Observers on either one of the trains (a different frame of reference) will measure
a speed of 160 km/h for the train approaching them.

Similarly, when one car traveling 90 km/h passes a second car traveling in the
same direction at 75 km/h, the first car has a speed relative to the second car of
90km/h - 75km/h = 15km/h.

When the velocities are along the same line, simple addition or subtraction is
sufficient to obtain the relative velocity. But if they are not along the same line, we
must make use of vector addition. We emphasize, as mentioned in Section 2-1, that
when specifying a velocity, it is important to specify what the reference frame is.

SECTION 3-9
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River current

FIGURE 3-31 To move directly
across the river, the boat must head
upstream at an angle 0. Velocity
vectors are shown as green arrows:

vBs = velocity of Boat with
respect to the Shore,

yBw = velocity of Boat with
respect to the Water,

vWs = velocity of the Water with
respect to the Shore (river
current).

When determining relative velocity, it is easy to make a mistake by adding or
subtracting the wrong velocities. It is important, therefore, to draw a diagram and
use a careful labeling process. Each velocity is labeled by two subscripts: the first
refers to the object, the second to the reference frame in which it has this velocity.
For example, suppose a boat is to cross a river to the opposite side, as shown in
Fig. 3-31. We let vBNbe the velocity of the Boat with respect to the Water. (This is
also what the boat’s velocity would be relative to the shore if the water were still.)
Similarly, vBSis the velocity of the Boat with respect to the Shore, and ws is the
velocity of the Water with respect to the Shore (this is the river current). Note that
vBWis what the boat’s motor produces (against the water), whereas vBSis equal to
vBWplus the effect of the current, vws. Therefore, the velocity of the boat relative
to the shore is (see vector diagram, Fig. 3-31)

VBS — VBW + VWS* (3'15)

By writing the subscripts using this convention, we see that the inner subscripts
(the two W) on the right-hand side of Eq. 3-15 are the same, whereas the outer
subscripts on the right of Eq. 3-15 (the B and the S) are the same as the two
subscripts for the sum vector on the left, vBS. By following this convention (first
subscript for the object, second for the reference frame), you can write down the
correct equation relating velocities in different reference frames.f Figure 3-32
gives a derivation of Eq. 3-15.

Equation 3-15 is valid in general and can be extended to three or more veloc-
ities. For example, if a fisherman on the boat walks with a velocity vPB relative to
the boat, his velocity relative to the shore is vFS = viB + vBA/+ vws. The equations
involving relative velocity will be correct when adjacent inner subscripts are
identical and when the outermost ones correspond exactly to the two on the velocity
on the left of the equation. But this works only with plus signs (on the right), not
minus signs.

It is often useful to remember that for any two objects or reference frames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

VBA = -Vab (3'16)

For example, if a train is traveling 100 km/h relative to the Earth in a certain direc-
tion, objects on the Earth (such as trees) appear to an observer on the train to be
traveling 100 km/h in the opposite direction.

fWe thus would know by inspection that (for example) the equation VBW = VBS + Vws is wrong.

FIGURE 3-32 Derivation of relative velocity equation (Eqg. 3-15), in this case for
a person walking along the corridor in a train. We are looking down on the train
and two reference frames are shown: xy on the Earth and x'y" fixed on the train.

We have:

rPT = position vector of person (P) relative to train (T),

rPE = position vector of person (P) relative to Earth (E),

?te = position vector of train’s coordinate system (T) relative to Earth (E).

From the diagram we see that

?pe = ?pt + ?TE-

We take the derivative with respect to time to obtain

ffe) = Jt(ipt) + |(?te).

or,since dr/dt = v,

ME = \PT+ VIE

This is the equivalent of Eq. 3-15 for the present situation (check the subscripts!).
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CONCEPTUAL EXAMPLE 37151 Crossing a river. A woman in a small motor
boat is trying to cross a river that flows due west with a strong current. The woman
starts on the south bank and is trying to reach the north bank directly north from her
starting point. Should she (a) head due north, (b) head due west, (c) head in a north-
westerly direction, (d) head in a northeasterly direction?

RESPONSE If the woman heads straight across the river, the current will drag the
boat downstream (westward). To overcome the river’s westward current, the boat
must acquire an eastward component of velocity as well as a northward compo-
nent. Thus the boat must (d) head in a northeasterly direction (see Fig. 3-33).
The actual angle depends on the strength of the current and how fast the boat
moves relative to the water. If the current is weak and the motor is strong, then
the boat can head almost, but not quite, due north.

Heading upstream. A boat’s speed in still water is
vQN = 1.85m/s. If the boat is to travel directly across a river whose current has
speed vws = 1.20m/s, atwhat upstream angle must the boat head? (See Fig. 3-33.)

APPROACH We reason as in Example 3-13, and use subscripts as in Eq. 3-15.
Figure 3-33 has been drawn with vBS, the velocity of the Boat relative to the
Shore, pointing directly across the river because this is how the boat is supposed
to move. (Note that vBS= vBN+ wws.) To accomplish this, the boat needs to
head upstream to offset the current pulling it downstream.

SOLUTION Vector vBA/points upstream at an angle 0 as shown. From the diagram,

— 120m/s _
sin0 = ew 185m/s - 0.6486.

Thus 0 = 40.4°, so the boat must head upstream at a 40.4° angle.

u Heading across the river. The same boat (vBAN= 1.85m/s)
now heads directly across the river whose current is still 1.20m/s. (a) What is the
velocity (magnitude and direction) of the boat relative to the shore? (b) If the
river is 110 m wide, how long will it take to cross and how far downstream will
the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3-34. The boat’s velocity with respect to
the shore, VvBS, is the sum of its velocity with respect to the water, vBW, plus the
velocity of the water with respect to the shore, vws:

VBS = \BN+ wws,
just as before.
SOLUTION (a) Since vBMN is perpendicular to vws, we can get vBS using the
theorem of Pythagoras:

VS = V2bw + vws = \/(1.85in/s)2+ (1.20m/s)2 = 221 m/s.
We can obtain the angle (note how 0 is defined in the diagram) from:

tan0 = vws/vow = (1.20m/s)/(1.85 m/s) = 0.6486.
Thus 0 = tan1(0.6486) = 33.0°. Note that this angle is not equal to the angle
calculated in Example 3-14.
(b) The travel time for the boat is determined by the time it takes to cross the river.
Given the river’s width D = 110m, we can use the velocity component in the
direction of D, vBW = D/t. Solving for t, we get t = 110m/1.85m/s = 59.5s.
The boat will have been carried downstream, in this time, a distance

d = Vwst = (1.20m/s)(59.5s) = 71.4m « 71m.

NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).

River current

N
\
E 0™
i
s /

vBs <9 ~ vBW

FIGURE 3-33 Examples 3-13
and 3-14.

FIGURE 3-34 Example 3-15.
A boat heading directly across a
river whose current moves at
1.20 m/s.

.punW m m m

River current
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@ (b)

Car velocities at 90°. Two automobiles approach a street corner
at right angles to each other with the same speed of 40.0 km/h (= 11.11 m/s), as
shown in Fig. 3-35a. What is the relative velocity of one car with respect to the
other? That is, determine the velocity of car 1 as seen by car 2.

APPROACH Figure 3-35a shows the situation in a reference frame fixed to the
Earth. But we want to view the situation from a reference frame in which car 2 is
at rest, and this is shown in Fig. 3-35b. In this reference frame (the world as seen
by the driver of car 2), the Earth moves toward car 2 with velocity VE2 (speed of
40.0 km/h), which is of course equal and opposite to v2E, the velocity of car 2

Then the velocity of car 1 as seen by car 2 is (see Eq. 3-15)

= Vie - V2E.
That is, the velocity of car 1 as seen by car 2 is the difference of their velocities,
Me “ V2E, both measured relative to the Earth (see Fig. 3-35c). Since the
magnitudes of V1E, v2E, and VvE2 are equal (40.0km/h = 11.11m/s), we see

(Fig. 3-35Db) that v12points at a 45° angle toward car 2; the speed is

vl2 = 'x/(11.11 m/s)2 + (11.11 m/s)2 = 15.7m/s (= 56.6 km/h).

FIGURE 3-35 Example 3-16.
EXAMPLE 3-16
with respect to the Earth (Eq. 3-16):
ZE = -VE2-
V2 = VIE + \R
SOLUTION Because VE2 = -v2E, then
Summary

A quantity that has both a magnitude and a direction is called a
vector. A quantity that has only a magnitude is called a scalar.

Addition of vectors can be done graphically by placing the
tail of each successive arrow (representing each vector) at the
tip of the previous one. The sum, or resultant vector, is the arrow
drawn from the tail of the first to the tip of the last. Two vectors
can also be added using the parallelogram method.

Vectors can be added more accurately using the analytical
method of adding their components along chosen axes with the
aid of trigonometric functions. A vector of magnitude V making
an angle 6 with the x axis has components

W = V cosd W = Vsind. (3-2)
Given the components, we can find the magnitude and direction from

W
v =V VY FVE tan6 = -f- (3-3)
VX

It is often helpful to express a vector in terms of its components
along chosen axes using unit vectors, which are vectors of unit

length along the chosen coordinate axes; for Cartesian coordinates
the unit vectors along the x, y, and z axes are called i, j, and k

The general definitions for the instantaneous velocity, v,
and acceleration, a, of a particle (in one, two, or three dimen-
sions) are

where r is the position vector of the particle. The kinematic
equations for motion with constant acceleration can be written
for each of the x, y, and z components of the motion and have
the same form as for one-dimensional motion (Egs. 2-12). Or
they can be written in the more general vector form:
v = y0+ &
r = rQ+yQ + jat2 (3-13)
Projectile motion of an object moving in the air near the
Earth’s surface can be analyzed as two separate motions if air
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resistance can be ignored. The horizontal component of the
motion is at constant velocity, whereas the vertical component is
at constant acceleration, g, just as for an object falling vertically
under the action of gravity.

Questions

1. One car travels due east at 40 km/h, and a second car travels
north at 40 km/h. Are their velocities equal? Explain.

2. Can you conclude that a car is not accelerating if its
speedometer indicates a steady 60 km/h?

3. Can you give several examples of an object’s motion in
which a great distance is traveled but the displacement is
zero?

4. Can the displacement vector for a particle moving in two
dimensions ever be longer than the length of path traveled
by the particle over the same time interval? Can it ever be
less? Discuss.

5. During baseball practice, a batter hits a very high fly ball
and then runs in a straight line and catches it. Which had the
greater displacement, the player or the ball?

6. If V = Vi + V2, is V necessarily greater than W\ and/or
V2? Discuss.

7. Two vectors have length W\ = 35km and V2= 4.0km.
What are the maximum and minimum magnitudes of their
vector sum?

8. Can two vectors, of unequal magnitude, add up to give the zero
vector? Can three unequal vectors? Under what conditions?

9. Can the magnitude of a vector ever (a) equal, or (b) be less
than, one of its components?

10. Can a particle with constant speed be accelerating? What if
it has constant velocity?

11. Does the odometer of a car measure a scalar or a vector
quantity? What about the speedometer?

12. A child wishes to determine the speed a slingshot imparts to
a rock. How can this be done using only a meter stick, a
rock, and the slingshot?

13. In archery, should the arrow be aimed directly at the target?
How should your angle of aim depend on the distance to
the target?

Problems

3-2 to 3-5 Vector Addition; Unit Vectors

1. (I) A caris driven 225 km west and then 78 km southwest (45°).
What is the displacement of the car from the point of origin
(magnitude and direction)? Draw a diagram.

2. (I) A delivery truck travels 28 blocks north, 16 blocks east,
and 26 blocks south. What is its final displacement from the
origin? Assume the blocks are equal length.

3. () If Vx = 7.80units and Vy = —6.40 units, determine the
magnitude and direction of V.

4. (I1) Graphically determine the resultant of the following three
vector displacements: (1) 24 m, 36° north of east; (2) 18 m,
37° east of north; and (3) 26 m, 33° west of south.

5. (I) V is a vector 24.8 units in magnitude and points at an
angle of 23.4° above the negative x axis, (a) Sketch this vector.
(b) Calculate Vx and Vy . (c) Use Vx and W to obtain (again) the
magnitude and direction of V. [Note: Part (c) is a good way
to check if you've resolved your vector correctly.]

The velocity of an object relative to one frame of reference

can be found by vector addition if its velocity relative to a
second frame of reference, and the relative velocity of the two
reference frames, are known.

14.

15.
16.

17.

18.

19.

20.

21

A projectile is launched at an upward angle of 30° to the
horizontal with a speed of 30 m/s. How does the horizontal
component of its velocity 1.0 s after launch compare with its
horizontal component of velocity 2.0 s after launch, ignoring
air resistance?

A projectile has the least speed at what point in its path?

It was reported in World War | that a pilot flying at an
altitude of 2km caught in his bare hands a bullet fired at
the plane! Using the fact that a bullet slows down consid-
erably due to air resistance, explain how this incident
occurred.

Two cannonballs, A and B, are fired from the ground with
identical initial speeds, but with OA larger than 0B. (a) Which
cannonball reaches a higher elevation? (b) Which stays longer
in the air? (c) Which travels farther?

A person sitting in an enclosed train car, moving at constant
velocity, throws a ball straight up into the air in her refer-
ence frame, (a) Where does the ball land? What is your
answer if the car (b) accelerates, (c) decelerates, (d) rounds
a curve, () moves with constant velocity but is open to
the air?

If you are riding on a train that speeds past another train
moving in the same direction on an adjacent track, it
appears that the other train is moving backward. Why?
Two rowers, who can row at the same speed in still water,
set off across a river at the same time. One heads straight
across and is pulled downstream somewhat by the current.
The other one heads upstream at an angle so as to arrive at
a point opposite the starting point. Which rower reaches the
opposite side first?

If you stand motionless under an umbrella in a rainstorm
where the drops fall vertically you remain relatively dry.
However, if you start running, the rain begins to hit your
legs even if they remain under the umbrella. Why?

. (I) Figure 3-36 shows two vectors, A and B, whose magni-

tudes are A = 6.8 units and B = 5.5 units. Determine Cif
@C=A+B,(bC=A-B,(c) C=B- A Givethe
magnitude and direction for each.

FIGURE 3-36 Problem 6.
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7.

10.

11.

12.

13.

14.

15.

16.

(1) An airplane is traveling 835 km/h in a direction 41.5° west
of north (Fig. 3-37). (a) Find

the components of the

velocity vector in
the northerly and
westerly directions.
(b) How far north
and how far west
has the plane trav-
eled after 2.50 h?

vv 415°
(835 km/h)

FIGURE 3-37
Problem 7.

. () Let VI = —6.0i + 8.0j and % =451 - 5.0j. Deter-

mine the magnitude and direction of (a) Y1? (b) V2,
(©)Yj + V2and (d) V2- Vi.

. (I) (a) Determine the magnitude and direction of the

sum of the three vectors Yi = 4.0i - 8.0}, V2=1i + j, and
V3= —2.0i + 4.0j. (b) Determine Yj - V2 + V3.

(I1) Three vectors are shown in Fig. 3-38. Their magnitudes
are given in arbitrary units. Determine the sum of the
three vectors. Give the resultant in terms of (a) components,
(b) magnitude and angle with x axis.

FIGURE 3-38

Problems 10,11,12,13, and 14.
Vector magnitudes are given
in arbitrary units.

(1) (@) Given the vectors A and B shown in Fig. 3-38,
determine B - A. (b) Determine A - B without using
your answer in (a). Then compare your results and see if
they are opposite.

(1) Determine the vector A —C, given the vectors A and C
in Fig. 3-38.

(1) For the vectors shown in Fig. 3-38, determine (a) B - 2A,
(b) 2A —3B + 2C.

(1) For the vectors given in Fig. 3-38, determine
@A-B+C (b)A+B-C,and(c)C- A - B.

(I1) The summit of a mountain, 2450 m above base camp, is
measured on a map to be 4580m horizontally from the
camp in a direction 32.4° west of north. What are the
components of the displacement vector from camp to
summit? What is its magnitude? Choose the x axis east,
y axis north, and z axis up.

(1) You are given a vector in the xy plane that has a
magnitude of 90.0 units and a y component of —55.0 units.
(a) What are the two possibilities for its x component?
(b) Assuming the x component is known to be positive,
specify the vector which, if you add it to the original one,
would give a resultant vector that is 80.0 units long and
points entirely in the —x direction.

3-6 Vector Kinematics

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

(1) The position of a particular particle as a function of time
is given by ? = (9.601i + 8.85] - 1.00£2k)m. Determine
the particle’s velocity and acceleration as a function of time.
(I) What was the average velocity of the particle in Problem 17
between t = 1.00s and t = 3.00s? What is the magnitude
of the instantaneous velocity at t = 2.00s?

(I1) What is the shape of the path of the particle of
Problem 17?

(1) A car is moving with speed 18.0m/s due south at one
moment and 27.5m/s due east 8.00 s later. Over this time
interval, determine the magnitude and direction of (a) its
average velocity, (b) its average acceleration, (c) What is its
average speed. [Hint: Can you determine all these from the
information given?]

(1) At t =0, a particle starts from rest at x = 0, y =0,
and moves in the xy plane with an acceleration
a = (4.0i + 3.0j) m/s2. Determine (a) the x and y compo-
nents of velocity, (b) the speed of the particle, and (c) the
position of the particle, all as a function of time. (d) Eval-
uate all the above at t = 2.0s.

(1) (a) A skier is accelerating down a 30.0° hill at 1.80 m/s2
(Fig. 3-39). What is the vertical component of her accelera-
tion? (b) How long will it take her to reach the bottom of
the hill, assuming she starts from rest and accelerates
uniformly, if the elevation change is 325 m?

a=1.80 m/s2

FIGURE 3-39 Problem 22.

(1Y An ant walks on a piece of graph paper straight along the
x axis a distance of 10.0cm in 2.00s. It then turns left 30.0°
and walks in a straight line another 10.0cm in 1.80s. Finally,
it turns another 70.0° to the left and walks another 10.0 cm
in 1.55s. Determine (a) the x and y components of the ant’s
average velocity, and (b) its magnitude and direction.

(I1) A particle starts from the origin at t = 0 with an initial
velocity of 5.0 m/s along the positive x axis. If the accelera-
tion is (—3.0i + 4.5j)m/s2, determine the velocity and posi-
tion of the particle at the moment it reaches its maximum
x coordinate.

(1) Suppose the position of an object is given by
r = (3.02\ —6.083j)m. (a) Determine its velocity v and
acceleration a, as a function of time, (b) Determine r and v
attime t = 25s.

(1) An object, which is at the origin at time t —0, has
initial velocity v0= (—4.0i - 7.0j)m/s and constant
acceleration a = (6.0i + 3.0j)m/s2. Find the position r
where the object comes to rest (momentarily).
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27.

(I1) A particle’s position as a function of time t is given
by r=(5.01+ 6.0)mi + (7.0 - 3.0E3mj. At t =5.0s5,
find the magnitude and direction of the particle’s displace-
ment vector Ar relative to the point r0 = (OGO + 7.0j) m.

3-7 and 3-8 Projectile Motion (neglect air resistance)

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

(1) A tiger leaps horizontally from a 7.5-m-high rock with a
speed of 3.2m/s. How far from the base of the rock will she
land?

(1) A diver running 2.3 m/s dives out horizontally from the
edge of a vertical cliff and 3.0s later reaches the water
below. How high was the cliff and how far from its base did
the diver hit the water?

(I1) Estimate how much farther a person can jump on the
Moon as compared to the Earth if the takeoff speed and
angle are the same. The acceleration due to gravity on the
Moon is one-sixth what it is on Earth.

(1) A fire hose held near the ground shoots water at a
speed of 6.5 m/s. At what angle(s) should the nozzle point
in order that the water land 2.5m away (Fig. 3-40)?
Why are there two different

angles? Sketch the two

trajectories.

FIGURE 3-40 j§ 4

Problem 31. -2.5 m-

(I1) A ball is thrown horizontally from the roof of a building
9.0 m tall and lands 9.5 m from the base. What was the ball’s
initial speed?

(1) A football is kicked at ground level with a speed of
18.0m/s at an angle of 38.0° to the horizontal. How much
later does it hit the ground?

(1) A ball thrown horizontally at 23.7 m/s from the roof of
a building lands 31.0 m from the base of the building. How
high is the building?

(I1) A shot-putter throws the shot (mass = 7.3kg) with an
initial speed of 14.4m/s at a 34.0° angle to the horizontal.
Calculate the horizontal distance traveled by the shot if it
leaves the athlete’s hand at a height of 2.10m above the
ground.

(I1) Show that the time required for a projectile to reach its
highest point is equal to the time for it to return to its orig-
inal height if air resistance is neglible.

(1) You buy a plastic dart gun, and being a clever physics
student you decide to do a quick calculation to find
its maximum horizontal range. You shoot the gun straight
up, and it takes 4.0 s for the dart to land back at the barrel.
What is the maximum horizontal range of your gun?

. (1) A baseball is hit with a speed of 27.0 m/s at an angle of

45.0°. It lands on the flat roof of a 13.0-m-tall nearby
building. If the ball was hit when it was 1.0m above the
ground, what horizontal distance does it travel before it
lands on the building?

39.

40.

41.

42.

(1) In Example 3-11 we chose the x axis to the right and
y axis up. Redo this problem by defining the x axis to the
left and y axis down, and show that the conclusion remains
the same—the football lands on the ground 40.5m to the
right of where it departed the punter’s foot.

(1) A grasshopper hops down a level road. On each hop,
the grasshopper launches itself at angle 60 = 45° and
achieves a range R = 1.0m. What is the average hori-
zontal speed of the grasshopper as it progresses down the
road? Assume that the time spent on the ground between
hops is negligible.

(I1) Extreme-sports enthusiasts have been known to jump
off the top of El Capitan, a sheer granite cliff of height
910 m in Yosemite National Park. Assume a jumper runs
horizontally off the top of El Capitan with speed 5.0m/s
and enjoys a freefall until she is 150 m above the valley
floor, at which time she opens her parachute (Fig. 3-41).
(a) How long is the jumper in freefall? Ignore air resistance.
(b) It is important to be as far away from the cliff as
possible before opening the parachute. How far from the cliff
is this jumper when she

opens her chute?

5.0 m/s

910 m

150 m

FIGURE 3-41
Problem 41.

(I1) Here is something to try at a sporting event. Show that
the maximum height h attained by an object projected into
the air, such as a baseball, football, or soccer ball, is approx-
imately given by

h ~1.22m,

where t is the total time of flight for the object in seconds.
Assume that the object returns to the same level as that from
which it was launched, as in Fig. 3-42. For example, if you
count to find that a baseball was in the air for t = 5.05s, the
maximum height attained was h = 1.2 X (5.0)2= 30m.
The beauty of this relation is that h can be determined
without knowledge of the launch speed vq or launch
angle 0Q

FIGURE 3-42 Problem 42.
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43.

44.

45.

46.

78

(1) The pilot of an airplane traveling 170km/h wants to
drop supplies to flood victims isolated on a patch of land
150m below. The supplies should be dropped how many
seconds before the plane is directly overhead?

(1) (a) A long jumper leaves the ground at 45° above the
horizontal and lands 8.0m away. What is her “takeoff”
speed vq? (b) Now she is out on a hike and comes to the left
bank of a river. There is no bridge and the right bank is
10.0m away horizontally and 2.5m, vertically below. If she
long jumps from the edge of the left bank at 45° with the
speed calculated in (a), how long, or short, of the opposite
bank will she land (Fig. 3-43)?

25m

100m
FIGURE 3-43 Problem 44.

(1) A high diver leaves the end of a 5.0-m-high diving
board and strikes the water 1.3 s later, 3.0 m beyond the end
of the board. Considering the diver as a particle, determine
{a) her initial velocity, v0; (b) the maximum height reached;
and (c) the velocity \fwith which she enters the water.

(1) A projectile is shot from the edge of a cliff 115 m above
ground level with an initial speed of 65.0m/s at an angle of
35.0° with the horizontal, as shown in Fig. 3-44. (a) Deter-
mine the time taken by the projectile to hit point P at
ground level. (b) Determine the distance X of point P
from the base of the vertical cliff. At the instant just
before the projectile hits point P, find (c) the horizontal and
the vertical components of its velocity, (d) the magnitude of
the velocity, and (e) the angle made by the velocity vector
with the horizontal. (/) Find the maximum height above the
cliff top reached by the projectile.

=65.0m/s

FIGURE 3-44 Problem 46.

47

48.

49.

50.

51

(1) Suppose the kick in Example 3-7 is attempted 36.0m
from the goalposts, whose crossbar is 3.00m above the
ground. If the football is directed perfectly between the
goalposts, will it pass over the bar and be a field goal? Show
why or why not. If not, from what horizontal distance must
this kick be made if it is to score?

(1) Exactly 3.0s after a projectile is fired into the air from the
ground, it is observed to have a velocity v = (8.6i + 4.8j) m/s,
where the x axis is horizontal and the y axis is positive
upward. Determine {a) the horizontal range of the projectile,
(b) its maximum height above the ground, and (c) its speed
and angle of motion just before it strikes the ground.

(1) Revisit Example 3-9, and assume that the boy with the
slingshot is below the boy in the tree (Fig. 3-45) and so aims
upward, directly at the boy in the tree. Show that again the
boy in the tree makes the wrong move by letting go at the
moment the water balloon is shot.

FIGURE 3-45 Problem 49.

(1) A stunt driver wants to make his car jump over 8 cars
parked side by side below a horizontal ramp (Fig. 3-46).
(&) With what minimum speed must he drive off the hori-
zontal ramp? The vertical height of the ramp is 1.5m above
the cars and the horizontal distance he must clear is 22m. (b) If
the ramp is now tilted upward, so that “takeoff angle” is 7.0°
above the horizontal, what is the new minimum speed?

22'm

Musi dear
this print!

FIGURE 3-46 Problem 50.

(1) A ball is thrown horizontally from the top of a cliff
with initial speed vO (at t = 0). At any moment, its direction
of motion makes an angle 6 to the horizontal (Fig. 3-47).
Derive a formula for 6 as a function of time, t, as the ball
follows a projectile’s path.

FIGURE 3-47 Problem 51.
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52.

53.

54.

55.

56.

(1) At what projection angle will the range of a projectile
equal its maximum height?

(I1) A projectile is fired with an initial speed of 46.6 m/s at
an angle of 42.2° above the horizontal on a long flat firing
range. Determine (a) the maximum height reached by the
projectile, (b) the total time in the air, (c) the total hori-
zontal distance covered (that is, the range), and (d) the
velocity of the projectile 1.50 s after firing.

(1) An athlete executing a long jump leaves the ground at a
27.0° angle and lands 7.80 m away, (a) What was the takeoff
speed? (b) If this speed were increased by just 5.0%, how
much longer would the jump be?

(1) A person stands at the base of a hill that is a straight
incline making an angle $>with the horizontal (Fig. 3-48).
For a given initial speed vQ at what angle 0 (to the hori-
zontal) should objects be thrown so that the distance d they
land up the hill is as large as possible?

FIGURE 3-48 Problem 55.
Given (>and v0, determine 0
to make d maximum.

(I1l) Derive a formula for the horizontal range R, of a
projectile when it lands at a height h above its initial point.
(For h < 0, it lands a distance —h below the starting point.)
Assume it is projected at an angle 00with initial speed vO.

3-9 Relative Velocity

57.

58.

59.

60.

(1) A person going for a morning jog on the deck of a cruise
ship is running toward the bow (front) of the ship at 2.0 m/s
while the ship is moving ahead at 8.5 m/s. What is the velocity
of the jogger relative to the water? Later, the jogger is
moving toward the stern (rear) of the ship. What is the
jogger’s velocity relative to the water now?

(1) Huck Finn walks at a speed of 0.70 m/s across his raft
(that is, he walks perpendicular to the raft’s motion relative
to the shore). The raft is traveling down the Mississippi
River at a speed of
1.50m/s relative to the
river bank (Fig. 3-49).
What is Huck’s velocity
(speed and direction)

relative to the river
k?
ban 1 0.70 mis
River
FIGURE 3-49
Problem 58.

(I1) Determine the speed of the boat with respect to the
shore in Example 3-14.

(I1) Two planes approach each other head-on. Each has a
speed of 780 km/h, and they spot each other when they are
initially 12.0 km apart. How much time do the pilots have to
take evasive action?

61.

62.

63.

(1) A child, who is 45m from the bank of a river, is being
carried helplessly downstream by the river’s swift current of
1.0m/s. As the child passes a lifeguard on the river’s bank,
the lifeguard starts swimming in a straight line until she
reaches the child at a point downstream (Fig. 3-50). If
the lifeguard can swim at a speed of 2.0 m/s relative to the
water, how long does it take her to reach the child? How far
downstream does the lifeguard intercept the child?

11.0m/s

2.0 m/s
I

—_—»

45 m

FIGURE 3-50 Problem 61.

(1) A passenger on a boat moving at 1.70 m/s on a still lake
walks up a flight of stairs at a speed of 0.60 m/s, Fig. 3-51.
The stairs are angled at 45° pointing in the direction of
motion as shown. Write the vector velocity of the passenger
relative to the water.

FIGURE 3-51 Problem 62.

(1) A person in the passenger basket of a hot-air balloon
throws a ball horizontally outward from the basket with
speed 10.0m/s (Fig. 3-52). What initial velocity (magnitude
and direction) does

the ball have relative

to a person standing

on the ground (a) if

the hot-air balloon is

rising at 5.0m/s rela-

tive to the ground

during this throw,

(b) if the hot-air

balloon is descending

at 5.0m/s relative to

the ground.

FIGURE 3-52
Problem 63.
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64.

65.

66.

67.

68.

| General Problems

72.

73.

74.

75.

76.

(1) An airplane is heading due south at a speed of 580 km/h.
If a wind begins blowing from the southwest at a speed of
90.0km/h (average), calculate (a) the velocity (magnitude
and direction) of the plane, relative to the ground, and
(b) how far from its intended position it will be after
11.0 min if the pilot takes no corrective action. [Hint. First
draw a diagram.]

(I In what direction should the pilot aim the plane in
Problem 64 so that it will fly due south?

(I1) Two cars approach a street corner at right angles to
each other (see Fig. 3-35). Car 1 travels at 35 km/h and
car 2 at 45km/h. What is the relative velocity of car 1
as seen by car 2? What is the velocity of car 2 relative to
car 1?

(I A swimmer is capable of swimming 0.60m/s in still
water, (a) If she aims her body directly across a 55-m-wide
river whose current is 0.50 m/s, how far downstream (from a
point opposite her starting point) will she land? (b) How
long will it take her to reach the other side?

(I (a) At what upstream angle must the swimmer in
Problem 67 aim, if she is to arrive at a point directly across
the stream? (b) How long will it take her?

Two vectors, Vi and V2, add to a resultant V = Vi + V2.
Describe % and V2if (a) V = V1+ V2, (b) V2=V? +V
() Vi + V2 =Vi- V2.

A plumber steps out of his truck, walks 66 m east and 35 m
south, and then takes an elevator 12 m into the subbasement
of a building where a bad leak is occurring. What is the
displacement of the plumber relative to his truck? Give
your answer in components; also give the magnitude and
angles, with respect to the x axis, in the vertical and horizontal
plane. Assume x is east, y is north, and z is up.

On mountainous downbhill roads, escape routes are sometimes
placed to the side of the road for trucks whose brakes might
fail. Assuming a constant upward slope of 26°, calculate the
horizontal and vertical components of the acceleration of a
truck that slowed from 110km/h to rest in 7.0 s. See Fig. 3-54.

A light plane is headed due south with a speed relative to
still air of 185km/h. After 1.00h, the pilot notices that
they have covered only 135km and their direction is not
south but southeast (45.0°). What is the wind velocity?

An Olympic long jumper is capable of jumping 8.0m.
Assuming his horizontal speed is 9.1 m/s as he leaves the
ground, how long is he in the air and how high does he go?
Assume that he lands standing upright—that is, the same
way he left the ground.

69.

70.

71.

7.

78.

79.

(1) A motorboat whose speed in still water is 3.40m/s must aim
upstream at an angle of 19.5° (with respect to a line perpendic-
ular to the shore) in order to travel directly across the stream.
(a) What is the speed of the current? (b) What is the resultant
speed of the boat with respect to the shore? (See Fig. 3-31.)
(1) A boat, whose speed in still water is 2.70 m/s, must cross
a 280-m_-W|de river 120 m

and arrive at a
point 120m upstream
from where it starts
(Fig. 3-53). To do
so, the pilot must head
the boat at a 450°
upstream angle. What
is the speed of the
river’s current?

Hinish

~ River
cunvnl
280 m

Im
FIGURE 3-53

Problem 70.

(1) An airplane, whose air speed is 580 km/h, is supposed
to fly in a straight path 38.0° N of E. But a steady 72km/h
wind is blowing from the north. In what direction should the
plane head?

P
Stan

Romeo is chucking pebbles gently up to Juliet’s window,
and he wants the pebbles
to hit the window with
only a horizontal compo-
nent of velocity. He is
standing at the edge of a
rose garden 8.0m below
her window and 9.0m
from the base of the wall
(Fig. 3-55). How fast are
the pebbles going when
they hit her window?

80m

FIGURE 3-55
Problem 77.

Raindrops make an angle 6 with the vertical when viewed
through a moving train window (Fig. 3-56). If the speed of the
train is vT, what is the

speed of the raindrops

in the reference frame *

of the Earth in which

they are assumed to

fall vertically?

FIGURE 3-56
Problem 78.

Apollo astronauts took a “nine iron” to the Moon and hit a
golf ball about 180 m. Assuming that the swing, launch
angle, and so on, were the same as on Earth where the same
astronaut could hit it only 32m, estimate the acceleration
due to gravity on the surface of the Moon. (We neglect air
resistance in both cases, but on the Moon there is none.)
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80. A hunter aims directly at a target (on the same level) 68.0 m
away, (a) If the bullet leaves the gun at a speed of 175 m/s,
by how much will it miss the target? (b) At what angle
should the gun be aimed so the target will be hit?

81. The cliff divers of Acapulco push off horizontally from rock
platforms about 35m above the water, but
they must clear rocky outcrops at water level
that extend out into the water 5.0m from
the base of the cliff directly under their |

launch point. See Fig. 3-57. What \
minimum pushoff speed is necessary to tl
clear the rocks? How long are they t
in the air?
|
I N
| >V1
15.0 mi
FIGURE 3-57
Problem 81.

82. When Babe Ruth hit a homer over the 8.0-m-high right-
field fence 98 m from home plate, roughly what was the
minimum speed of the ball when it left the bat? Assume the
ball was hit 1.0m above the ground and its path initially
made a 36° angle with the ground.

83. The speed of a boat in still water is v. The boat is to make a
round trip in a river whose current travels at speed u. Derive
a formula for the time needed to make a round trip of total
distance D if the boat makes the round trip by moving
(a) upstream and back downstream, and (b) directly across
the river and back. We must assume u < v; why?

84. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is
“launched” from a height of 2.50 m? Where will the ball
land if it just clears the net (and will it be “good” in the
sense that it lands within 7.0 m of the net)? How long will it
be in the air? See Fig. 3-58.

T

250 m*
n

150m h- 7.0m -
FIGURE 3-58 Problem 84.

85. Spymaster Chris, flying a constant 208 km/h horizontally in
a low-flying helicopter, wants to drop secret documents into
her contact’s open car which is traveling 156 km/h on a
level highway 78.0 m below. At what angle (with the hori-
zontal) should the car be in her sights when the packet is
released (Fig. 3-59)?

208 km/h

FIGURE 3-59
Problem 85.

86. A basketball leaves a player’s hands at a height of 2.10m
above the floor. The basket is 3.05m above the floor. The
player likes to shoot the ball at a 38.0° angle. If the shot is
made from a horizontal distance of 11.00m and must be
accurate to + 0.22m (horizontally), what is the range of
initial speeds allowed to make the basket?

87. A particle has a velocity of v = (—2.0i + 3.5€j)m/s. The
particle starts at r = (.51 —3.1j)m at t = 0. Give the
position and acceleration as a function of time. What is
the shape of the resulting path?

88. A projectile is launched from ground level to the top of a
cliff which is 195 m away and 135 m high (see Fig. 3-60). If
the projectile lands on top of the cliff 6.6 s after it is fired,
find the initial velocity of the projectile (magnitude and
direction). Neglect air resistance.

Landing point

135 m

FIGURE 3-60 A

Problem 88. 185 m-

89. In hot pursuit, Agent Logan of the FBI must get directly
across a 1200-m-wide river in minimum time. The river’s
current is 0.80 m/s, he can row a boat at 1.60 m/s, and he
can run 3.00m/s. Describe the path he should take (rowing
plus running along the shore) for the minimum crossing
time, and determine the minimum time.

90. A boat can travel 2.20m/s in still water, (a) If the boat
points its prow directly across a stream whose current is
1.30 m/s, what is the velocity (magnitude and direction) of
the boat relative to the shore? (b) What will be the position
of the boat, relative to its point of origin, after 3.00 s?

91. A boat is traveling where there is a current of 0.20 m/s east
(Fig. 3-61). To avoid some offshore rocks, the boat must
clear a buoy that is NNE (22.5°) and 3.0km away. The
boat’s speed through still water is 2.1 m/s. If the boat wants
to pass the buoy 0.15 km on its right, at what angle should
the boat head?

a

Pl

Buoy Current

FIGURE 3-61
Problem 91.

92. A child runs down a 12° hill and then suddenly jumps upward
at a 15° angle above horizontal and lands 1.4m down the hill
as measured along the hill. What was the child’s initial speed?
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93.

94.

95.

96.

97.

A basketball is shot from an initial height of 2.4m
(Fig. 3-62) with an initial speed = 12m/s directed at an
angle 00= 35° above the horizontal, (a) How far from the
basket was the player if he made a basket? (b) At what
angle to the horizontal did the ball enter the basket?

i0—12m/s”

ion
2am =305m

FIGURE 3-62
Problem 93.

You are driving south on a highway at 25m/s (approxi-
mately 55 mi/h) in a snowstorm. When you last stopped, you
noticed that the snow was coming down vertically, but it is
passing the windows of the moving car at an angle of 37° to
the horizontal. Estimate the speed of the snowflakes rela-
tive to the car and relative to the ground.

A rock is kicked horizontally at 15m/s from a hill with a
45° slope (Fig. 3-63). How long does it take for the rock to
hit the ground?

15m/s

FIGURE 3-63 45y
Problem 95.

A batter hits a fly ball which leaves the bat 0.90m above the
ground at an angle of 61° with an initial speed of 28m/s head-
ing toward centerfield. Ignore air resistance, (a) How far from
home plate would the ball land if not caught? (b) The ball is
caught by the centerfielder who, starting at a distance of 105m
from home plate, runs straight toward home plate at a constant
speed and makes the catch at ground level. Find his speed.

A ball is shot from the top of a building with an initial
velocity of 18m/s at an angle 0 = 42° above the horizontal.
(a) What are the horizontal and vertical components of the
initial velocity? (b) If a nearby building is the same height
and 55m away, how far below the top of the building will
the ball strike the nearby building?

Answers to Exercises

A: When the two vectors D1and D2 point in the same direction.

*100.

98. Att = 0 a batter hits a baseball with an initial speed of 28m/s
at a 55° angle to the horizontal. An outfielder is 85 m from
the batter at t = 0 and, as seen from home plate, the line
of sight to the outfielder makes a horizontal angle of 22°
with the plane in which the ball moves (see Fig. 3-64).
What speed and direction must the fielder take to catch the
ball at the same height from which it was struck? Give the angle

with respect to
the outfielder’s
line of sight to
home plate.

Fielder runs
lo here front here

FIGURE 3-64 v/

Problem 98.

:Numerical/Computer

*99. (1) Students shoot a plastic ball horizontally from a
projectile launcher. They measure the distance x the ball
travels horizontally, the distance y the ball falls vertically,
and the total time t the ball is in the air for six different

heights of the projectile launcher. Here is their data.

Time, Horizontal distance, Vertical distance,
t(s) x (M) ~(m)

0.217 0.642 0.260

0.376 1.115 0.685

0.398 1.140 0.800

0.431 1.300 0.915

0.478 1.420 1.150

0.491 1.480 1.200

(a) Determine the best-fit straight line that represents x as
a function of t. What is the initial speed of the ball
obtained from the best-fit straight line? (b) Determine the
best-fit quadratic equation that represents y as a function
of t. What is the acceleration of the ball in the vertical

direction?

plot, what value for 0OOmaximizes d?
tty - )X5 m/s

FIGURE 3-65 Problem 100.

D: (d).
E: Both balls reach the same height, so are in the air for the
same length of time.

B: 3\/2 = 4.24.
C: (a). F (c).
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(1) A shot-putter throws from a height h = 2.1 m above
the ground as shown in Fig. 3-65, with an initial speed of
d0 = 135m/s. (a) Derive a relation that describes how the
distance traveled d depends on the release angle 0Q
(b) Using the given values for v0 and h, use a graphing
calculator or computer to plot d vs. 00 According to your



Dynamics:
Newton's Laws of Motion

CHAPTER-OPENING QUESTION —Guess now!

A 150-kg football player collides head-on with a 75-kg running back. During the
collision, the heavier player exerts a force of magnitude FA on the smaller player.
If the smaller player exerts a force FBback on the heavier player, which response
is most accurate?

(@) Fb = Fa.
(b) Fb < Fa.
(©

(d) Fb = 0.

(e) We need more information.

Second Question:
A line by the poet T. S. Eliot (from Murder in the Cathedral) has the women of
Canterbury say “the earth presses up against our feet.” What force is this?

(a) Gravity.

(b) The normal force.

(c) A friction force.

(d) Centrifugal force.

(e) No force—they are being poetic.

The space shuttle Discovery is
carried out into space by powerful
rockets. They are accelerating,
increasing in speed rapidly. To do so,
a force must be exerted on them
according to Newton’s second law,
SF = raa. What exerts this force?
The rocket engines exert a force on
the gases they push out (expel) from
the rear of the rockets (labeled FGR).
According to Newton’s third law,
these ejected gases exert an equal
and opposite force on the rockets
in the forward direction. It is this
“reaction” force exerted on the
rockets by the gases, labeled FRG,
that accelerates the rockets forward.
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4-7 Solving Problems with Newton’s
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FIGURE 4-1 A force exerted on a
grocery cart- -in this case exerted by
a person.

e have discussed how motion is described in terms of velocity and

acceleration. Now we deal with the question of why objects move as

they do: What makes an object at rest begin to move? What causes an

object to accelerate or decelerate? What is involved when an object
moves in a curved path? We can answer in each case that a force is required. In this
Chapterl, we will investigate the connection between force and motion, which is the
subject called dynamics.

4— Force

Intuitively, we experience force as any kind of a push or a pull on an object. When
you push a stalled car or a grocery cart (Fig. 4-1), you are exerting a force on it.
WHien a motor lifts an elevator, or a hammer hits a nail, or the wind blows the
leaves of a tree, a force is being exerted. We often call these contactforces because
the force is exerted when one object comes in contact with another object. On the
other hand, we say that an object falls because of the force of gravity.

If an object is at rest, to start it moving requires force—that is, a force is
needed to accelerate an object from zero velocity to a nonzero velocity. For an
object already moving, if you want to change its velocity—either in direction or in
magnitude—a force is required. In other words, to accelerate an object, a force is
always required. In Section 4-4 we discuss the precise relation between acceleration
and net force, which is Newton’s second law.

One way to measure the magnitude (or strength) of a force is to use a spring
scale (Fig. 4-2). Normally, such a spring scale is used to find the weight of an
object; by weight we mean the force of gravity acting on the object (Section 4-6).
The spring scale, once calibrated, can be used to measure other kinds of forces as
well, such as the pulling force shown in Fig. 4-2.

A force exerted in a different direction has a different effect. Force has
direction as well as magnitude, and is indeed a vector that follows the rules of
vector addition discussed in Chapter 3. We can represent any force on a diagram
by an arrow, just as we did with velocity. The direction of the arrow is the direction of
the push or pull, and its length is drawn proportional to the magnitude of the force.

FIGURE 4-2 A spring scale used to

measure a force.

4—2 Newton's First Law of Motion

What is the relationship between force and motion? Aristotle (384-322 B.C)
believed that a force was required to keep an object moving along a horizontal
plane. To Aristotle, the natural state of an object was at rest, and a force was
believed necessary to keep an object in motion. Furthermore, Aristotle argued, the
greater the force on the object, the greater its speed.

Some 2000 years later, Galileo disagreed: he maintained that it is just as natural
for an object to be in motion with a constant velocity as it is for it to be at rest.

To understand Galileo’s idea, consider the following observations involving
motion along a horizontal plane. To push an object with a rough surface along a

tWe treat everyday objects in motion here; the treatment of the submicroscopic world of atoms
and molecules, and when velocities are extremely high, close to the speed of light (3.0 x 108m/s), are
treated using quantum theory (Chapter 37 ff), and the theory of relativity (Chapter 36).
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tabletop at constant speed requires a certain amount of force. To push an equally
heavy object with a very smooth surface across the table at the same speed will
require less force. If a layer of oil or other lubricant is placed between the surface of
the object and the table, then almost no force is required to keep the object moving.
Notice that in each successive step, less force is required. As the next step, we imagine
that the object does not rub against the table at all—or there is a perfect lubricant
between the object and the table—and theorize that once started, the object would
move across the table at constant speed with no force applied. A steel ball bearing
rolling on a hard horizontal surface approaches this situation. So does a puck on an
air table, in which a thin layer of air reduces friction almost to zero.

It was Galileo’s genius to imagine such an idealized world—in this case, one
where there is no friction—and to see that it could lead to a more accurate and
richer understanding of the real world. This idealization led him to his remarkable
conclusion that if no force is applied to a moving object, it will continue to move
with constant speed in a straight line. An object slows down only if a force is exerted
on it. Galileo thus interpreted friction as a force akin to ordinary pushes and pulls.

To push an object across a table at constant speed requires a force from your
hand that can balance out the force of friction (Fig. 4-3). When the object moves
at constant speed, your pushing force is equal in magnitude to the friction force,
but these two forces are in opposite directions, so the net force on the object (the
vector sum of the two forces) is zero. This is consistent with Galileo’s viewpoint,
for the object moves with constant speed when no net force is exerted on it.

Upon this foundation laid by Galileo, Isaac Newton (Fig. 4-4) built his great
theory of motion. Newton’s analysis of motion is summarized in his famous “three
laws of motion.” In his great work, the Principia (published in 1687), Newton
readily acknowledged his debt to Galileo. In fact, Newton’s first law of motion is
close to Galileo’ conclusions. It states that

Every object continues in its state of rest, or of uniform velocity in a straight
line, as long as no net force acts on it.

The tendency of an object to maintain its state of rest or of uniform velocity in a straight
line is called inertia. As a result, Newton’s first law is often called the law of inertia.

CONCEPTUAL EXAMPLE 4-1 | Newton's first law. A school bus comes to a
sudden stop, and all of the backpacks on the floor start to slide forward. What force
causes them to do that?

RESPONSE It isnt “force” that does it. By Newton’s first law, the backpacks
continue their state of motion, maintaining their velocity. The backpacks slow
down if a force is applied, such as friction with the floor.

Inertial Reference Frames

Newton’s first law does not hold in every reference frame. For example, if your
reference frame is fixed in an accelerating car, an object such as a cup resting on the
dashboard may begin to move toward you (it stayed at rest as long as the car’s
velocity remained constant). The cup accelerated toward you, but neither you nor
anything else exerted a force on it in that direction. Similarly, in the reference frame
of the decelerating bus in Example 4-1, there was no force pushing the backpacks
forward. In accelerating reference frames, Newton’s first law does not hold. Refer-
ence frames in which Newton’s first law does hold are called inertial reference
frames (the law of inertia is valid in them). For most purposes, we usually make the
approximation that a reference frame fixed on the Earth is an inertial frame. This is
not precisely true, due to the Earth’s rotation, but usually it is close enough.

Any reference frame that moves with constant velocity (say, a car or an
airplane) relative to an inertial frame is also an inertial reference frame. Reference
frames where the law of inertia does not hold, such as the accelerating reference
frames discussed above, are called noninertial reference frames. How can we be
sure a reference frame is inertial or not? By checking to see if Newton’s first law
holds. Thus Newton’s first law serves as the definition of inertial reference frames.

SECTION 4-2

FIGURE 4-3 F represents the force

applied by the person and Ffr
represents the force of friction.

NEWTON'S FIRST LAW
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FIGURE 4-4
Isaac Newton (1642-1727).
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Distinguish massfrom weight

FIGURE 4-5 The bobsled

accelerates because the team exerts

a force.
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NEWTON'S SECOND LAW

CHAPTER 4

OFMOTION

4 -3 Mass

Newton’s second law, which we come to in the next Section, makes use of the
concept of mass. Newton used the term mass as a synonym for quantity of matter.
This intuitive notion of the mass of an object is not very precise because the
concept “quantity of matter” is not very well defined. More precisely, we can say
that mass is a measure of the inertia of an object. The more mass an object has, the
greater the force needed to give it a particular acceleration. It is harder to start it
moving from rest, or to stop it when it is moving, or to change its velocity sideways
out of a straight-line path. A truck has much more inertia than a baseball moving
at the same speed, and a much greater force is needed to change the truck’s
velocity at the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we must define a standard. In Sl units, the
unit of mass is the kilogram (kg) as we discussed in Chapter 1, Section 1-4.

The terms mass and weight are often confused with one another, but it is
important to distinguish between them. Mass is a property of an object itself
(a measure of an object’s inertia, or its “quantity of matter”). Weight, on the other
hand, is a force, the pull of gravity acting on an object. To see the difference,
suppose we take an object to the Moon. The object will weigh only about one-sixth
as much as it did on Earth, since the force of gravity is weaker. But its mass will be
the same. It will have the same amount of matter as on Earth, and will have just as
much inertia—for in the absence of friction, it will be just as hard to start it
moving on the Moon as on Earth, or to stop it once it is moving. (More on weight
in Section 4-6.)

4—4 Newton's Second Law of Motion

Newton’s first law states that if no net force is acting on an object at rest, the
object remains at rest; or if the object is moving, it continues moving with constant
speed in a straight line. But what happens if a net force is exerted on an object?
Newton perceived that the object’s velocity will change (Fig. 4-5). A net force
exerted on an object may make its velocity increase. Or, if the net force is in a
direction opposite to the motion, the force will reduce the object’s velocity. If the
net force acts sideways on a moving object, the direction of the object’s velocity
changes (and the magnitude may as well). Since a change in velocity is an acceleration
(Section 2-4), we can say that a netforce causes acceleration.

What precisely is the relationship between acceleration and force? Everyday
experience can suggest an answer. Consider the force required to push a cart when
friction is small enough to ignore. (If there is friction, consider the net force, which
is the force you exert minus the force of friction.) If you push the cart with a gentle
but constant force for a certain period of time, you will make the cart accelerate
from rest up to some speed, say 3km/h. If you push with twice the force, the cart
will reach 3km/h in half the time. The acceleration will be twice as great. If you
triple the force, the acceleration is tripled, and so on. Thus, the acceleration of an
object is directly proportional to the net applied force. But the acceleration
depends on the mass of the object as well. If you push an empty grocery cart with
the same force as you push one that is filled with groceries, you will find that the
full cart accelerates more slowly. The greater the mass, the less the acceleration for
the same net force. The mathematical relation, as Newton argued, is that the
acceleration of an object is inversely proportional to its mass. These relationships
are found to hold in general and can be summarized as follows:

The acceleration of an object is directly proportional to the net force acting
on it, and is inversely proportional to the object’s mass. The direction of the
acceleration is in the direction of the net force acting on the object.

This is Newton’s second law of motion.

Dynamics: Newton's Laws of Motion



Newton’s second law can be written as an equation:
2F,
m
where a stands for acceleration, m for the mass, and 2F for the netforce on the object.
The symbol 2 (Greek “sigma”) stands for “sum of”; F stands for force, so 2F means
the vector sum ofallforces acting on the object, which we define as the net force.

We rearrange this equation to obtain the familiar statement of Newton’s
second law:

a =

2F = ma (4-1a)
Newton’s second law relates the description of motion (acceleration) to the cause
of motion (force). It is one of the most fundamental relationships in physics. From
Newton’s second law we can make a more precise definition of force as an action
capable of accelerating an object.

Every force F is a vector, with magnitude and direction. Equation 4-la is a
vector equation valid in any inertial reference frame. It can be written in component
form in rectangular coordinates as

= max, 'ZFy = may, = maz, (4-1b)
where
F = Ki + iyl + Fzk.
The component of acceleration in each direction is affected only by the component
of the net force in that direction.

In Sl units, with the mass in kilograms, the unit of force is called the newton (N).
One newton, then, is the force required to impart an acceleration of 1m/s2to a
mass of 1kg. Thus 1N = 1kg-m/s2

In cgs units, the unit of mass is the gram (g) as mentioned earlier.1The unit of force
is the dyne, which is defined as the net force needed to impart an acceleration of 1 cm/s2
to a mass of 1g. Thus 1dyne = 1gecm/s2. It is easy to show that 1dyne = 10“5N.

In the British system, the unit of force is the pound (abbreviated Ib), where
1lb = 4.448222 N « 4.45N. The unit of mass is the slug, which is defined as that
mass which will undergo an acceleration of 1ft/s2when a force of 11b is applied to
it. Thus 11lb = 1slug-ft/s2 Table 4-1 summarizes the units in the different systems.

It is very important that only one set of units be used in a given calculation or
problem, with the Sl being preferred. If the force is given in, say, newtons, and the
mass in grams, then before attempting to solve for the acceleration in Sl units, we
must change the mass to kilograms. For example, if the force is given as 2.0 N along
the x axis and the mass is 500 g, we change the latter to 0.50 kg, and the accelera-
tion will then automatically come out in m/s2when Newton’s second law is used:

2 Fx 20N 2.0kg-m/s2

m  050kg 0s50kg - *om/s.

EXAMPLE 4-2 ESTIMATE | Force to accelerate a fast car. Estimate the net
force needed to accelerate (a) a 1000-kg car at\g\ (b) a 200-g apple at the same rate.

APPROACH We use Newton’s second law to find the net force needed for
each object. This is an estimate (the \ is not said to be precise) so we round off to
one significant figure.

SOLUTION (a) The car’s acceleration is a =\g = (9.8 m/s2) « 5m/s2 We use
Newton’s second law to get the net force needed to achieve this acceleration:

2F = ma « (1000kg)(5m/s2 = 5000 N.

(If you are used to British units, to get an idea of what a 5000-N force is, you can
divide by 4.45 N/Ib and get a force of about 10001b.)

(b) For the apple, m =200g = 0.2kg, so
2F = ma « (0.2kg)(5m/s2 = 1IN.

fBe careful not to confuse g for gram with g for the acceleration due to gravity. The latter is always
italicized (or boldface when a vector).

SECTION 4-4

NEWTON'S SECOND LAW
OFMOTION

TABLE 4-1
Units for Mass and Force
System Mass Force
Sl kilogram newton (N)
(kg) (= kg-m/s2)
cgs gram (g) dyne
(=gecm/s2)
British  slug pound (Ib)
Conversion factors: 1dyne  10“5N;
lib  4.45N.
\PROBLEM SOLVING

Use a consistentset o f units
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EXAMPLE 4-3 Force to stop a car. What average net force is required to
bring a 1500-kg car to rest from a speed of 100 km/h within a distance of 55 m?

APPROACH We use Newton’s second law, 2T7 = ma, to determine the force,
but first we need to calculate the acceleration a. We assume the acceleration is
constant, so we can use the kinematic equations, Egs. 2-12, to calculate it.

r0- K&kinh v=0
FIGURE 4-6
Example 4-3. 1— x(m)
A=0 v=55m

SOLUTION We assume the motion is along the +x axis (Fig. 4-6). We are given
the initial velocity vO= 100km/h = 27.8m/s (Section 1-5), the final velocity
v = 0, and the distance traveled x —x0= 55m. From Eq. 2-12c, we have

v2 = vo + 2a(x - %),
S0

_ov*F-vl 0—@278mfs)2 omls
8T oXTxg T TTaemy T M

The net force required is then
2F = ma = (1500kg)(-7.1 m/s2 = -1.1X104N.

The force must be exerted in the direction opposite to the initial velocity, which is
what the negative sign means.

NOTE If the acceleration is not precisely constant, then we are determining an
“average” acceleration and we obtain an “average” net force.

Newton’s second law, like the first law, is valid only in inertial reference frames
(Section 4-2). In the noninertial reference frame of an accelerating car, for
example, a cup on the dashboard starts sliding—it accelerates—even though the
net force on it is zero; thus 2F = ma doesn’t work in such an accelerating refer-
ence frame (2F = 0, buta # 0in this noninertial frame).

EXERCISE A Suppose you watch a cup slide on the (smooth) dashboard of an accelerating car
as we just discussed, but this time from an inertial reference frame outside the car, on the
street. From your inertial frame, Newton’s laws are valid. What force pushes the cup off
the dashboard?

Precise Definition of Mass

As mentioned in Section 4-3, we can quantify the concept of mass using its defin-
ition as a measure of inertia. How to do this is evident from Eq. 4-la, where we
see that the acceleration of an object is inversely proportional to its mass. If the same
net force 2F acts to accelerate each of two masses, mxand m2, then the ratio of
their masses can be defined as the inverse ratio of their accelerations:

m2 al

m1l a2

If one of the masses is known (it could be the standard kilogram) and the two
accelerations are precisely measured, then the unknown mass is obtained from this
definition. For example, if m1= 1.00kg, and for a particular force ax = 3.00 m/s2
and a2 =2.00m/s2 then m2= 1.50kg.
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4—5 Newton's Third Law of Motion

Newton’s second law of motion describes quantitatively how forces affect motion. But
where, we may ask, do forces come from? Observations suggest that a force exerted on
any object is always exerted by another object. A horse pulls a wagon, a person pushes
a grocery cart, a hammer pushes on a nail, a magnet attracts a paper clip. In each of
these examples, a force is exerted on one object, and that force is exerted by another
object. For example, the force exerted on the nail is exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer exerts
a force on the nail (Fig. 4-7). But the nail evidently exerts a force back on the
hammer as well, for the hammer’s speed is rapidly reduced to zero upon contact. FIGURE 4-7 A hammer striking a
Only a strong force could cause such a rapid deceleration of the hammer. Thus, nail. The hammer exerts a force on the
said Newton, the two objects must be treated on an equal basis. The hammer  nail and the nail exerts a force back on
exerts a force on the nail, and the nail exerts a force back on the hammer. This is  the hammer. The latter force decelerates
the essence of Newton’s third law of motion: the hammer and brings it to rest.

Whenever one object exerts a force on a second object, the second exerts an NEWTON'S THIRD LAW
equal force in the opposite direction on the first. OFMOTION

This law is sometimes paraphrased as “to every action there is an equal and

opposite reaction.” This is perfectly valid. But to avoid confusion, it is very A CAUTION

important to remember that the “action” force and the “reaction” force are Action and reaction forces act

acting on different objects. on different objects
As evidence for the validity of Newton’s third law, look at your hand when

you push against the edge of a desk, Fig. 4-8. Your hand’s shape is distorted, clear

evidence that a force is being exerted on it. You can see the edge of the desk

pressing into your hand. You can even feel the desk exerting a force on your hand;

it hurts! The harder you push against the desk, the harder the desk pushes back on

your hand. (You only feel forces exerted on you; when you exert a force on

another object, what you feel is that object pushing back on you.)

Force exerted
on hand FIGURE 4-8 Ifyour hand

by desk pushes against the edge of a desk
(the force vector is shown in red),
the desk pushes back against your
\ hand (this force vector is shown
in a different color, violet,
to remind us that this force

ForcexertecNA acts on a different object).

on desk by hand FIGURE 4-9 An example of

Newton’s third law: when an ice
skater pushes against the wall, the
The force the desk exerts on your hand has the same magnitude as the force ~ wall pushes back and this force
your hand exerts on the desk. This is true not only if the desk is at rest but is true ~ causes her to accelerate away.
even if the desk is accelerating due to the force your hand exerts.
As another demonstration of Newton’s third law, consider the ice skater in
Fig. 4-9. There is very little friction between her skates and the ice, so she will
move freely if a force is exerted on her. She pushes against the wall; and then she
starts moving backward. The force she exerts on the wall cannot make her start

moving, for that force acts on the wall. Something had to exert a force on her to Force Force
start her moving, and that force could only have been exerted by the wall. The
force with which the wall pushes on her is, by Newton’s third law, equal and oppo- skater  wall

site to the force she exerts on the wall.

When a person throws a package out of a small boat (initially at rest), the boat
starts moving in the opposite direction. The person exerts a force on the package. The
package exerts an equal and opposite force back on the person, and this force
propels the person (and the boat) backward slightly.
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Horizontal
force exerted

FIGURE 4-10 Another example of
Newton’s third law: the launch of a
rocket. The rocket engine pushes the
gases downward, and the gases exert
an equal and opposite force upward
on the rocket, accelerating it upward.
(A rocket does not accelerate as a
result of its propelling gases pushing
against the ground.)

FIGURE 4-11 We can walk
forward because, when one foot

pushes backward against the ground,

the ground pushes forward on that
foot (Newton’s third law). The two
forces shown act on different objects.

Horizontal

on the ground on the

by person’s person’s foot

foot ~ by the ground
'GP PG

NEWTON'S THIRD LAW
OFMOTION

force exerted

Rocket propulsion also is explained using Newton’s third law (Fig. 4-10). A
common misconception is that rockets accelerate because the gases rushing out
the back of the engine push against the ground or the atmosphere. Not true. What
happens, instead, is that a rocket exerts a strong force on the gases, expelling
them; and the gases exert an equal and opposite force on the rocket. It is this
latter force that propels the rocket forward—the force exerted on the rocket by
the gases (see Chapter-Opening photo, page 83). Thus, a space vehicle is maneuvered
in empty space by firing its rockets in the direction opposite to that in which it needs to
accelerate. When the rocket pushes on the gases in one direction, the gases push back
on the rocket in the opposite direction. Jet aircraft too accelerate because the gases
they thrust out backwards exert a forward force on the engines (Newton’s third law).

Consider how we walk. A person begins walking by pushing with the foot
backward against the ground. The ground then exerts an equal and opposite force
forward on the person (Fig. 4-11), and it is this force, on the person, that moves
the person forward. (If you doubt this, try walking normally where there is no
friction, such as on very smooth slippery ice.) In a similar way, a bird flies forward
by exerting a backward force on the air, but it is the air pushing forward (Newton’s
third law) on the bird’s wings that propels the bird forward.

CONCEPTUAL EXAMPLE 44~1 What exerts the force to move a car? What
makes a car go forward?

RESPONSE A common answer is that the engine makes the car move forward.
But it is not so simple. The engine makes the wheels go around. But if the tires
are on slick ice or deep mud, they just spin. Friction is needed. On firm ground,
the tires push backward against the ground because of friction. By Newton’s third
law, the ground pushes on the tires in the opposite direction, accelerating the car
forward.

We tend to associate forces with active objects such as humans, animals, engines,
or a moving object like a hammer. It is often difficult to see how an inanimate object
at rest, such as a wall or a desk, or the wall of an ice rink (Fig. 4-9), can exert a
force. The explanation is that every material, no matter how hard, is elastic
(springy) at least to some degree. A stretched rubber band can exert a force on a
wad of paper and accelerate it to fly across the room. Other materials may not
stretch as readily as rubber, but they do stretch or compress when a force is
applied to them. And just as a stretched rubber band exerts a force, so does a
stretched (or compressed) wall, desk, or car fender.

From the examples discussed above, we can see how important it is to
remember on what object a given force is exerted and by what object that force is
exerted. A force influences the motion of an object only when it is applied on that
object. A force exerted by an object does not influence that same object; it only
influences the other object on which it is exerted. Thus, to avoid confusion, the two
prepositions on and by must always be used—and used with care.

One way to keep clear which force acts on which object is to use double
subscripts. For example, the force exerted on the Person by the Ground as the
person walks in Fig. 4-11 can be labeled FpG- And the force exerted on the ground
by the person is Fgp- By Newton’s third law

(4-2)

Fgp and Fpg have the same magnitude (Newton’s third law), and the minus sign
reminds us that these two forces are in opposite directions.

Note carefully that the two forces shown in Fig. 4-11 act on different
objects—hence we used slightly different colors for the vector arrows representing
these forces. These two forces would never appear together in a sum of forces in
Newton’s second law, 2F = ma. Why not? Because they act on different objects:
a is the acceleration of one particular object, and 2F must include only the forces
on that one object.
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Force on

Force onsled  assistant

exerted by exerted

assistant by sled

'SG NgsG “ Fsg)
Friction Force on Force on Force on
force on ground ground assistant
sledexerted  exerted exerted exerted
by ground by sled by assistant by ground
(=-F ag)

CONCEPTUAL EXAMPLE 4-5~| Third law clarification. Michelangelo’s assistant
has been assigned the task of moving a block of marble using a sled (Fig. 4-12).
He says to his boss, “When | exert a forward force on the sled, the sled exerts
an equal and opposite force backward. So how can | ever start it moving? No
matter how hard | pull, the backward reaction force always equals my
forward force, so the net force must be zero. I’ll never be able to move this load.”
Is he correct?

RESPONSE No. Although it is true that the action and reaction forces are equal
in magnitude, the assistant has forgotten that they are exerted on different
objects. The forward (“action”) force is exerted by the assistant on the sled
(Fig. 4-12), whereas the backward “reaction” force is exerted by the sled on the
assistant. To determine if the assistant moves or not, we must consider only the
forces on the assistant and then apply 2F = ma, where 2F is the net force
on the assistant, a is the acceleration of the assistant, and m is the assistant’s mass.
There are two forces on the assistant that affect his forward motion; they are
shown as bright red (magenta) arrows in Figs. 4-12 and 4-13: they are (1) the
horizontal force Fag exerted on the assistant by the ground (the harder he
pushes backward against the ground, the harder the ground pushes forward on
him—Newton’s third law), and (2) the force Fas exerted on the assistant by the
sled, pulling backward on him; see Fig. 4-13. If he pushes hard enough on
the ground, the force on him exerted by the ground, FAG, will be larger than
the sled pulling back, FAS, and the assistant accelerates forward (Newton’s
second law). The sled, on the other hand, accelerates forward when the force on
it exerted by the assistant is greater than the frictional force exerted backward
on it by the ground (that is, when FSA has greater magnitude than FSG in
Fig. 4-12).

Using double subscripts to clarify Newton’s third law can become cumbersome,
and we won'’t usually use them in this way. We will usually use a single subscript
referring to what exerts the force on the object being discussed. Nevertheless, if
there is any confusion in your mind about a given force, go ahead and use two
subscripts to identify on what object and by what object the force is exerted.

EXERCISE B Return to the first Chapter-Opening Question, page 83, and answer it again
now. Try to explain why you may have answered differently the first time.

EXERCISE C A massive truck collides head-on with a small sports car. (a) Which vehicle
experiences the greater force of impact? (b) Which experiences the greater acceleration
during the impact? (c) Which of Newton’s laws are useful to obtain the correct answers?

EXERCISED If you push on a heavy desk, does it always push back on you? (a) Not unless
someone else also pushes on it. (b) Yes, if it is out in space, (c) A desk never pushes to
start with, (d) No. (e) Yes.

SECTION 4-5

FIGURE 4-12 Example 4-5,
showing only horizontal forces.
Michelangelo has selected a fine
block of marble for his next
sculpture. Shown here is his assistant
pulling it on a sled away from the
quarry. Forces on the assistant are
shown as red (magenta) arrows.
Forces on the sled are purple arrows.
Forces acting on the ground are
orange arrows. Action-reaction
forces that are equal and opposite
are labeled by the same subscripts
but reversed (such as FGAand FAG)
and are of different colors because
they act on different objects.

\PROBLEM SOLVING

A study of Newton second and
third laws

Force on
assistant
exerted
by sled

Force on
assistant
exerted
by ground

FIGURE 4-13 Example 4-5. The
horizontal forces on the assistant.
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FIGURE 4-14  (a) The net force on
an object at rest is zero according to
Newton’s second law. Therefore the
downward force of gravity (Fg) on
an object at rest must be balanced
by an upward force (the normal
force Fn) exerted by the table in this
case, (b) Fnis the force exerted on
the table by the statue and is the
reaction force to FNby Newton’s
third law. (Fnis shown in a different
color to remind us it acts on a
different object.) The reaction force
to Fg is not shown.

/i\ CAUTION

Weight and normal force are not
action-reaction pairs

92 CHAPTER 4

4—6 Weight—the Force of Gravity;
and the Normal Force

As we saw in Chapter 2, Galileo claimed that all objects dropped near the surface
of the Earth would fall with the same acceleration, g, if air resistance was
negligible. The force that causes this acceleration is called the force of gravity or
gravitational force. What exerts the gravitational force on an object? It is the Earth,
as we will discuss in Chapter 6, and the force acts vertically™downward, toward the
center of the Earth. Let us apply Newton’s second law to an object of mass m falling
freely due to gravity. For the acceleration, a, we use the downward acceleration due
to gravity, g. Thus, the gravitational force on an object, FG, can be written as

(4-3)

The direction of this force is down toward the center of the Earth. The magnitude
of the force of gravity on an object, mg, is commonly called the object’s weight.

In SI units, g = 9.80m/s2 = 9.80 N/kg, *so the weight of a 1.00-kg mass on
Earth is 1.00kg X 9.80m/s2 = 9.80N. We will mainly be concerned with the
weight of objects on Earth, but we note that on the Moon, on other planets, or in
space, the weight of a given mass will be different than it is on Earth. For example,
on the Moon the acceleration due to gravity is about one-sixth what it is on Earth,
and a 1.0-kg mass weighs only 1.6 N. Although we will not use British units, we
note that for practical purposes on the Earth, a mass of 1 kg weighs about 2.2 Ib.
(On the Moon, 1kg weighs only about 0.4 Ib.)

The force of gravity acts on an object when it is falling. When an object is at
rest on the Earth, the gravitational force on it does not disappear, as we know if
we weigh it on a spring scale. The same force, given by Eq. 4-3, continues to act.
Why, then, doesnt the object move? From Newton’s second law, the net force on
an object that remains at rest is zero. There must be another force on the object to
balance the gravitational force. For an object resting on a table, the table exerts
this upward force; see Fig. 4-14a. The table is compressed slightly beneath the
object, and due to its elasticity, it pushes up on the object as shown. The force
exerted by the table is often called a contact force, since it occurs when two objects
are in contact. (The force of your hand pushing on a cart is also a contact force.)
When a contact force acts perpendicular to the common surface of contact, it is
referred to as the normal force (“normal” means perpendicular); hence it is
labeled Fn in Fig. 4-14a.

The two forces shown in Fig. 4-14a are both acting on the statue, which
remains at rest, so the vector sum of these two forces must be zero (Newton’s
second law). Hence Fg and FNmust be of equal magnitude and in opposite direc-
tions. But they are not the equal and opposite forces spoken of in Newton’s third
law. The action and reaction forces of Newton’s third law act on different objects,
whereas the two forces shown in Fig. 4-14a act on the same object. For each of the
forces shown in Fig. 4-14a, we can ask, “What is the reaction force?” The upward
force, FN, on the statue is exerted by the table. The reaction to this force is a force
exerted by the statue downward on the table. It is shown in Fig. 4-14b, where it is
labeled F~. This force, F~, exerted on the table by the statue, is the reaction force
to Fn in accord with Newton’s third law. What about the other force on the statue,
the force of gravity FGexerted by the Earth? Can you guess what the reaction is to
this force? We will see in Chapter 6 that the reaction force is also a gravitational
force, exerted on the Earth by the statue.

Fg = mg.

EXERCISEE Return to the second Chapter-Opening Question, page 83, and answer it
again now. Try to explain why you may have answered differently the first time.

fThe concept of “vertical” is tied to gravity. The best definition of vertical is that it is the direction in
which objects fall. A surface that is “horizontal,” on the other hand, is a surface on which a round object
won't start rolling: gravity has no effect. Horizontal is perpendicular to vertical.

*Since IN = lkg-m/s2 (Section 4-4), then Im/s2 = IN/kg.
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EXAMPLE 4-6 Weight, normal force, and a box. A friend has given you a
special gift, a box of mass 10.0kg with a mystery surprise inside. The box is
resting on the smooth (frictionless) horizontal surface of a table (Fig. 4-15a).
(a) Determine the weight of the box and the normal force exerted on it by the
table. (b) Now your friend pushes down on the box with a force of 40.0N, as in
Fig. 4-15b. Again determine the normal force exerted on the box by the table,
(c) If your friend pulls upward on the box with a force of 40.0 N (Fig. 4-15c),
what now is the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each
case is zero (Newton’s second law). The weight of the box has magnitude mg in
all three cases.

SOLUTION (a) The weight of the box is mg = (10.0kg)(9.80 m/s2 = 98.0N,
and this force acts downward. The only other force on the box is the normal force
exerted upward on it by the table, as shown in Fig. 4-15a. We chose the upward
direction as the positive y direction; then the net force 'EFy on the box is
'ZFy = FN- mg\ the minus sign means mg acts in the negative y direction
(m and g are magnitudes). The box is at rest, so the net force on it must be zero

(Newton’s second law, = may, and ay = 0).Thus
'ZFy = may
Fn ~mg =0,
so we have
Fn = mg.

The normal force on the box, exerted by the table, is 98.0 N upward, and has
magnitude equal to the box’s weight.

(b) Your friend is pushing down on the box with a force of 40.0 N. So instead of
only two forces acting on the box, now there are three forces acting on the box,
as shown in Fig. 4-15b. The weight of the box is still mg = 98.0N. The net force
is 'EFy = FN—mg —40.0N, and is equal to zero because the box remains at
rest (a = 0). Newton’s second law gives

JFy = FN- mg - 400N = 0.
We solve this equation for the normal force:
FN = mg + 400N = 980N + 40.0N = 138.0N,

which is greater than in (a). The table pushes back with more force when a person
pushes down on the box. The normal force is not always equal to the weight!

(c) The box’s weight is still 98.0 N and acts downward. The force exerted by your
friend and the normal force both act upward (positive direction), as shown in
Fig. 4-15c. The box doesn’t move since your friend’s upward force is less than the
weight. The net force, again set to zero in Newton’s second law because a = 0, is

'SFy = FN—mg + 400N = 0,
SO
Fn = mg - 400N = 980N - 400N = 580N.

The table does not push against the full weight of the box because of the upward
pull exerted by your friend.

NOTE The weight of the box (= mg) does not change as a result of your friend’s
push or pull. Only the normal force is affected.

Recall that the normal force is elastic in origin (the table in Fig. 4-15 sags
slightly under the weight of the box). The normal force in Example 4-6 is vertical,
perpendicular to the horizontal table. The normal force is not always vertical,
however. When you push against a wall, for example, the normal force with
which the wall pushes back on you is horizontal (Fig. 4-9). For an object on a
plane inclined at an angle to the horizontal, such as a skier or car on a hill, the
normal force acts perpendicular to the plane and so is not vertical.

i

mi
@S* - fh~ms~0

(b) I/-v=Fn 400N =

(c) IF, = -mg+ 400N=0
FIGURE 4-15 Example 4-6.
(a) A 10-kg gift box is at rest on a
table, (b) A person pushes down on
the box with a force of 40.0 N.
(c) A person pulls upward on the
box with a force of 40.0 N. The forces
are all assumed to act along a line;
they are shown slightly displaced in
order to be distinguishable. Only
forces acting on the box are shown.

/|I\ CAUTION
The normalforce is not
always equal to the weight

/j\ CAUTION

The normalforce, FN, is
not necessarily vertical
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FIGURE 4-16 Example 4-7.
The box accelerates upward because

FP> mg.

FIGURE 4-17 Example 4-8. The
acceleration vector is shown in gold
to distinguish it from the red force
vectors.

ft

EXAMPLE 4-7 Accelerating the box. What happens when a person pulls
upward on the box in Example 4-6¢ with a force equal to, or greater than, the
box’s weight? For example, let FP = 100.0N (Fig. 4-16) rather than the 40.0N
shown in Fig. 4-15c.

APPROACH We can start just as in Example 4-6, but be ready for a surprise.
SOLUTION The net force on the box is

"Fy = Fs —mg + FP
FN- 98.0N + 100.0N,

and if we set this equal to zero (thinking the acceleration might be zero), we
would get FN= -2.0 N. This is nonsense, since the negative sign implies FN
points downward, and the table surely cannot pull down on the box (unless
there’s glue on the table). The least FNcan be is zero, which it will be in this case.
What really happens here is that the box accelerates upward because the net
force is not zero. The net force (setting the normal force FN = 0) is

''Fy = Fp - mg = 1000N - 980N
= 20N

upward. See Fig. 4-16. We apply Newton’s second law and see that the box
moves upward with an acceleration

'Zfy _ 20N
m 10.0 kg
= 0.20m/s2.

EXAMPLE 4-8 Apparent weight loss. A 65-kg woman descends in an
elevator that briefly accelerates at 0.20g downward. She stands on a scale that
reads in kg. (a) During this acceleration, what is her weight and what does the
scale read? (b) What does the scale read when the elevator descends at a
constant speed of 2.0 m/s?

APPROACH Figure 4-17 shows all the forces that act on the woman (and only
those that act on her). The direction of the acceleration is downward, so we
choose the positive direction as down (this is the opposite choice from Examples
4-6 and 4-7).

SOLUTION {a) From Newton’s second law,

2F = ma
m(0.20g).

mg —FN
We solve for FN:
Fn = mg - 0.20mg = 0.80mg,

and it acts upward. The normal force FNis the force the scale exerts on the
person, and is equal and opposite to the force she exerts on the scale:
Fn = 0.80mg downward. Her weight (force of gravity on her) is still
mg = (65kg)(9.8m/s2) = 640 N. But the scale, needing to exert a force of only
0.80mg, will give a reading of 0.80m = 52Kkg.

(b) Now there is no acceleration, a =0, so by Newton’s second law,
mg - FN= 0 and FN= mg. The scale reads her true mass of 65 kg.

NOTE The scale in (a) may give a reading of 52 kg (as an “apparent mass”), but
her mass doesnt change as a result of the acceleration: it stays at 65 kg.
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4— Solving Problems with Newton's Laws:;
Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is proportional to
the net force acting on the object. The net force, as mentioned earlier, is the
vector sum of all forces acting on the object. Indeed, extensive experiments have
shown that forces do add together as vectors precisely according to the rules we
developed in Chapter 3. For example, in Fig. 4-18, two forces of equal magni-
tude (100 N each) are shown acting on an object at right angles to each other.
Intuitively, we can see that the object will start moving at a 45° angle and thus
the net force acts at a 45° angle. This is just what the rules of vector addition
give. From the theorem of Pythagoras, the magnitude of the resultant force is
Fr = V (100N)2 + (100 N)2 = 141N.

EXAMPLE 4-9 Adding force vectors. Calculate the sum of the two forces
exerted on the boat by workers A and B in Fig. 4-19a.

APPROACH We add force vectors like any other vectors as described in Chapter 3.
The first step is to choose an xy coordinate system (see Fig. 4-19a), and then
resolve vectors into their components.

SOLUTION The two force vectors are shown resolved into components in Fig. 4-19b.
We add the forces using the method of components. The components of FAare

Fax =  c0s45.0° = (40.0N)(0.707) = 283N,
FAy = Fasin45.0° = (40.0N)(0.707) = 28.3N.
The components of FBare
FBx +Fbcos37.0° = +(30.0N)(0.799) = +24.0N,
FBy = ~Fbsin37.0° = -(30.0N)(0.602) = -18.1N.

FBy is negative because it points along the negative y axis. The components of the
resultant force are (see Fig. 4 -19c)

Frx = FAx + FBx = 283N + 240N 523N,
FRy FAy  FBy 283N - 181N = 10.2N.

To find the magnitude of the resultant force, we use the Pythagorean theorem
Ex = V f% + Fly V(52.3)2 + (10.2)2N = 53.3N.

The only remaining question is the angle O that the net force FRmakes with the x axis
We use:

r Ry 10.2N
= 0.1
tan O o 523N 0.195,
and tan 1(0.195) = 11.0°. The net force on the boat has magnitude 53.3 N and

acts at an 11.0° angle to the x axis.

When solving problems involving Newton’s laws and force, it is very important
to draw a diagram showing all the forces acting on each object involved. Such a
diagram is called a free-body diagram, or force diagram: choose one object, and
draw an arrow to represent each force acting on it. Include every force acting on
that object. Do not show forces that the chosen object exerts on other objects. To
help you identify each and every force that is exerted on your chosen object, ask
yourself what other objects could exert a force on it. If your problem involves
more than one object, a separate free-body diagram is needed for each object. For
now, the likely forces that could be acting are gravity and contact forces (one
object pushing or pulling another, normal force, friction). Later we will consider air
resistance, drag, buoyancy, pressure, as well as electric and magnetic forces.

@ (b)

FIGURE 4-18 (a) Two forces, FA
and Fb, exerted by workers A and B,
act on a crate, (b) The sum, or
resultant, of FA and FBis FR.

FIGURE 4-19 Example 4-9: Two
force vectors act on a boat.

Fa = 40.0

j PRQBLEM SOLVING
Free-body diagram
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FIGURE 4-20 Example 4-10.
Which is the correct free-body
diagram for a hockey puck sliding n
across frictionless ice?
(h) * OTH

CONCEPTUAL EXAMPLE 4-10 | The hockey puck. A hockey puck is sliding at
constant velocity across a flat horizontal ice surface that is assumed to be frictionless.
Which of the sketches in Fig. 4-20 is the correct free-body diagram for this puck?
What would your answer be if the puck slowed down?

RESPONSE Did you choose @)? If so, can you answer the question: what exerts
the horizontal force labeled F on the puck? If you say that it is the force needed to
maintain the motion, ask yourself: what exerts this force? Remember that another
object must exert any force—and there simply isnt any possibility here. Therefore,
(a) is wrong. Besides, the force F in Fig. 4-20a would give rise to an acceleration by
Newton’s second law. It is (b) that is correct. No net force acts on the puck, and the
puck slides at constant velocity across the ice.

In the real world, where even smooth ice exerts at least a tiny friction force,
then (c) is the correct answer. The tiny friction force is in the direction opposite
to the motion, and the puck’s velocity decreases, even if very slowly.

Here now is a brief summary of how to approach solving problems involving

Newton’s laws.
S °LV/

object). For each (and every) force, you must be clear
about: on what object that force acts, and by what object
that force is exerted. Only forces acting on a given object
can be included in 2F = ma for that object.
Newton’s second law involves vectors, and it is usually
important to resolve vectors into components. Choose
x and y axes in a way that simplifies the calculation. For
example, it often saves work if you choose one coordi-
nate axis to be in the direction of the acceleration.

For each object, apply Newton’s second law to the
x and y components separately. That is, the x compo-

Newton's Laws; Free-Body Diagrams

1. Draw a sketch of the situation.

2. Consider only one object (at a time), and draw a
free-body diagram for that object, showing all the
forces acting on that object. Include any unknown
forces that you have to solve for. Do not show any
forces that the chosen object exerts on other objects.

Draw the arrow for each force vector reasonably
accurately for direction and magnitude. Label each force
acting on the object, including forces you must solve for,

as to its source (gravity, person, friction, and so on).

If several objects are involved, draw a free-body
diagram for each object separately, showing all the forces
acting on that object (and only forces acting on that

nent of the net force on that object is related to the
x component of that object’s acceleration: J,FX = max,
and similarly for the y direction.

Solve the equation or equations for the unknown(s).

This Problem Solving Strategy should not be considered a prescription. Rather it is
a summary of things to do that will start you thinking and getting involved in the
problem at hand.

When we are concerned only about translational motion, all the forces on a given
object can be drawn as acting at the center of the object, thus treating the object as
apointparticle. However, for problems involving rotation or statics, the place where
each force acts is also important, as we shall see in Chapters 10,11, and 12.

In the Examples that follow, we assume that all surfaces are very smooth so that
friction can be ignored. (Friction, and Examples using it, are discussed in Chapter 5).

/t\ CAUTION
Treating an object as aparticle
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EXAMPLE 4-11 Pulling the mystery box. Suppose a friend asks to examine
the 10.0-kg box you were given (Example 4-6, Fig. 4-15), hoping to guess what is
inside; and you respond, “Sure, pull the box over to you.” She then pulls the box
by the attached cord, as shown in Fig. 4-21a, along the smooth surface of the
table. The magnitude of the force exerted by the person is FP = 40.0N, and it is
exerted at a 30.0° angle as shown. Calculate (a) the acceleration of the box, and

(b) the magnitude of the upward force FN exerted by the table on the box.

Assume that friction can be neglected.

APPROACH We follow the Problem Solving Strategy on the previous page.

SOLUTION

1. Draw a sketch: The situation is shown in Fig. 4-213; it shows the box and the
force applied by the person, FP.

2. Free-body diagram: Figure 4-21b shows the free-body diagram of the box. To draw
it correctly, we show all the forces acting on the box and only the forces acting on
the box. They are: the force of gravity mg; the normal force exerted by the
table Fn; and the force exerted by the person FP. We are interested only in
translational motion, so we can show the three forces acting at a point, Fig. 4-21c.

3. Choose axes and resolve vectors: We expect the motion to be horizontal, so we
choose the x axis horizontal and the y axis vertical. The pull of 40.0N has
components

FFx = (40.0 N)(cos 30.0°) = (40.0N)(0.866) = 34.6 N,
Fw = (40.0N)(sin 30.0°) = (40.0N)(0.500) = 20.0N.

In the horizontal (jc) direction, FNand mg have zero components. Thus the
horizontal component of the net force is F?x.
4. (a) Apply Newton’s second law to determine the x component of the acceleration:
Fpx = ™ax.
5. (a) Solve:

- - &m - ?18.0®kg_) . 3.46m/,3.

The acceleration of the box is 3.46 m/s2to the right.
(b) Next we want to find FN.
4. (b) Apply Newton’s second lawto the vertical (y) direction, with upward as positive:
2Fy = may
Fn - mg + Fpy = may.

5. (b) Solve: We have mg = (10.0kg)(9.80 m/s2) = 98.0N and, from point 3
above, Fpy = 20.0 N. Furthermore, since FPy < mg, the box does not move
vertically, so 0. Thus

Fn - 980N + 200N = 0,
S0
Fn = 78.0N.

NOTE Fn is less than mg: the table does not push against the full weight of the
box because part of the pull exerted by the person is in the upward direction.

EXERCISE F A 10.0-kg box is dragged on a horizontal frictionless surface by a horizontal
force of 10.0N. If the applied force is doubled, the normal force on the box will
(a) increase; (b) remain the same; (c) decrease.

Tension in a Flexible Cord

When a flexible cord pulls on an object, the cord is said to be under tension, and
the force it exerts on the object is the tension FT. If the cord has negligible mass,
the force exerted at one end is transmitted undiminished to each adjacent piece of
cord along the entire length to the other end. Why? Because 2F = ma = 0 for
the cord if the cord’s mass m is zero (or negligible) no matter what a is. Hence the
forces pulling on the cord at its two ends must add up to zero (Fxand -F x). Note
that flexible cords and strings can only pull. They cant push because they bend.

@

30.0°

o/

mg

(b)

mg

©

FIGURE 4-21 (a) Pulling the box,
Example 4-11; (b) is the free-body
diagram for the box, and (c) is the
free-body diagram considering all
the forces to act at a point (transla-
tional motion only, which is what we
have here).

j PROBLEM SOLVING

Cords canpull but cantpush;
tension exists throughout a cord
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FIGURE 4-22 Example 4-12. (a) Two boxes, A and B,
are connected by a cord. A person pulls horizontally on
box A with force FP = 40.0 N. (b) Free-body diagram
for box A. (c) Free-body diagram for box B.

Box B Box A

(@
Our next Example involves two boxes connected by a cord. We can refer to
this group of objects as a system. A system is any group of one or more objects we
choose to consider and study.

Two boxes connected by a cord. Two boxes, A and B, are
connected by a lightweight cord and are resting on a smooth (frictionless) table.
The boxes have masses of 12.0kg and 10.0 kg. A horizontal force FP of 40.0N is
applied to the 10.0-kg box, as shown in Fig. 4-22a. Find (a) the acceleration of
each box, and (b) the tension in the cord connecting the boxes.

APPROACH We streamline our approach by not listing each step. We have two boxes
so we draw a free-body diagram for each. To draw them correctly, we must consider
the forces on each box by itself, so that Newton’s second law can be applied to each.
The person exerts a force FPon box A. Box A exerts a force Fx on the connecting
cord, and the cord exerts an opposite but equal magnitude force Fx back on box A
(Newton’s third law). These two horizontal forces on box A are shown in Fig. 4-22b,
along with the force of gravity mAg downward and the normal force Fan exerted
upward by the table. The cord is light, so we neglect its mass. The tension at each end
of the cord is thus the same. Hence the cord exerts a force Fx on the second box.
Figure 4-22c shows the forces on box B, which are Fx,mBg, and the normal
force Fbn . There will be only horizontal motion. We take the positive x axis to the right.

SOLUTION (a) We apply 2 Fx = max to box A:

2F* = FP - Fx = mAaA. [box A]
For box B, the only horizontal force is Fx, so
2F* = Fx = mBaB. [box B]

The boxes are connected, and if the cord remains taut and doesn’t stretch, then
the two boxes will have the same acceleration a. Thus aA =aB=a We are
given mA = 10.0kg and mB = 12.0kg. We can add the two equations above to
eliminate an unknown (Fx) and obtain

(raA+ mBa = FP- Fr + Fr = FP

_ P 400N _ 9
8T mA+raB 20 re2m/S2 kg

This is what we sought.

Alternate Solution We would have obtained the same result had we considered
a single system, of mass mA + mB, acted on by a net horizontal force equal to FP.
(The tension forces Fx would then be considered internal to the system as a
whole, and summed together would make zero contribution to the net force on
the whole system.)

(b) From the equation above for box B (Ft = mBaB), the tension in the cord is
Fx = mBa = (12.0kg)(1.82m/s2 = 21.8N.

/)\\ CAUTION Thus, Fxis less than FP(= 40.0 N), as we expect, since Fx acts to accelerate only raB.
Forany object, use only NOTE It might be tempting to say that the force the person exerts, FP, acts not
the forces on that object in only on box A but also on box B. It doesnt. FP acts only on box A. It affects

calculating "ZF = ma box B via the tension in the cord, Fx, which acts on box B and accelerates it.
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EXAMPLE 4-13 Elevator and counterweight (Atwood's machine). A system
of two objects suspended over a pulley by a flexible cable, as shown in Fig. 4-23a, is
sometimes referred to as an Atwood’ machine. Consider the real-life application of
an elevator (raE) and its counterweight (rac). To minimize the work done by the
motor to raise and lower the elevator safely, mEand mc are made similar in mass. We
leave the motor out of the system for this calculation, and assume that the cable’s
mass is negligible and that the mass of the pulley, as well as any friction, is small
and ignorable. These assumptions ensure that the tension FT in the cable has the
same magnitude on both sides of the pulley. Let the mass of the counterweight be
mc = 1000 kg. Assume the mass of the empty elevator is 850 kg, and its mass when
carrying four passengers is raE = 1150 kg. For the latter case (raE = 1150 kg),
calculate (a) the acceleration of the elevator and (b) the tension in the cable.

APPROACH Again we have two objects, and we will need to apply Newton’s
second law to each of them separately. Each mass has two forces acting on it:
gravity downward and the cable tension pulling upward, FT. Figures 4-23b
and c show the free-body diagrams for the elevator (raE) and for the counter-
weight (mc). The elevator, being the heavier, will accelerate downward,
whereas the counterweight will accelerate upward. The magnitudes of their
accelerations will be equal (we assume the cable doesn’t stretch). For the
counterweight, mcg = (1000 kg)(9.80 m/s2) = 9800 N, so FT must be greater
than 9800 N (in order that mc will accelerate upward). For the elevator,
mEg = (1150 kg)(9.80 m/s2) = 11,300 N, which must have greater magnitude
than Fxso that raE accelerates downward. Thus our calculation must give Fx
between 9800 N and 11,300 N.

SOLUTION (a) To find Ft as well as the acceleration a, we apply Newton’s
second law, 2F = ma, to each object. We take upward as the positive y direc-
tion for both objects. With this choice of axes, ac = a because mc accelerates
upward, and aE = —a because raEaccelerates downward. Thus

R ~ mEg = mEaE =
Ft ~ mcg = mcac = +mca

-m Ea

We can subtract the first equation from the second to get
(mE - mc)g = (mE + mc)a,
where a is now the only unknown. We solve this for a:

1150 kg - 1000 kg
1150kg + 1000kgg =

mE - mc

mE+ mcg = a07°* = °-68m/s2-

The elevator (mE) accelerates downward (and the counterweight mc upward) at
a = 0.070g = 0.68 m/s2.

(b) The tension in the cable Fx can be obtained from either of the two 2F = ma
equations, setting a = 0.070g = 0.68 m/s2

Ft = mEg - mEa = mE(@ - a)
= 1150 kg (9.80 m/s2 - 0.68m/s2) = 10,500 N,
or
Ft = mcg + mca =mc(g + a)
= 1000 kg (9.80 m/s2 + 0.68 m/s2) = 10,500 N,

which are consistent. As predicted, our result lies between 9800 N and 11,300 N.
NOTE We can check our equation for the acceleration a in this Example by
noting that if the masses were equal (mE = mc), then our equation above for a
would give a =0, as we should expect. Also, if one of the masses is zero (say,
mc = 0), then the other mass (mE # 0) would be predicted by our equation to
accelerate at a = g, again as expected.

SECTION 4-7

0O PHYSICS APPLIED
Elevator (as Atwood’ machine)

FJeviitor
Counterweight
mc = 14)00 kg
FIGURE 4-23 Example 4-13.

(a) Atwood’s machine in the form of
an elevator-counterweight system.
(b) and (c) Free-body diagrams for
the two objects.

j PROBLEM SOLVING
Check your result by seeing ifit
works in situations where the
answer is easily guessed
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FIGURE 4-24 Example 4-14.

0 PHYSICS APPLIED
Accelerometer

FIGURE 4-25 Example 4-15.

CONCEPTUAL EXAMPLE 4-14 | The advantage of a pulley. A mover is trying
to lift a piano (slowly) up to a second-story apartment (Fig. 4-24). He isusing arope
looped over two pulleys as shown. What force must he exert on the rope to slowly
lift the piano’s 2000-N weight?

RESPONSE The magnitude of the tension force FTwithin the rope is the same at
any point along the rope if we assume we can ignore its mass. First notice the forces
acting on the lower pulley at the piano. The weight of the piano pulls down on the
pulley via a short cable. The tension in the rope, looped through this pulley, pulls up
twice, once on each side of the pulley. Let us apply Newton’s second law to the
pulley-piano combination (of mass m), choosing the upward direction as positive:

2Ft —mg = ma.

To move the piano with constant speed (set a = 0 in this equation) thus
requires a tension in the rope, and hence a pull on the rope, of Fx = mg/2. The
mover can exert a force equal to half the piano’s weight. We say the pulley has
given a mechanical advantage of 2, since without the pulley the mover would
have to exert twice the force.

EXAMPLE 4-15 Accelerometer. A small mass m hangs from a thin string and
can swing like a pendulum. You attach it above the window of your car as shown
in Fig. 4-25a. When the car is at rest, the string hangs vertically. What angle 0
does the string make (a) when the car accelerates at a constant a = 1.20m/s2,
and (b) when the car moves at constant velocity, v = 90 km/h?

APPROACH The free-body diagram of Fig. 4-25b shows the pendulum at
some angle 0 and the forces on it: mg downward, and the tension FTin the
cord. These forces do not add up to zero if 0 ~ 0, and since we have an accel-
eration a, we therefore expect 0="0. Note that 0 is the angle relative to the
vertical.

SOLUTION (a) The acceleration a = 1.20m/s2 is horizontal, so from Newton’s
second law,

ma = Ftsin0
for the horizontal component, whereas the vertical component gives
0 = FTcos6 - mg.
Dividing these two equations, we obtain

Fxsin0 ma

tano Ft cos 0 mg
or
1.20m/s2
tan0
9.80m/s2
0.122,
S0
0 = 7.0°

(b) The velocity is constant, so a =0 and tan0 = 0. Hence the pendulum
hangs vertically (0 = 0°).

NOTE This simple device is an accelerometer—it can be used to measure
acceleration.
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Inclines

Now we consider what happens when an object slides down an incline, such as a
hill or ramp. Such problems are interesting because gravity is the accelerating
force, yet the acceleration is not vertical. Solving such problems is usually easier if
we choose the xy coordinate system so that one axis points in the direction of the
acceleration. Thus we often take the x axis to point along the incline and the y axis
perpendicular to the incline, as shown in Fig. 4-26a. Note also that the normal
force is not vertical, but is perpendicular to the plane, Fig. 4-26b.

"U2JJQJJH 3 Boxslides down an incline. A box of mass ra is placed on
a smooth (frictionless) incline that makes an angle 6 with the horizontal, as
shown in Fig. 4-26a. (a) Determine the normal force on the box. (b) Determine
the box’s acceleration, (c) Evaluate for a mass m = 10kg and an incline
of 6 = 30°.

APPROACH We expect the motion to be along the incline, so we choose the
x axis along the slope, positive down the slope (the direction of motion). The
y axis is perpendicular to the incline, upward. The free-body diagram is shown in
Fig. 4-26b. The forces on the box are its weight mg vertically downward, which is
shown resolved into its components parallel and perpendicular to the incline, and
the normal force FN. The incline acts as a constraint, allowing motion along its
surface. The “constraining” force is the normal force.

SOLUTION (a) There is no motion in the y direction, so ay = 0. Applying
Newton’s second law we have

Fy = may
Fn - mgcos6 = O,

where FNand the y component of gravity (mg cos 0) are all the forces acting on
the box in the y direction. Thus the normal force is given by

FN = mgcosO.

Note carefully that unless 0 = 0°, FNhas magnitude less than the weight mg.

(b) In the x direction the only force acting is the x component of rag, which we
see from the diagram is mg sin 0. The acceleration a is in the x direction so

Fx = max

mg sin 0 ma,

and we see that the acceleration down the plane is
a = gsinOQ.

Thus the acceleration along an incline is always less than g, except at 0 = 90°,
for which sin0 = 1 and a = g. This makes sense since 0 = 90° is pure vertical
fall. For 0 = 0°, a = 0, which makes sense because 0 = 0° means the plane is
horizontal so gravity causes no acceleration. Note too that the acceleration does
not depend on the mass ra.

(c) For 0 = 30° cos0 = 0.866 and sin0 = 0.500, so

Fn = 0.866rag = 85N,
and
a = 05009 = 49m/s2

We will discuss more Examples of motion on an incline in the next Chapter,
where friction will be included.

]

PRQBLEM SOLVING
Good choice ofcoordinate system

simplifies the calculation

(b)

FIGURE 4-26 Example 4-16.

(a) Box sliding on inclined plane.

(b) Free-body diagram of box.

SECTION 4-7  Solving Problems with Newton's Laws: Free-Body Diagrams
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4—8 Problem Solving—A General Approach

A basic part of a physics course is solving problems effectively. The approach
discussed here, though emphasizing Newton’s laws, can be applied generally for
other topics discussed throughout this book.

c,OLV/
Ar

In General

1. Read and reread written problems carefully. A
common error is to skip a word or two when reading,
which can completely change the meaning of a
problem.

2. Draw an accurate picture or diagram of the situa-
tion. (This is probably the most overlooked, yet
most crucial, part of solving a problem.) Use arrows
to represent vectors such as velocity or force, and
label the vectors with appropriate symbols. When
dealing with forces and applying Newton’s laws,
make sure to include all forces on a given object,
including unknown ones, and make clear what
forces act on what object (otherwise you may make
an error in determining the netforce on a particular
object).

3. A separate free-body diagram needs to be drawn for
each object involved, and it must show all the forces
acting on a given object (and only on that object).
Do not show forces that act on other objects.

4. Choose a convenient xy coordinate system (one that
makes your calculations easier, such as one axis in the
direction of the acceleration). Vectors are to be
resolved into components along the coordinate axes.
When using Newton’s second law, apply 2F = ma
separately to x and y components, remembering that
x direction forces are related to ax, and similarly fory.
If more than one object is involved, you can choose
different (convenient) coordinate systems for each.

5. List the knowns and the unknowns (what you are
trying to determine), and decide what you need in
order to find the unknowns. For problems in the
present Chapter, we use Newton’s laws. More gener-
ally, it may help to see if one or more relationships
(or equations) relate the unknowns to the knowns.

Summary

Newton’s three laws of motion are the basic classical laws
describing motion.

Newton’s first law (the law of inertia) states that if the net
force on an object is zero, an object originally at rest remains at
rest, and an object in motion remains in motion in a straight line
with constant velocity.
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But be sure each relationship is applicable in the
given case. It is very important to know the limita-
tions of each formula or relationship—when it is
valid and when not. In this book, the more general
equations have been given numbers, but even these
can have a limited range of validity (often stated in
brackets to the right of the equation).

6. Try to solve the problem approximately, to see if it is
doable (to check if enough information has been given)
and reasonable. Use your intuition, and make rough
calculations—see “Order of Magnitude Estimating” in
Section 1-6. A rough calculation, or a reasonable guess
about what the range of final answers might be, is very
useful. And a rough calculation can be checked against
the final answer to catch errors in calculation, such as
in a decimal point or the powers of 10.

7. Solve the problem, which may include algebraic
manipulation of equations and/or numerical calcula-
tions. Recall the mathematical rule that you need as
many independent equations as you have unknowns;
if you have three unknowns, for example, then you
need three independent equations. It is usually best
to work out the algebra symbolically before putting
in the numbers. Why? Because (a) you can then solve a
whole class of similar problems with different numer-
ical values; (b) you can check your result for cases
already understood (say, 6 = 0° or 90°); (c) there may
be cancellations or other simplifications; (d) there is
usually less chance for numerical error; and (e) you
may gain better insight into the problem.

8. Be sure to keep track of units, for they can serve as
a check (they must balance on both sides of any
equation).

9. Again consider if your answer is reasonable. The use
of dimensional analysis, described in Section 1-7, can
also serve as a check for many problems.

Newton’s second law states that the acceleration of an
object is directly proportional to the net force acting on it, and
inversely proportional to its mass:

2F = ma. (4-1a)
Newton’s second law is one of the most important and funda-
mental laws in classical physics.



Newton’s third law states that whenever one object exerts a
force on a second object, the second object always exerts a force
on the first object which is equal in magnitude but opposite in
direction:

Fab = -Fba, (4-2)
where FBAis the force on object B exerted by object A. This is
true even if objects are moving and accelerating, and/or have
different masses.
The tendency of an object to resist a change in its motion is
called inertia. Mass is a measure of the inertia of an object.
Weight refers to the gravitational force on an object, and is

Questions

1. Why does a child in a wagon seem to fall backward when
you give the wagon a sharp pull forward?

2. A box rests on the (frictionless) bed of a truck. The truck
driver starts the truck and accelerates forward. The box
immediately starts to slide toward the rear of the truck bed.
Discuss the motion of the box, in terms of Newton’s laws, as
seen (a) by Andrea standing on the ground beside the truck,
and (b) by Jim who is riding on the truck (Fig. 4-27).

FIGURE 4-27 Question 2.

3. If the acceleration of an object is zero, are no forces acting
on it? Explain.

4. If an object is moving, is it possible for the net force acting
on it to be zero?

5. Only one force acts on an object. Can the object have zero
acceleration? Can it have zero velocity? Explain.

6. When a golf ball is dropped to the pavement, it bounces
back up. (a) Is a force needed to make it bounce back up?
(b)If so, what exerts the force?

7. If you walk along a log floating on a lake, why does the log
move in the opposite direction?

8. Why might your foot hurt if you kick a heavy desk or a wall?

9. When you are running and want to stop quickly, you must
decelerate quickly, (a) What is the origin of the force that
causes you to stop? (b) Estimate (using your own experi-
ence) the maximum rate of deceleration of a person running
at top speed to come to rest.

10. (a) Why do you push down harder on the pedals of a bicycle
when first starting out than when moving at constant speed?
(b) Why do you need to pedal at all when cycling at
constant speed?

equal to the product of the object’s mass m and the acceleration
of gravity g:

Fg = mg. (4-3)

Force, which is a vector, can be considered as a push or pull;
or, from Newton’s second law, force can be defined as an action
capable of giving rise to acceleration. The net force on an object
is the vector sum of all forces acting on that object.

For solving problems involving the forces on one or more
objects, it is essential to draw a free-body diagram for each object,
showing all the forces acting on only that object. Newton’s second
law can be applied to the vector components for each object.

11. A father and his young daughter are ice skating. They face
each other at rest and push each other, moving in opposite
directions. Which one has the greater final speed?

12. Suppose that you are standing on a cardboard carton that
just barely supports you. What would happen to it if you
jumped up into the air? It would (a) collapse; (b) be unaf-
fected; (c) spring upward a bit; (d) move sideways.

13. A stone hangs by a fine thread from the ceiling, and a
section of the same thread dangles from the bottom of the
stone (Fig. 4-28). If a person gives a sharp pull on the
dangling thread, where is the thread likely to break: below
the stone or above it? What if the person gives a slow and
steady pull? Explain your answers.

f FIGURE 4-28
Question 13.

14. The force of gravity on a 2-kg rock is twice as great as that on
a 1-kg rock. Why then doesn’t the heavier rock fall faster?

15. Would a spring scale carried to the Moon give accurate
results if the scale had been calibrated on Earth, (a) in
pounds, or (b) in kilograms?

16. You pull a box with a constant force across a frictionless
table using an attached rope held horizontally. If you now
pull the rope with the same force at an angle to the hori-
zontal (with the box remaining flat on the table), does the
acceleration of the box (a) remain the same, (b) increase, or
(c) decrease? Explain.

17. When an object falls freely under the influence of gravity
there is a net force mg exerted on it by the Earth. Yet by
Newton’s third law the object exerts an equal and opposite
force on the Earth. Does the Earth move?

18. Compare the effort (or force) needed to lift a 10-kg object
when you are on the Moon with the force needed to lift it
on Earth. Compare the force needed to throw a 2-kg object
horizontally with a given speed on the Moon and on Earth.

Questions 103



19. Which of the following objects weighs about 1 N: (a) an apple,

20.

21.

22.

(b) a mosquito, (c) this book, (d) you?

According to Newton’s third law, each team in a tug of war
(Fig. 4-29) pulls with equal force on the other team. What,
then, determines which team will win?

FIGURE 4-29 Question 20. A tug of war. Describe
the forces on each of the teams and on the rope.

When you stand still on the ground, how large a force does
the ground exert on you? Why doesn’t this force make you
rise up into the air?

Whiplash sometimes results from an automobile accident
when the victim’s car is struck violently from the rear.
Explain why the head of the victim seems to be thrown
backward in this situation. Is it really?

| Problems

4-4 to 4-6 Newton's Laws, Gravitational Force,
Normal Force

1.
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(I) What force is needed to accelerate a child on a sled
(total mass = 55kg) at 1.4m/s2?

. (I) A net force of 265N accelerates a bike and rider at

2.30 m/s2. What is the mass of the bike and rider together?

() What is the weight of a 68-kg astronaut (a) on Earth,
(b) on the Moon (g = 1.7 m/s2), (c) on Mars (g = 3.7 m/s2),
(d) in outer space traveling with constant velocity?

(I) How much tension must a rope withstand if it is used
to accelerate a 1210-kg car horizontally along a frictionless
surface at 1.20 m/s2?

(1) Superman must stop a 120-km/h train in 150 m to keep
it from hitting a stalled car on the tracks. If the train’s mass
is 3.6 X 105kg, how much force must he exert? Compare to
the weight of the train (give as %). How much force does the
train exert on Superman?

(1) What average force is required to stop a 950-kg car in
8.0s if the car is traveling at 95 km/h?

(I1) Estimate the average force exerted by a shot-putter on
a 7.0-kg shot if the shot is moved through a distance of 2.8 m
and is released with a speed of 13 m/s.

. (1) A 0.140-kg baseball traveling 35.0 m/s strikes the catcher’s

mitt, which, in bringing the ball to rest, recoils backward 11.0 cm.
What was the average force applied by the ball on the glove?

(I1) A fisherman yanks a fish vertically out of the water with
an acceleration of 2.5 m/s2 using very light fishing line that
has a breaking strength of 18N(« 41b). The fisherman
unfortunately loses the fish as the line snaps. What can you
say about the mass of the fish?

CHAPTER 4 Dynamics: Newton® Laws of Motion

23.

24.

10.

11.

12.

14.

Mary exerts an upward force of 40N to hold a bag of
groceries. Describe the “reaction” force (Newton’s third
law) by stating (a) its magnitude, (b) its direction, (c) on
what object it is exerted, and (d) by what object it is exerted.
A bear sling, Fig. 4-30, is used in some national parks for
placing backpackers’ food out of the reach of bears. Explain
why the force needed to pull the backpack up increases as
the backpack gets higher and higher. Is it possible to pull
the rope hard enough so that it doesnt sag at all?

FIGURE 4-30 Question 24.

(I1) A 20.0-kg box rests on a table, (a) What is the weight of
the box and the normal force acting on it? (b) A 10.0-kg box
is placed on top of the 20.0-kg box, as shown in Fig. 4-31.
Determine the normal force that the table exerts on the
20.0-kg box and the normal force that the 20.0-kg box exerts
on the 10.0-kg box.

20.0 kg

FIGURE 4-31
Problem 10.

(1) What average force is needed to accelerate a 9.20-gram
pellet from rest to 125 m/s over a distance of 0.800 m along
the barrel of a rifle?

(1) How much tension must a cable withstand if it is used
to accelerate a 1200-kg car vertically upward at 0.70 m/s2?

. (I1) A 14.0-kg bucket is lowered vertically by a rope in

which there is 163 N of tension at a given instant. What is
the acceleration of the bucket? Is it up or down?

(1) A particular race car can cover a quarter-mile track
(402m) in 6.40s starting from a standstill. Assuming the
acceleration is constant, how many “g’s” does the driver
experience? If the combined mass of the driver and race car is
535 kg, what horizontal force must the road exert on the tires?



15.

16.

17.

18.

19.

20.

21

22.

(1) A 75-kg petty thief wants to escape from a third-story
jail window. Unfortunately, a makeshift rope made of sheets
tied together can support a mass of only 58 kg. How might
the thief use this “rope” to escape? Give a quantitative
answer.

(1) An elevator (mass 4850 kg) is to be designed so that the
maximum acceleration is 0.0680g. What are the maximum
and minimum forces the motor should exert on the
supporting cable?

(1) Can cars “stop on a dime”? Calculate the acceleration
of a 1400-kg car if it can stop from 35km/h on a dime
(diameter = 1.7cm.) How many g’s is this? What is the
force felt by the 68-kg occupant of the car?

(I1) A person stands on a bathroom scale in a motionless
elevator. When the elevator begins to move, the scale
briefly reads only 0.75 of the person’s regular weight.
Calculate the acceleration of the elevator, and find the
direction of acceleration.

(1) High-speed elevators function under two limitations:
(1) the maximum magnitude of vertical acceleration that a
typical human body can experience without discomfort is
about 1.2m/s2, and (2) the typical maximum speed
attainable is about 9.0m/s. You board an elevator on a
skyscraper’s ground floor and are transported 180 m above
the ground level in three steps: acceleration of magnitude
1.2 m/s2 from rest to 9.0m/s, followed by constant upward
velocity of 9.0 m/s, then deceleration of magnitude 1.2 m/s2
from 9.0m/s to rest, (a) Determine the elapsed time for
each of these 3 stages. (b) Determine the change in the
magnitude of the normal force, expressed as a % of your
normal weight during each stage, (c) What fraction of the
total transport time does the normal force not equal the
person’s weight?

(1) Using focused laser light, optical tweezers can apply a
force of about 10pN to a 1.0-/un diameter polystyrene
bead, which has a density about equal to that of water: a
volume of 1.0cm3 has a mass of about 1.0g. Estimate the
bead’s acceleration in g’s.

(1) A rocket with a mass of 2.75 X 106kg exerts a vertical
force of 3.55 X 107N on the gases it expels. Determine (a)
the acceleration of the rocket, (b) its velocity after 8.0s, and
(c) how long it takes to reach an altitude of 9500 m. Assume
g remains constant, and ignore the mass of gas expelled (not
realistic).

(1) (a) What is the acceleration of two falling sky divers
(mass = 132 kg including parachute) when the upward force
of air resistance is equal to one-fourth of their weight? (b) After
popping open the parachute, the divers descend leisurely to the
ground at constant speed. What now is the force of air resis-
tance on the sky divers and their parachute? See Fig. 4-32.

FIGURE 4-32 Problem 22.

23.

24.

25.

26.

(1) An exceptional standing jump would raise a person 0.80m
off the ground. To do this, what force must a 68-kg person
exert against the ground? Assume the person crouches a
distance of 0.20 m prior to jumping, and thus the upward force
has this distance to act over before he leaves the ground.

(1) The cable supporting a 2125-kg elevator has a maximum
strength of 21,750 N. What maximum upward acceleration
can it give the elevator without breaking?

(1) The 100-m dash can be run by the best sprinters in
10.0s. A 66-kg sprinter accelerates uniformly for the first
45m to reach top speed, which he maintains for the
remaining 55m. (a) What is the average horizontal compo-
nent of force exerted on his feet by the ground during accel-
eration? (b) What is the speed of the sprinter over the last
55m of the race (i.e., his top speed)?

(1) A person jumps from the roof of a house 3.9-m high.
When he strikes the ground below, he bends his knees so
that his torso decelerates over an approximate distance of
0.70 m. If the mass of his torso (excluding legs) is 42 kg, find
(a) his velocity just before his feet strike the ground, and
(b) the average force exerted on his torso by his legs during
deceleration.

4-7 Using Newton's Laws

27.

28.

29.

(1) A box weighing 77.0 N rests on a table. A rope tied to the
box runs vertically upward over a pulley and a weight is hung
from the other end (Fig. 4-33).

Determine the force that the

table exerts on the box if the

weight hanging on the other side

of the pulley weighs (a) 30.0N,

(b) 60.0N, and (c) 90.0N.

FIGURE 4-33
Problem 27.

(I) Draw the free-body diagram for a basketball player
(@) just before leaving the
ground on a jump, and (b)
while in the air. See Fig. 4-34.

FIGURE 4-34
Problem 28.

(I) Sketch the free-body diagram of a baseball (a) at the
moment it is hit by the bat, and again (b) after it has left the
bat and is flying toward the outfield.
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30.

31.

32.

33.

(I) A 650-N force acts in a northwesterly direction. A
second 650-N force must be exerted in what direction so
that the resultant of the two forces points westward? Illus-
trate your answer with a vector diagram.

(I1) Christian is making a Tyrolean traverse as shown in
Fig. 4-35. That is, he traverses a chasm by stringing a rope
between a tree on one side of the chasm and a tree on the
opposite side, 25 m away. The rope must sag sufficiently so it
won'’t break. Assume the rope can provide a tension force of
up to 29 kN before breaking, and use a “safety factor” of 10
(that is, the rope should only be required to undergo a
tension force of 2.9kN) at the center of the Tyrolean
traverse, (a) Determine the distance x that the rope must
sag if it is to be within its recommended safety range and
Christian’s mass is 72.0kg. (b) If the Tyrolean traverse is
incorrectly set up so that the rope sags by only one-fourth
the distance found in (a), determine the tension force in the
rope. Will the rope break?

FIGURE 4-35 Problem 31.

(I A window washer pulls herself upward using the
bucket-pulley apparatus shown in Fig. 4-36. (a) How hard
must she pull downward to raise herself slowly at

constant speed? (b) If she increases this force by

15%, what will her acceleration be? The mass of

the person plus the bucket is 72 kg.

FIGURE 4-36
Problem 32.

(I1) One 3.2-kg paint bucket is hanging by a massless cord
from another 3.2-kg paint bucket, also hanging by a mass-
less cord, as shown in Fig. 4-37. (a) If the buckets are at
rest, what is the tension in each cord? (b) If

the two buckets are pulled upward with an
acceleration of 1.25m/s2 by the upper cord,

calculate the tension in each cord.

FIGURE 4-37

Problems 33 and 34. sjfc/

34. (1) The cords accelerating the buckets in Problem 33b,

Fig. 4-37, each has a weight of 2.0 N. Determine the tension
in each cord at the three points of attachment.
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35.

36.

37.

38.

39.

40.

(1) Two snowecats in Antarctica are towing a housing unit to
a new location, as
shown in Fig. 4-38.
The sum of the forces
Fa and Fb exerted
on the unit by the
horizontal cables is
parallel to the line L,
and F& = 4500 N.
Determine FB and

the magnitude of

Fa + FB.
FIGURE 4-38 ]
Problem 35. Top view

(1) A train locomotive is pulling two cars of the same mass
behind it, Fig. 4-39. Determine the ratio of the tension in
the coupling (think of it as a cord) between the locomotive
and the first car (Fxl), to that between the first car and the
second car (FT2), for any nonzero acceleration of the train.

FIGURE 4-39 Problem 36.

(1) The two forces Fi and F2 shown in Fig. 4-40a and b
(looking down) act on a 18.5-kg object on a frictionless
tabletop. If F\ = 102N and F2= 16.0N, find the net
force on the object and its acceleration for (a) and (b).

y y

AN 120°

(b)
FIGURE 4-40 Problem 37.

(Il) At the instant a race began, a 65-kg sprinter exerted a
force of 720N on the starting block at a 22° angle with
respect to the ground, (a) What was the horizontal accelera-
tion of the sprinter? (b) If the force was exerted for 0.325,
with what speed did the sprinter leave the starting block?
(1) A mass m is at rest on a horizontal frictionless surface
at t = 0. Then a constant force FO acts on it for a time t0.
Suddenly the force doubles to 2F0 and remains constant
until t = 2t0. Determine the total distance traveled from
t=0to t =2D.
(1) A 3.0-kg object has the following two forces acting on it:
Fi = (I6i + 12)) N
F2 = (01 + 22j)N
If the object is initially at rest, determine its velocity v at
t = 3.0s.



41.

42.

45.

47.

(I1) Uphill escape ramps are sometimes provided to the
side of steep downhill highways for trucks with overheated
brakes. For a simple 11° upward ramp, what length would be
needed for a runaway truck traveling 140km/h? Note the
large size of your calculated length. (If sand is used for the
bed of the ramp, its length can be reduced by a factor of
about 2.)

(1) A child on a sled reaches the bottom of a hill with a
velocity of 10.0m/s and travels 25.0m along a horizontal
straightaway to a stop. If the child and sled together have a
mass of 60.0 kg, what is the average retarding force on the
sled on the horizontal straightaway?

. (1) A skateboarder, with an initial speed of 2.0 m/s, rolls virtu-

ally friction free down a straight incline of length 18 m in 3.3s.
At what angle 6 is the incline oriented above the horizontal?

. (I1) As shown in Fig. 4-41, five balls (masses 2.00, 2.05,

2.10, 2.15, 2.20kg) hang from a crossbar. Each mass is
supported by “5-Ib test” fishing line which will break
when its tension force exceeds 22.2 N (= 51b). When this
device is placed in an elevator,

which accelerates upward,

only the lines attached Pa

to the 205 and

2.00 kg masses do not

break. Within what

range is the elevator’s

acceleration?

130 21J 210 105 IWHi

FIGURE 4-41
Problem 44.

(1) A 27-kg chandelier hangs from a ceiling on a vertical
4.0-m-long wire, (@) What horizontal force would be neces-
sary to displace its position 0.15m to one side? (b) What
will be the tension in the wire?

. (I) Three blocks on a frictionless horizontal surface are in

contact with each other as shown in Fig. 4-42. A force F is
applied to block A (mass mA). (a) Draw a free-body
diagram for each block. Determine (b) the acceleration of
the system (in terms of mA, raB, and rac), (c) the net force
on each block, and (d) the force of contact that each block
exerts on its neighbor. (¢) If mMA = mB= mc = 10.0kg and
F = 96.0N, give numerical answers to (b), (c), and (d).
Explain how your answers make sense intuitively.

FIGURE 4-42 Problem 46.

(1) Redo Example 4-13 but (a) set up the equations so that
the direction of the acceleration a of each object is in the
direction of motion of that object. (In Example 4-13, we
took a as positive upward for both masses.) (b) Solve the
equations to obtain the same answers as in Example 4-13.

48.

49.

50.

51

52.

(1) The block shown in Fig. 4-43 has mass m = 7.0kg
and lies on a fixed smooth frictionless plane tilted at an angle
0 = 22.0° to the horizontal, (a) Determine the acceleration
of the block as it slides down the plane, (b) If the block starts
from rest 12.0 m up the plane from its base, what will be the
block’s speed when it

reaches the bottom of

the incline?

FIGURE 4-43
Block on inclined
plane. Problems 48
and 49,

(1) A block is given an initial speed of 4.5m/s up the
22° plane shown in Fig. 4-43. (a) How far up the plane will
it go? (b) How much time elapses before it returns to its
starting point? Ignore friction.

(1) An object is hanging by a string from your rearview
mirror. While you are accelerating at a constant rate from
rest to 28 m/s in 6.0,

what angle 6 does the v
string make with the

vertical? See Fig. 4-44.

FIGURE 4-44
Problem 50.

(1) Figure 4-45 shows a block (mass mA) on a smooth hori-
zontal surface, connected by a thin cord that passes over a
pulley to a second block (raB), which hangs vertically, (a) Draw
a free-body diagram for each block, showing the force of
gravity on each, the force (tension) exerted by the cord, and any
normal force. (b) Apply Newton’s second law to find formulas
for the acceleration of the system and for the tension in the
cord. Ignore friction and

the masses of the pulley

and cord. mA

FIGURE 4-45
Problems 51,52,

and 53. Mass mArests
on a smooth horizontal
surface, raBhangs
vertically.

(I (@) If mA =130kg and mB= 50kg in Fig. 4-45,
determine the acceleration of each block. (b) If initially mA
is at rest 1.250 m from the edge of the table, how long does
it take to reach the edge of the table if the system is allowed
to move freely? (c) If mB = 1.0kg, how large must mA be
if the acceleration of the system is to be kept at X0g?

. (111) Determine a formula for the acceleration of the system

shown in Fig. 4-45 (see Problem 51) if the cord has a
non-negligible mass rac . Specify in terms of iA and £B, the
lengths of cord from the respective masses to the pulley.
(The total cord length is | = £A + fB.)
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4.

57.

(I11) Suppose the pulley in Fig. 4-46 is suspended by a
cord C. Determine the
tension in this cord after the
masses are released and
before one hits the ground.
Ignore the mass of the
pulley and cords.

1.2 kg

FIGURE 4-46
Problem 54.

. (1) A small block of mass m rests on the sloping side of a

triangular block of mass M which itself rests on a horizontal
table as shown in Fig. 4-47. Assuming all surfaces are
frictionless, determine the magnitude of the force F that
must be applied to M so that m remains in a fixed position
relative to M (that

is, m doesn’t move

on the incline).

[Hint: Take x andy - "

axes horizontal and M

vertical.!

Problem 55.

. (II1) The double Atwood machine shown in Fig. 4-48

has frictionless, massless
pulleys and cords. Deter-
mine (a) the acceleration
of masses mA, mB, and
mc, and (b) the tensions
FTA and FJC in the cords.

FIGURE 4-48
Problem 56.

(1) Suppose two boxes on a frictionless table are
connected by a heavy cord of mass 1.0kg. Calculate the
acceleration of each box and the tension at each end of the
cord, using the free-body diagrams shown in Fig. 4-49.
Assume FP= 350N, and ignore sagging of the cord.
Compare your results to Example 4-12 and Fig. 4-22.

58.

59.

61.

(1) The two masses shown in Fig. 4-50 are each initially
1.8 m above the ground, and the massless frictionless
pulley is 4.8 m above the ground. What maximum height
does the lighter object reach after the system is released?
[Hint: First determine the acceleration of the lighter mass and
then its velocity at the

moment the heavier

one hits the ground.

This is its “launch”

speed. Assume the mass

doesnt hit the pulley. 3
Ignore the mass of

the cord.| 48 m

T 22Kkg 3.6kg
18m
FIGURE 4-50

Problem 58. JL m

(1) Determine a formula for the magnitude of the force F
exerted on the large block (rac) in Fig. 4-51 so that the
mass mA does not move relative to mc. Ignore all friction.
Assume raB does not make contact with mc.

FIGURE 4-51 Problem 59.

. (1) A particle of mass m, initially at rest at x =0, is

accelerated by a force that increases in time as F = Ct2.
Determine its velocity v and position x as a function
of time.

(1) A heavy steel cable of length i and mass M passes over a
small massless, frictionless pulley, (a) If a length y hangs on one
side of the pulley (so £ - y hangs on the other side), calculate
the acceleration of the cable as a function of y. (b) Assuming
the cable starts from rest with length yO on one side of the
pulley, determine the velocity Vf at the moment the whole
cable has fallen from the pulley, (c) Evaluate Vf for y0=\L
[Hint: Use the chain rule, dv/dt = (dv/dy)(dy/dt), and
integrate.]

FIGURE 4-49 Problem 57. Free-body diagrams for each of the objects of the system shown in Fig. 4-22a.
Vertical forces, FNand FG, are not shown.
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62.

63.

66.

67.

A person has a reasonable chance of surviving an automobile
crash if the deceleration is no more than 30g’. Calculate the
force on a 65-kg person accelerating at this rate. What distance
is traveled if brought to rest at this rate from 95km/h?

A 2.0-kg purse is dropped 58 m from the top of the Leaning
Tower of Pisa and falls 55 m before reaching the ground
with a speed of 27m/s. What was the average force of air
resistance?

. Tom’s hang glider supports his weight using the six ropes

shown in Fig. 4-52. Each rope is designed to support an
equal fraction of Tom’s weight. Tom’s mass is 74.0 kg. What
is the tension in each of the support ropes?

FIGURE 4-52 Problem 64.

. A wet bar of soap (m = 150 g) slides freely down a ramp

3.0m long inclined at 8.5°. How long does it take to reach the
bottom? How would this change if the soap’s mass were 300 g?

A crane’s trolley at point P in Fig. 4-53 moves for a few
seconds to the right with constant acceleration, and the
870-kg load hangs at a 5.0° angle to the vertical as shown.
What is the acceleration of the trolley and load?

A block (mass raA) lying on a fixed frictionless inclined plane is
connected to a mass mBby a cord passing over a pulley, as
shown in Fig. 4-54. (a) Determine a formula for the acceler-
ation of the system in terms of mA, raB, 0, and g. (b) What
conditions apply to masses mA and mB for the acceleration
to be in one direction (say, mA down the plane), or in the

opposite direction? Ignore the mass of the

cord and pulley.

mB

FIGURE 4-54
of Problems 67
and 68.

68.

69.

70.

71

73.

74.

(a) In Fig. 4-54,if mA = mB = 1.00kg and 6 = 33.0°, what
will be the acceleration of the system? (b) If mA = 1.00 kg
and the system remains at rest, what must the mass mB be?
(c) Calculate the tension in the cord for (a) and (b).

The masses mA and mB slide on the smooth (frictionless)
inclines fixed as shown in Fig. 4-55. (a) Determine a formula
for the acceleration of the system in terms of raA, raB,dA,dB,
and g. (b) If 0A = 32°, 0B = 23° and raA = 5.0kg, what
value of raBwould keep the system at rest? What would be the
tension in the cord (negligible mass) in this case? (c) What
ratio, mA/m B, would allow the masses to move at constant
speed along their ramps in either direction?

FIGURE 4-55 B«f

Problem 69.

A 75.0-kg person stands on a scale in an elevator. What does
the scale read (in N and in kg) when (a) the elevator is at
rest, (b) the elevator is climbing at a constant speed of
3.0m/s, (c) the elevator is descending at 3.0m/s, (d) the
elevator is accelerating upward at 3.0 m/s2, (e) the elevator
is accelerating downward at 3.0 m/s2?

A city planner is working on the redesign of a hilly portion
of a city. An important consideration is how steep the roads
can be so that even low-powered cars can get up the hills
without slowing down. A particular small car, with a mass of
920 kg, can accelerate on a level road from rest to 21 m/s
(75km/h) in 12.5s. Using these data, calculate the maximum
steepness of a hill.

. If a bicyclist of mass 65 kg (including the bicycle) can coast

down a 6.5° hill at a steady speed of 6.0 km/h because of air
resistance, how much force must be applied to climb the hill
at the same speed (and the same air resistance)?

A bicyclist can coast down a 5.0° hill at a constant speed of
6.0 km/h. If the force of air resistance is proportional to the
speed v so that Fair = cv, calculate (a) the value of the
constant c, and (b) the average force that must be applied in
order to descend the hill at 18.0km/h. The mass of the
cyclist plus bicycle is 80.0 kg.

Francesca dangles her watch from a thin piece of string
while the jetliner she is in accelerates for takeoff, which
takes about 16 s. Estimate the takeoff speed of the aircraft
if the string makes an angle of 25° with

respect to the vertical, Fig. 4-56.

1A

125*\

1

1 . *

I % r
FIGURE 4-56 1

Problem 74.
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75.

76.

77.

78.

79.

(a) What minimum force F is needed to lift the piano (mass M)
using the pulley apparatus shown in

Fig. 4-57? (b) Determine the tension

in each section of rope: FTL, FT2, FT3,

and Fx4.

FIGURE 4-57
Problem 75.

In the design of a supermarket, there are to be several
ramps connecting different parts of the store. Customers
will have to push grocery carts up the ramps and it is obvi-
ously desirable that this not be too difficult. The engineer
has done a survey and found that almost no one complains
if the force required is no more than 18 N. Ignoring friction,
at what maximum angle O should the ramps be built,
assuming a full 25-kg grocery cart?

A jet aircraft is accelerating at 3.8 m/s2 as it climbs at an
angle of 18° above the horizontal (Fig. 4-58). What is the
total force that the cockpit seat exerts on the 75-kg pilot?

FIGURE 4-58
Problem 77.

A 7650-kg helicopter accelerates upward at 0.80 m/s2 while
lifting a 1250-kg frame at a construction site, Fig. 4-59.
(a) What is the lift force

exerted by the air on

the helicopter rotors?

(b) What is the tension in

the cable (ignore its mass)

that connects the frame to

the helicopter? (c) What

force does the cable exert

on the helicopter?

FIGURE 4-53
Problem 78.

A super high-speed 14-car Italian train has a mass of
640 metric tons (640,000 kg). It can exert a maximum force of
400KkN horizontally against the tracks, whereas at maximum
constant velocity (300 km/h), it exerts a force of about 150 kN.
Calculate (a) its maximum acceleration, and (b) estimate the
force of friction and air resistance at top speed.
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80.

81.

82.

83.

84.

A fisherman in a boat is using a “10-Ib test” fishing line. This
means that the line can exert a force of 45N without
breaking (1 1b = 4.45N). (a) How heavy a fish can the fish-
erman land if he pulls the fish up vertically at constant
speed? (b) If he accelerates the fish upward at 2.0m/s2,
what maximum weight fish can he land? (c) Is it possible to
land a 15-1b trout on 10-Ib test line? Why or why not?

An elevator in a tall building is allowed to reach a maximum
speed of 3.5m/s going down. What must the tension be in
the cable to stop this elevator over a distance of 2.6 m if the
elevator has a mass of 1450 kg including occupants?

Two rock climbers, Bill and Karen, use safety ropes of
similar length. Karen’s rope is more elastic, called a dynamic
rope by climbers. Bill has a static rope, not recommended for
safety purposes in pro climbing, (a) Karen falls freely about
2.0m and then the rope

stops her over a distance

of 1.0m (Fig. 4-60). Esti-

mate how large a force

(assume constant) she

will feel from the rope.

(Express the result in

multiples of her weight.)

(b) In a similar fall, Bill’s

rope stretches by only

30cm. How many times

his weight will the rope

pull on him? Which

climber is more likely to

be hurt?

FIGURE 4-60
Problem 82.

Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 4-61). The last climber slips, pulling the second climber
off his feet. The first climber is able to hold them both. If
each climber has a mass of 75kg, calculate the tension in
each of the two sections of rope between the three climbers.
Ignore friction between the ice and the fallen climbers.

FIGURE 4-61 Problem 83.

A *“doomsday” asteroid with a mass of 1.0 X 1010kg is
hurtling through space. Unless the asteroid’s speed is
changed by about 0.20 cm/s, it will collide with Earth and
cause tremendous damage. Researchers suggest that a small
“space tug” sent to the asteroid’s surface could exert a gentle
constant force of 2.5 N. For how long must this force act?



85.

86.

A 450-kg piano is being unloaded from a truck by rolling it
down a ramp inclined at 22°. There is negligible friction and
the ramp is 11.5 m long. Two workers slow the rate at which
the piano moves by pushing with a combined force of
1420 N parallel to the ramp. If the piano starts from rest,
how fast is it moving at the bottom?

Consider the system shown in Fig. 4-62 with raA = 95kg
and mB= 115kg. The angles 0A= 59° and 0B = 32°.
(@ In the absence of friction, what force F would be
required to pull the masses at a constant

velocity up the fixed inclines? (b) The

force F is now removed. What p

is the magnitude and direc-
tion of the acceleration of
the two blocks? (c) In

the absence of F,

what is the tension

mi|

in the string? A

59
FIGURE 4-62
Problem 86.

87. A 1.5-kg block rests on top of a 7.5-kg block (Fig. 4-63).
The cord and pulley have negligible mass, and there is no
significant friction anywhere, (a) What force F must be
applied to the bottom block so the top block accelerates to
the right at 25m/s2? (b) What is the tension in the
connecting cord?

15 ke
75
FIGURE 4-63 9
Problem 87.

Answers to Exercises

A:

B:
C.

No force is needed. The car accelerates out from under the
cup. Think of Newton’s first law (see Example 4-1).

(*)

(a) The same; (b) the sports car; (c) third law for part (a),
second law for part (b).

88. You are driving home in your 750-kg car at 15m/s. At a point

45m from the beginning of an intersection, you see a green
traffic light change to yellow, which you expect will last 4.0s,
and the distance to the far side of the intersection is 65m
(Fig. 4-64). (a) If you choose to accelerate, your car’s engine
will furnish a forward force of 1200N. Will you make it
completely through the intersection before the light turns red?
(b) If you decide to panic stop, your brakes will provide a
force of 1800 N. Will you stop before entering the intersection?

45 m

65 m

FIGURE 4-64 Problem 88.

Numerical/Computer
*89. (II) A large crate of mass 1500 kg starts sliding from rest

along a frictionless ramp, whose length is t and whose incli-
nation with the horizontal is 0. (a) Determine as a function
of 6: (i) the acceleration a of the crate as it goes downhill,
(ii) the time t to reach the bottom of the incline, (iii) the
final velocity v of the crate when it reaches the bottom of
the ramp, and (iv) the normal force FN on the crate, (b) Now
assume i = 100m. Use a spreadsheet to calculate and
graph a, t, v, and FNas functions of 6 from 0 = 0° to 90°in
1° steps. Are your results consistent with the known result
for the limiting cases 0 = 0° and 6 = 90°?

D: (e).

£

N

F (b).
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Newton’s laws are fundamental in physics.
These photos show two situations of using
Newton’s laws which involve some new
elements in addition to those discussed in
the previous Chapter. The downhill skier
illustrates friction on an incline, although at
this moment she is not touching the snow, and
so is retarded only by air resistance which is a
velocity-dependent force (an optional topic in
this Chapter). The people on the rotating
amusement park ride below illustrate the
dynamics of circular motion.

Using Newton's Laws: Friction,
Circular Motion, Drag Forces

CHAPTER-OPENING QUESTIOT —Guess now!

You revolve a ball around you in a horizontal circle

at constant speed on a string, as shown here from PI§>//
above. Which path will the ball follow if you T T
let go of the string at point P?

his chapter continues our study of Newton’s laws and emphasizes their

fundamental importance in physics. We cover some important applications

of Newton’s laws, including friction and circular motion. Although some

material in this Chapter may seem to repeat topics covered in Chapter 4, in
fact, new elements are involved.



5—1 Applications of Newton's Laws
Involving Friction

Until now we have ignored friction, but it must be taken into account in most prac-
tical situations. Friction exists between two solid surfaces because even the
smoothest looking surface is quite rough on a microscopic scale, Fig. 5-1. When we
try to slide an object across another surface, these microscopic bumps impede the
motion. Exactly what is happening at the microscopic level is not yet fully under-
stood. It is thought that the atoms on a bump of one surface may come so close to
the atoms of the other surface that attractive electric forces between the atoms
could “bond” as a tiny weld between the two surfaces. Sliding an object across a
surface is often jerky, perhaps due to the making and breaking of these bonds.
Even when a round object rolls across a surface, there is still some friction, called
rolling friction, although it is generally much less than when objects slide across a
surface. We focus our attention now on sliding friction, which is usually called
kinetic friction (kinetic is from the Greek for “moving”).

When an object slides along a rough surface, the force of kinetic friction acts
opposite to the direction of the object’s velocity. The magnitude of the force of
kinetic friction depends on the nature of the two sliding surfaces. For given
surfaces, experiment shows that the friction force is approximately proportional to
the normal force between the two surfaces, which is the force that either object
exerts on the other and is perpendicular to their common surface of contact (see
Fig. 5-2). The force of friction between hard surfaces in many cases depends very
little on the total surface area of contact; that is, the friction force on this book is
roughly the same whether it is being slid on its wide face or on its spine, assuming
the surfaces have the same smoothness. We consider a simple model of friction in
which we make this assumption that the friction force is independent of area. Then
we write the proportionality between the magnitudes of the friction force Ffr and
the normal force FNas an equation by inserting a constant of proportionality,

Ffr = ~KFN. [kinetic friction]

This relation is not a fundamental law; it is an experimental relation between
the magnitude of the friction force Ffr, which acts parallel to the two surfaces,
and the magnitude of the normal force FN, which acts perpendicular to the surfaces.
It is not a vector equation since the two forces have directions perpendicular to
one another. The term /XK is called the coefficient of kinetic friction, and its value
depends on the nature of the two surfaces. Measured values for a variety of
surfaces are given in Table 5-1. These are only approximate, however, since fi
depends on whether the surfaces are wet or dry, on how much they have been
sanded or rubbed, if any burrs remain, and other such factors. But fik is roughly
independent of the sliding speed, as well as the area in contact.

TABLE 5-1 Coefficients of Frictionl

Coefficient of Coefficient of
Surfaces Static Friction, fis Kinetic Friction, fik
Wood on wood 0.4 0.2
Ice on ice 0.1 0.03
Metal on metal (lubricated) 0.15 0.07
Steel on steel (unlubricated) 0.7 0.6
Rubber on dry concrete 1.0 0.8
Rubber on wet concrete 0.7 0.5
Rubber on other solid surfaces 1-4 1
Teflon® on Teflon in air 0.04 0.04
Teflon on steel in air 0.04 0.04
Lubricated ball bearings <0.01 <0.01
Synovial joints (in human limbs) 0.01 0.01

Values are approximate and intended only as a guide.

FIGURE 5-1 An object moving to
the right on a table or floor. The two
surfaces in contact are rough, at least

on a microscopic scale.

FIGURE 5-2 When an object is

pulled along a surface by an
applied force (Fa), the force of
friction Ffropposes the motion.

The magnitude of Ffris proportional

to the magnitude of the normal
force (Fn).

mg

SECTION 5-1
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FIGURE 5-2 Repeated for
Example 5-1.
FIGURE 5-3 Example 5-1.

Magnitude of the force of friction as
a function of the external force
applied to an object initially at rest.
As the applied force is increased in
magnitude, the force of static friction
increases linearly to just match it,
until the applied force equals fisFN.
If the applied force increases
further, the object will begin to
move, and the friction force drops to
aroughly constant value
characteristic of kinetic friction.

15
40 =

H— mg{i)on—
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What we have been discussing up to now is kinetic friction, when one object slides
over another. There is also static friction, which refers to a force parallel to the two
surfaces that can arise even when they are not sliding. Suppose an object such as a desk
is resting on a horizontal floor. If no horizontal force is exerted on the desk, there also
is no friction force. But now suppose you try to push the desk, and it doesn’t move. You
are exerting a horizontal force, but the desk isn't moving, so there must be another
force on the desk keeping it from moving (the net force is zero on an object at rest).
This is the force of static friction exerted by the floor on the desk. If you push with a
greater force without moving the desk, the force of static friction also has increased. If
you push hard enough, the desk will eventually start to move, and kinetic friction takes
over. At this point, you have exceeded the maximum force of static friction, which is
given by (Ffmax = /fasFn, where /Is is the coefficient of static friction (Table 5-1).
Because the force of static friction can vary from zero to this maximum value, we write

Ffr < jusFN.

You may have noticed that it is often easier to keep a heavy object sliding than
it is to start it sliding in the first place. This is consistent with ijis generally being
greater than juk (see Table 5-1).

[static friction]

EXAMPLE 5-1  Friction: static and kinetic. Our 10.0-kg mystery box rests on
a horizontal floor. The coefficient of static friction is /jls = 0.40 and the coeffi-
cient of kinetic friction is [k = 0.30. Determine the force of friction, Ffr, acting
on the box if a horizontal external applied force FAis exerted on it of magnitude:
(@) 0, (b) 10N, (c) 20N, (d) 38N, and (e) 40 N.

APPROACH We don’t know, right off, if we are dealing with static friction or
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a
free-body diagram, and then determine in each case whether or not the box will
move: the box starts moving if FA is greater than the maximum static friction
force (Newton’s second law). The forces on the box are gravity mg, the normal
force exerted by the floor FN, the horizontal applied force FA, and the friction
force Ffr, as shown in Fig. 5-2.

SOLUTION The free-body diagram of the box is shown in Fig. 5-2. In the vertical
direction there is no motion, so Newton’s second law in the vertical direction
gives 'ZFy = may = 0, which tells us FN—mg = 0. Hence the normal force is

FN = mg = (10.0kg)(9.80m/s2) = 98.0N.

(a) Because FA = 0 in this first case, the box doesn’t move, and Ffr = 0.
(b) The force of static friction will oppose any applied force up to a maximum of

MSFN = (0.40)(98.0N) = 39N.

When the applied force is FA = 10N, the box will not move. Newton’s second
law gives DF* = FA —Ffr = 0, so Ffr = 10N.

(c) An applied force of 20N is also not sufficient to move the box. Thus
Ffr = 20 N to balance the applied force.

(d) The applied force of 38 N is still not quite large enough to move the box; so
the friction force has now increased to 38 N to keep the box at rest.

(e) A force of 40 N will start the box moving since it exceeds the maximum force
of static friction, /asFn = (0.40) (98 N) = 39 N. Instead of static friction, we now
have Kinetic friction, and its magnitude is

= /AFN = (0.30)(98.0N) = 29N.

There is now a net (horizontal) force on the box of magnitude F = 40N —29N =
UN, so the box will accelerate at a rate

m ddNg T

as long as the applied force is 40 N. Figure 5-3 shows a graph that summarizes
this Example.

aYy = 1.1 m/s>

Using Newton's Laws: Friction, Circular Motion, Drag Forces



Friction can be a hindrance. It slows down moving objects and causes heating
and binding of moving parts in machinery. Friction can be reduced by using lubri-
cants such as oil. More effective in reducing friction between two surfaces is to
maintain a layer of air or other gas between them. Devices using this concept,
which is not practical for most situations, include air tracks and air tables in which
the layer of air is maintained by forcing air through many tiny holes. Another tech-
nique to maintain the air layer is to suspend objects in air using magnetic fields
(“magnetic levitation”). On the other hand, friction can be helpful. Our ability to
walk depends on friction between the soles of our shoes (or feet) and the ground.
(Walking involves static friction, not kinetic friction. Why?) The movement of a
car, and also its stability, depend on friction. When friction is low, such as on ice,
safe walking or driving becomes difficult.

CONCEPTUAL EXAMPLET T 1 A box against a wall. You can hold a box
against a rough wall (Fig. 5-4) and prevent it from slipping down by pressing hard
horizontally. How does the application of a horizontal force keep an object from
moving vertically?

RESPONSE This won’t work well if the wall is slippery. You need friction. Even
then, if you don’t press hard enough, the box will slip. The horizontal force you
apply produces a normal force on the box exerted by the wall (net force horizontally
is zero since box doesnt move horizontally.) The force of gravity mg, acting
downward on the box, can now be balanced by an upward static friction force
whose maximum magnitude is proportional to the normal force. The harder you
push, the greater FNis and the greater Ffr can be. If you don’t press hard enough,
then mg > jisFNand the box begins to slide down.

EXERCISEA If iX5=0.40 and mg = 20N, what minimum force F will keep the box
from falling: (a) 100 N; (b) 80 N; (c) 50 N; (d) 20 N; (e) 8 N?

Pulling against friction. A 10.0-kg box is pulled along a
horizontal surface by a force FPof 40.0 N applied at a 30.0° angle above horizontal.
This is like Example 4-11 except now there is friction, and we assume a coefficient
of kinetic friction of 0.30. Calculate the acceleration.

APPROACH The free-body diagram is shown in Fig. 5-5. It is much like that in
Fig. 4-21, but with one more force, that of friction.

SOLUTION The calculation for the vertical (y) direction is just the same
as in Example 4-11, mg = (10.0kg)(9.80m/s?) = 980N and Fpy ~
(40.0N)(sin30.0°) = 20.0N. Withy positive upward and ay = 0, we have

FN- mg + FFy = may

FN- 980N + 200N = 0,
so the normal force is FN= 78.0 N. Now we apply Newton’s second law for the
horizontal (jc) direction (positive to the right), and include the friction force:

Fox ~ Fr = max.
The friction force is kinetic as long as Ffr = jukFN is less than Fpx ~
(40.0 N) cos 30.0° = 34.6 N, which it is:

Ffr = VkFv = (0.30)(78.0N) = 23.4N.
Hence the box does accelerate:

Fpx ~ HT 346N —234N 2
ax = = e = 1.1m/s.

In the absence of friction, as we saw in Example 4-11, the acceleration would be
much greater than this.

NOTE Our final answer has only two significant figures because our least significant
input value (/xk = 0.30) has two.

| EXERCISE B If /x,kFN were greater than Fpjc, what would you conclude?

SECTION 5-1  Applications of Newton's Laws Involving Friction

mg

FIGURE 5-4 Example 5-2.

FIGURE 5-5

Example 5-3.
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(c) mg (d) ™g’

FIGURE 5-6 Example 5-4.

FIGURE 5-7 Example 5-5.
5.0

(@)

(b)

2.0 ke

©

CONCEPTUAL EXAMPLE -5~ To push or to pull a sled? Your little sister
wants aride on her sled. If you are on flat ground, will you exert less force ifyou push
her or pull her? See Figs. 5-6a and b. Assume the same angle 6 in each case.
RESPONSE Let us draw free-body diagrams for the sled-sister combination, as
shown in Figs. 5- 6¢ and d. They show, for the two cases, the forces exerted by
you, F (an unknown), by the snow, FNand Ffr, and gravity rag. (a) If you push
her, and 0 > 0, there is a vertically downward component to your force. Hence
the normal force upward exerted by the ground (Fig. 5-6¢) will be larger than rag
(where m is the mass of sister plus sled). (b) If you pull her, your force has a
vertically upward component, so the normal force FN will be less than mg,
Fig. 5-6d. Because the friction force is proportional to the normal force, Ffr will
be less if you pull her. So you exert less force if you pull her.

wrfM | Two boxes and a pulley. In Fig. 5-7a, two boxes are
connected by a cord running over a pulley. The coefficient of kinetic friction
between box A and the table is 0.20. We ignore the mass of the cord and pulley and
any friction in the pulley, which means we can assume that a force applied to one
end of the cord will have the same magnitude at the other end. We wish to find the
acceleration, a, of the system, which will have the same magnitude for both boxes
assuming the cord doesn't stretch. As box B moves down, box A moves to the right.
APPROACH The free-body diagrams for each box are shown in Figs. 5-7b and c.
The forces on box A are the pulling force of the cord Fx, gravity raAg, the normal
force exerted by the table FN, and a friction force exerted by the table Ffr; the
forces on box B are gravity raBg, and the cord pulling up, FT.
SOLUTION Box A does not move vertically, so Newton’s second law tells us the
normal force just balances the weight,
FN = mAg = (5.0kg)(9.8m/s2) = 49N.
In the horizontal direction, there are two forces on box A (Fig. 5-7b): FT, the
tension in the cord (whose value we don’t know), and the force of friction
Fr = jukFN = (0.20)(49N) = 9.8N.
The horizontal acceleration is what we wish to find; we use Newton’s second law
in the x direction, 2 FAC= mAax, which becomes (taking the positive direction
to the right and setting aAx = a):
JFax = Ft - Ffr = mAa. [box A]
Next consider box B. The force of gravity mBg = (2.0kg)(9.8m/s2) = 19.6N
pulls downward; and the cord pulls upward with a force FT. So we can write
Newton’s second law for box B (taking the downward direction as positive):
ZFBy = mBg mBa. [box B]
[Notice that if a ~ 0, then FTis not equal to raBg.]
We have two unknowns, a and FT, and we also have two equations. We solve
the box A equation for FT:
Ft = Fl + mAa,
and substitute this into the box B equation:
mBg - Ffr - mAa = mBa
Now we solve for a and put in numerical values:
mBg - Ffr 196N - 98N
raA + raB 50kg + 2.0kg

which is the acceleration of box A to the right, and of box B down.
If we wish, we can calculate FT using the third equation up from here:

Ft = Fr + mAa = 98N + (5.0kg)(l.4 m/s2 = 17N.

NOTE Box B is not in free fall. It does not fall at a = g because an additional
force, Fx, is acting upward on it.

= 1.4m/s"
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In Chapter 4 we examined motion on ramps and inclines, and saw that it is usually
an advantage to choose the x axis along the plane, in the direction of acceleration.
There we ignored friction, but now we take it into account.

EXAMPLE 5-6 The skier. The skier in Fig. 5- 8a is descending a 30° slope, at
constant speed. What can you say about the coefficient of kinetic friction /jikl

APPROACH We choose the x axis along the slope, positive pointing downslope in
the direction of the skier’s motion. The y axis is perpendicular to the surface
as shown in Fig. 5-8b, which is the free-body diagram for our system which
we choose as the skier and her skis (total mass ra). The forces acting are
gravity, FG= rag, which points vertically downward (not perpendicular to the
slope), and the two forces exerted on her skis by the snow—the normal force
perpendicular to the snowy slope (not vertical), and the friction force parallel to
the surface. These three forces are shown acting at one point in Fig. 5- 8b,
for convenience.

SOLUTION We have to resolve only one vector into components, the weight FG,
and its components are shown as dashed lines in Fig. 5- 8c:

Fgx = mgsin0,

FGy = —mg cos 0,
where we have stayed general by using O rather than 30° for now. There
is no acceleration, so Newton’s second law applied to the x and y components
gives

'EFy = FN—mgcosO = may = 0O

2FX = mgsin0 - AkFN = max = 0.

From the first equation, we have FN= rag cos 0. We substitute this into the
second equation:

ragsin0 - /k(ragcos0) = 0.
Now we solve for jxk:

uk = Mgsin0 _ sin0 o
mg cos 0 cos 0

which for 0 = 30° is

Hk = tan0 = tan30° = 0.58.
Notice that we could use the equation

ixk = tanO

to determine iik under a variety of conditions. All we need to do is observe at
what slope angle the skier descends at constant speed. Here is another reason
why it is often useful to plug in numbers only at the end: we obtained a general
result useful for other situations as well.

In problems involving a slope or “inclined plane,” avoid making errors
in the directions of the normal force and gravity. The normal force is not
vertical: it is perpendicular to the slope or plane. And gravity is not perpen-
dicular to the slope—gravity acts vertically downward toward the center of
the Earth.

0O PHYSICS APPLIED

Skiing

FIGURE 5-8 Example 5-6. A

skier descending a slope; FG = mg
is the force of gravity (weight) on

the skier.
FG=ng
(b)
fg
©
/j\ CAUTION

Directions ofgravity and
the normalforce
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(a)

FIGURE 5-9 Example 5-7. Note
choice of x and y axes.

{ease) (@seN)

EXAMPLE 5-7 A ramp, a pulley, and two boxes. A box of mass mA = 10.0 kg

rests on a surface inclined at 6 = 37° to the horizontal. It is connected by a light-
weight cord, which passes over a massless and frictionless pulley, to a second box
of mass raB, which hangs freely as shown in Fig. 5-9a. (a) If the coefficient of
static friction is /jls = 0.40, determine what range of values for mass mB will
keep the system at rest. (b) If the coefficient of kinetic friction is fik = 0.30, and
mB = 10.0 kg, determine the acceleration of the system.

APPROACH Figure 5-9b shows two free-body diagrams for box mA because the
force of friction can be either up or down the slope, depending on which direction
the box slides: (i) if raB = 0 or is sufficiently small, mAwould tend to slide down the
incline, so Ffr would be directed up the incline; (ii) if mBis large enough, mA will
tend to be pulled up the plane, so Ffr would point down the plane. The tension
force exerted by the cord is labeled FT.

SOLUTION (a) For hoth cases (i) and (ii), Newton’s second law for the y direction
(perpendicular to the plane) is the same:

FN —mAgcos6 = mAay = 0

since there is no y motion. So
FN = mAgcos6.

Now for the x motion. We consider case (i) first for which 2F = ma gives
mAgsin6 - FT - Ffr = mAax.

We want ax = 0 and we solve for FTsince FTis related to mB (whose value we
are seeking) by FT = mBg (see Fig. 5-9¢).Thus

mAgsind - Ffr = Fx = mBg.

We solve this for mB and set Ffr at its maximum value jikFN= /smAg cos 6 to
find the minimum value that mBcan have to prevent motion (ax = O):

mB = mAsin6 — jismAcos 0
(10.0kg)(sin 37° - 0.40cos 37°) = 2.8kg.

Thus if mB < 2.8 kg, then box A will slide down the incline.

Now for case (ii) in Fig. 5-9b, box A being pulled up the incline. Newton’s second
law is

mAgsin6 + Fr - Ft = mAax = 0.
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Then the maximum value mBcan have without causing acceleration is given by

FT = mBg = mAgsin6 + fismAgcosd

mB = mAsinO + fismAcos 6

(10.0kg) (sin37° + 0.40cos37°) = 9.2kg.

Thus, to prevent motion, we have the condition
2.8Kkg < raB< 9.2kg.

(b) If raB= 10.0kg and fk = 0.30, then raBwill fall and mA will rise up the
plane (case ii). To find their acceleration a, we use 2F = ma for box A:

mAa = FT - mAgsin0 - /kFN.
Since raBaccelerates downward, Newton’s second law for box B (Fig. 5-9c) tells
us mQa =mBg —F, or FT = mBg —mBa, and we substitute this into the
equation above:

mAa = mBg - mBa —mAgsin6 - flkFN.

We solve for the acceleration a and substitute FN= mAgcos6, and then
mA = mB = 10.0 kg, to find

_ mBg ~ mAgsin6 - ~m Agcosd
- mA + mB

(10.0kg)(9.80 m/s2)(I - sin37° - 0.30 cos 37°)
20.0kg

= 0.079g = 0.78m/s2

NOTE It is worth comparing this equation for acceleration a with that obtained
in Example 5-5: if here we let 0 = 0, the plane is horizontal as in Example 5-5,
and we obtain a = (mBg —" m Ag)/(mA + mB) just as in Example 5-5.

5—2 Uniform Circular Motion—Kinematics

An object moves in a straight line if the net force on it acts in the direction of
motion, or the net force is zero. If the net force acts at an angle to the direction of
motion at any moment, then the object moves in a curved path. An example of the
latter is projectile motion, which we discussed in Chapter 3. Another important case
is that of an object moving in a circle, such as a ball at the end of a string revolving
around one’s head, or the nearly circular motion of the Moon about the Earth.

An object that moves in a circle at constant speed v is said to experience
uniform circular motion. The magnitude of the velocity remains constant in this
case, but the direction of the velocity continuously changes as the object moves
around the circle (Fig. 5-10). Because acceleration is defined as the rate of change
of velocity, a change in direction of velocity constitutes an acceleration, just as a
change in magnitude of velocity does. Thus, an object revolving in a circle is contin-
uously accelerating, even when the speed remains constant {vx= v2=v). We
now investigate this acceleration quantitatively.

FIGURE 5-10 A small object
moving in a circle, showing how the
velocity changes. At each point,

the instantaneous velocity isin a
direction tangent to the circular path.
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(b)

FIGURE 5-11 Determining the
change in velocity, Av, for a particle
moving in a circle. The length At is the
distance along the arc, from A to B.

/\ CAUTION

In uniform circular motion, the speed is
constant, but the acceleration isnot zero

FIGURE 5-12  For uniform circular
motion, a is always perpendicular to v.
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Acceleration is defined as
i Av _ d\ S

Moat = Gt

where Av is the change in velocity during the short time interval At. We will eventually
consider the situation in which At approaches zero and thus obtain the instantaneous
acceleration. But for purposes of making a clear drawing (Fig. 5-11), we consider a
nonzero time interval. During the time interval At, the particle in Fig. 5-11a moves
from point A to point B, covering a distance AE along the arc which subtends an
angle A0.The change in the velocity vector is v2- vx= Av, and is shown in Fig. 5-11b.

Now we let At be very small, approaching zero. Then At and AO are also very
small, and v2 will be almost parallel to vx (Fig. 5-11c); Av will be essentially
perpendicular to them. Thus Av points toward the center of the circle. Since a, by
definition, is in the same direction as Av, it too must point toward the center of the
circle. Therefore, this acceleration is called centripetal acceleration (“center-
pointing” acceleration) or radial acceleration (since it is directed along the radius,
toward the center of the circle), and we denote it by aR.

We next determine the magnitude of the radial (centripetal) acceleration, aR.
Because CA in Fig. 5-1la is perpendicular to v1? and CB is perpendicular to v2,
it follows that the angle A0, defined as the angle between CA and CB, is also
the angle between  and v2. Hence the vectors vl5v2, and Av in Fig. 5-11b
form a triangle that is geometrically similar*to triangle CAB in Fig. 5-1la.
If we take A0 to be very small (letting At be very small) and setting v =v1=v2
because the magnitude of the velocity is assumed not to change, we can write

Av Al

or
Av -At.
r

This is an exact equality when At approaches zero, for then the arc length AE£
equals the chord length AB. We want to find the instantaneous acceleration, aR, so
we use the expression above to write
_ . Av v At
AR = N A T AT

Then, because

At—0 At
isjust the linear speed, v, of the object, we have for the centripetal (radial) acceleration

flu — [centripetal (radial) acceleration] (5-1)

Equation 5-1 is valid even when v is not constant.

To summarize, an object moving in a circle of radius r at constant speed v has
an acceleration whose direction is toward the center of the circle and whose magni-
tude is aR = v2r. It is not surprising that this acceleration depends on v and r.
The greater the speed v, the faster the velocity changes direction; and the larger
the radius, the less rapidly the velocity changes direction.

The acceleration vector points toward the center of the circle. But the velocity
vector always points in the direction of motion, which is tangential to the circle.
Thus the velocity and acceleration vectors are perpendicular to each other at every
point in the path for uniform circular motion (Fig. 5-12). This is another example
that illustrates the error in thinking that acceleration and velocity are always in the
same direction. For an object falling vertically, a and v are indeed parallel. But in
circular motion, a and v are perpendicular, not parallel (nor were they parallel in
projectile motion, Section 3-7).

EXERCISE C Can Equations 2-12, the kinematic equations for constant acceleration, be
used for uniform circular motion? For example, could Eq. 2-12b be used to calculate the
time for the revolving ball in Fig. 5-12 to make one revolution?

fAppendix A contains a review of geometry.



Circular motion is often described in terms of the frequency /, the number of
revolutions per second. The period T of an object revolving in a circle is
the time required for one complete revolution. Period and frequency are related by

T" 7 5"2
For example, if an object revolves at a frequency of 3rev/s, then each revolﬁtiorz
takes \'s. For an object revolving in a circle (of circumference 2irr) at constant
speed v, we can write
2irr
vV = -;l_-»

since in one revolution the object travels one circumference.

] Acceleration of a revolving ball. A 150-g ball at the end of a
string is revolving uniformly in a horizontal circle of radius 0.600m, as in Fig. 5-10 or
5-12. The ball makes 2.00 revolutions in a second. What is its centripetal acceleration?
APPROACH The centripetal acceleration is aR = v2r. We are given r, and we
can find the speed of the ball, v, from the given radius and frequency.

SOLUTION If the ball makes two complete revolutions per second, then the ball
travels in a complete circle in a time interval equal to 0.500s, which is its
period T. The distance traveled in this time is the circumference of the circle, 2irr,
where r is the radius of the circle. Therefore, the ball has speed

_ 2irr_ 277(0.600 m)

=T T Tos00s C SAMIE
The centripetal acceleration is
v2 (7.54m/s)2
arR = = = 94.7m/s2

r T (0.600m)

EXERCISE D If the radius is doubled to 1.20 m but the period stays the same, by what
factor will the centripetal acceleration change? (a) 2, (b) 4, (c) \, (d) \, (e) none of these.

EXAMPLE 5-9 Moon's centripetal acceleration. The Moon’s nearly circular
orbit about the Earth has a radius of about 384,000 km and a period T of 27.3
days. Determine the acceleration of the Moon toward the Earth.

APPROACH Again we need to find the velocity v in order to find aR. We will
need to convert to Sl units to get v in m/s.

SOLUTION In one orbit around the Earth, the Moon travels a distance 2irr,
where r = 3.84 X 108m is the radius of its circular path. The time required for
one complete orbit is the Moon’s period of 27.3 d. The speed of the Moon in its
orbit about the Earth is v =2irr/T. The period T in seconds is
T = (27.3d) (24.0h/d) (3600 s/h) = 2.36 X 106s. Therefore,

v2 (2irr f 47r 4it-2(3.84 X 108m)
Tx T2 (2.36 X 106s)2
= 0.00272m/s2 = 2.72 X 10“3m/s2

We can write this acceleration in terms of g = 9.80m/s2 (the acceleration of
gravity at the Earth’s surface) as

aR

a = 272 X 10“3m/s2(----- r% = 2.78X10“V
\'9:.80 m/s2/ 6

NOTE The centripetal acceleration of the Moon, a = 2.78 X 10-4g, is not the

acceleration of gravity for objects at the Moon’s surface due to the Moon’s

gravity. Rather, it is the acceleration due to the Earth$ gravity for any object

(such as the Moon) that is 384,000 km from the Earth. Notice how small this

acceleration is compared to the acceleration of objects near the Earth’s surface.

differences in the final digit can depend on whether you keep all digits in your calculator for v (which
gives aR = 94.7m/s2), orifyou use v = 7.54 m/s inwhich case you get aR = 94.8 m/s2. Both results
are valid since our assumed accuracy is about + 0.1 m/s (see Section 1-3).

A CAUTION

Distinguish the Moon’ gravity

on objects at its surface,
from the Earth3 gravity acting
on the Moon (this Example)
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Centrifuge

Force exerted

FIGURE 5-13 Two positions of a
rotating test tube in a centrifuge (top
view). At A, the green dot represents a
macromolecule or other particle being
sedimented. It would tend to follow
the dashed line, heading toward the
bottom of the tube, but the fluid resists
this motion by exerting a force on the
particle as shown at point B.

FIGURE 5-14 A force is required
to keep an object moving in a circle.
If the speed is constant, the force is
directed toward the circle’s center.

/\ CAUTION

Centripetalforce isnota new

kind offorce (Every force must
be exerted by an object)

*Centrifugation

Centrifuges and very high speed ultracentrifuges, are used to sediment materials
quickly or to separate materials. Test tubes held in the centrifuge rotor are accelerated
to very high rotational speeds: see Fig. 5-13, where one test tube is shown in
two positions as the rotor turns. The small green dot represents a small particle,
perhaps a macromolecule, in a fluid-filled test tube. At position A the particle has
a tendency to move in a straight line, but the fluid resists the motion of the particles,
exerting a centripetal force that keeps the particles moving nearly in a circle. The
resistive force exerted by the fluid (liquid, gas, or gel, depending on the application)
usually does not quite equal mv2'r, and the particles move slowly toward the bottom
of the tube. A centrifuge provides an “effective gravity” much larger than normal
gravity because of the high rotational speeds, thus causing more rapid sedimentation.

Ultracentrifuge. The rotor of an ultracentrifuge rotates at
50,000 rpm (revolutions per minute). A particle at the top of a test tube (Fig. 5-13)
is 6.00 cm from the rotation axis. Calculate its centripetal acceleration, in “g’s.”

APPROACH We calculate the centripetal acceleration from aR = v2r.

SOLUTION The test tube makes 5.00 X 104revolutions each minute, or, dividing
by 60 s/min, 833 rev/s. The time to make one revolution, the period T, is

T = fg33}evlg) = 1.20 X 10“3s/rev.

At the top of the tube, a particle revolves in a circle of circumference
277r = (2tt) (0.0600 m) = 0.377 m per revolution. The speed of the particle is then

2irr _ ( 0.377ml/rev
T \ 1.20 X 10-3s/rev
The centripetal acceleration is
v2 (3.14 x 102m/s)2
=7 - 0.0600m = t64 X 106m/s2
which, dividing by g = 9.80m/s2 is 1.67 X 1059’ = 167,000 g’s.

5—3 Dynamics of Uniform Circular Motion

According to Newton’s second law (SF = ma), an object that is accelerating
must have a net force acting on it. An object moving in a circle, such as a ball on
the end of a string, must therefore have a force applied to it to keep it moving in
that circle. That is, a net force is necessary to give it centripetal acceleration. The
magnitude of the required force can be calculated using Newton’s second law for
the radial component, 2FR = maR, where aRis the centripetal acceleration,
aR = v2r>and 2Fr isthe total (or net) force in the radial direction:

maR = m=.

EFr = [circular motion] (5-3)

For uniform circular motion (v = constant), the acceleration is aR, which is
directed toward the center of the circle at any moment. Thus the netforce too must
be directed toward the center of the circle, Fig. 5-14. A net force is necessary
because if no net force were exerted on the object, it would not move in a circle
but in a straight line, as Newton’s first law tells us. The direction of the net force is
continually changing so that it is always directed toward the center of the circle.
This force is sometimes called a centripetal (“pointing toward the center”) force.
But be aware that “centripetal force” does not indicate some new kind of force.
The term merely describes the direction of the net force needed to provide a
circular path: the net force is directed toward the circle’s center. The force must be
applied by other objects. For example, to swing a ball in a circle on the end of a
string, you pull on the string and the string exerts the force on the ball. (Try it.)
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There is a common misconception that an object moving in a circle has an outward /4 CAUTION

force acting on it, a so-called centrifugal (“center-fleeing”) force. This is incorrect: there There is no real “tentrifugal force™

is no outwardforce on the revolving object. Consider, for example, a person swinging a
ball on the end of a string around her head (Fig. 5-15). If you have ever done this your- Force on ball N
self, you know that you feel a force pulling outward on your hand. The misconception
arises when this pull is interpreted as an outward “centrifugal” force pulling on the ball
that is transmitted along the string to your hand. This is not what is happening at all. To
keep the ball moving in a circle, you pull inwardly on the string, and the string exerts
this force on the ball. The ball exerts an equal and opposite force on the string
(Newton’s third law), and this is the outward force your hand feels (see Fig. 5-15).
The force on the ball is the one exerted inwardly on it by you, via the string. To
see even more convincing evidence that a “centrifugal force” does not act on the
ball, consider what happens when you let go of the string. If a centrifugal force

were acting, the ball would fly outward, as shown in Fig. 5-16a. But it doesn'; the FIGURE 5-15 Swinging a ball on

ball flies off tangentially (Fig. 5-16b), in the direction of the velocity it had at the  the end of a string.
moment it was released, because the inward force no longer acts. Try it and see!

FIGURE 5-16 If centrifugal force

existed, the revolving ball would fly

EXERCISE E Return to the Chapter-Opening Question, page 112, and answer it again now. Try
to explain why you may have answered differently the first time.

outward as in (a) when released. In
fact, it flies off tangentially as in (b).
For example, in (c) sparks fly in

EXAMPLE 5-11  ESTIMATE~| Force on revolving ball (horizontal). Estimate  straight lines tangentially from the
the force a person must exert on a string attached to a 0.150-kg ball to make the  edge of arotating grinding wheel.

ball revolve in a horizontal circle of radius 0.600 m. The ball makes 2.00 revolutions
per second (T = 0.500s), as in Example 5-8. Ignore the string’s mass.

APPROACH First we need to draw the free-body diagram for the ball. The forces
acting on the ball are the force of gravity, mg downward, and the tension force Fx
that the string exerts toward the hand at the center (which occurs because the
person exerts that same force on the string). The free-body diagram for the ball is
as shown in Fig. 5-17. The ball’s weight complicates matters and makes it impos-
sible to revolve a ball with the cord perfectly horizontal. We assume the weight is
small, and put €« 0 in Fig. 5-17. Thus Fx will act nearly horizontally and, in any
case, provides the force necessary to give the ball its centripetal acceleration.
SOLUTION We apply Newton’s second law to the radial direction, which we
assume is horizontal:

(2F)r = maR,
where aR =v2r and v = 2irr/T = 27r(0.600m)/(0.500s) = 7.54 m/s. Thus

(7.54 m/s):

= (9150k9) " 1 600 mj 14N.

v2
FT = m—
r

NOTE We keep only two significant figures in the answer because we ignored the
ball’s weight; it is mg = (0.150 kg)(9.80m/s2 = 15N, about ~ of our result,
which is small but not so small as to justify stating a more precise answer for FT.

NOTE To include the effect of rag, resolve Fxin Fig. 5-17 into components, and
set the horizontal component of Fx equal to mv2r and its vertical component
equal to mg.

FIGURE 5-17 Example 5-11.

©
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mgf

mg

FIGURE 5-18 Example 5-12. Free-

body diagrams for positions 1 and 2.

/4 CAUTION
Circular motion only ifcord

124 CHAPTERS

is under tension

EXAMPLE 5-12 Revolving ball (vertical circle). A 0.150-kg ball on the end
of a 1.10-m-long cord (negligible mass) is swung in a vertical circle, (a) Determine
the minimum speed the ball must have at the top of its arc so that the ball
continues moving in a circle. (b) Calculate the tension in the cord at the bottom
of the arc, assuming the ball is moving at twice the speed of part (a).

APPROACH The ball moves in a vertical circle and is not undergoing uniform circular
motion. The radius is assumed constant, but the speed v changes because of gravity.
Nonetheless, Eq. 5-1 is valid at each point along the circle, and we use it at the top and
bottom points. The free-body diagram is shown in Fig. 5-18 for both positions.
SOLUTION (a) At the top (point 1), two forces act on the ball: rag, the force
of gravity, and Fti> the tension force the cord exerts at point 1. Both act down-
ward, and their vector sum acts to give the ball its centripetal acceleration aR. We
apply Newton’s second law, for the vertical direction, choosing downward as posi-
tive since the acceleration is downward (toward the center):

(IF)r = maR
. A
Fti + mg m— [at top]

r
From this equation we can see that the tension force Ft1 at point 1 will get larger
if \k (ball’s speed at top of circle) is made larger, as expected. But we are asked
for the minimum speed to keep the ball moving in a circle. The cord will remain
taut as long as there is tension in it. But if the tension disappears (because is
too small) the cord can go limp, and the ball will fall out of its circular path. Thus,
the minimum speed will occur if Ft1 = 0, for which we have
vl
mg = -—-- [minimum speed at top]

We solve for v-1 keeping an extra digit for use in (b):

Vi = Vg? = V(9-80m/s2)(1.10m) = 3.283m/s.
This is the minimum speed at the top of the circle if the ball is to continue
moving in a circular path.
(b) When the ball is at the bottom of the circle (point 2 in Fig. 5-18), the cord
exerts its tension force Ft2upward, whereas the force of gravity, rag, still acts
downward. Choosing upward as positive, Newton’s second law gives:

("F)R - maR

Ft2 ~ mg m— [at bottom]

The speed v2is given as twice that in (a), namely 6.566 m/s. We solve for F,
T2 = M- tmg

(6.566 m/s)'
(1.10m)

(0.150 kg) + (0.150kg)(9.80m/s? = 7.35N.

EXERCISE F A rider on a Ferris wheel moves in a vertical circle of radius r at constant speed v
(Fig. 5-19). Is the normal force that the seat exerts on the rider at the top of the wheel (a) less
than, (b) more than, or (c) the same as, the force the seat exerts at the bottom of the wheel?

FIGURE 5-19 Exercise F.
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EXAMPLE 5-13 Conical pendulum. A small ball of mass m, suspended by a
cord of length £, revolves in a circle of radius r = 1sin0, where 0 is the angle
the string makes with the vertical (Fig. 5-20). (a) In what direction is the acceler-
ation of the ball, and what causes the acceleration? (b) Calculate the speed and
period (time required for one revolution) of the ball in terms of 1,0, g, and m.

APPROACH We can answer (a) by looking at Fig. 5-20, which shows the forces

on the revolving ball at one instant: the acceleration points horizontally toward

the center of the ball’s circular path (not along the cord). The force responsible

for the acceleration is the net force which here is the vector sum of the

forces acting on the mass m:its weight FG(of magnitude FG = mg) and the force

exerted by the tension in the cord, FT. The latter has horizontal and vertical

components of magnitude FTsin 0 and FTcos 0, respectively.

SOLUTION (b) We apply Newton’s second law to the horizontal and vertical

directions. In the vertical direction, there is no motion, so the acceleration is zero  fGURE 5-20 Example 5-13.
and the net force in the vertical direction is zero: Conical pendulum.

FTcos6 - mg = 0.
In the horizontal direction there is only one force, of magnitude FTsin 0, that acts

toward the center of the circle and gives rise to the acceleration v2r. Newton’s
second law tells us:
. v2
Ftsin0 = m -~

We solve the second equation for v, and substitute for FT from the first equation
(and use r = £sin 0):

rFTsin0 m
vV = g sin0
m cos 0
£gsin20
cos 0

The period T is the time required to make one revolution, a distance of
2irr = 2irlsin 0. The speed v can thus be written v = lirl sin6/T; then
2ir£ sin 6 2itEsin 6
v Ig sin26
cos 6

= 2t
9
NOTE The speed and period do not depend on the mass m of the ball. They do
depend on i and 6.

%O L v,
c

Uniform Circular Motion is, all the forces or components that act radially,
toward or away from the center of the circular path.
The sum of these forces (or components) provides the
centripetal acceleration, aR = v2r.

1. Draw a free-body diagram, showing all the forces
acting on each object under consideration. Be sure
you can identify the source of each force (tension in . .
a cord, Earth’s gravity, friction, normal force, and 3. Choose a convenient coordinate system, preferably

50 on). Don't put in something that doesn’t belong with one axis along the acceleration d!rectlon.
(like a centrifugal force). 4. Apply Newton’s second law to the radial component:

2. Determine which of the forces, or which of their compo- (2 F)r

= maR = mVZ- [radial direction]
nents, act to provide the centripetal acceleration—that - -
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FIGURE 5-22 Race car heading
into a curve. From the tire marks we
see that most cars experienced a
sufficient friction force to give them
the needed centripetal acceleration
for rounding the curve safely. But, we
also see tire tracks of cars on which
there was not sufficient force— and
which unfortunately followed more
nearly straight-line paths.

FIGURE 5-23 Example 5-14.
Forces on acar rounding a curve on a
flat road, (a) Front view, (b) top view.

Fn
1

<a) Fa = "fi

<)
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Force on car
Isum of friel mil forces
acting on each lire)

FIGURE 5-21 The road exerts an
inward force on a car (friction against
the tires) to make it move in a

circle. The car exerts an inward force

on the passenger. .
___Mmaidency for

passenger lo

- go straight
Forcc on

passenger

5—4 Highway Curves: Banked and Unbanked

An example of circular dynamics occurs when an automobile rounds a curve, say to
the left. In such a situation, you may feel that you are thrust outward toward the right
side door. But there is no mysterious centrifugal force pulling on you. What is
happening is that you tend to move in a straight line, whereas the car has begun to
follow a curved path. To make you go in the curved path, the seat (friction) or the
door of the car (direct contact) exerts a force on you (Fig. 5-21). The car also must
have a force exerted on it toward the center of the curve if it is to move in that curve.
On a flat road, this force is supplied by friction between the tires and the pavement.

If the wheels and tires of the car are rolling normally without slipping or
sliding, the bottom of the tire is at rest against the road at each instant; so the fric-
tion force the road exerts on the tires is static friction. But if the static friction
force is not great enough, as under icy conditions or high speed, sufficient friction
force cannot be applied and the car will skid out of a circular path into a more
nearly straight path. See Fig. 5-22. Once a car skids or slides, the friction force
becomes kinetic friction, which is less than static friction.

EXAMPLE 5-14 Skidding on a curve. A 1000-kg car rounds a curve on a flat
road of radius 50 m at a speed of 15m/s (54 km/h). Will the car follow the curve,
or will it skid? Assume: (a) the pavement is dry and the coefficient of static fric-
tion is ijls = 0.60; (b) the pavement is icy and = 0.25.

APPROACH The forces on the car are gravity mg downward, the normal force FN
exerted upward by the road, and a horizontal friction force due to the road. They
are shown in Fig. 5-23, which is the free-body diagram for the car. The car will
follow the curve if the maximum static friction force is greater than the mass
times the centripetal acceleration.

SOLUTION In the vertical direction there is no acceleration. Newton’s second
law tells us that the normal force FNon the car is equal to the weight mg:

Fn = mg = (1000kg)(9.80m/s2) = 9800 N.

In the horizontal direction the only force is friction, and we must compare it to the
force needed to produce the centripetal acceleration to see if it is sufficient. The net
horizontal force required to keep the car moving in a circle around the curve is

(15m/s)2
= 4500 N.

v2
(ZF)R = maR = m— = (1000 kg)
Now we compute the maximum total static friction force (the sum of the friction
forces acting on each of the four tires) to see if it can be large enough to provide
a safe centripetal acceleration. For (a), fjk = 0.60, and the maximum friction
force attainable (recall from Section 5-1 that Ffr < /asFn) is

(fomax = = (0.60)(9800N) = 5880N.

Since a force of only 4500 N is needed, and that is, in fact, how much will be
exerted by the road as a static friction force, the car can follow the curve. But in

Using Newton's Laws: Friction, Circular Motion, Drag Forces



(b) the maximum static friction force possible is
(Ffrux = fhK = (0.25)(9800N) = 2450 N.

The car will skid because the ground cannot exert sufficient force (4500 N is
needed) to keep it moving in a curve of radius 50 m at a speed of 54 km/h.

The banking of curves can reduce the chance of skidding. The normal force
exerted by a banked road, acting perpendicular to the road, will have a component
toward the center of the circle (Fig. 5-24), thus reducing the reliance on friction.
For a given banking angle 0, there will be one speed for which no friction at all is
required. This will be the case when the horizontal component of the normal force
toward the center of the curve, FNsinO (see Fig. 5-24), is just equal to the force
required to give a vehicle its centripetal acceleration—that is, when

FnsinO = m v, [no friction required]

The banking angle of a road, 0, is chosen so that this condition holds for a partic-
ular speed, called the “design speed.”

Banking angle. (a) For a car traveling with speed v around a
curve of radius r, determine a formula for the angle at which a road should be
banked so that no friction is required. (b) What is this angle for an expressway
off-ramp curve of radius 50m at a design speed of 50 km/h?

APPROACH Even though the road is banked, the car is still moving along a horizontal
circle, so the centripetal acceleration needs to be horizontal. We choose our x and y
axes as horizontal and vertical so that aR, which is horizontal, is along the x axis. The
forces on the car are the Earth’s gravity mg downward, and the normal force FN
exerted by the road perpendicular to its surface. See Fig. 5-24, where the components
of Fn are also shown. We dont need to consider the friction of the road because we
are designing a road to be banked so as to eliminate dependence on friction.

SOLUTION (a) Since there is no vertical motion, 2Fy = may gives us

Fncos0 - Mg = o.
Thus,

mg_
N cos 0
[Note in this case that FN> mg since cos 0 < 1]
We substitute this relation for FNinto the equation for the horizontal motion,

Fnsin0 = mVT2>

and obtain
m \'74
9 sin0 = m—
cos0 r
or
tan0 = v_2
rg

This is the formula for the banking angle 0: no friction needed at speed v.
(b) Forr =50m and v =50km/h (or 14m/s),
(14 m/s)2
tan0 = —v = 040,
(50m)(9.8 m/s )
sod = 22°.

EXERCISE G The banking angle of a curve for a design speed v is $i. What banking angle d2
is needed for a design speed of 2y? (a) $2 = 40i; (b) 02 = 20\; (c) tan02 = 4 tan 6\ ;
(d) tan02 = 2 tan 61.

EXERCISE H Can a heavy truck and a small car travel safely at the same speed around an
icy banked-curve road?

0O PHYSICS APPLIED
Banked curves

y

FIGURE 5-24 Normal force on a
car rounding a banked curve, resolved
into its horizontal and vertical
components. The centripetal
acceleration is horizontal (nor parallel
to the sloping road). The friction force
on the tires, not shown, could point up
or down along the slope, depending on
the car’s speed. The friction force will
be zero for one particular speed.

/j\ CAUTION

Fn is not always equal to mg
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(b)

FIGURE 5-25 The speed of an
object moving in acircle changes if
the force on it has a tangential
component, Ftan. Part (a) shows the
force F and its vector components;
part (b) shows the acceleration
vector and its vector components.

5—5 Nonuniform Circular Motion

Circular motion at constant speed occurs when the net force on an object is
exerted toward the center of the circle. If the net force is not directed toward the
center but is at an angle, as shown in Fig. 5-25a, the force has two components.
The component directed toward the center of the circle, FR, gives rise to the
centripetal acceleration, aR, and keeps the object moving in a circle. The
component tangent to the circle, Ftan, acts to increase (or decrease) the speed, and
thus gives rise to a component of the acceleration tangent to the circle, atan. When
the speed of the object is changing, a tangential component of force is acting.

When you first start revolving a ball on the end of a string around your head, you
must give it tangential acceleration. You do this by pulling on the string with your hand
displaced from the center of the circle. In athletics, a hammer thrower accelerates the
hammer tangentially in a similar way so that it reaches a high speed before release.

The tangential component of the acceleration, atan, has magnitude equal to
the rate of change of the magnitude of the object’s velocity:

“tan Ql\f ] é% ﬁ)

The radial (centripetal) acceleration arises from the change in direction of the
velocity and, as we have seen, has magnitude

A=
The tangential acceleration always points in a direction tangent to the circle, and is
in the direction of motion (parallel to v, which is always tangent to the circle) if
the speed is increasing, as shown in Fig. 5-25b. If the speed is decreasing, atn
points antiparallel to v. In either case, atanand aRare always perpendicular to each
other; and their directions change continually as the object moves along its circular
path. The total vector acceleration a is the sum of the two components:

a = aan + Sr- (5-5)
Since aRand atanare always perpendicular to each other, the magnitude of a at any
moment is

a = V«?an + OR-

EXAMPLE 5-16 Two components of acceleration. A race car starts from
rest in the pit area and accelerates at a uniform rate to a speed of 35m/s in 115,
moving on a circular track of radius 500 m. Assuming constant tangential
acceleration, find (a) the tangential acceleration, and (b) the radial acceleration,
at the instant when the speed is v = 15m/s.

APPROACH The tangential acceleration relates to the change in speed of the car,
and can be calculated as «tan = Av/At. The centripetal acceleration relates to the
change in the direction of the velocity vector and is calculated using aR = v2fr.
SOLUTION (a) During the 11-s time interval, we assume the tangential
acceleration atan is constant. Its magnitude is

Av (35m/s - 0ml/s)
fi“ = a? = e ui-----—--- = 32m/s-
(b) When v = 15m/s, the centripetal acceleration is
_v2 _ (15m/s)2 _

NOTE The radial acceleration increases continually, whereas the tangential accel-
eration stays constant.

EXERCISE | When the speed of the race car in Example 5-16 is 30m/s, how are (a) atan
and (b) «Rchanged?
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These concepts can be used for an object moving along any curved path, such as
that shown in Fig. 5-26. We can treat any portion of the curve as an arc of a circle with
a “radius of curvature” r. The velocity at any point is always tangent to the path. The
acceleration can be written, in general, as a vector sum of two components: the tangen-
tial component atan = dv/dt, and the radial (centripetal) component aR = v2r.

5—6 Velocity-Dependent Forces:
Drag and Terminal Velocity

When an object slides along a surface, the force of friction acting on the object is
nearly independent of how fast the object is moving. But other types of resistive forces
do depend on the object’s velocity. The most important example is for an object
moving through a liquid or gas, such as air. The fluid offers resistance to the motion of
the object, and this resistive force, or drag force, depends on the velocity of the object.f
The way the drag force varies with velocity is complicated in general. But for small
objects at very low speeds, a good approximation can often be made by assuming that
the drag force, FD, is directly proportional to the magnitude of the velocity, v
Fd = -bv. (5-6)
The minus sign is necessary because the drag force opposes the motion. Here b is a
constant (approximately) that depends on the viscosity of the fluid and on the size
and shape of the object. Equation 5-6 works well for small objects moving at low
speed in a viscous liquid. It also works for very small objects moving in air at very
low speeds, such as dust particles. For objects moving at high speeds, such as an
airplane, a sky diver, a baseball, or an automobile, the force of air resistance can be
better approximated as being proportional to v2:

Fd oc v2

For accurate calculations, however, more complicated forms and numerical
integration generally need to be used. For objects moving through liquids, Eq. 5-6
works well for everyday objects at normal speeds (e.g., a boat in water).

Let us consider an object that falls from rest, through air or other fluid, under
the action of gravity and a resistive force proportional to v. The forces acting on
the object are the force of gravity, mg, acting downward, and the drag force, -bv,
acting upward (Fig. 5-27a). Since the velocity v points downward, let us take the
positive direction as downward. Then the net force on the object can be written

2F = mg —bv.
From Newton’s second law 2F = ma, we have

dv ,

mg —bv = m a0t (5-7)
where we have written the acceleration according to its definition as rate of change of
velocity, a = dv/dt. At t =0, we set v =0 and the acceleration dv/dt =g. As
the object falls and increases in speed, the resistive force increases, and this reduces the
acceleration, dv/dt (see Fig. 5-27b). The velocity continues to increase, but at a slower
rate. Eventually, the velocity becomes so large that the magnitude of the resistive force,
bv, approaches that of the gravitational force, mg; when the two are equal, we have

mg - bv = 0. (5-8)
At this point dv/dt =0 and the object no longer increases in speed. It has
reached its terminal velocity and continues to fall at this constant velocity until it
hits the ground. This sequence of events is shown in the graph of Fig. 5-27b. The
value of the terminal velocity vT can be obtained from Eg. 5-8.

vl = Infg_ (5'9)

If the resistive force is assumed proportional to v2 or an even higher power of v,
the sequence of events is similar and a terminal velocity reached, although it will
not be given by Eq. 5-9.

fAny buoyant force (Chapter 13) is ignored in this Section.

FIGURE 5-26 Object following a
curved path (solid line). At point P
the path has a radius of curvature r.
The object has velocity v, tangential
acceleration atan (the object is here
increasing in speed), and radial
(centripetal) acceleration aR
(magnitude aR = v2/r) which
points toward the center of
curvature C.

FIGURE 5-27 (a) Forces acting on
an object falling downward.

(b) Graph of the velocity of an object
falling due to gravity when the air
resistance drag force is FD = —bv.
Initially, v = 0 and dv/dt = g, but
as time goes on dv/dt (= slope of
curve) decreases because of FD.
Eventually, v approaches a
maximum value, vT, the terminal
velocity, which occurs when FD has
magnitude equal to mg.

FD =V

mg

@)

(b)
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EXAMPLE 5-17 Force proportional to velocity. Determine the velocity as a
function of time for an object falling vertically from rest when there is a resistive
force linearly proportional to v.
APPROACH This is a derivation and we start with Eq. 5-7, which we rewrite as
dv b y
d =9 m"
SOLUTION In this equation there are two variables, v and t. We collect variables
of the same type on one or the other side of the equation:

dv = dt or av = -—-Edt'.
b mg m
9 mY b
Now we can integrate, remembering v = 0 at t = O:
dv A
Jo _ Mg m Jo
b
which gives
mg b
In\v - b "fﬁ't
or b
N vV —mg ____kg 1
-mglb m

We raise each side to the exponential [note that the natural log and the exponen-
tial are inverse operations of each other: elnx = x, or In(e*) = x] and obtain

mg
V b b

v

This relation gives the velocity v as a function of time and corresponds to the
graph of Fig. 5-27b. As a check, note thatat t =0, and v =0

A(*-0) - =" ("p = 8
as expected (see also Eq. 5-7). At large t, e m approaches zero, so v approaches
mglb, which is the terminal velocity, as we saw earlier. If we set r = m/b,

then v = vT(l - e~t/T). So r = m/b is the time required for the velocity to
reach 63% of the terminal velocity (since e 1= 0.37). Figure 5-27b shows a plot

of speed v vs. time t, where the terminal velocity vT = mg/b.

Summary

When two objects slide over one another, the force of friction
that each exerts on the other can be written approximately as
F& = AKFN, where FNis the normal force (the force each object
exerts on the other perpendicular to their contact surfaces), and

is the coefficient of Kinetic friction. If the objects are at rest relative
to each other, even though forces act, then Ffr is just large enough
to hold them at rest and satisfies the inequality Ffr < /xsFN, where
s is the coefficient of static friction.

An object moving in a circle of radius r with constant speed v
is said to be in uniform circular motion. 1t has a radial acceleration
aR that is directed radially toward the center of the circle (also
called centripetal acceleration), and has magnitude

aR = — (5-1)

The direction of the velocity vector and that of the accelera-

tion aR are continually changing in direction, but are perpen-
dicular to each other at each moment.

A force is needed to keep an object revolving uniformly
in a circle, and the direction of this force is toward the
center of the circle. This force may be gravity (as for
the Moon), or tension in a cord, or a component of the
normal force, or another type of force or a combination of
forces.

[*When the speed of circular motion is not constant, the
acceleration has two components, tangential as well as radial.
The force too has tangential and radial components.]

[*A drag force acts on an object moving through a fluid,
such as air or water. The drag force FD can often be approxi-
mated by Fd = —bv or FD oc v2, where v is the speed of the
object relative to the fluid.]
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16.

Questions

A heavy crate rests on the bed of a flatbed truck. When the
truck accelerates, the crate remains where it is on the truck, so
it, too, accelerates. What force causes the crate to accelerate?

. A block is given a push so that it slides up a ramp. After the

block reaches its highest point, it slides back down, but
the magnitude of its acceleration is less on the descent than
on the ascent. Why?

. Why is the stopping distance of a truck much shorter than

for a train going the same speed?

. Can a coefficient of friction exceed 1.0?
. Cross-country skiers prefer their skis to have a large coeffi-

cient of static friction but a small coefficient of kinetic fric-
tion. Explain why. [Hint: Think of uphill and downhill.]

. When you must brake your car very quickly, why is it safer

if the wheels don’t lock? When driving on slick roads, why is
it advisable to apply the brakes slowly?

. When attempting to stop a car quickly on dry pavement, which

of the following methods will stop the car in the least time?
(a)Slam on the brakes as hard as possible, locking the wheels
and skidding to a stop. (b) Press the brakes as hard as possible
without locking the wheels and rolling to a stop. Explain.

. You are trying to push your stalled car. Although you apply

a horizontal force of 400 N to the car, it doesnt budge, and
neither do you. Which force(s) must also have a magnitude
of 400 N: (a) the force exerted by the car on you; (b) the
friction force exerted by the car on the road; (c) the normal
force exerted by the road on you; (d) the friction force
exerted by the road on you?

. Itis not easy to walk on an icy sidewalk without slipping. Even

your gait looks different than on dry pavement. Describe what
you need to do differently on the icy surface and why.

A car rounds a curve at a steady 50 km/h. If it rounds the
same curve at a steady 70 km/h, will its acceleration be any
different? Explain.

Will the acceleration of a car be the same when a car
travels around a sharp curve at a constant 60 km/h as when
it travels around a gentle curve at the same speed? Explain.
Describe all the forces acting on a child riding a horse on a
merry-go-round. Which of these forces provides the
centripetal acceleration of the child?

A child on a sled comes flying over the crest of a small hill,
as shown in Fig. 5-28. His sled does not leave the ground,
but he feels the normal force between his chest and the
sled decrease as he

goes over the hill

Explain this decrease

using Newton’s second

law.

FIGURE 5-28
Question 13.

Sometimes it is said that water is removed from clothes in a
spin dryer by centrifugal force throwing the water outward.
Is this correct? Discuss.

Technical reports often specify only the rpm for centrifuge
experiments. Why is this inadequate?

A girl is whirling a ball on a string around her head in a
horizontal plane. She wants to let go at precisely the right
time so that the ball will hit a target on the other side of the
yard. When should she let go of the string?

17.

18.

19.

20.

21

22.

*23.

*24.

The game of tetherball is played with a ball tied to a pole
with a string. When the ball is struck,

it whirls around the pole as shown in

Fig. 5-29. In what direction is the

acceleration of the ball, and what

causes the acceleration?

FIGURE 5-29
Problem 17.

Astronauts who spend long periods in outer space could be
adversely affected by weightlessness. One way to simulate
gravity is to shape the spaceship like a cylindrical shell that
rotates, with the astronauts walking on the inside surface
(Fig. 5-30). Explain how

this  simulates  gravity.

Consider (a) how objects

fall, (b) the force we feel

on our feet, and (c) any

other aspects of gravity

you can think of.

FIGURE 5-30
Question 18.

A bucket of water can be whirled in a vertical circle without
the water spilling out, even at the top of the circle when the
bucket is upside down. Explain.

A car maintains a constant speed v as it traverses the hill
and valley shown in Fig. 5-31. Both the hill and valley have
a radius of curvature R. At which point, A, B, or C, is the
normal force acting on the car (a) the largest, (b) the
smallest? Explain, (c) Where would the driver feel heaviest
and (d) lightest? Explain, (e) How fast can the car go
without losing contact with the road at A?

FIGURE 5-31 Question 20.

Why do bicycle riders lean in when rounding a curve at high
speed?

Why do airplanes bank when they turn? How would you
compute the banking angle given the airspeed and radius of
the turn? [Hint: Assume an aerodynamic “lift” force acts
perpendicular to the wings.]

For a drag force of the form F = -bv, what are the units
of bl

Suppose two forces act on an object, one force proportional
to v and the other proportional to v2 Which force domi-
nates at high speed?

Questions 131
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1.

10.

11.

12.

13.

14.

Problems

1 Friction and Newton's Laws

(1) If the coefficient of Kinetic friction between a 22-kg crate
and the floor is 0.30, what horizontal force is required to
move the crate at a steady speed across the floor? What
horizontal force is required if  is zero?

(1) A force of 35.0N is required to start a 6.0-kg box moving
across a horizontal concrete floor, (a) What is the coefficient
of static friction between the box and the floor? (b) If the
35.0-N force continues, the box accelerates at 0.60 m/s2.
What is the coefficient of kinetic friction?

(I) Suppose you are standing on a train accelerating at 0.20g.
What minimum coefficient of static friction must exist
between your feet and the floor if you are not to slide?

() The coefficient of static friction between hard rubber
and normal street pavement is about 0.90. On how steep a
hill (maximum angle) can you leave a car parked?

(1) What is the maximum acceleration a car can undergo if
the coefficient of static friction between the tires and the
ground is 0.90?

(1) (a) A box sits at rest on a rough 33° inclined plane.
Draw the free-body diagram, showing all the forces acting
on the box. (b) How would the diagram change if the box
were sliding down the plane, (¢) How would it change if the
box were sliding up the plane after an initial shove?

(I1) A 25.0-kg box is released on a 27° incline and accelerates
down the incline at 0.30 m/s2. Find the friction force impeding
its motion. What is the coefficient of kinetic friction?

(I1) A car can decelerate at —3.80 m/s2 without skidding
when coming to rest on a level road. What would its decel-
eration be if the road is inclined at 9.3° and the car moves
uphill? Assume the same static friction coefficient.

(I1) A skier moves down a 27° slope at constant speed. What
can you say about the coefficient of friction, /%? Assume
the speed is low enough that air resistance can be ignored.

(1) A wet bar of soap slides freely down a ramp 9.0 m long
inclined at 8.0°. How long does it take to reach the bottom?
Assume = 0.060.

(1) A box is given a push so that it slides across the floor.
How far will it go, given that the coefficient of kinetic friction
is 0.15 and the push imparts an initial speed of 3.5m/s?

(1) (a) Show that the minimum stopping distance for an
automobile traveling at speed v is equal to v2/2 fxsg, where fis
is the coefficient of static friction between the tires and the
road, and g is the acceleration of gravity. (b) What is this
distance for a 1200-kg car traveling 95km/h if /xs = 0.65?
(c) What would it be if the car were on the Moon (the accel-
eration of gravity on the Moon is about g/6) but all else
stayed the same?

(1) A 1280-kg car pulls a 350-kg trailer. The car exerts a hori-
zontal force of 3.6 X 103N against the ground in order to
accelerate. What force does the car exert on the trailer?
Assume an effective friction coefficient of 0.15 for the trailer.

(1) Police investigators, examining the scene of an accident
involving two cars, measure 72-m-long skid marks of one of
the cars, which nearly came to a stop before colliding. The
coefficient of kinetic friction between rubber and the pave-
ment is about 0.80. Estimate the initial speed of that car
assuming a level road.

15.

16.

17.

18.

19.

20.

(1) Piles of snow on slippery roofs can become dangerous
projectiles as they melt. Consider a chunk of snow at the
ridge of a roof with a slope of 34°. (a) What is the minimum
value of the coefficient of static friction that will keep the
snow from sliding down? (b) As the snow begins to melt the
coefficient of static friction decreases and the snow finally
slips. Assuming that the distance from the chunk to the edge
of the roof is 6.0m and the coefficient of Kinetic friction is
0.20, calculate the speed of the snow chunk when it slides off
the roof, (c) If the edge of the roof is 10.0 m above ground,
estimate the speed of the snow when it hits the ground.

(I1) A small box is held in place against a rough vertical wall by
someone pushing on it with a force directed upward at 28°
above the horizontal. The coefficients of static and kinetic
friction between the box and wall are 0.40 and 0.30, respec-
tively. The box slides down unless the applied force has
magnitude 23 N. What is the mass of the box?

(1) Two crates, of mass 65kg and 125kg , are in contact and at
rest on a horizontal surface (Fig. 5-32). A 650-N force is
exerted on the 65-kg crate. If the coefficient of kinetic friction
is 0.18, calculate (a) the acceleration of the system, and (b) the
force that each crate exerts on the other, (c) Repeat with the
crates reversed.

650N goke 15 kg

FIGURE 5-32
Problem 17.

(1) The crate shown in Fig. 5-33 lies on a plane tilted at
an angle 6 = 25.0° to the horizontal, with = 0.19.
(a) Determine the acceleration of the
crate as it slides down the plane.
(b) If the crate starts from rest
8.15m up the plane from its base,
what will be the crate’s speed
when it reaches the bottom of
the incline?

\V4

(1) A crate is given an initial speed of 3.0m/s up the
25.0° plane shown in Fig. 5-33. (a) How far up the plane will
it go? (b) How much time elapses before it returns to its
starting point? Assume = 0.17.

(1) Two blocks made of different materials connected together
by a thin cord, slide down a plane ramp inclined at an angle 6
to the horizontal as shown in Fig. 5-34 (block B is above
block A). The masses of the blocks are mA and mB, and the
coefficients of friction are fiA and /xB. If mA = mB = 5.0 kg,
and nA = 0.20 and /jb = 0.30, deter-

mine (a) the acceleration of the

blocks and (b) the tension in the \Y

cord, for an angle 6 = 32°.

FIGURE 5-33
Crate on inclined plane.
Problems 18 and 19.

FIGURE 5-34 \e
Problems 20 and 21.
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21.

22.

23.

24.

25.

26.

(I1) For two blocks, connected by a cord and sliding down
the incline shown in Fig. 5-34 (see Problem 20), describe
the motion (a) if fxa < >and (b) if fxA > xB. (C) Deter-
mine a formula for the acceleration of each block and the
tension FT in the cord in terms of mA, mB, and 0; interpret
your results in light of your answers to (a) and (b).

(1) A flatbed truck is carrying a heavy crate. The coefficient
of static friction between the crate and the bed of the truck
is 0.75. What is the maximum rate at which the driver can
decelerate and still avoid having the crate slide against the
cab of the truck?

(I1) In Fig. 5-35 the coefficient of static friction between
mass mA and the table is 0.40, whereas the coefficient of
Kinetic friction is 0.30 (a) What minimum value of mA
will keep the system from starting to move? (b) What
value(s) of mA will keep the system moving at constant
speed?

2.0 ku

FIGURE 5-35 Problems 23 and 24.

(1) Determine a formula for the acceleration of the system
shown in Fig. 5-35 in terms of mA, raB, and the mass of the
cord, mc . Define any other variables needed.

(I11) A small block of mass m is given an initial speed vQup
a ramp inclined at angle 6 to the horizontal. It travels a
distance d up the ramp and comes to rest, (a) Determine
a formula for the coefficient of kinetic friction between
block and ramp. (b) What can you say about the value of
the coefficient of static friction?

(1) A 75-kg snowboarder has an initial velocity of 5.0 m/s
at the top of a 28° incline (Fig. 5-36). After sliding down the
110-m long incline (on which the coefficient of Kinetic
friction is /% = 0.18), the snowboarder has attained a
velocity v. The snowboarder then slides along a flat surface
(on which fx* = 0.15) and comes to rest after a distance x.
Use Newton’s second law to find the snowboarder’s
acceleration while on the incline and while on the flat
surface. Then use these accelerations to determine x.

2»y V <
Jik = (?15 *

X

FIGURE 5-36 Problem 26.

27.

28.

29.

30.

31.

(I1) A package of mass m is dropped vertically onto a hori-
zontal conveyor belt whose speed is v = 1.5m/s, and the
coefficient of kinetic friction between the package and the
beltis /ik = 0-70. (a) For how much time does the package
slide on the belt (until it is at rest relative to the belt)?
(b) How far does the package move during this time?

(1) Two masses mA = 20kg and mB= 50kg are on
inclines and are connected together by a string as shown in
Fig. 5-37. The coefficient of kinetic friction between each
mass and its incline is = 0.30. If mA moves up, and raB
moves down, determine their acceleration.

yi° 2r[

FIGURE 5-37 Problem 28.

(1) A child slides down a slide with a 34° incline, and at the
bottom her speed is precisely half what it would have been
if the slide had been frictionless. Calculate the coefficient of
kinetic friction between the slide and the child.

(1) (a) Suppose the coefficient of kinetic friction between
mA and the plane in Fig. 5-38 is W&k = 0.15, and that
mA = mB = 2.7kg. As raB moves down, determine the
magnitude of the acceleration of mA and raB, given
6 = 34°. (b) What smallest value of [x" will keep the system
from accelerating?

I L

FIGURE 5-38 Problem 30.

(I1) A 3.0-kg block sits on top of a 5.0-kg block which is on
a horizontal surface. The 5.0-kg block is pulled to the right
with a force F as shown in Fig. 5-39. The coefficient of static
friction between all surfaces is 0.60 and the kinetic coeffi-
cient is 0.40. (a) What is the minimum value of F needed to
move the two blocks? (b) If the force is 10% greater than
your answer for (a), what is the acceleration of each block?

FIGURE 5-39 Problem 31.
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32.

33.

(1) A 4.0-kg block is stacked on top of a 12.0-kg block,
which is accelerating along a horizontal table at a = 5.2 m/s2
(Fig. 5-40). Let ~ = ms = . (a) What minimum coefficient
of friction /x between the two blocks will prevent the 4.0-kg
block from sliding off? (b) If \x is only half this minimum
value, what is the acceleration of the 4.0-kg block with respect
to the table, and (c) with respect to the 12.0-kg block?
(d) What is the force
that must be applied to
the 12.0-kg block in (a)
and in (b), assuming that
the table is frictionless?

FIGURE 5-40
Problem 32.

(1) A small block of mass m rests on the rough, sloping side
of a triangular block of mass M which itself rests on a hori-
zontal frictionless table as shown in Fig. 5-41. If the coeffi-
cient of static friction is 51, determine the minimum horizontal
force F applied to M

that will cause the

small block m to

start moving up the

incline.

FIGURE 5-41
Problem 33.

5-2 to 5-4 Uniform Circular Motion

34.

35.

(1) What is the maximum speed with which a 1200-kg car
can round a turn of radius 80.0m on a flat road if the coeffi-
cient of friction between tires and road is 0.65? Is this result
independent of the mass of the car?

(1) A child sitting 1.20m from the center of a merry-go-
around moves with a speed of 1.30m/s. Calculate (a) the
centripetal acceleration of the child and (b) the net hori-
zontal force exerted on the child (mass = 22.5kg).

36. (1) A jet plane traveling 1890 km/h (525 m/s) pulls out of a
dive by moving in an arc of radius 4.80 km. What is the
plane’s acceleration in g’s?

37. (I1) Is it possible to whirl a bucket of water fast enough in a
vertical circle so that the water won't fall out? If so, what is
the minimum speed? Define all quantities needed.

38. (I1) How fast (in rpm) must a centrifuge rotate if a particle
8.00cm from the axis of rotation is to experience an acceler-
ation of 125,000 g’s?

39. (I) Highway curves are marked with a suggested speed. If
this speed is based on what would be safe in wet weather,
estimate the radius of curvature for a curve marked 50 km/h.
Use Table 5-1.

40. (1) At what minimum speed must a roller coaster be
traveling when upside down
at the top of a circle
(Fig. 5-42) so that the
passengers do not fall out?

Assume a radius of curva-
ture of 7.6 m.
FIGURE 5-42
Problem 40.
134

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

(I A sports car crosses the bottom of a valley with a radius
of curvature equal to 95 m. At the very bottom, the normal
force on the driver is twice his weight. At what speed was
the car traveling?

(1) How large must the coefficient of static friction be
between the tires and the road if a car is to round a level
curve of radius 85m at a speed of 95 km/h?

(I1) Suppose the space shuttle is in orbit 400 km from the
Earth’s surface, and circles the Earth about once every
90 min. Find the centripetal acceleration of the space shuttle
in its orbit. Express your answer in terms of g, the gravita-
tional acceleration at the Earth’s surface.

(I1) A bucket of mass 2.00 kg is whirled in a vertical circle of
radius 1.10 m. At the lowest point of its motion the tension
in the rope supporting the bucket is 25.0N. (a) Find the
speed of the bucket, (b) How fast must the bucket move at
the top of the circle so that the rope does not go slack?

(1) How many revolutions per minute would a 22-m-
diameter Ferris wheel need to make for the passengers to
feel “weightless” at the topmost point?

(1) Use dimensional analysis (Section 1-7) to obtain the
form for the centripetal acceleration, aR = v2/r.

(1) A jet pilot takes his aircraft in a vertical loop
(Fig. 5-43). (a) If the jet is moving at a speed of 1200 km/h
at the lowest point of the loop, determine the minimum
radius of the circle so that the centripetal acceleration at the
lowest point does not exceed 6.0 g’s. (b) Calculate the 78-kg
pilot’s effective weight (the
force with which the seat pushes
up on him) at the bottom of the
circle, and (c) at the top of the
circle (assume the same speed).

FIGURE 5-43
Problem 47.

(I1) A proposed space station consists of a circular tube that
will rotate about its center (like a tubular bicycle tire),
Fig. 5-44. The circle formed by the tube has a diameter of
about 1.1 km. What must be the rotation speed (revolutions
per day) if an effect equal to N

gravity at the surface of the

Earth (1.0 g) is to be felt?

FIGURE 5-44
Problem 48.

(1) On an ice rink two skaters of equal mass grab hands
and spin in a mutual circle once every 2.5s. If we assume
their arms are each 0.80 m long and their individual masses
are 60.0 kg, how hard are they pulling on one another?

(1) Redo Example 5-11, precisely this time, by not ignoring
the weight of the ball which revolves on a string 0.600 m long.
In particular, find the magnitude of Fx, and the angle it makes
with the horizontal. [Hint. Set the horizontal component of FT
equal to maR; also, since there is no vertical motion, what can
you say about the vertical component of FT ?]

CHAPTER 5 Using Newton's Laws: Friction, Circular Motion, Drag Forces



51.

52.

53.

54.

55.

(1) A coin is placed 12.0cm from the axis of a rotating
turntable of variable speed. When the speed of the turntable
is slowly increased, the coin remains fixed on the turntable
until a rate of 35.0rpm (revolutions per minute) is reached,
at which point the coin slides off. What is the coefficient of
static friction between the coin and the turntable?

(I1) The design of a new road includes a straight stretch that
is horizontal and flat but that suddenly dips down a steep
hill at 22°. The transition should be rounded with what
minimum radius so that cars traveling 95 km/h will not leave
the road (Fig. 5-45)?

FIGURE 5-45
Problem 52.

(I1) A 975-kg sports car (including driver) crosses the
rounded top of a hill (radius = 88.0m) at 12.0 m/s.
Determine (a) the normal force exerted by the road on the
car, (b) the normal force exerted by the car on the 72.0-kg
driver, and (c) the car speed at which the normal force on
the driver equals zero.

(1) Two blocks, with masses mA and mB, are connected to
each other and to a central post by cords as shown in
Fig. 5-46. They rotate about the post at frequency /
(revolutions per second) on a frictionless horizontal surface
at distances rA and rB from the post. Derive an algebraic
expression for the tension in each segment of the cord
(assumed massless).

FIGURE 5-46 Problem 54.

(1) Tarzan plans to cross a gorge by swinging in an arc from
a hanging vine (Fig. 5-47). If his arms are capable of
exerting a force of 1350 N on the rope, what is the maximum
speed he can tolerate at the »

lowest point of his swing? His

mass is 78kg and the vine is

5.2m long.

FIGURE 5-47
Problem 55.

56.

57.

58.

59.

(1) A pilot performs an evasive maneuver by diving verti-
cally at 310 m/s. If he can withstand an acceleration of
9.0g’s without blacking out, at what altitude must he begin
to pull out of the dive to avoid crashing into the sea?

(1) The position of a particle moving in the xy plane is
given by r = 2.0cos (3.0rad/s t)i + 2.0sin (3.0rad/s t)\,
where r is in meters and t is in seconds, (a) Show that this
represents circular motion of radius 2.0m centered at the
origin, (b) Determine the velocity and acceleration vectors as
functions of time, (c) Determine the speed and magnitude of
the acceleration. (d) Show that a = v2/r. (e) Show that the
acceleration vector always points toward the center of the
circle.

(1) If a curve with a radius of 85 m is properly banked for a
car traveling 65 km/h, what must be the coefficient of static
friction for a car not to skid when traveling at 95 km/h?

(1) A curve of radius 68 m is banked for a design speed of
85 km/h. If the coefficient of static friction is 0.30 (wet pave-
ment), at what range of speeds can a car safely make the
curve? [Hint: Consider the direction of the friction force
when the car goes too slow or too fast.]

*5-5 Nonuniform Circular Motion

*60.

*61.

*62.

*63.

*64.

(1) A particle starting from rest revolves with uniformly
increasing speed in a clockwise circle in the xy plane. The
center of the circle is at the origin of an xy coordinate
system. At t = 0, the particleisat x = 0.0, y = 2.0m. At
t = 2.0s, it has made one-quarter of a revolution and is at
x =2.0m, y =00. Determine (a) its speed at t = 2.05,
(b) the average velocity vector, and (c) the average acceler-
ation vector during this interval.

(1) In Problem 60 assume the tangential acceleration is
constant and determine the components of the instantaneous
acceleration at (a) t = 0.0, (b) t = 1.0s, and (c) t = 2.0s.

(I1) An object moves in a circle of radius 22 m with its speed
given by v = 3.6 + 1.512, with v in meters per second and t
in seconds. At t —3.05s, find (a) the tangential acceleration
and (b) the radial acceleration.

(1) A particle rotates in a circle of radius 3.80m. At a
particular instant its acceleration is 1.15m/s2in a direction
that makes an angle of 38.0° to its direction of motion.
Determine its speed (a) at this moment and (b) 2.00 s later,
assuming constant tangential acceleration.

(1) An object of mass m is constrained to move in a circle of
radius r. Its tangential acceleration as a function of time is given
by atan = b + ct2, where b and c are constants. If v = v0 at
t = 0, determine the tangential and radial components of the
force, /'tan and FR, acting on the object at any time t > 0.

*5-6 Velocity-Dependent Forces

*65.

*66.

*67.

(1) Use dimensional analysis (Section 1-7) in Example 5-17
to determine if the time constantr is r = m/b or r = b/m.

(1) The terminal velocity of a 3 X 10 5kg raindrop is about
9m/s. Assuming a drag force FD = —bv, determine (a) the
value of the constant b and (b) the time required for such a
drop, starting from rest, to reach 63% of terminal velocity.

(1) An object moving vertically has v=v0 at t=0.
Determine a formula for its velocity as a function of time
assuming a resistive force F = —bv as well as gravity for
two cases: (a) vOis downward and (b) vOis upward.
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68.

69.

70.

(I1) The drag force on large objects such as cars, planes, and
sky divers moving through air is more nearly Fd = ~bv2
(a) For this quadratic dependence on v, determine a
formula for the terminal velocity Vj, of a vertically falling
object, (b) A 75-kg sky diver has a terminal velocity of
about 60m/s; determine the value of the constant b.
(c) Sketch a curve like that of Fig. 5-27b for this case of
Fd oc v2 For the same terminal velocity, would this curve lie
above or below that in Fig. 5-27? Explain why.
(1) A bicyclist can coast down a 7.0° hill at a steady
9.5 km/h. If the drag force is proportional to the square of
the speed v, so that FD = —cv2, calculate (a) the value of
the constant ¢ and (b) the average force that must be applied
in order to descend the hill at 25km/h. The mass of the
cyclist plus bicycle is 80.0 kg. Ignore other types of friction.
(111) Two drag forces act on a bicycle and rider: FDi due to
rolling resistance, which is essentially velocity independent;
and Fd2 due to air resistance, which is proportional to v2.
For a specific bike plus rider of total mass 78Kkg,
Fdl « 40N; and for a speed of 2.2m/s, FD2 ~ 1.0N.
(a) Show that the total drag force is

Fd = 4.0 + 0.21v2,
where v is inm/s, and FDis in N and opposes the motion.
(b) Determine at what slope angle 0 the bike and rider can
coast downhill at a constant speed of 8.0m/s.

| General Problems

76.

7.

78.

79.

80.

A coffee cup on the horizontal dashboard of a car slides
forward when the driver decelerates from 45km/h to rest
in 3.5s or less, but not if she decelerates in a longer time.
What is the coefficient of static friction between the cup
and the dash? Assume the road and the dashboard are
level (horizontal).

A 2.0-kg silverware drawer does not slide readily. The
owner gradually pulls with more and more force, and when
the applied force reaches 9.0N, the drawer suddenly
opens, throwing all the utensils to the floor. What is the
coefficient of static friction between the drawer and the
cabinet?

A roller coaster reaches the top of the steepest hill with a
speed of 6.0 km/h. It then descends the hill, which is at an
average angle of 45° and is 45.0 m long. What will its
speed be when it reaches the bottom? Assume = 0.12.
An 18.0-kg box is released on a 37.0° incline and accelerates
down the incline at 0.220m/s2 Find the friction force
impeding its motion. How large is the coefficient of friction?
A flat puck (mass M) is revolved in a circle on a frictionless
air hockey table top, and is held in this orbit by a light cord
which is connected to a dangling mass (mass m) through a
central hole as shown in Fig. 5-48. Show that the speed of
the puck is given by v = VmgR/M.

FIGURE 5-48 Problem 80.

*71.

*72.

*73.

*74.

*75.

81.

82.

83.

(I1l) Determine a formula for the position and acceleration
of a falling object as a function of time if the object starts
from rest at t =0 and undergoes a resistive force
F = —bv, asin Example 5-17.

(1) A block of mass m slides along a horizontal surface
lubricated with a thick oil which provides a drag force
proportional to the square root of velocity:

Fd = —bv2
If v =v0 at t =0, determine v and x as functions of
time.

(I111) Show that the maximum distance the block in Problem 72
can travel is 2m Vq2/3b.

(1) You dive straight down into a pool of water. You hit the
water with a speed of 5.0 m/s, and your mass is 75 kg. Assuming
a drag force of the form FD = -(1.00 X 104kg/s) v, how
long does it take you to reach 2% of your original speed?
(Ignore any effects of buoyancy.)

(1) A motorboat traveling at a speed of 2.4m/s shuts off
its engines at t = 0. How far does it travel before coming
to rest if it is noted that after 3.0 s its speed has dropped to
half its original value? Assume that the drag force of the
water is proportional to v.

A motorcyclist is coasting with the engine off at a steady
speed of 20.0 m/s but enters a sandy stretch where the coef-
ficient of Kinetic friction is 0.70. Will the cyclist emerge from
the sandy stretch without having to start the engine if the
sand lasts for 15m? If so, what will be the speed upon
emerging?

In a “Rotor-ride” at a carnival, people rotate in a vertical
cylindrically walled “room.” (See Fig. 5-49). If the room
radius was 55m, and the rotation frequency 0.50 revo-
lutions per second when the floor drops out, what
minimum coefficient of static friction keeps the people from
slipping down? People on this ride said they were “pressed
against the wall.” Is there really an outward force pressing
them against the wall? If so, what is its source? If not, what
is the proper description of their situation (besides nausea)?
[Hint: Draw a free-body diagram for a person.]

FIGURE 5-49 Problem 82.

A device for training astronauts and jet fighter pilots is
designed to rotate the trainee in a horizontal circle of radius
11.0 m. If the force felt by the trainee is 7.45 times her own
weight, how fast is she rotating? Express your answer in
both m/s and rev/s.
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84.

85.

86.

87.

88.

89.

90.

A 1250-kg car rounds a curve of radius 72 m banked at an
angle of 14°. If the car is traveling at 85 km/h, will a friction
force be required? If so, how much and in what direction?

Determine the tangential and centripetal components of the
net force exerted on a car (by the ground) when its speed is
27 m/s, and it has accelerated to this speed from rest in 9.0s
on a curve of radius 450 m. The car’s mass is 1150 kg.

The 70.0-kg climber in Fig. 5-50 is supported in the
“chimney” by the friction forces exerted on his shoes and
back. The static coefficients of fric-

tion between his shoes and the wall,

and between his back and the wall,

are 0.80 and 0.60, respectively. What

is the minimum normal force he

must exert? Assume the walls are

vertical and that the static friction

forces are both at their maximum.

Ignore his grip on the rope.

FIGURE 5-50
Problem 86.

A small mass m is set on the surface of a sphere, Fig. 5-51.
If the coefficient of static
friction is fis=0.70, at
what angle < would the
mass start sliding?

1t7

-V

FIGURE 5-51
Problem 87.

A 28.0-kg block is connected to an empty 2.00-kg bucket by
a cord running over a frictionless pulley (Fig. 5-52). The
coefficient of static friction between the table and the block
is 0.45 and the coefficient of kinetic friction between the
table and the block is 0.32.
Sand is gradually added
to the bucket until the
system just begins to move.
(a) Calculate the mass of
sand added to the bucket.
(b) Calculate the accelera-
tion of the system.

28,0 kii

FIGURE 5-52
Problem 88.

A car is heading down a slippery road at a speed of 95 km/h.
The minimum distance within which it can stop without
skidding is 66 m. What is the sharpest curve the car can
negotiate on the icy surface at the same speed without
skidding?

What is the acceleration experienced by the tip of the
1.5-cm-long sweep second hand on your wrist watch?

92.

93.

94.

95.

96.

97.

An airplane traveling at 480 km/h needs to reverse its course.
The pilot decides to accomplish this by banking the wings at
an angle of 38°. (a) Find the time needed to reverse course.
(b) Describe any additional force the passengers experience
during the turn. [Hint: Assume an

aerodynamic “lift” force that acts

perpendicularly to the flat wings; see

Fig. 5-53.]

FIGURE 5-53
Problem 91.

A banked curve of radius R in a new highway is designed so
that a car traveling at speed vOcan negotiate the turn safely
on glare ice (zero friction). If a car travels too slowly then it
will slip toward the center of the circle. If it travels too fast,
it will slip away from the center of the circle. If the
coefficient of static friction increases, it becomes possible for
a car to stay on the road while traveling at a speed within
a range from vm\n to vmax. Derive formulas for vmjn and
Umex as functions of fls,v0, and R.

A small bead of mass m is constrained to slide without
friction inside a circular vertical hoop of radius r which
rotates about a vertical axis

(Fig. 5-54) at a frequency /.

(a) Determine the angle 6

where the bead will be in

equilibrium—that is, where

it will have no tendency to

move up or down along the

hoop, (b) If / = 2.00rev/s

and r = 22.0 cm, what is 61

(c) Can the bead ride as

high as the center of the

circle (0 = 90°)? Explain.

FIGURE 5-54
Problem 93.

Earth is not quite an inertial frame. We often make measure-
ments in a reference frame fixed on the Earth, assuming
Earth is an inertial reference frame. But the Earth rotates, so
this assumption is not quite valid. Show that this assumption
is off by 3 parts in 1000 by calculating the acceleration of an
object at Earth’s equator due to Earth’s daily rotation, and
compare to g = 9.80m/s2, the acceleration due to gravity.

While fishing, you get bored and start to swing a sinker
weight around in a circle below you on a 0.45-m piece of
fishing line. The weight makes a complete circle every 0.50s.
What is the angle that the fishing line makes with the
vertical? [Hint: See Fig. 5-20.]

Consider a train that rounds a curve with a radius of 570 m
at a speed of 160 km/h (approximately 100 mi/h). (a) Calcu-
late the friction force needed on a train passenger of mass
75kg if the track is not banked and the train does not tilt.
(b) Calculate the friction force on the passenger if the train
tilts at an angle of 8.0° toward the center of the curve.

A car starts rolling down a I-in-4 hill (I-in-4 means that for
each 4m traveled along the road, the elevation change is
1m). How fast is it going when it reaches the bottom after
traveling 55 m? (a) Ignore friction. (b) Assume an effective
coefficient of friction equal to 0.10.
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98.

99.

100.

The sides of a cone make an angle $>with the vertical. A
small mass m is placed on the inside of the cone and the cone,
with its point down, is revolved at a frequency / (revolutions
per second) about its symmetry axis. If the coefficient of static
friction is /xs, at what positions on the cone can the mass be
placed without sliding on the cone? (Give the maximum and
minimum distances, r, from the axis).

A 72-kg water skier is being accelerated by a ski boat on a
flat (“glassy”) lake. The coefficient of Kinetic friction
between the skier’s skis and the water surface is = 0-25
(Fig. 5-55). (a) What is the skier’s acceleration if the rope
pulling the skier behind the boat applies a horizontal tension
force of magnitude FT = 240N to the skier (0 = 0°)?
(b) What is the skier’s horizontal acceleration if the rope
pulling the skier exerts a force of FT = 240N on the skier
at an upward angle 6 = 12°? (c) Explain why the skier’s
acceleration in part (b) is greater than that in part (a).

Ft = 240N
« 10-

=0.25

FIGURE 5-55 Problem 99.

A ball of mass m = 1.0kg at the end of a thin cord of length
r = 0.80m revolves in a vertical circle about point O, as
shown in Fig. 5-56. During the time we observe it, the only
forces acting on the ball are gravity and the tension in the
cord. The motion is circular but not uniform because of the
force of gravity. The ball increases in speed as it descends and
decelerates as it rises on the other side of the circle. At the
moment the cord makes an angle 0 = 30° below the
horizontal, the ball’s L

speed is 6.0m/s. At s AN

this point, determine / N\

the tangential accel-

eration, the radial

acceleration, and the

tension in the cord,

FT. Take 0 increasing

downward as shown.

FIGURE 5-56
Problem 100.

Answers to Exercises

A:

moOow

().

FPx is insufficient to keep the box moving for long.
No—the acceleration is not constant (in direction).
(a), it doubles.

(d).

101.

A car drives at a constant speed around a banked circular
track with a diameter of 127 m. The motion of the car can
be described in a coordinate system with its origin at the
center of the circle. At a particular instant the car’s accel-
eration in the horizontal plane is given by
a = (—25.71 —23.2j) m/s2

(a) What is the car’s speed? (b) Where (* and y) is the car
at this instant?

ANumerical/Computer

*102.

“103.

*104.

(1) The force of air resistance (drag force) on a rapidly
falling body such as a skydiver has the form FD = —kv2, so
that Newton’s second law applied to such an object is
dv _ i\ 2
m S = mg kve
where the downward direction is taken to be positive.
(a) Use numerical integration [Section 2-9] to estimate
(within 2%) the position, speed, and acceleraton, from t = 0
up to t = 15.0s, for a 75-kg skydiver who starts from rest,
assuming k = 0.22 kg/m. (ft) Show that the diver eventually
reaches a steady speed, the terminal speed, and explain why

this happens, (c) How long does it take for the skydiver to
reach 99.5% of the terminal speed?

(I11) The coefficient of kinetic friction between two
surfaces is not strictly independent of the velocity of the
object. A possible expression for  for wood on wood is

0.20
(1 + 0.0020'y2)

where v is in m/s. A wooden block of mass 8.0Kkg is at rest
on a wooden floor, and a constant horizontal force of 41 N
acts on the block. Use numerical integration [Section 2-9]
to determine and graph (a) the speed of the block, and (b) its
position, as a function of time from 0to 5.0s. (¢) Determine
the percent difference for the speed and position at 5.0s
if /% is constant and equal to 0.20.

(1) Assume a net force F = -mg - kv2 acts during the
upward vertical motion of a 250-kg rocket, starting at
the moment (t = 0) when the fuel has burned out and the
rocket has an upward speed of 120m/s. Let k = 0.65 kg/m.
Estimate v and y at 1.0-s intervals for the upward motion
only, and estimate the maximum height reached. Compare
to free-flight conditions without air resistance (k = 0).

F: (a).
G: (c).

H: Yes.

I: (a) No change; (b) 4 times larger.

138 CHAPTER 5 Using Newton's Laws: Friction, Circular Motion, Drag Forces



Gravitation and
Newton's Synthesis

CHAPTER-OPENING QUESTIOr —Guess now!
A space station revolves around the Earth as a satellite, 100 km above Earth’s
surface. What is the net force on an astronaut at rest inside the space station?
(a) Equal to her weight on Earth.
(b) A little less than her weight on Earth.
(c) Less than half her weight on Earth.
(d) Zero (she is weightless).
(e) Somewhat larger than her weight on Earth.

ir Isaac Newton not only put forth the three great laws of motion that serve as

the foundation for the study of dynamics. He also conceived of another

great law to describe one of the basic forces in nature, gravitation, and he

applied it to understand the motion of the planets. This new law, published
in 1687 in his book Philosophiae Naturalis Principia Mathematica (the Principia,
for short), is called Newton’s law of universal gravitation. It was the capstone of
Newton’s analysis of the physical world. Indeed, Newtonian mechanics, with its
three laws of motion and the law of universal gravitation, was accepted for
centuries as a mechanical basis for the way the universe works.

The astronauts in the upper left of
this photo are working on the Space
Shuttle. As they orbit the Earth—at
a rather high speed—they experience
apparent weightlessness. The Moon,
in the background, also is orbiting
the Earth at high speed. What keeps
the Moon and the space shuttle (and
its astronauts) from moving off in a
straight line away from Earth? It is
the force of gravity. Newton’s law of
universal gravitation states that all
objects attract all other objects with
a force proportional to their masses
and inversely proportional to the
square of the distance between them.
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*6-6 Gravitational Field
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*6-8 Principle of Equivalence;
Curvature of Space; Black
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FIGURE 6-1 Anywhere on Earth,
whether in Alaska, Australia, or
Peru, the force of gravity acts
downward toward the center of the
Earth.

FIGURE 6-2 The gravitational
force one object exerts on a second
object is directed toward the first
object, and is equal and opposite to
the force exerted by the second
object on the first.

Gravitational
force exerted on
Moon by Earth

Gravitational force
exerted on Earth
by the Moon

Earth

6—1 Newton's Lawof Universal Gravitation

Among his many great accomplishments, Sir Isaac Newton examined the motion
of the heavenly bodies—the planets and the Moon. In particular, he wondered
about the nature of the force that must act to keep the Moon in its nearly circular
orbit around the Earth.

Newton was also thinking about the problem of gravity. Since falling objects
accelerate, Newton had concluded that they must have a force exerted on them, a
force we call the force of gravity. Whenever an object has a force exerted on it, that
force is exerted by some other object. But what exerts the force of gravity? Every
object on the surface of the Earth feels the force of gravity, and no matter where
the object is, the force is directed toward the center of the Earth (Fig. 6-1).
Newton concluded that it must be the Earth itself that exerts the gravitational
force on objects at its surface.

According to legend, Newton noticed an apple drop from a tree. He is said to
have been struck with a sudden inspiration: If gravity acts at the tops of trees, and
even at the tops of mountains, then perhaps it acts all the way to the Moon! With
this idea that it is Earth’s gravity that holds the Moon in its orbit, Newton devel-
oped his great theory of gravitation. But there was controversy at the time. Many
thinkers had trouble accepting the idea of a force “acting at a distance.” Typical
forces act through contact—your hand pushes a cart and pulls a wagon, a bat hits
a ball, and so on. But gravity acts without contact, said Newton: the Earth exerts a
force on a falling apple and on the Moon, even though there is no contact, and the
two objects may even be very far apart.

Newton set about determining the magnitude of the gravitational force that
the Earth exerts on the Moon as compared to the gravitational force on objects at
the Earth’s surface. At the surface of the Earth, the force of gravity accelerates
objects at 9.80 m/s2 The centripetal acceleration of the Moon is calculated from

aR =v2r (see Example 5-9) and gives aR = 0.00272m/s2 In terms of the
acceleration of gravity at the Earth’s surface, g, this is equivalent to
aR 0.00272m/s2 1
9.80m/s2 3600 &

That is, the acceleration of the Moon toward the Earth is about » as great as the
acceleration of objects at the Earth’s surface. The Moon is 384,000 km from the
Earth, which is about 60 times the Earth’s radius of 6380 km. That is, the Moon is
60 times farther from the Earth’s center than are objects at the Earth’s surface.
But 60 X 60 = 602 = 3600. Again that number 3600! Newton concluded that the
gravitational force F exerted by the Earth on any object decreases with the square
of its distance, r, from the Earth’s center:

Fo rL

The Moon is 60 Earth radii away, so it feels a gravitational force only *
times as strong as it would if it were a point at the Earth’s surface.

Newton realized that the force of gravity on an object depends not only on
distance but also on the object’s mass. In fact, it is directly proportional to its mass,
as we have seen. According to Newton’s third law, when the Earth exerts its gravi-
tational force on any object, such as the Moon, that object exerts an equal and
opposite force on the Earth (Fig. 6-2). Because of this symmetry, Newton
reasoned, the magnitude of the force of gravity must be proportional to both the
masses. Thus

= mo

F o mEmMB

where raE is the mass of the Earth, mB the mass of the other object, and r the
distance from the Earth’s center to the center of the other object.
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Newton went a step further in his analysis of gravity. In his examination of the
orbits of the planets, he concluded that the force required to hold the different
planets in their orbits around the Sun seems to diminish as the inverse square of
their distance from the Sun. This led him to believe that it is also the gravitational
force that acts between the Sun and each of the planets to keep them in their
orbits. And if gravity acts between these objects, why not between all objects? Thus
he proposed his law of universal gravitation, which we can state as follows:

Every particle in the universe attracts every other particle with a force that is
proportional to the product of their masses and inversely proportional to the
sguare of the distance between them. This force acts along the line joining the
two particles.

The magnitude of the gravitational force can be written as

mi m2
F =G L
where m1and m2 are the masses of the two particles, r is the distance between
them, and G is a universal constant which must be measured experimentally and
has the same numerical value for all objects.

The value of G must be very small, since we are not aware of any force of
attraction between ordinary-sized objects, such as between two baseballs. The force
between two ordinary objects was first measured by Henry Cavendish in 1798,
over 100 years after Newton published his law. To detect and measure the incred-
ibly small force between ordinary objects, he used an apparatus like that shown in
Fig. 6-3. Cavendish confirmed Newton’s hypothesis that two objects attract one
another and that Eq. 6-1 accurately describes this force. In addition, because
Cavendish could measure F, m1,m 2, and r accurately, he was able to determine
the value of the constant G as well. The accepted value today is

G = 6.67 X 10-n N*m7kg2

(See Table inside front cover for values of all constants to highest known precision.)

Strictly speaking, Eq. 6-1 gives the magnitude of the gravitational force that one
particle exerts on a second particle that is a distance r away. For an extended object
(that is, not a point), we must consider how to measure the distance r. You might
think that r would be the distance between the centers of the objects. This is true for
two spheres, and is often a good approximation for other objects. A correct calculation
treats each extended body as a collection of particles, and the total force is the
sum of the forces due to all the particles. The sum over all these particles is often
best done using integral calculus, which Newton himself invented. When extended
bodies are small compared to the distance between them (as for the Earth-Sun
system), little inaccuracy results from considering them as point particles.

Newton was able to show (see derivation in Appendix D) that the gravitational
force exerted on a particle outside a sphere, with a spherically symmetric mass
distribution, is the same as if the entire mass of the sphere was concentrated at its
center. Thus Eq. 6-1 gives the correct force between two uniform spheres where r is
the distance between their centers.

(6-1)

| ESTIMATE | Can you attract another person gravitationally?
A 50-kg person and a 70-kg person are sitting on a bench close to each other.
Estimate the magnitude of the gravitational force each exerts on the other.

APPROACH This is an estimate: we let the distance between the centers of the
two people be “m (about as close as you can get).

SOLUTION We use Eq. 6-1, which gives

(6.67 X 10-11 N-m2kg2) (50 kg)(70 kg)
(0.5m):

rounded off to an order of magnitude. Such a force is unnoticeably small unless
extremely sensitive instruments are used.

NOTE As a fraction of their weight, this force is (10“6N )/(70 kg)(9.8 m/s2) ~ 10 9

SECTION 6-1

NEWTON’S
LAW

OF
UNIVERSAL
GRAVITATION

FIGURE 6-3 Schematic diagram of
Cavendish’s apparatus. Two spheres
are attached to a light horizontal
rod, which is suspended at its center
by a thin fiber. When a third sphere
(labeled A) is brought close to one of
the suspended spheres, the
gravitational force causes the latter
to move, and this twists the fiber
slightly. The tiny movement is
magnified by the use of a narrow
light beam directed at a mirror
mounted on the fiber. The beam
reflects onto a scale. Previous
determination of how large a force
will twist the fiber a given amount
then allows the experimenter to
determine the magnitude of the
gravitational force between two
objects.

Fiber
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Motion

FIGURE 6-4 Example 6-2.

FIGURE 6-5 Example 6-3.
Orientation of Sun (S), Earth (E),
and Moon (M) at right angles to
each other (not to scale).

Moon ME  oEarth

MS

Sun

Distinguish between
Newtons second law and
the law ofuniversal gravitation

EXAMPLE 6-2 Spacecraft at 2rE What is the force of gravity acting on a
2000-kg spacecraft when it orbits two Earth radii from the Earth’s center (that is,
a distance rE = 6380 km above the Earth’s surface, Fig. 6-4)? The mass of the
Earth is mE = 5.98 x 102kg.

APPROACH We could plug all the numbers into Eq. 6-1, but there is a simpler
approach. The spacecraft is twice as far from the Earth’s center as when it is at
the surface of the Earth. Therefore, since the force of gravity decreases as the
square of the distance (and ~ = J), the force of gravity on the satellite will be
only one-fourth its weight at the Earth’s surface.

SOLUTION At the surface of the Earth, FG=mg. At a distance from the
Earth’s center of 2rE, FGis\ as great:

Fg = Img = \ (2000 kg)(9.80m/s2) = 4900 N.

EXAMPLE 6-3 Force on the Moon. Find the net force on the Moon
mM=7.35 X 1022kg) due to the gravitational attraction of both the Earth
mE = 5.98 X 1024kg) and the Sun (ras = 1.99 X 1030kg), assuming they are at
right angles to each other as in Fig. 6-5.

APPROACH The forces on our object, the Moon, are the gravitational force
exerted on the Moon by the Earth FMEand the force exerted by the Sun Fms, as
shown in the free-body diagram of Fig. 6-5. We use the law of universal gravi-
tation to find the magnitude of each force, and then add the two forces as vectors.
SOLUTION The Earth is 3.84 X 105km = 3.84 X 108m from the Moon, so FME
(the gravitational force on the Moon due to the Earth) is

6.67 X 10-11 N sm2kg2)(7.35 X 1022kg)(5.98 X 1024k
( g2( a)( 9) _ 109 X 10 N.
(3.84 X 108m)2

The Sun is 1.50 x 108km from the Earth and the Moon, so FME (the gravitational
force on the Moon due to the Sun) is

(6.67 x 10-11 N *m2kg2)(7.35 x 1022kg)(1.99 X 1030kg)
o (150 x 1011 m)

The two forces act at right angles in the case we are considering (Fig. 6-5), so
we can apply the Pythagorean theorem to find the magnitude of the total force:

F = V(1.99 X 1020N)2 + (4.34 X 1020N)2 = 4.77 X IO”N.

The force acts at an angle 0 (Fig. 6-5) given by 0 = tan_1(1.99/4.34) = 24.6°.
NOTE The two forces, FMEand FMS, have the same order of magnitude (1020N).
This may be surprising. Is it reasonable? The Sun is much farther from Earth than
the Moon (a factor of 10n m/108m « 103, but the Sun is also much more
massive (a factor of 100kg/1028kg « 107). Mass divided by distance squared
(107 106) comes out within an order of magnitude, and we have ignored factors of
3 or more. Yes, it is reasonable.

=434 X 10 N.

Note carefully that the law of universal gravitation describes a particular force
(gravity), whereas Newton’s second law of motion (F = ma) tells how an object
accelerates due to any type of force.

*Spherical Shells

Newton was able to show, using the calculus he invented for the purpose, that a thin
uniform spherical shell exerts a force on a particle outside it as if all the shell’s mass
were at its center; and that such a thin uniform shell exerts zero force on a particle
inside the shell. (The derivation is given in Appendix D.) The Earth can be
modelled as a series of concentric shells starting at its center, each shell uniform but
perhaps having a different density to take into account Earth’s varying density in various
layers. As a simple example, suppose the Earth were uniform throughout; what is
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the gravitational force on a particle placed exactly halfway from Earth’s center to
its surface? Only the mass inside this radius r =\ rE would exert a net force on this
particle. The mass of a sphere is proportional to its volume V = f ttt3 so the mass m
inside r=\rE is Q) =| the mass of the entire Earth. The gravitational force
on the particle at r =\ rE, which is proportional to m/r (Eq. 6-1), is reduced to
(1)/0)2 =i the gravitational force it would experience at Earth’s surface.

6—2 Vector Form of Newton's Law of
Universal Gravitation

We can write Newton’s law of universal gravitation in vector form as
m2
F2 = -G 1>
ri\
where FI2is the vector force on particle 1 (of mass exerted by particle 2
(of mass m2), which is a distance r2l away; r2l is a unit vector that points from
particle 2 toward particle 1 along the line joining them so that r2l = ?2i/r21,
where r2l is the displacement vector as shown in Fig. 6-6. The minus sign in
Eq. 6-2 is necessary because the force on particle 1 due to particle 2 points
toward ra2, in the direction opposite to r21. The displacement vector ri2 is a vector
of the same magnitude as r21, but it points in the opposite direction so that

(6-2)

riz =
By Newton’s third law, the force F21 acting on m2 exerted by mx must have the
same magnitude as F12 but acts in the opposite direction (Fig. 6-7), so that

) mira2,,
F2i = F12=0G A il

i
"N m2mxi*12
— r€2
The force of gravity exerted on one particle by a second particle is always
directed toward the second particle, as in Fig. 6- 6. When many particles interact,
the total gravitational force on a given particle is the vector sum of the forces

exerted by each of the others. For example, the total force on particle number 1 is

(6-3)

—r2l -

n
Fi = FI2 + FI3 + Fl4 + e + FIn = 2/1;
i=2
where FIf-means the force on particle 1 exerted by particle i, and n is the total
number of particles.
This vector notation can be very helpful, especially when sums over many
particles are needed. However, in many cases we do not need to be so formal and
we can deal with directions by making careful diagrams.

6—3 Gravity Near the Earth's Surface;
Geophysical Applications

When Eqg. 6-1 is applied to the gravitational force between the Earth and an
object at its surface, mxbecomes the mass of the Earth raE, m2becomes the mass
of the object m, and r becomes the distance of the object from the Earth’s center,
which is the radius of the Earth rE. This force of gravity due to the Earth is the
weight of the object, which we have been writing as mg. Thus,

mmE
mg = G—J—
.
We can solve this for g, the acceleration of gravity at the Earth’s surface:
raF
g =G-"- (6-4)

rE
Thus, the acceleration of gravity at the surface of the Earth, g, is determined
by mBand rE. (Don't confuse G with g; they are very different quantities, but are
related by Eq. 6-4.)

SECTION 6-3

FIGURE 6-6 The displacement
vector r21 points from particle of
mass m2to particle of mass mi.The
unit vector shown, r2lis in the same
direction as r21, but is defined as
having length one.

FIGURE 6-7 By Newton’s third
law, the gravitational force on
particle 1 exerted by particle 2, F12,
is equal and opposite to that on
particle 2 exerted by particle 1, F2i ;
thatis F21 = —F12.

mi

‘12

m2

/j\ CAUTION
Distinguish Gfrom g
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FIGURE 6-8 Example 6-4. Mount
Everest, 8850 m (29,035 ft) above sea
level; in the foreground, the author
with sherpas at 5500 m (18,000 ft).

TABLE 6-1
Acceleration Due to Gravity
at Various Locations on Earth

Elevation

Location (m) (m§sr2)
New York 0 9.803
San Francisco 0 9.800
Denver 1650 9.796
Pikes Peak 4300 9.789
Sydney,

Australia 0 9.798
Equator 0 9.780
North Pole 0 9.832

(calculated)

0O PHYSICS APPLIED
Geology—mineral and oil exploration

Until G was measured, the mass of the Earth was not known. But once G was
measured, Eq. 6-4 could be used to calculate the Earth’s mass, and Cavendish
was the first to do so. Since g = 9.80m/s2 and the radius of the Earth is
B = 6.38 X 106m, then, from Eq. 6-4, we obtain

| (9.80m/s2)(6.38 X 106m)2
G~ — 667 X 10_uN-m2kg?2

= 598 X 102kg

mE =

for the mass of the Earth.
Equation 6-4 can be applied to other planets, where g, m, and r would refer to
that planet.

EXAMPLE 6-4 ESTIMATE-! Gravity on Everest. Estimate the -effective
value of g on the top of Mt. Everest, 8850 m (29,035 ft) above sea level (Fig. 6- 8).
That is, what is the acceleration due to gravity of objects allowed to fall freely
at this altitude?

APPROACH The force of gravity (and the acceleration due to gravity g) depends
on the distance from the center of the Earth, so there will be an effective value g'
on top of Mt. Everest which will be smaller than g at sea level. We assume the
Earth is a uniform sphere (a reasonable “estimate”).

SOLUTION We use Eq. 6-4, with rE replaced by r =6380km + 89km =
6389 km = 6.389 X 106m:

(6.67 X 10-11 N \m2/kg2)(5.98 X 1024kg)
L (6.389 x 106m
= 9.77m/s2

8 =G

which is a reduction of about 3 parts in a thousand (0.3%).

NOTE This is an estimate because, among other things, we ignored the mass
accumulated under the mountaintop.

Note that Eq. 6-4 does not give precise values for g at different locations
because the Earth is not a perfect sphere. The Earth not only has mountains and
valleys, and bulges at the equator, but also its mass is not distributed precisely
uniformly (see Table 6-1). The Earth’s rotation also affects the value of g (see
Example 6-5). However, for most practical purposes when an object is near the
Earth’s surface, we will simply use g = 9.80 m/s2and write the weight of an object
as mg.

EXERCISE A Suppose you could double the mass of a planet but kept its volume the
same. How would the acceleration of gravity, g, at the surface change?

The value of g can vary locally on the Earth’s surface because of the presence
of irregularities and rocks of different densities. Such variations in g, known as
“gravity anomalies,” are very small—on the order of 1 part per 1060or 107 in the
value of g. But they can be measured (“gravimeters” today can detect variations
in g to 1 part in 109. Geophysicists use such measurements as part of their
investigations into the structure of the Earth’s crust, and in mineral and oil
exploration. Mineral deposits, for example, often have a greater density than
surrounding material; because of the greater mass in a given volume, g can have
a slightly greater value on top of such a deposit than at its flanks. “Salt domes,”
under which petroleum is often found, have a lower than average density and
searches for a slight reduction in the value of g in certain locales have led to the
discovery of oil.
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EXAMPLE 6-5 Effect of Earth's rotation on g. Assuming the Earth is a
perfect sphere, determine how the Earth’s rotation affects the value of g at the
equator compared to its value at the poles.

APPROACH Figure 6-9 shows a person of mass ra standing on a doctor’s scale
at two places on the Earth. At the North Pole there are two forces acting on the
mass ra: the force of gravity, FG = rag, and the force with which the scale pushes
up on the mass, w. We call this latter force w because it is what the scale reads as
the weight of the object, and by Newton’s third law it equals the force with which the
mass pushes down on the scale. Since the mass is not accelerating, Newton’s
second law tells us

mg —w = 0,

so w = mg. Thus the weight w that the spring registers equals mg, which is no
surprise. Next, at the equator, there is an acceleration because the Earth is
rotating. The same magnitude of the force of gravity FG = mg acts downward (we are
letting g represent the acceleration of gravity in the absence of rotation and we ignore
the slight bulging of the equator). The scale pushes upward with a force w'; w'
is also the force with which the person pushes down on the scale (Newton’s third
law) and hence is the weight registered on the scale. From Newton’s second law
we now have (see Fig. 6-9)

mg —w' = m

because the person of mass ra now has a centripetal acceleration due to Earth’s
rotation; rE = 6.38 X 106m is the Earth’s radius and v is the speed of ra due to the
Earth’s daily rotation.

SOLUTION First we determine the speed v of an object at rest on the Earth’s
equator, rembering that Earth makes one rotation (distance = circumference of
Earth = 2irrE) in 1day = (24h)(60min/h)(60s/min) = 8.64 X 104s:

21TE (6.283)(6.38 x 106m)
\Y lday ~ (8.64 x 104s)
= 4.640 X 102m/s.

The effective weight is w' = mg" where g’ is the effective value of g, and so

g' =w'/m. Solving the equation above for w', we have
w = m\g
so
w' 2
§ " m 8
Hence

w2 (4640 x 102m/s)
A=0-09 = 1E (538 x 106m)
= 0.0337m/s2

which is about Ag ~ 0.003g, a difference of 0.3%.

NOTE In Table 6-1 we see that the difference in g at the pole and equator is actually
greater than this: (9.832 - 9.780) m/s2 = 0.052 m/s2 This discrepancy is due mainly
to the Earth being slightly fatter at the equator (by 21 km) than at the poles.
NOTE The calculation of the effective value of g at latitudes other than at the
poles or equator is a two-dimensional problem because FG acts radially toward
the Earth’s center whereas the centripetal acceleration is directed perpendicular
to the axis of rotation, parallel to the equator and that means that a plumb line (the
effective direction of g) is not precisely vertical except at the equator and the poles.

SECTION 6-3  Gravity Near the Earth's Surface; Geophysical Applications

FIGURE 6-9

Example 6-5.
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PHYSICS APPLIED
Artificial Earth satellites

Earth as Inertial Reference Frame

We often make the assumption that reference frames fixed on the Earth are
inertial reference frames. Our calculation in Example 6-5 above shows that this
assumption can result in errors no larger than about 0.3% in the use of Newton’s
second law, for example. We discuss the effects of Earth’s rotation and reference
frames in more detail in Chapter 11, including the Coriolis effect.

6-4 Satellites and "Weightlessness"

Satellite Motion

Artificial satellites circling the Earth are now commonplace (Fig. 6-10). A satellite
is put into orbit by accelerating it to a sufficiently high tangential speed
with the use of rockets, as shown in Fig. 6-11. If the speed is too high, the
spacecraft will not be confined by the Earth’s gravity and will escape, never to
return. If the speed is too low, it will return to Earth. Satellites are usually put
into circular (or nearly circular) orbits, because such orbits require the least
takeoff speed.

27,00(1 km/h .10,000 kimvh
circular elliptical
FIGURE 6-10 A satellite, the International Space FIGURE 6-11 Artificial satellites launched at
Station, circling the Earth. different speeds.

FIGURE 6-12 A moving satellite
“falls” out of a straight-line path
toward the Earth.

Without
gravity

With"-N
gravity s

It is sometimes asked: “What keeps a satellite up?” The answer is: its high
speed. If a satellite stopped moving, it would fall directly to Earth. But at the very
high speed a satellite has, it would quickly fly out into space (Fig. 6-12) if it
weren’t for the gravitational force of the Earth pulling it into orbit. In fact, a
satellite is falling (accelerating toward Earth), but its high tangential speed keeps it
from hitting Earth.

For satellites that move in a circle (at least approximately), the needed
acceleration is centripetal and equals v2r. The force that gives a satellite this
acceleration is the force of gravity exerted by the Earth, and since a satellite may
be at a considerable distance from the Earth, we must use Newton’s law of
universal gravitation (Eq. 6-1) for the force acting on it. When we apply Newton’s
second law, 2 FR = maR in the radial direction, we find

G—z7— = —5 -
r_Z m r (6-5)

where m is the mass of the satellite. This equation relates the distance of the satellite
from the Earth’s center, r, to its speed, v, in a circular orbit. Note that only one
force—gravity—is acting on the satellite, and that r is the sum of the Earth’
radius rBplus the satellite’s height h above the Earth: r = rE + h.
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EXAMPLE 6-6 Geosynchronous satellite. A geosynchronous satellite is one
that stays above the same point on the Earth, which is possible only if it is above
a point on the equator. Such satellites are used for TV and radio transmission, for
weather forecasting, and as communication relays. Determine (a) the height
above the Earth’s surface such a satellite must orbit, and (b) such a satellite’s speed,
(c) Compare to the speed of a satellite orbiting 200 km above Earth’s surface.
APPROACH To remain above the same point on Earth as the Earth rotates, the
satellite must have a period of 24 hours. We can apply Newton’s second law,
F = ma, where a = v2r if we assume the orbit is circular.
SOLUTION (a) The only force on the satellite is the force of universal gravitation
due to the Earth. (We can ignore the gravitational force exerted by the Sun.
Why?) We apply Eq. 6-5, assuming the satellite moves in a circle:
mSatmE v2
G ----- N mSt r
This equation has two unknowns, r and v. But the satellite revolves around the
Earth with the same period that the Earth rotates on its axis, namely once in
24 hours. Thus the speed of the satellite must be
_2irr
Vo= e3>
where T = 1day = (24h)(3600s/h) = 86,400s. We substitute this into the
“satellite equation” above and obtain (after canceling mSt on both sides)
mE (2irr)2
“ro T2
After cancelling an r, we can solve for r?
GmET2 (6.67 X 10-11 Nm2kg2)(5.98 x 1024kg)(86,400s):
41t 47T
= 7.54 x 102m3
We take the cube root and find
r = 423 X 107m,
or 42,300 km from the Earth’s center. We subtract the Earth’s radius of 6380 km
to find that a geosynchronous satellite must orbit about 36,000 km (about 6rE)
above the Earth’s surface.
(b) We solve for v in the satellite equation, Eq. 6-5:

GmE (6.67 x 10-11 N*m2kg?)(5.98 x 1024kg)
--------- = 3070 m/s.
(4.23 x 107m)

We get the same result if we use v = lirr/T.
(c) The equation in part (b) for v shows v oc VI/r. So for r =rE+ h =
6380 km + 200 km = 6580 km, we get

= (3070m /s)~gg”™ = 7780m/,

NOTE The center of a satellite orbit is always at the center of the Earth; so it is
not possible to have a satellite orbiting above a fixed point on the Earth at any
latitude other than 0°.

CONCEPTUAL EXAMPLE IP T | Catching a satellite. You are an astronaut in the
space shuttle pursuing a satellite in need of repair. You find yourself in a circular orbit
of the same radius as the satellite, but 30 km behind it. How will you catch up with it?

RESPONSE We saw in Example 6-6 (or see Eq. 6-5) that the velocity is propor-
tional to 1/V r.Thus you need to aim for a smaller orbit in order to increase your
speed. Note that you cannot just increase your speed without changing your orbit.
After passing the satellite, you will need to slow down and rise upward again.

SECTION 6-4  Satellites and "Weightlessness"
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FIGURE 6-13 (a) An objectin an
elevator at rest exerts a force on a
spring scale equal to its weight.

(b) In an elevator accelerating upward
at 8¢, the object’s apparent weight is
1\ times larger than its true weight.
(c) In afreely falling elevator, the
object experiences “weightlessness”:
the scale reads zero.

EXERCISE B Two satellites orbit the Earth in circular orbits of the same radius. One satel-
lite is twice as massive as the other. Which of the following statements is true about the
speeds of these satellites? (a) The heavier satellite moves twice as fast as the lighter one.
(b) The two satellites have the same speed, (c) The lighter satellite moves twice as fast as
the heavier one. (d) The heavier satellite moves four times as fast as the lighter one.

Weightlessness

People and other objects in a satellite circling the Earth are said to experience
apparent weightlessness. Let us first look at a simpler case, that of a falling
elevator. In Fig. 6 - 13a, an elevator is at rest with a bag hanging from a spring scale.
The scale reading indicates the downward force exerted on it by the bag. This
force, exerted on the scale, is equal and opposite to the force exerted by the scale
upward on the bag, and we call its magnitude w. Two forces act on the bag: the
downward gravitational force and the upward force exerted by the scale equal to
w. Because the bag is not accelerating (a = 0) when we apply 2F = ma to the
bag in Fig. 6-13a we obtain

w - mg 0,

where mg is the weight of the bag. Thus, w = mg, and since the scale indicates the
force w exerted on it by the bag, it registers a force equal to the weight of the bag,
as we expect.

Now let the elevator have an acceleration, a. Applying Newton’s second law,
2F = ma, to the bag as seen from an inertial reference frame (the elevator itself
is not an inertial frame) we have

w —mg = ma.
Solving for w, we have
W = mg + ma. [ais + upward]

We have chosen the positive direction up. Thus, if the acceleration a is up, a is posi-
tive; and the scale, which measures w, will read more than mg. We call w the
apparent weight of the bag, which in this case would be greater than its actual
weight (mg). If the elevator accelerates downward, a will be negative and w, the
apparent weight, will be less than mg. The direction of the velocity v doesnt
matter. Only the direction of the acceleration a (and its magnitude) influences the
scale reading.
Suppose, for example, the elevator’s acceleration is \ g upward; then we find

w = mg + m(lg) = Img.

That is, the scale reads i\ times the actual weight of the bag (Fig. 6-13b). The
apparent weight of the bag is 1\ times its real weight. The same is true of the person:
her apparent weight (equal to the normal force exerted on her by the elevator
floor) is I\ times her real weight. We can say that she is experiencing 1\ g’s, just as
astronauts experience so many g’s at a rocket’s launch.

If, instead, the elevator’s acceleration is a = -\g (downward), then
w = mg - \mg = \mg. That is, the scale reads half the actual weight. If the
elevator is in free fall (for example, if the cables break), then a = —g and
w =mg - mg =0. The scale reads zero. See Fig. 6-13c. The bag appears
weightless. If the person in the elevator accelerating at —g let go of a pencil, say,
it would not fall to the floor. True, the pencil would be falling with acceleration g.
But so would the floor of the elevator and the person. The pencil would hover
right in front of the person. This phenomenon is called apparent weightlessness
because in the reference frame of the person, objects don’t fall or seem to have
weight—yet gravity does not disappear. Gravity is still acting on each object,
whose weight is still mg. The person and other objects seem weightless only
because the elevator is accelerating in free fall, and there is no contact force on
the person to make her feel the weight.
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The “weightlessness” experienced by people in a satellite orbit close to the
Earth (Fig. 6-14) is the same apparent weightlessness experienced in a freely falling
elevator. It may seem strange, at first, to think of a satellite as freely falling. But a
satellite is indeed falling toward the Earth, as was shown in Fig. 6-12. The force of
gravity causes it to “fall” out of its natural straight-line path. The acceleration of the
satellite must be the acceleration due to gravity at that point, since the only force
acting on it is gravity. (We used this to obtain Eq. 6-5.) Thus, although the force of
gravity acts on objects within the satellite, the objects experience an apparent
weightlessness because they, and the satellite, are accelerating together as in free fall.

EXERCISE C Return to the Chapter-Opening Question, page 139, and answer it again now.
Try to explain why you may have answered differently the first time.

Figure 6-15 shows some examples of “free fall,” or apparent weightlessness,
experienced by people on Earth for brief moments.

A completely different situation occurs if a spacecraft is out in space
far from the Earth, the Moon, and other attracting bodies. The force of gravity
due to the Earth and other heavenly bodies will then be quite small because of
the distances involved, and persons in such a spacecraft would experience real
weightlessness.

EXERCISE D Could astronauts in a spacecraft far out in space easily play catch with a
bowling ball (m = 7 kg)?

FIGURE 6-15 Experiencing “weightlessness” on Earth.

(b)

6—5 Kepler's Laws and Newton's
Synthesis

More than a half century before Newton proposed his three laws of motion and
his law of universal gravitation, the German astronomer Johannes Kepler
(1571-1630) had worked out a detailed description of the motion of the planets
about the Sun. Kepler’s work resulted in part from the many years he spent exam-
ining data collected by Tycho Brahe (1546-1601) on the positions of the planets in
their motion through the heavens.

SECTION 6-5 Kepler's Laws and Newton's Synthesis

FIGURE 6-14 This astronaut is
moving outside the International
Space Station. He must feel very free
because he is experiencing apparent

weightlessness.
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FIGURE 6-16 Keplersfirst law. An ellipse is a closed curve such that the
sum of the distances from any point P on the curve to two fixed points (called
the foci, Fi and F2) remains constant. That is, the sum of the distances,

FiP + F2P, is the same for all points on the curve. A circle is a special case of
an ellipse in which the two foci coincide, at the center of the circle. The
semimajor axis is s (that is, the long axis is 2s) and the semiminor axis is b, as
shown. The eccentricity, e, is defined as the ratio of the distance from either
focus to the center divided by the semimajor axis a Thus es is the distance
from the center to either focus, as shown. For acircle, e = 0. The Earth and
most of the other planets have nearly circular orbits. For Earth e = 0.017.

FIGURE 6-17 Kepler’ second law.
The two shaded regions have equal
areas. The planet moves from point 1
to point 2 in the same time as it takes
to move from point 3 to point 4.
Planets move fastest in that part of
their orbit where they are closest to
the Sun. Exaggerated scale.

TABLE 6-2 Planetary Data
Applied to Kepler's Third Law

Mean
Distance
from Sun,s Period, J

s*/T2

Planet  (106km) (Earthyr) (»“$
Mercury 579 0.241 3H#
Venus 108.2 0.615 335
Earth 1496 1.0 335
Mars 279 1.88 335
Jupiter 7783 11.86 335
Saturn 1427 25 334
Uranus 2870 84.0 335
Neptune 4497 165 3A
Pluto 5900 248 34
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Among Kepler’s writings were three empirical findings that we now refer to as
Kepler’s laws of planetary motion. These are summarized as follows, with addi-
tional explanation in Figs. 6-16 and 6-17.

Keplers first law: The path of each planet about the Sun is an ellipse with the
Sun at one focus (Fig. 6-16).

Keplers second law: Each planet moves so that an imaginary line drawn from the
Sun to the planet sweeps out equal areas in equal periods of time (Fig. 6-17).

Keplers third law: The ratio of the squares of the periods of any two planets
revolving about the Sun is equal to the ratio of the cubes of their semimajor
axes. [The semimajor axis is half the long (major) axis of the orbit, as shown
in Fig. 6-16, and represents the planet’s mean distance from the Sun.j
That is, if 7\ and T2represent the periods (the time needed for one revolution
about the Sun) for any two planets, and sxand s2represent their semimajor
axes, then

T
T2

We can rewrite this as

T\

meaning that s3T 2should be the same for each planet. Present-day data are
given in Table 6-2; see the last column.

Kepler arrived at his laws through careful analysis of experimental data. Fifty
years later, Newton was able to show that Kepler’s laws could be derived mathe-
matically from the law of universal gravitation and the laws of motion. He also
showed that for any reasonable form for the gravitational force law, only one that
depends on the inverse square of the distance is fully consistent with Kepler’s
laws. He thus used Kepler’s laws as evidence in favor of his law of universal
gravitation, Eq. 6-1.

We will derive Kepler’s second law later, in Chapter 11. Here we derive
Kepler’s third law, and we do it for the special case of a circular orbit, in which
case the semimajor axis is the radius r of the circle. (Most planetary orbits are
close to a circle.) First, we write Newton’s second law of motion, 'ZF = ma. For F
we use the law of universal gravitation (Eq. 6-1) for the force between the Sun
and a planet of mass m1, and for a the centripetal acceleration, v2r. We assume
the mass of the Sun Ms is much greater than the mass of its planets, so we
ignore the effects of the planets on each other. Then

2F ma
m1Ms
ml
~W...

tThe semimajor axis is equal to the planet’s mean distance from the Sun in the sense that it equals
half the sum of the planet’s nearest and farthest distances from the Sun (points Q and R in Fig. 6-16).
Most planetary orbits are close to circles, and for a circle the semimajor axis is the radius of the circle.

Gravitation and Newton's Synthesis



Here is the mass of a particular planet, rxits distance from the Sun, and vx its
average speed in orbit; Ms is the mass of the Sun, since it is the gravitational attrac-
tion of the Sun that keeps each planet in its orbit. The period 7\ of the planet is the
time required for one complete orbit, which is a distance equal to 27rrl5 the
circumference of a circle. Thus

27
M = "tT
We substitute this formula for vxinto the equation above:
miMs 4te\
& rF ml T2
r 11

We rearrange this to get

T\ = _4~_ (6-6)
A GMS

We derived this for planet 1 (say, Mars). The same derivation would apply for a
second planet (say, Saturn) orbiting the Sun,

™ =
r\ GMs”’

where T2 and r2 are the period and orbit radius, respectively, for the second
planet. Since the right sides of the two previous equations are equal, we have
TI/r\ = T\/r\ or, rearranging,

T2
(6-7)

which is Kepler’ third law. Equations 6-6 and 6-7 are valid also for elliptical
orbits if we replace r with the semimajor axis 5.

The derivations of Egs. 6-6 and 6-7 (Kepler’s third law) compared two
planets revolving around the Sun. But they are general enough to be applied to
other systems. For example, we could apply Eq. 6-6 to our Moon revolving around
Earth (then Ms would be replaced by ME, the mass of the Earth). Or we could
apply Eq. 6-7 to compare two moons revolving around Jupiter. But Kepler’s third
law, Eq. 6-7, applies only to objects orbiting the same attracting center. Do not use
Eq. 6-7 to compare, say, the Moon’s orbit around the Earth to the orbit of Mars
around the Sun because they depend on different attracting centers.

In the following Examples, we assume the orbits are circles, although it is not
quite true in general.

EXAMPLE 6-8 Where is Mars? Mars’ period (its “year”) was first noted by
Kepler to be about 687 days (Earth-days), which is (687 d/365d) = 1.88yr
(Earth years). Determine the mean distance of Mars from the Sun using the
Earth as a reference.

APPROACH We are given the ratio of the periods of Mars and Earth. We can
find the distance from Mars to the Sun using Kepler’s third law, given the
Earth-Sun distance as 1.50 X 101l m (Table 6-2; also Table inside front cover).

SOLUTION Let the distance of Mars from the Sun be rMsS, and the Earth-Sun
distance be rES= 150 X 10n m. From Kepler’s third law (Eq. 6-7):

s -d)!- (M)!--

So Mars is 1.52 times the Earth’s distance from the Sun, or 2.28 x 1011m.

SECTION 6-5 Kepler's Laws and Newton's Synthesis
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Compare orbits of objects
only around the same center
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Planets around
other stars

EXAMPLE 6-9 The Sun's mass determined. Determine the mass of the Sun
given the Earth’s distance from the Sun as rES = 1.5 X 10l m.

APPROACH Equation 6-6 relates the mass of the Sun Ms to the period and
distance of any planet. We use the Earth.
SOLUTION The Earth’s period is TE = lyr = (365"d)(24 h/d)(3600 s/h) =
3.16 X 107s. We solve Eq. 6-6 for Ms:

47 ks 4tt2(1.5 X 10n m)2

= = 2.0 X 103kKg.
(6.67 X 10-11 N *m2kg2)(3.16 X 107

EXERCISE E Suppose there were a planet in circular orbit exactly halfway between
the orbits of Mars and Jupiter. What would its period be in Earth-years? Use Table 6-2.

Accurate measurements on the orbits of the planets indicated that they did not
precisely follow Kepler’s laws. For example, slight deviations from perfectly elliptical
orbits were observed. Newton was aware that this was to be expected because any
planet would be attracted gravitationally not only by the Sun but also (to a much lesser
extent) by the other planets. Such deviations, or perturbations, in the orbit of Saturn
were a hint that helped Newton formulate the law of universal gravitation, that all
objects attract gravitationally. Observation of other perturbations later led to the
discovery of Neptune and Pluto. Deviations in the orbit of Uranus, for example, could
not all be accounted for by perturbations due to the other known planets. Careful calcu-
lation in the nineteenth century indicated that these deviations could be accounted for
if another planet existed farther out in the solar system. The position of this planet was
predicted from the deviations in the orbit of Uranus, and telescopes focused on that
region of the sky quickly found it; the new planet was called Neptune. Similar but much
smaller perturbations of Neptune’s orbit led to the discovery of Pluto in 1930.

Starting in the mid 1990s, planets revolving about distant stars (Fig. 6-18) were
inferred from the regular “wobble” of each star due to the gravitational attraction of
the revolving planet(s). Many such “extrasolar” planets are now known.

The development by Newton of the law of universal gravitation and the three
laws of motion was a major intellectual achievement: with these laws, he was able
to describe the motion of objects on Earth and in the heavens. The motions of
heavenly bodies and objects on Earth were seen to follow the same laws (not
recognized previously). For this reason, and also because Newton integrated the
results of earlier scientists into his system, we sometimes speak of Newton’s synthesis.

The laws formulated by Newton are referred to as causal laws. By causality we
mean the idea that one occurrence can cause another. When a rock strikes a
window, we infer that the rock causes the window to break. This idea of “cause and
effect” relates to Newton’s laws: the acceleration of an object was seen to be
caused by the net force acting on it.

As a result of Newton’s theories the universe came to be viewed by many
scientists and philosophers as a big machine whose parts move in a deterministic
way. This deterministic view of the universe, however, had to be modified by
scientists in the twentieth century (Chapter 38).

£ Jupiter

@ Sun O
FIGURE 6-18 Our solar system (a) is
compared to recently discovered planets
orbiting (b) the star 47 Ursae Majoris and 47 Planet
(c) the star Upsilon Andromedae with at (b) Ursae G
least three planets, mj is the mass of Majoris 3mj
Jupiter. (Sizes not to scale.)

B
Upsilon
© Andromedae > C
0.7mj  2mj
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EXAMPLE 6-10 Lagrange Point. The mathematician Joseph-Louis Lagrange
discovered five special points in the vicinity of the Earth’s orbit about the Sun
where a small satellite (mass ra) can orbit the Sun with the same period T as
Earth’s (= lyear). One of these “Lagrange Points,” called LI, lies between the
Earth (mass ME) and Sun (mass Ms), on the line connecting them (Fig. 6-19).
That is, the Earth and the satellite are always separated by a distance d. If the Earth’s
orbital radius is RES, then the satellite’s orbital radius is (RES —d). Determine d.

APPROACH We use Newton’s law of universal gravitation and set it equal to the
mass times the centripetal acceleration. But how could an object with a smaller
orbit than Earth’s have the same period as Earth? Kepler’s third law clearly tells
us a smaller orbit around the Sun results in a smaller period. But that law
depends on only the Sun’s gravitational attraction. Our mass ra is pulled by both
the Sun and the Earth.

SOLUTION Because the satellite is assumed to have negligible mass in comparison
to the masses of the Earth and Sun, to an excellent approximation the Earth’s
orbit will be determined solely by the Sun. Applying Newton’s second law to the
Earth gives

gmems w2 Me (27tRes)2

r%__- = M*AEE les
or
GMs 477 gg
"ES

Next we apply Newton’s second law to the satellite ra (which has the same period T
as Earth), including the pull of both Sun and Earth (see simplified form, Eq. (i))

GMS GMe 4t72(Res - d)
(RES-d f d2 T2
which we rewrite as
GMs ( _ _d_Y2_ GMe _ 4ttRg
Rgs V *es/ da2 -~ T ES,

We now use the binomial expansion (1 + x)f 1+ nx, if x « 1 Setting
x = d/RES and assuming d « RES, we have

GM
GMs . , p s, d (i)
AES ks "ES
Substituting GMSYR ES from Eqg. (i) into Eq. (ii) we find
GMS / o a0\ gme GMS / d\

NES (1+ d d2 Ris | Res)
Simplifying, we have

GMs

ES V "ES
We solve for d to find

Me

d = 3Ms B

Substituting in values we find

d = 10 X Q"R = 15 X 106km.

NOTE Since d/RES = 10 2 we were justified in using the binomial expansion.
NOTE Placing a satellite at L1 has two advantages: the satellite’s view of the Sun
is never eclipsed by the Earth, and it is always close enough to Earth to transmit
data easily. The LI point of the Earth-Sun system is currently home to the Solar
and Heliospheric Observatory (SOHO) satellite, Fig. 6-20.

7 / n \
/ / \ \
II Sun \ nt*-d €)
Vo1 A A1 Earth
Vo EY
AN
\ n

FIGURE 6-19 Finding the position
of the Lagrange Point L1 for a
satellite that can remain along the
revolving line between the Sun and
Earth, at distance d from the Earth.
Thus a mass m at LI has the same
period around the Sun as the

Earth has. (Not to scale.)

FIGURE 6-20 Artist’s rendition
of the Solar and Heliospheric
Observatory (SOHO) satellite

in orbit.
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*6-6 Gravitational Field

Most of the forces we meet in everyday life are contact forces: you push or
pull on a lawn mower, a tennis racket exerts a force on a tennis ball when
they make contact, or a ball exerts a force on a window when they make
contact. But the gravitational force acts over a distance: there is a force
even when the two objects are not in contact. The Earth, for example, exerts
a force on a falling apple. It also exerts a force on the Moon, 384,000 km
away. And the Sun exerts a gravitational force on the Earth. The idea of
a force acting at a distance was a difficult one for early thinkers. Newton
himself felt uneasy with this concept when he published his law of universal
gravitation.

Another point of view that helps with these conceptual difficulties is
the concept of the field, developed in the nineteenth century by Michael
Faraday (1791-1867) to aid understanding of electric and magnetic forces
which also act over a distance. Only later was it applied to gravity. According to
the field concept, a gravitational field surrounds every object that has mass, and
this field permeates all of space. A second object at a particular location near the
first object experiences a force because of the gravitational field that exists
there. Because the gravitational field at the location of the second mass is
considered to act directly on this mass, we are a little closer to the idea of a
contact force.

To be quantitative, we can define the gravitational field as the gravitational
force per unit mass at any point in space. If we want to measure the gravitational
field at any point, we place a small “test” mass m at that point and measure the
force F exerted on it (making sure only gravitational forces are acting). Then the
gravitational field, g, at that point is defined as
F

g = [gravitational field] (6-8)

The units of g are N/kg.

From Eg. 6-8 we see that the gravitational field an object experiences has
magnitude equal to the acceleration due to gravity at that point. (When we speak
of acceleration, however, we use units m/s2, which is equivalent to N/kg, since
1IN = 1kg-m/s2)

If the gravitational field is due to a single spherically symmetric (or small)
object of mass M, such as when m is near the Earth’s surface, then the gravitational
field at a distance r from M has magnitude

1 mM M
— —G—J- — G—=»
g m rI
In vector notation we write

.= _GM T dletoa
® r2 F [single mass M\

where r is a unit vector pointing radially outward from mass M, and the minus
sign reminds us that the field points toward mass M (see Egs. 6-1,6-2, and 6-4).
If several different bodies contribute significantly to the gravitational field, then
we write the gravitational field g as the vector sum of all these contributions.
In interplanetary space, for example, g at any point in space is the vector sum
of terms due to the Earth, Sun, Moon, and other bodies that contribute. The
gravitational field g at any point in space does not depend on the value of our
test mass, m, placed at that point; g depends only on the masses (and locations)
of the bodies that create the field there.
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6—F Types of Forces in Nature

We have already discussed that Newton’s law of universal gravitation, Eq. 6-1,
describes how a particular type of force—gravity—depends on the distance
between, and masses of, the objects involved. Newton’s second law, 2F = ma, on
the other hand, tells how an object will accelerate due to any type of force. But what
are the types of forces that occur in nature besides gravity?

In the twentieth century, physicists came to recognize four different funda-
mental forces in nature: (1) the gravitational force; (2) the electromagnetic force
(we shall see later that electric and magnetic forces are intimately related); (3) the
strong nuclear force; and (4) the weak nuclear force. In this Chapter, we discussed
the gravitational force in detail. The nature of the electromagnetic force will be
discussed in detail in Chapters 21 to 31. The strong and weak nuclear forces
operate at the level of the atomic nucleus; although they manifest themselves in
such phenomena as radioactivity and nuclear energy (Chapters 41 to 43), they are
much less obvious in our daily lives.

Physicists have been working on theories that would unify these four forces—that
is, to consider some or all of these forces as different manifestations of the same basic
force. So far, the electromagnetic and weak nuclear forces have been theoretically
united to form electroweak theory, in which the electromagnetic and weak forces are
seen as two different manifestations of a single electroweak force. Attempts to further
unify the forces, such as in grand unified theories (GUT), are hot research topics today.

But where do everyday forces fit into this scheme? Ordinary forces, other than
gravity, such as pushes, pulls, and other contact forces like the normal force and
friction, are today considered to be due to the electromagnetic force acting at the
atomic level. For example, the force your fingers exert on a pencil is the result of
electrical repulsion between the outer electrons of the atoms of your finger and
those of the pencil.

*6-8 Principle of Equivalence;
Curvature of Space; Black Holes

We have dealt with two aspects of mass. In Chapter 4, we defined mass as a
measure of the inertia of a body. Newton’s second law relates the force acting on a
body to its acceleration and its inertial mass, as we call it. We might say that
inertial mass represents a resistance to any force. In this Chapter we have dealt
with mass as a property related to the gravitational force—that is, mass as a
quantity that determines the strength of the gravitational force between two
bodies. This we call the gravitational mass.

It is not obvious that the inertial mass of a body should be equal to its gravitational
mass. The force of gravity might have depended on a different property of a body, just
as the electrical force depends on a property called electric charge. Newton’s and
Cavendish’s experiments indicated that the two types of mass are equal for a body,
and modern experiments confirm it to a precision of about 1 part in 1012

Albert Einstein (1879-1955) called this equivalence between gravitational and
inertial masses the principle of equivalence, and he used it as a foundation for his
general theory of relativity (c. 1916). The principle of equivalence can be stated in
another way: there is no experiment observers can perform to distinguish if an
acceleration arises because of a gravitational force or because their reference
frame is accelerating. If you were far out in space and an apple fell to the floor of
your spacecraft, you might assume a gravitational force was acting on the apple.
But it would also be possible that the apple fell because your spacecraft accelerated
upward (relative to an inertial system). The effects would be indistinguishable,
according to the principle of equivalence, because the apple’s inertial and
gravitational masses—that determine how a body “reacts” to outside influences—are
indistinguishable.

*SECTION 6-8  Principle of Equivalence; Curvature of Space; Black Holes
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FIGURE 6-21 (a) Light beam goes

straight across an eleva

tor that is not

accelerating, (b) The light beam bends
(exaggerated) in an elevator accelerating

in an upward direction.

FIGURE 6-22 (a) Three stars in
the sky. (b) If the light from one of
these stars passes very near the Sun,
whose gravity bends the light beam,
the star will appear higher than it
actually is.

Earth (@)
Apparent
position
of star
Earth (b)
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(b)

The principle of equivalence can be used to show that light ought to be
deflected due to the gravitational force of a massive object. Let us consider a thought
experiment in an elevator in free space where virtually no gravity acts. If a light
beam enters a hole in the side of the elevator, the beam travels straight across the
elevator and makes a spot on the opposite side if the elevator is at rest (Fig. 6-21a).
If the elevator is accelerating upward as in Fig. 6-21b, the light beam still travels
straight as observed in the original reference frame at rest. In the upwardly
accelerating elevator, however, the beam is observed to curve downward. Why?
Because during the time the light travels from one side of the elevator to the
other, the elevator is moving upward at ever-increasing speed.

According to the equivalence principle, an upwardly accelerating reference frame
is equivalent to a downward gravitational field. Hence, we can picture the curved light
path in Fig. 6-21b as being the effect of a gravitational field. Thus we expect gravity
to exert a force on a beam of light and to bend it out of a straight-line path!

Einstein’s general theory of relativity predicts that light should be affected by
gravity. It was calculated that light from a distant star would be deflected by 1.75"
of arc (tiny but detectable) as it passed near the Sun, as shown in Fig. 6-22. Such a
deflection was measured and confirmed in 1919 during an eclipse of the Sun. (The
eclipse reduced the brightness of the Sun so that the stars in line with its edge at
that moment would be visible.)

That a light beam can follow a curved path suggests that space itselfis curved
and that it is gravitational mass that causes the curvature. The curvature is greatest
near very massive objects. To visualize this curvature of space, we might think of
space as being like a thin rubber sheet; if a heavy weight is hung from it, it curves
as shown in Fig. 6-23. The weight corresponds to a huge mass that causes space
(space itself!) to curve.

The extreme curvature of space-time shown in Fig. 6-23 could be produced by
a black hole, a star that becomes so dense and massive that gravity would be so strong
that even light could not escape it. Light would be pulled back in by the force of
gravity. Since no light could escape from such a massive star, we could not see it—it
would be black. An object might pass by it and be deflected by its gravitational field,
but if the object came too close it would be swallowed up, never to escape. Hence the
name black holes. Experimentally there is good evidence for their existence.
One likely possibility is a giant black hole at the center of our Galaxy and probably
at the center of other galaxies.

FIGURE 6-23 Rubber-sheet
analogy for space (technically
space-time) curved by matter.
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Summary

Newton’s law of universal gravitation states that every particle
in the universe attracts every other particle with a force propor-
tional to the product of their masses and inversely proportional
to the square of the distance between them:

r2

The direction of this force is along the line joining the two parti-
cles, and is always attractive. It is this gravitational force that
keeps the Moon revolving around the Earth and the planets
revolving around the Sun.

The total gravitational force on any object is the vector sum
of the forces exerted by all other objects; frequently the effects
of all but one or two objects can be ignored.

Satellites revolving around the Earth are acted on by
gravity, but “stay up” because of their high tangential speed.

Questions

1. Does an apple exert a gravitational force on the Earth? If
so, how large a force? Consider an apple (a) attached to a
tree and (b) falling.

2. The Sun’s gravitational pull on the Earth is much larger
than the Moon’s. Yet the Moon’s is mainly responsible for
the tides. Explain. [Hint: Consider the difference in gravita-
tional pull from one side of the Earth to the other.]

3. Will an object weigh more at the equator or at the poles?
What two effects are at work? Do they oppose each other?

4. Why is more fuel required for a spacecraft to travel from
the Earth to the Moon than it does to return from the Moon
to the Earth?

5. The gravitational force on the Moon due to the Earth is only
about half the force on the Moon due to the Sun (see
Example 6-3). Why isnt the Moon pulled away from the Earth?

6. How did the scientists of Newton’s era determine the
distance from the Earth to the Moon, despite not knowing
about spaceflight or the speed of light? [Hint: Think about
why two eyes are useful for depth perception.]

7. If it were possible to drill a hole all the way through the
Earth along a diameter, then it would be possible to drop a
ball through the hole. When the ball was right at the center
of the Earth, what would be the total gravitational force
exerted on it by the Earth?

8. Why is it not possible to put a satellite in geosynchronous
orbit above the North Pole?

9. Which pulls harder gravitationally, the Earth on the Moon,
or the Moon on the Earth? Which accelerates more?

10. Would it require less speed to launch a satellite (a) toward
the east or (b) toward the west? Consider the Earth’s rota-
tion direction.

11. An antenna loosens and becomes detached from a satellite in a
circular orbit around the Earth. Describe the antenna’s motion
subsequently. If it will land on the Earth, describe where; if not,
describe how it could be made to land on the Earth.

12. Describe how careful measurements of the variation in g in
the vicinity of an ore deposit might be used to estimate the
amount of ore present.

Newton’s three laws of motion, plus his law of universal
gravitation, constituted a wide-ranging theory of the universe.
With them, motion of objects on Earth and in the heavens could
be accurately described. And they provided a theoretical base
for Kepler’s laws of planetary motion.

[*According to the field concept, a gravitational field
surrounds every object that has mass, and it permeates all of
space. The gravitational field at any point in space is the vector
sum of the fields due to all massive objects and can be defined as

where F is the force acting on a small “test” mass m placed at
that point.]

The four fundamental forces in nature are (1) the gravita-
tional force, (2) electromagnetic force, (3) strong nuclear force,
and (4) weak nuclear force. The first two fundamental forces are
responsible for nearly all “everyday” forces.

13. The Sun is below us at midnight, nearly in line with the
Earth’s center. Are we then heavier at midnight, due to the
Sun’s gravitational force on us, than we are at noon? Explain.

14. When will your apparent weight be the greatest, as
measured by a scale in a moving elevator: when the elevator
(a) accelerates downward, (b) accelerates upward, (c) is in
free fall, or (d) moves upward at constant speed? In which
case would your apparent weight be the least? When would
it be the same as when you are on the ground?

15. If the Earth’s mass were double what it actually is, in what
ways would the Moon’s orbit be different?

16. The source of the Mississippi River is closer to the center of
the Earth than is its outlet in Louisiana (since the Earth is
fatter at the equator than at the poles). Explain how the
Mississippi can flow “uphill.”

17. People sometimes ask, “What keeps a satellite up in its orbit
around the Earth?” How would you respond?

18. Explain how a runner experiences “free fall” or “apparent
weightlessness” between steps.

19. Ifyou were in a satellite orbiting the Earth, how might you cope
with walking, drinking, or putting a pair of scissors on a table?

20. Is the centripetal acceleration of Mars in its orbit around
the Sun larger or smaller than the centripetal acceleration
of the Earth?

21. The mass of the planet Pluto was not known until it was
discovered to have a moon. Explain how this enabled an
estimate of Pluto’s mass.

22. The Earth moves faster in its orbit around the Sun in
January than in July. Is the Earth closer to the Sun in
January, or in July? Explain. [Note: This is not much of a
factor in producing the seasons—the main factor is the tilt
of the Earth’s axis relative to the plane of its orbit.]

23. Kepler’s laws tell us that a planet moves faster when it is

closer to the Sun than when it is farther from the Sun. What

causes this change in speed of the planet?

Does your body directly sense a gravitational field?

(Compare to what you would feel in free fall.)

*25. Discuss the conceptual differences between g as accelera-

tion due to gravity and g as gravitational field.

*24.
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Problems

6-1 to 6-3 Law of Universal Gravitation

1.

2.

10.

11.

12.

() Calculate the force of Earth’s gravity on a spacecraft
2.00 Earth radii above the Earth’s surface if its mass is 1480 kg.
() Calculate the acceleration due to gravity on the Moon.
The Moon’s radius is 1.74 X 106m and its mass is
7.35 X 102Kkg.

. (I) A hypothetical planet has a radius 2.3 times that of

Earth, but has the same mass. What is the acceleration due
to gravity near its surface?

. (I) A hypothetical planet has a mass 1.80 times that of

Earth, but the same radius. What is g near its surface?

. (I) If you doubled the mass and tripled the radius of a

planet, by what factor would g at its surface change?

. (1) Calculate the effective value of g, the acceleration of gravity,

at (a) 6400m, and (b) 6400 km, above the Earth’s surface.

. () You are explaining to friends why astronauts feel

weightless orbiting in the space shuttle, and they respond that
they thought gravity was just a lot weaker up there. Convince
them and yourself that it isnt so by calculating how much
weaker gravity is 300 km above the Earth’s surface.

. (Il) Every few hundred years most of the planets line up on

the same side of the Sun. Calculate the total force on the Earth
due to Venus, Jupiter, and Saturn, assuming all four planets
are in a line, Fig. 6-24. The masses are Mv = 0.815 ME,
Mj = 318 Me, MSat = 951 ME, and the mean distances
of the four planets from the Sun are 108, 150, 778, and
1430 million km. What fraction of the Sun’s force on the
Earth is this?

0

FIGURE 6-24 Problem 8 (not to scale).

. (1) Four 8.5-kg spheres are located at the corners of a square

of side 0.80 m. Calculate the magnitude and direction of the
gravitational force exerted on one sphere by the other three.
(1) Two objects attract each other gravitationally with a
force of 2.5 X 10-10N when they are 0.25m apart. Their
total mass is 4.00 kg. Find their individual masses.

(1) Four masses are arranged as shown in Fig. 6-25.
Determine the x and y components of the gravitational
force on the mass at

the origin (m). Write A

the force in vector
notation (i, j). am 3m
x0
~N Jo
FIGURE 6-25 k
Problem 11. *0 2m

(I1) Estimate the acceleration due to gravity at the surface
of Europa (one of the moons of Jupiter) given that its mass
is 4.9 X 102kg and making the assumption that its density
is the same as Earth’s.
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13.

14.

15.

16.

17.

18.

19.

20.

(1) Suppose the mass of the Earth were doubled, but it
kept the same density and spherical shape. How would the
weight of objects at the Earth’s surface change?

(I1) Given that the acceleration of gravity at the surface of
Mars is 0.38 of what it is on Earth, and that Mars’ radius is
3400 km, determine the mass of Mars.

(1) At what distance from the Earth will a spacecraft trav-
eling directly from the Earth to the Moon experience zero
net force because the Earth and Moon pull with equal and
opposite forces?

(I1) Determine the mass of the Sun using the known value
for the period of the Earth and its distance from the Sun.
[Hint: The force on the Earth due to the Sun is related to
the centripetal acceleration of the Earth.] Compare your
answer to that obtained using Kepler’s laws, Example 6-9.
(I1) Two identical point masses, each of mass M, always
remain separated by a distance of 2R. A third mass m is then
placed a distance x along the perpendicular bisector of the
original two masses, as shown in Fig. 6-26. Show that the
gravitational force on the third

mass is directed inward along jQ M
the perpendicular bisector and
has a magnitude of R
m
F o= IGMmx Fol o
(x2 + R2)2 o '
FIGURE 6-26 +(j)M
Problem 17.

(I1) A mass M is ring shaped with radius r. A small mass m
is placed at a distance x along the ring’s axis as shown in
Fig. 6-27. Show that the gravitational force on the mass m due
to the ring is directed inward along the axis and has magnitude

GMmx

{x2 + r2

[Hint: Think of the ring as made up
of many small point masses dM; sum
over the forces due to each dM, and
use symmetry.]

F =

FIGURE 6-27
Problem 18.

(1) (a) Use the binomial expansion

(@ +x)n = 1+nx + 0= N2,

to show that the value of g is altered by approximately

Ar

Ag « -29 -

rE
at a height Ar above the Earth’s surface, where rE is the
radius of the Earth, as long as Ar « rE. (b) What is the
meaning of the minus sign in this relation? (c) Use this
result to compute the effective value of g at 125 km above
the Earth’s surface. Compare to a direct use of Eq. 6-1.
(111) The center of a 1.00 km diameter spherical pocket of oil
is 1.00 km beneath the Earth’s surface. Estimate by what
percentage g directly above the pocket of oil would differ
from the expected value of g for a uniform Earth? Assume
the density of oil is 8.0 X 102kg/m3.



21.

*22.

(1) Determine the magnitude and direction of the effec-
tive value of g at a latitude of 45° on the Earth. Assume the
Earth is a rotating sphere.

(1) 1t can be shown (Appendix D) that for a uniform sphere
the force of gravity at a point inside the sphere depends only
on the mass closer to the center than that point. The net force
of gravity due to points outside the radius of the point
cancels. How far would you have to drill into the Earth, to
reach a point where your weight is reduced by 5.0%?
Approximate the Earth as a uniform sphere.

6-4 Satellites and Weightlessness

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

(1) The space shuttle releases a satellite into a circular orbit
680 km above the Earth. How fast must the shuttle be
moving (relative to Earth’s center) when the release occurs?

(1) Calculate the speed of a satellite moving in a stable
circular orbit about the Earth at a height of 5800 km.

(1) You know your mass is 65Kkg, but when you stand on a
bathroom scale in an elevator, it says your mass is 76 kg. What
is the acceleration of the elevator, and in which direction?

(1) A 13.0-kg monkey hangs from a cord suspended from the
ceiling of an elevator. The cord can withstand a tension of
185N and breaks as the elevator accelerates. What was the
elevator’s minimum acceleration (magnitude and direction)?
(I1) Calculate the period of a satellite orbiting the Moon,
120km above the Moon’s surface. Ignore effects of the
Earth. The radius of the Moon is 1740 km.

(I1) Two satellites orbit Earth at altitudes of 5000 km and
15,000 km. Which satellite is faster, and by what factor?

(I1) What will a spring scale read for the weight of a 53-kg
woman in an elevator that moves (a) upward with constant
speed 5.0m/s, (b) downward with constant speed 5.0 m/s,
(c) upward with acceleration 0.33g, (d) downward with
acceleration 0.33 g, and (e) in free fall?

(I1) Determine the time it takes for a satellite to orbit the
Earth in a circular “near-Earth” orbit. A “near-Earth” orbit
is at a height above the surface of the Earth that is very small
compared to the radius of the Earth. [Hint. You may take the
acceleration due to gravity as essentially the same as that on the
surface.] Does your result depend on the mass of the satellite?
(1) What is the apparent weight of a 75-kg astronaut
2500 km from the center of the Earth’s Moon in a space
vehicle (a) moving at constant velocity and (b) accelerating
toward the Moon at 2.3 m/s2? State “direction” in each case.
(1) A Ferris wheel 22.0m in diameter rotates once every
12.5s (see Fig. 5-19). What is the ratio of a person’s apparent
weight to her real weight (a) at the top, and (b) at the bottom?
(I1) Two equal-mass stars maintain a constant distance apart
of 8.0 X 1011 m and rotate about a point midway between
them at a rate of one revolution every 12.6 yr. (a) Why don’t
the two stars crash into one another due to the gravitational
force between them? (b) What must be the mass of each star?
(I11) (a) Show that if a satellite orbits very near the surface of a
planet with period T, the density (= mass per unit volume) of
the planetis p = m/V = 3tt/GT2 (b) Estimate the density
of the Earth, given that a satellite near the surface orbits with a
period of 85 min. Approximate the Earth as a uniform sphere.
(111) Three bodies of identical mass M form the vertices of
an equilateral triangle of side | and rotate in circular orbits
about the center of the triangle. They are held in place by
their mutual gravitation. What is the speed of each?

36.

(1) An inclined plane, fixed to the inside of an elevator,
makes a 32° angle with the floor. A mass m slides on the
plane without friction. What is its acceleration relative to
the plane if the elevator (a) accelerates upward at 0.50g,
(b) accelerates downward at 0.50g, (c) falls freely, and
() moves upward at constant speed?

6-5 Kepler's Laws

37.

38.

39.

40.

41.

42.

(1) Use Kepler’s laws and the period of the Moon (27.4 d) to
determine the period of an artificial satellite orbiting very
near the Earth’s surface.
(1) Determine the mass of the Earth from the known period
and distance of the Moon.
(1) Neptune is an average distance of 4.5 X 109km from the
Sun. Estimate the length of the Neptunian year using the fact
that the Earth is 1.50 X 108km from the Sun on the average.
(1) Planet A and planet B are in circular orbits around a
distant star. Planet A is 9.0 times farther from the star than
is planet B. What is the ratio of their speeds va/vb?
(I1) Our Sun rotates about the center of our Galaxy
mG ~ 4 X 1041kg) at a distance of about 3 X 104light-years
1ly = (3.00 X 108m/s) ¢(3.16 X 107s/yr) «(1.OOyr)]. What is the
period of the Sun’s orbital motion about the center of the Galaxy?
(I1) Table 6-3 gives the mean distance, period, and mass for
the four largest moons of Jupiter (those discovered by
Galileo in 1609). (a) Determine the mass of Jupiter using the
data for lo. (b) Determine the mass of Jupiter using data for
each of the other three moons. Are the results consistent?

TABLE 6-3 Principal Moons of Jupiter
(Problems 42,43, and 47)

Period Mean distance
Moon Mass (kg) (Earth days) from Jupiter (km)
lo 8.9 X 102 177 422 X 103
Europa 4.9 X 102 3.55 671 X 103
Ganymede 15 X 102 7.16 1070 X 103
Callisto 11 X 102 16.7 1883 X 103
43. (1) Determine the mean distance from Jupiter for each of

44,

45.

46.

Jupiter’s moons, using Kepler’s third law. Use the distance
of lo and the periods given in Table 6-3. Compare your
results to the values in the Table.

(I1) The asteroid belt between Mars and Jupiter consists of
many fragments (which some space scientists think came
from a planet that once orbited the Sun but was destroyed).
(a) If the mean orbital radius of the asteroid belt (where the
planet would have been) is about three times farther from
the Sun than the Earth is, how long would it have taken this
hypothetical planet to orbit the Sun? (b) Can we use these
data to deduce the mass of this planet?

(1) The comet Hale-Bopp has a period of 2400 years.
(a) What is its mean distance from the Sun? (b) At its
closest approach, the comet is about 1.0 AU from the Sun
(L AU = distance from Earth to the Sun). What is the
farthest distance? (c) What is the ratio of the speed at the
closest point to the speed at the farthest point?

(1) (a) Use Kepler’s second law to show that the ratio of the
speeds of a planet at its nearest and farthest points from the
Sun is equal to the inverse ratio of the near and far distances:
vAlvp = dHdN. (b) Given that the Earth’s distance from the
Sun varies from 1.47 to 1.52 X 1011 m, determine the minimum
and maximum velocities of the Earth in its orbit around the Sun.
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47.

| General Problems

51.

52.

53.

54.

55.

56.

57.

58.

160

(1) The orbital periods T and mean orbital distances r
for Jupiter’s four largest moons are given in Table 6-3, on the
previous page, (a) Starting with Kepler’s third law in the form

\GntjJ

where mj is the mass of Jupiter, show that this relation
implies that a plot of log(T) vs. log(r) will yield a straight
line. Explain what Kepler’s third law predicts about the
slope and ~-intercept of this straight-line plot. (b) Using the
data for Jupiter’s four moons, plot log(T) vs. log(r) and
show that you get a straight line. Determine the slope of
this plot and compare it to the value you expect if the data are
consistent with Kepler’s third law. Determine the "-intercept
of the plot and use it to compute the mass of Jupiter.

How far above the Earth’s surface will the acceleration of
gravity be half what it is at the surface?

At the surface of a certain planet, the gravitational accelera-
tion g has a magnitude of 12.0m/s2 A 13.0-kg brass ball is
transported to this planet. What is (a) the mass of the brass
ball on the Earth and on the planet, and (b) the weight of
the brass ball on the Earth and on the planet?

A certain white dwarf star was once an average star like our
Sun. But now it is in the last stage of its evolution and is the
size of our Moon but has the mass of our Sun. {a) Estimate
gravity on the surface on this star. (b) How much would a 65-kg
person weigh on this star? (c) What would be the speed of a
baseball dropped from a height of 1.0 m when it hit the surface?
What is the distance from the Earth’s center to a point out-
side the Earth where the gravitational acceleration due to
the Earth is” of its value at the Earth’s surface?

The rings of Saturn are composed of chunks of ice that orbit
the planet. The inner radius of the rings is 73,000 km, while
the outer radius is 170,000 km. Find the period of an
orbiting chunk of ice at the inner radius and the period of a
chunk at the outer radius. Compare your numbers with
Saturn’s mean rotation period of 10 hours and 39 minutes.
The mass of Saturn is 5.7 X 1026kg.

During an Apollo lunar landing mission, the command
module continued to orbit the Moon at an altitude of about
100 km. How long did it take to go around the Moon once?
Hailey’s comet orbits the Sun roughly once every 76 years. It
comes very close to the surface of the Sun on its closest
approach (Fig. 6-28). Estimate the greatest distance of the
comet from the Sun. Is it still “in” the

solar system? What planet’s orbit is T———*" - n
nearest when it is out there? ey scomet "
Sun /
FIGURE 6-28
Problem 57.

The Navstar Global Positioning System (GPS) utilizes a group
of 24 satellites orbiting the Earth. Using “triangulation” and
signals transmitted by these satellites, the position of a receiver
on the Earth can be determined to within an accuracy of a few
centimeters. The satellite orbits are distributed evenly around
the Earth, with four satellites in each of six orbits, allowing
continuous navigational “fixes.” The satellites orbit at an alti-
tude of approximately 11,000 nautical miles [1 nautical mile =
1.852 km = 6076 ft], (a) Determine the speed of each satellite.
(b) Determine the period of each satellite.
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*6-6 Gravitational Field

*48.

*49,

*50.

59.

60.

61.

62.

(1) What is the magnitude and direction of the gravitational
field midway between the Earth and Moon? Ignore effects
of the Sun.

(1) (@) What is the gravitational field at the surface of the
Earth due to the Sun? (b) Will this affect your weight
significantly?

(1) Two identical particles, each of mass m, are located on
the x axis at x = +x0 and x = —x0. (a) Determine a
formula for the gravitational field due to these two particles
for points on the y axis; that is, write g as a function ofy, m,
jo0, and so on. (b) At what point (or points) on the y axis is
the magnitude of g a maximum value, and what is its value
there? [Hint Take the derivative dg/dy.]

Jupiter is about 320 times as massive as the Earth. Thus,
it has been claimed that a person would be crushed by
the force of gravity on a planet the size of Jupiter since
people can’t survive more than a few g’s. Calculate the
number of g’s a person would experience at the equator
of such a planet. Use the following data for Jupiter:
mass = 1.9 X 1027kg, equatorial radius = 7.1 X 104km,
rotation period = 9hr 55 min. Take the centripetal accelera-
tion into account.

The Sun rotates about the center of the Milky Way
Galaxy (Fig. 6-29) at a distance of about 30,000 light-
years from the center (I'ly = 9.5 X 1015m). If it takes
about 200 million years to make one rotation, estimate
the mass of our Galaxy. Assume that the mass distribu-
tion of our Galaxy is concentrated mostly in a central
uniform sphere. If all the stars had about the mass of our
Sun (2 X 1030kg), how many stars would there be in our
Galaxy?

Sun

FIGURE 6-29 Edge-on view of our galaxy. Problem 60.

Astronomers have observed an otherwise normal star,
called S2, closely orbiting an extremely massive but small
object at the center of the Milky Way Galaxy called SgrA.
S2 moves in an elliptical orbit around SgrA with a period of
15.2yr and an eccentricity e = 0.87 (Fig. 6-16). In 2002, S2
reached its closest approach to SgrA, a distance of only
123AU (1AU = 150 X 10n m is the mean Earth-Sun
distance). Determine the mass M of SgrA, the massive
compact object (believed to be a supermassive black hole)
at the center of our Galaxy. State M in kg and in terms of the
mass of our Sun.

A satellite of mass 5500 kg orbits the Earth and has a period
of 6200s. Determine (a) the radius of its circular orbit,
(b) the magnitude of the Earth’s gravitational force on the
satellite, and (c) the altitude of the satellite.



63.

64.

65.

66.

67.

68.

69.

Show that the rate of change of your weight is

—2G —"—v

r3

if you are traveling directly away from Earth at constant
speed v. Your mass is m, and r is your distance from the
center of the Earth at any moment.
Astronomers using the Hubble Space Telescope deduced the
presence of an extremely massive core in the distant galaxy
M87, so dense that it could be a black hole (from which no
light escapes). They did this by measuring the speed of gas
clouds orbiting the core to be 780km/s at a distance of
60 light-years (5.7 X 1017 m) from the core. Deduce the mass
of the core, and compare it to the mass of our Sun.
Suppose all the mass of the Earth were compacted into a small
spherical ball. What radius must the sphere have so that the
acceleration due to gravity at the Earth’s new surface was equal
to the acceleration due to gravity at the surface of the Sun?
A plumb bob (a mass m hanging on a string) is deflected from
the vertical by an angle 6 due to a massive mountain nearby
(Fig. 6-30). (a) Find an approximate formula for 6 in terms of
the mass of the mountain, mM, the distance to its center, Dm,
and the radius and mass of the Earth, (b) Make a rough estimate
of the mass of Mt. Everest, assuming it has the shape of a cone
4000 m high and base of diameter 4000 m. Assume its mass
per unit volume is 3000 kg per m3. (c) Estimate the angle 0 of
the plumb bob if it is 5km from the center of Mt. Everest.

FIGURE 6-30 Problem 66.

A geologist searching for oil finds that the gravity at a
certain location is 2 parts in 107 smaller than average.
Assume that a deposit of oil is located 2000 m directly
below. Estimate the size of the deposit, assumed spherical.
Take the density (mass per unit volume) of rock to be
3000 kg/m3and that of oil to be 800 kg/m3.

You are an astronaut in the space shuttle pursuing a satellite
in need of repair. You are in a circular orbit of the same
radius as the satellite (400 km above the Earth), but 25 km
behind it. (a) How long will it take to overtake the satellite if
you reduce your orbital radius by 1.0km? (b) By how much
must you reduce your orbital radius to catch up in 7.0h?

A science-fiction tale describes an artificial “planet” in the
form of a band completely encircling a sun (Fig. 6-31). The
inhabitants live on the inside surface (where it is always
noon). Imagine that this sun is exactly like our own, that the
distance to the band is the same as the Earth-Sun distance
(to make the climate temperate), and that the ring rotates
quickly enough to produce an apparent gravity of g as on
Earth. What will be

the period of revo-

lution, this planet’s

year, in Earth days?

£
*

Sun

FIGURE 6-31
Problem 69.

70. How long would a day be if the Earth were rotating so fast
that objects at the equator were apparently weightless?

71. An asteroid of mass m is in a circular orbit of radius r
around the Sun with a speed v. It has an impact with
another asteroid of mass M and is kicked into a new circular
orbit with a speed of 1.5v. What is the radius of the new
orbit in terms of r?

72. Newton had the data listed in Table 6-4, plus the relative
sizes of these objects: in terms of the Sun’s radius R, the
radii of Jupiter and Earth were 0.0997R and 0.0109i?.
Newton used this information to determine that the
average density p(= mass/volume) of Jupiter is slightly
less than that of the Sun, while the average density of
the Earth is four times that of the Sun. Thus, without leaving
his home planet, Newton was able to predict that the
composition of the Sun and Jupiter is markedly different
than that of Earth. Reproduce Newton’s calculation
and find his values for the ratios pj/psun and pe/psuii
(the modern values for these ratios are 0.93 and 3.91,
respectively).

TABLE 6-4 Problem 72
Orbital Radius, R

(inAU = Orbital Period, T
1.50 X 1011 m) (Earth days)
Venus about Sun 0.724 224.70
Callisto about Jupiter 0.01253 16.69
Moon about Earth 0.003069 27.32

73. A satellite circles a spherical planet of unknown mass in a
circular orbit of radius 2.0 X 107m. The magnitude of the
gravitational force exerted on the satellite by the planet is
120 N. (a) What would be the magnitude of the gravitational
force exerted on the satellite by the planet if the radius of
the orbit were increased to 3.0 X 107m? (b) If the satellite
circles the planet once every 2.0 h in the larger orbit, what is
the mass of the planet?

74. A uniform sphere has mass M and radius r. A spherical
cavity (no mass) of radius r/2 is then carved within this
sphere as shown in Fig. 6-32 (the cavity’s surface passes
through the sphere’s center and just touches the sphere’s
outer surface). The centers of the original sphere and the
cavity lie on a straight line, which defines the x axis.
With what gravitational force will the hollowed-out sphere
attract a point mass m which lies on the x axis a distance d
from the sphere’s center? [Hint. Subtract the effect of
the “small” sphere (the cavity) from that of the larger entire
sphere.]

FIGURE 6-32 Problem 74.
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75. The gravitational force at different places on Earth due to

the Sun and the Moon depends on each point’s distance
from the Sun or Moon, and this variation is what causes the
tides. Use the values inside the front cover of this book for
the Earth-Moon distance REM, the Earth-Sun distance RES,
the Moon’s mass Mm, the Sun’s mass, Ms, and the Earth’s
radius RE. (a) First consider two small pieces of the Earth,
each of mass ra, one on the side of the Earth nearest the Moon,
the other on the side farthest from the Moon. Show that the
ratio of the Moon’s gravitational forces on these two masses is

fiiear\ — 10687,

Ffar Jm
(b) Next consider two small pieces of the Earth, each of
mass ra, one on the nearest point of Earth to the Sun, the
other at the farthest point from the Sun. Show that
the ratio of the Sun’s gravitational forces on these two
masses is

= 1.000171.
Ftar /s

(c) Show that the ratio of the Sun’s average gravitational
force on the Earth compared to that of the Moon’s is

NV ag — M

Note that the Moon’s smaller force varies much more
across the Earth’s diameter than the Sun’s larger force.
(d) Estimate the resulting “force difference” (the cause of
the tides)

Ffs (Fnear _
rV Ffar J

AF  Freal Ffal -1

Ffar

for the Moon and for the Sun. Show that the ratio of the
tide-causing force differences due to the Moon compared to
the Sun is

AFypg

AFe

Thus the Moon’s influence on tide production is over two
times as great as the Sun’s.

2.3.

Answers to Exercises

A: g would double.

C: (b).
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*76.

7.

78.

A particle is released at a height rE (radius of Earth) above
the Earth’s surface. Determine its velocity when it hits the
Earth. Ignore air resistance. [Hint: Use Newton’s second law,
the law of universal gravitation, the chain rule, and integrate.]
Estimate the value of the gravitational constant G in
Newton’s law of universal gravitation using the following
data: the acceleration due to gravity at the Earth’s surface is
about 10m/s2; the Earth has a circumference of about
40 X 106m; rocks found on the Earth’s surface typically
have densities of about 3000 kg/m3 and assume this density
is constant throughout (even though you suspect it is not true).

Between the orbits of Mars and Jupiter, several thousand
small objects called asteroids move in nearly circular orbits
around the Sun. Consider an asteroid that is spherically
shaped with radius r and density 2700 kg/m3, (a) You find
yourself on the surface of this asteroid and throw a baseball at
a speed of 22 m/s (about 50 mi/h). If the baseball is to travel
around the asteroid in a circular orbit, what is the largest
radius asteroid on which you are capable of accomplishing
this feat? (b) After you throw the baseball, you turn around
and face the opposite direction and catch the baseball. How
much time T elapses between your throw and your catch?

*Numerical/Computer

*79.

(1) The accompanying table shows the data for the mean
distances of planets (except Pluto) from the Sun in our solar
system, and their periods of revolution about the Sun.

Planet Mean Distance (AU)

0.387
0.723
1.000
1.524
5.203
9.539
19.18
30.06

Period (Years)

0.241
0.615
1.000
1.881
11.88
29.46
84.01
164.8

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

(a) Graph the square of the periods as a function of the
cube of the average distances, and find the best-fit straight
line. (b) If the period of Pluto is 247.7 years, estimate the
mean distance of Pluto from the Sun from the best-fit line.

: No; even though they are experiencing weightlessness, the

massive ball would require a large force to throw and to
decelerate when caught (inertial mass, Newton’s second law).

6.17 yr.



Force Displacement

This baseball pitcher is about to accelerate the

baseball to a high velocity by exerting a force on it. He

will be doing work on the ball as he exerts the force over a

displacement of several meters, from behind his head until he

releases the ball with arm outstretched in front of him. The

total work done on the ball will be equal to the Kkinetic

energy i“mv2) acquired by the ball, a result known as the
work-energy principle.

T £
*
CHAPTER-OPENING QUESTION—Guess now!
You push very hard on a heavy desk, trying to move it. You do work on the desk:
(a) Whether or not it moves, as long as you are exerting a force.
(b) Only if it starts moving.
(c) Only if it doesn’t move.
(d) Never—it does work on you.
(e) None of the above.
ntil now we have been studying the translational motion of an object in CONTENTS
terms of Newton’s three laws of motion. In that analysis, force has
played a central role as the quantity determining the motion. In this 7-1 Work Done by a Constant

: . . F
Chapter and the two that follow, we discuss an alternative analysis of oree

the translational motion of objects in terms of the quantities energy and 7-2 Scalar Product of Two

. . . Vectors
mome_ntum. The 5|gn|f|cance of energy and_momentum is that they are conser_v(_ad. 7.3 Work Done by aVarying
In quite general circumstances they remain constant. That conserved quantities Force
exist gives us not only a deeper_msnght mto the nature of the world but also gives 7-4 Kinetic Energy and the
us another way to approach solving practical problems. Work-Energy Principle

The conservation laws of energy and momentum are especially valuable in
dealing with systems of many objects, in which a detailed consideration of the
forces involved would be difficult or impossible. These laws are applicable to a
wide range of phenomena, including the atomic and subatomic worlds, where
Newton’s laws cannot be applied.

This Chapter is devoted to the very important concept of energy and the
closely related concept of work. These two quantities are scalars and so have no
direction associated with them, which often makes them easier to work with than
vector quantities such as acceleration and force.
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FIGURE 7-1 A person pulling a
crate along the floor. The work done
by the force Fis W = Fd cos 6,
where dis the displacement.

FIGURE 7-2 The person does no
work on the bag of groceries since FP
is perpendicular to the displacement d.

7-1 Work Done by a Constant Force

The word work has a variety of meanings in everyday language. But in physics,
work is given a very specific meaning to describe what is accomplished when a
force acts on an object, and the object moves through a distance. We consider only
translational motion for now and, unless otherwise explained, objects are assumed
to be rigid with no complicating internal motion, and can be treated like particles. Then
the work done on an object by a constant force (constant in both magnitude and
direction) is defined to be the product of the magnitude of the displacement times the
component of the force parallel to the displacement. In equation form, we can write

W = Rd,

where ~ is the component of the constant force F parallel to the displacement d
We can also write

W = Fd cos0, (7-1)

where F is the magnitude of the constant force, d is the magnitude of the displace-
ment of the object, and 6 is the angle between the directions of the force and the
displacement (Fig. 7-1). The cos 0 factor appears in Eq. 7-1 because F cos 0 (= i*j))
is the component of F that is parallel to d Work is a scalar quantity—it has only
magnitude, which can be positive or negative.

Let us consider the case in which the motion and the force are in the same
direction, so 6 =0 and cos0 = 1; in this case, W = Fd. For example, if you
push a loaded grocery cart a distance of 50 m by exerting a horizontal force of
30N on the cart, you do 30N X 50m = 1500 N m of work on the cart.

As this example shows, in SI units work is measured in newton-meters (N-m).
A special name is given to this unit, the joule (J): 1J = 1Nem.

[In the cgs system, the unit of work is called the erg and is defined as
lerg = 1dyneecm. In British units, work is measured in foot-pounds. It is easy to
show that 1J = 107erg = 0.7376 ft «Ib.]

A force can be exerted on an object and yet do no work. If you hold a
heavy bag of groceries in your hands at rest, you do no work on it. You do exert a
force on the bag, but the displacement of the bag is zero, so the work done by
you on the bag is W = 0. You need both a force and a displacement to do work.
You also do no work on the bag of groceries if you carry it as you walk horizontally
across the floor at constant velocity, as shown in Fig. 7-2. No horizontal force is
required to move the bag at a constant velocity. The person shown in Fig. 7-2 does exert
an upward force FPon the bag equal to its weight. But this upward force is perpendicular
to the horizontal displacement of the bag and thus is doing no work. This conclusion
comes from our definition ofwork, Eq. 7-1: W = 0, because 6 = 90° and cos 90° = 0.
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Thus, when a particular force is perpendicular to the displacement, no work is done
by that force. When you start or stop walking, there is a horizontal acceleration and
you do briefly exert a horizontal force, and thus do work on the bag.

When we deal with work, as with force, it is necessary to specify whether you
are talking about work done by a specific object or done on a specific object. It is
also important to specify whether the work done is due to one particular force
(and which one), or the total (net) work done by the netforce on the object.

EXAMPLE 7-1  Work done on a crate. A person pulls a 50-kg crate 40 m along
a horizontal floor by a constant force FP = 100N, which acts at a 37° angle as
shown in Fig. 7-3. The floor is smooth and exerts no friction force. Determine (a) the
work done by each force acting on the crate, and (b) the net work done on the crate.

L,

/j\ CAUTION
State that work is done
on or by _an object

FIGURE 7-3 Example 7-1.
A 50-kg crate is pulled along a
smooth floor.

APPROACH We choose our coordinate system so that x can be the vector that
represents the 40-m displacement (that is, along the x axis). Three forces act on
the crate, as shown in Fig. 7-3: the force exerted by the person FP;the gravitational
force exerted by the Earth, mg; and the normal force FNexerted upward by the
floor. The net force on the crate is the vector sum of these three forces.
SOLUTION (a) The work done by the gravitational and normal forces is zero,
since they are perpendicular to the displacement x (0 = 90° in Eq. 7-1):

Wg = mgxcos90° = 0
WN = Fnjccos90° = 0.
The work done by FPis
WP = FpxcosO = (100N) (40 m) cos37° = 3200J.

(b) The net work can be calculated in two equivalent ways:
(1) The net work done on an object is the algebraic sum of the work done by
each force, since work is a scalar:

Whet = WG+ WN+ Wp
= 0 + 0 + 3200J) = 3200J.

(2) The net work can also be calculated by first determining the net force on the
object and then taking its component along the displacement: (Fnef)x = FPcos0.
Then the net work is

wnet = (fnet)y** = (fpCOSe)x
= (100 N)(cos37°)(40m) = 3200J.

In the vertical (y) direction, there is no displacement and no work done.

EXERCISE A A box is dragged a distance d across a floor by a force FPwhich makes an angle 0
with the horizontal as in Fig. 7-1 or 7-3. If the magnitude of FPis held constant but the angle 0
is increased, the work done by FP (a) remains the same; (b) increases; (c) decreases;
(d) first increases, then decreases.

EXERCISE B Return to the Chapter-Opening Question, page 163, and answer it again now. Try
to explain why you may have answered differently the first time.

SECTION 7-1  Work Done by a Constant Force
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FIGURE 7-4 Example 7-2.
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2.

PROBLEM
Work done by gravity depends on
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Work ®

Draw a free-body diagram showing all the forces
acting on the object you choose to study.

Choose an xy coordinate system. If the object is in
motion, it may be convenient to choose one of the
coordinate directions as the direction of one of the
forces, or as the direction of motion. [Thus, for an
object on an incline, you might choose one coordi-
nate axis to be parallel to the incline.]

. Apply Newton’s laws to determine any unknown

forces.

EXAMPLE 7-2

Find the work done by a specific force on the object
by using W = FdcosO for a constant force. Note
that the work done is negative when a force tends to
oppose the displacement.

To find the net work done on the object, either
(a) find the work done by each force and add the
results algebraically; or (b) find the net force on
the object, -Fret, and then use it to find the net work
done, which for constant net force is:

et — /Yt cos

Work on a backpack, (a) Determine the work a hiker must

do on a 15.0-kg backpack to carry it up a hill of height h = 10.0m, as shown in

Fig. 7-4a. Determine also (b) the work done by gravity on the backpack, and

(c) the net work done on the backpack. For simplicity, assume the motion is
smooth and at constant velocity (i.e., acceleration is zero).
APPROACH We explicitly follow the steps of the Problem Solving Strategy above.

SOLUTION

1. Draw a free-body diagram. The forces on the backpack are shown in Fig. 7-4b:
the force of gravity, rag, acting downward; and Fh, the force the hiker must
exert upward to support the backpack. The acceleration is zero, so horizontal
forces on the backpack are negligible.

2. Choose a coordinate system. We are interested in the vertical motion of the
backpack, so we choose the y coordinate as positive vertically upward.

3. Apply Newton’s laws. Newton’s second law applied in the vertical direction to

the backpack gives
/\Fy
FH- mg

since ay = 0. Hence,

FH = mg

may
0

(15.0kg)(9.80 m/s2) = 147N.

4. Work done by a specific force, (a) To calculate the work done by the hiker on
the backpack, we write Eq. 7-1 as
WH = FH(d cos 6),
and we note from Fig. 7-4a that d cos0 = h. So the work done by the hiker is

WH = Fu(dcos0) =

mgh

Fnh =
= (147N)(10.0m) =

1470J.

Note that the work done depends only on the change in elevation and not on

the angle of the hill, 0. The hiker would do the same work to lift the pack

vertically the same height h.

(b) The work done by gravity on the backpack is (from Eq. 7-1 and Fig. 7-4c)
WG = FGd cos(180° - 0).

Since cos(180° —0) = -cos0,
(©) WG = FGd(-cosd)

SOLVING

the height of the hill and
not on the angle ofincline

we have

mg(-d cos 6)

—mgh

—(15.0kg)(9.80 m/s2(10.0m) = -1470J.

NOTE The work done by gravity (which is negative here) doesn’t depend on the
angle of the incline, only on the vertical height h of the hill. This is because gravity acts
vertically, so only the vertical component of displacement contributes to work done.
5. Net work done, (c) The net work done on the backpack is Wret = 0, since the

net force on the backpack is zero (it is assumed not to accelerate significantly).
We can also determine the net work done by adding the work done by each force:

Whet =

WG + WH =

—1470J + 1470J = 0.

NOTE Even though the net work done by all the forces on the backpack is zero,

the hiker does do work on the backpack equal to 1470 J.



CONCEPTUAL EXAMPLET T 1 Does the Earth do work on the Moon? The
Moon revolves around the Earth in a nearly circular orbit, with approximately constant
tangential speed, kept there by the gravitational force exerted by the Earth. Does
gravity do {a) positive work, (b) negative work, or (c) no work at all on the Moon?

RESPONSE The gravitational force FGon the Moon (Fig. 7-5) acts toward the Earth
and provides its centripetal force, inward along the radius of the Moon’s orbit. The
Moon’s displacement at any moment is tangent to the circle, in the direction of its
velocity, perpendicular to the radius and perpendicular to the force of gravity.
Hence the angle 0 between the force FGand the instantaneous displacement of
the Moon is 90°, and the work done by gravity is therefore zero (cos 90° = 0).
This is why the Moon, as well as artificial satellites, can stay in orbit without
expenditure of fuel: no work needs to be done against the force of gravity.

7—2 Scalar Product of Two Vectors

Although work is a scalar, it involves the product of two quantities, force and
displacement, both of which are vectors. Therefore, we now investigate the
multiplication of vectors, which will be useful throughout the book, and apply it
to work.

Because vectors have direction as well as magnitude, they cannot be
multiplied in the same way that scalars are. Instead we must define what the
operation of vector multiplication means. Among the possible ways to define
how to multiply vectors, there are three ways that we find useful in physics:
(1) multiplication of a vector by a scalar, which was discussed in Section 3-3;
(2) multiplication of one vector by a second vector to produce a scalar;
(3) multiplication of one vector by a second vector to produce another vector.
The third type, called the vector product, will be discussed later, in Section 11-2.

We now discuss the second type, called the scalar product, or dot product
(because a dot is used to indicate the multiplication). If we have two vectors, A
and B, then their scalar (or dot) product is defined to be

A B = AB cosd, (7-2)

where A and B are the magnitudes of the vectors and 0 is the angle (< 180°)
between them when their tails touch, Fig. 7-6. Since A, B, and cos 0 are scalars,
then so is the scalar product A «B (read “A dot B”).

This definition, Eq. 7-2, fits perfectly with our definition of the work done by
a constant force, Eq. 7-1. That is, we can write the work done by a constant force
as the scalar product of force and displacement:

W = Fd = Fdcos0. (7-3)

Indeed, the definition of scalar product, Eq. 7-2, is so chosen because many physically
important quantities, such as work (and others we will meet later), can be described
as the scalar product of two vectors.

An equivalent definition of the scalar product is that it is the product of the
magnitude of one vector (say B) and the component (or projection) of the other
vector along the direction of the first (A cos 0). See Fig. 7-6.

Since A, B, and cos0O are scalars, it doesn’t matter in what order they are
multiplied. Hence the scalar product is commutative:

A+*B = B-A [commutative property]
It is also easy to show that it is distributive (see Problem 33 for the proof):
A«B+C = A-B + A-C. [distributive property]

SECTION 7-2

FIGURE 7-5 Example 7-3.

FIGURE 7-6 The scalar product, or
dot product, of two vectors A and B

isA «B = AB cos 0. The scalar

product can be interpreted as the
magnitude of one vector (B in this

case) times the projection of the
other vector, A cos 0, onto B.

A

Scalar Product of Two Vectors
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Let us write our vectors A and B in terms of their rectangular components
using unit vectors (Section 3-5, Eq. 3-5) as

A = Axi + Ayj + Azk
B = Bxi + By} + Bzi.
We will take the scalar product, A « B, of these two vectors, remembering that the
unit vectors, i, j, and k, are perpendicular to each other
iei = jej = kek =1
ij=ik=jk =0
Thus the scalar product equals
A «B = (Axi + Ayj + Azk) «(Bx\ + Byj + Bzk)
= AXBX + AyBy + AZBZ (7—4)
Equation 7-4 is very useful.
If A is perpendicular to B, then Eq. 7-2 tellsus A «B = AB cos 90° = 0. But

the converse, given that A «B = 0, can come about in three different ways:
A=0B=0 orA LB

FIGURE 7-7 Example 7-4. Work
done by a force FPacting at an angle 0
to the ground is W = FP«d.

EXAMPLE 7-4 Using the dot product. The force shown in Fig. 7-7 has
magnitude FP= 20N and makes an angle of 30° to the ground. Calculate the
work done by this force using Eq. 7-4 when the wagon is dragged 100 m along
the ground.

APPROACH We choose the x axis horizontal to the right and the y axis vertically
upward, and write FPand d in terms of unit vectors.
SOLUTION

FP = Fxi + Fy\ = (FPcos30°)i + (FPsin30°)j = (17N)i + (10N)j,
whereas d = (100 m)i. Then, using Eq. 7-4,
W = FP-d = (17N)(100m) + (10N)(0) + (0)(0) = 1700J.

Note that by choosing the x axis along d we simplified the calculation because d
then has only one component.

7—3 Work Done by a Varying Force

If the force acting on an object is constant, the work done by that force
can be calculated using Eg. 7-1. In many cases, however, the force varies in
magnitude or direction during a process. For example, as a rocket moves
away from Earth, work is done to overcome the force of gravity, which
varies as the inverse square of the distance from the Earth’s center. Other
examples are the force exerted by a spring, which increases with the amount of
stretch, or the work done by a varying force exerted to pull a box or cart up an
uneven hill.
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FIGURE 7-8 A particle acted on
by avariable force, F, moves along
the path shown from point a to point b.

Figure 7-8 shows the path of an object in the xy plane as it moves from
point a to point b. The path has been divided into short intervals each of
length AEx, AE£2,.e, AE7. A force F acts at each point on the path, and is
indicated at two points as F\ and F5. During each small interval A£, the force is
approximately constant. For the first interval, the force does work AW of
approximately (see Eq. 7-1)

AW ~ Flca&0IM 1.

In the second interval the work done is approximately F2cos 02A£2, and so on. The
total work done in moving the particle the total distance £
is the sum of all these terms:

7
W ~ 'AF, cos8IMI. (7-5)

We can examine this graphically by plotting F cos6 versus the distance £
along the path as shown in Fig. 7-9a. The distance £ has been subdivided
into the same seven intervals (see the vertical dashed lines). The value of
F cos9 at the center of each interval is indicated by the horizontal dashed
lines. Each of the shaded rectangles has an area (Ftcos 0)(A£*), which is a good
estimate of the work done during the interval. The estimate of the work done along
the entire path given by Eq. 7-5, equals the sum of the areas of all the rectangles.
If we subdivide the distance into a greater number of intervals, so that each Aftis
smaller, the estimate of the work done becomes more accurate (the assumption that F
is constant over each interval is more accurate). Letting each Aftapproach zero (so we
approach an infinite number of intervals), we obtain an exact result for the work done:

W = Alfm 277-cosO;AEj = Jfa Fcos0dt (7-6)
This limit as AEf —>0 is the integral of (F cos0d£) from point a to point b. The
symbol for the integral, J, is an elongated S to indicate an infinite sum; and A£ has
been replaced by df, meaning an infinitesimal distance. [We also discussed this in
the optional Section 2-9.]

In this limit as AE approaches zero, the total area of the rectangles (Fig. 7-9a)
approaches the area between the (F cos0) curve and the £ axis from a to b as
shown shaded in Fig. 7-9b. That is, the work done by a variable force in moving
an object between two points is equal to the area under the (F cos 0) versus (£) curve
between those two points.

In the limit as AE approaches zero, the infinitesimal distance df equals
the magnitude of the infinitesimal displacement vector di. The direction of
the vector di is along the tangent to the path at that point, so 0 is the angle
between F and di at any point. Thus we can rewrite Eq. 7-6, using dot-product
notation:

nd i (7-7)

This is a general definition of work. In this equation, a and b represent
two points in space, (Xa, ya, za) and (xb, yh, zb). The integral in Eq. 7-7 is called a
line integral since it is the integral of F cos 0 along the line that represents the path
of the object. (Equation 7-1 for a constant force is a special case of Eq. 7-7.)

FIGURE 7-9 Work done by a
force F is (a) approximately equal to
the sum of the areas of the
rectangles, (b) exactly equal to the
area under the curve of F cos O vs. L

300-

aAEj AE2 AE3 AfA AE5 AE6 AETD
(a) Distance, £
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(a) Unstretched

j-x-1

(c) Compressed

FIGURE 7-10 (a) Spring in normal
(unstretched) position, (b) Spring is
stretched by a person exerting a
force FPto the right (positive
direction). The spring pulls back
with a force Fs where Fs = —kx.
(c) Person compresses the spring

(x < 0), and the spring pushes back
with a force Fs = —kx where

Fs > 0 because x < 0.

FIGURE 7-11 Work done to
stretch a spring a distance x equals
the triangular area under the
curve F = kx. The area of a
triangle is| X base X altitude,

so W = \{x){kx) = \kx2

F

In rectangular coordinates, any force can be written
F = Fxi + Fyj + Fzk
and the displacement di is
dt = dxi + dyj + dzk.
Then the work done can be written

2] fyb rzb
W = \Fxdx + \ Fydy + \ Fzdz.
Jxa lya Jz«

To actually use Eq. 7-6 or 7-7 to calculate the work, there are several options:
(1) If F cos 0 is known as a function of position, a graph like that of Fig. 7-9b can
be made and the area determined graphically. (2) Another possibility is to use
numerical integration (numerical summing), perhaps with the aid of a computer or
calculator. (3) A third possibility is to use the analytical methods of integral
calculus, when it is doable. To do so, we must be able to write F as a function of
position, F(x, y, z), and we must know the path. Let’s look at some specific examples.

Work Done by a Spring Force

Let us determine the work needed to stretch or compress a coiled spring, such as
that shown in Fig. 7-10. For a person to hold a spring either stretched or
compressed an amount x from its normal (relaxed) length requires a force FPthat
is directly proportional to x. That is,

FP = kx,

where Ais a constant, called the spring constant (or spring stiffness constant), and is
a measure of the stiffness of the particular spring. The spring itself exerts a force in
the opposite direction (Fig. 7-10b or c):

Fs = -kx. (7-8)
This force is sometimes called a “restoring force” because the spring exerts
its force in the direction opposite the displacement (hence the minus sign),
and thus acts to return the spring to its normal length. Equation 7-8 is known
as the spring equation or Hooke’s law, and is accurate for springs as long as x is
not too great (see Section 12-4) and no permanent deformation occurs.

Let us calculate the work a person does to stretch (or compress) a spring
from its normal (unstretched) length, xa=0, to an extra length, xb= x.
We assume the stretching is done slowly, so that the acceleration is essentially
zero. The force FPis exerted parallel to the axis of the spring, along the x axis,
so FPand dl are parallel. Hence, since dl = dxi in this case, the work done by
the person isf

I'Xb:*_ . . [x fx
[FP(jt)i] « [dxi] = Fp(x)dx = kxdx = \kx2 = \kx2
J*&0 J
(As is frequently done, we have used x to represent both the variable of integra-
tion, and the particular value of x at the end of the interval xa=0 to xb = x.)
Thus we see that the work needed is proportional to the square of the distance
stretched (or compressed), x.

This same result can be obtained by computing the area under the graph of F vs. x
(with cos6 = 1 in this case) as shown in Fig. 7-11. Since the area is a triangle of
altitude kx and base x, the work a person does to stretch or compress a spring an
amount x is

W = \(x){kx) = \kx2
which is the same result as before. Because W oc x2 it takes the same amount of
work to stretch a spring or compress it the same amount x.

tSee the Table of Integrals, Appendix B.
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EXAMPLE 7-5 Work done on a spring, (a) A person pulls on the spring in
Fig. 7-10, stretching it 3.0 cm, which requires a maximum force of 75N. How
much work does the person do? (b) If, instead, the person compresses the
spring 3.0 cm, how much work does the person do?

APPROACH The force F = kx holds at each point, including xmax. Hence Frrex
occurs at x = %vax.
SOLUTION (a) First we need to calculate the spring constant k:

* = A =

-Z5IL = 25 X 103N/m.
*max 0.030 M

Then the work done by the person on the spring is
W = \kx*ax = |(2.5 X 103N/m)(0.030m)2 = 1.1J.

(b) The force that the person exerts is still FP = kx, though now both x and FP
are negative (x is positive to the right). The work done is

rx=-0.030m rJC=-0.030m —0.030m
=  FRx)dx = \ kxdx = \kx
Ix=0 lo

= \ (25 x 103N/m)(-0.030m)2 = 1.1J,

which is the same as for stretching it.

NOTE We cannot use W = Fd (Eq. 7-1) for a spring because the force is not
constant.

A More Complex Force Law—Robot Arm

Force as function of x. A robot arm that controls the
position of a video camera (Fig. 7-12) in an automated surveillance system
is manipulated by a motor that exerts a force on the arm. The force is
given by

B 2
F(x) = FO[1 + Jé>§|

where FO= 20N, x0=0.0070m, and x is the position of the end of the
arm. If the arm moves from x1=0.010m to x2=0.050m, how much
work did the motor do?

APPROACH The force applied by the motor is not a linear function of x. We can
determine the integral fF(x)dx, or the area under the F(x) curve (shown in
Fig. 7-13).

SOLUTION We integrate to find the work done by the motor:

V\m:FrK dx = FnJdx + A f:
jXi 6x0JI4

We put in the values given and obtain

20N (0.050m - 0.010m) + (0.050m)3 - (©.010m) 0.36J
' ' ' (3)(6) (0.0070 m)A R

FIGURE 7-12 Robot arm positions

avideo camera.

FIGURE 7-13 Example 7-6.

20.0 T F (N)

\x(m)

0.01 0.02 0.03 0.04 0.05

SECTION 7-3  Work Done by a Varying Force

171



FIGURE 7-14 A constant net force
Fnet accelerates a car from speed Vi
to speed v2over a displacement d.
The net work done is Wnet = Fnetd.

Kinetic energy
(defined)

7—4 Kinetic Energy and the
Work-Energy Principle

Energy is one of the most important concepts in science. Yet we cannot give a
simple general definition of energy in only a few words. Nonetheless, each specific
type of energy can be defined fairly simply. In this Chapter we define translational
kinetic energy; in the next Chapter, we take up potential energy. In later Chapters
we will examine other types of energy, such as that related to heat (Chapters 19
and 20). The crucial aspect of all the types of energy is that the sum of all types, the
total energy, is the same after any process as it was before: that is, energy is a
conserved quantity.

For the purposes of this Chapter, we can define energy in the traditional way
as “the ability to do work.” This simple definition is not very precise, nor is it really
valid for all types of energy.* It works, however, for mechanical energy which we
discuss in this Chapter and the next. We now define and discuss one of the basic
types of energy, kinetic energy.

A moving object can do work on another object it strikes. A flying cannonball
does work on a brick wall it knocks down; a moving hammer does work on a nail
it drives into wood. In either case, a moving object exerts a force on a second
object which undergoes a displacement. An object in motion has the ability to do
work and thus can be said to have energy. The energy of motion is called kinetic
energy, from the Greek word kinetikos, meaning “motion.”

To obtain a quantitative definition for kinetic energy, let us consider a simple
rigid object of mass ra (treated as a particle) that is moving in a straight line with
an initial speed . To accelerate it uniformly to a speed v2, a constant net force
“Yet is exerted on it parallel to its motion over a displacement d, Fig. 7-14.

net net

Then the net work done on the object is Wnet =Fnetd- We apply Newton’s
second law, Fnet = ma, and use Eq. 2-12¢ (v2 = v\ + lad), which we rewrite as

v . 2
u= 2
where vxis the initial speed and v2the final speed. Substituting this into fiiet = ma,
we determine the work done:

Whet = Fnetd = mad = ml——— jd = m1-—-+--—-
or
wnet = \m v\- \mv\. (7-9)
We define the quantity \mv2to be the translational kinetic energy, K, of the object:
K = tmv . (7-10)

(We call this “translational” kinetic energy to distinguish it from rotational kinetic
energy, which we discuss in Chapter 10.) Equation 7-9, derived here for one-
dimensional motion with a constant force, is valid in general for translational
motion of an object in three dimensions and even if the force varies, as we will
show at the end of this Section.

tEnergy associated with heat is often not available to do work, as we will discuss in Chapter 20.
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We can rewrite Eq. 7-9 as:

w,et = K2- K,
or

Wet = AK = \mv\ - \mv\. (7-11)
Equation 7-11 (or Eq. 7-9) is a useful result known as the work-energy principle.
It can be stated in words:

The net work done on an object is equal to the change in the object’s
kinetic energy.

Notice that we made use of Newton’s second law, et = ma, where et is the net
force—the sum of all forces acting on the object. Thus, the work-energy principle
is valid only if W is the net work done on the object—that is, the work done by all
forces acting on the object.

The work-energy principle is a very useful reformulation of Newton’s
laws. It tells us that if (positive) net work W is done on an object, the object’s
kinetic energy increases by an amount W. The principle also holds true for
the reverse situation: if the net work W done on an object is negative,
the object’s kinetic energy decreases by an amount W. That is, a net force
exerted on an object opposite to the object’s direction of motion decreases its
speed and its kinetic energy. An example is a moving hammer (Fig. 7-15)
striking a nail. The net force on the hammer (-F in Fig. 7-15, where F is
assumed constant for simplicity) acts toward the left, whereas the displacement d
of the hammer is toward the right. So the net work done on the hammer,
Wh = (F)(d)(cos 180°) = -Fd, is negative and the hammer’s Kinetic energy
decreases (usually to zero).

Figure 7-15 also illustrates how energy can be considered the ability to
do work. The hammer, as it slows down, does positive work on the nail:
Wn = (+F)(+d)(cos0°) = Fd and is positive. The decrease in kinetic energy of
the hammer (= Fd by Eq. 7-11) is equal to the work the hammer can do on
another object, the nail in this case.

The translational kinetic energy (= \mv?2) is directly proportional to the mass
of the object, and it is also proportional to the square of the speed. Thus, if the
mass is doubled, the kinetic energy is doubled. But if the speed is doubled, the
object has four times as much kinetic energy and is therefore capable of doing four
times as much work.

Because of the direct connection between work and kinetic energy, energy is
measured in the same units as work: joules in Sl units. [The energy unit is ergs in
the cgs, and foot-pounds in the British system.] Like work, kinetic energy is a
scalar quantity. The kinetic energy of a group of objects is the sum of the kinetic
energies of the individual objects.

The work-energy principle can be applied to a particle, and also to an object
that can be approximated as a particle, such as an object that is rigid or whose
internal motions are insignificant. It is very useful in simple situations, as we will
see in the Examples below. The work-energy principle is not as powerful and
encompassing as the law of conservation of energy which we treat in the next
Chapter, and should not itself be considered a statement of energy conservation.

EXAMPLE 7-7  Kinetic energy and work done on a baseball. A 145-g baseball
is thrown so that it acquires a speed of 25m/s. (a) What is its kinetic energy?
(b) What was the net work done on the ball to make it reach this speed, if it started
from rest?

APPROACH We use K =\mv2 and the work-energy principle, Eq. 7-11.
SOLUTION (&) The kinetic energy of the ball after the throw is

K = \mv2 = |(0.145kg) (25m/s)2 = 45J.

(b) Since the initial kinetic energy was zero, the net work done is just equal to the
final Kinetic energy, 45 J.

SECTION 7-4

WORK-ENERGY PRINCIPLE

WORK-ENERGY PRINCIPLE

/N CAUTION

Work-energy valid only for net work

(on hammer) (on nail)

FIGURE 7-15 A moving hammer
strikes a nail and comes to rest. The
hammer exerts a force F on the nail;
the nail exerts a force —F on the
hammer (Newton’s third law). The
work done on the nail by the
hammer is positive (Wn = Fd > 0).
The work done on the hammer by
the nail is negative (W» = —Fd).
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V] A 20 m/s 7] = 30 m/s

FIGURE 7-16 Example 7-8.

0

FIGURE 7-17 Example 7-9.

PHYSICS APPLIED

Cars stopping distance oc
initial speed squared

Q)

(b)

EXAMPLE 7-8 ESTIMATE-! Work on a car, to increase its kinetic energy.
How much net work is required to accelerate a 1000-kg car from 20m/s to 30 m/s
(Fig. 7-16)?

APPROACH A car is a complex system. The engine turns the wheels and tires
which push against the ground, and the ground pushes back (see Example 4-4).
We aren't interested right now in those complications. Instead, we can get a
useful result using the work-energy principle, but only if we model the car as a
particle or simple rigid object.

SOLUTION The net work needed is equal to the increase in Kinetic energy:
W K2~ K\ = \mv\ ~ \rnv\
\ (1000 kg) (30 m/s)2 - \ (1000 kg) (20m/s)2 = 2.5 x 105J.

EXERCISE C {a) Make a guess: will the work needed to accelerate the car in Example 7-8
from rest to 20 m/s be more than, less than, or equal to the work already calculated to
accelerate it from 20 m/s to 30 m/s? (b) Make the calculation.

d{d=20m)
p, a 1220 km/h ”n=0

dw =9)

CONCEPTUAL EXAMPLE 7-9 | Work to stop a car. A car traveling 60 km/h
can brake to a stop within a distance d of 20 m (Fig. 7-17a). If the car is going twice
as fast, 120 km/h, what is its stopping distance (Fig. 7-17b)? Assume the maximum
braking force is approximately independent of speed.

RESPONSE Again we model the car as if it were a particle. Because the net
stopping force F is approximately constant, the work needed to stop the car, Fd, is
proportional to the distance traveled. We apply the work-energy principle, noting
that F and d are in opposite directions and that the final speed of the car is zero:

Wret Fdcos180° = -Fd.

Then
—Fd = AK = \mv\ —\mv\

= 0 - \mv\

Thus, since the force and mass are constant, we see that the stopping distance, d,
increases with the square of the speed:

d oc v2

If the car’s initial speed is doubled, the stopping distance is (2)2= 4 times as
great, or 80 m.

EXERCISE D Can kinetic energy ever be negative?

EXERCISE E (a) If the kinetic energy of an arrow is doubled, by what factor has its speed
increased? (b) If its speed is doubled, by what factor does its kinetic energy increase?
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EXAMPLE 7-10 A compressed spring. A horizontal spring has spring
constant k = 360 N/m. (a) How much work is required to compress it from its
uncompressed length (x = 0) to x = 11.0cm? (b) If a 1.85-kg block is placed
against the spring and the spring is released, what will be the speed of the block
when it separates from the spring at x = 0? Ignore friction, (c) Repeat part (b)
but assume that the block is moving on a table as in Fig. 7-18 and that some kind
of constant drag force FD=7.0N s acting to slow it down, such as friction
(or perhaps your finger).

FIGURE 7-18 Example 7-10.

mg

APPROACH We use our result from Section 7-3 that the net work, W, needed to
stretch or compress a spring by a distance x is W =\kx2 In (b) and (c) we use
the work-energy principle.

SOLUTION (&) The work needed to compress the spring a distance x = 0.110m is

W = \ (360 N/m)(0.110 m)2 = 2.18J,

where we have converted all units to SI.

(b) In returning to its uncompressed length, the spring does 2.18J of work on the
block (same calculation as in part (a), only in reverse). According to the work-energy
principle, the block acquires kinetic energy of 2.18J. Since K =\mv2, the block’s
speed must be

2(2.181)

—lm = 154 m/s.

(c) There are two forces on the block: that exerted by the spring and that exerted
by the drag force, FD.Work done by a force such as friction is complicated. For one
thing, heat (or, rather, “thermal energy”) is produced—try rubbing your hands
together. Nonetheless, the product FDed for the drag force, even when it is
friction, can be used in the work-energy principle to give correct results for a
particle-like object. The spring does 2.18J of work on the block. The work done
by the friction or drag force on the block, in the negative x direction, is

WD = -Fdx = - (7.0N)(0.110m) = -0.77J.

This work is negative because the drag force acts in the direction opposite to the
displacementx. The net work done on the block is Wret = 2.18J - 0.77J = 1.41J.
From the work-energy principle, Eq. 7-11 (with v2=v and vx = 0), we have

m

21413
TiJkT = 123m/s

for the block’s speed at the moment it separates from the spring (x = 0).

SECTION 7-4  Kinetic Energy and the Work-Energy Principle
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A particle acted on by a variable
force F, moves along the path shown
from point a to point b.

Summary

Work is done on an object by a force when the object moves
through a distance, d. The work W done by a constant force F on
an object whose position changes by a displacement d is given by

W = Fdcosd =

General Derivation of the Work-Energy Principle

We derived the work-energy principle, Eq. 7-11, for motion in one dimension with
a constant force. It is valid even if the force is variable and the motion is in two or
three dimensions, as we now show. Suppose the net force Fret on a particle varies in
both magnitude and direction, and the path of the particle is a curve as in Fig. 7-8.
The net force may be considered to be a function of I, the distance along the curve.
The net work done is (Eq. 7-6):

Whet = | Fretedl = j"Fretcos6di =

where R\represents the component of the net force parallel to the curve at any point.
By Newton’s second law,

a dv

Fu = maw = m ~~"'

where fly, the component of a parallel to the curve at any point, is equal to the rate
of change of speed, dvldt. We can think of v as a function of i, and using the chain
rule for derivatives, we have

dv dv di dv
dt  ~didt  ~di "

since di/dt is the speed v. Thus (letting 1 and 2 refer to the initial and final quantities,
respectively):

my 4V 6

Wher = de = z

. myv dv,
= [m| |

which integrates to
Anet = \mv2- \mv\ = AK

This is again the work-energy principle, which we have now derived for motion in
three dimensions with a variable net force, using the definitions of work and
kinetic energy plus Newton’s second law.

Notice in this derivation that only the component of ®@net parallel to the
motion, i*j, contributes to the work. Indeed, a force (or component of a force)
acting perpendicular to the velocity vector does no work. Such a force changes
only the direction of the velocity. It does not affect the magnitude of the velocity.
One example of this is uniform circular motion in which an object moving with
constant speed in a circle has a (“centripetal”) force acting on it toward the center of
the circle. This force does no work on the object, because (as we saw in Example 7-3)
it is always perpendicular to the object’s displacement di.

moves from point a to point b is

W = JF-dl = jFcostfdf, (7-7)

(7-1,7-3) where dl represents an infinitesimal displacement along the

where 6 is the angle between F and d.

The last expression is called the scalar product of F and d.
In general, the scalar product of any two vectors A and B is
defined as

A +«B = ABcosO (7-2)

where e is the angle between A and B. In rectangular coordi-
nates we can also write

A +B = AXBX + AyBy + AZBZ. (7-4)

The work W done by a variable force F on an object that
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path of the object and e is the angle between dI and F at each
point of the object’s path.

The translational kinetic energy, K, of an object of mass m
moving with speed V is defined to be

K = \mv2 (7-10)
The work-energy principle states that the net work done on an

object by the net resultant force is equal to the change in Kinetic
energy of the object:

Wnet = AK = \m v\- \mv\. (7-11)
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Questions

In what ways is the word “work” as used in everyday
language the same as defined in physics? In what ways is it
different? Give examples of both.

A woman swimming upstream is not moving with respect to
the shore. Is she doing any work? If she stops swimming and
merely floats, is work done on her?

Can a centripetal force ever do work on an object? Explain.
Why is it tiring to push hard against a solid wall even
though you are doing no work?

Does the scalar product of two vectors depend on the
choice of coordinate system?

Can a dot product ever be negative? If yes, under what
conditions?

If A«C =B *C, isitnecessarily true that A = B?

Does the dot product of two vectors have direction as well
as magnitude?

Can the normal force on an object ever do work? Explain.
You have two springs that are identical except that spring 1
is stiffer than spring 2 (k\ > /c2). On which spring is more
work done: (a) if they are stretched using the same force;
(ib) if they are stretched the same distance?

If the speed of a particle triples, by what factor does its
kinetic energy increase?

Problems

1 Work, Constant Force
(1) How much work is done by the gravitational force when
a 280-kg pile driver falls 2.80 m?
(1) How high will a 1.85-kg rock go if thrown straight up
by someone who does 80.0J of work on it? Neglect air
resistance.
(1) A 75.0-kg firefighter climbs a flight of stairs 20.0 m high.
How much work is required?
(1) A hammerhead with a mass of 2.0 kg is allowed to fall
onto a nail from a height of 0.50 m. What is the maximum
amount of work it could do on the nail? Why do people
not just “let it fall” but add their own force to the hammer
as it falls?
(I1) Estimate the work you do to mow a lawn 10m by 20m
with a 50-cm wide mower. Assume you push with a force of
about 15 N.
(1) A lever such as that shown in Fig. 7-20 can be used
to lift objects we might
not otherwise be able to
lift. Show that the ratio
of output force, Fo, to
input force, Fi, is related

to the lengths ~ and
£0 from the pivot by
FO/Fi =li/lo. Ignore

friction and the mass of
the lever, and assume the
work output equals work
input.

FIGURE 7-20
A lever. Problem 6.

12.

13.

14.

15.

10.

11.

12.

In Example 7-10, it was stated that the block separates
from the compressed spring when the spring reached its
equilibrium length (x = 0). Explain why separation
doesn’t take place before (or after) this point.
Two bullets are fired at the same time with the same Kinetic
energy. If one bullet has twice the mass of the other, which
has the greater speed and by what factor? Which can do the
most work?
Does the net work done on a particle depend on the choice
of reference frame? How does this affect the work-energy
principle?
A hand exerts a constant horizontal force on a block that is free
to slide on a frictionless surface (Fig. 7-19). The block starts
from rest at point A, and by the time it has traveled a distance d
to point B it is traveling with speed vB. When the block has
traveled another distance d to point C, will its
speed be greater than, less than, or equal to
2vB? Explain your reasoning.

FIGURE 7-19
Question 15.

. (I1) What is the minimum work needed to push a 950-kg car

310 m up along a 9.0° incline? Ignore friction.

. (I1) Eight books, each 4.0 cm thick with mass 1.8 kg, lie flat

on a table. How much work is required to stack them one
on top of another?

. (I1) A box of mass 6.0 kg is accelerated from rest by a force

across a floor at a rate of 2.0m/s2 for 7.0s. Find the net
work done on the box.

(1) (a) What magnitude force is required to give a
helicopter of mass M an acceleration of 0.10g upward?
(b) What work is done by this force as the helicopter moves
a distance h upward?

(1) A 380-kg piano slides 3.9m down a 27° incline and is
kept from accelerating by a man who is pushing back on it
parallel to the incline (Fig. 7-21). Determine: (a) the force
exerted by the man, (b) the

work done by the man on the

piano, (c) the work done by

the force of gravity, and

(d) the net work done on

the piano. Ignore friction.

FIGURE 7-21
Problem 11.

(1) A gondola can carry 20 skiers, with a total mass of up to
2250kg. The gondola ascends at a constant speed from the base
of a mountain, at 2150m, to the summit at 3345m. (a) How
much work does the motor do in moving a full gondola up the
mountain? (b) How much work does 