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Preface
I was motivated from the beginning to write a textbook different from others that 
present physics as a sequence of facts, like a Sears catalog: “here are the facts and 
you better learn them.” Instead of that approach in which topics are begun 
formally and dogmatically, I have sought to begin each topic with concrete 
observations and experiences students can relate to: start with specifics and only then 
go to the great generalizations and the more formal aspects of a topic, showing why 
we believe what we believe. This approach reflects how science is actually practiced.

Why a Fourth Edition?
Two recent trends in physics texbooks are disturbing: (1) their revision cycles 
have become short—they are being revised every 3 or 4 years; (2) the books are 
getting larger, some over 1500 pages. I don’t see how either trend can be of 
benefit to students. My response: (1) It has been 8 years since the previous 
edition of this book. (2) This book makes use of physics education research, 
although it avoids the detail a Professor may need to say in class but in a book shuts 
down the reader. And this book still remains among the shortest.

This new edition introduces some important new pedagogic tools. It contains 
new physics (such as in cosmology) and many new appealing applications (list on 
previous page). Pages and page breaks have been carefully formatted to make the 
physics easier to follow: no turning a page in the middle of a derivation or Example. 
Great efforts were made to make the book attractive so students will want to read it. 

Some of the new features are listed below.

What's New
Chapter-Opening Questions: Each Chapter begins with a multiple-choice question, 
whose responses include common misconceptions. Students are asked to answer 
before starting the Chapter, to get them involved in the material and to get any 
preconceived notions out on the table. The issues reappear later in the Chapter, 
usually as Exercises, after the material has been covered. The Chapter-Opening 
Questions also show students the power and usefulness of Physics.
APPROACH paragraph in worked-out numerical Examples . A  short introductory 
paragraph before the Solution, outlining an approach and the steps we can take to 
get started. Brief NOTES after the Solution may remark on the Solution, may give 
an alternate approach, or mention an application.
Step-by-Step Examples: After many Problem Solving Strategies (more than 20 in 
the book), the next Example is done step-by-step following precisely the steps just 
seen.
Exercises within the text, after an Example or derivation, give students a chance to 
see if they have understood enough to answer a simple question or do a simple 
calculation. Many are multiple choice.
Greater clarity : No topic, no paragraph in this book was overlooked in the search 
to improve the clarity and conciseness of the presentation. Phrases and sentences 
that may slow down the principal argument have been eliminated: keep to the 
essentials at first, give the elaborations later.

F, y, B Vector notation, arrows: The symbols for vector quantities in the text and Figures 
now have a tiny arrow over them, so they are similar to what we write by hand. 
Cosmological Revolution: With generous help from top experts in the field, 
readers have the latest results.
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Page layout: more than in the previous edition, serious attention has been paid to 
how each page is formatted. Examples and all important derivations and 
arguments are on facing pages. Students then don’t have to turn back and forth. 
Throughout, readers see, on two facing pages, an important slice of physics.
New Applications'. LCDs, digital cameras and electronic sensors (CCD, CMOS), 
electric hazards, GFCIs, photocopiers, inkjet and laser printers, metal detectors, 
underwater vision, curve balls, airplane wings, DNA, how we actually see images. 
(Turn back a page to see a longer list.)
Examples modified: more math steps are spelled out, and many new Examples 
added. About 10% of all Examples are Estimation Examples.
This Book is Shorter than other complete full-service books at this level. Shorter 
explanations are easier to understand and more likely to be read.

Content and Organizational Changes
• Rotational Motion: Chapters 10 and 11 have been reorganized. All of angular 

momentum is now in Chapter 11.
• First law of thermodynamics, in Chapter 19, has been rewritten and extended. 

The full form is given: AK  + A U + A Eint = Q — W, where internal energy is 
Ete, and U is potential energy; the form Q — W  is kept so that dW = P dV.

• Kinematics and Dynamics of Circular Motion are now treated together in 
Chapter 5.

• Work and Energy, Chapters 7 and 8, have been carefully revised.
• Work done by friction is discussed now with energy conservation (energy 

terms due to friction).
• Chapters on Inductance and AC Circuits have been combined into one: 

Chapter 30.
• Graphical Analysis and Numerical Integration is a new optional Section 2-9. 

Problems requiring a computer or graphing calculator are found at the end 
of most Chapters.

• Length of an object is a script £ rather than normal /, which looks like 1 or I 
(moment of inertia, current), as in F = IIB. Capital L  is for angular 
momentum, latent heat, inductance, dimensions of length [L\.

• Newton’s law of gravitation remains in Chapter 6. Why? Because the 1/r2 
law is too important to relegate to a late chapter that might not be covered 
at all late in the semester; furthermore, it is one of the basic forces in nature. 
In Chapter 8 we can treat real gravitational potential energy and have a fine 
instance of using U = -  JF • di.

• New Appendices include the differential form of Maxwell’s equations and 
more on dimensional analysis.

• Problem Solving Strategies are found on pages 30, 58, 64, 96,102,125,166, 
198,229,261,314,504,551,571, 685,716,740,763,849, 871, and 913.

Organization
Some instructors may find that this book contains more material than can be 
covered in their courses. The text offers great flexibility. Sections marked with a 
star * are considered optional. These contain slightly more advanced physics 
material, or material not usually covered in typical courses and/or interesting 
applications; they contain no material needed in later Chapters (except perhaps in 
later optional Sections). For a brief course, all optional material could be dropped 
as well as major parts of Chapters 1, 13, 16, 26, 30, and 35, and selected parts of 
Chapters 9,12,19,20, 33, and the modern physics Chapters. Topics not covered in 
class can be a valuable resource for later study by students. Indeed, this text can 
serve as a useful reference for years because of its wide range of coverage.

Versions of this Book
Complete version: 44 Chapters 
including 9 Chapters of modern 
physics.

Classic version: 37 Chapters 
including one each on relativity 
and quantum theory.

3 Volume version: Available 
separately or packaged together 
(Vols. 1 & 2 or all 3 Volumes):

Volume 1: Chapters 1-20 on 
mechanics, including fluids, 
oscillations, waves, plus heat 
and thermodynamics.

Volume 2: Chapters 21-35 on 
electricity and magnetism, plus 
light and optics.

Volume 3: Chapters 36-44 on 
modern physics: relativity, 
quantum theory, atomic physics, 
condensed matter, nuclear 
physics, elementary particles, 
cosmology and astrophysics.
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them immediate and up-to-date assessment of their progress, and 
shows where they need to practice more. MasteringPhysics 
provides instructors with a fast and effective way to assign tried- 
and-tested online homework assignments that comprise a range of 
problem types. The powerful post-assignment diagnostics allow 
instructors to assess the progress of their class as a whole as well 
as individual students, and quickly identify areas of difficulty.

WebAssign (www.webassign.com)
CAPA and LON-CAPA (www.lon-capa.org)

Student Supplements (partial list)
Student Study Guide & Selected Solutions Manual (Volume I:
0-13-227324-1, Volumes U & III: 0-13-227325-X) by Frank Wolfs 

Student Pocket Companion (0-13-227326-8) by Biman Das 

Tutorials in Introductory Physics (0-13-097069-7)
by Lillian C. McDermott, Peter S. Schaffer, and the Physics 
Education Group at the University of Washington 

Physlet® Physics (0-13-101969-4) 
by Wolfgang Christian and Mario Belloni 
Ranking Task Exercises in Physics, Student Edition (0-13-144851-X) 
by Thomas L. O’Kuma, David P. Maloney, and Curtis J. Hieggelke 

E&M TIPERs: Electricity & Magnetism Tasks Inspired by Physics 
Education Research (0-13-185499-2) by Curtis J. Hieggelke, 
David P. Maloney, Stephen E. Kanim, and Thomas L. O’Kuma 

Mathematics for Physics with Calculus (0-13-191336-0) 
by Biman Das
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To Students
HOW TO STUDY
1. Read the Chapter. Learn new vocabulary and notation. Try to respond to 

questions and exercises as they occur.
2. Attend all class meetings. Listen. Take notes, especially about aspects you do 

not remember seeing in the book. Ask questions (everyone else wants to, but 
maybe you will have the courage). You will get more out of class if you read 
the Chapter first.

3. Read the Chapter again, paying attention to details. Follow derivations and 
worked-out Examples. Absorb their logic. Answer Exercises and as many of 
the end of Chapter Questions as you can.

4. Solve 10 to 20 end of Chapter Problems (or more), especially those assigned. 
In doing Problems you find out what you learned and what you didn’t. Discuss 
them with other students. Problem solving is one of the great learning tools. 
Don’t just look for a formula—it won’t cut it.

NOTES ON THE FORMAT AND PROBLEM SOLVING
1. Sections marked with a star (*) are considered optional. They can be omitted 

without interrupting the main flow of topics. No later material depends on 
them except possibly later starred Sections. They may be fun to read, though.

2. The customary conventions are used: symbols for quantities (such as m for 
mass) are italicized, whereas units (such as m for meter) are not italicized. 
Symbols for vectors are shown in boldface with a small arrow above: F.

3. Few equations are valid in all situations. Where practical, the limitations of 
important equations are stated in square brackets next to the equation. The 
equations that represent the great laws of physics are displayed with a tan 
background, as are a few other indispensable equations.

4. At the end of each Chapter is a set of Problems which are ranked as Level I, II, or 
III, according to estimated difficulty. Level I Problems are easiest, Level II are 
standard Problems, and Level III are “challenge problems.” These ranked 
Problems are arranged by Section, but Problems for a given Section may depend 
on earlier material too. There follows a group of General Problems, which are not 
arranged by Section nor ranked as to difficulty. Problems that relate to optional 
Sections are starred (*). Most Chapters have 1 or 2 Computer/Numerical 
Problems at the end, requiring a computer or graphing calculator. Answers to 
odd-numbered Problems are given at the end of the book.

5. Being able to solve Problems is a crucial part of learning physics, and provides 
a powerful means for understanding the concepts and principles. This book 
contains many aids to problem solving: (a) worked-out Examples and their 
solutions in the text, which should be studied as an integral part of the text;
(b) some of the worked-out Examples are Estimation Examples, which show 
how rough or approximate results can be obtained even if the given data are 
sparse (see Section 1-6); (c) special Problem Solving Strategies placed 
throughout the text to suggest a step-by-step approach to problem solving 
for a particular topic—but remember that the basics remain the same; 
most of these “Strategies” are followed by an Example that is solved by 
explicitly following the suggested steps; (d) special problem-solving Sections; 
(e) “Problem Solving” marginal notes which refer to hints within the text for 
solving Problems; (f) Exercises within the text that you should work out imme­
diately, and then check your response against the answer given at the bottom of 
the last page of that Chapter; (g) the Problems themselves at the end of each 
Chapter (point 4 above).

6. Conceptual Examples pose a question which hopefully starts you to think and 
come up with a response. Give yourself a little time to come up with your own 
response before reading the Response given.

7. Math review, plus some additional topics, are found in Appendices. Useful data, 
conversion factors, and math formulas are found inside the front and back covers.
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Image of the Earth from a NASA satellite. The sky 
appears black from out in space because 

there are so few molecules to 
reflect light (Why the sky 

appears blue to us on 
Earth has to do with 

scattering of light by 
molecules of the 

atmosphere, as

• * 4 Chapter 35.) 
Note the 
storm off 
the coast 
of Mexico.

Introduction, 
Measurement, Estimating
CHAPTER-OPENING QUESTION —Guess now!
Suppose you wanted to actually measure the radius of the Earth, at least roughly, 
rather than taking other people’s word for what it is. Which response below 
describes the best approach?

(a) Give up; it is impossible using ordinary means.
(b) Use an extremely long measuring tape.
(c) It is only possible by flying high enough to see the actual curvature of the Earth.
(d) Use a standard measuring tape, a step ladder, and a large smooth lake.
(e) Use a laser and a mirror on the Moon or on a satellite.

\We start each Chapter with a Question, like the one above. Try to answer it right away. Don’t worry 
about getting the right answer now—the idea is to get your preconceived notions out on the table. If they 
are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get another 
chance at the Question later in the Chapter when the appropriate material has been covered. These 
Chapter-Opening Questions will also help you to see the power and usefulness of physics. ]

CONTENTS
1-1 The Nature of Science
1-2 Models, Theories, and Laws
1-3 Measurement and Uncertainty; 

Significant Figures
1 -4  Units, Standards, and 

the SI System
1-5 Converting Units
1-6 Order of Magnitude:

Rapid Estimating
:1-7  Dimensions and Dimensional 

Analysis

1



(b)

FIGURE 1-1 (a) This Roman 
aqueduct was built 2000 years ago 
and still stands, (b) The Hartford 
Civic Center collapsed in 1978, just 
two years after it was built.

P hysics is the most basic of the sciences. It deals with the behavior and 
structure of matter. The field of physics is usually divided into classical physics 
which includes motion, fluids, heat, sound, light, electricity and magnetism; 
and modem physics which includes the topics of relativity, atomic structure, 

condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics. 
We will cover all these topics in this book, beginning with motion (or mechanics, as it 
is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is crucial for anyone making a career in science 
or technology. Engineers, for example, must know how to calculate the forces within 
a structure to design it so that it remains standing (Fig. 1-la). Indeed, in Chapter 12 
we will see a worked-out Example of how a simple physics calculation—or even 
intuition based on understanding the physics of forces—would have saved 
hundreds of lives (Fig. 1-lb). We will see many examples in this book of how 
physics is useful in many fields, and in everyday life.

1—1 The Nature of Science
The principal aim of all sciences, including physics, is generally considered to be 
the search for order in our observations of the world around us. Many people 
think that science is a mechanical process of collecting facts and devising theories. 
But it is not so simple. Science is a creative activity that in many respects resem­
bles other creative activities of the human mind.

One important aspect of science is observation of events, which includes the 
design and carrying out of experiments. But observation and experiment require 
imagination, for scientists can never include everything in a description of what 
they observe. Hence, scientists must make judgments about what is relevant in 
their observations and experiments.

Consider, for example, how two great minds, Aristotle (384-322 b .c .) and 
Galileo (1564-1642), interpreted motion along a horizontal surface. Aristotle 
noted that objects given an initial push along the ground (or on a tabletop) always 
slow down and stop. Consequently, Aristotle argued that the natural state of an 
object is to be at rest. Galileo, in his reexamination of horizontal motion in the 
1600s, imagined that if friction could be eliminated, an object given an initial 
push along a horizontal surface would continue to move indefinitely without 
stopping. He concluded that for an object to be in motion was just as natural as for 
it to be at rest. By inventing a new approach, Galileo founded our modern view of 
motion (Chapters 2,3, and 4), and he did so with a leap of the imagination. Galileo 
made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of the 
scientific process. The other side is the invention or creation of theories to explain 
and order the observations. Theories are never derived directly from observations. 
Observations may help inspire a theory, and theories are accepted or rejected based 
on the results of observation and experiment.

The great theories of science may be compared, as creative achievements, with 
great works of art or literature. But how does science differ from these other 
creative activities? One important difference is that science requires testing of its 
ideas or theories to see if their predictions are borne out by experiment.

Although the testing of theories distinguishes science from other creative 
fields, it should not be assumed that a theory is “proved” by testing. First of all, no 
measuring instrument is perfect, so exact confirmation is not possible. Further­
more, it is not possible to test a theory in every single possible circumstance. Hence 
a theory cannot be absolutely verified. Indeed, the history of science tells us that 
long-held theories can be replaced by new ones.

1 -2  Models, Theories, and Laws
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When scientists are trying to understand a particular set of phenomena, they often 
make use of a model. A model, in the scientist’s sense, is a kind of analogy or 
mental image of the phenomena in terms of something we are familiar with. One



example is the wave model of light. We cannot see waves of light as we can water 
waves. But it is valuable to think of light as made up of waves because experiments 
indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual picture— 
something to hold on to—when we cannot see what actually is happening. Models 
often give us a deeper understanding: the analogy to a known system (for instance, 
water waves in the above example) can suggest new experiments to perform and can 
provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. Usually 
a model is relatively simple and provides a structural similarity to the phenomena 
being studied. A theory is broader, more detailed, and can give quantitatively testable 
predictions, often with great precision.

It is important, however, not to confuse a model or a theory with the real 
system or the phenomena themselves.

Scientists give the title law to certain concise but general statements about 
how nature behaves (that energy is conserved, for example). Sometimes the state­
ment takes the form of a relationship or equation between quantities (such as 
Newton’s second law, F = ma).

To be called a law, a statement must be found experimentally valid over a wide 
range of observed phenomena. For less general statements, the term principle is 
often used (such as Archimedes’ principle).

Scientific laws are different from political laws in that the latter are 
prescriptive: they tell us how we ought to behave. Scientific laws are descriptive: 
they do not say how nature should behave, but rather are meant to describe how 
nature does behave. As with theories, laws cannot be tested in the infinite variety 
of cases possible. So we cannot be sure that any law is absolutely true. We use the 
term “law” when its validity has been tested over a wide range of cases, and when 
any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were 
true. But they are obliged to keep an open mind in case new information should 
alter the validity of any given law or theory.

1 -3  Measurement and Uncertainty; 
Significant Figures

In the quest to understand the world around us, scientists seek to find relationships 
among physical quantities that can be measured.

Uncertainty
Reliable measurements are an important part of physics. But no measurement is 
absolutely precise. There is an uncertainty associated with every measurement. Among 
the most important sources of uncertainty, other than blunders, are the limited accuracy 
of every measuring instrument and the inability to read an instrument beyond some 
fraction of the smallest division shown. For example, if you were to use a centimeter 
ruler to measure the width of a board (Fig. 1-2), the result could be claimed to be 
precise to about 0.1 cm (1 mm), the smallest division on the ruler, although half of this 
value might be a valid claim as well. The reason is that it is difficult for the observer to 
estimate (or interpolate) between the smallest divisions. Furthermore, the ruler itself 
may not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the estimated 
uncertainty in the measurement. For example, the width of a board might be 
written as 8.8 ± 0.1 cm. The ± 0.1 cm (“plus or minus 0.1 cm”) represents the 
estimated uncertainty in the measurement, so that the actual width most likely lies 
between 8.7 and 8.9 cm. The percent uncertainty is the ratio of the uncertainty 
to the measured value, multiplied by 100. For example, if the measurement is 8.8 
and the uncertainty about 0.1 cm, the percent uncertainty is

FIGURE 1-2 Measuring the width 
of a board with a centimeter ruler. 
The uncertainty is about ± 1 mm.

1%,
where ~ means “is approximately equal to.’ SECTION 1 -3 3



(a) (b)

FIGURE 1 -3  These two calculators 
show the wrong number of significant 
figures. In (a), 2.0 was divided by 3.0. 
The correct final result would be 0.67. 
In (b), 2.5 was multiplied by 3.2. The 
correct result is 8.0.

p P R O B L E M  S O L V I N G
Significant figure rule: 

N um ber o f  significant figures in final 
result should be same as the least 

significant input value

A  CAUTI ON
Calculators err with significant figures

I P R OB L E I V I  S O L V I N G
Report only the proper number o f  

significant figures in the final result.
Keep extra digits during 

the calculation

FIGURE 1 -4  Example 1-1.
A protractor used to measure an angle.

Often the uncertainty in a measured value is not specified explicitly. In such cases, 
the uncertainty is generally assumed to be one or a few units in the last digit specified. 
For example, if a length is given as 8.8 cm, the uncertainty is assumed to be about
0.1 cm or 0.2 cm. It is important in this case that you do not write 8.80 cm, for this 
implies an uncertainty on the order of 0.01 cm; it assumes that the length is probably 
between 8.79 cm and 8.81 cm, when actually you believe it is between 8.7 and 8.9 cm.

Significant Figures
The number of reliably known digits in a number is called the number of 
significant figures. Thus there are four significant figures in the number 23.21 cm 
and two in the number 0.062 cm (the zeros in the latter are merely place holders 
that show where the decimal point goes). The number of significant figures may 
not always be clear. Take, for example, the number 80. Are there one or two signif­
icant figures? We need words here: If we say it is roughly 80 km between two 
cities, there is only one significant figure (the 8) since the zero is merely a place 
holder. If there is no suggestion that the 80 is a rough approximation, then we can 
often assume (as we will in this book) that it is 80 km within an accuracy of about 
1 or 2 km, and then the 80 has two significant figures. If it is precisely 80 km, to 
within + 0.1 km, then we write 80.0 km (three significant figures).

When making measurements, or when doing calculations, you should avoid the 
temptation to keep more digits in the final answer than is justified. For example, to 
calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of multiplication would 
be 76.84 cm2. But this answer is clearly not accurate to 0.01 cm2, since (using the 
outer limits of the assumed uncertainty for each measurement) the result could be 
between 11.2 cm X 6.7 cm = 75.04 cm2 and 11.4 cm X 6.9 cm = 78.66 cm2. At best, 
we can quote the answer as 77 cm2, which implies an uncertainty of about 1 or 2 cm2. 
The other two digits (in the number 76.84 cm2) must be dropped because they are not 
significant. As a rough general rule (i.e., in the absence of a detailed consideration 
of uncertainties), we can say that the final result o f a multiplication or division should 
have only as many digits as the number with the least number o f significant figures 
used in the calculation. In our example, 6.8 cm has the least number of significant 
figures, namely two. Thus the result 76.84 cm2 needs to be rounded off to 77 cm2.

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm2;
(b) 14.63 cm2; (c) 14.6 cm2; (d) 15 cm2.

When adding or subtracting numbers, the final result is no more precise than 
the least precise number used. For example, the result of subtracting 0.57 from 3.6 
is 3.0 (and not 3.03).

Keep in mind when you use a calculator that all the digits it produces may not 
be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not some 
such thing as 0.666666666. Digits should not be quoted in a result, unless they are 
truly significant figures. However, to obtain the most accurate result, you should 
normally keep one or more extra significant figures throughout a calculation, and 
round o ff only in the final result. (With a calculator, you can keep all its digits in 
intermediate results.) Note also that calculators sometimes give too few significant 
figures. For example, when you multiply 2.5 X 3.2, a calculator may give the 
answer as simply 8. But the answer is accurate to two significant figures, so the proper 
answer is 8.0. See Fig. 1-3.

4 CHAPTER 1

CONCEPTUAL EXAMPLE 1-1 | Significant figures. Using a protractor (Fig. 1-4),
you measure an angle to be 30°. (a) How many significant figures should you quote in 
this measurement? (b) Use a calculator to find the cosine of the angle you measured.
RESPONSE (a) If you look at a protractor, you will see that the precision with 
which you can measure an angle is about one degree (certainly not 0.1°). So you 
can quote two significant figures, namely, 30° (not 30.0°). (b) If you enter cos 30° 
in your calculator, you will get a number like 0.866025403. However, the angle 
you entered is known only to two significant figures, so its cosine is correctly 
given by 0.87; you must round your answer to two significant figures.
NOTE Cosine and other trigonometric functions are reviewed in Appendix A.



| EXERCISE B Do 0.00324 and 0.00056 have the same number of significant figures?

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE C For each of the following numbers, state the number of significant figures 
and the number of decimal places: {a) 1.23; (b) 0.123; (c) 0.0123.

Scientific_Notation
We commonly write numbers in “powers of ten,” or “scientific” notation—for 
instance 36,900 as 3.69 X 104, or 0.0021 as 2.1 X 10-3. One advantage of scientific 
notation is that it allows the number of significant figures to be clearly expressed. 
For example, it is not clear whether 36,900 has three, four, or five significant 
figures. With powers of ten notation the ambiguity can be avoided: if the number is 
known to three significant figures, we write 3.69 X 104, but if it is known to four, 
we write 3.690 X 104.

I EXERCISE D Write each of the following in scientific notation and state the number of 
| significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures
The significant figures rule is only approximate, and in some cases may underestimate 
the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92:

97
— = 1.05 «  1.1.92

Both 97 and 92 have two significant figures, so the rule says to give the answer 
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of + 1 if no other 
uncertainty is stated. Now 92 + 1 and 97 + 1 both imply an uncertainty of 
about 1% (1/92 «  0.01 = 1%). But the final result to two significant figures 
is 1.1, with an implied uncertainty of + 0.1, which is an uncertainty of
0.1/1.1 « 0.1 ~ 10%. In this case it is better to give the answer as 1.05 (which is 
three significant figures). Why? Because 1.05 implies an uncertainty of + 0.01 
which is 0.01/1.05 « 0.01 ~ 1%, just like the uncertainty in the original 
numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncer­
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations
Much of physics involves approximations, often because we do not have the 
means to solve a problem precisely. For example, we may choose to ignore air 
resistance or friction in doing a Problem even though they are present in the real 
world, and then our calculation is only an approximation. In doing Problems, we 
should be aware of what approximations we are making, and be aware that the 
precision of our answer may not be nearly as good as the number of significant 
figures given in the result.

Accuracy versus Precision
There is a technical difference between “precision” and “accuracy.” Predsion in a strict 
sense refers to the repeatability of the measurement using a given instrument. For 
example, if you measure the width of a board many times, getting results like 8.81 cm, 
8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks as best as possible 
each time), you could say the measurements give a precision a bit better than 0.1 cm. 
Accuracy refers to how close a measurement is to the true value. For example, if the 
ruler shown in Fig. 1-2 was manufactured with a 2% error, the accuracy of its 
measurement of the board’s width (about 8.8 cm) would be about 2% of 8.8 cm or 
about + 0.2 cm. Estimated uncertainty is meant to take both accuracy and precision 
into account.

SECTION 1 -3  Measurement, Uncertainty; Significant Figures 5



TABLE 1-1 Some Typical 
Lengths or Distances 
(order of magnitude)

Length 
(or Distance)

Meters
(approximate)

Neutron or proton 
(diameter)

Atom
(diameter)

Virus [see Fig. l-5 a ]
Sheet of paper 

(thickness)
Finger width
Football field length
Height of Mt. Everest 

[see Fig. l-5 b ]
Earth diameter
Earth to Sun
Earth to nearest star
Earth to nearest galaxy
Earth to farthest 

galaxy visible

10-15

-7

10-4
10“2
102

104
107
1011
1016
1022

1026

FIGURE 1 -5  Some lengths:
(a) viruses (about 10-7 m long) 
attacking a cell; (b) Mt. Everest’s 
height is on the order of 104 m 
(8850 m, to be precise).

(a)

1—4  Units, Standards, and the SI System
The measurement of any quantity is made relative to a particular standard or unit, 
and this unit must be specified along with the numerical value of the quantity. For 
example, we can measure length in British units such as inches, feet, or miles, or in 
the metric system in centimeters, meters, or kilometers. To specify that the length 
of a particular object is 18.6 is meaningless. The unit must be given; for clearly, 
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we 
need to define a standard which defines exactly how long one meter or one second 
is. It is important that standards be chosen that are readily reproducible so that 
anyone needing to make a very accurate measurement can refer to the standard in 
the laboratory.

Length
The first truly international standard was the meter (abbreviated m) established as 
the standard of length by the French Academy of Sciences in the 1790s. The stan­
dard meter was originally chosen to be one ten-millionth of the distance from the 
Earth’s equator to either pole,f and a platinum rod to represent this length was 
made. (One meter is, very roughly, the distance from the tip of your nose to the tip 
of your finger, with arm and hand stretched out to the side.) In 1889, the meter was 
defined more precisely as the distance between two finely engraved marks on a 
particular bar of platinum-iridium alloy. In 1960, to provide greater precision and 
reproducibility, the meter was redefined as 1,650,763.73 wavelengths of a particular 
orange light emitted by the gas krypton-86. In 1983 the meter was again redefined, 
this time in terms of the speed of light (whose best measured value in terms of the 
older definition of the meter was 299,792,458 m/s, with an uncertainty of lm /s). 
The new definition reads: “The meter is the length of path traveled by light in 
vacuum during a time interval of 1/299,792,458 of a second.” *

British units of length (inch, foot, mile) are now defined in terms of the 
meter. The inch (in.) is defined as precisely 2.54 centimeters (cm; 1 cm = 0.01 m). 
Other conversion factors are given in the Table on the inside of the front cover 
of this book. Table 1-1 presents some typical lengths, from very small to very 
large, rounded off to the nearest power of ten. See also Fig. 1-5. [Note that the 
abbreviation for inches (in.) is the only one with a period, to distinguish it from 
the word “in”.]

Time
The standard unit of time is the second (s). For many years, the second was defined as 
1/86,400 of a mean solar day (24h/day X 60min/h X 60s/min = 86,400 s/day). 
The standard second is now defined more precisely in terms of the frequency of radi­
ation emitted by cesium atoms when they pass between two particular states. 
[Specifically, one second is defined as the time required for 9,192,631,770 periods of 
this radiation.] There are, by definition, 60 s in one minute (min) and 60 minutes in 
one hour (h). Table 1-2 presents a range of measured time intervals, rounded off to 
the nearest power of ten.

Mass
The standard unit of mass is the kilogram (kg). The standard mass is a particular 
platinum-iridium cylinder, kept at the International Bureau of Weights and 
Measures near Paris, France, whose mass is defined as exactly 1 kg. A range of 
masses is presented in Table 1-3. [For practical purposes, 1 kg weighs about 
2.2 pounds on Earth.]

(b)

tModern measurements of the Earth’s circumference reveal that the intended length is off by about 
one-fiftieth of 1%. Not bad!
*The new definition of the meter has the effect of giving the speed of light the exact value of 
299,792,458 m/s.

6 CHAPTER 1 Introduction, Measurement, Estimating



TABLE 1-2 Some Typical Time Intervals

Time Interval Seconds (approximate)

Lifetime of very unstable subatomic particle
Lifetime of radioactive elements
Lifetime of muon
Time between human heartbeats
One day
One year
Human life span
Length of recorded history
Humans on Earth
Life on Earth
A ge of Universe

10° 

105 
3 X 107 
2 X 109 

1011 
1014 
1017 
1018

10-23 s
10~22 s to 1028 s 
1(T6 s

s (=  1 s) 
s

TABLE 1-3 Some Masses

Object Kilograms (approximate)

Electron 1(T30 kg
Proton, neutron 10-27 kg
D N A  molecule 1(T17 kg
Bacterium 1(T15 kg
Mosquito 1(T5 kg
Plum 10"1 kg
Human 102 kg
Ship 108 kg
Earth 6 X 1024 kg
Sun 2 X 1030 kg
Galaxy 1041 kg

When dealing with atoms and molecules, we usually use the unified atomic 
mass unit (u). In terms of the kilogram, 

l u  = 1.6605 X 10-27 kg.
The definitions of other standard units for other quantities will be given as we 

encounter them in later Chapters. (Precise values of this and other numbers are 
given inside the front cover.)

Unit Prefixes
In the metric system, the larger and smaller units are defined in multiples of 10 from 
the standard unit, and this makes calculation particularly easy. Thus 1 kilometer (km) 
is 1000 m, 1 centimeter is ifem, 1 millimeter (mm) is or ^cm , and so on.
The prefixes “centi-,” “kilo-,” and others are listed in Table 1-4 and can be applied 
not only to units of length but to units of volume, mass, or any other metric unit. 
For example, a centiliter (cL) is ^  liter (L)> and a kilogram (kg) is 1000 grams (g).

Systems of Units
When dealing with the laws and equations of physics it is very important to use a 
consistent set of units. Several systems of units have been in use over the years. 
Today the most important is the Systeme International (French for International 
System), which is abbreviated SI. In SI units, the standard of length is the meter, 
the standard for time is the second, and the standard for mass is the kilogram. This 
system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and 
second are the standard units of length, mass, and time, as abbreviated in the title. 
The British engineering system has as its standards the foot for length, the pound 
for force, and the second for time.

We use SI units almost exclusively in this book.

Base versus Derived Quantities
Physical quantities can be divided into two categories: base quantities and derived
quantities. The corresponding units for these quantities are called base units and
derived units. A base quantity must be defined in terms of a standard. Scientists, in the
interest of simplicity, want the smallest number of base quantities possible consistent 
with a full description of the physical world. This number turns out to be seven, and
those used in the SI are given in Table 1-5. All other quantities can be defined in terms
of these seven base quantities/ and hence are referred to as derived quantities. An
example of a derived quantity is speed, which is defined as distance divided by the time 
it takes to travel that distance. A Table inside the front cover lists many derived
quantities and their units in terms of base units. To define any quantity, whether base or
derived, we can specify a rule or procedure, and this is called an operational definition.

trThe only exceptions are for angle (radians—see Chapter 8) and solid angle (steradian). No general 
agreement has been reached as to whether these are base or derived quantities.

TABLE 1-4 Metric (SI) Prefixes

Prefix Abbreviation Value

yotta Y 1024
zetta Z 1021
exa E 1018
peta P 1015
tera T 1012

giga G 109
mega M 106
kilo k 103
hecto h 102
deka da 101
deci d KT1
centi c 1(T2
milli m 1(T3
microf V 1(T6
nano n KT9
pico P 1(T12
femto f 1(T15
atto a KT18
zepto z 1(T21
yocto y KT24

f ju, is the Greek letter “mu.”

TABLE 1-5
SI Base Quantities and Units

Quantity
Unit

Unit Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric

current ampere A
Temperature kelvin K
Amount 

of substance mole mol
Luminous

intensity candela cd
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1—5 Converting Units

0 P H Y S I C S  A P P L I E D
The world’s tallest peaks

FIGURE 1 - 6  The w orld’s second  
highest peak, K2, w hose summit is 
considered the m ost difficult o f the 
“8000-ers.” K2 is seen here from  
the north (China).

TABLE 1-6 
The 8000-m Peaks

Peak H eight (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586

Lhotse 8516
M akalu 8462

Cho Oyu 8201
Dhaulagiri 8167
M anaslu 8156
N anga Parbat 8125

Annapurna 8091
Gasherbrum I 8068

Broad Peak 8047

Gasherbrum II 8035
Shisha Pangma 8013

Any quantity we measure, such as a length, a speed, or an electric current, consists 
of a number and a unit. Often we are given a quantity in one set of units, but we 
want it expressed in another set of units. For example, suppose we measure that a 
table is 21.5 inches wide, and we want to express this in centimeters. We must use a 
conversion factor, which in this case is (by definition) exactly

1 in. = 2.54 cm

or, written another way,

1 = 2.54 cm/in.

Since multiplying by one does not change anything, the width of our table, in cm, is

21.5 inches = (21.5 X ^ 2 .5 4 ^ ^  = 54.6 cm.

Note how the units (inches in this case) cancelled out. A Table containing many unit 
conversions is found inside the front cover of this book. Let’s consider some Examples.

EXAMPLE 1 -2 The 8000-m peaks. The fourteen tallest peaks in the world 
(Fig. 1-6 and Table 1-6) are referred to as “eight-thousanders,” meaning their 
summits are over 8000 m above sea level. What is the elevation, in feet, of an 
elevation of 8000 m?

APPROACH We need simply to convert meters to feet, and we can start with the 
conversion factor 1 in. = 2.54 cm, which is exact. That is, 1 in. = 2.5400 cm to 
any number of significant figures, because it is defined to be.
SOLUTION One foot is 12 in., so we can write

cm
1 ft = (1 2 is .)(2 .5 4 — J = 30.48 cm = 0.3048 m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this 
equation to find the number of feet in 1 meter:

lm  = a U s  = 3'28084ft

We multiply this equation by 8000.0 (to have five significant figures):

8000.0m = (8000.0 la .) ^ 3 .2 8 0 8 4 ;^  = 26,247ft.

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the conversion all in one line:

a n n u m  -  -  26O T «.

The key is to multiply conversion factors, each equal to one (=  1.0000), and to 
make sure the units cancel.

EXERCISE E There are only 14 eight-thousand-meter peaks in the world (see Exam ple 1 -2 ),  
and their names and elevations are given in Table 1 -6 . They are all in the H imalaya m oun­
tain range in India, Pakistan, Tibet, and China. D eterm ine the elevation of the w orld’s 
three highest peaks in feet.

8  CHAPTER 1 Introduction, Measurement, Estimating



EXAMPLE 1-3 Apartment area. You have seen a nice apartment whose 
floor area is 880 square feet (ft2). What is its area in square meters?

APPROACH We use the same conversion factor, 1 in. = 2.54 cm, but this time 
we have to use it twice.
SOLUTION Because lin. = 2.54cm = 0.0254m, then lft2 = (12 in.)2(0.0254 m/in.)2 =
0.0929 m2. So 880 ft2 = (880ft2)(0.0929 m2/ft2) «  82 m2.
NOTE As a rule of thumb, an area given in ft2 is roughly 10 times the number of 
square meters (more precisely, about 10.8 X).

EXAMPLE 1-4 Speeds. Where the posted speed limit is 55 miles per hour 
(mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) in 
kilometers per hour (km/h)?

APPROACH We again use the conversion factor 1 in. = 2.54 cm, and we recall 
that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains 
(60min/h) X (60s/min) = 3600 s/h.
SOLUTION (a) We can write 1 mile as

1 mi = (5280ir)( 2.54
jGirr 1 m
'TRv. / \ 100 jGfTf = 1609 m.

We also know that 1 hour contains 3600 s, so 

'mi.
55—  = h

55
i r

1609 1JTm
~mL J V 3600 s = 25“ , s

where we rounded off to two significant figures. 
(b) Now we use 1 mi = 1609 m = 1.609 km; then

55—  = h
55

'm i.
1.609

km
'm i

_km
-  8 8 - .

NOTE Each conversion factor is equal to one. You can look up most conversion 
factors in the Table inside the front cover.

j P R O B L E M  S O L V I N G
Conversion factors =  1

EXERCISE F Would a driver traveling at 15 m /s in a 35 m i/h  zone be exceeding the speed 
limit?

When changing units, you can avoid making an error in the use of conversion 
factors by checking that units cancel out properly. For example, in our conversion 
of 1 mi to 1609 m in Example 1-4(a), if we had incorrectly used the factor ( n ^ )  
instead of (ujoSn), the centimeter units would not have cancelled out; we would not 
have ended up with meters.

\ P R O B L E M  S O L V I N G
Unit conversion is wrong if  units do  
not cancel

1—6 Order of Magnitude: Rapid Estimating
We are sometimes interested only in an approximate value for a quantity. This 
might be because an accurate calculation would take more time than it is worth 
or would require additional data that are not available. In other cases, we may 
want to make a rough estimate in order to check an accurate calculation made 
on a calculator, to make sure that no blunders were made when the numbers 
were entered. ^

A rough estimate is made by rounding off all numbers to one significant figure \ \ P R O B L E M  S O L V I N G  
and its power of 10, and after the calculation is made, again only one significant H ow  to m ake a rough estimate 
figure is kept. Such an estimate is called an order-of-magnitude estimate and can 
be accurate within a factor of 10, and often better. In fact, the phrase “order of 
magnitude” is sometimes used to refer simply to the power of 10.

SECTION 1 -6  Order of Magnitude: Rapid Estimating 9



10 m

r = 500 in

(b)

FIGURE 1 - 7  Exam ple 1 -5 . (a) H ow  
m uch water is in this lake? (Photo is o f  
one of the R ae Lakes in the Sierra 
N evada o f California.) (b) M odel o f  
the lake as a cylinder. [We could go one  
step further and estim ate the mass or 
weight o f this lake. We will see later 
that water has a density o f 1000 k g /m 3, 
so this lake has a mass o f about 
(I0 3 k g /m 3) ( l0 7 m 3) «  1010 kg, which is 
about 10 billion kg or 10 m illion metric 
tons. (A  m etric ton is 1000 kg, about 
2200 lbs, slightly larger than a British  
ton, 2000 lbs.)]

© - P H Y S I C S  A P P L I E D EXAMPLE 1-5
E stim ating the volum e (or m ass) o f  

a lake; see also Fig. 1 - 7

ESTIMATE I Volume of a lake. Estimate how much water 
there is in a particular lake, Fig. l-7 a , which is roughly circular, about 1 km 
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a 
perfectly flat bottom. We are only estimating here. To estimate the volume, we 
can use a simple model of the lake as a cylinder: we multiply the average depth 
of the lake times its roughly circular surface area, as if the lake were a cylinder 
(Fig. l-7 b ).
SOLUTION The volume V  of a cylinder is the product of its height h times the 
area of its base: V  = hirr2, where r is the radius of the circular base.f The radius r 
is \  km = 500 m, so the volume is approximately

V = hirr2 M (10 m) X (3) X (5 X 102m)2 m 8 X 106m3 «  107m3,

where tt was rounded off to 3. So the volume is on the order of 107m3, ten 
million cubic meters. Because of all the estimates that went into this calculation, 
the order-of-magnitude estimate (l07m3) is probably better to quote than the 
8 X 106m3 figure.
NOTE To express our result in U.S. gallons, we see in the Table on the inside 
front cover that 1 liter = 10-3 m3 «  \  gallon. Hence, the lake contains 
(8 X 106m3)(l gallon/4 X 10_3m3) «  2 X 109 gallons of water.

P R O B L E M  S O L V I N G
Use sym m etry when possib le

EXAMPLE 1 -6 ESTIMATE I Thickness of a
of a page of this book.

page. Estimate the thickness

APPROACH At first you might think that a special measuring device, a micrometer 
(Fig. 1-8), is needed to measure the thickness of one page since an ordinary 
ruler clearly won’t do. But we can use a trick or, to put it in physics terms, make 
use of a symmetry, we can make the reasonable assumption that all the pages of 
this book are equal in thickness.
SOLUTION We can use a ruler to measure hundreds of pages at once. If you 
measure the thickness of the first 500 pages of this book (page 1 to page 500), 
you might get something like 1.5 cm. Note that 500 numbered pages,

fFormulas like this for volume, area, etc., are found inside the back cover of this book.
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counted front and back, is 250 separate sheets of paper. So one page must have 
a thickness of about

1.5 cm
6 X 10-3 cm = 6 X 10“2mm,

250 pages
or less than a tenth of a millimeter (0.1 mm).

EXAMPLE 1-7 ESTIMATE- ! Height by triangulation. Estimate the height 
of the building shown in Fig. 1-9, by “triangulation,” with the help of a bus-stop 
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of 
the pole to be 3 m. You next step away from the pole until the top of the pole is in 
line with the top of the building, Fig. l-9a. You are 5 ft 6 in. tall, so your eyes are 
about 1.5 m above the ground. Your friend is taller, and when she stretches out her 
arms, one hand touches you, and the other touches the pole, so you estimate that 
distance as 2 m (Fig. l-9a). You then pace off the distance from the pole to the 
base of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m. 
SOLUTION Now you draw, to scale, the diagram shown in Fig. l-9b  using these 
measurements. You can measure, right on the diagram, the last side of the 
triangle to be about x = 13 m. Alternatively, you can use similar triangles to 
obtain the height x :

1.5 m 
2m 18 m

so 13 4 m.

Finally you add in your eye height of 1.5 m above the ground to get your final 
result: the building is about 15 m tall.

EXAMPLE 1-8 ESTIMATE I Estimating the radius of Earth. Believe it or 
not, you can estimate the radius of the Earth without having to go into space (see 
the photograph on page 1). If you have ever been on the shore of a large lake, 
you may have noticed that you cannot see the beaches, piers, or rocks at water 
level across the lake on the opposite shore. The lake seems to bulge out between 
you and the opposite shore—a good clue that the Earth is round. Suppose you 
climb a stepladder and discover that when your eyes are 10 ft (3.0 m) above the 
water, you can just see the rocks at water level on the opposite shore. From 
a map, you estimate the distance to the opposite shore as d ~ 6.1 km. Use 
Fig. 1-10 with h = 3.0 m to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras, 
c2 = a2 + b2, where c is the length of the hypotenuse of any right triangle, and a 
and b are the lengths of the other two sides.
SOLUTION For the right triangle of Fig. 1-10, the two sides are the radius of the 
Earth R and the distance d = 6.1 km = 6100 m. The hypotenuse is approxi­
mately the length R + h, where h = 3.0 m. By the Pythagorean theorem,

R2 + d2 «  (R + h)2

«  R2 + 2hR + h2.

We solve algebraically for R , after cancelling R2 on both sides: 

d2 -  h2 (6100 m)2 -  (3.0 m)2
2 h 6.0 m

= 6.2 X 106m = 6200 km.

NOTE Precise measurements give 6380 km. But look at your achievement! With a 
few simple rough measurements and simple geometry, you made a good estimate 
of the Earth’s radius. You did not need to go out in space, nor did you need a very long 
measuring tape. Now you know the answer to the Chapter-Opening Question on p. 1.

FIGURE 1 -8  Example 1-6. Micrometer 
used for measuring small thicknesses.

FIGURE 1 -9  Example 1 -7 .
Diagrams are really useful!

18m

FIGURE 1 -1 0  Example 1 -8 , but 
not to scale. You can see small rocks 
at water level on the opposite shore 
of a lake 6.1 km wide if you stand on 
a stepladder.
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EXAMPLE 1-9 ESTIMATE-!  Total number of heartbeats. Estimate the 
total number of beats a typical human heart makes in a lifetime.
APPROACH A typical resting heart rate is 70beats/min. But during exercise it 
can be a lot higher. A reasonable average might be 80 beats/min.
SOLUTION One year in terms of seconds is (24h)(3600s/h)(365 d) «  3 X 107s. 
If an average person lives 70 years = (70yr)(3 X 107s/yr) « 2 X  109s, then the 
total number of heartbeats would be about

min / \  60 s :) (2  x  109s) «  3 x  109,

or 3 trillion.

Another technique for estimating, this one made famous by Enrico Fermi to 
his physics students, is to estimate the number of piano tuners in a city, say, 
Chicago or San Francisco. To get a rough order-of-magnitude estimate of the 
number of piano tuners today in San Francisco, a city of about 700,000 inhabitants, 
we can proceed by estimating the number of functioning pianos, how often each 

j P R O B L E M  S O L V I N G  piano is tuned, and how many pianos each tuner can tune. To estimate the number 
Estimating h ow  many piano tuners of pianos in San Francisco, we note that certainly not everyone has a piano.

there are in a city a  guess of 1 family in 3 having a piano would correspond to 1 piano per 12 persons, 
assuming an average family of 4 persons. As an order of magnitude, let’s say
1 piano per 10 people. This is certainly more reasonable than 1 per 100 people, or
1 per every person, so let’s proceed with the estimate that 1 person in 10 has a 
piano, or about 70,000 pianos in San Francisco. Now a piano tuner needs an hour 
or two to tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day. 
A piano ought to be tuned every 6 months or a year—let’s say once each year. 
A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune 
about 1000 pianos a year. So San Francisco, with its (very) roughly 70,000 pianos, 
needs about 70 piano tuners. This is, of course, only a rough estimated It tells us 
that there must be many more than 10 piano tuners, and surely not as many as 1000.

1—7 Dimensions and Dimensional Analysis
When we speak of the dimensions of a quantity, we are referring to the type of base 
units or base quantities that make it up. The dimensions of area, for example, are 
always length squared, abbreviated [L2], using square brackets; the units can be 
square meters, square feet, cm2, and so on. Velocity, on the other hand, can be 
measured in units of km/h, m/s, or mi/h, but the dimensions are always a length [L] 
divided by a time [T\: that is, [L/T].

The formula for a quantity may be different in different cases, but the dimen­
sions remain the same. For example, the area of a triangle of base b and height h is 
A  = \bh, whereas the area of a circle of radius r is A  = irr2. The formulas are 
different in the two cases, but the dimensions of area are always [L2].

Dimensions can be used as a help in working out relationships, a procedure 
referred to as dimensional analysis. One useful technique is the use of dimensions 
to check if a relationship is incorrect. Note that we add or subtract quantities only 
if they have the same dimensions (we don’t add centimeters and hours); and 
the quantities on each side of an equals sign must have the same dimensions. (In 
numerical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation v = v0 + I at2, where v is the 
speed of an object after a time t, v0 is the object’s initial speed, and the object 
undergoes an acceleration a. Let’s do a dimensional check to see if this equation

t A check of the San Francisco Yellow Pages (done after this calculation) reveals about 50 listings. Each 
of these listings may employ more than one tuner, but on the other hand, each may also do repairs as 
well as tuning. In any case, our estimate is reasonable.
*Some Sections of this book, such as this one, may be considered optional at the discretion of the 
instructor, and they are marked with an asterisk (*). See the Preface for more details.
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could be correct or is surely incorrect. Note that numerical factors, like the \  here, 
do not affect dimensional checks. We write a dimensional equation as follows, 
remembering that the dimensions of speed are [L/T\ and (as we shall see in 
Chapter 2) the dimensions of acceleration are [L/T2]:

.?]1M+ +
The dimensions are incorrect: on the right side, we have the sum of quantities 
whose dimensions are not the same. Thus we conclude that an error was made in 
the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t 
tell you if it is completely right. For example, a dimensionless numerical factor (such 
as \  or 2 t t ) could be missing.

Dimensional analysis can also be used as a quick check on an equation you are 
not sure about. For example, suppose that you can’t remember whether the equa­
tion for the period of a simple pendulum T  (the time to make one back-and-forth 
swing) of length i  is T = 2tt V tjg  or T = 2tt V g /l, where g is the acceleration 
due to gravity and, like all accelerations, has dimensions [L/T2]. (Do not worry 
about these formulas—the correct one will be derived in Chapter 14; what we are 
concerned about here is a person’s recalling whether it contains £/g or g/L) 
A dimensional check shows that the former (i/g)  is correct:

[r| -  'J\ S k ] -  v W  -  m ,
whereas the latter (g/l) is not:

m  *
'[l / t 2] = n r  = 1

[l ] \I[r-}  [t ]
Note that the constant 2tt has no dimensions and so can’t be checked using dimensions.

Further uses of dimensional analysis are found in Appendix C.

[ 2 5 J 2 I 2 H H H  Planck length. The smallest meaningful measure of length is 
called the “Planck length,” and is defined in terms of three fundamental constants 
in nature, the speed of light c = 3.00 X 108m/s, the gravitational constant 
G = 6.67 X 10-11 m3/kg • s2, and Planck’s constant h = 6.63 X 10_34kg*m2/s. 
The Planck length AP (A is the Greek letter “lambda”) is given by the following 
combination of these three constants:

AP —

Show that the dimensions of AP are length [L], and find the order of magnitude of AP. 
APPROACH We rewrite the above equation in terms of dimensions. The dimen­
sions of c are [L/T], of G are [L3/M T 2], and of h are [ML2/T].
SOLUTION The dimensions of AP are

| L, /” r l - v P I - w

which is a length. The value of the Planck length is

/Gfc (6.67 X 10-11m3A g-s2)(6.63 X 10-34kg-m2/s)
Ap = A/ —r  = a / ------------------- ;-----------:----- ^ ~  4 X 10 "m ,

V C 3 V (3.0 X 10s m/s)3

which is on the order of 10-34 or 10-35 m.
NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest particles 
(quarks, leptons) have sizes on the order of the Planck length, 10_35m. These 
theories also suggest that the “Big Bang,” with which the Universe is believed to 
have begun, started from an initial size on the order of the Planck length.
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Summary
[The Summary that appears at the end of each Chapter in this book 
gives a brief overview of the main ideas of the Chapter. The Summary 
cannot serve to give an understanding of the material, which can be 
accomplished only by a detailed reading of the Chapter.]

Physics, like other sciences, is a creative endeavor. It is not 
simply a collection of facts. Important theories are created with 
the idea of explaining observations. To be accepted, theories are 
tested by comparing their predictions with the results of actual 
experiments. Note that, in general, a theory cannot be “proved” 
in an absolute sense.

Scientists often devise models of physical phenomena. A 
model is a kind of picture or analogy that helps to describe the 
phenomena in terms of something we already know. A theory, 
often developed from a model, is usually deeper and more 
complex than a simple model.

A scientific law is a concise statement, often expressed in 
the form of an equation, which quantitatively describes a wide 
range of phenomena.

Measurements play a crucial role in physics, but can never 
be perfectly precise. It is important to specify the uncertainty 
of a measurement either by stating it directly using the ± 
notation, and/or by keeping only the correct number of 
significant figures.

Physical quantities are always specified relative to a partic­
ular standard or unit, and the unit used should always be stated. 
The commonly accepted set of units today is the Systeme 
International (SI), in which the standard units of length, mass, 
and time are the meter, kilogram, and second.

When converting units, check all conversion factors for 
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very 
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination of 
base quantities that comprise it. Velocity, for example, has 
dimensions of [length/time] or [L/T]. Dimensional analysis can 
be used to check a relationship for correct form.]

Questions
1. What are the merits and drawbacks of using a person’s foot 

as a standard? Consider both (a) a particular person’s foot, 
and (ib) any person’s foot. Keep in mind that it is 
advantagous that fundamental standards be accessible (easy 
to compare to), invariable (do not change), indestructible, 
and reproducible.

2. Why is it incorrect to think that the more digits you 
represent in your answer, the more accurate it is?

3. When traveling a highway in the mountains, you may see 
elevation signs that read “914 m (3000 ft).” Critics of the 
metric system claim that such numbers show the metric 
system is more complicated. How would you alter such 
signs to be more consistent with a switch to the metric 
system?

4. What is wrong with this road sign:
Memphis 7 mi (11.263 km)?

5. For an answer to be complete, the units need to be speci­
fied. Why?

6. Discuss how the notion of symmetry could be used to 
estimate the number of marbles in a 1-liter jar.

7. You measure the radius of a wheel to be 4.16 cm. If you 
multiply by 2 to get the diameter, should you write the 
result as 8 cm or as 8.32 cm? Justify your answer.

8. Express the sine of 30.0° with the correct number of 
significant figures.

9. A recipe for a souffle specifies that the measured ingredients 
must be exact, or the souffle will not rise. The recipe calls for 
6 large eggs. The size of “large” eggs can vary by 10%, 
according to the USDA specifications. What does this tell you 
about how exactly you need to measure the other ingredients?

10. List assumptions useful to estimate the number of car 
mechanics in (a) San Francisco, (b) your hometown, and 
then make the estimates.

11. Suggest a way to measure the distance from Earth to the Sun.
*12. Can you set up a complete set of base quantities, as in

Table 1-5, that does not include length as one of them?

| Problems
[The Problems at the end of each Chapter are ranked I, II, or III 
according to estimated difficulty, with (I) Problems being easiest. 
Level (III) Problems are meant mainly as a challenge for the best 
students, for “extra credit.” The Problems are arranged by Sections, 
meaning that the reader should have read up to and including that 
Section, but not only that Section—Problems often depend on 
earlier material. Each Chapter also has a group of General Problems 
that are not arranged by Section and not ranked.]

1-3 Measurement, Uncertainty, Significant Figures
{Note: In Problems, assume a number like 6.4 is accurate to +0.1; 
and 950 is + 10 unless 950 is said to be “precisely” or “very nearly” 
950, in which case assume 950 + 1.)

1. (I) The age of the universe is thought to be about 14 billion 
years. Assuming two significant figures, write this in powers 
of ten in (a) years, (b) seconds.

2. (I) How many significant figures do each of the following 
numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03, 
(e) 0.0086, ( /)  3236, and (g) 8700?

3. (I) Write the following numbers in powers of ten notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, and ( /)  444.

4. (I) Write out the following numbers in full with the 
correct number of zeros: (a) 8.69 X 104, (b) 9.1 X 103,
(c) 8.8 X 10_1, (d) 4.76 X 102, and (e) 3.62 X 10“5.

5. (II) What is the percent uncertainty in the measurement 
5.48 ± 0.25 m?

6. (II) Time intervals measured with a stopwatch typically have 
an uncertainty of about 0.2 s, due to human reaction time at 
the start and stop moments. What is the percent uncertainty 
of a hand-timed measurement of (a) 5 s, (b) 50 s, (c) 5 min?

7. (II) Add (9.2 X 103s) + (8.3 X 104s) + (0.008 X 106s).

14 CHAPTER 1 Introduction, Measurement, Estimating



8. (II) Multiply 2.079 X 102m by 0.082 X 10-1, taking into 
account significant figures.

9. (Ill) For small angles 6, the numerical value of sin 0 is 
approximately the same as the numerical value of tan0. 
Find the largest angle for which sine and tangent agree to 
within two significant figures.

10. (Ill) What, roughly, is the percent uncertainty in the volume 
of a spherical beach ball whose radius is r = 0.84 ± 0.04 m?

1-4 and 1-5 Units, Standards, SI, Converting Units
11. (I) Write the following as full (decimal) numbers with stan­

dard units: (a) 286.6 mm, (b) 85 /jlV, ( c )  760 mg, (d) 60.0 ps, 
(e) 22.5 fm, ( /)  2.50 gigavolts.

12. (I) Express the following using the prefixes of Table 1-4:
(a) 1 X 106 volts, (b) 2 X 10-6 meters, (c) 6 X 103days, 
(id) 18 X 102 bucks, and (e) 8 X 10-8 seconds.

13. (I) Determine your own height in meters, and your mass in kg.
14. (I) The Sun, on average, is 93 million miles from Earth. How 

many meters is this? Express (a) using powers of ten, and
(b) using a metric prefix.

15. (II) What is the conversion factor between (a) ft2 and yd2,
(b) m2 and ft2?

16. (II) An airplane travels at 950 km/h. How long does it take 
to travel 1.00 km?

17. (II) A typical atom has a diameter of about 1.0 X 10-10m.
(a) What is this in inches? (b) Approximately how many 
atoms are there along a 1.0-cm line?

18. (II) Express the following sum with the correct number of 
significant figures: 1.80 m + 142.5 cm + 5.34 X 105/xm.

19. (II) Determine the conversion factor between (a) km/h 
and mi/h, (b) m /s and ft/s, and (c) km /h and m/s.

20. (II) How much longer (percentage) is a one-mile race than 
a 1500-m race (“the metric mile”)?

21. (II) A light-year is the distance light travels in one year 
(at speed = 2.998 X 108m/s). (a) How many meters are 
there in 1.00 light-year? (b) An astronomical unit (AU) is 
the average distance from the Sun to Earth, 1.50 X 108km. 
How many AU are there in 1.00 light-year? (c) What is the 
speed of light in AU/h?

22. (II) If you used only a keyboard to enter data, how many 
years would it take to fill up the hard drive in your 
computer that can store 82 gigabytes (82 X 109 bytes) of 
data? Assume “normal” eight-hour working days, and that 
one byte is required to store one keyboard character, and 
that you can type 180 characters per minute.

23. (Ill) The diameter of the Moon is 3480 km. (a) What is the 
surface area of the Moon? (b) How many times larger is the 
surface area of the Earth?

1-6 Order-of-Magnitude Estimating
{Note: Remember that for rough estimates, only round numbers are
needed both as input to calculations and as final results.)
24. (I) Estimate the order of magnitude (power of ten) of: (a) 2800,

(b) 86.30 X 102, (c) 0.0076, and (d) 15.0 X 108.
25. (II) Estimate how many books can be shelved in a college 

library with 3500 m2 of floor space. Assume 8 shelves high, 
having books on both sides, with corridors 1.5 m wide. 
Assume books are about the size of this one, on average.

26. (II) Estimate how many hours it would take a runner to run (at 
10 km/h) across the United States from New York to California.

27. (II) Estimate the number of liters of water a human drinks 
in a lifetime.

28. (II) Estimate how long it would take one person to mow a 
football field using an ordinary home lawn mower (Fig. 1-11). 
Assume the mower moves with a 1-km/h speed, and has a 
0.5-m width.

FIGURE 1-11
Problem 28.

29. (II) Estimate the number of dentists (a) in San Francisco 
and (b) in your town or city.

30. (Ill) The rubber worn from tires mostly enters the atmos­
phere as particulate pollution. Estimate how much rubber 
(in kg) is put into the air in the United States every year. 
To get started, a good estimate for a tire tread’s depth is 1 cm 
when new, and rubber has a mass of about 1200 kg per m3 of 
volume.

31. (Ill) You are in a hot air balloon, 200 m above the flat Texas 
plains. You look out toward the horizon. How far out can 
you see—that is, how far is your horizon? The Earth’s 
radius is about 6400 km.

32. (Ill) I agree to hire you for 30 days and you can decide between 
two possible methods of payment: either (1) $1000 a day, or
(2) one penny on the first day, two pennies on the second day 
and continue to double your daily pay each day up to day 30. 
Use quick estimation to make your decision, and justify it.

33. (Ill) Many sailboats are moored at a marina 4.4 km away on 
the opposite side of a lake. You stare at one of the sailboats 
because, when you are lying flat at the water’s edge, you can 
just see its deck but none of the side of the sailboat. You 
then go to that sailboat on the other side of the lake and 
measure that the deck is 1.5 m above the level of the 
water. Using Fig. 1-12, where h = 1.5 m, esti­
mate the radius R  of the Earth.

h-------- d

FIGURE 1-12 Problem 33.
You see a sailboat across a 
lake (not to scale). R  is the 
radius of the Earth. You are a 
distance d = 4.4 km from the 
sailboat when you can see only 
its deck and not its side.
Because of the curvature of the 
Earth, the water “bulges out” 
between you and the boat.

34. (Ill) Another experiment you can do also uses the radius of 
the Earth. The Sun sets, fully disappearing over the horizon as 
you lie on the beach, your eyes 20 cm above the sand. You 
immediately jump up, your eyes now 150 cm above the sand, 
and you can again see the top of the Sun. If you count the 
number of seconds (= t) until the Sun fully disappears again, 
you can estimate the radius of the Earth. But for this Problem, 
use the known radius of the Earth and calculate the time t.
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1-7 Dimensions
*35. (I) What are the dimensions of density, which is mass per 

volume?
*36. (II) The speed v of an object is given by the equation 

v = A t3 — Bt, where t refers to time, (a) What are the 
dimensions of A  and 5? (b) What are the SI units for the 
constants A  and 5?

*37. (II) Three students derive the following equations in which 
x  refers to distance traveled, v the speed, a the acceleration 
(m/s2), t the time, and the subscript zero (0) means a quantity 
at time t = 0: (a) x = vt2 + 2at, (b) x = v0t + \a t2, and
(c) x = v0t + 2at2. Which of these could possibly be 
correct according to a dimensional check?

| General Problems___________

15 38. (II) Show that the following combination of the three funda­
mental constants of nature that we used in Example 1-10 
(that is G, c, and h) forms a quantity with the dimensions 
of time:

h  =

This quantity, tP, is called the Planck time and is thought to 
be the earliest time, after the creation of the Universe, at 
which the currently known laws of physics can be applied.

39. Global positioning satellites (GPS) can be used to deter­
mine positions with great accuracy. If one of the satellites is 
at a distance of 20,000 km from you, what percent uncertainty 
in the distance does a 2-m uncertainty represent? How 
many significant figures are needed in the distance?

40. Computer chips (Fig. 1-13) etched on circular silicon wafers 
of thickness 0.300 mm are sliced from a solid cylindrical 
silicon crystal of length 25 cm. If each wafer can hold 
100 chips, what is the maximum number of chips that can be 
produced from one entire cylinder?

48. Estimate the number of gumballs in the machine of Fig. 1-14.

F IG U R E!-13 Problem 40.
The wafer held by the hand (above) 
is shown below, enlarged and 
illuminated by colored light. Visible 
are rows of integrated circuits (chips).

41. {a) How many seconds are there in 1.00 year? (b) How 
many nanoseconds are there in 1.00 year? (c) How many 
years are there in 1.00 second?

42. American football uses a field that is 100 yd long, whereas a 
regulation soccer field is 100 m long. Which field is longer, 
and by how much (give yards, meters, and percent)?

43. A typical adult human lung contains about 300 million tiny 
cavities called alveoli. Estimate the average diameter of 
a single alveolus.

44. One hectare is defined as 1.000 X 104m2. One acre is 
4.356 X 104 ft2. How many acres are in one hectare?

45. Estimate the number of gallons of gasoline consumed by 
the total of all automobile drivers in the United States, 
per year.

46. Use Table 1-3 to estimate the total number of protons or 
neutrons in (a) a bacterium, (b) a DNA molecule, (c) the 
human body, (d) our Galaxy.

47. An average family of four uses roughly 1200 L (about 
300 gallons) of water per day (l L = 1000 cm3). How much 
depth would a lake lose per year if it uniformly covered an 
area of 50 km2 and supplied a local town with a population 
of 40,000 people? Consider only population uses, and 
neglect evaporation and so on.

FIGURE 1-14 Problem 48.
Estimate the number of 
gumballs in the machine.

49. Estimate how many kilograms of laundry soap are used in 
the U.S. in one year (and therefore pumped out of washing 
machines with the dirty water). Assume each load of 
laundry takes 0.1 kg of soap.

50. How big is a ton? That is, what is the volume of something 
that weighs a ton? To be specific, estimate the diameter of a
1-ton rock, but first make a wild guess: will it be 1 ft across, 
3 ft, or the size of a car? [Hint: Rock has mass per volume 
about 3 times that of water, which is 1 kg per liter (lO3 cm3) 
or 62 lb per cubic foot.]

51. A certain audio compact disc (CD) contains 783.216 megabytes 
of digital information. Each byte consists of exactly 8 bits. 
When played, a CD player reads the CD’s digital information 
at a constant rate of 1.4 megabits per second. How many 
minutes does it take the player to read the entire CD?

52. Hold a pencil in front of your eye at a position where its 
blunt end just blocks out the
Moon (Fig. 1-15). Make appro­
priate measurements to estimate 
the diameter of the Moon, given 
that the Earth-M oon distance is
3.8 X 105 km.

FIGURE 1-15 Problem 52.
How big is the Moon?

53. A heavy rainstorm dumps 1.0 cm of rain on a city 5 km wide 
and 8 km long in a 2-h period. How many metric tons 
(l metric ton = 103 kg) of water fell on the city? (1 cm3 of 
water has a mass of 1 g = 10-3 kg.) How many gallons 
of water was this?
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54. Noah’s ark was ordered to be 300 cubits long, 50 cubits wide, 
and 30 cubits high. The cubit was a unit of measure equal to 
the length of a human forearm, elbow to the tip of the 
longest finger. Express the dimensions of Noah’s ark in 
meters, and estimate its volume (m3).

55. Estimate how many days it would take to walk around the 
world, assuming 10 h walking per day at 4 km/h.

56. One liter (1000 cm3) of oil is spilled onto a smooth lake. If 
the oil spreads out uniformly until it makes an oil slick just 
one molecule thick, with adjacent molecules just touching, 
estimate the diameter of the oil slick. Assume the oil mole­
cules have a diameter of 2 X 10-10 m.

57. Jean camps beside a wide river and wonders how wide it is. 
She spots a large rock on the bank directly across from her. 
She then walks upstream until she judges that the angle 
between her and the rock, which she can still see clearly, is 
now at an angle of 30° downstream (Fig. 1-16). Jean 
measures her stride
to be about 1 yard 
long. The distance 
back to her camp is 
120 strides. About
how far across, both 
in yards and in 
meters, is the river?

FIGURE 1-16
Problem 57.

\ m
v  |

120 Strides

58. A watch manufacturer claims that its watches gain or lose 
no more than 8 seconds in a year. How accurate is this 
watch, expressed as a percentage?

59. An angstrom (symbol A )  is a unit of length, defined as 
10-10 m, which is on the order of the diameter of an atom,
(a) How many nanometers are in 1.0 angstrom? (b) How 
many femtometers or fermis (the common unit of length in 
nuclear physics) are in 1.0 angstrom? (c) How many 
angstroms are in 1.0 m? (d) How many angstroms are in 
1.0 light-year (see Problem 21)?

60. The diameter of the Moon is 3480 km. What is the volume 
of the Moon? How many Moons would be needed to create 
a volume equal to that of Earth?

61. Determine the percent uncertainty in 6, and in sin 6, when
(a) 6 = 15.0° ± 0.5°, (b) 6 = 75.0° ± 0.5°.

62. If you began walking along one of Earth’s lines of longi­
tude and walked north until you had changed latitude by
1 minute of arc (there are 60 minutes per degree), how far 
would you have walked (in miles)? This distance is called a 
“nautical mile.”

63. Make a rough estimate of the volume of your body (in m3).
64. Estimate the number of bus drivers (a) in Washington, D.C., 

and (b) in your town.
65. The American Lung Association gives the following formula 

for an average person’s expected lung capacity V  (in liters, 
where 1 L = 103 cm3):

V  = 4.1 H  -  0.018A -  2.69,
where H  and A  are the person’s height (in meters), and 
age (in years), respectively. In this formula, what are the 
units of the numbers 4.1, 0.018, and 2.69?

66. The density of an object is defined as its mass divided by its 
volume. Suppose the mass and volume of a rock are 
measured to be 8 g and 2.8325 cm3. To the correct number 
of significant figures, determine the rock’s density.

67. To the correct number of significant figures, use the infor­
mation inside the front cover of this book to determine the 
ratio of (a) the surface area of Earth compared to the 
surface area of the Moon; (b) the volume of Earth 
compared to the volume of the Moon.

68. One mole of atoms consists of 6.02 X 1023 individual atoms. If 
a mole of atoms were spread uniformly over the surface of the 
Earth, how many atoms would there be per square meter?

69. Recent findings in astrophysics suggest that the observable 
Universe can be modeled as a sphere of radius 
R = 13.7 X 109 light-years with an average mass density of 
about 1 X 10_26kg/m3, where only about 4% of the 
Universe’s total mass is due to “ordinary” matter (such as 
protons, neutrons, and electrons). Use this information to 
estimate the total mass of ordinary matter in the observable 
Universe. (1 light-year = 9.46 X 1015 m.)

Answers to Exercises

A: (d). D: (a) 2.58 X 10“2, 3; (b) 4.23 X 104, 3 (probably);
B: No: they have 3 and 2, respectively. (c) 3.4450 X 102, 5.
C: All three have three significant figures, although the Mt. Everest, 29,035 ft; K2,28,251 ft; Kangchenjunga, 28,169 ft.

number of decimal places is (a) 2, (b) 3, (c) 4. F: No: 15 m/s ~ 34 mi/h.
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A  high-speed car has released a parachute to reduce  
its speed quickly. The directions o f the car’s velocity and 
acceleration are shown by the green (v) and gold (a) arrows.

M otion is described using 
the concepts o f velocity and 
acceleration. In the case shown  
here, the acceleration a is in the  
opposite direction from the  
velocity v, which m eans the object 
is slowing down. W e exam ine  
in detail m otion with constant 
acceleration, including the vertical 
m otion o f objects falling under 
gravity.

T £

Describing Motion: 
Kinematics in One Dimension

CONTENTS
2 -1  Reference Frames and 

Displacement
2 -2  Average Velocity
2 -3  Instantaneous Velocity
2 -4  Acceleration
2 -5  Motion at Constant 

Acceleration
2 -6  Solving Problems
2 -7  Freely Falling Objects

* 2 -8  Variable Acceleration; 
Integral Calculus

* 2 -9  Graphical Analysis and 
Numerical Integration

CHAPTER-OPENING QUESTION—Guess now!
[D o n ’t w o rry  abou t getting the right answ er n o w — yo u  w ill get another chance later in 
the Chapter. See also p. 1 o f  Chapter 1 fo r  m ore explanation .]

Two small heavy balls have the same diameter but one weighs twice as much as the 
other. The balls are dropped from a second-story balcony at the exact same time. 
The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.
(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.
(e) nearly the same for both balls.

The motion of objects—baseballs, automobiles, joggers, and even the Sun 
and Moon—is an obvious part of everyday life. It was not until the 
sixteenth and seventeenth centuries that our modern understanding of 
motion was established. Many individuals contributed to this 

understanding, particularly Galileo Galilei (1564-1642) and Isaac Newton (1642-1727).
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The study of the motion of objects, and the related concepts of force and 
energy, form the field called mechanics. Mechanics is customarily divided into two 
parts: kinematics, which is the description of how objects move, and dynamics, 
which deals with force and why objects move as they do. This Chapter and the next 
deal with kinematics.

For now we only discuss objects that move without rotating (Fig. 2 - la). Such 
motion is called translational motion. In this Chapter we will be concerned 
with describing an object that moves along a straight-line path, which is 
one-dimensional translational motion. In Chapter 3 we will describe translational 
motion in two (or three) dimensions along paths that are not straight.

We will often use the concept, or model, of an idealized particle which is 
considered to be a mathematical point with no spatial extent (no size). A point particle 
can undergo only translational motion. The particle model is useful in many real 
situations where we are interested only in translational motion and the object’s 
size is not significant. For example, we might consider a billiard ball, or even a 
spacecraft traveling toward the Moon, as a particle for many purposes.

2 —1 Reference Frames and Displacement
Any measurement of position, distance, or speed must be made with respect to a 
reference frame, or frame of reference. For example, while you are on a train trav­
eling at 80 km/h, suppose a person walks past you toward the front of the train at 
a speed of, say, 5 km/h (Fig. 2-2). This 5 km/h is the person’s speed with respect to 
the train as frame of reference. With respect to the ground, that person is moving 
at a speed of 80 km/h + 5 km/h = 85 km/h. It is always important to specify the 
frame of reference when stating a speed. In everyday life, we usually mean “with 
respect to the Earth” without even thinking about it, but the reference frame must 
be specified whenever there might be confusion.

% &  

«  %
(a) <h)

FIGURE 2 -1  The pinecone in (a) 
undergoes pure translation as it falls, 
whereas in (b) it is rotating as well as 
translating.

FIGURE 2 - 2  A  person walks 
toward the front o f a train at 5 km /h. 
The train is moving 80 km /h  with 
respect to the ground, so the walking 
person’s speed, relative to the 
ground, is 85 km /h.

When specifying the motion of an object, it is important to specify not only the 
speed but also the direction of motion. Often we can specify a direction by using 
the cardinal points, north, east, south, and west, and by “up” and “down.” In 
physics, we often draw a set of coordinate axes, as shown in Fig. 2-3, to represent 
a frame of reference. We can always place the origin 0, and the directions of the x 
and y axes, as we like for convenience. The x and y axes are always perpendicular 
to each other. Objects positioned to the right of the origin of coordinates (0) on 
the x axis have an x coordinate which we usually choose to be positive; then points 
to the left of 0 have a negative x coordinate. The position along the y axis is usually 
considered positive when above 0, and negative when below 0, although the 
reverse convention can be used if convenient. Any point on the plane can be 
specified by giving its x and y coordinates. In three dimensions, a z axis perpendicular 
to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along 
which the motion takes place. Then the position of an object at any moment is 
given by its x coordinate. If the motion is vertical, as for a dropped object, we 
usually use the y axis.

FIGURE 2 - 3  Standard set of xy  
coordinate axes.
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A  CAUTI ON
The displacement may not equal the 

total distance traveled

West 0

70 m

40 m 30 m East 

Displacement

FIGURE 2 - 4  A  person walks 70 m 
east, then 30 m west. The total 
distance traveled is 100 m (path is 
shown dashed in black); but the 
displacement, shown as a solid blue 
arrow, is 40 m to the east.

FIGURE 2 - 5  The arrow represents 
the displacement x2 — x \ . Distances 
are in meters.

*1 *2

10 20 30 40 
Distance (m)

FIGURE 2 - 6  For the displacement 
Ax = x2 — x 1 =  10.0 m -  30.0 m, 
the displacement vector points to 
the left.

x2 x l 
jk— Ax —

10 20 30 40 
Distance (m)

We need to make a distinction between the distance an object has traveled and 
its displacement, which is defined as the change in position of the object. That is, 
displacement is how far the object is from its starting point. To see the distinction 
between total distance and displacement, imagine a person walking 70 m to the 
east and then turning around and walking back (west) a distance of 30 m 
(see Fig. 2-4). The total distance traveled is 100 m, but the displacement is only 
40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such quan­
tities are called vectors, and are represented by arrows in diagrams. For example, in 
Fig. 2-4, the blue arrow represents the displacement whose magnitude is 40 m and 
whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with 
motion in one dimension, along a line. In this case, vectors which point in one 
direction will have a positive sign, whereas vectors that point in the opposite direc­
tion will have a negative sign, along with their magnitude.

Consider the motion of an object over a particular time interval. Suppose that 
at some initial time, call it tx, the object is on the x axis at the position x1 in the 
coordinate system shown in Fig. 2-5. At some later time, t2, suppose the object has 
moved to position x2. The displacement of our object is x2 -  x1, and is repre­
sented by the arrow pointing to the right in Fig. 2-5. It is convenient to write

Ax = x2 — xx,

where the symbol A (Greek letter delta) means “change in.” Then Ax means “the 
change in x,” or “change in position,” which is the displacement. Note that the “change 
in” any quantity means the final value of that quantity, minus the initial value.

Suppose xl = 10.0 m and x2 = 30.0 m. Then

Ax = x2 -  x1 = 30.0 m -  10.0 m = 20.0 m,

so the displacement is 20.0 m in the positive direction, Fig. 2-5.
Now consider an object moving to the left as shown in Fig. 2-6. Here the 

object, say, a person, starts at xx = 30.0 m and walks to the left to the point 
x2 = 10.0 m. In this case her displacement is

Ax = x2 -  Xj = 10.0 m -  30.0 m = -20.0 m,

and the blue arrow representing the vector displacement points to the left. For 
one-dimensional motion along the x axis, a vector pointing to the right has a 
positive sign, whereas a vector pointing to the left has a negative sign.

EXERCISE A A n ant starts at x  =  20 cm on a piece of graph paper and walks along the 
x  axis to x  =  - 2 0  cm. It then turns around and walks back to x  =  - 1 0  cm. What is 
the ant’s displacement and total distance traveled?

2 —2  Average Velocity
The most obvious aspect of the motion of a moving object is how fast it is 
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval, 
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say its 
average speed was 80 km/h. In general, the average speed of an object is defined as the 
total distance traveled along its path divided by the time it takes to travel this distance:

distance traveled
average speed = — :------ ------- -—  (2-1)time elapsed

The terms “velocity” and “speed” are often used interchangeably in ordinary 
language. But in physics we make a distinction between the two. Speed is simply a
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positive number, with units. Velocity, on the other hand, is used to signify both the 
magnitude (numerical value) of how fast an object is moving and also the direction 
in which it is moving. (Velocity is therefore a vector.) There is a second difference 
between speed and velocity: namely, the average velocity is defined in terms of 
displacement, rather than total distance traveled:

displacement final position -  initial position
average velocity = —------ ------- - = ------------- ;------ ------- --------------

time elapsed time elapsed
Average speed and average velocity have the same magnitude when the 

motion is all in one direction. In other cases, they may differ: recall the walk we 
described earlier, in Fig. 2-4, where a person walked 70 m east and then 30 m west. 
The total distance traveled was 70 m + 30 m = 100 m, but the displacement was 
40 m. Suppose this walk took 70 s to complete. Then the average speed was:

distance 100 m „ J------- ------- - = — —  = 1.4 m/s.
time elapsed 70 s

The magnitude of the average velocity, on the other hand, was:
displacement 40 m
. ,------ - = —— = 0.57 m/s.time elapsed 70 s

This difference between the speed and the magnitude of the velocity can occur 
when we calculate average values.

To discuss one-dimensional motion of an object in general, suppose that at 
some moment in time, call it , the object is on the x axis at position jcx in a coor­
dinate system, and at some later time, t2, suppose it is at position x2. The elapsed 
time is At = t2 — t^\ during this time interval the displacement of our object is 
Ax = x2 ~ x1. Then the average velocity, defined as the displacement divided by 
the elapsed time, can be written

=  =  A * ,
t2 -  tx At

where v stands for velocity and the bar (- ) over the v is a standard symbol 
meaning “average.”

For the usual case of the +x axis to the right, note that if x2 is less than xx, the 
object is moving to the left, and then Ax = x2 -  x1 is less than zero. The sign of 
the displacement, and thus of the average velocity, indicates the direction: the 
average velocity is positive for an object moving to the right along the +x axis and 
negative when the object moves to the left. The direction of the average velocity is 
always the same as the direction of the displacement.

Note that it is always important to choose (and state) the elapsed time, or time 
interval, t2 — tx, the time that passes during our chosen period of observation.

Runner's average velocity. The position of a runner as a 
function of time is plotted as moving along the x axis of a coordinate system. 
During a 3.00-s time interval, the runner’s position changes from xx = 50.0 m to 
x2 = 30.5 m, as shown in Fig. 2-7. What was the runner’s average velocity?

APPROACH We want to find the average velocity, which is the displacement 
divided by the elapsed time.
SOLUTION The displacement is Ax = x2 -  xx = 30.5 m -  50.0 m = -19.5 m. 
The elapsed time, or time interval, is At = 3.00 s. The average velocity is

Ax -19.5 m ,
v = —— = ————  = -6.50 m/s.

At 3.00 s '

The displacement and average velocity are negative, which tells us that the 
runner is moving to the left along the x axis, as indicated by the arrow in Fig. 2-7. 
Thus we can say that the runner’s average velocity is 6.50 m/s to the left.

/j\ CAUTION________
Average speed is not necessarily 
equal to the magnitude o f  the 
average velocity

\ \ P R O B L E M  S O L V I N G
+ or -  sign can signify the direction 
fo r  linear motion

FIGURE 2 - 7  Example 2 -1 .
A  person runs from x i =  50.0 m to 
x2 =  30.5 m. The displacement 
is -1 9 .5  m.
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Distance a cyclist travels. How far can a cyclist travel in 
2.5 h along a straight road if her average velocity is 18 km/h?

APPROACH We want to find the distance traveled, so we solve Eq. 2-2 for Ax. 
SOLUTION We rewrite Eq. 2-2 as Ax = v At, and find

Ax = v At = (18km/h)(2.5 h) = 45 km.

EXERCISE B A  car travels at a constant 50 km /h  for 100 km. It then speeds up to 
100 km /h  and is driven another 100 km. What is the car’s average speed for the 200 km 
trip? (a) 67 km/h; (b) 75 km/h; (c) 81 km/h; (d) 50 km /h.

EXAMPLE 2-2

2 —3 Instantaneous Velocity
If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of your 
average velocity is 75 km/h. It is unlikely, though, that you were moving at 
precisely 75 km/h at every instant. To describe this situation we need the concept 
of instantaneous velocity, which is the velocity at any instant of time. (Its magni­
tude is the number, with units, indicated by a speedometer, Fig. 2-8.) More 
precisely, the instantaneous velocity at any moment is defined as the average 
velocity over an infinitesimally short time interval. That is, Eq. 2-2 is to be evalu­
ated in the limit of At becoming extremely small, approaching zero. We can write 
the definition of instantaneous velocity, v, for one-dimensional motion as

Ax
= lim —— ■

Af->0 At (2-3)

FIGURE 2 - 8  Car speedometer 
showing m i/h  in white, and km /h  in 
orange.

The notation limÂ 0 means the ratio A x/A t is to be evaluated in the limit of At 
approaching zero. But we do not simply set At = 0 in this definition, for then Ax 
would also be zero, and we would have an undefined number. Rather, we are 
considering the ratio Ax/At, as a whole. As we let At approach zero, Ax 
approaches zero as well. But the ratio A x/A t approaches some definite value, 
which is the instantaneous velocity at a given instant.

In Eq. 2-3, the limit as At —> 0 is written in calculus notation as dx/dt and is 
called the derivative of x with respect to t:

FIGURE 2 - 9  Velocity of a car as a 
function of time: (a) at constant 
velocity; (b) with varying velocity.
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^  n I---- 1----- u

Average velocity

0
(b)

0.1 0.2 0.3 0.4 
Time (h)

0.5

= lim ^
Af->0 At

dx
dt

(2-4)

This equation is the definition of instantaneous velocity for one-dimensional 
motion.

For instantaneous velocity we use the symbol v, whereas for average velocity 
we use v, with a bar above. In the rest of this book, when we use the term “velocity” 
it will refer to instantaneous velocity. When we want to speak of the average 
velocity, we will make this clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the instan­
taneous velocity. Why? Because distance traveled and the magnitude of the 
displacement become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity during a particular 
time interval, then its instantaneous velocity at any instant is the same as its 
average velocity (see Fig. 2-9a). But in many situations this is not the case. For 
example, a car may start from rest, speed up to 50 km/h, remain at that velocity for 
a time, then slow down to 20 km/h in a traffic jam, and finally stop at its destina­
tion after traveling a total of 15 km in 30 min. This trip is plotted on the graph of 
Fig. 2-9b. Also shown on the graph is the average velocity (dashed line), which is 
v = Ax/A t = 15km/0.50h = 30 km/h.
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To better understand instantaneous velocity, let us consider a graph of the 
position of a particular particle versus time (x vs. t), as shown in Fig. 2-10. (Note 
that this is different from showing the “path” of a particle on an x vs. y plot.) The 
particle is at position x1 at a time tx, and at position x2 at time t2. Pi and P2 repre­
sent these two points on the graph. A straight line drawn from point Pi (x1, to 
point P2 (x2, t2) forms the hypotenuse of a right triangle whose sides are Ax and M. 
The ratio Ax/At is the slope of the straight line PiP2. But Ax/At is also the 
average velocity of the particle during the time interval At = t2 -  tx. Therefore, 
we conclude that the average velocity of a particle during any time interval 
At = t2 — h is equal to the slope of the straight line (or chord) connecting the two 
points (xx, and (x2, t2) on an x vs. t graph.

Consider now a time tx, intermediate between tx and t2, at which time the 
particle is at x{ (Fig. 2-11). The slope of the straight line P ^  is less than the slope 
of Px P2 in this case. Thus the average velocity during the time interval /• -  tx is less 
than during the time interval t2 — tx.

Now let us imagine that we take the point Pj in Fig. 2-11 to be closer and 
closer to point Pj. That is, we let the interval tx — tx, which we now call At, to 
become smaller and smaller. The slope of the line connecting the two points 
becomes closer and closer to the slope of a line tangent to the curve at point . 
The average velocity (equal to the slope of the chord) thus approaches the slope of 
the tangent at point Px. The definition of the instantaneous velocity (Eq. 2-3) is 
the limiting value of the average velocity as At approaches zero. Thus the 
instantaneous velocity equals the slope o f the tangent to the curve at that point 
(which we can simply call “the slope of the curve” at that point).

Because the velocity at any instant equals the slope of the tangent to the x vs. t 
graph at that instant, we can obtain the velocity at any instant from such a graph. 
For example, in Fig. 2-12 (which shows the same curve as in Figs. 2-10 and 2-11), 
as our object moves from x1 to x2, the slope continually increases, so the velocity is 
increasing. For times after t2, however, the slope begins to decrease and in fact 
reaches zero (so v = 0) where x has its maximum value, at point P3 in Fig. 2-12. 
Beyond this point, the slope is negative, as for point P4. The velocity is therefore 
negative, which makes sense since x is now decreasing—the particle is moving 
toward decreasing values of x, to the left on a standard xy plot.

If an object moves with constant velocity over a particular time interval, its 
instantaneous velocity is equal to its average velocity. The graph of x vs. t in this 
case will be a straight line whose slope equals the velocity. The curve of Fig. 2-10 
has no straight sections, so there are no time intervals when the velocity is constant.

X Po

FIGURE 2 -1 2  Same x  vs. t curve as in 
Figs. 2 -1 0  and 2 -11 , but here showing the slope 
at four different points: A t P3, the slope is zero, 
so v  =  0. A t P4 the slope is negative, so v  <  0.

t

EXERCISE C What is your speed at the instant you turn around to move in the opposite 
direction? {a) Depends on how quickly you turn around; (b) always zero; (c) always 
negative; (d) none of the above.

The derivatives of various functions are studied in calculus courses, and this 
book gives a summary in Appendix B. The derivatives of polynomial functions 
(which we use a lot) are:

4-(C tn) = nCt"-1 and ^  = 0, dt dt
where C is any constant.

x

I I
------1-------------- 1---------------------- 10 tx t2

FIGURE 2 -1 0  Graph of a particle’s 
position x vs. time t. The slope of the 
straight line Pi P2 represents the 
average velocity of the particle during 
the time interval A t =  t2 — t \ .

FIGURE 2 -1 1  Same position vs. 
time curve as in Fig. 2 -10 , but note 
that the average velocity over the time 
interval t[ — tx (which is the slope of 
Pi Pi) is less than the average velocity 
over the time interval t2 — 11. The 
slope of the thin line tangent to the 
curve at point Pj equals the 
instantaneous velocity at time t\ .

x

i i i ____ i_____ i i
0] tx l~t2
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FIGURE 2 -1 3  Example 2 -3 .
(a) Engine traveling on a straight track.
(b) Graph of x  vs. t: x  =  A t 2 +  B.

EXAMPLE 2-3 Given x as a function of t . A jet engine moves along an 
experimental track (which we call the x axis) as shown in Fig. 2-13a. We will treat 
the engine as if it were a particle. Its position as a function of time is given by the 
equation x = A t2 + B, where A  = 2.10 m/s2 and B = 2.80 m, and this equa­
tion is plotted in Fig. 2-13b. (a) Determine the displacement of the engine during

to t2 = 5.00 s. (b) Determine the averagethe time interval from 
velocity during this time interval, (c) Determine the magnitude of the instanta­
neous velocity at t = 5.00 s.

APPROACH We substitute values for tx and t2 in the given equation for x to obtain 
x1 and x2. The average velocity can be found from Eq. 2-2. We take the deriva­
tive of the given x  equation with respect to t to find the instantaneous velocity, 
using the formulas just given.
SOLUTION (a) At tx = 3.00 s, the position (point Px in Fig. 2-13b) is

X! = A t\ + B = (2.10m/s2)(3.00s)2 + 2.80 m = 21.7 m.

At t2 = 5.00 s, the position (P2 in Fig. 2-13b) is

x2 = (2.10m/s2)(5.00s)2 + 2.80 m = 55.3 m.

The displacement is thus

x2 -  x1 = 55.3 m -  21.7 m = 33.6 m.

(b) The magnitude of the average velocity can then be calculated as

v =
Ax
A*

Xi
to t-l

33.6 m 
2.00 s

= 16.8 m/s.

This equals the slope of the straight line joining points and P2 shown in 
Fig. 2-13b.
(c) The instantaneous velocity at t = t2 = 5.00 s equals the slope of the tangent 
to the curve at point P2 shown in Fig. 2-13b. We could measure this slope off the 
graph to obtain v2. But we can calculate v more precisely for any time t, using 
the given formula

x = A t2 + B,

which is the engine’s position x as a function of time t. We take the derivative of 
x with respect to time (see formulas at bottom of previous page):

„ = ^  = l - [ A t2 + B) 
dt dt '

2 At.

We are given A  = 2.10 m/s2, so for t = t2 = 5.00 s,

v2 = 2 A t = 2(2.10 m/s2)(5.00s) = 21.0 m/s.

2 —4  Acceleration
An object whose velocity is changing is said to be accelerating. For instance, a car 
whose velocity increases in magnitude from zero to 80 km/h is accelerating. 
Acceleration specifies how rapidly the velocity of an object is changing.

Average Acceleration
Average acceleration is defined as the change in velocity divided by the time taken 
to make this change:

change of velocity
average acceleration = ---- ;------ ------- -----

time elapsed

In symbols, the average acceleration over a time interval A£ = t2 — tx during 
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which the velocity changes by Av = v2 — v1, is defined as

v2 -  V! Au ^
a = ---------- = • (2-5)

t2 -  tx At

Because velocity is a vector, acceleration is a vector too. But for one-dimensional 
motion, we need only use a plus or minus sign to indicate acceleration direction 
relative to a chosen coordinate axis.

Average acceleration. A car accelerates along a straight road 
from rest to 90 km/h in 5.0 s, Fig. 2-14. What is the magnitude of its average 
acceleration?

APPROACH Average acceleration is the change in velocity divided by the elapsed 
time, 5.0 s. The car starts from rest, so vx = 0. The final velocity is 
v2 = 90 km/h = 90 X 103 m/3600 s = 25 m/s.
SOLUTION From Eq. 2-5, the average acceleration is

v2 ~ vx 25 m/s -  Om/s  ̂  ̂m/s
a = ---------- = --------—---------  = 5.0------

t2 -  tx 5.0 s s

This is read as “five meters per second per second” and means that, on 
average, the velocity changed by 5.0 m/s during each second. That is, assuming 
the acceleration was constant, during the first second the car’s velocity 
increased from zero to 5.0 m/s. During the next second its velocity increased 
by another 5.0 m/s, reaching a velocity of 10.0 m/s at t = 2.0 s, and so on. See 
Fig. 2-14.

EXAMPLE 2 -4

= 0  
v, =0 Acceleration 

\n -  5.0 m/s~l

;ii t * 1.0 s
r = 5.0 m/s

iil I -  2.0 s
if = 10.0 m/s

at ( -  t2 = 5,0 s
v = th = 25 ni/s

FIGURE 2 -1 4  Example 2 -4 . The car is 
shown at the start with vi  =  0 at t\ =  0. 
The car is shown three more times, at 
t = 1.0 s, t = 2.0 s, and at the end of our 
time interval, t2 = 5.0 s. We assume the 
acceleration is constant and equals
5.0 m /s2. The green arrows represent the 
velocity vectors; the length of each arrow 
represents the magnitude of the velocity 
at that moment. The acceleration vector 
is the orange arrow. Distances are not 
to scale.

We almost always write the units for acceleration as m/s2 (meters per second 
squared) instead of m/s/s. This is possible because:

m/s _ m _ m 
s s • S s2

According to the calculation in Example 2-4, the velocity changed on average by
5.0 m/s during each second, for a total change of 25 m/s over the 5.0 s; the average 
acceleration was 5.0 m/s2.

Note that acceleration tells us how quickly the velocity changes, whereas 
velocity tells us how quickly the position changes.
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CONCEPTUAL EXAMPLE 2 -5  I Velocity and acceleration, (a) If the velocity of 
an object is zero, does it mean that the acceleration is zero? (b) If the acceleration is 
zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration is 
zero, nor does a zero acceleration mean that the velocity is zero, (a) For example, 
when you put your foot on the gas pedal of your car which is at rest, the velocity 
starts from zero but the acceleration is not zero since the velocity of the car 
changes. (How else could your car start forward if its velocity weren’t changing— 
that is, accelerating?) (b) As you cruise along a straight highway at a constant 
velocity of 100 km/h, your acceleration is zero: a = 0, v #  0.

EXERCISE D A  powerful car is advertised to go from zero to 60 m i/h  in 6.0 s. What does 
this say about the car: (a) it is fast (high speed); or (b ) it accelerates well?

at f, =  0
Acceleration 

tt = -2,0 m/s2

■ S ffiSE

at = 5.0 s
-  5.0 m/s

FIGURE 2 -1 5  Example 2 -6 , 
showing the position of the car at 
times t\ and t2, as well as the car’s 
velocity represented by the green 
arrows. The acceleration vector 
(orange) points to the left as the car 
slows down while moving to the right.

EXAMPLE 2 -6 Car slowing down. An automobile is moving to the right 
along a straight highway, which we choose to be the positive x axis (Fig. 2-15). 
Then the driver puts on the brakes. If the initial velocity (when the driver hits the 
brakes) is vx = 15.0 m/s, and it takes 5.0 s to slow down to v2 = 5.0 m/s, what 
was the car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed time, 
into Eq. 2-5 for a.
SOLUTION In Eq. 2-5, we call the initial time tx = 0, and set t2 = 5.0 s. 
(Note that our choice of tx = 0 doesn’t affect the calculation of a because only 
At = t2 — ti appears in Eq. 2-5.) Then

5.0 m/s -  15.0 m/s
5.0 s

= -2.0 m/s'

The negative sign appears because the final velocity is less than the initial 
velocity. In this case the direction of the acceleration is to the left (in the negative 
x direction)—even though the velocity is always pointing to the right. We say that the 
acceleration is 2.0 m/s2 to the left, and it is shown in Fig. 2-15 as an orange arrow.

A  CAUTI ON
Deceleration means the magnitude 

o f  the velocity is decreasing; a is not 
necessarily negative

Deceleration
When an object is slowing down, we can say it is decelerating. But be careful: deceler­
ation does not mean that the acceleration is necessarily negative. The velocity of an 
object moving to the right along the positive x axis is positive; if the object is slowing 
down (as in Fig. 2-15), the acceleration is negative. But the same car moving to the left 
(decreasing x), and slowing down, has positive acceleration that points to the right, as 
shown in Fig. 2-16. We have a deceleration whenever the magnitude of the velocity is 
decreasing, and then the velocity and acceleration point in opposite directions.

FIGURE 2 - 1 6  The car of Example 2 -6 ,
now moving to the left and decelerating.
The acceleration is

v 2 -  V i
a =  ------------At

( -5 .0 m /s )  -  ( -1 5 .0 m /s )
a5.0 s

—5.0 m /s +  15.0 m /s  
5X)s =  +2.0 m /s.

EXERCISE E A  car moves along the x axis. What is the sign of the car’s acceleration if it is 
moving in the positive x  direction with (a) increasing speed or (b ) decreasing speed? What 
is the sign of the acceleration if the car moves in the negative direction with (c) increasing 
speed or (d ) decreasing speed?
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Instantaneous Acceleration
The instantaneous acceleration, a, is defined as the limiting value o f the average 
acceleration as we let At approach zero:

Av dv = lim  —— = — ■ 
► o At dt (2- 6)

This limit, dv/dt, is the derivative of v with respect to t. We will use the term 
“acceleration” to refer to the instantaneous value. If we want to discuss the 
average acceleration, we will always include the word “average.”

If we draw a graph of the velocity, v, vs. time, t, as shown in Fig. 2-17, then the 
average acceleration over a time interval A t = t2 -  tx is represented by the slope 
of the straight line connecting the two points P1 and P2 as shown. [Compare this to 
the position vs. time graph of Fig. 2-10 for which the slope of the straight line 
represents the average velocity.] The instantaneous acceleration at any time, say t\ , 
is the slope of the tangent to the v vs. t curve at that time, which is also shown in 
Fig. 2-17. Let us use this fact for the situation graphed in Fig. 2-17; as we go from 
time ti to time t2 the velocity continually increases, but the acceleration (the rate at 
which the velocity changes) is decreasing since the slope of the curve is decreasing.

Acceleration given x(t).  A particle is moving in a straight 
line so that its position is given by the relation x = (2.10 m/s2)?2 + (2.80 m), as 
in Example 2-3. Calculate (a) its average acceleration during the time interval from 
ti = 3.00 s to t2 = 5.00 s, and (b) its instantaneous acceleration as a function of time.
APPROACH To determine acceleration, we first must find the velocity at tx and t2 
by differentiating x: v = dx/dt. Then we use Eq. 2-5 to find the average 
acceleration, and Eq. 2-6 to find the instantaneous acceleration.
SOLUTION (a) The velocity at any time t is

2.80 m ] = (4.20 m/s2) t,

= 4.20 m/s2.

as we saw in Example 2-3c. Therefore, at tx = 3.00 s, v1 = (4.20m/s2)(3.00s) =
12.6 m/s and at t2 = 5.00 s, v2 = 21.0 m/s. Therefore,

_ Av _  21.0 m/s -  12.6 m/s 
At 5.00 s -  3.00 s

(b) With v = (4.20 m/s2)?, the instantaneous acceleration at any time is

U = ~̂ t = = 4.20 m/s2.

The acceleration in this case is constant; it does not depend on time. Figure 2-18 
shows graphs of (a) x vs. t (the same as Fig. 2 -13b), (b) v vs. t, which is linearly 
increasing as calculated above, and (c) a vs. t, which is a horizontal straight line 
because a = constant.

Like velocity, acceleration is a rate. The velocity of an object is the rate at 
which its displacement changes with time; its acceleration, on the other hand, is the 
rate at which its velocity changes with time. In a sense, acceleration is a “rate of a 
rate.” This can be expressed in equation form as follows: since a = dv/dt and 
v = dx/dt, then

dv _  d f d x \  _ d2x 
dt d t \ d t )  dt2 

Here d2x/d t2 is the second derivative of x  with respect to time: we first take the 
derivative of x with respect to time (dx/dt), and then we again take the derivative 
with respect to time, (d/dt) (dx/dt), to get the acceleration.

EXERCISE F The position of a particle is given by the following equation: 

x =  (2.00 m /s3)?3 +  (2.50 m /s )t.

What is the acceleration of the particle at t =  2.00 s?
(c) 24.0 m /s2; (d) 2.00 m /s2.

(a) 13.0 m /s2; (b ) 22.5 m /s2;

FIGURE 2 -1 7  A  graph of velocity v  
vs. time t. The average acceleration 
over a time interval At =  t2 -  ti is 
the slope of the straight line Pi P2 : 
a =  A v / At. The instantaneous 
acceleration at time t\ is the slope of 
the v  vs. t curve at that instant.

FIGURE 2 -1 8  Example 2 -7 . 
Graphs of (a) x  vs. t, (b) v  vs. t, 
and (c) a vs. t  for the motion  
x = A t2 +  B. N ote that v  increases 
linearly with t and that the 
acceleration a is constant. A lso, v  is 
the slope of the x  vs. t curve, whereas 
a is the slope of the v  vs. t curve.
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Slope is average acceleration 
during At = t2 -  ?i
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CONCEPTUAL EXAMPLE 2̂ 8~1 Analyzing with graphs. Figure 2-19 shows
the velocity as a function of time for two cars accelerating from 0 to 100 km/h in a 
time of 10.0 s. Compare (a) the average acceleration; (b) instantaneous acceleration; 
and (c) total distance traveled for the two cars.

RESPONSE («) Average acceleration is Av/At. Both cars have the same Av 
(100 km/h) and the same At (10.0 s), so the average acceleration is the same for 
both cars. (b) Instantaneous acceleration is the slope of the tangent to the v vs. t 
curve. For about the first 4 s, the top curve is steeper than the bottom curve, so 
car A has a greater acceleration during this interval. The bottom curve is steeper 
during the last 6 s, so car B has the larger acceleration for this period, (c) Except 
at t = 0 and t = 10.0 s, car A is always going faster than car B. Since it is going 
faster, it will go farther in the same time.

2 -5  Motion at Constant Acceleration
We now examine the situation when the magnitude of the acceleration is 
constant and the motion is in a straight line. In this case, the instantaneous and 
average accelerations are equal. We use the definitions of average velocity and 
acceleration to derive a set of valuable equations that relate x, v, a, and t when a is 
constant, allowing us to determine any one of these variables if we know the others.

To simplify our notation, let us take the initial time in any discussion to be zero, 
and we call it t0: tx = t0 = 0. (This is effectively starting a stopwatch at t0.) We can 
then let t2 = t be the elapsed time. The initial position and the initial velocity (i^) 
of an object will now be represented by x0 and v0, since they represent x and v 
at t = 0. At time t the position and velocity will be called x  and v (rather than 
x2 and v2). The average velocity during the time interval t — t0 will be (Eq. 2-2)

_ _ Ax _ x -  x0 _ x -  x0
V At t -  t0 t

since we chose t0 = 0. The acceleration, assumed constant in time, is (Eq. 2-5) 
v -  v0

A  CAUTI ON
Average velocity, but only if  

a =  constant

A common problem is to determine the velocity of an object after any elapsed 
time t, when we are given the object’s constant acceleration. We can solve such 
problems by solving for v in the last equation to obtain:

v = v0 + at. [constant acceleration] (2-7)
If an object starts from rest (v0 = 0) and accelerates at 4.0 m/s2, after an elapsed 
time t = 6.0 s its velocity will be v = at = (4.0 m/s2)(6.0 s) = 24 m/s.

Next, let us see how to calculate the position x of an object after a time t when 
it undergoes constant acceleration. The definition of average velocity (Eq. 2-2) is 
v = (x — x0)/t, which we can rewrite as

x = x0 + vt. (2-8)
Because the velocity increases at a uniform rate, the average velocity, v, will be 
midway between the initial and final velocities:

_  Vq + v
v = — -----  [constant acceleration] (2-9)

(Careful: Equation 2-9 is not necessarily valid if the acceleration is not constant.) 
We combine the last two Equations with Eq. 2-7 and find

x = x0 + vt

. . V0x0

or

0̂ + 0̂ + at

v01 + \a t2. [constant acceleration] (2-10)
28 CHAPTER 2 Equations 2-7, 2-9, and 2-10 are three of the four most useful equations for



motion at constant acceleration. We now derive the fourth equation, which is useful 
in situations where the time t  is not known. We substitute Eq. 2-9 into Eq. 2-8:

v + v0
X  = x0 + v t  = x0 +

Next we solve Eq. 2-7 for t ,  obtaining
V -  Vo

and substituting this into the previous equation we have 
v + vo ) f v ~ vox0 x0

V2 -  Vq

2 a

[constant acceleration] (2-11)

2 j \  a 
We solve this for v2 and obtain

v2 = vl + 2 a(x — x0), 
which is the useful equation we sought.

We now have four equations relating position, velocity, acceleration, and time, 
when the acceleration a is constant. We collect these kinematic equations here in one 
place for future reference (the tan background screen emphasizes their usefulness):

[a = constant] (2-12a) 
[a = constant] (2-12b) 
[a = constant] (2-12c)

[a = constant] (2-12d)

v = v0 + at 
x = xQ + v0t + \a t2 

v2 = Vq + 2a(x -  x0)
v Vo

Kinematic equations 

fo r  constant acceleration 

(w e’ll use them a lot)

These useful equations are not valid unless a is a constant. In many cases we can set 
x0 = 0, and this simplifies the above equations a bit. Note that x represents posi­
tion, not distance, that x — x0 is the displacement, and that t  is the elapsed time.

Runway design. You are designing an airport for small 
planes. One kind of airplane that might use this airfield must reach a speed 
before takeoff of at least 27.8 m/s (100 km/h), and can accelerate at 2.00 m/s2.
(a) If the runway is 150 m long, can this airplane reach the required speed for 
takeoff? (b) If not, what minimum length must the runway have?
APPROACH The plane’s acceleration is constant, so we can use the kinematic 
equations for constant acceleration. In (a), we want to find v, and we are given:

Known Wanted

*o =  0 V0IIs?

x  =  150 m
a =  2.00 m /s2

SOLUTION (a) Of the above four equations, Eq. 2 -12c will give us v when we 
know vQ, a, x, and x0:

v2 = vl + 2 a(x — x0)
= 0 + 2(2.00 m/s2)(150m) = 600m2/s2 

v = \ / 600 m2/s2 = 24.5 m/s.
This runway length is not sufficient.
(b) Now we want to find the minimum length of runway, x — x0, given 
v = 27.8 m/s and a = 2.00 m/s2. So we again use Eq. 2-12c, but rewritten as

(x -  *o) =
(27.8 m/s)2 -  0

= 193 m.
2 a 2(2.00 m/s2)

A 200-m runway is more appropriate for this plane.
NOTE We did this Example as if the plane were a particle, so we round off our 
answer to 200 m.

(̂a j  p h y s i c s  a p p l i e d

A irport design

\ P R O B L E M  S O L V I N G
Equations 2 -1 2  are valid only when  
the acceleration is constant, which w e  
assume in this Example

EXERCISE G A  car starts from rest and accelerates at a constant 10 m /s2 during a \  mile 
(402 m) race. How fast is the car going at the finish line? (a) 8090 m /s; (b) 90m /s;
(c) 81 m /s; (d) 809 m /s. SECTION 2-5 29
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2 - 6  Solving Problems
Before doing more worked-out Examples, let us look at how to approach problem 
solving. First, it is important to note that physics is not a collection of equations to 
be memorized. Simply searching for an equation that might work can lead you to a 
wrong result and will surely not help you understand physics. A better approach is 
to use the following (rough) procedure, which we put in a special “Problem 
Solving Strategy.” (Other such Problem Solving Strategies, as an aid, will be found 
throughout the book.)

c, O L V /

1. Read and reread the whole problem carefully before 
trying to solve it.

2. Decide what object (or objects) you are going to 
9* study, and for what time interval. You can often

choose the initial time to be t = 0.

unknown. Sometimes several sequential calculations, 
or a combination of equations, may be needed. It is 
often preferable to solve algebraically for the desired 
unknown before putting in numerical values.

7. Carry out the calculation if it is a numerical problem. 
Keep one or two extra digits during the calculations, 
but round off the final answer(s) to the correct 
number of significant figures (Section 1-3).

8. Think carefully about the result you obtain: Is it 
reasonable? Does it make sense according to your 
own intuition and experience? A good check is to do 
a rough estimate using only powers of ten, as 
discussed in Section 1-6. Often it is preferable to do 
a rough estimate at the start of a numerical problem 
because it can help you focus your attention on 
finding a path toward a solution.

9. A very important aspect of doing problems is 
keeping track of units. An equals sign implies the 
units on each side must be the same, just as the 
numbers must. If the units do not balance, a mistake 
has no doubt been made. This can serve as a check 
on your solution (but it only tells you if you’re 
wrong, not if you’re right). Always use a consistent 
set of units.

3. Draw a diagram or picture of the situation, with 
coordinate axes wherever applicable. [You can place 
the origin of coordinates and the axes wherever you 
like to make your calculations easier.]

4. Write down what quantities are “known” or “given,” 
and then what you want to know. Consider quanti­
ties both at the beginning and at the end of the 
chosen time interval.

5. Think about which principles of physics apply in this 
problem. Use common sense and your own experi­
ences. Then plan an approach.

6. Consider which equations (and/or definitions) relate 
the quantities involved. Before using them, be sure 
their range of validity includes your problem (for 
example, Eqs. 2-12 are valid only when the accelera­
tion is constant). If you find an applicable equation 
that involves only known quantities and one desired 
unknown, solve the equation algebraically for the

FIGURE 2-20 Example 2 -10.

a -  2,00 m/s2 a = 2.00 m/a2

Vo = 0 30.0 m

Acceleration of a car. How long does it take a car to cross
a 30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 2.00 m/s2?

APPROACH We follow the Problem Solving Strategy above, step by step.
SOLUTION
1. Reread the problem. Be sure you understand what it asks for (here, a time 

interval).
2. The object under study is the car. We choose the time interval: t = 0, the 

initial time, is the moment the car starts to accelerate from rest (v0 = 0); 
the time t is the instant the car has traveled the full 30.0-m width of the 
intersection.

3. Draw a diagram: the situation is shown in Fig. 2-20, where the car is shown 
moving along the positive x axis. We choose x0 = 0 at the front bumper of the 
car before it starts to move.

EXAMPLE 2-10

30 CHAPTER 2 Describing Motion: Kinematics in One Dimension



4. The “knowns” and the “wanted” are shown in the Table in the margin, and we 
choose x0 = 0. Note that “starting from rest” means v = 0 at t = 0; that is,
v0 = 0.

5. The physics: the motion takes place at constant acceleration, so we can use the 
kinematic equations, Eqs. 2-12.

6. Equations: we want to find the time, given the distance and acceleration; Eq.
2-12b is perfect since the only unknown quantity is t. Setting v0 = 0 and 
jc0 = 0 in Eq. 2-12b (x = xQ + v0t + \a t2), we can solve for t :

tl = —

2'
2x
a

so

t = A —

7. The calculation:

t = A —  =
2(30.0 m)

= 5.48 s.
2.00 m/s2

This is our answer. Note that the units come out correctly.
8. We can check the reasonableness of the answer by calculating the final velocity 

v = at = (2.00m/s2)(5.48 s) = 10.96 m/s, and then finding x = x0 + vt = 
0 + \  (10.96 m/s + 0)(5.48s) = 30.0 m, which is our given distance.

9. We checked the units, and they came out perfectly (seconds).
NOTE In steps 6 and 7, when we took the square root, we should have 
written t = ± \^2 x /a  = ± 5.48 s. Mathematically there are two solutions. But 
the second solution, t = -5.48 s, is a time before our chosen time interval and 
makes no sense physically. We say it is “unphysical” and ignore it.

We explicitly followed the steps of the Problem Solving Strategy for Example 2-10. 
In upcoming Examples, we will use our usual “Approach” and “Solution” to avoid 
being wordy.

Known Wanted

*o =  0 t
x  =  30.0 m
a =  2.00 m /s2oII5*

ESTIMATE"! Air bags. Suppose you want to design an air- P H Y S I C S  A P P L I E DEXAMPLE 2-11
bag system that can protect the driver at a speed of 100 km/h (60 mph) if the car 
hits a brick wall. Estimate how fast the air bag must inflate (Fig. 2-21) to effec­
tively protect the driver. How does the use of a seat belt help the driver?

APPROACH We assume the acceleration is roughly constant, so we can use 
Eqs. 2-12. Both Eqs. 2-12a and 2-12b contain t, our desired unknown. They both 
contain a, so we must first find a, which we can do using Eq. 2-12c if we know the 
distance x  over which the car crumples. A rough estimate might be about 1 meter. We 
choose the time interval to start at the instant of impact with the car moving at 
v0 = 100 km/h, and to end when the car comes to rest (v = 0) after traveling 1 m. 
SOLUTION We convert the given initial speed to SI units: 100 km/h = 
100 X 103 m/3600 s = 28 m/s. We then find the acceleration from Eq. 2-12c:

(28 m /s)2
a = -  —  = ----- — ------ = -390 m /s .2x 2.0 m

This enormous acceleration takes place in a time given by (Eq. 2-12a):
3 0 -  28 m/s

t =
v

0.07 s.
a -390 m/s2

To be effective, the air bag would need to inflate faster than this.
What does the air bag do? It spreads the force over a large area of the chest 

(to avoid puncture of the chest by the steering wheel). The seat belt keeps the 
person in a stable position against the expanding air bag.

Car safety— air bags

FIGURE 2-21 Example 2 -11 . 
A n air bag deploying on impact.
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FIGURE 2-22 Exam ple 2 -12:  
stopping distance for a braking car. Tm vet during — Tnivel during .

reaction litne  ̂ FOTmJ '

v  = constant = 14 m/s v  decreases from 14 m/s to zero
t = 0.50 s a = -  6.0 m/s2 

a = 0

0 P H Y S I C S  A P P L I E D
Braking distances

Part 1: Reaction time

Known Wanted
t  =  0.50 s X

Vq =  14 m /s
v  =  14 m /s
a =  0

*o =  0

Part 2: Braking

Known Wanted
X q =  7.0 m X

Vq =  14 m /s
v  =  0
a =  - 6 .0  m /s2

FIGURE 2-23 Exam ple 2 -1 2 . 
Graphs o f (a) v  vs. t and (b ) x  vs. t.

32 CHAPTER 2

EXAMPLE 2-12 ESTIMATE"! Braking distances. Estimate the minimum 
stopping distance for a car, which is important for traffic safety and traffic design. 
The problem is best dealt with in two parts, two separate time intervals. (1) The 
first time interval begins when the driver decides to hit the brakes, and ends 
when the foot touches the brake pedal. This is the “reaction time” during which 
the speed is constant, so a = 0. (2) The second time interval is the actual 
braking period when the vehicle slows down (a ^  0) and comes to a stop. The 
stopping distance depends on the reaction time of the driver, the initial speed of 
the car (the final speed is zero), and the acceleration of the car. For a dry road 
and good tires, good brakes can decelerate a car at a rate of about 5m /s2 to 
8m /s2. Calculate the total stopping distance for an initial velocity of 50 km/h 
(= 14 m /s «  31m i/h) and assume the acceleration of the car is -6 .0  m /s2 (the 
minus sign appears because the velocity is taken to be in the positive x  direction 
and its magnitude is decreasing). Reaction time for normal drivers varies from 
perhaps 0.3 s to about 1.0 s; take it to be 0.50 s.
APPROACH During the “reaction time,” part (1), the car moves at constant 
speed of 14 m/s, so a = 0. Once the brakes are applied, part (2), the acceleration 
is a = -6 .0  m /s2 and is constant over this time interval. For both parts a is 
constant, so we can use Eqs. 2-12.
SOLUTION Part (1). We take x0 = 0 for the first time interval, when the driver 
is reacting (0.50 s): the car travels at a constant speed of 14 m /s so a = 0. See 
Fig. 2-22 and the Table in the margin. To find x, the position of the car at 
t = 0.50 s (when the brakes are applied), we cannot use Eq. 2 - 12c because x  is 
multiplied by a, which is zero. But Eq. 2 - 12b works:

x = v0t + 0 = (14m/s)(0.50s) = 7.0 m.
Thus the car travels 7.0 m during the driver’s reaction time, until the instant the 
brakes are applied. We will use this result as input to part (2).
Part (2). During the second time interval, the brakes are applied and the car is 
brought to rest. The initial position is x0 = 7.0 m (result of part (1)), and other 
variables are shown in the second Table in the margin. Equation 2 -12a doesn’t 
contain x; Eq. 2-12b contains x but also the unknown t. Equation 2-12c, 
v2 — vl = 2a(x — jc0), is what we want; after setting x0 = 7.0 m, we solve for x, 
the final position of the car (when it stops):

x0 2 a
0 -  (14 m /s)2 -196 m /s

= 7.0 m H----- ----------- ——- = 7.0 m H------ —— —r~
2( -  6.0 m /s2) -1 2  m /s2

= 7.0 m + 16 m = 23 m.
The car traveled 7.0 m while the driver was reacting and another 16 m during the 
braking period before coming to a stop, for a total distance traveled of 23 m. 
Figure 2-23 shows graphs of (a) v vs. t and (b) x vs. t.
NOTE From the equation above for x, we see that the stopping distance after the 
driver hit the brakes (= x -  x0) increases with the square of the initial speed, not 
just linearly with speed. If you are traveling twice as fast, it takes four times the 
distance to stop.



EXAMPLE 2-13 ESTIMATE"! Two Moving Objects: Police and Speeder.
A car speeding at 150 km/h passes a still police car which immediately takes off 
in hot pursuit. Using simple assumptions, such as that the speeder continues at 
constant speed, estimate how long it takes the police car to overtake the speeder. 
Then estimate the police car’s speed at that moment and decide if the assump­
tions were reasonable.
APPROACH When the police car takes off, it accelerates, and the simplest 
assumption is that its acceleration is constant. This may not be reasonable, but 
let’s see what happens. We can estimate the acceleration if we have noticed 
automobile ads, which claim cars can accelerate from rest to 100 km/h in 5.0 s. So 
the average acceleration of the police car could be approximately

cip —
100 km/h 

5.0 s
=  20

km/h 11000 m
1 km j \ 3600 s

l h
= 5.6 m/s2.

SOLUTION We need to set up the kinematic equations to determine the unknown 
quantities, and since there are two moving objects, we need two separate sets of 
equations. We denote the speeding car’s position by xs and the police car’s 
position by xP. Because we are interested in solving for the time when the two 
vehicles arrive at the same position on the road, we use Eq. 2-12b for each car:

xs = vost + ^ast2 = (150 km/h)? = (42 m/s )?

xP = v0Pt + \a Yt2 = ^(5.6 m/s2)?2,

where we have set t>0P = 0 and as = 0 (speeder assumed to move at constant 
speed). We want the time when the cars meet, so we set xs = xF and solve for ?:

(42 m/s)? = (2.8 m/s2)?2.

The solutions are

42 m/s
0 and ? =

2.8 m/s2
= 15 s.

The first solution corresponds to the instant the speeder passed the police car. 
The second solution tells us when the police car catches up to the speeder, 15 s 
later. This is our answer, but is it reasonable? The police car’s speed at ? = 15 s is

Vp = -%> + aFt = 0 + (5.6m/s2)(15 s) = 84 m/s

or 300 km/h (« 190 mi/h). Not reasonable, and highly dangerous.
NOTE More reasonable is to give up the assumption of constant acceleration. The 
police car surely cannot maintain constant acceleration at those speeds. Also, the 
speeder, if a reasonable person, would slow down upon hearing the police siren. 
Figure 2-24 shows (a) x vs. ? and (b) v vs. ? graphs, based on the original assumption 
of = constant, whereas (c) shows v vs. ? for more reasonable assumptions.

A  CAUTI ON
Initial assumptions need to be 
checked out fo r reasonableness

FIGURE 2-24 Example 2 -13.

(a) (b) (c)
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FIGURE 2-25 Galileo Galilei 
(1564-1642).

/j\ CAUTION_______
A  freely falling object increases 
in speed, but not in proportion  

to its mass or weight

FIGURE 2-26 Multiflash 
photograph of a falling apple, at equal 
time intervals. The apple falls farther 
during each successive interval, which 
means it is accelerating.

Acceleration due to gravity

M  M

(a) <b>

2 - 7  Freely Falling Objects
One of the most common examples of uniformly accelerated motion is that of an 
object allowed to fall freely near the Earth’s surface. That a falling object is accel­
erating may not be obvious at first. And beware of thinking, as was widely believed 
before the time of Galileo (Fig. 2-25), that heavier objects fall faster than lighter 
objects and that the speed of fall is proportional to how heavy the object is.

Galileo made use of his new technique of imagining what would happen in 
idealized (simplified) cases. For free fall, he postulated that all objects would fall with 
the same constant acceleration in the absence of air or other resistance. He showed 
that this postulate predicts that for an object falling from rest, the distance traveled 
will be proportional to the square of the time (Fig. 2-26); that is, d oc t2. We can see 
this from Eq. 2-12b; but Galileo was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall, Galileo 
made use of a clever argument: a heavy stone dropped from a height of 2 m will 
drive a stake into the ground much further than will the same stone dropped from 
a height of only 0.2 m. Clearly, the stone must be moving faster in the former case.

Galileo claimed that all objects, light or heavy, fall with the same acceleration, at 
least in the absence of air. If you hold a piece of paper horizontally in one hand and 
a heavier object—say, a baseball—in the other, and release them at the same time as 
in Fig. 2-27a, the heavier object will reach the ground first. But if you repeat the 
experiment, this time crumpling the paper into a small wad (see Fig. 2-27b), you will 
find that the two objects reach the floor at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have a 
large surface area. But in many ordinary circumstances this air resistance is negli­
gible. In a chamber from which the air has been removed, even light objects like a 
feather or a horizontally held piece of paper will fall with the same acceleration as 
any other object (see Fig. 2-28). Such a demonstration in vacuum was not possible 
in Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is 
often called the “father of modern science,” not only for the content of his science 
(astronomical discoveries, inertia, free fall) but also for his approach to science 
(idealization and simplification, mathematization of theory, theories that have 
testable consequences, experiments to test theoretical predictions).

Galileo’s specific contribution to our understanding of the motion of falling 
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all objects
fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity on the surface of the 
Earth, and we give it the symbol g. Its magnitude is approximately

g = 9.80 m/s2. [at surface of Earth]
In British units g is about 32 ft/s2. Actually, g varies slightly according to latitude and 
elevation, but these variations are so small that we will ignore them for most

FIGURE 2-27 (a) A  ball and a 
light piece of paper are dropped at 
the same time, (b) Repeated, with 
the paper wadded up.

FIGURE 2-28 A  rock 
and a feather are dropped 
simultaneously (a) in air,
(b) in a vacuum.

<
<

Air-filled lube Evacuated lube

(a) <b)
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purposes. The effects of air resistance are often small, and we will neglect them for 
the most part. However, air resistance will be noticeable even on a reasonably heavy 
object if the velocity becomes large.1 Acceleration due to gravity is a vector as is any 
acceleration, and its direction is downward, toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 2-12, where 
for a we use the value of g given above. Also, since the motion is vertical we will 
substitute y in place of x, and y0 in place of jc0 . We take y0 = 0 unless otherwise 
specified. It is arbitrary whether we choose y to be positive in the upward direction 
or in the downward direction; but we must be consistent about it throughout a 
problem’s solution.

EXERCISE H Return to the Chapter-Opening Question, page 18, and answer it again now. 
Try to explain why you may have answered differently the first time.

U 2 E H H H E B  Falling from a tower. Suppose that a ball is dropped 
(v0 = 0) from a tower 70.0 m high. How far will it have fallen after a time 
ti = 1.00 s, t2 = 2.00 s, and t3 = 3.00 s? Ignore air resistance.
APPROACH Let us take y as positive downward, so the acceleration is 
a = g = +9.80m/s2. We set v0 = 0 and = 0. We want to find the position y 
of the ball after three different time intervals. Equation 2 -12b, with x replaced 
by y, relates the given quantities (t , a, and v0) to the unknown y.
SOLUTION We set t = tx = 1.00 s inEq.2-12b:

yi = v0t-i + \a t\ = 0 + \a t\ = ^(9.80m/s2)(1.00s)2 = 4.90 m. 
The ball has fallen a distance of 4.90 m during the time interval t = 0 to 
tx = 1.00 s. Similarly, after 2.00 s (= t2), the ball’s position is 

y2 = \a t\ = |(9.80 m/s2)(2.00 s)2 = 19.6 m.
Finally, after 3.00 s (= t3), the ball’s position is (see Fig. 2-29) 

y3 = \a t\ = |(9.80 m/s2)(3.00 s)2 = 44.1m.

■ Thrown down from a tower. Suppose the ball in Example 2-14
is thrown downward with an initial velocity of 3.00 m/s, instead of being dropped.
(a) What then would be its position after 1.00 s and 2.00 s? (b) What would its 
speed be after 1.00 s and 2.00 s? Compare with the speeds of a dropped ball.
APPROACH Again we use Eq. 2-12b, but now v0 is not zero, it is v0 = 3.00 m/s. 
SOLUTION (a) At t = 1.00 s, the position of the ball as given by Eq. 2-12b is 

y = v0t + \a t2 = (3.00 m/s) (1.00 s) + |(9.80m /s2)(1.00s)2 = 7.90 m. 
At t = 2.00 s, (time interval t = 0 to t = 2.00 s), the position is

y = v0t + \a t2 = (3.00 m/s) (2.00 s) + |(9.80m /s2)(2.00s)2 = 25.6 m. 
As expected, the ball falls farther each second than if it were dropped with vQ = 0.
(b) The velocity is obtained from Eq. 2 -12a:

v = v0 + at
= 3.00 m/s + (9.80 m/s2)(1.00s) = 12.8 m/s [at tx = 1.00 s]
= 3.00 m/s + (9.80m/s2)(2.00s) = 22.6 m/s. [at ?2 = 2.00 s]

In Example 2-14, when the ball was dropped (v0 = 0), the first term (v0) in 
these equations was zero, so 

v = 0 + at
= (9.80 m/s2)(1.00 s) = 9.80 m/s [at ^ = 1.00 s]
= (9.80m/s2)(2.00s) = 19.6 m/s. [at ?2 = 2.00 s]

NOTE For both Examples 2-14 and 2-15, the speed increases linearly in time by
9.80 m/s during each second. But the speed of the downwardly thrown ball at any 
instant is always 3.00 m/s (its initial speed) higher than that of a dropped ball.

j P R O B L E M  S O L V I N G
You can choose y  to be positive  
either up or dow n

FIGURE 2-29 Example 2 -14.
(a) A n object dropped from a tower 
falls with progressively greater 
speed and covers greater distance 
with each successive second. (See  
also Fig. 2 -26 .) (b) Graph of y  vs. t.

(a)

trThe speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls far 
enough, it will reach a maximum velocity called the terminal velocity due to air resistance.

y\~ ^  
(After 1.00 s)

'y2 = 19.6 m 
(After 2.00 s)

_y3 = 44.1 m 
(After 3.00 s)

Acceleration 
due to
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B(u = 0) 
ft

FIGURE 2-30 A n object thrown 
into the air leaves the thrower’s 
hand at A , reaches its maximum  
height at B, and returns to the 
original position at C. Examples 
2 -1 6 ,2 -1 7 ,2 -1 8 , and 2-19.

A  CAUTI ON
Quadratic equations have tw o  
solutions. Sometimes only one 

corresponds to reality, 
sometimes both

EXAMPLE 2-16 Ball thrown upward, I. A person throws a ball upward into the 
air with an initial velocity of 15.0 m/s. Calculate (a) how high it goes, and (b) how 
long the ball is in the air before it comes back to the hand. Ignore air resistance.

APPROACH We are not concerned here with the throwing action, but only with 
the motion of the ball after it leaves the thrower’s hand (Fig. 2-30) and until it 
comes back to the hand again. Let us choose y to be positive in the upward direc­
tion and negative in the downward direction. (This is a different convention from 
that used in Examples 2-14 and 2-15, and so illustrates our options.) The acceleration 
due to gravity is downward and so will have a negative sign, a = —g = -9.80 m/s2. 
As the ball rises, its speed decreases until it reaches the highest point (B in Fig. 2-30), 
where its speed is zero for an instant; then it descends, with increasing speed. 
SOLUTION (a )  We consider the time interval from when the ball leaves the 
thrower’s hand until the ball reaches the highest point. To determine the 
maximum height, we calculate the position of the ball when its velocity equals 
zero (v = 0 at the highest point). At t = 0 (point A in Fig. 2-30) we have 

= 0, v0 = 15.0 m/s, and a = -9.80 m/s2. At time t (maximum height), 
v = 0, a = -9.80 m/s2, and we wish to find y. We use Eq. 2-12c, replacing x 
with y: v2 = Vq + 2ay. We solve this equation for y:

y =

2 2 
V L ~  Vq 0 -  (15.0 m /s)2

= 11.5 m.
2 a 2(-9.80 m/s2)

The ball reaches a height of 11.5 m above the hand.
(b) Now we need to choose a different time interval to calculate how long the 
ball is in the air before it returns to the hand. We could do this calculation in two 
parts by first determining the time required for the ball to reach its highest point, 
and then determining the time it takes to fall back down. However, it is simpler 
to consider the time interval for the entire motion from A to B to C (Fig. 2-30) 
in one step and use Eq. 2 -12b. We can do this because y represents position or 
displacement, and not the total distance traveled. Thus, at both points A and C, 
y = 0. We use Eq. 2-12b with a = -9.80 m/s2 and find

y = y0 + v0t + \a t2

0 = 0 +  (15.0 m/s)^ + !(-9.80 m/s2) t2.

This equation is readily factored (we factor out one t):

(15.0 m/s -  4.90 m/s2 t)t = 0.

There are two solutions:
15.0 m/s

t = 0 and t = 3.06 s.
4.90 m/s2

The first solution (t = 0) corresponds to the initial point (A) in Fig. 2-30, when 
the ball was first thrown from y = 0. The second solution, t = 3.06 s, corresponds 
to point C, when the ball has returned to y = 0. Thus the ball is in the air 3.06 s. 
NOTE We have ignored air resistance, which could be significant, so our result is 
only an approximation to a real, practical situation.

We did not consider the throwing action in this Example. Why? Because during 
the throw, the thrower’s hand is touching the ball and accelerating the ball at a rate 
unknown to us—the acceleration is not g. We consider only the time when the ball 
is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically 
produces two solutions. In physics, sometimes only one solution corresponds to the 
real situation, as in Example 2-10, in which case we ignore the “unphysical” 
solution. But in Example 2-16, both solutions to our equation in t2 are physically 
meaningful: t = 0 and t = 3.06 s.
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CONCEPTUAL EXAMPLE 2-171 Two possible misconceptions. Give examples 
to show the error in these two common misconceptions: (1) that acceleration and 
velocity are always in the same direction, and (2) that an object thrown upward has 
zero acceleration at the highest point (B in Fig. 2-30).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily in 
the same direction. When the ball in Example 2-16 is moving upward, its velocity 
is positive (upward), whereas the acceleration is negative (downward). (2) At the 
highest point (B in Fig. 2-30), the ball has zero velocity for an instant. Is the 
acceleration also zero at this point? No. The velocity near the top of the arc 
points upward, then becomes zero (for zero time) at the highest point, and then 
points downward. Gravity does not stop acting, so a = —g = -9.80 m/s2 even 
there. Thinking that a = 0 at point B would lead to the conclusion that upon 
reaching point B, the ball would stay there: if the acceleration (= rate of change 
of velocity) were zero, the velocity would stay zero at the highest point, and the 
ball would stay up there without falling. In sum, the acceleration of gravity always 
points down toward the Earth, even when the object is moving up.

Ball thrown upward, II. Let us consider again the ball thrown 
upward of Example 2-16, and make more calculations. Calculate (a) how much 
time it takes for the ball to reach the maximum height (point B in Fig. 2-30), and
( b )  the velocity of the ball when it returns to the thrower’s hand (point C).

APPROACH Again we assume the acceleration is constant, so we can use 
Eqs. 2-12. We have the height of 11.5 m from Example 2-16. Again we take y as 
positive upward.
SOLUTION (a) We consider the time interval between the throw (t = 0, 

= 15.0 m/s) and the top of the path (y = +11.5 m, v = 0), and we want to 
find t. The acceleration is constant at a = —g = -9.80 m/s2. Both Eqs. 2-12a 
and 2-12b contain the time t with other quantities known. Let us use Eq. 2-12a 
with a = -9.80 m/s2, v0 = 15.0 m/s, and v = 0:

v = v0 + at;

setting v = 0 and solving for t gives

v0 15.0 m/s
t = ----- = ------- ——----—r = 1.53 s.

a -9.80 m/s2

This is just half the time it takes the ball to go up and fall back to its original 
position [3.06 s, calculated in part (b) of Example 2-16]. Thus it takes the same 
time to reach the maximum height as to fall back to the starting point.
( b )  Now we consider the time interval from the throw (t = 0, v0 = 15.0 m/s) 
until the ball’s return to the hand, which occurs at t = 3.06 s (as calculated in 
Example 2-16), and we want to find v when t = 3.06 s:

v = vQ + at = 15.0 m/s -  (9.80m/s2)(3.06 s) = -15.0 m/s.

NOTE The ball has the same speed (magnitude of velocity) when it returns to the 
starting point as it did initially, but in the opposite direction (this is the meaning 
of the negative sign). And, as we saw in part (a), the time is the same up as down. 
Thus the motion is symmetrical about the maximum height.

The acceleration of objects such as rockets and fast airplanes is often given as 
a multiple of g = 9.80 m/s2. For example, a plane pulling out of a dive and under­
going 3.00 g’s would have an acceleration of (3.00)(9.80m/s2) = 29.4 m/s2.

| EXERCISE I If a car is said to accelerate at 0.50 g, what is its acceleration in m /s2?

EXAMPLE 2-18

/j\ CAUTION___________
(1) Velocity and acceleration are 
not always in the same direction; 
the acceleration (o f  gravity) always 
points dow n
(2) a 0 even at the highest poin t 
o f  a trajectory
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B (v = 0)
A 
ii

c

FIGURE 2-30
(Repeated for Example 2 -19 )

EXAMPLE 2-19 Ball thrown upward. III; the quadratic formula. For the
ball in Example 2-18, calculate at what time t the ball passes a point 8.00 m 
above the person’s hand. (See repeated Fig. 2-30 here).

APPROACH We choose the time interval from the throw (t = 0, = 15.0 m/s) 
until the time t (to be determined) when the ball is at position y = 8.00 m, using 
Eq. 2-12b.
SOLUTION We want to find t, given y = 8.00 m, y0 = 0, vQ = 15.0 m/s, and 
a = -9.80 m/s2. We use Eq. 2-12b:

y = y0 + v0t + \a t2

8.00 m = 0 + (15.0m/s)f + \  (-9.80 m/s2) t2.

To solve any quadratic equation of the form at2 + bt + c = 0, where 0, b, and c 
are constants (a is not acceleration here), we use the quadratic formula:

b ± \ f b 2 4 ac
t = 2 a

c = 0:We rewrite our y equation just above in standard form, at2 + bt

(4.90 m/s2) t2 -  (15.0 m /s)t + (8.00 m) = 0.

So the coefficient a is 4.90 m/s2, b is -15.0 m/s, and c is 8.00 m. Putting these into 
the quadratic formula, we obtain

15.0 m/s + m /s)2 -  4(4.90 m/s2)(8.00m)
2(4.90 m/s2)

which gives us t = 0.69 s and t = 2.37 s. Are both solutions valid? Yes, because 
the ball passes y = 8.00 m when it goes up (t = 0.69 s) and again when it 
comes down (t = 2.37 s).
NOTE Figure 2-31 shows graphs of (a) y vs. t and (b) v vs. t for the ball thrown 
upward in Fig. 2-30, incorporating the results of Examples 2-16,2-18, and 2-19.

FIGURE 2-31 Graphs of (a) y  vs. t, (b) v  vs. t  for a ball thrown upward, 
Examples 2 -1 6 ,2 -1 8 , and 2-19 .

Ball thrown upward at edge of cliff. Suppose that the 
person of Examples 2-16, 2-18, and 2-19 is standing on the edge of a cliff, so 
that the ball can fall to the base of the cliff 50.0 m below as in Fig. 2-32. (a) How 
long does it take the ball to reach the base of the cliff? (b) What is the total 
distance traveled by the ball? Ignore air resistance (likely to be significant, so 
our result is an approximation).

APPROACH We again use Eq. 2-12b, but this time we set y = -50.0 m, the 
bottom of the cliff, which is 50.0 m below the initial position (y0 = 0).

EXAMPLE 2-20
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SOLUTION (a) We use Eq. 2-12b with a = -9.80 m/s2, v0 = 15.0 m/s, y0 = 0, 
and y = -50.0 m:

y = yo + v0t + \a t2 
-50.0m  = 0 + (15.0m /s)? -  |(9.80m /s2)t2.

Rewriting in the standard form we have
(4.90m/s2)?2 -  (15.0m/s)? -  (50.0m) = 0.

Using the quadratic formula, we find as solutions ? = 5.07 s and ? = -2.01 s. 
The first solution, ? = 5.07 s, is the answer we are seeking: the time it takes 
the ball to rise to its highest point and then fall to the base of the cliff. 
To rise and fall back to the top of the cliff took 3.06 s (Example 2-16); so it 
took an additional 2.01 s to fall to the base. But what is the meaning of the other 
solution, ? = -2.01 s? This is a time before the throw, when our calculation 
begins, so it isn’t relevant here.*
(b) From Example 2-16, the ball moves up 11.5 m, falls 11.5 m back down to the 
top of the cliff, and then down another 50.0 m to the base of the cliff, for a total 
distance traveled of 73.0 m. Note that the displacement, however, was -50.0 m. 
Figure 2-33 shows the y vs. ? graph for this situation.

EXERCISE J Two balls are thrown from a cliff. One is thrown directly up, the other directly 
down, each with the same initial speed, and both hit the ground below the cliff. Which 
ball hits the ground at the greater speed: (a) the ball thrown upward, (b) the ball thrown 
downward, or (c) both the same? Ignore air resistance.

2 —8 Variable Acceleration; Integral Calculus
In this brief optional Section we use integral calculus to derive the kinematic equa­
tions for constant acceleration, Eqs. 2 -12a and b. We also show how calculus can 
be used when the acceleration is not constant. If you have not yet studied simple 
integration in your calculus course, you may want to postpone reading this Section 
until you have. We discuss integration in more detail in Section 7-3, where we 
begin to use it in the physics.

First we derive Eq. 2-12a, assuming as we did in Section 2-5 that an object 
has velocity at ? = 0 and a constant acceleration a. We start with the definition 
of instantaneous acceleration, a = dv/dt, which we rewrite as 

dv = adt.
We take the definite integral of both sides of this equation, using the same nota­
tion we did in Section 2-5:

{Vdv =
Jv=Vn Jt =

= I adt
-o

which gives, since a = constant, 
v -  v0 = at.

This is Eq. 2-12a, v = v0 + at.
Next we derive Eq. 2-12b starting with the definition of instantaneous 

velocity, Eq. 2-4, v = dx/dt. We rewrite this as 
dx = v dt

or
dx = (v0 + at)dt 

where we substituted in Eq. 2 -12a.

.. I

A M

y  = 0

■y = - 5 0  m

FIGURE 2-32 Example 2 -20. 
The person in Fig. 2 -3 0  stands on 
the edge of a cliff. The ball falls to 
the base of the cliff, 50.0 m below.

FIGURE 2-33 Example 2-20 , 
the y  vs. ? graph.

of cliff

trThe solution t = -2.01 s could be meaningful in a different physical situation. Suppose that a 
person standing on top of a 50.0-m-high cliff sees a rock pass by him at t = 0 moving upward at 
15.0 m/s; at what time did the rock leave the base of the cliff, and when did it arrive back at the base 
of the cliff? The equations will be precisely the same as for our original Example, and the answers 
t = -2.01 s and t = 5.07 s will be the correct answers. Note that we cannot put all the information 
for a problem into the mathematics, so we have to use common sense in interpreting results.
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Now we integrate:
rx  rt
\ d x  =  (v0 +  a t ) d t

J x=xn Jt=0'x=x0 Jt=0

{ v0dt + \a t  dt 
Jt=o Jt=o

X  -  x0 =  v0t +  \a t2
since v0 and a are constants. This result is just Eq. 2-12b, x = x0 + v0t + I at2.

Finally let us use calculus to find velocity and displacement, given an accelera­
tion that is not constant but varies in time.

■ f r f J u U  ■ Integrating a time-varying acceleration. An experimental 
vehicle starts from rest (v0 = 0) at t = 0 and accelerates at a rate given by 
a = (7.00 m/s3) t. What is (a) its velocity and (b) its displacement 2.00 s later?
APPROACH We cannot use Eqs. 2-12 because a is not constant. We integrate the 
acceleration a = dv/dt over time to find v as a function of time; and then 
integrate v = dx/dt to get the displacement.
SOLUTION From the definition of acceleration, a = dv/dt, we have 

dv = a dt.
We take the integral of both sides from v = 0 at t = 0 to velocity v at an arbi­
trary time t:

fd v  = Ca 
Jo Jo

dt

f  (7.00 m/s3) t dt 
Jo

(7.00 m/s3) ( - = (7.00m/s3)^ y  -  o j = (3.50m/s3) t2.

At t = 2.00 s, v = (3.50 m/s3)(2.00 s)2 = 14.0 m/s.
(b) To get the displacement, we assume jc0 =  0 and start with v =  dx/dt which 
we rewrite as dx = v dt. Then we integrate from x = 0 at t = 0 to position 
x at time t:

r *  ■ rJo Jo
•2.00 s

v dt

j-3 2.00 s
= 9.33 m.

r Z.UU S f.
x = (3.50 m/s3) t2 dt = (3.50 m/s3) -  

Jo

In sum, at t = 2.00 s, v = 14.0 m/s and x = 9.33 m.

*2—9 Graphical Analysis and 
Numerical Integration

This Section is optional. It discusses how to solve certain Problems numerically, 
often needing a computer to do the sums. Some of this material is also covered in 
Chapter 7, Section 7-3.

If we are given the velocity v of an object as a function of time t, we can obtain the 
displacement, x. Suppose the velocity as a function of time, v(t), is given as a graph 
(rather than as an equation that could be integrated as discussed in Section 2-8), as 
shown in Fig 2-34a. If we are interested in the time interval from tx to t2, as shown, we 
divide the time axis into many small subintervals, , A.t2, k t3, ... , which are indicated 
by the dashed vertical lines. For each subinterval, a horizontal dashed line is drawn to 
indicate the average velocity during that time interval. The displacement during any 
subinterval is given by A.xt, where the subscript i represents the particular subinterval
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(i = 1 ,2, 3, . . .). From the definition of average velocity (Eq. 2-2) we have 
A xt = vt ̂ .

Thus the displacement during each subinterval equals the product of vt and Att , 
and equals the area of the dark rectangle in Fig. 2-34a for that subinterval. The 
total displacement between times tx and t2 is the sum of the displacements over all 
the subintervals:

h
x2 X\ = 2 Vi^ti, (2-13a)

h
where x1 is the position at tx and x2 is the position at t2. This sum equals the area 
of all the rectangles shown.

It is often difficult to estimate vt with precision for each subinterval from the 
graph. We can get greater accuracy in our calculation of x2 — x1 by breaking the 
interval t2 — tx into more, but narrower, subintervals. Ideally, we can let each Aff 
approach zero, so we approach (in principle) an infinite number of subintervals. In 
this limit the area of all these infinitesimally thin rectangles becomes exactly equal 
to the area under the curve (Fig. 2-34b). Thus the total displacement between any 
two times is equal to the area between the velocity curve and the t axis between the 
two times tx and t2. This limit can be written

h
x2 — x-i = lim ViLAf,

z 1 A t—*0 "  1 lh
or, using standard calculus notation,

x2 -  x1 = [ v(t)dt. (2-13b)
Jt,

We have let At —> 0 and renamed it dt to indicate that it is now infinitesimally small. 
The average velocity, v, over an infinitesimal time dt is the instantaneous velocity at 
that instant, which we have written v(t) to remind us that v is a function of t. 
The symbol J is an elongated S and indicates a sum over an infinite number of 
infinitesimal subintervals. We say that we are taking the integral of v(t) over dt from 
time tx to time t2, and this is equal to the area between the v(t) curve and the t axis 
between the times tx and t2 (Fig. 2-34b). The integral in Eq. 2 -13b is a definite integral, 
since the limits tx and t2 are specified.

Similarly, if we know the acceleration as a function of time, we can obtain the 
velocity by the same process. We use the definition of average acceleration 
(Eq. 2-5) and solve for Av:

Av = a At.
If a is known as a function of t over some time interval t\ to t2, we can subdivide 
this time interval into many subintervals, Att , just as we did in Fig. 2-34a. The 
change in velocity during each subinterval is Avt = at Att . The total change in 
velocity from time tx until time t2 is

h _
v2 ~ v1 = ^ a tA t i ,  (2-14a)

where v2 represents the velocity at t2 and vx the velocity at tl . This relation can be written 
as an integral by letting A£ —> 0 (the number of intervals then approaches infinity)

h

or

v2 -  vx = a{t)dt. (2-14b)
Jt,

Equations 2-14 will allow us to determine the velocity v2 at some time t2 if the 
velocity is known at tx and a is known as a function of time.

If the acceleration or velocity is known at discrete intervals of time, we can use the 
summation forms of the above equations, Eqs. 2-13a and 2-14a, to estimate velocity 
or displacement. This technique is known as numerical integration. We now take an 
Example that can also be evaluated analytically, so we can compare the results.

v

0 ----- 1---------------------- 1------ 1-----1
0

(b)

FIGURE 2-34 Graph of v  vs. t for 
the motion of a particle. In (a), the 
time axis is broken into subintervals 
of width A t i , the average velocity 
during each A i s  V(, and the area of 
all the rectangles, 2^ ; A ^, is 
numerically equal to the total 
displacement (x2 -  jci) during the 
total time (t2 -  11). In (b), A^ —» 0 
and the area under the curve is 
equal to (x2 — xi).
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FIGURE 2-35 Example 2 -22.

EXAMPLE 2-22 Numerical integration. An object starts from rest at t = 0 
and accelerates at a rate a(t) = (8.00m/s4)?2. Determine its velocity after 2.00s 
using numerical methods.
APPROACH Let us first divide up the interval t = 0.00 s to ? = 2.00 s into four 
subintervals each of duration Att = 0.50 s (Fig. 2-35). We use Eq. 2-14a with 
v2 = v, v1 = 0, t2 = 2.00 s, and tx = 0. For each of the subintervals we need to 
estimate at . There are various ways to do this and we use the simple method of 
choosing at to be the acceleration a{t) at the midpoint of each interval (an even 
simpler but usually less accurate procedure would be to use the value of a at the 
start of the subinterval). That is, we evaluate a(t) = (8.00 m/s4)?2 at ? = 0.25 s 
(which is midway between 0.00 s and 0.50 s), 0.75 s, 1.25 s, and 1.75 s.
SOLUTION The results are as follows:

i 1 2 3 4

M  m /s2) 0.50 4.50 12.50 24.50

Now we use Eq. 2-14a, and note that all A?; equal 0.50 s (so they can be factored out):
r=2.00s

v(t = 2.00 s) = 2
t= 0

= (0.50 m/s2 + 4.50 m/s2 + 12.50 m/s2 + 24.50 m/s2)(0.50s) 
= 21.0 m/s.

We can compare this result to the analytic solution given by Eq. 2-14b since the 
functional form for a is integrable analytically:

r 2.00 s
(8.00 m/s4) ?2 dt

Jo

8.00 m/s4 
3

8.00 m/s4

2.00 s

[(2.00 s)3 -  (0)31 _ 21.33 m/s

or 21.3 m/s to the proper number of significant figures. This analytic solution is 
precise, and we see that our numerical estimate is not far off even though we only 
used four A? intervals. It may not be close enough for purposes requiring high accu­
racy. If we use more and smaller subintervals, we will get a more accurate result. If 
we use 10 subintervals, each with A? = 2.00 s/10 = 0.20 s, we have to evaluate 
a(t) at ? = 0.10 s, 0.30 s ,..., 1.90 s to get the at , and these are as follows:

i 1 2  3 4 5 6 7 8 9 10

fl/( m /s2) 0.08 0.72 2.00 3.92 6.48 9.68 13.52 18.00 23.12 28.88
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Then, from Eq. 2-14a we obtain

v(t = 2.oos) =  =  ( 2 ^ ) ( ° - 200s)

= (106.4 m/s2)(0.200s) = 21.28 m/s, 
where we have kept an extra significant figure to show that this result is much 
closer to the (precise) analytic one but still is not quite identical to it. The 
percentage difference has dropped from 1.4% (0.3 m/s2/21.3 m/s2) for the four- 
subinterval computation to only 0.2% (0.05/21.3) for the 10-subinterval one.

In the Example above we were given an analytic function that was integrable, so 
we could compare the accuracy of the numerical calculation to the known precise one. 
But what do we do if the function is not integrable, so we can’t compare our numerical 
result to an analytic one? That is, how do we know if we’ve taken enough subintervals 
so that we can trust our calculated estimate to be accurate to within some desired uncer­
tainty, say 1 percent? What we can do is compare two successive numerical calculations: 
the first done with n subintervals and the second with, say, twice as many subintervals 
(2n). If the two results are within the desired uncertainty (say 1 percent), we can usually 
assume that the calculation with more subintervals is within the desired uncertainty of 
the true value. If the two calculations are not that close, then a third calculation, with 
more subintervals (maybe double, maybe 10 times as many, depending on how good 
the previous approximation was) must be done, and compared to the previous one.

The procedure is easy to automate using a computer spreadsheet application.



If we wanted to also obtain the displacement x  at some time, we would have to 
do a second numerical integration over v, which means we would first need to 
calculate v  for many different times. Programmable calculators and computers are 
very helpful for doing the long sums.

Problems that use these numerical techniques are found at the end of many 
Chapters of this book; they are labeled N um erical/Com puter and are given an 
asterisk to indicate that they are optional.

Summary
[The Summary that appears at the end of each Chapter in this book 
gives a brief overview of the main ideas of the Chapter. The Summary 
cannot serve to give an understanding of the material, which can be 
accomplished only by a detailed reading of the Chapter.]

Kinematics deals with the description of how objects move. 
The description of the motion of any object must always be 
given relative to some particular reference frame.

The displacement of an object is the change in position of 
the object.

Average speed is the distance traveled divided by the 
elapsed time or time interval, At, the time period over which we 
choose to make our observations. An object’s average velocity 
over a particular time interval At is its displacement Ax during 
that time interval, divided by At:

v = §  • (2-2)

The instantaneous velocity, whose magnitude is the same as 
the instantaneous speed, is defined as the average velocity taken 
over an infinitesimally short time interval (At —» 0):

On a graph of position vs. time, the slope is equal to the 
instantaneous velocity.

Acceleration is the change of velocity per unit time. An 
object’s average acceleration over a time interval At is

_ Av
a = (2-5)

where Av is the change of velocity during the time interval At.
Instantaneous acceleration is the average acceleration 

taken over an infinitesimally short time interval:
Av dv a = lim —— = — • 
M  dt

(2- 6)

Ax dx v = lim —— = — »Af̂ o a t dt
where dx/dt is the derivative of x with respect to t.

(2-4)

If an object moves in a straight line with constant acceleration, the
velocity v and position x  are related to the acceleration a, the elapsed
time t, the initial position x0, and the initial velocity v0 by Eqs. 2-12:

v = v0 + at, x = x0 + v0t + \a t2,
2 2 w   ̂ -  v  +  (2- 12)  vL = v% + 2a(x -  x0), v = — -----

Objects that move vertically near the surface of the Earth, 
either falling or having been projected vertically up or down, 
move with the constant downward acceleration due to gravity, 
whose magnitude is g = 9.80 m/s2 if air resistance can be ignored.

[*The kinematic Equations 2-12 can be derived using inte­
gral calculus.]

Questions
1. Does a car speedometer measure speed, velocity, or both?
2. Can an object have a varying speed if its velocity is 

constant? Can it have varying velocity if its speed is 
constant? If yes, give examples in each case.

3. When an object moves with constant velocity, does its 
average velocity during any time interval differ from its 
instantaneous velocity at any instant?

4. If one object has a greater speed than a second object, does 
the first necessarily have a greater acceleration? Explain, 
using examples.

5. Compare the acceleration of a motorcycle that accelerates 
from 80 km/h to 90 km/h with the acceleration of a bicycle 
that accelerates from rest to 10 km/h in the same time.

6. Can an object have a northward velocity and a southward 
acceleration? Explain.

7. Can the velocity of an object be negative when its accelera­
tion is positive? What about vice versa?

8. Give an example where both the velocity and acceleration 
are negative.

9. Two cars emerge side by side from a tunnel. Car A is trav­
eling with a speed of 60 km/h and has an acceleration of 
40km/h/min. Car B has a speed of 40 km/h and has an 
acceleration of 60 km/h/min. Which car is passing the other 
as they come out of the tunnel? Explain your reasoning.

10. Can an object be increasing in speed as its acceleration 
decreases? If so, give an example. If not, explain.

11. A baseball player hits a ball straight up into the air. It leaves the 
bat with a speed of 120 km/h. In the absence of air resistance, 
how fast would the ball be traveling when the catcher catches it?

12. As a freely falling object speeds up, what is happening to its 
acceleration—does it increase, decrease, or stay the same?
(a) Ignore air resistance, (b) Consider air resistance.

13. You travel from point A to point B in a car moving at a 
constant speed of 70 km/h. Then you travel the same 
distance from point B to another point C, moving at a constant 
speed of 90 km/h. Is your average speed for the entire trip 
from A to C 80 km/h? Explain why or why not.

14. Can an object have zero velocity and nonzero acceleration 
at the same time? Give examples.

15. Can an object have zero acceleration and nonzero velocity 
at the same time? Give examples.

16. Which of these motions is not at constant acceleration: a 
rock falling from a cliff, an elevator moving from the second 
floor to the fifth floor making stops along the way, a dish 
resting on a table?

17. In a lecture demonstration, a 3.0-m-long vertical string with ten 
bolts tied to it at equal intervals is dropped from the ceiling of 
the lecture hall. The string falls on a tin plate, and the class 
hears the clink of each bolt as it hits the plate. The sounds will 
not occur at equal time intervals. Why? Will the time between 
clinks increase or decrease near the end of the fall? How could 
the bolts be tied so that the clinks occur at equal intervals?
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18. Describe in words the motion plotted in Fig. 2-36 in terms 19. Describe in words the motion of the object graphed in Fig. 2-37. 
of v, a, etc. [Hint: First try to duplicate the motion plotted 
by walking or moving your hand.]

0 10 20 30 40 50 60 70 80 90 100 110 120
t(  s)

FIGURE 2-37 Question 19, Problem 23.

FIGURE 2-36 Question 18, Problems 9 and 86.

| Problems
[The Problems at the end of each Chapter are ranked I, II, or III 
according to estimated difficulty, with (I) Problems being easiest. 
Level III are meant as challenges for the best students. The Prob­
lems are arranged by Section, meaning that the reader should 
have read up to and including that Section, but not only that 
Section—Problems often depend on earlier material. Finally, 
there is a set of unranked “General Problems” not arranged by 
Section number.]

2-1 to 2-3 Speed and Velocity
1. (I) If you are driving 110 km/h along a straight road and 

you look to the side for 2.0 s, how far do you travel during 
this inattentive period?

2. (I) What must your car’s average speed be in order to travel 
235 km in 3.25 h?

3. (I) A particle at t\ = -2.0 s is at x\ = 4.3 cm and at 
t2 = 4.5 s is at x2 = 8.5 cm. What is its average velocity? 
Can you calculate its average speed from these data?

4. (I) A rolling ball moves from x1 = 3.4 cm to x2 = —4.2 cm 
during the time from t\ = 3.0 s to t2 = 5.1 s. What is its 
average velocity?

5. (II) According to a rule-of-thumb, every five seconds between 
a lightning flash and the following thunder gives the distance 
to the flash in miles. Assuming that the flash of light arrives in 
essentially no time at all, estimate the speed of sound in m/s 
from this rule. What would be the rule for kilometers?

6. (II) You are driving home from school steadily at 95 km/h 
for 130 km. It then begins to rain and you slow to 65 km/h. 
You arrive home after driving 3 hours and 20 minutes.
(a) How far is your hometown from school? (b) What was 
your average speed?

7. (II) A horse canters away from its trainer in a straight line, 
moving 116 m away in 14.0 s. It then turns abruptly and 
gallops halfway back in 4.8 s. Calculate (a) its average speed 
and (b) its average velocity for the entire trip, using “away 
from the trainer” as the positive direction.

8. (II) T
x = 34 + lOt — 213, where t is in seconds and x in meters. 
{a) Plot jc as a function of t from t = 0 to f = 3.0 s.
(b) Find the average velocity of the object between 0 
and 3.0 s. (c) At what time between 0 and 3.0 s is the 
instantaneous velocity zero?

9. (II) The position of a rabbit along a straight tunnel as a 
function of time is plotted in Fig. 2-36. What is its instanta­
neous velocity (a) at t = 10.0 s and (b) at t = 30.0 s? 
What is its average velocity (c) between t = 0 and 
t = 5.0 s, (<d) between t = 25.0 s and t = 30.0 s, and 
(e) between t = 40.0 s and t = 50.0 s?

10. (II) On an audio compact disc (CD), digital bits of information 
are encoded sequentially along a spiral path. Each bit occupies 
about 0.28 /xm. A CD player’s readout laser scans along the 
spiral’s sequence of bits at a constant speed of about 1.2 m/s as 
the CD spins, (a) Determine the number N  of digital bits that a 
CD player reads every second, (b) The audio information is 
sent to each of the two loudspeakers 44,100 times per second. 
Each of these samplings requires 16 bits and so one would (at 
first glance) think the required bit rate for a CD player is

Nn = 2 44,100
samplings ̂  

second )(m
bits

second

where the 2 is for the 2 loudspeakers (the 2 stereo channels). 
Note that No is less than the number N  of bits actually read 
per second by a CD player. The excess number of bits 
(= N  — N0) is needed for encoding and error-correction. 
What percentage of the bits on a CD are dedicated to 
encoding and error-correction?

11. (II) A car traveling 95 km/h is 110 m behind a truck trav­
eling 75 km/h. How long will it take the car to reach the 
truck?

12. (II) Two locomotives approach each other on parallel 
tracks. Each has a speed of 95 km/h with respect to the 
ground. If they are initially 8.5 km apart, how long will it be 
before they reach each other? (See Fig. 2-38).

FIGURE 2-38 Problem 12.

- 8 , 5  k m — -

v =
95 km/h
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13. (II) Digital bits on a 12.0-cm diameter audio CD are 
encoded along an outward spiraling path that starts at 
radius Ri = 2.5 cm and finishes at radius R2 = 5.8 cm. 
The distance between the centers of neighboring spiral- 
windings is 1.6/xm(= 1.6 X 10-6 m). (a) Determine the 
total length of the spiraling path. [Hint: Imagine 
“unwinding” the spiral into a straight path of width 1.6 ̂ m, 
and note that the original spiral and the straight path both 
occupy the same area.] (b) To read information, a CD 
player adjusts the rotation of the CD so that the player’s 
readout laser moves along the spiral path at a constant 
speed of 1.25 m/s. Estimate the maximum playing time of 
such a CD.

14. (II) An airplane travels 3100 km at a speed of 720 km/h, 
and then encounters a tailwind that boosts its speed to 
990 km /h for the next 2800 km. What was the total time for 
the trip? What was the average speed of the plane for this 
trip? [Hint: Does Eq. 2-12d apply, or not?]

15. (II) Calculate the average speed and average velocity of a 
complete round trip in which the outgoing 250 km is 
covered at 95 km/h, followed by a 1.0-h lunch break, and 
the return 250 km is covered at 55 km/h.

16. (II) The position of a ball rolling in a straight line is given by 
x = 2.0 -  3.61 + 1.112, where x is in meters and t in 
seconds, (a) Determine the position of the ball at t = 1.0 s,
2.0 s, and 3.0 s. (b) What is the average velocity over the 
interval t = 1.0 s to t = 3.0 s? (c) What is its instanta­
neous velocity at t = 2.0 s and at t = 3.0 s?

17. (II) A dog runs 120 m away from its master in a straight line 
in 8.4 s, and then runs halfway back in one-third the time. 
Calculate (a) its average speed and (b) its average velocity.

18. (Ill) An automobile traveling 95 km /h overtakes a 1.10-km- 
long train traveling in the same direction on a track parallel 
to the road. If the train’s speed is 75 km/h, how long does it 
take the car to pass it, and how far will the car have traveled 
in this time? See Fig. 2-39. What are the results if the car 
and train are traveling in opposite directions?

---------------------------- IJO km -----------------------------  
v -  75 km/h

« 4  _ * — 4  i-
j '  * t- = 95 km/h 

FIGURE 2-39 Problem 18.

19. (Ill) A bowling ball traveling with constant speed hits the 
pins at the end of a bowling lane 16.5 m long. The bowler 
hears the sound of the ball hitting the pins 2.50 s after the 
ball is released from his hands. What is the speed of the ball, 
assuming the speed of sound is 340 m/s?

2-4  Acceleration
20. (I) A sports car accelerates from rest to 95 km /h in 4.5 s. 

What is its average acceleration in m /s2?
21. (I) At highway speeds, a particular automobile is capable of 

an acceleration of about 1.8 m /s2. At this rate, how long 
does it take to accelerate from 80 km/h to 110 km/h?

22. (I) A sprinter accelerates from rest to 9.00 m/s in 1.28 s. 
What is her acceleration in (a) m /s2; (b) km/h2?

23. (I) Figure 2-37 shows the velocity of a train as a function of 
time, (a) At what time was its velocity greatest? (b) During 
what periods, if any, was the velocity constant? (c) During 
what periods, if any, was the acceleration constant? 
(<d) When was the magnitude of the acceleration greatest?

24. (II) A sports car moving at constant speed travels 110 m in
5.0 s. If it then brakes and comes to a stop in 4.0 s, what is 
the magnitude of its acceleration in m /s2, and in g’s 
(g = 9.80 m/s2)?

25. (II) A car moving in a straight line starts at x  = 0 at t = 0. 
It passes the point x  = 25.0 m with a speed of 11.0 m/s at 
t = 3.00 s. It passes the point x  = 385 m with a speed of
45.0 m/s at t = 20.0 s. Find (a) the average velocity and 
(b) the average acceleration between t = 3.00 s and 
t = 20.0 s.

26. (II) A particular automobile can accelerate approximately 
as shown in the velocity vs. time graph of Fig. 2-40. (The 
short flat spots in the curve represent shifting of the gears.) 
Estimate the average acceleration of the car in (a) second 
gear; and (b) fourth gear, (c) What is its average accelera­
tion through the first four gears?

50

40

^  20 

10 

0
0 10 20 30 40

FIGURE 2-40 Problem 26. The velocity of a 
high-performance automobile as a function of time, 
starting from a dead stop. The flat spots in the curve 
represent gear shifts.

27. (II) A particle moves along the x axis. Its position as a func­
tion of time is given by x = 6.8 1 + 8.5 t2, where t is in 
seconds and x  is in meters. What is the acceleration as a 
function of time?

28. (II) The position of a racing car, which starts from rest at 
t = 0 and moves in a straight line, is given as a function of 
time in the following Table. Estimate (a) its velocity and
(b) its acceleration as a function of time. Display each in a 
Table and on a graph.

t{ s) 0 0.25 0.50 0.75 1.00 1.50 2.00 2.50
jt(m) 0 0.11 0.46 1.06 1.94 4.62 8.55 13.79
f(s) 3.00 3.50 4.00 4.50 5.00 5.50 6.00
x(m) 20.36 28.31 37.65 48.37 60.30 73.26 87.16

29. (II) The position of an object is given by x = A t + Bt2,
where x  is in meters and t is in seconds, (a) What are the 
units of A  and B? (b) What is the acceleration as a function 
of time? (c) What are the velocity and acceleration at 
t = 5.0 s? (d) What is the velocity as a function of time if 
x = A t + Bt~3l
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2-5 and 2-6 Motion at Constant Acceleration
30. (I) A car slows down from 25 m/s to rest in a distance of 

85 m. What was its acceleration, assumed constant?
31. (I) A car accelerates from 12 m/s to 21 m/s in 6.0 s. What 

was its acceleration? How far did it travel in this time? 
Assume constant acceleration.

32.

33.

(I) A light plane must reach a speed of 32 m/s for takeoff. 
How long a runway is needed if the (constant) acceleration 
is 3.0 m/s2?
(II) A baseball pitcher throws a baseball with a speed of
41 m/s. Estimate the average acceleration of the ball during 
the throwing motion. In throwing the baseball, the pitcher 
accelerates the ball through a displacement of about 3.5 m, 
from behind the body to the point where it is released 
(Fig. 2-41).

FIGURE 2-41
Problem 33.

34. (II) Show that v = (v + v0)/2 (see Eq. 2-12d) is not valid 
when the acceleration a = A  + Bt, where A  and B are 
constants.

35. (II) A world-class sprinter can reach a top speed (of about
11.5 m/s) in the first 15.0 m of a race. What is the average 
acceleration of this sprinter and how long does it take her to 
reach that speed?

36. (II) An inattentive driver is traveling 18.0 m/s when he 
notices a red light ahead. His car is capable of decelerating 
at a rate of 3.65 m/s2. If it takes him 0.200 s to get the 
brakes on and he is 20.0 m from the intersection when he 
sees the light, will he be able to stop in time?

37. (II) A car slows down uniformly from a speed of 18.0 m/s to 
rest in 5.00 s. How far did it travel in that time?

38. (II) In coming to a stop, a car leaves skid marks 85 m long 
on the highway. Assuming a deceleration of 4.00 m/s2, esti­
mate the speed of the car just before braking.

39. (II) A car traveling 85 km/h slows down at a constant
0.50 m/s2 just by “letting up on the gas.” Calculate (a) the 
distance the car coasts before it stops, (b) the time it takes 
to stop, and (c) the distance it travels during the first and 
fifth seconds.

40. (II) A car traveling at 105 km/h strikes a tree. The front end 
of the car compresses and the driver comes to rest after 
traveling 0.80 m. What was the magnitude of the average 
acceleration of the driver during the collision? Express the 
answer in terms of “g’s,” where 1.00 g = 9.80 m/s2.

41. (II) Determine the stopping distances for an automobile 
with an initial speed of 95 km/h and human reaction time of
1.0 s: (a) for an acceleration a = -5.0 m/s2; (b) for 
a = —7.0 m/s2.

42. (II) A space vehicle accelerates uniformly from 65 m/s at 
t = 0 to 162 m/s at t = 10.0 s. How far did it move 
between t = 2.0 s and t = 6.0 s?

43. (II) A 75-m-long train begins uniform acceleration from rest. 
The front of the train has a speed of 23 m/s when it passes a 
railway worker who is standing 180 m from where the front 
of the train started. What will be the speed of the last car as 
it passes the worker? (See Fig. 2-42.)

v  = 23 m/s

t'

f

FIGURE 2-42 Problem 43.

44. (II) An unmarked police car traveling a constant 95 km/h is 
passed by a speeder traveling 135 km/h. Precisely 1.00 s 
after the speeder passes, the police officer steps on the 
accelerator; if the police car’s acceleration is 2.00 m/s2, how 
much time passes before the police car overtakes the 
speeder (assumed moving at constant speed)?

45. (Ill) Assume in Problem 44 that the speeder’s speed is not 
known. If the police car accelerates uniformly as given 
above and overtakes the speeder after accelerating for
7.00 s, what was the speeder’s speed?

46. (Ill) A runner hopes to complete the 10,000-m run in less 
than 30.0 min. After running at constant speed for exactly
27.0 min, there are still 1100 m to go. The runner must then 
accelerate at 0.20 m/s2 for how many seconds in order to 
achieve the desired time?

47. (Ill) Mary and Sally are in a foot race (Fig. 2-43). When 
Mary is 22 m from the finish line, she has a speed of 4.0 m/s 
and is 5.0 m behind Sally, who has a speed of 5.0 m/s. Sally 
thinks she has an easy win and so, during the remaining 
portion of the race, decelerates at a constant rate of
0.50 m/s2 to the finish line. What constant acceleration does 
Mary now need during the remaining portion of the race, if 
she wishes to cross the finish line side-by-side with Sally?

Mary Sully
.  4.0 m A ,  5.0 m/s

k- I

FIGURE 2-43 Problem 47.

2-7 Freely Falling Objects
[Neglect air resistance.]
48. (I) A stone is dropped from the top of a cliff. It is seen to hit 

the ground below after 3.75 s. How high is the cliff?
49. (I) If a car rolls gently (v0 = 0) off a vertical cliff, how long 

does it take it to reach 55 km/h?
50. (I) Estimate (a) how long it took King Kong to fall straight 

down from the top of the Empire State Building (380 m 
high), and (b) his velocity just before “landing.”

51. (II) A baseball is hit almost straight up into the air with a 
speed of about 20 m/s. (a) How high does it go? (b) How 
long is it in the air?
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52. (II) A ball player catches a ball 3.2 s after throwing it verti­
cally upward. With what speed did he throw it, and what 
height did it reach?

53. (II) A kangaroo jumps to a vertical height of 1.65 m. How 
long was it in the air before returning to Earth?

54. (II) The best rebounders in basketball have a vertical leap 
(that is, the vertical movement of a fixed point on their 
body) of about 120 cm. (a) What is their initial “launch” 
speed off the ground? (b) How long are they in the air?

55. (II) A helicopter is ascending vertically with a speed of 
5.10 m/s. At a height of 105 m above the Earth, a package is 
dropped from a window. How much time does it take for 
the package to reach the ground? [Hint: v0 for the package 
equals the speed of the helicopter.]

56. (II) For an object falling freely from rest, show that the 
distance traveled during each successive second increases in 
the ratio of successive odd integers (1, 3, 5, etc.). (This was 
first shown by Galileo.) See Figs. 2-26 and 2-29.

57. (II) A baseball is seen to pass upward by a window 23 m 
above the street with a vertical speed of 14 m/s. If the ball 
was thrown from the street, (a) what was its initial speed, 
(ib) what altitude does it reach, (c) when was it thrown, and 
((d) when does it reach the street again?

58. (II) A rocket rises vertically, from rest, with an acceleration 
of 3.2 m/s2 until it runs out of fuel at an altitude of 950 m. 
After this point, its acceleration is that of gravity, down­
ward. (a) What is the velocity of the rocket when it runs out 
of fuel? (b) How long does it take to reach this point?
(c) What maximum altitude does the rocket reach? (d) How 
much time (total) does it take to reach maximum altitude? 
(e) With what velocity does it strike the Earth? (/)  How 
long (total) is it in the air?

59. (II) Roger sees water balloons fall past his window. He 
notices that each balloon strikes the sidewalk 0.83 s after 
passing his window. Roger’s room is on the third floor, 15 m 
above the sidewalk, (a) How fast are the balloons traveling 
when they pass Roger’s window? (b) Assuming the balloons 
are being released from rest, from what floor are they being 
released? Each floor of the dorm is 5.0 m high.

60. (II) A stone is thrown vertically upward with a speed of
24.0 m/s. (a) How fast is it moving when it reaches a height 
of 13.0 m? (b) How much time is required to reach this 
height? (c) Why are there two answers to (b)l

61. (II) A falling stone takes 0.33 s to travel past a window
2.2 m tall (Fig. 2-44). From what height above the top of the 
window did the stone fall?

To travel 
this

2.2 m Y distance
took
0.33 s

62. (II) Suppose you adjust your garden hose nozzle for a hard 
stream of water. You point the nozzle vertically upward at a 
height of 1.5 m above the ground (Fig. 2-45). When you 
quickly turn off the nozzle, you 
hear the water striking the 
ground next to you for another
2.0 s. What is the water speed 
as it leaves the nozzle?

1.5 m

&

FIGURE 2-44 Problem 61.

FIGURE 2-45
Problem 62.

63. (Ill) A toy rocket moving vertically upward passes by a 
2.0-m-high window whose sill is 8.0 m above the ground. The 
rocket takes 0.15 s to travel the 2.0 m height of the window. 
What was the launch speed of the rocket, and how high will it 
go? Assume the propellant is burned very quickly at blastoff.

64. (Ill) A ball is dropped from the top of a 50.0-m-high cliff. At 
the same time, a carefully aimed stone is thrown straight up 
from the bottom of the cliff with a speed of 24.0 m/s. The 
stone and ball collide part way up. How far above the base 
of the cliff does this happen?

65. (Ill) A rock is dropped from a sea cliff and the sound of it 
striking the ocean is heard 3.4 s later. If the speed of sound 
is 340 m/s, how high is the cliff?

66. (Ill) A rock is thrown vertically upward with a speed of
12.0 m/s. Exactly 1.00 s later, a ball is thrown up vertically 
along the same path with a speed of 18.0 m/s. (a) At what 
time will they strike each other? (b) At what height will the 
collision occur? (c) Answer (a) and (b) assuming that the 
order is reversed: the ball is thrown 1.00 s before the rock.

* 2 - 8  Variable Acceleration; Calculus
*67. (II) Given v(t) = 25 + 181, where v is in m/s and t is in s, 

use calculus to determine the total displacement from 
ti = 1.5 s to t2 = 3.1 s.

*68. (Ill) The acceleration of a particle is given by a = A \ / i  
where A  = 2.0 m/s5/2. At t = 0, v = 7.5 m/s and x = 0.
(a) What is the speed as a function of time? (b) What is the 
displacement as a function of time? (c) What are the accel­
eration, speed and displacement at t = 5.0 s?

*69. (Ill) Air resistance acting on a falling body can be 
taken into account by the approximate relation for the 
acceleration:

dv
a = -  = g - k v ,

where A: is a constant, (a) Derive a formula for the velocity 
of the body as a function of time assuming it starts from rest 
(v = 0 at t = 0). [Hint: Change variables by setting 
u = g — kv .] (b) Determine an expression for the terminal 
velocity, which is the maximum value the velocity reaches.

* 2 - 9  Graphical A nalysis and Num erical Integration
[See Problems 95-97 at the end of this Chapter.]
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| General Problems
70. A fugitive tries to hop on a freight train traveling at a 

constant speed of 5.0 m/s. Just as an empty box car passes 
him, the fugitive starts from rest and accelerates at 
a = 1.2 m/s2 to his maximum speed of 6.0 m/s. (a) How 
long does it take him to catch up to the empty box car?
(b) What is the distance traveled to reach the box car?

71. The acceleration due to gravity on the Moon is about one- 
sixth what it is on Earth. If an object is thrown vertically 
upward on the Moon, how many times higher will it go than 
it would on Earth, assuming the same initial velocity?

72. A person jumps from a fourth-story window 15.0 m above a 
firefighter’s safety net. The survivor stretches the net 1.0 m 
before coming to rest, Fig. 2-46. (a) What was the average 
deceleration experienced by the survivor when she was

slowed to rest by the net? (b) What would you do to 
make it “safer” (that is, to generate a smaller 

deceleration): would you stiffen or loosen 
the net? Explain.

15.0 m

1.0 m

FIGURE 2-46
Problem 72.

73. A person who is properly restrained by an over-the- 
shoulder seat belt has a good chance of surviving a car colli­
sion if the deceleration does not exceed 30 “g’s” 
(l.OOg = 9.80 m/s2). Assuming uniform deceleration of thi$ 
value, calculate the distance over which the front end of the 
car must be designed to collapse if a crash brings the car tq 
rest from 100 km/h.

74. Pelicans tuck their wings and free-fall straight down whei} 
diving for fish. Suppose a pelican starts its dive from q 
height of 16.0 m and cannot change its path once 
committed. If it takes a fish 0.20 s to perform evasive action, 
at what minimum height must it spot the pelican to escape? 
Assume the fish is at the surface of the water.

75. Suppose a car manufacturer tested its cars for front-en4 
collisions by hauling them up on a crane and dropping then; 
from a certain height, (a) Show that the speed just before 
a car hits the ground, after falling from rest a vertical 
distance H, is given by \ /2 g H . What height corresponds tq 
a collision at (b) 50 km/h? (c) 100 km/h?

76. A stone is dropped from the roof of a high building. A second 
stone is dropped 1.50 s later. How far apart are the stones 
when the second one has reached a speed of 12.0 m/s?

77. A bicyclist in the Tour de France crests a mountain pass as 
he moves at 15 km/h. At the bottom, 4.0 km farther, his 
speed is 75 km/h. What was his average acceleration 
(in m/s2) while riding down the mountain?

78. Consider the street pattern shown in Fig. 2-47. Each inter­
section has a traffic signal, and the speed limit is 50 km/h. 
Suppose you are driving from the west at the speed limit. 
When you are 10.0 m from the first intersection, all the lights 
turn green. The lights are green for 13.0 s each, (a) Calculate 
the time needed to reach the third stoplight. Can you make 
it through all three lights without stopping? (b) Another car 
was stopped at the first light when all the lights turned 
green. It can accelerate at the rate of 2.00 m/s2 to the speed 
limit. Can the second car make it through all three lights 
without stopping? By how many seconds would it make it 
or not?

79. In putting, the force with which a golfer strikes a ball is 
planned so that the ball will stop within some small distance 
of the cup, say 1.0 m long or short, in case the putt is missed. 
Accomplishing this from an uphill lie (that is, putting the 
ball downhill, see Fig. 2-48) is more difficult than from a 
downhill lie. To see why, assume that on a particular green 
the ball decelerates constantly at 1.8 m/s2 going downhill, 
and constantly at 2.8 m/s2 going uphill. Suppose we have an 
uphill lie 7.0 m from the cup. Calculate the allowable range 
of initial velocities we may impart to the ball so that 
it stops in the range 1.0 m short to 1.0 m long of the 
cup. Do the same for a downhill lie 7.0 m from the cup. 
What in your results suggests that the downhill putt is 
more difficult?

*
Uphill
lie

Downhill
He

-Jjato

80.

FIGURE 2-48 Problem 79.

A robot used in a pharmacy picks up a medicine bottle at 
t = 0. It accelerates at 0.20 m/s2 for 5.0 s, then travels 
without acceleration for 68 s and finally decelerates at 
—0.40 m/s2 for 2.5 s to reach the counter where the pharma­
cist will take the medicine from the robot. From how far 
away did the robot fetch the medicine?

FIGURE 2-47 Problem 78.
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81. A stone is thrown vertically upward with a speed of 12.5 m/s
from the edge of a cliff

V 75.0 m high (Fig. 2-49).
| |  (a) How much later does

it reach the bottom of
_= {I the cliff? (b) What is its

speed just before hitting?
(c) What total distance did 
it travel?

y = - 1 5 m  FIGURE 2-49
Problem 81.

82. Figure 2-50 is a position versus time graph for the motion of an 
object along the x  axis. Consider the time interval from A to B. 
(a) Is the object moving in the positive or negative direc­
tion? (b) Is the object speeding up or slowing down? (c) Is 
the acceleration of the object positive or negative? Next, 
consider the time interval from D to E. (<d) Is the object 
moving in the positive or negative direction? (e) Is the 
object speeding up or slowing down? ( /)  Is the acceleration

of the object posi­
tive or negative? 
(g) Finally, answer 
these same three 
questions for the 
time interval from 
C to D.

30

25

20

15

10

0

A

E
\

C
c
D

0 1 *(s) FIGURE 2-50
Problem 82.

83. In the design of a rapid transit system, it is necessary to 
balance the average speed of a train against the distance 
between stops. The more stops there are, the slower the 
train’s average speed. To get an idea of this problem, calcu­
late the time it takes a train to make a 9.0-km trip in two 
situations: (a) the stations at which the trains must stop are 
1.8 km apart (a total of 6 stations, including those at the 
ends); and (b) the stations are 3.0 km apart (4 stations 
total). Assume that at each station the train accelerates at a 
rate of 1.1 m /s2 until it reaches 95 km/h, then stays at this 
speed until its brakes are applied for arrival at the next 
station, at which time it decelerates at -2 .0  m /s2. Assume it 
stops at each intermediate station for 22 s.

84. A person jumps off a diving board 4.0 m above the water’s 
surface into a deep pool. The person’s downward motion 
stops 2.0 m below the surface of the water. Estimate the 
average deceleration of the person while under the water.

85. Bill can throw a ball vertically at a speed 1.5 times faster than 
Joe can. How many times higher will Bill’s ball go than Joe’s?

86. Sketch the v vs. t graph for the object whose displacement 
as a function of time is given by Fig. 2-36.

87. A person driving her car at 45 km /h approaches an intersec­
tion just as the traffic light turns yellow. She knows that the 
yellow light lasts only 2.0 s before turning to red, and she is 
28 m away from the near side of the intersection (Fig. 2-51). 
Should she try to stop, or should she speed up to cross the 
intersection before the light turns red? The intersection is 
15 m wide. Her car’s maximum deceleration is -5 .8  m /s2, 
whereas it can accelerate from 45 km /h to 65 km /h in 6.0 s. 
Ignore the length of her car and her reaction time.

FIGURE 2-51 Problem 87.

88. A car is behind a truck going 25 m/s on the highway. The 
driver looks for an opportunity to pass, guessing that his car 
can accelerate at 1.0 m /s2, and he gauges that he has to 
cover the 20-m length of the truck, plus 10-m clear room at 
the rear of the truck and 10 m more at the front of it. In the 
oncoming lane, he sees a car approaching, probably also 
traveling at 25 m/s. He estimates that the car is about 400 m 
away. Should he attempt the pass? Give details.

89. Agent Bond is standing on a bridge, 13 m above the road 
below, and his pursuers are getting too close for comfort. He 
spots a flatbed truck approaching at 25m/s, which he 
measures by knowing that the telephone poles the truck is 
passing are 25 m apart in this country. The bed of the truck 
is 1.5 m above the road, and Bond quickly calculates how 
many poles away the truck should be when he jumps down 
from the bridge onto the truck, making his getaway. How 
many poles is it?

90. A police car at rest, passed by a speeder traveling at a 
constant 130 km/h, takes off in hot pursuit. The police 
officer catches up to the speeder in 750 m, maintaining a 
constant acceleration, (a) Qualitatively plot the position vs. 
time graph for both cars from the police car’s start to the 
catch-up point. Calculate (b) how long it took the police officer 
to overtake the speeder, (c) the required police car accelera­
tion, and (d) the speed of the police car at the overtaking point.

91. A fast-food restaurant uses a conveyor belt to send the 
burgers through a grilling machine. If the grilling machine is 
1.1 m long and the burgers require 2.5 min to cook, how fast 
must the conveyor belt travel? If the burgers are spaced 15 cm 
apart, what is the rate of burger production (in burgers/min)?

92. Two students are asked to find the height of a particular 
building using a barometer. Instead of using the barometer 
as an altitude-measuring device, they take it to the roof of the 
building and drop it off, timing its fall. One student reports a 
fall time of 2.0 s, and the other, 2.3 s. What % difference does 
the 0.3 s make for the estimates of the building’s height?
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*96. (Ill) The acceleration of an object (in m/s2) is measured 
at 1.00-s intervals starting at t = 0 to be as follows: 1.25, 
1.58, 1.96, 2.40, 2.66, 2.70, 2.74, 2.72, 2.60, 2.30, 2.04, 1.76,
1.41,1.09, 0.86, 0.51, 0.28, 0.10. Use numerical integration 
(see Section 2-9) to estimate (a) the velocity (assume that 
v = 0 at t = 0) and (b) the displacement at t = 17.00 s.

*97. (Ill) A lifeguard standing at the side of a swimming pool 
spots a child in distress, Fig. 2-53. The lifeguard runs with 
average speed vR along the pool’s edge for a distance x, 
then jumps into the pool and swims with average speed v$ 
on a straight path to the child, (a) Show that the total time t 
it takes the lifeguard to get to the child is given by

X_ V o 2 + (d -  J )2 
1 + vs

(b) Assume vR = 4.0 m/s and vs = 1.5 m/s. Use a 
graphing calculator or computer to plot t vs. x in part (a), 
and from this plot determine the optimal distance x the life­
guard should run before jumping into the pool (that is, find 
the value of x  that minimizes the time t to get to the child).

m

d = 10.0 m

x

D = 8.0 m 

FIGURE 2-53 Problem 97.

A nsw ers to Exercises

A: -30  cm; 50 cm. F: (c).
B: (a). G: 0b).
C: (b). H: (*).

D: (b). I: 4.9 m/s2
E: (fl) + ; ( £ , ) - ; ( C) - ; ( d ) + . J: (c).

93. Figure 2-52 shows the position vs. time graph for two 
bicycles, A and B. (a) Is there any instant at which the 
two bicycles have the same velocity? (b) Which bicycle 
has the larger acceleration? (c) At which instant(s) are the 
bicycles passing each other? Which bicycle is passing 
the other? (d) Which bicycle has the highest instantaneous 
velocity? (e) Which bicycle has the higher average 
velocity?

FIGURE 2-52 Problem 93.

94. You are traveling at a constant speed vM, and there is a car 
in front of you traveling with a speed vA. You notice that 

>  va-> so you start slowing down with a constant acceler­
ation a when the distance between you and the other car 
is x. What relationship between a and x  determines whether 
or not you run into the car in front of you?

* Numerical/Computer
*95. (II) The Table below gives the speed of a particular drag 

racer as a function of time, (a) Calculate the average 
acceleration (m/s2) during each time interval. (b) Using 
numerical integration (see Section 2-9) estimate the total 
distance traveled (m) as a function of time. [Hint, for v in 
each interval sum the velocities at the beginning and end 
of the interval and divide by 2; for example, in the second 
interval use v = (6.0 + 13.2)/2 = 9.6] (c) Graph each of 
these.

7(s) 0 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
v(km/h) 0.0 6.0 13.2 22.3 32.2 43.0 53.5 62.6 70.6 78.4 85.1
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This snowboarder flying through the 
air shows an example of motion in 
two dimensions. In the absence of 
air resistance, the path would be a 
perfect parabola. The gold arrow 
represents the downward acceleration 
of gravity, g. Galileo analyzed the 
motion of objects in 2 dimensions 
under the action of gravity near the 
Earth’s surface (now called “projectile 
motion”) into its horizontal and 
vertical components.

We will discuss how to manipulate 
vectors and how to add them. Besides 
analyzing projectile motion, we will 
also see how to work with relative 
velocity.

T £  ^

Kinematics in Two or 
Three Dimensions; Vectors

CHAPTER-OPENING QUESTION—Guess now!
[D on’t w orry about getting the right answer now —you  w ill get another chance later in 
the Chapter. See also p. 1 o f  Chapter 1 fo r  m ore explanation.]

A small heavy box of emergency supplies is dropped from a moving helicopter at 
point A as it flies along in a horizontal direction. Which path in the drawing below best 
describes the path of the box (neglecting air resistance) as seen by a person 
standing on the ground?

I n Chapter 2 we dealt with motion along a straight line. We now consider the 
description of the motion of objects that move in paths in two (or three) 
dimensions. To do so, we first need to discuss vectors and how they are added. 
We will examine the description of motion in general, followed by an 

interesting special case, the motion of projectiles near the Earth’s surface. We also 
discuss how to determine the relative velocity of an object as measured in different 
reference frames.

CONTENTS
3-1  Vectors and Scalars
3 -2  Addition of Vectors— 

Graphical Methods
3-3  Subtraction of Vectors, and 

Multiplication of a Vector 
by a Scalar

3 -4  Adding Vectors by 
Components

3 -5  Unit Vectors
3 -6  Vector Kinematics
3 -7  Projectile Motion
3 -8  Solving Problems Involving 

Projectile Motion
3-9  Relative Velocity
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3 —1 Vectors and Scalars

Scale for velocity: 
1 cm = 90 km/h

FIGURE 3-1 Car traveling on a 
road, slowing down to round the 
curve. The green arrows represent 
the velocity vector at each position.

FIGURE 3-2 Combining vectors in 
one dimension.

Resultant = 14 km (east)

I I I * I I I > I I-----x  (km)
8 km 6 km East

(a)

Resultant = 2 km (east) 
6 km

8 km
x (km) 
East

(b)

We mentioned in Chapter 2 that the term velocity refers not only to how fast an 
object is moving but also to its direction. A quantity such as velocity, which has 
direction as well as magnitude, is a vector quantity. Other quantities that are also 
vectors are displacement, force, and momentum. However, many quantities have no 
direction associated with them, such as mass, time, and temperature. They are spec­
ified completely by a number and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in 
physics, and this is especially true when dealing with vectors. On a diagram, each 
vector is represented by an arrow. The arrow is always drawn so that it points in 
the direction of the vector quantity it represents. The length of the arrow is drawn 
proportional to the magnitude of the vector quantity. For example, in Fig. 3-1, 
green arrows have been drawn representing the velocity of a car at various places 
as it rounds a curve. The magnitude of the velocity at each point can be read off 
Fig. 3-1 by measuring the length of the corresponding arrow and using the scale 
shown (1cm = 90 km/h).

When we write the symbol for a vector, we will always use boldface type, with 
a tiny arrow over the symbol. Thus for velocity we write v. If we are concerned 
only with the magnitude of the vector, we will write simply v, in italics, as we do 
for other symbols.

3 - 2  Addition of Vectors— Graphical 
Methods

Because vectors are quantities that have direction as well as magnitude, they must 
be added in a special way. In this Chapter, we will deal mainly with displacement 
vectors, for which we now use the symbol D , and velocity vectors, v. But the results 
will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be 
used for adding vectors if they are in the same direction. For example, if a 
person walks 8 km east one day, and 6 km east the next day, the person will 
be 8 km + 6 km = 14 km east of the point of origin. We say that the net or 
resultant displacement is 14 km to the east (Fig. 3-2a). If, on the other hand, 
the person walks 8 km east on the first day, and 6 km west (in the reverse 
direction) on the second day, then the person will end up 2 km from the origin 
(Fig. 3-2b), so the resultant displacement is 2 km to the east. In this case, the 
resultant displacement is obtained by subtraction: 8 km — 6 km = 2 km.

But simple arithmetic cannot be used if the two vectors are not along the same 
line. For example, suppose a person walks 10.0 km east and then walks 5.0 km 
north. These displacements can be represented on a graph in which the positive 
y axis points north and the positive x axis points east, Fig. 3-3. On this graph, we 
draw an arrow, labeled Dx, to represent the 10.0-km displacement to the east. 
Then we draw a second arrow, D2, to represent the 5.0-km displacement to the 
north. Both vectors are drawn to scale, as in Fig. 3-3.

y (km) 
North

FIGURE 3-3 A  person walks 10.0 km east and then 5.0 km north. 
These two displacements are represented by the vectors £>! and D2, 
which are shown as arrows. The resultant displacement vector, DR, 
which is the vector sum of D x and D2, is also shown. Measurement on 
the graph with ruler and protractor shows that DR has a magnitude of
11.2 km and points at an angle 6 =  27° north of east.

West x (km) 
East

South
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After taking this walk, the person is now 10.0 km east and 5.0 km north of the 
point of origin. The resultant displacement is represented by the arrow labeled DR 
in Fig. 3-3. Using a ruler and a protractor, you can measure on this diagram that 
the person is 11.2 km from the origin at an angle 6 = 27° north of east. In other 
words, the resultant displacement vector has a magnitude of 11.2 km and makes an 
angle 6 = 27° with the positive x axis. The magnitude (length) of DR can also be 
obtained using the theorem of Pythagoras in this case, since D1, D2, and DR form a 
right triangle with DR as the hypotenuse. Thus

Dr  = \ / D \  + D\ = ^(lO-Okm )2 + (5.0 km)2 

= y j  125 km2 = 11.2 km.

You can use the Pythagorean theorem, of course, only when the vectors are 
perpendicular to each other.

The resultant displacement vector, DR, is the sum of the vectors Di and D2. 
That is,

D r  = Dx + D2.

This is a vector equation. An important feature of adding two vectors that are not 
along the same line is that the magnitude of the resultant vector is not equal to the 
sum of the magnitudes of the two separate vectors, but is smaller than their sum. 
That is,

d r -  A  + A  >
where the equals sign applies only if the two vectors point in the same direction. 
In our example (Fig. 3-3), Dr = 11.2 km, whereas D1 + D2 equals 15 km, 
which is the total distance traveled. Note also that we cannot set DR equal 
to 11.2 km, because we have a vector equation and 11.2 km is only a part of 
the resultant vector, its magnitude. We could write something like this, though: 
Dr = Dj + D2 = (11.2 km, 27° N of E).

EXERCISE A Under what conditions can the magnitude of the resultant vector above be
D r  =  £>1 +  Z>2?

Figure 3-3 illustrates the general rules for graphically adding two vectors 
together, no matter what angles they make, to get their sum. The rules are as 
follows:

1. On a diagram, draw one of the vectors—call it £>!—to scale.
2. Next draw the second vector, D2, to scale, placing its tail at the tip of the first 

vector and being sure its direction is correct.
3. The arrow drawn from the tail of the first vector to the tip of the second 

vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can 
be translated parallel to themselves (maintaining the same length and angle) to 
accomplish these manipulations. The length of the resultant can be measured with 
a ruler and compared to the scale. Angles can be measured with a protractor. This 
method is known as the tail-to-tip method of adding vectors.

The resultant is not affected by the order in which the vectors are added. For 
example, a displacement of 5.0 km north, to which is added a displacement of
10.0 km east, yields a resultant of 11.2 km and angle 6 = 27° (see Fig. 3-4), the 
same as when they were added in reverse order (Fig. 3-3). That is, now using V  to 
represent any type of vector,

Vx + V2 = V2 + Vi, [commutative property] (3-la)

which is known as the commutative property of vector addition.

FIGURE 3-4 If the vectors are 
added in reverse order, the resultant 
is the same. (Compare to Fig. 3 -3 .)

y  (km)
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FIGURE 3-5 The resultant of three vectors: 
VR = Vi + v2 + v3.

The tail-to-tip method of adding vectors can be extended to three or more 
vectors. The resultant is drawn from the tail of the first vector to the tip of the 
last one added. An example is shown in Fig. 3-5; the three vectors could repre­
sent displacements (northeast, south, west) or perhaps three forces. Check for 
yourself that you get the same resultant no matter in which order you add the 
three vectors; that is,

(Vi + V2) + V3 = Vi + (V2 + V3), [associative property] (3-lb) 
which is known as the associative property of vector addition.

A second way to add two vectors is the parallelogram method. It is fully equiv­
alent to the tail-to-tip method. In this method, the two vectors are drawn starting 
from a common origin, and a parallelogram is constructed using these two vectors 
as adjacent sides as shown in Fig. 3-6b. The resultant is the diagonal drawn from 
the common origin. In Fig. 3-6a, the tail-to-tip method is shown, and it is clear that 
both methods yield the same result.

A  =

FIGURE 3-6 Vector addition by 
two different methods, (a) and (b). 
Part (c) is incorrect.

y g g ? (c) Wrong

A  CAUTI ON
Be sure to use the correct diagonal 

on parallelogram to get the resultant

FIGURE 3-7 The negative of a 
vector is a vector having the same 
length but opposite direction.

/ / •

It is a common error to draw the sum vector as the diagonal running between 
the tips of the two vectors, as in Fig. 3-6c. This is incorrect: it does not represent 
the sum of the two vectors. (In fact, it represents their difference, V2 -  Vj, as we 
will see in the next Section.)

CONCEPTUAL EXAMPLE 3^i~l Range of vector lengths. Suppose two vectors
each have length 3.0 units. What is the range of possible lengths for the vector repre­
senting the sum of the two?
RESPONSE The sum can take on any value from 6.0 (= 3.0 + 3.0) where the 
vectors point in the same direction, to 0 (= 3.0 -  3.0) when the vectors are 
antiparallel.

EXERCISE B If the two vectors of Example 3 -1  are perpendicular to each other, what is 
| the resultant vector length?

3 -3  Subtraction of Vectors, and 
Multiplication of a Vector by a Scalar

Given a vector V, we define the negative of this vector ( —v) to be a vector with 
the same magnitude as V but opposite in direction, Fig. 3-7. Note, however, that 
no vector is ever negative in the sense of its magnitude: the magnitude of every 
vector is positive. Rather, a minus sign tells us about its direction.
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y -  = y  + j —  = v , - K ^ 7
FIGURE 3-8 Subtracting two 
vectors: V? — V i.

-V,

We can now define the subtraction of one vector from another: the difference 
between two vectors V2 -  Vi is defined as

v 2 -  Vi = V2 + (-V ,).

That is, the difference between two vectors is equal to the sum of the first plus the 
negative of the second. Thus our rules for addition of vectors can be applied as 
shown in Fig. 3-8 using the tail-to-tip method.

A vector V can be multiplied by a scalar c. We define their product so that cV 
has the same direction as V and has magnitude cV. That is, multiplication of a vector 
by a positive scalar c changes the magnitude of the vector by a factor c but doesn’t 
alter the direction. If c is a negative scalar, the magnitude of the product cY is 
still \c\V (where \c\ means the magnitude of c), but the direction is precisely opposite 
to that of V. See Fig. 3-9.

EXERCISEC W hat does the “incorrect” vector in Fig. 3 -6 c  represent? (a) V2 -  V i,
(b) Vi — V2, (c) som ething else (specify).

FIGURE 3-9 Multiplying a vector V  
by a scalar c gives a vector whose 
magnitude is c times greater and in 
the same direction as V  (or opposite 
direction if c is negative).

/ =  - 2 .0  V

3 —4  Adding Vectors by Components
Adding vectors graphically using a ruler and protractor is often not sufficiently 
accurate and is not useful for vectors in three dimensions. We discuss now a more 
powerful and precise method for adding vectors. But do not forget graphical 
methods—they are useful for visualizing, for checking your math, and thus for 
getting the correct result.

Consider first a vector V that lies in a particular plane. It can be expressed as the 
sum of two other vectors, called the components of the original vector. The compo­
nents are usually chosen to be along two perpendicular directions, such as 
the x and y axes. The process of finding the components is known as 
resolving the vector into its components. An example is shown in Fig. 3-10; 
the vector V could be a displacement vector that points at an angle 6 = 30° 
north of east, where we have chosen the positive x axis to be to the east 
and the positive y axis north. This vector V is resolved into its x and y compo­
nents by drawing dashed lines out from the tip (A) of the vector (lines AB and AC) 
making them perpendicular to the x and y axes. Then the lines OB and OC represent 
the x and y components of V, respectively, as shown in Fig. 3-10b. These vector 
components are written V* and \ y. We generally show vector components as arrows, 
like vectors, but dashed. The scalar components, Vx and Vy , are the magnitudes of the 
vector components, with units, accompanied by a positive or negative sign depending 
on whether they point along the positive or negative x or y axis. As can be seen 
in Fig. 3-10, V* + \ y = V by the parallelogram method of adding vectors.

FIGURE 3-10 Resolving a vector V  into its components 
along an arbitrarily chosen set of x  and y  axes. The 
components, once found, themselves represent the vector. 
That is, the components contain as much information as the 
vector itself.

(a) (b)
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A V X  COS ^  =  y

Vv
tan 0 = v

v2 = y2 v 2
v y

FIGURE 3-11 Finding the 
components of a vector using 
trigonometric functions.

Space is made up of three dimensions, and sometimes it is necessary to resolve a 
vector into components along three mutually perpendicular directions. In rectangular 
coordinates the components are V*, \ y , and \ z . Resolution of a vector in three 
dimensions is merely an extension of the above technique.

The use of trigonometric functions for finding the components of a vector is 
illustrated in Fig. 3-11, where a vector and its two components are thought of as 
making up a right triangle. (See also Appendix A for other details on trigonometric 
functions and identities.) We then see that the sine, cosine, and tangent are as given in 
Fig. 3-11. If we multiply the definition of sin 0 = Vy/V  by V  on both sides, we get

Vy = Vsind. (3-2a)
Similarly, from the definition of cos 0, we obtain

Vx = VcosO. (3-2b)
Note that 0 is chosen (by convention) to be the angle that the vector makes with 
the positive x axis, measured positive counterclockwise.

The components of a given vector will be different for different choices of 
coordinate axes. It is therefore crucial to specify the choice of coordinate system 
when giving the components.

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, Vx and Vy.
2. We can give its magnitude V  and the angle 0 it makes with the positive x axis.

We can shift from one description to the other using Eqs. 3-2, and, for the reverse, 
by using the theorem of Pythagoras* and the definition of tangent:

V = V v }  + Vy2

vytan* = -

(3-3a)

(3-3b)

as can be seen in Fig. 3-11.
We can now discuss how to add vectors using components. The first step is to 

resolve each vector into its components. Next we can see, using Fig. 3-12, that the 
addition of any two vectors Yx and V2 to give a resultant, V = % + V2, implies that

Vr = V1r + V7

v y  = i y v2y.
(3-4)

That is, the sum of the x components equals the x component of the resultant, and 
the sum of the y components equals the y component of the resultant, as can be 
verified by a careful examination of Fig. 3-12. Note that we do not add x  components 
to y components.

tIn three dimensions, the theorem of Pythagoras becomes V = \ / v £  + Vy + V?, where Vz is the 
component along the third, or z, axis.
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If the magnitude and direction of the resultant vector are desired, they can be 
obtained using Eqs. 3-3.

The components of a given vector depend on the choice of coordinate axes. 
You can often reduce the work involved in adding vectors by a good choice of 
axes—for example, by choosing one of the axes to be in the same direction as one 
of the vectors. Then that vector will have only one nonzero component.

EXAMPLE 3 -2 Mail carrier's displacement. A rural mail carrier leaves the 
post office and drives 22.0 km in a northerly direction. She then drives in a direc­
tion 60.0° south of east for 47.0 km (Fig. 3-13a). What is her displacement from 
the post office?

APPROACH We choose the positive x axis to be east and the positive y axis to 
be north, since those are the compass directions used on most maps. The origin 
of the xy coordinate system is at the post office. We resolve each vector into its 
x and y components. We add the x components together, and then the y components 
together, giving us the x and y components of the resultant.
SOLUTION Resolve each displacement vector into its components, as shown 
in Fig. 3-13b. Since 6 1 has magnitude 22.0 km and points north, it has only a 
y component:

= 0, Dly = 22.0 km.
D2 has both x and y components:

D2x = +(47.0 km) (cos 60°) = +(47.0 km) (0.500) = +23.5 km
D2y = -(47.0 km) (sin 60°) = -(47.0 km) (0.866) = -40.7 km.

Notice that D2y is negative because this vector component points along the nega­
tive y axis. The resultant vector, D, has components:

0 km + 23.5 km = +23.5 km
22.0 km + (-40.7 km) = -18.7 km.

Dlx + D2x

Dy = Di y D2 y

This specifies the resultant vector completely:

Dx = 23.5 km, Dy = -18.7 km.

We can also specify the resultant vector by giving its magnitude and angle using 
Eqs. 3-3:

= V d!D
A

tan 6 = —-  = 
Dy

= y j (23.5 km)2 + (-18.7 km)2 = 30.0 km 

18.7 km

D2Uy

23.5 km
= -0.796.

A calculator with an in v  t a n ,  an a r c  t a n ,  or a t a n -1 key gives 6 = tan-1 (-0.796) = 
-38.5°. The negative sign means 0 = 38.5° below the x axis, Fig. 3-13c. So, the 
resultant displacement is 30.0 km directed at 38.5° in a southeasterly direction. 
NOTE Always be attentive about the quadrant in which the resultant vector 
lies. An electronic calculator does not fully give this information, but a good 
diagram does.

1 North

D r

Post 0 \
office

(a)

D r y

d 2x

0 ^ 6 0 °

D 2 y

(b)

0

fir*

x
East

(c)

FIGURE 3-13 Example 3 -2 .
(a) The two displacement vectors,
D i and D 2 . (b) D 2 is resolved into 
its components, (c) Dx and D 2 are 
added graphically to obtain the 
resultant D . The component method 
of adding the vectors is explained in 
the Example.

The signs of trigonometric functions depend on which “quadrant” the angle 
falls in: for example, the tangent is positive in the first and third quadrants (from 0° 
to 90°, and 180° to 270°), but negative in the second and fourth quadrants; see 
Appendix A. The best way to keep track of angles, and to check any vector result, 
is always to draw a vector diagram. A vector diagram gives you something tangible 
to look at when analyzing a problem, and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescription. 
Rather it is a summary of things to do to get you thinking and involved in the 
problem at hand.

^P R O B L E M  S O L V I N G
Identify the correct quadrant by 
drawing a careful diagram
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Adding Vectors

Here is a brief summary of how to add two or more
vectors using components:
1. Draw a diagram, adding the vectors graphically by 

either the parallelogram or tail-to-tip method.
2. Choose x and y axes. Choose them in a way, if possible, 

that will make your work easier. (For example, choose 
one axis along the direction of one of the vectors so 
that vector will have only one component.)

3. Resolve each vector into its x and y components, 
showing each component along its appropriate (x or y) 
axis as a (dashed) arrow.

4. Calculate each component (when not given) using 
sines and cosines. If is the angle that vector 
makes with the positive x axis, then:

Vix = V1cosd1, Vly = V^sin^.

Pay careful attention to signs: any component that 
points along the negative x  or y axis gets a minus 
sign.

5. Add the x components together to get the x compo­
nent of the resultant. Ditto for y:

Vx = Vlx + V2x + any others 
Vy = Viy + V2y + any others.

This is the answer: the components of the resultant 
vector. Check signs to see if they fit the quadrant 
shown in your diagram (point 1 above).

6. If you want to know the magnitude and direction of 
the resultant vector, use Eqs. 3-3:

/-----------  Vy
V = V v f + V } ,  tanfl = - f -

The vector diagram you already drew helps to obtain 
the correct position (quadrant) of the angle 0.

(a)

(b)

FIGURE 3 -1 4  Example 3 -3 .

Vector Components 
x  (km) y  (km)

D i 620 0
D 2 311 -3 1 1
d 3 -3 3 1 -4 3 9

D r 600 -7 5 0
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EXAMPLE 3-3 Three short trips. An airplane trip involves three legs, with 
two stopovers, as shown in Fig. 3-14a. The first leg is due east for 620 km; the 
second leg is southeast (45°) for 440 km; and the third leg is at 53° south of west, 
for 550 km, as shown. What is the plane’s total displacement?
APPROACH We follow the steps in the Problem Solving Strategy above. 
SOLUTION
1. Draw a diagram such as Fig. 3-14a, where , D2, and D3 represent the three 

legs of the trip, and DR is the plane’s total displacement.
2. Choose axes: Axes are also shown in Fig. 3-14a: x is east, y north.
3. Resolve components: It is imperative to draw a good diagram. The components 

are drawn in Fig. 3-14b. Instead of drawing all the vectors starting from a 
common origin, as we did in Fig. 3-13b, here we draw them “tail-to-tip” style, 
which is just as valid and may make it easier to see.

4. Calculate the components:
Di: A  Y —I X

A  y =

D2: D2x =
Ay =

D3: D3x =
Ay =

+ A  COS 0° 
+DX sin 0°

+ A cos 45 c 
-D 2sin 45°
-D 3cos 53c 
-D 3sin 53°

Di = 620 km 
0 km
+ (440 km) (0.707)
-(440 km) (0.707)
-(550 km) (0.602)
-(550 km) (0.799)

We have given a minus sign to each component that in Fig. 3-14b points in the 
—x or —y direction. The components are shown in the Table in the margin.

5. Add the components: We add the x components together, and we add the 
y components together to obtain the x  and y components of the resultant:

Dx = DXx + D2x + D3x = 620 km + 311 km — 331 km = 600 km 
Dv = Dly + A v + Av = 0 km -  311 km -  439 km = -750 km.

+311 km 
-311 km
-331 km 
-439 km.

*2y '3 y
The x  and y components are 600 km and -750 km, and point respectively to 
the east and south. This is one way to give the answer.

6. Magnitude and direction: We can also give the answer as 
\ j D l  + Dl = \/(600)Dr

tan 6
A

+ Dy 
-750 km

2 + (-750)2km = 960 km 

1.25, so e = -51°.

Thus, the total displacement has magnitude 960 km and points 51° below the 
x axis (south of east), as was shown in our original sketch, Fig. 3-14a.



3 —5 Unit Vectors
Vectors can be conveniently written in terms of unit vectors. A unit vector is defined 
to have a magnitude exactly equal to one (1). It is useful to define unit vectors that 
point along coordinate axes, and in an x, y, z rectangular coordinate system these 
unit vectors are called i, j, and k. They point, respectively, along the positive x, y, 
and z axes as shown in Fig. 3-15. Like other vectors, i, j, and k do not have to be 
placed at the origin, but can be placed elsewhere as long as the direction and unit 
length remain unchanged. It is common to write unit vectors with a “hat”: i, j, k 
(and we will do so in this book) as a reminder that each is a unit vector.

Because of the definition of multiplication of a vector by a scalar (Section 3-3), the 
components of a vector V can be written \ x = Vxi, = Vyj, and \ z = Vzk. 
Hence any vector V can be written in terms of its components as

V = Vx\ + Vyi  + VZL  (3-5)
Unit vectors are helpful when adding vectors analytically by components. For 

example, Eq. 3-4 can be seen to be true by using unit vector notation for each 
vector (which we write for the two-dimensional case, with the extension to three 
dimensions being straightforward):

v  =  ( v x ) i  +  (v y) i  =  Vi +  V2 

=  { v j  + vlyj) + (v2J  + v2yj)
=  {vlx + v2x)\ + (ivly + vly) i

Comparing the first line to the third line, we get Eq. 3-4.

Using unit vectors. Write the vectors of Example 3-2 in unit 
vector notation, and perform the addition.
APPROACH We use the components we found in Example 3-2,

Dlx = 0, Dly = 22.0 km, and Dlx = 23.5 km, D2y = -40.7 km, 
and we now write them in the form of Eq. 3-5.
SOLUTION We have

Dx = Oi + 22.0 km j
£>2 = 23.5 km i -  40.7 km j.

Then
D = £>! + D2 = (0 + 23.5) km i + (22.0 -  40.7) km j

= 23.5 km i -  18.7 km j.
The components of the resultant displacement, D, are Dx = 23.5 km and Dy = 
-18.7 km. The magnitude of D is D = V(23.5km)2 + (18.7 km)2 = 30.0 km, 
just as in Example 3-2.

3—6 Vector Kinematics
We can now extend our definitions of velocity and acceleration in a formal way to 
two- and three-dimensional motion. Suppose a particle follows a path in the xy plane 
as shown in Fig. 3-16. At time tx, the particle is at point Px, and at time t2, it is at 
point P2. The vector rl is the position vector of the particle at time t1 (it represents 
the displacement of the particle from the origin of the coordinate system). And r2 
is the position vector at time t2.

In one dimension, we defined displacement as the change in position of the 
particle. In the more general case of two or three dimensions, the displacement 
vector is defined as the vector representing change in position. We call it Ar,f 
where

Ar = r2 — ?i.
This represents the displacement during the time interval At = t2 -  tx.

f We used D for the displacement vector earlier in the Chapter for illustrating vector addition. The new 
notation here, A?, emphasizes that it is the difference between two position vectors.

EXAMPLE 3 -4

y

z

FIGURE 3-15 Unit vectors i, j, and 
k along the x, y, and z  axes.

FIGURE 3-16 Path of a particle in 
the xy  plane. A t time t\ the particle is 
at point Pi given by the position 
vector ?!; at t2 the particle is at point 
P2 given by the position vector r2 . 
The displacement vector for the time 
interval t2 ~  h  is A? =  r2 — ? i .

y

0
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FIGURE 3 -1 7  (a) A s we take At 
and Ar smaller and smaller [compare 
to Fig. 3-16] we see that the direction 
of Ar and of the instantaneous 
velocity ( A r/A t, where At —> 0) is 
(b) tangent to the curve at P j.

FIGURE 3 -1 8  (a) Velocity vectors \ i  
and v2 at instants fj and t2 for a particle 
at points Pi and P2, as in Fig. 3-16.
(b) The direction of the average 
acceleration is in the direction of 
Av = v2 — \ 1.

y

(b)

In unit vector notation, we can write
?! = xxi + y j  + zik, (3-6a)

where x l ,y l , and Z\ are the coordinates of point . Similarly,

r2 = x2i + y2 j + z2k.
Hence

Ar = (x2 -  x j i  + (y2 -  y j j  + (z2 -  Zi)k. (3-6b)

If the motion is along the x axis only, then y2 — yx = 0, z2 — Z\ = 0, and the 
magnitude of the displacement is Ar = x2 — xx, which is consistent with our 
earlier one-dimensional equation (Section 2-1). Even in one dimension, displace­
ment is a vector, as are velocity and acceleration.

The average velocity vector over the time interval A t = t2 — tx is defined as
Ar

average velocity = —  • (3-7)

Now let us consider shorter and shorter time intervals—that is, we let At approach 
zero so that the distance between points P2 and also approaches zero, Fig. 3-17. 
We define the instantaneous velocity vector as the limit of the average velocity as 
At approaches zero:

V = lim 4 ?  = f . (3-8)
A^O At dt

The direction of v at any moment is along the line tangent to the path at that 
moment (Fig. 3-17).

Note that the magnitude of the average velocity in Fig. 3-16 is not equal to the 
average speed, which is the actual distance traveled along the path, A£, divided by 
At. In some special cases, the average speed and average velocity are equal (such 
as motion along a straight line in one direction), but in general they are not. 
However, in the limit At —» 0, Ar always approaches A£, so the instantaneous 
speed always equals the magnitude of the instantaneous velocity at any time.

The instantaneous velocity (Eq. 3-8) is equal to the derivative of the position 
vector with respect to time. Equation 3-8 can be written in terms of components 
starting with Eq. 3-6a as:

dr dx - dy ~ dz - ■? ? -
v = —  = — 1 + —  j + —  k = vx \ + vvj + t>7k, (3-9) dt dt d t J dt x yJ z v '

where vx = dx/dt, vy = dy/dt, vz = dz/dt are the x, y, and z components of the 
velocity. Note that di/dt = dj/dt = d i/d t  = 0 since these unit vectors are 
constant in both magnitude and direction.

Acceleration in two or three dimensions is treated in a similar way. The 
average acceleration vector, over a time interval At = t2 -  tx is defined as

average acceleration = = —---- — > (3-10)
At t2 t-̂

where Av is the change in the instantaneous velocity vector during that time 
interval: Av = v2 -  vx. Note that v2 in many cases, such as in Fig. 3-18a, may not 
be in the same direction as \ 1. Hence the average acceleration vector may be in a 
different direction from either \ 1 or v2 (Fig. 3-18b). Furthermore, v2 and \ 1 may have 
the same magnitude but different directions, and the difference of two such vectors 
will not be zero. Hence acceleration can result from either a change in the magnitude 
of the velocity, or from a change in direction of the velocity, or from a change in both.

The instantaneous acceleration vector is defined as the limit of the average 
acceleration vector as the time interval At is allowed to approach zero:

Av dy
a = lim —— = (3-11)A—>o At dt v 7

and is thus the derivative of v with respect to t.
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We can write a using components:

d \ dvx - dvy * dvz * 
a = —  = —— 1 + —— l + —— k 

dt dt dt J dt
= ax i + ay j + az k, (3-12)

where 0* = dvx/dt, etc. Because vx = dx/dt, then ax = d v jd t  = d2x /d t2, as 
we saw in Section 2-4. Thus we can also write the acceleration as

d2x - d2y - d2z ~---- i H----- — i H-------uJa = - r r i  + t t  j + T r t  (3-12c)

The instantaneous acceleration will be nonzero not only when the magnitude of 
the velocity changes but also if its direction changes. For example, a person riding 
in a car traveling at constant speed around a curve, or a child riding on a merry-go- 
round, will both experience an acceleration because of a change in the direction of 
the velocity, even though the speed may be constant. (More on this in Chapter 5.)

In general, we will use the terms “velocity” and “acceleration” to mean the instan­
taneous values. If we want to discuss average values, we will use the word “average.”

■ Position given as a function of time. The position of a
particle as a function of time is given by

r = [(5.0m/s)^ + (6.0m/s2)£2]i + [(7.0m) -  (3.0 m/s3)^3]j,

where r is in meters and t is in seconds, {a) What is the particle’s displacement 
between tx = 2.0 s and t2 = 3.0 s? (b) Determine the particle’s instantaneous 
velocity and acceleration as a function of time, (c) Evaluate v and a at t = 3.0 s.
APPROACH For (a), we find Ar = r2 -  ? i, inserting tx = 2.0 s for finding ^ , 
and t2 = 3.0 s for ?2. For (b), we take derivatives (Eqs. 3-9 and 3-11), and for
(c) we substitute t = 3.0 s into our results in (b).
SOLUTION (a) At tx = 2.0 s,

?! = [(5.0m/s)(2.0s) + (6.0m/s2)(2.0s)2]i + [(7.0m) -  (3.0m/s3)(2.0s)3]j 
= (34 m)i -  (17 m) j.

Similarly, at t2 = 3.0 s,

f2 = (15m + 54m)i + (7.0m -  81m)j = (69m)i -  (74m)j.
Thus

Ar = r2 -  Tj = (69 m -  34 m) i + (-74 m + 17 m) j = (35 m) i -  (57 m) j. 

That is, Ax = 35 m, and Ay = -57  m.
(b) To find velocity, we take the derivative of the given ? with respect to time, 
noting (Appendix B-2) that d(t2)/dt = 21, and d (f)/d t = 312:

v = f  = [5.0 m/s + (l2m /s2)f]i + [0 -  (9.0m/s3)?2]j.

The acceleration is (keeping only two significant figures):

a = —  = (l2m /s2)i -  (l8m /s3)fj.

Thus ax = 12m/s2 is constant; but ay = - ( l8 m /s3)? depends linearly on 
time, increasing in magnitude with time in the negative y direction.
(c) We substitute t = 3.0 s into the equations we just derived for v and a:

v = (5.0 m/s + 36 m/s) i -  (81 m /s)j = (41 m/s) i -  (81 m /s)j 
a = (l2m /s2)i -  (54 m/s2)j.

Their magnitudes at t = 3.0 s are v = (41 m/s)2 + (81 m/s)2 = 91 m/s, and 
a = V (l2 m /s2)2 + (54 m/s2)2 = 55 m/s2.

SECTION 3-6  Vector Kinematics 61



Constant Acceleration

FIGURE 3-19 This strobe 
photograph of a ball making a series 
of bounces shows the characteristic 
“parabolic” path of projectile motion.

In Chapter 2 we studied the important case of one-dimensional motion for 
which the acceleration is constant. In two or three dimensions, if the acceleration 
vector, a, is constant in magnitude and direction, then ax = constant, ay = constant, 
az = constant. The average acceleration in this case is equal to the instantaneous 
acceleration at any moment. The equations we derived in Chapter 2 for one 
dimension, Eqs. 2 -12a, b, and c, apply separately to each perpendicular component 
of two- or three-dimensional motion. In two dimensions we let v0 = + vyoi 
be the initial velocity, and we apply Eqs. 3-6a, 3-9, and 3-12b for the position 
vector, r, velocity, v, and acceleration, a. We can then write Eqs. 2 -12a, b, and c, for 
two dimensions as shown in Table 3-1.

TABLE 3-1 Kinematic Equations for Constant Acceleration in 2 Dimensions

x  Component (horizontal) y  Component (vertical)

vx =  vx0 +  ax t (Eq. 2-12a)

+oII55s

x =  *0 +  vx01 +  \ax t2 (Eq. 2-12b) y =  yo +  vy0t + \ayt2
v \  = v\o + 2ax (x ~  *0) (Eq. 2 -12c) v2y =  v 2y0 +  2ay(y -  ŷ )

The first two of the equations in Table 3-1 can be written more formally in 
vector notation.

v = v0 + a£ fa = constant] (3-13a)
r = f 0 + %t + t2. [a = constant] (3-13b)

Here, r is the position vector at any time, and r0 is the position vector at t = 0. 
These equations are the vector equivalent of Eqs. 2 -12a and b. In practical situa­
tions, we usually use the component form given in Table 3-1.

3—7 Projectile Motion
In Chapter 2, we studied one-dimensional motion of an object in terms of displace­
ment, velocity, and acceleration, including purely vertical motion of a falling object 
undergoing acceleration due to gravity. Now we examine the more general transla­
tional motion of objects moving through the air in two dimensions near the 
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs, 
and speeding bullets. These are all examples of projectile motion (see Fig. 3-19), 
which we can describe as taking place in two dimensions.

Although air resistance is often important, in many cases its effect can be 
ignored, and we will ignore it in the following analysis. We will not be concerned now 
with the process by which the object is thrown or projected. We consider only its 
motion after it has been projected, and before it lands or is caught—that is, we 
analyze our projected object only when it is moving freely through the air under the 
action of gravity alone. Then the acceleration of the object is that due to gravity, 
which acts downward with magnitude g = 9.80 m/s2, and we assume it is constant.1

Galileo was the first to describe projectile motion accurately. He showed that 
it could be understood by analyzing the horizontal and vertical components of the 
motion separately. For convenience, we assume that the motion begins at time 
t = 0 at the origin of an xy coordinate system (so x0 = y0 = 0).

Let us look at a (tiny) ball rolling off the end of a horizontal table with an 
initial velocity in the horizontal (x) direction, vxQ. See Fig. 3-20, where an object 
falling vertically is also shown for comparison. The velocity vector v at each instant 
points in the direction of the ball’s motion at that instant and is always tangent to 
the path. Following Galileo’s ideas, we treat the horizontal and vertical compo­
nents of the velocity, vx and vy , separately, and we can apply the kinematic 
equations (Eqs. 2-12a through 2-12c) to the x and y components of the motion.

First we examine the vertical (y ) component of the motion. At the instant the 
ball leaves the table’s top (t = 0), it has only an x component of velocity. Once the
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FIGURE 3-20 Projectile motion of a small ball projected 
horizontally. The dashed black line represents the path of the 
object. The velocity vector v at each point is in the direction of 
motion and thus is tangent to the path. The velocity vectors are 
green arrows, and velocity components are dashed. (A  vertically 
falling object starting at the same point is shown at the left for 
comparison; vy  is the same for the falling object and the projectile.)

ball leaves the table (at t = 0), it experiences a vertically downward acceleration g, 
the acceleration due to gravity. Thus vy is initially zero {vyQ = 0) but increases 
continually in the downward direction (until the ball hits the ground). Let us take y 
to be positive upward. Then ay = —g, and from Eq. 2-12a we can write vy = —gt 
since we set vyQ = 0. The vertical displacement is given by y = — \g t2.

In the horizontal direction, on the other hand, the acceleration is zero (we are 
ignoring air resistance). With ax = 0, the horizontal component of velocity, vx , remains 
constant, equal to its initial value, vx0, and thus has the same magnitude at each 
point on the path. The horizontal displacement is then given by x = vx0t. The two 
vector components, \ x and \ y, can be added vectorially at any instant to obtain the 
velocity v at that time (that is, for each point on the path), as shown in Fig. 3-20.

One result of this analysis, which Galileo himself predicted, is that an object 
projected horizontally will reach the ground in the same time as an object dropped 
vertically. This is because the vertical motions are the same in both cases, as 
shown in Fig. 3-20. Figure 3-21 is a multiple-exposure photograph of an experi­
ment that confirms this.

EXERCISE D Return to the Chapter-Opening Question, page 51, and answer it again now.
Try to explain why you may have answered differently the first time.

If an object is projected at an upward angle, as in Fig. 3-22, the analysis is 
similar, except that now there is an initial vertical component of velocity, vy{). 
Because of the downward acceleration of gravity, the upward component of 
velocity vy gradually decreases with time until the object reaches the highest point 
on its path, at which point vy = 0. Subsequently the object moves downward 
(Fig. 3-22) and vy increases in the downward direction, as shown (that is, 
becoming more negative). As before, vx remains constant.

FIGURE 3-21 Multiple -exposure 
photograph showing positions of 
two balls at equal time intervals. 
One ball was dropped from rest at 
the same time the other was 
projected horizontally outward. The 
vertical position of each ball is seen 
to be the same at each instant.

FIGURE 3-22 Path of a projectile fired with 
initial velocity v0 at angle 0O to the horizontal. Path 
is shown dashed in black, the velocity vectors are 
green arrows, and velocity components are 
dashed. The acceleration a = d \ / d t  is downward. 
That is, a = g = -g j where j is the unit vector in 
the positive y  direction.
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3 —8 Solving Problems Involving 

Projectile Motion
We now work through several Examples of projectile motion quantitatively.

We can simplify Eqs. 2-12 (Table 3-1) for the case of projectile motion 
because we can set ax = 0. See Table 3-2, which assumes y is positive upward, 
so ay = —g = -9.80 m/s2. Note that if 0 is chosen relative to the +x axis, as in 
Fig. 3-22, then

Vx0 = Vq COS 0o,

V y o  =  Vo sin 0O.

P R O B L E M  S O L V I N G  In doing problems involving projectile motion, we must consider a time interval 
Choice o f  time interval for which our chosen object is in the air, influenced only by gravity. We do not 

consider the throwing (or projecting) process, nor the time after the object lands 
or is caught, because then other influences act on the object, and we can no 
longer set a = g.

TABLE 3-2 Kinematic Equations for Projectile Motion
(y positive upward; ax = 0, ay = - g  = -9 .80  m/s2)

Horizontal Motion
(ax =  0,vx =  constant)

Vertical Motion^
[ay =  —g =  constant)

£ II £ O (Eq. 2 -12a) &0Ios'IIs'

X  =  x0 +  vx0t (Eq. 2 -12b)

CNvHlrvi1os'
+II

(Eq. 2 -12c) Vy = Vyo ~  2g (y  -  y0)

* If y is taken positive downward, the minus (—) signs in front of g become plus (+) signs.

Projectile Motion

Our approach to solving problems in Section 2-6 
also applies here. Solving problems involving projec­
tile motion can require creativity, and cannot be done 
just by following some rules. Certainly you must 
avoid just plugging numbers into equations that seem 
to “work.”

1. As always, read carefully; choose the object (or 
objects) you are going to analyze.

2. Draw a careful diagram showing what is happening 
to the object.

3. Choose an origin and an xy coordinate system.
4. Decide on the time interval, which for projectile 

motion can only include motion under the effect of 
gravity alone, not throwing or landing. The time 
interval must be the same for the x and y analyses.

The x and y motions are connected by the common 
time.

5. Examine the horizontal (x) and vertical (y) motions 
separately. If you are given the initial velocity, you 
may want to resolve it into its x and y components.

6. List the known and unknown quantities, choosing 
ax = 0 and ay = —g or +g, where g = 9.80 m/s2, 
and using the + or -  sign, depending on whether 
you choose y positive down or up. Remember that vx 
never changes throughout the trajectory, and that 
vy = 0 at the highest point of any trajectory that 
returns downward. The velocity just before landing is 
generally not zero.

7. Think for a minute before jumping into the equations. 
A little planning goes a long way. Apply the relevant 
equations (Table 3-2), combining equations if neces­
sary. You may need to combine components of a vector 
to get magnitude and direction (Eqs. 3-3).
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EXAMPLE 3-6 Driving off a cliff. A movie stunt driver on a motorcycle 
speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave 
the cliff top to land on level ground below, 90.0 m from the base of the cliff where 
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy above.
SOLUTION
1. and 2. Read, choose the object, and draw a diagram. Our object is the 

motorcycle and driver, taken as a single unit. The diagram is shown in Fig. 3-23.
3. Choose a coordinate system. We choose the y  direction to be positive upward, 

with the top of the cliff as y0 = 0. The x direction is horizontal with x0 = 0 
at the point where the motorcycle leaves the cliff.

4. Choose a time interval. We choose our time interval to begin (t = 0) just as 
the motorcycle leaves the cliff top at position x0 = 0, ;y0 = 0; our time 
interval ends just before the motorcycle hits the ground below.

5. Examine x  and y motions. In the horizontal (x) direction, the acceleration 
ax = 0, so the velocity is constant. The value of x when the motorcycle 
reaches the ground is x = +90.0 m. In the vertical direction, the accelera­
tion is the acceleration due to gravity, ay = —g = -9.80 m/s2. The value of 
y  when the motorcycle reaches the ground is y = -50.0 m. The initial 
velocity is horizontal and is our unknown, vx0; the initial vertical velocity is 
zero, vy0 = 0.

6. List knowns and unknowns. See the Table in the margin. Note that in addition 
to not knowing the initial horizontal velocity vx0 (which stays constant until 
landing), we also do not know the time t when the motorcycle reaches the 
ground.

7. Apply relevant equations. The motorcycle maintains constant vx as long as it is 
in the air. The time it stays in the air is determined by the y  motion— when it 
hits the ground. So we first find the time using the y  motion, and then use this 
time value in the x equations. To find out how long it takes the motorcycle to 
reach the ground below, we use Eq. 2-12b (Table 3-2) for the vertical (y)

0:direction with y0 = 0 and vy0

VyQ t + \a y t2

or
y =  - i s * 2-

We solve for t and set y  =

2z

-50.0 m:

2(-50.0 m)
= 3.19 s.

-9.80 m/s2
To calculate the initial velocity, vx0, we again use Eq. 2-12b, but this time for 
the horizontal (x) direction, with ax = 0 and x0 = 0:

X = XQ + vx01 + \a xt2 
=  0  +  vx0 t +  0

X =  vx0t.
Then

x 90.0 m 
tvx0 = = 28.2 m/s,

3.19 s
which is about 100 km/h (roughly 60mi/h).

NOTE In the time interval of the projectile motion, the only acceleration is g in 
the negative y  direction. The acceleration in the x direction is zero.

8

T
50.0 m

= g

y  = -50 .0

h----------------90.0 m ----------------- H

FIGURE 3 -2 3  Example 3 -6 .

Known Unknown

oII£IIj? Vxo
x =  90.0 m t
y  =  -5 0 .0  moIIX

ay =  - g  =  -9 .8 0  m /s2oIIo
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FIGURE 3-24 Example 3-7.

Y S I C S  A P P L I E D
Sports

EXAMPLE 3 -7 A kicked football. A football is kicked at an angle 0O = 37.0° 
with a velocity of 20.0 m/s, as shown in Fig. 3-24. Calculate (a) the maximum 
height, (b) the time of travel before the football hits the ground, (c) how far away 
it hits the ground, (d) the velocity vector at the maximum height, and (e) the 
acceleration vector at maximum height. Assume the ball leaves the foot at 
ground level, and ignore air resistance and rotation of the ball.
APPROACH This may seem difficult at first because there are so many questions. 
But we can deal with them one at a time. We take the y direction as positive 
upward, and treat the x and y motions separately. The total time in the air is again 
determined by the y motion. The x motion occurs at constant velocity. The y 
component of velocity varies, being positive (upward) initially, decreasing to zero 
at the highest point, and then becoming negative as the football falls.
SOLUTION We resolve the initial velocity into its components (Fig. 3-24): 

vxo = cos 37.0° = (20.0 m/s) (0.799) = 16.0 m/s 
= ^osin 37.0° = (20.0 m/s) (0.602) = 12.0 m/s.

(a) We consider a time interval that begins just after the football loses contact 
with the foot until it reaches its maximum height. During this time interval, the 
acceleration is g downward. At the maximum height, the velocity is horizontal 
(Fig. 3-24), so vy = 0; and this occurs at a time given by vy = vy0 -  gt with
)y = 0 (see Eq. 2 -12a in Table 3-2). Thus 

vyo (12.0 m/s)
t =

§
= 1.224 s «  1.22 s.

From Eq. 2-12b, with yQ
(9.80 m/s2)

= 0, we have

y = Vyot -  \g t2
= (12.0m/s)(1.224s) — j(9.80m/s2)(1.224s)2 = 7.35m. 

Alternatively, we could have used Eq. 2-12c, solved for y, and found
(12.0 m /s)2 -  (Om/s)2

y =
Vyo -  V y

= 7.35 m.
2 g 2(9.80 m/s2)

The maximum height is 7.35 m.
(b) To find the time it takes for the ball to return to the ground, we consider a 
different time interval, starting at the moment the ball leaves the foot 
(t = 0, y0 = 0) and ending just before the ball touches the ground (y = 0 
again). We can use Eq. 2-12b with y0 = 0 and also set y = 0 (ground level):

y = y» + vy0t -  \g t2
o = o + vy0t -  \g t2.

This equation can be easily factored: 
t(kgt -  Vyo) = 0.

There are two solutions, t = 0 (which corresponds to the initial point, y0), and

t =
2vy0 2(12.0 m/s)

g (9.80 m/s2) 
which is the total travel time of the football

= 2.45 s,
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NOTE The time needed for the whole trip, t = 2vy0 /g  = 2.45 s, is double the 
time to reach the highest point, calculated in (a). That is, the time to go up equals 
the time to come back down to the same level (ignoring air resistance).
(c) The total distance traveled in the x direction is found by applying Eq. 2 -12b 
with Xq = 0, ax = 0, vxq = 16.0 m/s:

x = vxot = (16.0 m/s) (2.45 s) = 39.2 m.
(d) At the highest point, there is no vertical component to the velocity. There is 
only the horizontal component (which remains constant throughout the flight), 
so v = vx0 = v0 c o s 37.0° = 16.0 m/s.
(e) The acceleration vector is the same at the highest point as it is throughout the 
flight, which is 9.80 m/s2 downward.
NOTE We treated the football as if it were a particle, ignoring its rotation. We 
also ignored air resistance. Because air resistance is significant on a football, our 
results are only estimates.

EXERCISE E Two balls are thrown in the air at different angles, but each reaches the same 
height. Which ball remains in the air longer: the one thrown at the steeper angle or the 
one thrown at a shallower angle?

CONCEPTUAL EXAMPLE 5 -8  I Where does the apple land? A child sits
upright in a wagon which is moving to the right at constant speed as shown in 
Fig. 3-25. The child extends her hand and throws an apple straight upward (from 
her own point of view, Fig. 3-25a), while the wagon continues to travel forward 
at constant speed. If air resistance is neglected, will the apple land (a) behind 
the wagon, (b) in the wagon, or (c) in front of the wagon?
RESPONSE The child throws the apple straight up from her own reference frame 
with initial velocity \ y0 (Fig. 3-25a). But when viewed by someone on the 
ground, the apple also has an initial horizontal component of velocity equal to 
the speed of the wagon, v ^ . Thus, to a person on the ground, the apple will 
follow the path of a projectile as shown in Fig. 3-25b. The apple experiences no 
horizontal acceleration, so v*o will stay constant and equal to the speed of the 
wagon. As the apple follows its arc, the wagon will be directly under the apple at 
all times because they have the same horizontal velocity. When the apple comes 
down, it will drop right into the outstretched hand of the child. The answer is (b).

CONCEPTUAL EXAMPLE 3 -9  The wrong strategy. A boy on a small hill aims 
his water-balloon slingshot horizontally, straight at a second boy hanging from a tree 
branch a distance d away, Fig. 3-26. At the instant the water balloon is released, the 
second boy lets go and falls from the tree, hoping to avoid being hit. Show that he 
made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance. 
RESPONSE Both the water balloon and the boy in the tree start falling at the 
same instant, and in a time t they each fall the same vertical distance y = \g t2, 
much like Fig. 3-21. In the time it takes the water balloon to travel the horizontal 
distance d, the balloon will have the same y position as the falling boy. Splat. If 
the boy had stayed in the tree, he would have avoided the humiliation.

V,<>

t L
(a) Wagon reference frame

A
(h) Ground reference frame 

FIGURE 3 -2 5  Example 3 -8 .

y  = 0 FIGURE 3 - 2 6  Example 3 -9 .
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(b)

FIGURE 3-27 Example 3-10.
(a) The range R  o f a projectile;
(b) there are generally two angles 0O 
that will give the same range. Can 
you show that if one angle is 0O1 > 
the other is 0O2 =  90° -  601 ?

EXAMPLE 3-10 Level horizontal range. (a) Derive a formula for the hori­
zontal range R of a projectile in terms of its initial speed vQ and angle 0O. The 
horizontal range is defined as the horizontal distance the projectile travels 
before returning to its original height (which is typically the ground); that is, 
y (final) = yQ. See Fig. 3-27a. (b) Suppose one of Napoleon’s cannons had a 
muzzle speed, v0, of 60.0 m/s. At what angle should it have been aimed (ignore 
air resistance) to strike a target 320 m away?

APPROACH The situation is the same as in Example 3-7, except we are now not 
given numbers in (a). We will algebraically manipulate equations to obtain our 
result.
SOLUTION (a) We set x0 = 0 and y0 = 0 at t = 0. After the projectile travels 
a horizontal distance R, it returns to the same level, y = 0, the final point. We 
choose our time interval to start (t = 0) just after the projectile is fired and to 
end when it returns to the same vertical height. To find a general expression for R, 
we set both y = 0 and y0 = 0 ill Eq. 2-12b for the vertical motion, and obtain

y = yo + vy0t + \a y t2
so

0 = 0 + VyO t -  \g t2.

We solve for t, which gives two solutions: t = 0 and t = 2vyJg . The first solu­
tion corresponds to the initial instant of projection and the second is the time 
when the projectile returns to y = 0. Then the range, R, will be equal to x at the 
moment t has this value, which we put into Eq. 2 -12b for the horizontal motion 
(x = vx0t, with x0 = 0).Thus we have:

(2vy0\ 2vx0vy0 2vq sin 0O cos 0O r n 
r  = vx0t = vxoy— J = — - —  = -------- ---------- b  = yo I

where we have written vx0 = v0 cos 0O and vy0 = v0 sin 0O. This is the result we 
sought. It can be rewritten, using the trigonometric identity 2 sin 0 cos 0 = sin 20 
(Appendix A or inside the rear cover):

Vo sin 20o r , ,e „R ---------------  [only if y (final) = y0]
8

We see that the maximum range, for a given initial velocity , is obtained when 
sin 20 takes on its maximum value of 1.0, which occurs for 20o = 90°; so

0O = 45° for maximum range, and Rmax = vl/g.

[When air resistance is important, the range is less for a given v0, and the 
maximum range is obtained at an angle smaller than 45°.]
NOTE The maximum range increases by the square of v0, so doubling the muzzle 
velocity of a cannon increases its maximum range by a factor of 4.

(b) We put R = 320 m into the equation we just derived, and (assuming, unreal- 
istically, no air resistance) we solve it to find

. _  Rg (320 m)(9.80 m/s2) _
sin 20o = = -----—— — —;----- = 0.871.

0 v20 (60.0 m/s)2

We want to solve for an angle 0O that is between 0° and 90°, which means 20O 
in this equation can be as large as 180°. Thus, 20O = 60.6° is a solution, but 
20o = 180° -  60.6° = 119.4° is also a solution (see Appendix A-9). In general 
we will have two solutions (see Fig. 3-27b), which in the present case are given by

0O = 30.3° or 59.7°.

Either angle gives the same range. Only when sin 20o = 1 (so 0O = 45°) is there 
a single solution (that is, both solutions are the same).
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EXERCISE F The maximum range of a projectile is found to be 100 m. If the projectile 
strikes the ground a distance of 82 m away, what was the angle of launch? (a) 35° or 55°; 
(b) 30° or 60°; (c) 27.5° or 72.5°; (d) 13.75° or 76.25°.

The level range formula derived in Example 3-10 applies only if takeoff 
and landing are at the same height (y = y0)- Example 3-11 below considers a 
case where they are not equal heights (y ^  y0)-

EXAMPLE 3-11 A punt. Suppose the football in Example 3-7 was punted and 
left the punter’s foot at a height of 1.00 m above the ground. How far did the 
football travel before hitting the ground? Set x0 = 0, y0 = 0.

APPROACH The x and y motions are again treated separately. But we cannot use 
the range formula from Example 3-10 because it is valid only if y (final) = y0, 
which is not the case here. Now we have y0 = 0, and the football hits the ground 
where y = -1.00 m (see Fig. 3-28). We choose our time interval to start when 
the ball leaves his foot (t = 0, y0 = 0, x0 = 0) and end just before the ball hits 
the ground (y = -1.00 m). We can get x from Eq. 2-12b, x = vx0t, since we 
know that vx0 = 16.0 m/s from Example 3-7. But first we must find t, the time 
at which the ball hits the ground, which we obtain from the y motion.

0 P H Y S I C S  A P P L I E D
Sports

33,
j f|  P R O B L E M  S O L V I N G
D o not use any form ula unless you  
are sure its range o f  validity fits the 
problem ; the range form ula does 
not apply here because y  ^  yo

FIGURE 3 -2 8  Example 3-11: the football 
leaves the punter’s foot at y  =  0, and reaches 
the ground where y  =  —1.00 m.

Ground

SOLUTION With y = -1.00 m and vy0 = 12.0 m/s (see Example 3-7), we use 
the equation

y = yo + vy01 -  \g t2,
and obtain

-1 .00m = 0 + (12.0m/s)f -  (4.90m/s2)f2.

We rearrange this equation into standard form (ax2 + bx + c = 0) so we can 
use the quadratic formula:

(4.90m/s2)t2 — (12.0m /s)t -  (1.00m) = 0.

The quadratic formula (Appendix A -l)  gives

12.0m/s + \ / ( - Y 2 t im /s ) 2 -  4(4.90m/s2)(-1.00m )
1 ~ 2(4.90 m/s2)

= 2.53 s or -0.081 s.

The second solution would correspond to a time prior to our chosen time interval 
that begins at the kick, so it doesn’t apply. With t = 2.53 s for the time at which 
the ball touches the ground, the horizontal distance the ball traveled is (using 
vx0 = 16.0 m/s from Example 3-7):

x = vxot = (16.0 m/s) (2.53 s) = 40.5 m.

Our assumption in Example 3-7 that the ball leaves the foot at ground level 
would result in an underestimate of about 1.3 m in the distance our punt traveled.
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200 m

FIGURE 3 -2 9  Example 3 -12.

“Dropped” 
v ( >  = 0)

200 m

J- h

Thrown downward?
(> < o)

400 m

P H Y S I C S  A P P L I E D
Reaching a target 

from  a m oving helicopter

EXAMPLE 3-12 Rescue helicopter drops supplies. A rescue helicopter 
wants to drop a package of supplies to isolated mountain climbers on a rocky 
ridge 200 m below. If the helicopter is traveling horizontally with a speed of 
70 m/s (250 km/h), {a) how far in advance of the recipients (horizontal distance) 
must the package be dropped (Fig. 3-29a)? (b) Suppose, instead, that the heli­
copter releases the package a horizontal distance of 400 m in advance of the 
mountain climbers. What vertical velocity should the package be given (up or down) 
so that it arrives precisely at the climbers’ position (Fig. 3-29b)? (c) With what 
speed does the package land in the latter case?
APPROACH We choose the origin of our xy coordinate system at the initial position 
of the helicopter, taking +y upward, and use the kinematic equations (Table 3-2). 
SOLUTION (a) We can find the time to reach the climbers using the vertical distance of 
200 m. The package is “dropped” so initially it has the velocity of the helicopter, 
vx0 = 70 m/s, vyo = 0. Then, since y = -  \g t2, we have

t = -2 y
8

-2(-200m)
= 6.39 s.

9.80 m/s2
The horizontal motion of the falling package is at constant speed of 70 m/s. So 

x = vxo t = (70 m/s) (6.39 s) = 447 m ~ 450 m, 
assuming the given numbers were good to two significant figures.
(p) We are given x  = 400 m, vx0 = 70 m/s, y = -200 m, and we want to find vyQ 
(see Fig. 3-29b). Like most problems, this one can be approached in various 
ways. Instead of searching for a formula or two, let’s try to reason it out in a 
simple way, based on what we did in part (a). If we know t, perhaps we can get vy0. 
Since the horizontal motion of the package is at constant speed (once it is released 
we don’t care what the helicopter does), we have x = vx0t, so

x 400 m __
Vxo

y = y0 + vy0t -  \g t2. Since

t =
70 m/s

Now let’s try to use the vertical motion to get uyQ,
>>o = 0 and y = -200m , we can solve for vy0:

y + \g t2 -200 m + \  (9.80 m/s2)(5.71 s)2
Vyo = -----------  -  ---------------------------------------- = -7.0 m/s.

t 5.71 s
Thus, in order to arrive at precisely the mountain climbers’ position, the package 
must be thrown downward from the helicopter with a speed of 7.0 m/s.
(c) We want to know v of the package at t = 5.71 s. The components are:

Vx  =  V x o  = 70 m/s
V y  = V y o  ~ gt = -7.0 m/s -  (9.80 m/s2)(5.71 s) = -63 m/s.

So v = x /(1 0 m /s)2 + (-63  m/s)2 = 94m/s. (Better not to release the package 
from such an altitude, or use a parachute.)
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Projectile Motion Is_Parabolic
We now show that the path followed by any projectile is a parabola, if we can 
ignore air resistance and can assume that g is constant. To do so, we need to find y 
as a function of x by eliminating t between the two equations for horizontal and 
vertical motion (Eq. 2-12b in Table 3-2), and for simplicity we set x0 = y0 = 0:

* = vx0t

y  =  V y 0 t  -  J g t 2

From the first equation, we have t = x /vx0, and we substitute this into the second 
one to obtain

We see that y as a function of x has the form

y = A x -  Bx2,

where A  and B are constants for any specific projectile motion. This is the well-known 
equation for a parabola. See Figs. 3-19 and 3-30.

The idea that projectile motion is parabolic was, in Galileo’s day, at the forefront 
of physics research. Today we discuss it in Chapter 3 of introductory physics!

FIGURE 3 -3 0  Examples of projectile m otion— sparks (small hot glowing pieces of metal), water, and fireworks. The 
parabolic path characteristic of projectile motion is affected by air resistance.

3 —9 Relative Velocity
We now consider how observations made in different frames of reference are 
related to each other. For example, consider two trains approaching one another, 
each with a speed of 80 km/h with respect to the Earth. Observers on the Earth 
beside the train tracks will measure 80 km/hr for the speed of each of the trains. 
Observers on either one of the trains (a different frame of reference) will measure 
a speed of 160 km/h for the train approaching them.

Similarly, when one car traveling 90 km/h passes a second car traveling in the 
same direction at 75 km/h, the first car has a speed relative to the second car of 
90 km/h -  75 km/h = 15 km/h.

When the velocities are along the same line, simple addition or subtraction is 
sufficient to obtain the relative velocity. But if they are not along the same line, we 
must make use of vector addition. We emphasize, as mentioned in Section 2-1, that 
when specifying a velocity, it is important to specify what the reference frame is.
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R iver current

FIGURE 3 -3 1  To move directly 
across the river, the boat must head 
upstream at an angle 0. Velocity 
vectors are shown as green arrows: 

vBs =  velocity of Boat with 
respect to the Shore, 

yBw =  velocity of Boat with 
respect to the Water,

vWs =  velocity of the Water with 
respect to the Shore (river 
current).

When determining relative velocity, it is easy to make a mistake by adding or 
subtracting the wrong velocities. It is important, therefore, to draw a diagram and 
use a careful labeling process. Each velocity is labeled by tw o  su bscrip ts: the f ir s t  
refers to  the ob ject, the se c o n d  to  the reference fra m e  in w h ich  it has th is ve lo c ity . 
For example, suppose a boat is to cross a river to the opposite side, as shown in 
Fig. 3-31. We let vBW be the velocity of the Boat with respect to the Water. (This is 
also what the boat’s velocity would be relative to the shore if the water were still.) 
Similarly, vBS is the velocity of the Boat with respect to the Shore, and vws is the 
velocity of the Water with respect to the Shore (this is the river current). Note that 
vBW is what the boat’s motor produces (against the water), whereas vBS is equal to 
vBW plus the effect of the current, vws. Therefore, the velocity of the boat relative 
to the shore is (see vector diagram, Fig. 3-31)

VBS — VBW +  VWS* (3-15)

By writing the subscripts using this convention, we see that the inner subscripts 
(the two W’s) on the right-hand side of Eq. 3-15 are the same, whereas the outer 
subscripts on the right of Eq. 3-15 (the B and the S) are the same as the two 
subscripts for the sum vector on the left, vBS. By following this convention (first 
subscript for the object, second for the reference frame), you can write down the 
correct equation relating velocities in different reference frames.f Figure 3-32 
gives a derivation of Eq. 3-15.

Equation 3-15 is valid in general and can be extended to three or more veloc­
ities. For example, if a fisherman on the boat walks with a velocity vFB relative to 
the boat, his velocity relative to the shore is vFS = vFB + vBW + vws. The equations 
involving relative velocity will be correct when adjacent inner subscripts are 
identical and when the outermost ones correspond exactly to the two on the velocity 
on the left of the equation. But this works only with plus signs (on the right), not 
minus signs.

It is often useful to remember that for any two objects or reference frames, 
A and B, the velocity of A relative to B has the same magnitude, but opposite 
direction, as the velocity of B relative to A:

VBA =  - V a b (3-16)

For example, if a train is traveling 100 km/h relative to the Earth in a certain direc­
tion, objects on the Earth (such as trees) appear to an observer on the train to be 
traveling 100 km/h in the opposite direction.

fWe thus would know by inspection that (for example) the equation VBW = VBS + Vws is wrong.

FIGURE 3 -3 2  Derivation of relative velocity equation (Eq. 3 -15 ), in this case for 
a person walking along the corridor in a train. We are looking down on the train 
and two reference frames are shown: xy  on the Earth and x 'y' fixed on the train. 
We have:

rPT = position vector of person (P) relative to train (T), 

rPE = position vector of person (P) relative to Earth (E ),

?te =  position vector of train’s coordinate system (T) relative to Earth (E ). 

From the diagram we see that

? p e  =  ? p t  +  ? T E -  

We take the derivative with respect to time to obtain

f f e )  =  J t ( i pt) +  | ( ? t e ) .  

or, since d r /d t  =  v,

VpE = VPT + VTE.
This is the equivalent of Eq. 3 -15  for the present situation (check the subscripts!).
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CONCEPTUAL EXAMPLE 3^151 Crossing a river. A woman in a small motor 
boat is trying to cross a river that flows due west with a strong current. The woman 
starts on the south bank and is trying to reach the north bank directly north from her 
starting point. Should she (a) head due north, (b) head due west, (c) head in a north­
westerly direction, (d) head in a northeasterly direction?
RESPONSE If the woman heads straight across the river, the current will drag the 
boat downstream (westward). To overcome the river’s westward current, the boat 
must acquire an eastward component of velocity as well as a northward compo­
nent. Thus the boat must (d) head in a northeasterly direction (see Fig. 3-33). 
The actual angle depends on the strength of the current and how fast the boat 
moves relative to the water. If the current is weak and the motor is strong, then 
the boat can head almost, but not quite, due north.

Heading upstream. A boat’s speed in still water is 
vQW = 1.85 m/s. If the boat is to travel directly across a river whose current has 
speed vws = 1.20 m/s, at what upstream angle must the boat head? (See Fig. 3-33.)
APPROACH We reason as in Example 3-13, and use subscripts as in Eq. 3-15. 
Figure 3-33 has been drawn with vBS, the velocity of the Boat relative to the 
Shore, pointing directly across the river because this is how the boat is supposed 
to move. (Note that vBS = vBW + vws.) To accomplish this, the boat needs to 
head upstream to offset the current pulling it downstream.
SOLUTION Vector vBW points upstream at an angle 0 as shown. From the diagram,

1.20 m/s
VBW

sin0 = = 0.6486.
1.85 m/s

Thus 0 = 40.4°, so the boat must head upstream at a 40.4° angle.

■ Heading across the river. The same boat (vBW = 1.85 m/s)
now heads directly across the river whose current is still 1.20 m/s. (a) What is the 
velocity (magnitude and direction) of the boat relative to the shore? (b) If the 
river is 110 m wide, how long will it take to cross and how far downstream will 
the boat be then?
APPROACH The boat now heads directly across the river and is pulled down­
stream by the current, as shown in Fig. 3-34. The boat’s velocity with respect to 
the shore, vBS, is the sum of its velocity with respect to the water, vBW, plus the 
velocity of the water with respect to the shore, vws:

VBS = VBW + vws, 
just as before.
SOLUTION (a) Since vBW is perpendicular to vws, we can get vBS using the 
theorem of Pythagoras:

vBS = V^bw + vws = \/(1 .8 5 in /s)2 + (1.20 m /s)2 = 2.21 m/s.
We can obtain the angle (note how 0 is defined in the diagram) from:

tan0 = v w s / v b w  = (1.20 m/s)/(1.85 m/s) = 0.6486.
Thus 0 = tan1 (0.6486) = 33.0°. Note that this angle is not equal to the angle 
calculated in Example 3-14.
(b) The travel time for the boat is determined by the time it takes to cross the river. 
Given the river’s width D = 110 m, we can use the velocity component in the 
direction of D, vBW = D/t. Solving for t, we get t = 110 m/1.85 m/s = 59.5 s. 
The boat will have been carried downstream, in this time, a distance 

d = Vwst = (1.20m /s)(59.5 s) = 71.4m « 71m.
NOTE There is no acceleration in this Example, so the motion involves only 
constant velocities (of the boat or of the river).

River current

N

E ,
. ^ws

i y
S /

vBs

J ' J

<9  ̂ VBW

FIGURE 3-33 Examples 3-13
and 3-14.

FIGURE 3-34 Example 3 -15.
A  boat heading directly across a
river whose current moves at
1.20 m /s.

■punw m m m
River current
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FIGURE 3 - 3 5  Example 3-16.
i

(a) (b)

EXAMPLE 3 -16 Car velocities at 90°. Two automobiles approach a street corner 
at right angles to each other with the same speed of 40.0 km /h (= 11.11 m /s), as 
shown in Fig. 3-35a. What is the relative velocity of one car with respect to the 
other? That is, determine the velocity of car 1 as seen by car 2.
APPROACH Figure 3-35a shows the situation in a reference frame fixed to the 
Earth. But we want to view the situation from a reference frame in which car 2 is 
at rest, and this is shown in Fig. 3-35b. In this reference frame (the world as seen 
by the driver of car 2), the Earth moves toward car 2 with velocity vE2 (speed of
40.0 km/h), which is of course equal and opposite to v2E, the velocity of car 2 
with respect to the Earth (Eq. 3-16):

V2E = -VE2-
Then the velocity of car 1 as seen by car 2 is (see Eq. 3-15)

Vl2 = V1E + VE2 
SOLUTION Because vE2 = - v 2E, then 

= Vie -  v2E.
That is, the velocity of car 1 as seen by car 2 is the difference of their velocities, 
Vie “  v2E, both measured relative to the Earth (see Fig. 3-35c). Since the 
magnitudes of v1E, v2E, and vE2 are equal (40.0km /h = 11.11 m /s), we see 
(Fig. 3-35b) that v12 points at a 45° angle toward car 2; the speed is

v12 = 'x / (11.11 m /s)2 + (11.11 m /s)2 = 15.7 m /s (= 56.6 km/h).

Summary
A quantity that has both a magnitude and a direction is called a 
vector. A quantity that has only a magnitude is called a scalar.

Addition of vectors can be done graphically by placing the 
tail of each successive arrow (representing each vector) at the 
tip of the previous one. The sum, or resultant vector, is the arrow 
drawn from the tail of the first to the tip of the last. Two vectors 
can also be added using the parallelogram method.

Vectors can be added more accurately using the analytical 
method of adding their components along chosen axes with the 
aid of trigonometric functions. A vector of magnitude V making 
an angle 6 with the x axis has components

Vx = V cosd Vy = Vsind. (3-2)
Given the components, we can find the magnitude and direction from

,_______  Vv
v  = V v 2x + V2y, tan 6 = - f -  (3-3)

vx
It is often helpful to express a vector in terms of its components 
along chosen axes using unit vectors, which are vectors of unit

length along the chosen coordinate axes; for Cartesian coordinates 
the unit vectors along the x, y, and z axes are called i, j, and k.

The general definitions for the instantaneous velocity, v, 
and acceleration, a, of a particle (in one, two, or three dimen­
sions) are

where r is the position vector of the particle. The kinematic 
equations for motion with constant acceleration can be written 
for each of the x, y, and z components of the motion and have 
the same form as for one-dimensional motion (Eqs. 2-12). Or 
they can be written in the more general vector form: 

v = y0 + a?
r = rQ + yQt + jat2 (3-13)

Projectile motion of an object moving in the air near the 
Earth’s surface can be analyzed as two separate motions if air
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resistance can be ignored. The horizontal component of the 
motion is at constant velocity, whereas the vertical component is 
at constant acceleration, g, just as for an object falling vertically 
under the action of gravity.

Questions
1. One car travels due east at 40 km/h, and a second car travels 

north at 40 km/h. Are their velocities equal? Explain.
2. Can you conclude that a car is not accelerating if its 

speedometer indicates a steady 60 km/h?
3. Can you give several examples of an object’s motion in 

which a great distance is traveled but the displacement is 
zero?

4. Can the displacement vector for a particle moving in two 
dimensions ever be longer than the length of path traveled 
by the particle over the same time interval? Can it ever be 
less? Discuss.

5. During baseball practice, a batter hits a very high fly ball 
and then runs in a straight line and catches it. Which had the 
greater displacement, the player or the ball?

6. If V = Vi + V2, is V necessarily greater than V\ and/or 
V2 ? Discuss.

7. Two vectors have length V\ = 3.5 km and V2 = 4.0 km. 
What are the maximum and minimum magnitudes of their 
vector sum?

8. Can two vectors, of unequal magnitude, add up to give the zero 
vector? Can three unequal vectors? Under what conditions?

9. Can the magnitude of a vector ever (a) equal, or (b) be less 
than, one of its components?

10. Can a particle with constant speed be accelerating? What if 
it has constant velocity?

11. Does the odometer of a car measure a scalar or a vector 
quantity? What about the speedometer?

12. A child wishes to determine the speed a slingshot imparts to 
a rock. How can this be done using only a meter stick, a 
rock, and the slingshot?

13. In archery, should the arrow be aimed directly at the target? 
How should your angle of aim depend on the distance to 
the target?

The velocity of an object relative to one frame of reference 
can be found by vector addition if its velocity relative to a 
second frame of reference, and the relative velocity of the two 
reference frames, are known.

14. A projectile is launched at an upward angle of 30° to the 
horizontal with a speed of 30 m/s. How does the horizontal 
component of its velocity 1.0 s after launch compare with its 
horizontal component of velocity 2.0 s after launch, ignoring 
air resistance?

15. A projectile has the least speed at what point in its path?
16. It was reported in World War I that a pilot flying at an 

altitude of 2 km caught in his bare hands a bullet fired at 
the plane! Using the fact that a bullet slows down consid­
erably due to air resistance, explain how this incident 
occurred.

17. Two cannonballs, A and B, are fired from the ground with 
identical initial speeds, but with 0A larger than 0B. (a) Which 
cannonball reaches a higher elevation? (b) Which stays longer 
in the air? (c) Which travels farther?

18. A person sitting in an enclosed train car, moving at constant 
velocity, throws a ball straight up into the air in her refer­
ence frame, (a) Where does the ball land? What is your 
answer if the car (b) accelerates, (c) decelerates, (d) rounds 
a curve, (e) moves with constant velocity but is open to 
the air?

19. If you are riding on a train that speeds past another train 
moving in the same direction on an adjacent track, it 
appears that the other train is moving backward. Why?

20. Two rowers, who can row at the same speed in still water, 
set off across a river at the same time. One heads straight 
across and is pulled downstream somewhat by the current. 
The other one heads upstream at an angle so as to arrive at 
a point opposite the starting point. Which rower reaches the 
opposite side first?

21. If you stand motionless under an umbrella in a rainstorm 
where the drops fall vertically you remain relatively dry. 
However, if you start running, the rain begins to hit your 
legs even if they remain under the umbrella. Why?

Problems
3-2 to 3-5 Vector Addition; Unit Vectors
1. (I) A car is driven 225 km west and then 78 km southwest (45°). 

What is the displacement of the car from the point of origin 
(magnitude and direction)? Draw a diagram.

2. (I) A delivery truck travels 28 blocks north, 16 blocks east, 
and 26 blocks south. What is its final displacement from the 
origin? Assume the blocks are equal length.

3. (I) If Vx = 7.80 units and Vy = —6.40 units, determine the 
magnitude and direction of V.

4. (II) Graphically determine the resultant of the following three 
vector displacements: (1) 24 m, 36° north of east; (2) 18 m, 
37° east of north; and (3) 26 m, 33° west of south.

5. (II) V is a vector 24.8 units in magnitude and points at an 
angle of 23.4° above the negative x axis, (a) Sketch this vector.
(b) Calculate Vx and Vy . (c) Use Vx and Vy to obtain (again) the 
magnitude and direction of V. [Note: Part (c) is a good way 
to check if you’ve resolved your vector correctly.]

6. (II) Figure 3-36 shows two vectors, A and B, whose magni­
tudes are A  = 6.8 units and B = 5.5 units. Determine C if
(a) C = A + B, (b) C = A -  B, (c) C = B -  A. Give the 
magnitude and direction for each.

y

FIGURE 3-36 Problem 6.
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7. (II) An airplane is traveling 835 km/h in a direction 41.5° west 
of north (Fig. 3-37). (a) Find 
the components of the 
velocity vector in

v v  41.5°
(835 km/h)

the northerly and 
westerly directions. 
(b) How far north 
and how far west 
has the plane trav­
eled after 2.50 h?

FIGURE 3-37
Problem 7.

W -

8. (II) Let Vl = — 6.0i + 8.0j and %  = 4.51 -  5.0j. D eter­
mine the magnitude and direction of (a) Y1? (b) V2,
(c) Yj + V2 and (d) V2 -  Vi.

9. (II) (a) Determine the magnitude and direction of the 
sum of the three vectors Yi = 4.0i -  8.0j, V2 = i + j, and 
V3 = — 2.0i + 4.0j. (b) Determine Yj -  V2 + V3.

10. (II) Three vectors are shown in Fig. 3-38. Their magnitudes 
are given in arbitrary units. Determine the sum of the 
three vectors. Give the resultant in terms of (a) components, 
(b) magnitude and angle with x  axis.

FIGURE 3-38
Problems 10,11,12,13, and 14.
Vector magnitudes are given 
in arbitrary units.

11. (II) (a) Given the vectors A and B shown in Fig. 3-38, 
determine B -  A. (b) Determine A -  B without using 
your answer in (a). Then compare your results and see if 
they are opposite.

12. (II) Determine the vector A — C, given the vectors A and C 
in Fig. 3-38.

13. (II) For the vectors shown in Fig. 3-38, determine (a) B -  2A,
(b) 2A — 3B + 2C.

14. (II) For the vectors given in Fig. 3-38, determine
(a) A -  B + C, (b) A + B -  C, and (c) C -  A -  B.

15. (II) The summit of a mountain, 2450 m above base camp, is 
measured on a map to be 4580 m horizontally from the 
camp in a direction 32.4° west of north. What are the 
components of the displacement vector from camp to 
summit? What is its magnitude? Choose the x  axis east, 
y axis north, and z axis up.

16. (Ill) You are given a vector in the xy plane that has a 
magnitude of 90.0 units and a y  component of —55.0 units.
(a) What are the two possibilities for its x component?
(b) Assuming the x  component is known to be positive, 
specify the vector which, if you add it to the original one, 
would give a resultant vector that is 80.0 units long and 
points entirely in the —x  direction.

3-6  Vector Kinematics
17. (I) The position of a particular particle as a function of time 

is given by ? = (9.601 i + 8.85j -  1.00£2k)m. Determine 
the particle’s velocity and acceleration as a function of time.

18. (I) What was the average velocity of the particle in Problem 17 
between t = 1.00 s and t = 3.00 s? What is the magnitude 
of the instantaneous velocity at t = 2.00 s?

19. (II) What is the shape of the path of the particle of 
Problem 17?

20. (II) A car is moving with speed 18.0 m /s due south at one 
moment and 27.5 m /s due east 8.00 s later. Over this time 
interval, determine the magnitude and direction of (a) its 
average velocity, (b) its average acceleration, (c) What is its 
average speed. [Hint: Can you determine all these from the 
information given?]
(II) At t = 0, a particle starts from rest at x  = 0, y = 0, 
and moves in the xy plane with an acceleration 
a = (4.0i + 3.0j) m/s2. Determine (a) the x  and y  compo­
nents of velocity, (b) the speed of the particle, and (c) the 
position of the particle, all as a function of time. (d) Eval­
uate all the above at t = 2.0 s.
(II) (a) A skier is accelerating down a 30.0° hill at 1.80 m /s2 
(Fig. 3-39). What is the vertical component of her accelera­
tion? (b) How long will it take her to reach the bottom of 
the hill, assuming she starts from rest and accelerates 
uniformly, if the elevation change is 325 m?

21.

22.

FIGURE 3-39 Problem 22.

23. (II) An ant walks on a piece of graph paper straight along the 
x  axis a distance of 10.0 cm in 2.00 s. It then turns left 30.0° 
and walks in a straight line another 10.0 cm in 1.80 s. Finally, 
it turns another 70.0° to the left and walks another 10.0 cm 
in 1.55 s. Determine (a) the x  and y  components of the ant’s 
average velocity, and (b) its magnitude and direction.

24. (II) A particle starts from the origin at t = 0 with an initial 
velocity of 5.0 m/s along the positive x  axis. If the accelera­
tion is (—3.0i + 4.5j)m /s2, determine the velocity and posi­
tion of the particle at the moment it reaches its maximum 
x  coordinate.

25. (II) Suppose the position of an object is given by 
r = (3.012\ — 6.0 £3j)m . (a) Determine its velocity v and 
acceleration a, as a function of time, (b) Determine r and v 
at time t = 2.5 s.

26. (II) An object, which is at the origin at time t — 0, has 
initial velocity v0 = (—14.0i -  7.0j)m /s and constant 
acceleration a = (6.0i + 3.0j)m /s2. Find the position r 
where the object comes to rest (momentarily).

a = 1.80 m/s2
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27. (II) A particle’s position as a function of time t is given 
by r = (5.01 + 6.011) m i + (7.0 -  3.0£3)m j. A t t = 5.0 s, 
find the magnitude and direction of the particle’s displace­
ment vector Ar relative to the point r0 = (O.Oi + 7.0j) m.

3-7 and 3-8  Projectile Motion (neglect air resistance)
28. (I) A tiger leaps horizontally from a 7.5-m-high rock with a 

speed of 3.2 m/s. How far from the base of the rock will she 
land?

29. (I) A diver running 2.3 m /s dives out horizontally from the 
edge of a vertical cliff and 3.0 s later reaches the water 
below. How high was the cliff and how far from its base did 
the diver hit the water?

30. (II) Estimate how much farther a person can jump on the 
Moon as compared to the Earth if the takeoff speed and 
angle are the same. The acceleration due to gravity on the 
Moon is one-sixth what it is on Earth.

31. (II) A fire hose held near the ground shoots water at a 
speed of 6.5 m/s. At what angle(s) should the nozzle point 
in order that the water land 2.5 m away (Fig. 3-40)? 
Why are there two different
angles? Sketch the two 
trajectories.

32.

33.

34.

35.

36.

37.

38.

FIGURE 3-40
Problem 31.

J #
-2.5 m-

(II) A ball is thrown horizontally from the roof of a building
9.0 m tall and lands 9.5 m from the base. What was the ball’s 
initial speed?
(II) A football is kicked at ground level with a speed of
18.0 m/s at an angle of 38.0° to the horizontal. How much 
later does it hit the ground?
(II) A ball thrown horizontally at 23.7 m /s from the roof of 
a building lands 31.0 m from the base of the building. How 
high is the building?
(II) A shot-putter throws the shot (mass = 7.3 kg) with an 
initial speed of 14.4 m/s at a 34.0° angle to the horizontal. 
Calculate the horizontal distance traveled by the shot if it 
leaves the athlete’s hand at a height of 2.10 m above the 
ground.
(II) Show that the time required for a projectile to reach its 
highest point is equal to the time for it to return to its orig­
inal height if air resistance is neglible.
(II) You buy a plastic dart gun, and being a clever physics 
student you decide to do a quick calculation to find 
its maximum horizontal range. You shoot the gun straight 
up, and it takes 4.0 s for the dart to land back at the barrel. 
What is the maximum horizontal range of your gun?
(II) A baseball is hit with a speed of 27.0 m /s at an angle of 
45.0°. It lands on the flat roof of a 13.0-m-tall nearby 
building. If the ball was hit when it was 1.0 m above the 
ground, what horizontal distance does it travel before it 
lands on the building?

39. (II) In Example 3-11 we chose the x  axis to the right and 
y axis up. Redo this problem by defining the x  axis to the 
left and y axis down, and show that the conclusion remains 
the same—the football lands on the ground 40.5 m to the 
right of where it departed the punter’s foot.

40. (II) A grasshopper hops down a level road. On each hop, 
the grasshopper launches itself at angle 60 = 45° and 
achieves a range R = 1.0 m. What is the average hori­
zontal speed of the grasshopper as it progresses down the 
road? Assume that the time spent on the ground between 
hops is negligible.

41. (II) Extreme-sports enthusiasts have been known to jump 
off the top of El Capitan, a sheer granite cliff of height 
910 m in Yosemite National Park. Assume a jumper runs 
horizontally off the top of El Capitan with speed 5.0 m/s 
and enjoys a freefall until she is 150 m above the valley 
floor, at which time she opens her parachute (Fig. 3-41).
(a) How long is the jumper in freefall? Ignore air resistance.
(b) It is important to be as far away from the cliff as 
possible before opening the parachute. How far from the cliff 
is this jumper when she
opens her chute?

5.0 m/s 

\

910 m

, 1

I
150 m

FIGURE 3-41
Problem 41.

42. (II) Here is something to try at a sporting event. Show that 
the maximum height h attained by an object projected into 
the air, such as a baseball, football, or soccer ball, is approx­
imately given by

h ~ 1.212 m,

where t is the total time of flight for the object in seconds. 
Assume that the object returns to the same level as that from 
which it was launched, as in Fig. 3-42. For example, if you 
count to find that a baseball was in the air for t = 5.0 s, the 
maximum height attained was h = 1.2 X (5.0)2 = 30 m. 
The beauty of this relation is that h can be determined 
without knowledge of the launch speed vq or launch 
angle 0O.

FIGURE 3-42 Problem 42.
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43. (II) The pilot of an airplane traveling 170 km/h wants to 
drop supplies to flood victims isolated on a patch of land 
150 m below. The supplies should be dropped how many 
seconds before the plane is directly overhead?

44. (II) (a) A long jumper leaves the ground at 45° above the 
horizontal and lands 8.0 m away. What is her “takeoff” 
speed vq ? (b) Now she is out on a hike and comes to the left 
bank of a river. There is no bridge and the right bank is
10.0 m away horizontally and 2.5 m, vertically below. If she 
long jumps from the edge of the left bank at 45° with the 
speed calculated in (a), how long, or short, of the opposite 
bank will she land (Fig. 3-43)?

2,5 m

10.0 m

FIGURE 3-43 Problem 44.

45. (II) A high diver leaves the end of a 5.0-m-high diving 
board and strikes the water 1.3 s later, 3.0 m beyond the end 
of the board. Considering the diver as a particle, determine 
{a) her initial velocity, v0; (b) the maximum height reached; 
and (c) the velocity Vf with which she enters the water.

46. (II) A projectile is shot from the edge of a cliff 115 m above 
ground level with an initial speed of 65.0 m/s at an angle of 
35.0° with the horizontal, as shown in Fig. 3-44. (a) Deter­
mine the time taken by the projectile to hit point P at 
ground level. (b) Determine the distance X  of point P 
from the base of the vertical cliff. At the instant just 
before the projectile hits point P, find (c) the horizontal and 
the vertical components of its velocity, (d) the magnitude of 
the velocity, and (e) the angle made by the velocity vector 
with the horizontal. ( /)  Find the maximum height above the 
cliff top reached by the projectile.

= 65.0 m/s

47 (II) Suppose the kick in Example 3-7 is attempted 36.0 m 
from the goalposts, whose crossbar is 3.00 m above the 
ground. If the football is directed perfectly between the 
goalposts, will it pass over the bar and be a field goal? Show 
why or why not. If not, from what horizontal distance must 
this kick be made if it is to score?

48. (II) Exactly 3.0 s after a projectile is fired into the air from the 
ground, it is observed to have a velocity v = (8.6i + 4.8j) m/s, 
where the x axis is horizontal and the y axis is positive 
upward. Determine {a) the horizontal range of the projectile,
(b) its maximum height above the ground, and (c) its speed 
and angle of motion just before it strikes the ground.
(II) Revisit Example 3-9, and assume that the boy with the 
slingshot is below the boy in the tree (Fig. 3-45) and so aims 
upward, directly at the boy in the tree. Show that again the 
boy in the tree makes the wrong move by letting go at the 
moment the water balloon is shot.

49.

FIGURE 3-45 Problem 49.
50. (II) A stunt driver wants to make his car jump over 8 cars 

parked side by side below a horizontal ramp (Fig. 3-46).
(a) With what minimum speed must he drive off the hori­
zontal ramp? The vertical height of the ramp is 1.5 m above 
the cars and the horizontal distance he must clear is 22 m. (b) If 
the ramp is now tilted upward, so that “takeoff angle” is 7.0° 
above the horizontal, what is the new minimum speed?

22 m

Musi dear 
this print!

FIGURE 3-46 Problem 50.
51. (II) A ball is thrown horizontally from the top of a cliff 

with initial speed v0 (at t = 0). At any moment, its direction 
of motion makes an angle 6 to the horizontal (Fig. 3-47). 
Derive a formula for 6 as a function of time, t, as the ball 
follows a projectile’s path.

FIGURE 3-44 Problem 46. FIGURE 3-47 Problem 51.
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52. (II) At what projection angle will the range of a projectile 
equal its maximum height?

53. (II) A projectile is fired with an initial speed of 46.6 m /s at 
an angle of 42.2° above the horizontal on a long flat firing 
range. Determine (a) the maximum height reached by the 
projectile, (b) the total time in the air, (c) the total hori­
zontal distance covered (that is, the range), and (d) the 
velocity of the projectile 1.50 s after firing.

54. (II) An athlete executing a long jump leaves the ground at a 
27.0° angle and lands 7.80 m away, (a) What was the takeoff 
speed? (b) If this speed were increased by just 5.0%, how 
much longer would the jump be?

55. (Ill) A person stands at the base of a hill that is a straight 
incline making an angle <f> with the horizontal (Fig. 3-48). 
For a given initial speed vQ, at what angle 0 (to the hori­
zontal) should objects be thrown so that the distance d they 
land up the hill is as large as possible?

FIGURE 3-48 Problem 55. 
Given (f> and v0, determine 0 
to make d maximum.

56. (Ill) Derive a formula for the horizontal range R, of a 
projectile when it lands at a height h above its initial point. 
(For h <  0, it lands a distance —h below the starting point.) 
Assume it is projected at an angle 0O with initial speed v0.

3 - 9  R elative Velocity

57. (I) A person going for a morning jog on the deck of a cruise 
ship is running toward the bow (front) of the ship at 2.0 m/s 
while the ship is moving ahead at 8.5 m/s. What is the velocity 
of the jogger relative to the water? Later, the jogger is 
moving toward the stern (rear) of the ship. What is the 
jogger’s velocity relative to the water now?

58. (I) Huck Finn walks at a speed of 0.70 m/s across his raft 
(that is, he walks perpendicular to the raft’s motion relative 
to the shore). The raft is traveling down the Mississippi 
River at a speed of
1.50 m/s relative to the 
river bank (Fig. 3-49).
What is Huck’s velocity 
(speed and direction) 
relative to the river 
bank? ,

0.70 m/s 

River
CLUTCnL

FIGURE 3-49
Problem 58.

59. (II) Determine the speed of the boat with respect to the 
shore in Example 3-14.

60. (II) Two planes approach each other head-on. Each has a 
speed of 780 km/h, and they spot each other when they are 
initially 12.0 km apart. How much time do the pilots have to 
take evasive action?

61. (II) A child, who is 45 m from the bank of a river, is being 
carried helplessly downstream by the river’s swift current of
1.0 m/s. As the child passes a lifeguard on the river’s bank, 
the lifeguard starts swimming in a straight line until she 
reaches the child at a point downstream (Fig. 3-50). If 
the lifeguard can swim at a speed of 2.0 m /s relative to the 
water, how long does it take her to reach the child? How far 
downstream does the lifeguard intercept the child?

1 1

11 .0 m/s

2.0 m/s
— »  i

45 m

FIGURE 3-50 Problem 61.

62. (II) A passenger on a boat moving at 1.70 m /s on a still lake 
walks up a flight of stairs at a speed of 0.60 m/s, Fig. 3-51. 
The stairs are angled at 45° pointing in the direction of 
motion as shown. Write the vector velocity of the passenger 
relative to the water.

FIGURE 3-51 Problem 62.

63. (II) A person in the passenger basket of a hot-air balloon 
throws a ball horizontally outward from the basket with 
speed 10.0 m /s (Fig. 3-52). What initial velocity (magnitude 
and direction) does 
the ball have relative 
to a person standing 
on the ground (a) if 
the hot-air balloon is 
rising at 5.0 m /s rela­
tive to the ground 
during this throw,
(b) if the hot-air 
balloon is descending 
at 5.0 m /s relative to 
the ground.

FIGURE 3-52
Problem 63.
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64. (II) An airplane is heading due south at a speed of 580 km/h. 
If a wind begins blowing from the southwest at a speed of
90.0 km /h (average), calculate (a) the velocity (magnitude 
and direction) of the plane, relative to the ground, and 
(b) how far from its intended position it will be after
11.0 min if the pilot takes no corrective action. [Hint. First 
draw a diagram.]

65. (II) In what direction should the pilot aim the plane in 
Problem 64 so that it will fly due south?

66. (II) Two cars approach a street corner at right angles to 
each other (see Fig. 3-35). Car 1 travels at 35 km /h and 
car 2 at 45 km/h. What is the relative velocity of car 1 
as seen by car 2? What is the velocity of car 2 relative to 
car 1?

67. (II) A swimmer is capable of swimming 0.60 m/s in still 
water, (a) If she aims her body directly across a 55-m-wide 
river whose current is 0.50 m/s, how far downstream (from a 
point opposite her starting point) will she land? (b) How 
long will it take her to reach the other side?

68. (II) (a) At what upstream angle must the swimmer in 
Problem 67 aim, if she is to arrive at a point directly across 
the stream? (b) How long will it take her?

| General Problems__________

69. (II) A motorboat whose speed in still water is 3.40 m/s must aim 
upstream at an angle of 19.5° (with respect to a line perpendic­
ular to the shore) in order to travel directly across the stream. 
(a) What is the speed of the current? (b) What is the resultant 
speed of the boat with respect to the shore? (See Fig. 3-31.)

70. (II) A boat, whose speed in still water is 2.70 m/s, must cross 
a 280-m-wide river
and arrive at a 
point 120 m upstream 
from where it starts 
(Fig. 3-53). To do 
so, the pilot must head 
the boat at a 45.0° 
upstream angle. What 
is the speed of the 
river’s current?

FIGURE 3-53
Problem 70.

280 m

120 m
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71. (Ill) An airplane, whose air speed is 580 km/h, is supposed 
to fly in a straight path 38.0° N of E. But a steady 72 km /h 
wind is blowing from the north. In what direction should the 
plane head?

72. Two vectors, Vi and V2, add to a resultant V = Vi + V2. 
Describe %  and V2 if (a) V  = V1 + V2, (b) V 2 = V? + V
(c) Vi + V2 = Vi -  V2.

73. A plumber steps out of his truck, walks 66 m east and 35 m 
south, and then takes an elevator 12 m into the subbasement 
of a building where a bad leak is occurring. What is the 
displacement of the plumber relative to his truck? Give 
your answer in components; also give the magnitude and 
angles, with respect to the x  axis, in the vertical and horizontal 
plane. Assume x  is east, y is north, and z is up.

74. On mountainous downhill roads, escape routes are sometimes 
placed to the side of the road for trucks whose brakes might 
fail. Assuming a constant upward slope of 26°, calculate the 
horizontal and vertical components of the acceleration of a 
truck that slowed from 110 km/h to rest in 7.0 s. See Fig. 3-54.

77. Romeo is chucking pebbles gently up to Juliet’s window, 
and he wants the pebbles
to hit the window with 
only a horizontal compo­
nent of velocity. He is 
standing at the edge of a 
rose garden 8.0 m below 
her window and 9.0 m 
from the base of the wall 
(Fig. 3-55). How fast are 
the pebbles going when 
they hit her window?

FIGURE 3-55
Problem 77.

8.0 m

. - - - a

78.

75. A light plane is headed due south with a speed relative to 
still air of 185 km/h. After 1.00 h, the pilot notices that 
they have covered only 135 km and their direction is not 
south but southeast (45.0°). What is the wind velocity?

76. An Olympic long jumper is capable of jumping 8.0 m. 
Assuming his horizontal speed is 9.1 m /s as he leaves the 
ground, how long is he in the air and how high does he go? 
Assume that he lands standing upright—that is, the same 
way he left the ground.

FIGURE 3-56
Problem 78.

79. Apollo astronauts took a “nine iron” to the Moon and hit a 
golf ball about 180 m. Assuming that the swing, launch 
angle, and so on, were the same as on Earth where the same 
astronaut could hit it only 32 m, estimate the acceleration 
due to gravity on the surface of the Moon. (We neglect air 
resistance in both cases, but on the Moon there is none.)

Raindrops make an angle 6 with the vertical when viewed 
through a moving train window (Fig. 3-56). If the speed of the 
train is vT, what is the 
speed of the raindrops 
in the reference frame * 
of the Earth in which 
they are assumed to 
fall vertically?
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80. A hunter aims directly at a target (on the same level) 68.0 m 
away, (a) If the bullet leaves the gun at a speed of 175 m/s, 
by how much will it miss the target? (b) At what angle 
should the gun be aimed so the target will be hit?

81. The cliff divers of Acapulco push off horizontally from rock 
platforms about 35 m above the water, but
they must clear rocky outcrops at water level 
that extend out into the water 5.0 m from 
the base of the cliff directly under their 
launch point. See Fig. 3-57. What 
minimum pushoff speed is necessary to 
clear the rocks? How long are they 
in the air?

f
I
\
I
t
t

I
I ^  
I >V1
15 .0  mi

FIGURE 3-57
Problem 81.

82. When Babe Ruth hit a homer over the 8.0-m-high right- 
field fence 98 m from home plate, roughly what was the 
minimum speed of the ball when it left the bat? Assume the 
ball was hit 1.0 m above the ground and its path initially 
made a 36° angle with the ground.

83. The speed of a boat in still water is v. The boat is to make a 
round trip in a river whose current travels at speed u. Derive 
a formula for the time needed to make a round trip of total 
distance D  if the boat makes the round trip by moving
(a) upstream and back downstream, and (b) directly across 
the river and back. We must assume u < v; why?

84. A t serve, a tennis player aims to hit the ball horizontally. 
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is 
“launched” from a height of 2.50 m? Where will the ball 
land if it just clears the net (and will it be “good” in the 
sense that it lands within 7.0 m of the net)? How long will it 
be in the air? See Fig. 3-58.

T
2.50 m‘

n

15.0 m h- 7.0 m -

FIGURE 3-58 Problem 84.

85. Spymaster Chris, flying a constant 208 km /h horizontally in 
a low-flying helicopter, wants to drop secret documents into 
her contact’s open car which is traveling 156 km /h on a 
level highway 78.0 m below. At what angle (with the hori­
zontal) should the car be in her sights when the packet is 
released (Fig. 3-59)?

208 k m/h

FIGURE 3-59
Problem 85.

86. A basketball leaves a player’s hands at a height of 2.10 m 
above the floor. The basket is 3.05 m above the floor. The 
player likes to shoot the ball at a 38.0° angle. If the shot is 
made from a horizontal distance of 11.00 m and must be 
accurate to + 0.22 m (horizontally), what is the range of 
initial speeds allowed to make the basket?

87. A particle has a velocity of v = (—2.0i + 3.5£j)m/s. The 
particle starts at r = (l.5i — 3.1j)m at t = 0. Give the 
position and acceleration as a function of time. What is 
the shape of the resulting path?

88. A projectile is launched from ground level to the top of a 
cliff which is 195 m away and 135 m high (see Fig. 3-60). If 
the projectile lands on top of the cliff 6.6 s after it is fired, 
find the initial velocity of the projectile (magnitude and 
direction). Neglect air resistance.

Landing point

FIGURE 3-60
Problem 88.

A

135 m

195 m -

89. In hot pursuit, Agent Logan of the FBI must get directly 
across a 1200-m-wide river in minimum time. The river’s 
current is 0.80 m/s, he can row a boat at 1.60 m/s, and he 
can run 3.00 m/s. Describe the path he should take (rowing 
plus running along the shore) for the minimum crossing 
time, and determine the minimum time.

90. A boat can travel 2.20 m/s in still water, (a) If the boat 
points its prow directly across a stream whose current is 
1.30 m/s, what is the velocity (magnitude and direction) of 
the boat relative to the shore? (b) What will be the position 
of the boat, relative to its point of origin, after 3.00 s?

91. A boat is traveling where there is a current of 0.20 m /s east 
(Fig. 3-61). To avoid some offshore rocks, the boat must 
clear a buoy that is NNE (22.5°) and 3.0 km away. The 
boat’s speed through still water is 2.1 m/s. If the boat wants 
to pass the buoy 0.15 km on its right, at what angle should 
the boat head?

P I
a

Buoy Current

FIGURE 3-61
Problem 91.

92. A child runs down a 12° hill and then suddenly jumps upward 
at a 15° angle above horizontal and lands 1.4 m down the hill 
as measured along the hill. What was the child’s initial speed?
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93. A basketball is shot from an initial height of 2.4 m 
(Fig. 3-62) with an initial speed = 12 m/s directed at an 
angle 0O = 35° above the horizontal, (a) How far from the 
basket was the player if he made a basket? (b) At what 
angle to the horizontal did the ball enter the basket?

i’0 — 12 m/s ^

2.4 m
ion

= 3.05 m

r
FIGURE 3-62
Problem 93.

94. You are driving south on a highway at 25 m/s (approxi­
mately 55 mi/h) in a snowstorm. When you last stopped, you 
noticed that the snow was coming down vertically, but it is 
passing the windows of the moving car at an angle of 37° to 
the horizontal. Estimate the speed of the snowflakes rela­
tive to the car and relative to the ground.

95. A rock is kicked horizontally at 15 m/s from a hill with a 
45° slope (Fig. 3-63). How long does it take for the rock to 
hit the ground?

15 m/s

FIGURE 3-63
Problem 95.

45"y

96. A batter hits a fly ball which leaves the bat 0.90 m above the 
ground at an angle of 61° with an initial speed of 28 m/s head­
ing toward centerfield. Ignore air resistance, (a) How far from 
home plate would the ball land if not caught? (b) The ball is 
caught by the centerfielder who, starting at a distance of 105 m 
from home plate, runs straight toward home plate at a constant 
speed and makes the catch at ground level. Find his speed.

97. A ball is shot from the top of a building with an initial 
velocity of 18 m/s at an angle 0 = 42° above the horizontal.
(a) What are the horizontal and vertical components of the 
initial velocity? (b) If a nearby building is the same height 
and 55 m away, how far below the top of the building will 
the ball strike the nearby building?

98. At t = 0 a batter hits a baseball with an initial speed of 28 m/s 
at a 55° angle to the horizontal. An outfielder is 85 m from 
the batter at t = 0 and, as seen from home plate, the line 
of sight to the outfielder makes a horizontal angle of 22° 
with the plane in which the ball moves (see Fig. 3-64). 
What speed and direction must the fielder take to catch the 
ball at the same height from which it was struck? Give the angle 
with respect to

Fielder runs 
lo here front here

the outfielder’s 
line of sight to 
home plate. Atr  

/

FIGURE 3-64
Problem 98.
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*99. (II) Students shoot a plastic ball horizontally from a 

projectile launcher. They measure the distance x the ball 
travels horizontally, the distance y the ball falls vertically, 
and the total time t the ball is in the air for six different 
heights of the projectile launcher. Here is their data.

Time, 
t (  s)

Horizontal distance, 
x  (m)

Vertical distance, 
^(m)

0.217 0.642 0.260
0.376 1.115 0.685
0.398 1.140 0.800
0.431 1.300 0.915
0.478 1.420 1.150
0.491 1.480 1.200

* 100.

(a) Determine the best-fit straight line that represents x as 
a function of t. What is the initial speed of the ball 
obtained from the best-fit straight line? (b) Determine the 
best-fit quadratic equation that represents y as a function 
of t. What is the acceleration of the ball in the vertical 
direction?
(Ill) A shot-putter throws from a height h = 2.1 m above 
the ground as shown in Fig. 3-65, with an initial speed of 
d0 = 13.5 m/s. (a) Derive a relation that describes how the 
distance traveled d depends on the release angle 0O. 
(;b) Using the given values for v0 and h, use a graphing 
calculator or computer to plot d vs. 0O. According to your 
plot, what value for 0O maximizes d?

tty -  )X5 m/s

FIGURE 3-65 Problem 100.

A nsw ers to Exercises

A: When the two vectors D1 and D2 point in the same direction. 

B: 3\/2  = 4.24.

C: (a).

D: (d).
E: Both balls reach the same height, so are in the air for the 

same length of time.
F: (c).
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Dynamics: 
Newton's Laws of Motion
CHAPTER-OPENING QUESTION —Guess now!
A 150-kg football player collides head-on with a 75-kg running back. During the 
collision, the heavier player exerts a force of magnitude FA on the smaller player. 
If the smaller player exerts a force FB back on the heavier player, which response 
is most accurate?

(a) Fb = Fa.
(b) Fb < Fa.
(c)
(d) Fb = 0.
(e) We need more information.

Second Question:
A line by the poet T. S. Eliot (from Murder in the Cathedral) has the women of 
Canterbury say “the earth presses up against our feet.” What force is this?

(a) Gravity.
(b) The normal force.
(c) A friction force.
(d) Centrifugal force.
(e) No force—they are being poetic.

The space shuttle D iscovery is 
carried out into space by powerful 
rockets. They are accelerating, 
increasing in speed rapidly. To do so, 
a force must be exerted on them  
according to N ew ton’s second law, 
S F  =  raa. W hat exerts this force? 
The rocket engines exert a force on  
the gases they push out (expel) from  
the rear of the rockets (labeled FGR). 
According to N ew ton’s third law, 
these ejected gases exert an equal 
and opposite force on the rockets 
in the forward direction. It is this 
“reaction” force exerted on the 
rockets by the gases, labeled FRG, 
that accelerates the rockets forward.

CONTENTS
4 -1  Force
4 -2  Newton’s First Law of 

Motion
4 -3  Mass
4 -4  Newton’s Second Law of 

Motion
4 -5  Newton’s Third Law of 

Motion
4 -6  Weight— the Force of Gravity; 

and the Normal Force
4 -7  Solving Problems with Newton’s 

Laws: Free-Body Diagrams
4 -8  Problem Solving— A  

General Approach

83



FIGURE 4 -1
grocery cart- 
a person.

A  force exerted on a 
-in this case exerted by

W e have discussed how motion is described in terms of velocity and 
acceleration. Now we deal with the question of why objects move as 
they do: What makes an object at rest begin to move? What causes an 
object to accelerate or decelerate? What is involved when an object 

moves in a curved path? We can answer in each case that a force is required. In this 
Chapter1, we will investigate the connection between force and motion, which is the 
subject called dynamics.

4 —1 Force
Intuitively, we experience force as any kind of a push or a pull on an object. When 
you push a stalled car or a grocery cart (Fig. 4-1), you are exerting a force on it. 
WHien a motor lifts an elevator, or a hammer hits a nail, or the wind blows the 
leaves of a tree, a force is being exerted. We often call these contact forces because 
the force is exerted when one object comes in contact with another object. On the 
other hand, we say that an object falls because of the force o f gravity.

If an object is at rest, to start it moving requires force—that is, a force is 
needed to accelerate an object from zero velocity to a nonzero velocity. For an 
object already moving, if you want to change its velocity—either in direction or in 
magnitude—a force is required. In other words, to accelerate an object, a force is 
always required. In Section 4-4 we discuss the precise relation between acceleration 
and net force, which is Newton’s second law.

One way to measure the magnitude (or strength) of a force is to use a spring 
scale (Fig. 4-2). Normally, such a spring scale is used to find the weight of an 
object; by weight we mean the force of gravity acting on the object (Section 4-6). 
The spring scale, once calibrated, can be used to measure other kinds of forces as 
well, such as the pulling force shown in Fig. 4-2.

A force exerted in a different direction has a different effect. Force has 
direction as well as magnitude, and is indeed a vector that follows the rules of 
vector addition discussed in Chapter 3. We can represent any force on a diagram 
by an arrow, just as we did with velocity. The direction of the arrow is the direction of 
the push or pull, and its length is drawn proportional to the magnitude of the force.

FIGURE 4 - 2  A  spring scale used to 
measure a force.

4 —2  Newton's First Law of Motion
What is the relationship between force and motion? Aristotle (384-322 B.C.) 
believed that a force was required to keep an object moving along a horizontal 
plane. To Aristotle, the natural state of an object was at rest, and a force was 
believed necessary to keep an object in motion. Furthermore, Aristotle argued, the 
greater the force on the object, the greater its speed.

Some 2000 years later, Galileo disagreed: he maintained that it is just as natural 
for an object to be in motion with a constant velocity as it is for it to be at rest.

To understand Galileo’s idea, consider the following observations involving 
motion along a horizontal plane. To push an object with a rough surface along a

tWe treat everyday objects in motion here; the treatment of the submicroscopic world of atoms 
and molecules, and when velocities are extremely high, close to the speed of light (3.0 X  108m/s), are 
treated using quantum theory (Chapter 37 ff), and the theory of relativity (Chapter 36).
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tabletop at constant speed requires a certain amount of force. To push an equally 
heavy object with a very smooth surface across the table at the same speed will 
require less force. If a layer of oil or other lubricant is placed between the surface of 
the object and the table, then almost no force is required to keep the object moving. 
Notice that in each successive step, less force is required. As the next step, we imagine 
that the object does not rub against the table at all—or there is a perfect lubricant 
between the object and the table—and theorize that once started, the object would 
move across the table at constant speed with no force applied. A steel ball bearing 
rolling on a hard horizontal surface approaches this situation. So does a puck on an 
air table, in which a thin layer of air reduces friction almost to zero.

It was Galileo’s genius to imagine such an idealized world—in this case, one 
where there is no friction—and to see that it could lead to a more accurate and 
richer understanding of the real world. This idealization led him to his remarkable 
conclusion that if no force is applied to a moving object, it will continue to move 
with constant speed in a straight line. An object slows down only if a force is exerted 
on it. Galileo thus interpreted friction as a force akin to ordinary pushes and pulls.

To push an object across a table at constant speed requires a force from your 
hand that can balance out the force of friction (Fig. 4-3). When the object moves 
at constant speed, your pushing force is equal in magnitude to the friction force, 
but these two forces are in opposite directions, so the net force on the object (the 
vector sum of the two forces) is zero. This is consistent with Galileo’s viewpoint, 
for the object moves with constant speed when no net force is exerted on it.

Upon this foundation laid by Galileo, Isaac Newton (Fig. 4-4) built his great 
theory of motion. Newton’s analysis of motion is summarized in his famous “three 
laws of motion.” In his great work, the Principia (published in 1687), Newton 
readily acknowledged his debt to Galileo. In fact, Newton’s first law of motion is 
close to Galileo’s conclusions. It states that

Every object continues in its state of rest, or of uniform velocity in a straight 
line, as long as no net force acts on it.

The tendency of an object to maintain its state of rest or of uniform velocity in a straight 
line is called inertia. As a result, Newton’s first law is often called the law of inertia.

CONCEPTUAL EXAMPLE 4-1 I Newton's first law. A school bus comes to a 
sudden stop, and all of the backpacks on the floor start to slide forward. What force 
causes them to do that?
RESPONSE It isn’t “force” that does it. By Newton’s first law, the backpacks 
continue their state of motion, maintaining their velocity. The backpacks slow 
down if a force is applied, such as friction with the floor.

Inertial Reference Frames
Newton’s first law does not hold in every reference frame. For example, if your 
reference frame is fixed in an accelerating car, an object such as a cup resting on the 
dashboard may begin to move toward you (it stayed at rest as long as the car’s 
velocity remained constant). The cup accelerated toward you, but neither you nor 
anything else exerted a force on it in that direction. Similarly, in the reference frame 
of the decelerating bus in Example 4-1, there was no force pushing the backpacks 
forward. In accelerating reference frames, Newton’s first law does not hold. Refer­
ence frames in which Newton’s first law does hold are called inertial reference 
frames (the law of inertia is valid in them). For most purposes, we usually make the 
approximation that a reference frame fixed on the Earth is an inertial frame. This is 
not precisely true, due to the Earth’s rotation, but usually it is close enough.

Any reference frame that moves with constant velocity (say, a car or an 
airplane) relative to an inertial frame is also an inertial reference frame. Reference 
frames where the law of inertia does not hold, such as the accelerating reference 
frames discussed above, are called noninertial reference frames. How can we be 
sure a reference frame is inertial or not? By checking to see if Newton’s first law 
holds. Thus Newton’s first law serves as the definition of inertial reference frames.

F

FIGURE 4 - 3  F represents the force 
applied by the person and Ffr 
represents the force of friction.

NEWTON’S FIRST LAW  
OF MOTION

FIGURE 4 - 4
Isaac Newton (1642-1727).
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Distinguish mass from weight

FIGURE 4-5 The bobsled 
accelerates because the team exerts 
a force.

NEWTON’S SECOND LAW  
OF MOTION

4 - 3  Mass
Newton’s second law, which we come to in the next Section, makes use of the 
concept of mass. Newton used the term mass as a synonym for quantity o f matter. 
This intuitive notion of the mass of an object is not very precise because the 
concept “quantity of matter” is not very well defined. More precisely, we can say 
that mass is a measure o f the inertia of an object. The more mass an object has, the 
greater the force needed to give it a particular acceleration. It is harder to start it 
moving from rest, or to stop it when it is moving, or to change its velocity sideways 
out of a straight-line path. A truck has much more inertia than a baseball moving 
at the same speed, and a much greater force is needed to change the truck’s 
velocity at the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we must define a standard. In SI units, the 
unit of mass is the kilogram (kg) as we discussed in Chapter 1, Section 1-4.

The terms mass and weight are often confused with one another, but it is 
important to distinguish between them. Mass is a property of an object itself 
(a measure of an object’s inertia, or its “quantity of matter”). Weight, on the other 
hand, is a force, the pull of gravity acting on an object. To see the difference, 
suppose we take an object to the Moon. The object will weigh only about one-sixth 
as much as it did on Earth, since the force of gravity is weaker. But its mass will be 
the same. It will have the same amount of matter as on Earth, and will have just as 
much inertia—for in the absence of friction, it will be just as hard to start it 
moving on the Moon as on Earth, or to stop it once it is moving. (More on weight 
in Section 4-6.)

4 —4  Newton's Second Law of Motion
Newton’s first law states that if no net force is acting on an object at rest, the 
object remains at rest; or if the object is moving, it continues moving with constant 
speed in a straight line. But what happens if a net force is exerted on an object? 
Newton perceived that the object’s velocity will change (Fig. 4-5). A net force 
exerted on an object may make its velocity increase. Or, if the net force is in a 
direction opposite to the motion, the force will reduce the object’s velocity. If the 
net force acts sideways on a moving object, the direction of the object’s velocity 
changes (and the magnitude may as well). Since a change in velocity is an acceleration 
(Section 2-4), we can say that a net force causes acceleration.

What precisely is the relationship between acceleration and force? Everyday 
experience can suggest an answer. Consider the force required to push a cart when 
friction is small enough to ignore. (If there is friction, consider the net force, which 
is the force you exert minus the force of friction.) If you push the cart with a gentle 
but constant force for a certain period of time, you will make the cart accelerate 
from rest up to some speed, say 3 km/h. If you push with twice the force, the cart 
will reach 3 km /h in half the time. The acceleration will be twice as great. If you 
triple the force, the acceleration is tripled, and so on. Thus, the acceleration of an 
object is directly proportional to the net applied force. But the acceleration 
depends on the mass of the object as well. If you push an empty grocery cart with 
the same force as you push one that is filled with groceries, you will find that the 
full cart accelerates more slowly. The greater the mass, the less the acceleration for 
the same net force. The mathematical relation, as Newton argued, is that the 
acceleration of an object is inversely proportional to its mass. These relationships 
are found to hold in general and can be summarized as follows:

The acceleration of an object is directly proportional to the net force acting
on it, and is inversely proportional to the object’s mass. The direction of the
acceleration is in the direction of the net force acting on the object.

This is Newton’s second law of motion.
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Newton’s second law can be written as an equation: 
2F—  ? 
ma =

where a stands for acceleration, m for the mass, and 2F  for the net force on the object. 
The symbol 2  (Greek “sigma”) stands for “sum of”; F stands for force, so 2F  means 
the vector sum o f all forces acting on the object, which we define as the net force.

We rearrange this equation to obtain the familiar statement of Newton’s 
second law:

2F  = ma. (4-la)
Newton’s second law relates the description of motion (acceleration) to the cause 
of motion (force). It is one of the most fundamental relationships in physics. From 
Newton’s second law we can make a more precise definition of force as an action 
capable o f accelerating an object.

Every force F is a vector, with magnitude and direction. Equation 4 - la  is a 
vector equation valid in any inertial reference frame. It can be written in component 
form in rectangular coordinates as

= max , 'ZFy = may , = maz, (4-lb)
where

F = Fxi + Fyl  + Fz k.
The component of acceleration in each direction is affected only by the component 
of the net force in that direction.

In SI units, with the mass in kilograms, the unit of force is called the newton (N). 
One newton, then, is the force required to impart an acceleration of 1 m/s2 to a 
mass of 1 kg. Thus 1 N = 1 kg-m/s2.

In cgs units, the unit of mass is the gram (g) as mentioned earlier.1 The unit of force 
is the dyne, which is defined as the net force needed to impart an acceleration of 1 cm/s2 
to a mass of 1 g. Thus 1 dyne = 1 g • cm/s2. It is easy to show that 1 dyne = 10“5 N.

In the British system, the unit of force is the pound (abbreviated lb), where
1 lb = 4.448222 N «  4.45 N. The unit of mass is the slug, which is defined as that 
mass which will undergo an acceleration of 1 ft/s2 when a force of 1 lb is applied to 
it. Thus 1 lb = 1 slug-ft/s2. Table 4-1 summarizes the units in the different systems.

It is very important that only one set of units be used in a given calculation or 
problem, with the SI being preferred. If the force is given in, say, newtons, and the 
mass in grams, then before attempting to solve for the acceleration in SI units, we 
must change the mass to kilograms. For example, if the force is given as 2.0 N along 
the x axis and the mass is 500 g, we change the latter to 0.50 kg, and the accelera­
tion will then automatically come out in m/s2 when Newton’s second law is used:

2 Fx 2.0 N 2.0 kg-m/s2
m 0.50 kg 0.50 kg

= 4.0 m /s.

ESTIMATE I Force to accelerate a fast car. Estimate the netEXAMPLE 4 -2
force needed to accelerate (a) a 1000-kg car at \g\ (b) a 200-g apple at the same rate.
APPROACH We use Newton’s second law to find the net force needed for 
each object. This is an estimate (the \  is not said to be precise) so we round off to 
one significant figure.
SOLUTION (a) The car’s acceleration is a = \g  = ^(9.8 m/s2) «  5 m/s2. We use 
Newton’s second law to get the net force needed to achieve this acceleration:

2 F  = ma «  (1000 kg)(5 m/s2) = 5000 N.
(If you are used to British units, to get an idea of what a 5000-N force is, you can 
divide by 4.45 N/lb and get a force of about 10001b.)
(b) For the apple, m = 200 g = 0.2 kg, so

2 F  = ma «  (0.2 kg)(5 m/s2) = 1 N.

fBe careful not to confuse g for gram with g for the acceleration due to gravity. The latter is always 
italicized (or boldface when a vector).

NEWTON’S SECOND LAW  
OF MOTION

TABLE 4-1
Units for Mass and Force

System Mass Force

SI kilogram newton (N)
(kg) (= k g -m /s2)

cgs gram (g) dyne
(= g • cm /s2) 

British slug pound (lb)

Conversion factors: 1 dyne 
lib

10“5 N; 
4.45 N.

\ P R O B L E M  S O L V I N G
Use a consistent set o f  units
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Force to stop a car. What average net force is required to 
bring a 1500-kg car to rest from a speed of 100 km/h within a distance of 55 m?

APPROACH We use Newton’s second law, 2T7 = ma, to determine the force, 
but first we need to calculate the acceleration a. We assume the acceleration is 
constant, so we can use the kinematic equations, Eqs. 2-12, to calculate it.

EXAMPLE 4-3

FIGURE 4 - 6
Example 4 -3 .

r0 -  KX> kin/h v = 0

1—
A=0

x(m) 
.v = 55 m

SOLUTION We assume the motion is along the +x axis (Fig. 4-6). We are given 
the initial velocity v0 = 100 km/h = 27.8 m/s (Section 1-5), the final velocity 
v = 0, and the distance traveled x — x0 = 55 m. From Eq. 2-12c, we have

so
v2 = Vo + 2a(x -  *„),

v * - v l  0 — (27.8 m/s)2 _  , ,
a = --------- r = -----———r-----  = -7.0 m /s .

2(x -  x0) 2(55 m)

The net force required is then

2 F  = ma = (1500 kg)(-7.1 m/s2) = -1 .1 X 1 0 4N.

The force must be exerted in the direction opposite to the initial velocity, which is 
what the negative sign means.
NOTE If the acceleration is not precisely constant, then we are determining an 
“average” acceleration and we obtain an “average” net force.

Newton’s second law, like the first law, is valid only in inertial reference frames 
(Section 4-2). In the noninertial reference frame of an accelerating car, for 
example, a cup on the dashboard starts sliding—it accelerates—even though the 
net force on it is zero; thus 2F  = ma doesn’t work in such an accelerating refer­
ence frame (2F  = 0, but a # 0 in this noninertial frame).

EXERCISE A Suppose you watch a cup slide on the (smooth) dashboard of an accelerating car 
as we just discussed, but this time from an inertial reference frame outside the car, on the 
street. From your inertial frame, N ew ton’s laws are valid. What force pushes the cup off 
the dashboard?

Precise Definition of Mass
As mentioned in Section 4-3, we can quantify the concept of mass using its defin­
ition as a measure of inertia. How to do this is evident from Eq. 4 - la, where we 
see that the acceleration of an object is inversely proportional to its mass. If the same 
net force 2 F  acts to accelerate each of two masses, mx and m2, then the ratio of 
their masses can be defined as the inverse ratio of their accelerations:

m2 _ a1 
m1 a2

If one of the masses is known (it could be the standard kilogram) and the two 
accelerations are precisely measured, then the unknown mass is obtained from this 
definition. For example, if m1 = 1.00 kg, and for a particular force ax = 3.00 m/s2 
and a2 = 2.00 m/s2, then m2 = 1.50 kg.
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4 —5 Newton's Third Law of Motion
Newton’s second law of motion describes quantitatively how forces affect motion. But 
where, we may ask, do forces come from? Observations suggest that a force exerted on 
any object is always exerted by another object. A horse pulls a wagon, a person pushes 
a grocery cart, a hammer pushes on a nail, a magnet attracts a paper clip. In each of 
these examples, a force is exerted on one object, and that force is exerted by another 
object. For example, the force exerted on the nail is exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer exerts 
a force on the nail (Fig. 4-7). But the nail evidently exerts a force back on the 
hammer as well, for the hammer’s speed is rapidly reduced to zero upon contact. 
Only a strong force could cause such a rapid deceleration of the hammer. Thus, 
said Newton, the two objects must be treated on an equal basis. The hammer 
exerts a force on the nail, and the nail exerts a force back on the hammer. This is 
the essence of Newton’s third law of motion:

Whenever one object exerts a force on a second object, the second exerts an
equal force in the opposite direction on the first.

This law is sometimes paraphrased as “to every action there is an equal and 
opposite reaction.” This is perfectly valid. But to avoid confusion, it is very 
important to remember that the “action” force and the “reaction” force are 
acting on different objects.

As evidence for the validity of Newton’s third law, look at your hand when 
you push against the edge of a desk, Fig. 4-8. Your hand’s shape is distorted, clear 
evidence that a force is being exerted on it. You can see the edge of the desk 
pressing into your hand. You can even feel the desk exerting a force on your hand; 
it hurts! The harder you push against the desk, the harder the desk pushes back on 
your hand. (You only feel forces exerted on you; when you exert a force on 
another object, what you feel is that object pushing back on you.)

FIGURE 4-7 A  hammer striking a 
nail. The hammer exerts a force on the 
nail and the nail exerts a force back on 
the hammer. The latter force decelerates 
the hammer and brings it to rest.

NEWTON’S THIRD LAW  
OF MOTION

A  CAUTI ON
Action and reaction forces act 
on different objects

Force exerted 
on hand 
by desk

\
^xertecN^Force > 

on desk by hand

FIGURE 4-8 If your hand 
pushes against the edge of a desk 
(the force vector is shown in red), 
the desk pushes back against your 
hand (this force vector is shown 
in a different color, violet, 
to remind us that this force 
acts on a different object).

The force the desk exerts on your hand has the same magnitude as the force 
your hand exerts on the desk. This is true not only if the desk is at rest but is true 
even if the desk is accelerating due to the force your hand exerts.

As another demonstration of Newton’s third law, consider the ice skater in 
Fig. 4-9. There is very little friction between her skates and the ice, so she will 
move freely if a force is exerted on her. She pushes against the wall; and then she 
starts moving backward. The force she exerts on the wall cannot make her start 
moving, for that force acts on the wall. Something had to exert a force on her to 
start her moving, and that force could only have been exerted by the wall. The 
force with which the wall pushes on her is, by Newton’s third law, equal and oppo­
site to the force she exerts on the wall.

When a person throws a package out of a small boat (initially at rest), the boat 
starts moving in the opposite direction. The person exerts a force on the package. The 
package exerts an equal and opposite force back on the person, and this force 
propels the person (and the boat) backward slightly.

FIGURE 4-9 A n example of 
N ewton’s third law: when an ice 
skater pushes against the wall, the 
wall pushes back and this force 
causes her to accelerate away.

Force Force

skater wall
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FIGURE 4 - 1 0  Another example of 
N ew ton’s third law: the launch of a 
rocket. The rocket engine pushes the 
gases downward, and the gases exert 
an equal and opposite force upward 
on the rocket, accelerating it upward. 
(A  rocket does not accelerate as a 
result o f its propelling gases pushing 
against the ground.)

FIGURE 4 -1 1  We can walk 
forward because, when one foot 
pushes backward against the ground, 
the ground pushes forward on that 
foot (N ew ton’s third law). The two 
forces shown act on different objects.

Horizontal 
force exerted 
on the ground 
by person’s 
foot ^

’GP PG

NEWTON’S THIRD LAW  
OF MOTION

Rocket propulsion also is explained using Newton’s third law (Fig. 4-10). A 
common misconception is that rockets accelerate because the gases rushing out 
the back of the engine push against the ground or the atmosphere. Not true. What 
happens, instead, is that a rocket exerts a strong force on the gases, expelling 
them; and the gases exert an equal and opposite force on the rocket. It is this 
latter force that propels the rocket forward—the force exerted on the rocket by 
the gases (see Chapter-Opening photo, page 83). Thus, a space vehicle is maneuvered 
in empty space by firing its rockets in the direction opposite to that in which it needs to 
accelerate. When the rocket pushes on the gases in one direction, the gases push back 
on the rocket in the opposite direction. Jet aircraft too accelerate because the gases 
they thrust out backwards exert a forward force on the engines (Newton’s third law).

Consider how we walk. A person begins walking by pushing with the foot 
backward against the ground. The ground then exerts an equal and opposite force 
forward on the person (Fig. 4-11), and it is this force, on the person, that moves 
the person forward. (If you doubt this, try walking normally where there is no 
friction, such as on very smooth slippery ice.) In a similar way, a bird flies forward 
by exerting a backward force on the air, but it is the air pushing forward (Newton’s 
third law) on the bird’s wings that propels the bird forward.

Horizontal 
force exerted 
on the
person’s foot 
by the ground

CONCEPTUAL EXAMPLE 4̂ 4~1 What exerts the force to move a car? What 
makes a car go forward?

RESPONSE A common answer is that the engine makes the car move forward. 
But it is not so simple. The engine makes the wheels go around. But if the tires 
are on slick ice or deep mud, they just spin. Friction is needed. On firm ground, 
the tires push backward against the ground because of friction. By Newton’s third 
law, the ground pushes on the tires in the opposite direction, accelerating the car 
forward.

We tend to associate forces with active objects such as humans, animals, engines, 
or a moving object like a hammer. It is often difficult to see how an inanimate object 
at rest, such as a wall or a desk, or the wall of an ice rink (Fig. 4-9), can exert a 
force. The explanation is that every material, no matter how hard, is elastic 
(springy) at least to some degree. A stretched rubber band can exert a force on a 
wad of paper and accelerate it to fly across the room. Other materials may not 
stretch as readily as rubber, but they do stretch or compress when a force is 
applied to them. And just as a stretched rubber band exerts a force, so does a 
stretched (or compressed) wall, desk, or car fender.

From the examples discussed above, we can see how important it is to 
remember on what object a given force is exerted and by what object that force is 
exerted. A force influences the motion of an object only when it is applied on that 
object. A force exerted by an object does not influence that same object; it only 
influences the other object on which it is exerted. Thus, to avoid confusion, the two 
prepositions on and by must always be used—and used with care.

One way to keep clear which force acts on which object is to use double 
subscripts. For example, the force exerted on the Person by the Ground as the 
person walks in Fig. 4-11 can be labeled FpG- And the force exerted on the ground 
by the person is Fgp- By Newton’s third law

■PG' (4-2)

Fgp and Fpg have the same magnitude (Newton’s third law), and the minus sign 
reminds us that these two forces are in opposite directions.

Note carefully that the two forces shown in Fig. 4-11 act on different 
objects—hence we used slightly different colors for the vector arrows representing 
these forces. These two forces would never appear together in a sum of forces in 
Newton’s second law, 2F  = ma. Why not? Because they act on different objects: 
a is the acceleration of one particular object, and 2F  must include only the forces 
on that one object.
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Friction 
force on 
sled exerted 
by ground

( = - F a g )

FIGURE 4-12 Example 4-5, 
showing only horizontal forces. 
Michelangelo has selected a fine 
block of marble for his next 
sculpture. Shown here is his assistant 
pulling it on a sled away from the 
quarry. Forces on the assistant are 
shown as red (magenta) arrows. 
Forces on the sled are purple arrows. 
Forces acting on the ground are 
orange arrows. Action-reaction 
forces that are equal and opposite 
are labeled by the same subscripts 
but reversed (such as FGA and FAG) 
and are of different colors because 
they act on different objects.

CONCEPTUAL EXAMPLE 4-5~| Third law clarification. Michelangelo’s assistant 
has been assigned the task of moving a block of marble using a sled (Fig. 4-12). 
He says to his boss, “When I exert a forward force on the sled, the sled exerts 
an equal and opposite force backward. So how can I ever start it moving? No 
matter how hard I pull, the backward reaction force always equals my 
forward force, so the net force must be zero. I ’ll never be able to move this load.” 
Is he correct?
RESPONSE No. Although it is true that the action and reaction forces are equal 
in magnitude, the assistant has forgotten that they are exerted on different 
objects. The forward (“action”) force is exerted by the assistant on the sled 
(Fig. 4-12), whereas the backward “reaction” force is exerted by the sled on the 
assistant. To determine if the assistant moves or not, we must consider only the 
forces on the assistant and then apply 2 F  = ma, where 2 F  is the net force 
on the assistant, a is the acceleration of the assistant, and m  is the assistant’s mass. 
There are two forces on the assistant that affect his forward motion; they are 
shown as bright red (magenta) arrows in Figs. 4-12 and 4-13: they are (1) the 
horizontal force Fag exerted on the assistant by the ground (the harder he 
pushes backward against the ground, the harder the ground pushes forward on 
him—Newton’s third law), and (2) the force Fas exerted on the assistant by the 
sled, pulling backward on him; see Fig. 4-13. If he pushes hard enough on 
the ground, the force on him exerted by the ground, FAG, will be larger than 
the sled pulling back, FAS, and the assistant accelerates forward (Newton’s 
second law). The sled, on the other hand, accelerates forward when the force on 
it exerted by the assistant is greater than the frictional force exerted backward 
on it by the ground (that is, when FSA has greater magnitude than FSG in 
Fig. 4-12).

Using double subscripts to clarify Newton’s third law can become cumbersome, 
and we won’t usually use them in this way. We will usually use a single subscript 
referring to what exerts the force on the object being discussed. Nevertheless, if 
there is any confusion in your mind about a given force, go ahead and use two 
subscripts to identify on what object and by what object the force is exerted.

EXERCISE B Return to the first Chapter-Opening Question, page 83, and answer it again 
now. Try to explain why you may have answered differently the first time.

EXERCISE C A massive truck collides head-on with a small sports car. (a) Which vehicle 
experiences the greater force of impact? (b) Which experiences the greater acceleration 
during the impact? (c) Which of Newton’s laws are useful to obtain the correct answers?

EXERCISED If you push on a heavy desk, does it always push back on you? (a) Not unless 
someone else also pushes on it. (b) Yes, if it is out in space, (c) A desk never pushes to 
start with, (d) No. (e) Yes.

\ P R O B L E M  S O L V I N G
A study of Newton’s second and 
third laws

FIGURE 4-13 Example 4-5. The 
horizontal forces on the assistant.

^gsC- “ Fsg)
Force on 
ground 
exerted 
by sled

Force on Force on
ground assistant
exerted exerted
by assistant by ground

Force on sled 
exerted by 
assistant

Force on 
assistant 
exerted 
by sled

Force on 
assistant 
exerted 
by sled

Force on 
assistant 
exerted 
by ground
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FIGURE 4-14 (a) The net force on 
an object at rest is zero according to 
Newton’s second law. Therefore the 
downward force of gravity (Fg) on 
an object at rest must be balanced 
by an upward force (the normal 
force Fn) exerted by the table in this 
case, (b) Fn is the force exerted on 
the table by the statue and is the 
reaction force to FN by Newton’s 
third law. (Fn is shown in a different 
color to remind us it acts on a 
different object.) The reaction force 
to Fg is not shown.

/j\ CAUTION_________
Weight and normal force are not 

action-reaction pairs

4 —6  W eight—the Force o f Gravity; 
and the Normal Force

As we saw in Chapter 2, Galileo claimed that all objects dropped near the surface 
of the Earth would fall with the same acceleration, g, if air resistance was 
negligible. The force that causes this acceleration is called the force o f gravity or 
gravitational force. What exerts the gravitational force on an object? It is the Earth, 
as we will discuss in Chapter 6, and the force acts vertically1̂ downward, toward the 
center of the Earth. Let us apply Newton’s second law to an object of mass m  falling 
freely due to gravity. For the acceleration, a, we use the downward acceleration due 
to gravity, g. Thus, the gravitational force on an object, FG, can be written as

Fg = mg. (4-3)

The direction of this force is down toward the center of the Earth. The magnitude 
of the force of gravity on an object, mg, is commonly called the object’s weight.

In SI units, g = 9.80 m /s2 = 9.80 N/kg, * so the weight of a 1.00-kg mass on 
Earth is 1.00 kg X 9.80 m /s2 = 9.80 N. We will mainly be concerned with the 
weight of objects on Earth, but we note that on the Moon, on other planets, or in 
space, the weight of a given mass will be different than it is on Earth. For example, 
on the Moon the acceleration due to gravity is about one-sixth what it is on Earth, 
and a 1.0-kg mass weighs only 1.6 N. Although we will not use British units, we 
note that for practical purposes on the Earth, a mass of 1 kg weighs about 2.2 lb. 
(On the Moon, 1 kg weighs only about 0.4 lb.)

The force of gravity acts on an object when it is falling. When an object is at 
rest on the Earth, the gravitational force on it does not disappear, as we know if 
we weigh it on a spring scale. The same force, given by Eq. 4-3, continues to act. 
Why, then, doesn’t the object move? From Newton’s second law, the net force on 
an object that remains at rest is zero. There must be another force on the object to 
balance the gravitational force. For an object resting on a table, the table exerts 
this upward force; see Fig. 4-14a. The table is compressed slightly beneath the 
object, and due to its elasticity, it pushes up on the object as shown. The force 
exerted by the table is often called a contact force, since it occurs when two objects 
are in contact. (The force of your hand pushing on a cart is also a contact force.) 
When a contact force acts perpendicular to the common surface of contact, it is 
referred to as the normal force (“normal” means perpendicular); hence it is 
labeled Fn in Fig. 4-14a.

The two forces shown in Fig. 4 - 14a are both acting on the statue, which 
remains at rest, so the vector sum of these two forces must be zero (Newton’s 
second law). Hence Fg and FN must be of equal magnitude and in opposite direc­
tions. But they are not the equal and opposite forces spoken of in Newton’s third 
law. The action and reaction forces of Newton’s third law act on different objects, 
whereas the two forces shown in Fig. 4-14a act on the same object. For each of the 
forces shown in Fig. 4-14a, we can ask, “What is the reaction force?” The upward 
force, FN, on the statue is exerted by the table. The reaction to this force is a force 
exerted by the statue downward on the table. It is shown in Fig. 4-14b, where it is 
labeled F^. This force, F^, exerted on the table by the statue, is the reaction force 
to Fn in accord with Newton’s third law. What about the other force on the statue, 
the force of gravity FG exerted by the Earth? Can you guess what the reaction is to 
this force? We will see in Chapter 6 that the reaction force is also a gravitational 
force, exerted on the Earth by the statue.

EXERCISE E Return to the second Chapter-Opening Question, page 83, and answer it
again now. Try to explain why you may have answered differently the first time.

fThe concept of “vertical” is tied to gravity. The best definition of vertical is that it is the direction in 
which objects fall. A surface that is “horizontal,” on the other hand, is a surface on which a round object 
won’t start rolling: gravity has no effect. Horizontal is perpendicular to vertical.
*Since IN  = lk g -m /s2 (Section 4-4), then lm /s 2 = lN /k g .
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Weight, normal force, and a box. A friend has given you a 
special gift, a box of mass 10.0 kg with a mystery surprise inside. The box is 
resting on the smooth (frictionless) horizontal surface of a table (Fig. 4-15a).
(a) Determine the weight of the box and the normal force exerted on it by the 
table. (b) Now your friend pushes down on the box with a force of 40.0 N, as in 
Fig. 4-15b. Again determine the normal force exerted on the box by the table,
(c) If your friend pulls upward on the box with a force of 40.0 N (Fig. 4-15c), 
what now is the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each 
case is zero (Newton’s second law). The weight of the box has magnitude mg in 
all three cases.
SOLUTION (a) The weight of the box is mg = (10.0 kg)(9.80 m/s2) = 98.0 N, 
and this force acts downward. The only other force on the box is the normal force 
exerted upward on it by the table, as shown in Fig. 4-15a. We chose the upward 
direction as the positive y direction; then the net force 'EFy on the box is 
'ZFy = FN -  mg\ the minus sign means mg acts in the negative y direction 
(m and g are magnitudes). The box is at rest, so the net force on it must be zero 
(Newton’s second law, = may , and ay = 0).Thus

'ZFy = may 
Fn ~ mg = 0,

so we have
Fn = mg.

The normal force on the box, exerted by the table, is 98.0 N upward, and has 
magnitude equal to the box’s weight.
(b) Your friend is pushing down on the box with a force of 40.0 N. So instead of 
only two forces acting on the box, now there are three forces acting on the box, 
as shown in Fig. 4-15b. The weight of the box is still mg = 98.0 N. The net force 
is 'EFy = FN — mg — 40.0 N, and is equal to zero because the box remains at 
rest (a = 0). Newton’s second law gives

J.Fy = FN -  mg -  40.0 N = 0.
We solve this equation for the normal force:

FN = mg + 40.0 N = 98.0 N + 40.0 N = 138.0 N,
which is greater than in (a). The table pushes back with more force when a person 
pushes down on the box. The normal force is not always equal to the weight!
(c) The box’s weight is still 98.0 N and acts downward. The force exerted by your 
friend and the normal force both act upward (positive direction), as shown in 
Fig. 4-15c. The box doesn’t move since your friend’s upward force is less than the 
weight. The net force, again set to zero in Newton’s second law because a = 0, is

'S.Fy = FN — mg + 40.0 N = 0,
so

Fn = mg -  40.0 N = 98.0 N -  40.0 N = 58.0 N.
The table does not push against the full weight of the box because of the upward 
pull exerted by your friend.
NOTE The weight of the box (= mg) does not change as a result of your friend’s 
push or pull. Only the normal force is affected.

Recall that the normal force is elastic in origin (the table in Fig. 4-15 sags 
slightly under the weight of the box). The normal force in Example 4-6 is vertical, 
perpendicular to the horizontal table. The normal force is not always vertical, 
however. When you push against a wall, for example, the normal force with 
which the wall pushes back on you is horizontal (Fig. 4-9). For an object on a 
plane inclined at an angle to the horizontal, such as a skier or car on a hill, the 
normal force acts perpendicular to the plane and so is not vertical.

EXAMPLE 4-6 Fn1

mi
(a) S*' -  Fh ~ ms ~ 0

(b) I/-v = Fn 40.0 N = (I

(c) I F ,  =  -  mg +  40.0 N =  0

FIGURE 4-15 Example 4 -6 .
(a) A  10-kg gift box is at rest on a 
table, (b) A  person pushes down on 
the box with a force of 40.0 N.
(c) A  person pulls upward on the 
box with a force of 40.0 N. The forces 
are all assumed to act along a line; 
they are shown slightly displaced in 
order to be distinguishable. Only 
forces acting on the box are shown.

/ | \  CAUTI ON
The norm al force is not 
always equal to the weight

/ j \  CAUTI ON
The normal force, FN, is 
not necessarily vertical
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FIGURE 4 -1 6  Example 4 -7 .
The box accelerates upward because 
FP > mg.

FIGURE 4 -1 7  Example 4 -8 . The 
acceleration vector is shown in gold 
to distinguish it from the red force 
vectors.

f t

Accelerating the box. What happens when a person pulls 
upward on the box in Example 4-6c with a force equal to, or greater than, the 
box’s weight? For example, let FP = 100.0 N (Fig. 4-16) rather than the 40.0 N 
shown in Fig. 4-15c.

APPROACH We can start just as in Example 4-6, but be ready for a surprise. 
SOLUTION The net force on the box is

^Fy = Fs — mg + FP

= FN -  98.0 N + 100.0 N,

and if we set this equal to zero (thinking the acceleration might be zero), we 
would get FN = -2.0 N. This is nonsense, since the negative sign implies FN 
points downward, and the table surely cannot pull down on the box (unless 
there’s glue on the table). The least FN can be is zero, which it will be in this case. 
What really happens here is that the box accelerates upward because the net 
force is not zero. The net force (setting the normal force FN = 0) is

'LFy = Fp -  mg = 100.0 N -  98.0 N

= 2.0 N

upward. See Fig. 4-16. We apply Newton’s second law and see that the box 
moves upward with an acceleration

'Zfy _  2.0 N 
m 10.0 kg

= 0.20 m/s2.

Apparent weight loss. A 65-kg woman descends in an 
elevator that briefly accelerates at 0.20g downward. She stands on a scale that 
reads in kg. (a) During this acceleration, what is her weight and what does the 
scale read? (b) What does the scale read when the elevator descends at a 
constant speed of 2.0 m/s?

APPROACH Figure 4-17 shows all the forces that act on the woman (and only 
those that act on her). The direction of the acceleration is downward, so we 
choose the positive direction as down (this is the opposite choice from Examples 
4-6 and 4-7).
SOLUTION {a) From Newton’s second law,

2 F  = ma 

mg — FN = m(0.20g).

We solve for FN:

Fn = mg -  0.20mg = 0.80mg,

and it acts upward. The normal force FN is the force the scale exerts on the 
person, and is equal and opposite to the force she exerts on the scale: 
Fn = 0.80mg downward. Her weight (force of gravity on her) is still 
mg = (65 kg)(9.8m/s2) = 640 N. But the scale, needing to exert a force of only
0.80mg, will give a reading of 0.80m = 52 kg.
(b) Now there is no acceleration, a = 0, so by Newton’s second law, 
mg -  FN = 0 and FN = mg. The scale reads her true mass of 65 kg.
NOTE The scale in (a) may give a reading of 52 kg (as an “apparent mass”), but 
her mass doesn’t change as a result of the acceleration: it stays at 65 kg.

EXAMPLE 4 -8

EXAMPLE 4-7
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4—7 Solving Problems with Newton's Laws: 
Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is proportional to 
the net force acting on the object. The net force, as mentioned earlier, is the 
vector sum of all forces acting on the object. Indeed, extensive experiments have 
shown that forces do add together as vectors precisely according to the rules we 
developed in Chapter 3. For example, in Fig. 4-18, two forces of equal magni­
tude (100 N each) are shown acting on an object at right angles to each other. 
Intuitively, we can see that the object will start moving at a 45° angle and thus 
the net force acts at a 45° angle. This is just what the rules of vector addition 
give. From the theorem of Pythagoras, the magnitude of the resultant force is 
Fr  = V ( 100N)2 + (100 N)2 = 141N.

(a) (b)

FIGURE 4-18 (a) Two forces, FA 
and Fb , exerted by workers A  and B, 
act on a crate, (b) The sum, or 
resultant, of FA and FB is FR.

EXAMPLE 4 -9 Adding force vectors. Calculate the sum of the two forces 
exerted on the boat by workers A and B in Fig. 4-19a.

APPROACH We add force vectors like any other vectors as described in Chapter 3. 
The first step is to choose an xy coordinate system (see Fig. 4-19a), and then 
resolve vectors into their components.
SOLUTION The two force vectors are shown resolved into components in Fig. 4-19b. 
We add the forces using the method of components. The components of FA are

Fax = c o s  45.0° = (40.0 N) (0.707) = 28.3 N,
FAy = Fa sin 45.0° = (40.0 N)(0.707) = 28.3 N.

The components of FB are

FBx = +Fb cos 37.0° = +(30.0 N)(0.799) = +24.0 N,
FBy = ~Fb sin 37.0° = -(30.0N)(0.602) = -18.1 N.

FBy is negative because it points along the negative y axis. The components of the 
resultant force are (see Fig. 4 -19c)

Frx = FAx + FBx = 28.3 N + 24.0 N = 52.3 N,
FRy FAy FBy = 28.3 N -  18.1 N = 10.2 N.

To find the magnitude of the resultant force, we use the Pythagorean theorem

F* = V f \?2Rx + F ly V(52.3)2 + (10.2)2 N = 53.3 N.
The only remaining question is the angle 0 that the net force FR makes with the x axis 
We use:

tan 0
r R y

Frx

10.2 N
52.3 N

= 0.195,

and tan 1(0.195) = 11.0°. The net force on the boat has magnitude 53.3 N and 
acts at an 11.0° angle to the x axis.

When solving problems involving Newton’s laws and force, it is very important 
to draw a diagram showing all the forces acting on each object involved. Such a 
diagram is called a free-body diagram, or force diagram: choose one object, and 
draw an arrow to represent each force acting on it. Include every force acting on 
that object. Do not show forces that the chosen object exerts on other objects. To 
help you identify each and every force that is exerted on your chosen object, ask 
yourself what other objects could exert a force on it. If your problem involves 
more than one object, a separate free-body diagram is needed for each object. For 
now, the likely forces that could be acting are gravity and contact forces (one 
object pushing or pulling another, normal force, friction). Later we will consider air 
resistance, drag, buoyancy, pressure, as well as electric and magnetic forces.

j P R Q B L E M  S O L V I N G
Free-body diagram

FIGURE 4-19 Example 4-9: Two 
force vectors act on a boat.

Fa  =  40.0
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FIGURE 4 -2 0  Example 4 -10 . 
Which is the correct free-body 
diagram for a hockey puck sliding 
across frictionless ice? j: J

(h) * (C) T F{

*
S ° L V /

CONCEPTUAL EXAMPLE 4-10 I The hockey puck. A hockey puck is sliding at
constant velocity across a flat horizontal ice surface that is assumed to be frictionless. 
Which of the sketches in Fig. 4-20 is the correct free-body diagram for this puck? 
What would your answer be if the puck slowed down?
RESPONSE Did you choose (<a)? If so, can you answer the question: what exerts 
the horizontal force labeled F on the puck? If you say that it is the force needed to 
maintain the motion, ask yourself: what exerts this force? Remember that another 
object must exert any force—and there simply isn’t any possibility here. Therefore,
(a) is wrong. Besides, the force F in Fig. 4-20a would give rise to an acceleration by 
Newton’s second law. It is (b) that is correct. No net force acts on the puck, and the 
puck slides at constant velocity across the ice.

In the real world, where even smooth ice exerts at least a tiny friction force, 
then (c) is the correct answer. The tiny friction force is in the direction opposite 
to the motion, and the puck’s velocity decreases, even if very slowly.

Here now is a brief summary of how to approach solving problems involving 
Newton’s laws.

Newton's Laws; Free-Body Diagrams

1. Draw a sketch of the situation.
2. Consider only one object (at a time), and draw a 

free-body diagram for that object, showing all the 
forces acting on that object. Include any unknown 
forces that you have to solve for. Do not show any 
forces that the chosen object exerts on other objects.

Draw the arrow for each force vector reasonably 
accurately for direction and magnitude. Label each force 
acting on the object, including forces you must solve for, 
as to its source (gravity, person, friction, and so on).

If several objects are involved, draw a free-body 
diagram for each object separately, showing all the forces 
acting on that object (and only forces acting on that

object). For each (and every) force, you must be clear 
about: on what object that force acts, and by what object 
that force is exerted. Only forces acting on a given object 
can be included in 2F = ma for that object.
Newton’s second law involves vectors, and it is usually 
important to resolve vectors into components. Choose 
x and y axes in a way that simplifies the calculation. For 
example, it often saves work if you choose one coordi­
nate axis to be in the direction of the acceleration.
For each object, apply Newton’s second law to the 
x and y components separately. That is, the x compo­
nent of the net force on that object is related to the 
x component of that object’s acceleration: J,FX = max , 
and similarly for the y direction.
Solve the equation or equations for the unknown(s).

This Problem Solving Strategy should not be considered a prescription. Rather it is 
a summary of things to do that will start you thinking and getting involved in the 
problem at hand.

When we are concerned only about translational motion, all the forces on a given
/ t \  CAUTI ON________  object can be drawn as acting at the center of the object, thus treating the object as
Treating an object as a particle a point particle. However, for problems involving rotation or statics, the place where

each force acts is also important, as we shall see in Chapters 10,11, and 12.
In the Examples that follow, we assume that all surfaces are very smooth so that 

friction can be ignored. (Friction, and Examples using it, are discussed in Chapter 5).
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EXAMPLE 4-11 Pulling the mystery box. Suppose a friend asks to examine 
the 10.0-kg box you were given (Example 4-6, Fig. 4-15), hoping to guess what is 
inside; and you respond, “Sure, pull the box over to you.” She then pulls the box 
by the attached cord, as shown in Fig. 4-21a, along the smooth surface of the 
table. The magnitude of the force exerted by the person is FP = 40.0 N, and it is 
exerted at a 30.0° angle as shown. Calculate (a) the acceleration of the box, and
(b) the magnitude of the upward force FN exerted by the table on the box. 
Assume that friction can be neglected.
APPROACH We follow the Problem Solving Strategy on the previous page. 
SOLUTION
1. Draw a sketch: The situation is shown in Fig. 4-21 a; it shows the box and the 

force applied by the person, FP.
2. Free-body diagram: Figure 4-21b shows the free-body diagram of the box. To draw 

it correctly, we show all the forces acting on the box and only the forces acting on 
the box. They are: the force of gravity mg; the normal force exerted by the 
table Fn; and the force exerted by the person FP. We are interested only in 
translational motion, so we can show the three forces acting at a point, Fig. 4-21c.

3. Choose axes and resolve vectors: We expect the motion to be horizontal, so we 
choose the x  axis horizontal and the y axis vertical. The pull of 40.0 N has 
components

FFx = (40.0 N)(cos 30.0°) = (40.0N)(0.866) = 34.6 N,
Fvy = (40.0 N)(sin 30.0°) = (40.0 N) (0.500) = 20.0 N.

In the horizontal (jc) direction, FN and mg have zero components. Thus the 
horizontal component of the net force is F?x.

4. (a) Apply Newton’s second law to determine the x component of the acceleration:
Fpx = ™ax .

5. (a) Solve:
- -  &  -  e y ® -  .  3.46m/,3.

m (10.0 kg)
The acceleration of the box is 3.46 m/s2 to the right.

(b) Next we want to find FN.
4'. (b) Apply Newton’s second law to the vertical (y) direction, with upward as positive: 

2Fy = may 
Fn -  mg + Fpy = may .

5'. (b) Solve: We have mg = (10.0 kg)(9.80 m/s2) = 98.0 N and, from point 3
above, Fpy = 20.0 N. Furthermore, since FPy < mg, the box does not move
vertically, so 0. Thus

Fn -  98.0 N + 20.0 N = 0,
so

Fn = 78.0 N.
NOTE Fn is less than mg: the table does not push against the full weight of the 
box because part of the pull exerted by the person is in the upward direction.

EXERCISE F A  10.0-kg box is dragged on a horizontal frictionless surface by a horizontal 
force of 10.0 N. If the applied force is doubled, the normal force on the box will
(a) increase; (b) remain the same; (c) decrease.

Tension in a Flexible Cord
When a flexible cord pulls on an object, the cord is said to be under tension, and 
the force it exerts on the object is the tension FT. If the cord has negligible mass, 
the force exerted at one end is transmitted undiminished to each adjacent piece of 
cord along the entire length to the other end. Why? Because 2F  = ma = 0 for 
the cord if the cord’s mass m is zero (or negligible) no matter what a is. Hence the 
forces pulling on the cord at its two ends must add up to zero (Fx and - F x). Note 
that flexible cords and strings can only pull. They can’t push because they bend.

(a)

Fn\ /

30.0°

mg

(b)

mg

(c)

FIGURE 4 -2 1  (a) Pulling the box, 
Example 4-11; (b) is the free-body 
diagram for the box, and (c) is the 
free-body diagram considering all 
the forces to act at a point (transla­
tional motion only, which is what we 
have here).

j P R O B L E M  S O L V I N G
Cords can pull but can’t push; 
tension exists throughout a cord
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FIGURE 4-22 Example 4 -12 . (a) Two boxes, A  and B, 
are connected by a cord. A  person pulls horizontally on 
box A  with force FP =  40.0 N. (b) Free-body diagram 
for box A . (c) Free-body diagram for box B.

Box B Box A

(a)

/j\ CAUTION_____
For any object, use only 

the forces on that object in 
calculating 'ZF =  ma

Our next Example involves two boxes connected by a cord. We can refer to 
this group of objects as a system. A system is any group of one or more objects we 
choose to consider and study.

Two boxes connected by a cord. Two boxes, A and B, are
connected by a lightweight cord and are resting on a smooth (frictionless) table. 
The boxes have masses of 12.0 kg and 10.0 kg. A horizontal force FP of 40.0 N is 
applied to the 10.0-kg box, as shown in Fig. 4-22a. Find (a) the acceleration of 
each box, and (b) the tension in the cord connecting the boxes.

APPROACH We streamline our approach by not listing each step. We have two boxes 
so we draw a free-body diagram for each. To draw them correctly, we must consider 
the forces on each box by itself, so that Newton’s second law can be applied to each. 
The person exerts a force FP on box A. Box A exerts a force Fx on the connecting 
cord, and the cord exerts an opposite but equal magnitude force Fx back on box A 
(Newton’s third law). These two horizontal forces on box A are shown in Fig. 4-22b, 
along with the force of gravity mA g downward and the normal force Fan exerted 
upward by the table. The cord is light, so we neglect its mass. The tension at each end 
of the cord is thus the same. Hence the cord exerts a force Fx on the second box. 
Figure 4-22c shows the forces on box B, which are Fx , mB g, and the normal 
force Fbn . There will be only horizontal motion. We take the positive x axis to the right. 
SOLUTION (a) We apply 2 Fx = max to box A:

2F* = FP -  Fx = mAaA. [box A]

For box B, the only horizontal force is Fx, so
2F* = Fx = mBaB. [box B]

The boxes are connected, and if the cord remains taut and doesn’t stretch, then 
the two boxes will have the same acceleration a. Thus aA = aB = a. We are 
given mA = 10.0 kg and mB = 12.0 kg. We can add the two equations above to 
eliminate an unknown (Fx) and obtain

(raA + mB)a = FP -  Fr + Fr = FP

Fp 40.0 N _  /9= 1.82 m/s2.a =
mA + raB 22.0 kg 

This is what we sought.

Alternate Solution We would have obtained the same result had we considered 
a single system, of mass mA + mB, acted on by a net horizontal force equal to FP. 
(The tension forces Fx would then be considered internal to the system as a 
whole, and summed together would make zero contribution to the net force on 
the whole system.)
(b) From the equation above for box B (Ft  = mB aB), the tension in the cord is

Fx = mBa = (12.0 kg)(l.82 m/s2) = 21.8 N.

Thus, Fx is less than FP (= 40.0 N), as we expect, since Fx acts to accelerate only raB. 
NOTE It might be tempting to say that the force the person exerts, FP, acts not 
only on box A but also on box B. It doesn’t. FP acts only on box A. It affects 
box B via the tension in the cord, Fx , which acts on box B and accelerates it.
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EXAMPLE 4-13 Elevator and counterweight (Atwood's machine). A system 
of two objects suspended over a pulley by a flexible cable, as shown in Fig. 4-23a, is 
sometimes referred to as an Atwood’s machine. Consider the real-life application of 
an elevator (raE) and its counterweight (rac). To minimize the work done by the 
motor to raise and lower the elevator safely, mE and mc are made similar in mass. We 
leave the motor out of the system for this calculation, and assume that the cable’s 
mass is negligible and that the mass of the pulley, as well as any friction, is small 
and ignorable. These assumptions ensure that the tension FT in the cable has the 
same magnitude on both sides of the pulley. Let the mass of the counterweight be 
mc = 1000 kg. Assume the mass of the empty elevator is 850 kg, and its mass when 
carrying four passengers is raE = 1150 kg. For the latter case (raE = 1150 kg), 
calculate (a) the acceleration of the elevator and (b) the tension in the cable.

APPROACH Again we have two objects, and we will need to apply Newton’s 
second law to each of them separately. Each mass has two forces acting on it: 
gravity downward and the cable tension pulling upward, FT. Figures 4-23b 
and c show the free-body diagrams for the elevator (raE) and for the counter­
weight (mc). The elevator, being the heavier, will accelerate downward, 
whereas the counterweight will accelerate upward. The magnitudes of their 
accelerations will be equal (we assume the cable doesn’t stretch). For the 
counterweight, mc g = (1000 kg)(9.80 m/s2) = 9800 N, so FT must be greater 
than 9800 N (in order that mc will accelerate upward). For the elevator, 
m Eg = (1150 kg)(9.80 m/s2) = 11,300 N, which must have greater magnitude 
than Fx s o  that raE accelerates downward. Thus our calculation must give Fx 
between 9800 N and 11,300 N.
SOLUTION (a) To find Ft  as well as the acceleration a, we apply Newton’s 
second law, 2 F  = ma, to each object. We take upward as the positive y direc­
tion for both objects. With this choice of axes, ac = a because mc accelerates 
upward, and aE = —a because raE accelerates downward. Thus

F\ ~ mEg = mEaE = - m Ea
Ft ~ mcg = mc ac = +mc a.

We can subtract the first equation from the second to get

(mE -  mc)g = (mE + mc)a, 

where a is now the only unknown. We solve this for a:
mE -  mc 1150 kg -  1000 kg
mE + mc g = 1150 kg + 1000 k g g = a07°* = °-68m/s2-

The elevator (mE) accelerates downward (and the counterweight mc upward) at 
a = 0.070g = 0.68 m/s2.
(b) The tension in the cable Fx can be obtained from either of the two 2 F  = ma 
equations, setting a = 0.070g = 0.68 m/s2:

Ft  = mEg -  mEa = mE(g -  a)
= 1150 kg (9.80 m/s2 -  0.68 m/s2) = 10,500 N,

or
Ft  = mc g + mc a = mc(g + a)

= 1000 kg (9.80 m/s2 + 0.68 m/s2) = 10,500 N,

which are consistent. As predicted, our result lies between 9800 N and 11,300 N. 
NOTE We can check our equation for the acceleration a in this Example by 
noting that if the masses were equal (mE = mc), then our equation above for a 
would give a = 0, as we should expect. Also, if one of the masses is zero (say, 
mc = 0), then the other mass (mE # 0) would be predicted by our equation to 
accelerate at a = g, again as expected.

0 P H Y S I C S  A P P L I E D
Elevator (as A tw o o d ’s machine)

FJeviitor

Counterweight 
mc =  14)00 kg

L

FIGURE 4 -2 3  Example 4 -13 .
(a) A tw ood’s machine in the form of 
an elevator-counterweight system.
(b) and (c) Free-body diagrams for 
the two objects.

j P R O B L E M  S O L V I N G
Check your result by seeing i f  it 
w orks in situations where the 
answer is easily guessed
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FIGURE 4-24 Example 4-14.

CONCEPTUAL EXAMPLE 4-14 I The advantage of a pulley. A mover is trying 
to lift a piano (slowly) up to a second-story apartment (Fig. 4-24). He is using a rope 
looped over two pulleys as shown. What force must he exert on the rope to slowly 
lift the piano’s 2000-N weight?

RESPONSE The magnitude of the tension force FT within the rope is the same at 
any point along the rope if we assume we can ignore its mass. First notice the forces 
acting on the lower pulley at the piano. The weight of the piano pulls down on the 
pulley via a short cable. The tension in the rope, looped through this pulley, pulls up 
twice, once on each side of the pulley. Let us apply Newton’s second law to the 
pulley-piano combination (of mass m), choosing the upward direction as positive:

2Ft  — mg = ma.

To move the piano with constant speed (set a = 0 in this equation) thus 
requires a tension in the rope, and hence a pull on the rope, of Fx = mg/2. The 
mover can exert a force equal to half the piano’s weight. We say the pulley has 
given a mechanical advantage of 2, since without the pulley the mover would 
have to exert twice the force.

0 P H Y S I C S  A P P L I E D
Accelerometer

FIGURE 4-25 Example 4-15.

EXAMPLE 4-15 Accelerometer. A small mass m hangs from a thin string and 
can swing like a pendulum. You attach it above the window of your car as shown 
in Fig. 4-25a. When the car is at rest, the string hangs vertically. What angle 0 
does the string make (a) when the car accelerates at a constant a = 1.20 m/s2, 
and (b) when the car moves at constant velocity, v = 90 km/h?

APPROACH The free-body diagram of Fig. 4-25b shows the pendulum at 
some angle 0 and the forces on it: mg downward, and the tension FT in the 
cord. These forces do not add up to zero if 0 ^  0, and since we have an accel­
eration a, we therefore expect 0=^0.  Note that 0 is the angle relative to the 
vertical.
SOLUTION (a) The acceleration a = 1.20 m/s2 is horizontal, so from Newton’s 
second law,

ma = Ft  sin 0

for the horizontal component, whereas the vertical component gives

0 = FT cos 6 -  mg. 

Dividing these two equations, we obtain 

Fx sin 0

or

so

tan0

tan0

Ft  co s 0

1.20 m/s2 
9.80 m/s2

0.122,

ma
mg

0 = 7.0°.

(b) The velocity is constant, so a = 0 and tan 0 = 0. Hence the pendulum 
hangs vertically (0 = 0°).
NOTE This simple device is an accelerometer—it can be used to measure 
acceleration.
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Inclines
Now we consider what happens when an object slides down an incline, such as a 
hill or ramp. Such problems are interesting because gravity is the accelerating 
force, yet the acceleration is not vertical. Solving such problems is usually easier if 
we choose the xy coordinate system so that one axis points in the direction of the 
acceleration. Thus we often take the x axis to point along the incline and the y axis 
perpendicular to the incline, as shown in Fig. 4-26a. Note also that the normal 
force is not vertical, but is perpendicular to the plane, Fig. 4-26b.

" U 2 J J Q J J H 3  Box slides down an incline. A box of mass ra is placed on 
a smooth (frictionless) incline that makes an angle 6 with the horizontal, as 
shown in Fig. 4-26a. (a) Determine the normal force on the box. (b) Determine 
the box’s acceleration, (c) Evaluate for a mass m = 10 kg and an incline 
of 6 = 30°.

APPROACH We expect the motion to be along the incline, so we choose the 
x axis along the slope, positive down the slope (the direction of motion). The 
y axis is perpendicular to the incline, upward. The free-body diagram is shown in 
Fig. 4-26b. The forces on the box are its weight mg vertically downward, which is 
shown resolved into its components parallel and perpendicular to the incline, and 
the normal force FN. The incline acts as a constraint, allowing motion along its 
surface. The “constraining” force is the normal force.
SOLUTION (a) There is no motion in the 
Newton’s second law we have

Fy = may

y direction, so ay = 0. Applying

Fn -  mg cos 6 = 0,

where FN and the y component of gravity (mg cos 0) are all the forces acting on 
the box in the y direction. Thus the normal force is given by

FN = mg cos 0.

Note carefully that unless 0 = 0°, FN has magnitude less than the weight mg.
(b) In the x direction the only force acting is the x component of rag, which we 
see from the diagram is mg sin 0. The acceleration a is in the x direction so

Fx = max

mg sin 0 = ma,

and we see that the acceleration down the plane is

a = g sin 0.

Thus the acceleration along an incline is always less than g, except at 0 = 90°, 
for which sin 0 = 1 and a = g. This makes sense since 0 = 90° is pure vertical 
fall. For 0 = 0°, a = 0, which makes sense because 0 = 0° means the plane is 
horizontal so gravity causes no acceleration. Note too that the acceleration does 
not depend on the mass ra.
(c) For 0 = 30°, cos 0 = 0.866 and sin 0 = 0.500, so

and
Fn = 0.866rag = 85 N, 

a = 0.500g = 4.9 m/s2.

j P R Q B L E M  S O L V I N G
G ood choice o f  coordinate system  
simplifies the calculation

(b)

FIGURE 4 - 2 6  Example 4 -16 .
(a) Box sliding on inclined plane.
(b) Free-body diagram of box.

We will discuss more Examples of motion on an incline in the next Chapter, 
where friction will be included.
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4 —8 Problem Solving—A General Approach
A basic part of a physics course is solving problems effectively. The approach 
discussed here, though emphasizing Newton’s laws, can be applied generally for 
other topics discussed throughout this book.

V
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Ar

In General

1. Read and reread written problems carefully. A 
common error is to skip a word or two when reading, 
which can completely change the meaning of a 
problem.

2. Draw an accurate picture or diagram of the situa­
tion. (This is probably the most overlooked, yet 
most crucial, part of solving a problem.) Use arrows 
to represent vectors such as velocity or force, and 
label the vectors with appropriate symbols. When 
dealing with forces and applying Newton’s laws, 
make sure to include all forces on a given object, 
including unknown ones, and make clear what 
forces act on what object (otherwise you may make 
an error in determining the net force on a particular 
object).

3. A separate free-body diagram needs to be drawn for 
each object involved, and it must show all the forces 
acting on a given object (and only on that object). 
Do not show forces that act on other objects.

4. Choose a convenient xy coordinate system (one that 
makes your calculations easier, such as one axis in the 
direction of the acceleration). Vectors are to be 
resolved into components along the coordinate axes. 
When using Newton’s second law, apply 2F = ma 
separately to x and y components, remembering that 
x direction forces are related to ax, and similarly for y. 
If more than one object is involved, you can choose 
different (convenient) coordinate systems for each.

5. List the knowns and the unknowns (what you are 
trying to determine), and decide what you need in 
order to find the unknowns. For problems in the 
present Chapter, we use Newton’s laws. More gener­
ally, it may help to see if one or more relationships 
(or equations) relate the unknowns to the knowns.

But be sure each relationship is applicable in the 
given case. It is very important to know the limita­
tions of each formula or relationship—when it is 
valid and when not. In this book, the more general 
equations have been given numbers, but even these 
can have a limited range of validity (often stated in 
brackets to the right of the equation).

6. Try to solve the problem approximately, to see if it is 
doable (to check if enough information has been given) 
and reasonable. Use your intuition, and make rough 
calculations—see “Order of Magnitude Estimating” in 
Section 1-6. A rough calculation, or a reasonable guess 
about what the range of final answers might be, is very 
useful. And a rough calculation can be checked against 
the final answer to catch errors in calculation, such as 
in a decimal point or the powers of 10.

7. Solve the problem, which may include algebraic 
manipulation of equations and/or numerical calcula­
tions. Recall the mathematical rule that you need as 
many independent equations as you have unknowns; 
if you have three unknowns, for example, then you 
need three independent equations. It is usually best 
to work out the algebra symbolically before putting 
in the numbers. Why? Because (a) you can then solve a 
whole class of similar problems with different numer­
ical values; (b) you can check your result for cases 
already understood (say, 6 = 0° or 90°); (c) there may 
be cancellations or other simplifications; (d) there is 
usually less chance for numerical error; and (e) you 
may gain better insight into the problem.

8. Be sure to keep track of units, for they can serve as 
a check (they must balance on both sides of any 
equation).

9. Again consider if your answer is reasonable. The use 
of dimensional analysis, described in Section 1-7, can 
also serve as a check for many problems.

Summary
Newton’s three laws o f motion are the basic classical laws 
describing motion.

Newton’s first law (the law of inertia) states that if the net 
force on an object is zero, an object originally at rest remains at 
rest, and an object in motion remains in motion in a straight line 
with constant velocity.

Newton’s second law states that the acceleration of an 
object is directly proportional to the net force acting on it, and 
inversely proportional to its mass:

2 F  =  ma. (4 - la )
N ew ton’s second law is one of the most important and funda­
mental laws in classical physics.
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Newton’s third law states that whenever one object exerts a 
force on a second object, the second object always exerts a force 
on the first object which is equal in magnitude but opposite in 
direction:

Fab = - F b a , (4-2)
where FBA is the force on object B exerted by object A. This is 
true even if objects are moving and accelerating, and/or have 
different masses.

The tendency of an object to resist a change in its motion is 
called inertia. Mass is a measure of the inertia of an object.

Weight refers to the gravitational force on an object, and is

equal to the product of the object’s mass m  and the acceleration 
of gravity g:

Fg = mg. (4-3)

Force, which is a vector, can be considered as a push or pull; 
or, from Newton’s second law, force can be defined as an action 
capable of giving rise to acceleration. The net force on an object 
is the vector sum of all forces acting on that object.

For solving problems involving the forces on one or more 
objects, it is essential to draw a free-body diagram for each object, 
showing all the forces acting on only that object. Newton’s second 
law can be applied to the vector components for each object.

Questions
1. Why does a child in a wagon seem to fall backward when 

you give the wagon a sharp pull forward?
2. A box rests on the (frictionless) bed of a truck. The truck 

driver starts the truck and accelerates forward. The box 
immediately starts to slide toward the rear of the truck bed. 
Discuss the motion of the box, in terms of Newton’s laws, as 
seen (a) by Andrea standing on the ground beside the truck, 
and (b) by Jim who is riding on the truck (Fig. 4-27).

FIGURE 4-27 Question 2.

3. If the acceleration of an object is zero, are no forces acting 
on it? Explain.

4. If an object is moving, is it possible for the net force acting 
on it to be zero?

5. Only one force acts on an object. Can the object have zero 
acceleration? Can it have zero velocity? Explain.

6. When a golf ball is dropped to the pavement, it bounces 
back up. (a) Is a force needed to make it bounce back up?
(b) If so, what exerts the force?

7. If you walk along a log floating on a lake, why does the log 
move in the opposite direction?

8. Why might your foot hurt if you kick a heavy desk or a wall?
9. When you are running and want to stop quickly, you must 

decelerate quickly, (a) What is the origin of the force that 
causes you to stop? (b) Estimate (using your own experi­
ence) the maximum rate of deceleration of a person running 
at top speed to come to rest.

10. (a) Why do you push down harder on the pedals of a bicycle 
when first starting out than when moving at constant speed?
(b) Why do you need to pedal at all when cycling at 
constant speed?

11. A father and his young daughter are ice skating. They face 
each other at rest and push each other, moving in opposite 
directions. Which one has the greater final speed?

12. Suppose that you are standing on a cardboard carton that 
just barely supports you. What would happen to it if you 
jumped up into the air? It would (a) collapse; (b) be unaf­
fected; (c) spring upward a bit; (d) move sideways.
A stone hangs by a fine thread from the ceiling, and a 
section of the same thread dangles from the bottom of the 
stone (Fig. 4-28). If a person gives a sharp pull on the 
dangling thread, where is the thread likely to break: below 
the stone or above it? What if the person gives a slow and 
steady pull? Explain your answers.

13.

f FIGURE 4-28
Question 13.

14. The force of gravity on a 2-kg rock is twice as great as that on 
a 1-kg rock. Why then doesn’t the heavier rock fall faster?

15. Would a spring scale carried to the Moon give accurate 
results if the scale had been calibrated on Earth, (a) in 
pounds, or (b) in kilograms?

16. You pull a box with a constant force across a frictionless 
table using an attached rope held horizontally. If you now 
pull the rope with the same force at an angle to the hori­
zontal (with the box remaining flat on the table), does the 
acceleration of the box (a) remain the same, (b) increase, or
(c) decrease? Explain.

17. When an object falls freely under the influence of gravity 
there is a net force mg exerted on it by the Earth. Yet by 
Newton’s third law the object exerts an equal and opposite 
force on the Earth. Does the Earth move?

18. Compare the effort (or force) needed to lift a 10-kg object 
when you are on the Moon with the force needed to lift it 
on Earth. Compare the force needed to throw a 2-kg object 
horizontally with a given speed on the Moon and on Earth.
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FIGURE 4-29 Question 20. A tug of war. Describe 
the forces on each of the teams and on the rope.

21. When you stand still on the ground, how large a force does 
the ground exert on you? Why doesn’t this force make you 
rise up into the air?

22. Whiplash sometimes results from an automobile accident 
when the victim’s car is struck violently from the rear. 
Explain why the head of the victim seems to be thrown 
backward in this situation. Is it really? FIGURE 4-30 Question 24.

19.

20.

Which of the following objects weighs about 1 N: (a) an apple, 
(b) a mosquito, (c) this book, (d) you?
According to Newton’s third law, each team in a tug of war 
(Fig. 4-29) pulls with equal force on the other team. What, 
then, determines which team will win?

23. Mary exerts an upward force of 40 N to hold a bag of 
groceries. Describe the “reaction” force (Newton’s third 
law) by stating (a) its magnitude, (b) its direction, (c) on 
what object it is exerted, and (d) by what object it is exerted.

24. A bear sling, Fig. 4-30, is used in some national parks for 
placing backpackers’ food out of the reach of bears. Explain 
why the force needed to pull the backpack up increases as 
the backpack gets higher and higher. Is it possible to pull 
the rope hard enough so that it doesn’t sag at all?

| Problems
4-4  to 4 -6  Newton's Laws, Gravitational Force, 
Normal Force
1 .

2.
3.

4.

5.

6.
7.

8.

9.

(I) What force is needed to accelerate a child on a sled 
(total mass = 55 kg) at 1.4 m /s2?
(I) A net force of 265 N accelerates a bike and rider at 
2.30 m /s2. What is the mass of the bike and rider together?
(I) What is the weight of a 68-kg astronaut (a) on Earth,
(b) on the Moon (g = 1.7 m/s2), (c) on Mars (g = 3.7 m/s2),
(d) in outer space traveling with constant velocity?
(I) How much tension must a rope withstand if it is used 
to accelerate a 1210 -kg car horizontally along a frictionless 
surface at 1.20 m /s2?
(II) Superman must stop a 120-km/h train in 150 m to keep 
it from hitting a stalled car on the tracks. If the train’s mass 
is 3.6 X 105 kg, how much force must he exert? Compare to 
the weight of the train (give as %). How much force does the 
train exert on Superman?
(II) What average force is required to stop a 950-kg car in
8.0 s if the car is traveling at 95 km/h?
(II) Estimate the average force exerted by a shot-putter on 
a 7.0-kg shot if the shot is moved through a distance of 2.8 m 
and is released with a speed of 13 m/s.
(II) A 0.140-kg baseball traveling 35.0 m/s strikes the catcher’s 
mitt, which, in bringing the ball to rest, recoils backward 11.0 cm. 
What was the average force applied by the ball on the glove?
(II) A fisherman yanks a fish vertically out of the water with 
an acceleration of 2.5 m /s2 using very light fishing line that 
has a breaking strength of 18N(« 41b). The fisherman 
unfortunately loses the fish as the line snaps. What can you 
say about the mass of the fish?

10.

11.

12.

13.

14.

(II) A 20.0-kg box rests on a table, (a) What is the weight of 
the box and the normal force acting on it? (b) A 10.0-kg box 
is placed on top of the 20.0-kg box, as shown in Fig. 4-31. 
Determine the normal force that the table exerts on the
20.0-kg box and the normal force that the 20.0-kg box exerts 
on the 10 .0-kg box.

20.0 kg

FIGURE 4-31
Problem 10.

(II) What average force is needed to accelerate a 9.20-gram 
pellet from rest to 125 m /s over a distance of 0.800 m along 
the barrel of a rifle?
(II) How much tension must a cable withstand if it is used 
to accelerate a 1200-kg car vertically upward at 0.70 m /s2? 
(II) A 14.0-kg bucket is lowered vertically by a rope in 
which there is 163 N of tension at a given instant. What is 
the acceleration of the bucket? Is it up or down?
(II) A particular race car can cover a quarter-mile track 
(402 m) in 6.40 s starting from a standstill. Assuming the 
acceleration is constant, how many “g’s” does the driver 
experience? If the combined mass of the driver and race car is 
535 kg, what horizontal force must the road exert on the tires?
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15. (II) A 75-kg petty thief wants to escape from a third-story 
jail window. Unfortunately, a makeshift rope made of sheets 
tied together can support a mass of only 58 kg. How might 
the thief use this “rope” to escape? Give a quantitative 
answer.

16. (II) An elevator (mass 4850 kg) is to be designed so that the 
maximum acceleration is 0.0680g. What are the maximum 
and minimum forces the motor should exert on the 
supporting cable?

17. (II) Can cars “stop on a dime”? Calculate the acceleration 
of a 1400-kg car if it can stop from 35 km/h on a dime 
(diameter = 1.7 cm.) How many g’s is this? What is the 
force felt by the 68-kg occupant of the car?

18. (II) A person stands on a bathroom scale in a motionless 
elevator. When the elevator begins to move, the scale 
briefly reads only 0.75 of the person’s regular weight. 
Calculate the acceleration of the elevator, and find the 
direction of acceleration.

19. (II) High-speed elevators function under two limitations:
(1 ) the maximum magnitude of vertical acceleration that a 
typical human body can experience without discomfort is 
about 1 .2 m/s2, and (2) the typical maximum speed 
attainable is about 9.0 m/s. You board an elevator on a 
skyscraper’s ground floor and are transported 180 m above 
the ground level in three steps: acceleration of magnitude
1.2 m/s2 from rest to 9.0 m/s, followed by constant upward 
velocity of 9.0 m/s, then deceleration of magnitude 1.2 m/s2 
from 9.0 m/s to rest, (a) Determine the elapsed time for 
each of these 3 stages. (b) Determine the change in the 
magnitude of the normal force, expressed as a % of your 
normal weight during each stage, (c) What fraction of the 
total transport time does the normal force not equal the 
person’s weight?

20. (II) Using focused laser light, optical tweezers can apply a 
force of about 10 pN to a 1.0-/un diameter polystyrene 
bead, which has a density about equal to that of water: a 
volume of 1.0 cm3 has a mass of about 1.0 g. Estimate the 
bead’s acceleration in g’s.

21. (II) A rocket with a mass of 2.75 X 106 kg exerts a vertical 
force of 3.55 X 107N on the gases it expels. Determine (a) 
the acceleration of the rocket, (b) its velocity after 8.0 s, and
(c) how long it takes to reach an altitude of 9500 m. Assume 
g remains constant, and ignore the mass of gas expelled (not 
realistic).

22. (II) (a) What is the acceleration of two falling sky divers 
(mass = 132 kg including parachute) when the upward force 
of air resistance is equal to one-fourth of their weight? (b) After 
popping open the parachute, the divers descend leisurely to the 
ground at constant speed. What now is the force of air resis­
tance on the sky divers and their parachute? See Fig. 4-32.

FIGURE 4-32 Problem 22.

23. (II) An exceptional standing jump would raise a person 0.80 m 
off the ground. To do this, what force must a 68-kg person 
exert against the ground? Assume the person crouches a 
distance of 0.20 m prior to jumping, and thus the upward force 
has this distance to act over before he leaves the ground.

24. (II) The cable supporting a 2125-kg elevator has a maximum 
strength of 21,750 N. What maximum upward acceleration 
can it give the elevator without breaking?

25. (Ill) The 100-m dash can be run by the best sprinters in
10.0 s. A 66-kg sprinter accelerates uniformly for the first 
45 m to reach top speed, which he maintains for the 
remaining 55 m. (a) What is the average horizontal compo­
nent of force exerted on his feet by the ground during accel­
eration? (b) What is the speed of the sprinter over the last 
55 m of the race (i.e., his top speed)?

26. (Ill) A person jumps from the roof of a house 3.9-m high. 
When he strikes the ground below, he bends his knees so 
that his torso decelerates over an approximate distance of
0.70 m. If the mass of his torso (excluding legs) is 42 kg, find
(a) his velocity just before his feet strike the ground, and
(b) the average force exerted on his torso by his legs during 
deceleration.

4 - 7  Using Newton's Law s
27. (I) A box weighing 77.0 N rests on a table. A rope tied to the 

box runs vertically upward over a pulley and a weight is hung 
from the other end (Fig. 4-33).
Determine the force that the 
table exerts on the box if the 
weight hanging on the other side 
of the pulley weighs (a) 30.0 N,
(b) 60.0 N, and (c) 90.0 N.

FIGURE 4-33
Problem 27.

28. (I) Draw the free-body diagram for a basketball player
(a) just before leaving the 
ground on a jump, and (b) 
while in the air. See Fig. 4-34.

FIGURE 4-34
Problem 28.

29. (I) Sketch the free-body diagram of a baseball (a) at the 
moment it is hit by the bat, and again (b) after it has left the 
bat and is flying toward the outfield.
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30. (I) A 650-N force acts in a northwesterly direction. A 
second 650-N force must be exerted in what direction so 
that the resultant of the two forces points westward? Illus­
trate your answer with a vector diagram.

31. (II) Christian is making a Tyrolean traverse as shown in 
Fig. 4-35. That is, he traverses a chasm by stringing a rope 
between a tree on one side of the chasm and a tree on the 
opposite side, 25 m away. The rope must sag sufficiently so it 
won’t break. Assume the rope can provide a tension force of 
up to 29 kN before breaking, and use a “safety factor” of 10 
(that is, the rope should only be required to undergo a 
tension force of 2.9 kN) at the center of the Tyrolean 
traverse, (a) Determine the distance x  that the rope must 
sag if it is to be within its recommended safety range and 
Christian’s mass is 72.0 kg. (b) If the Tyrolean traverse is 
incorrectly set up so that the rope sags by only one-fourth 
the distance found in (a), determine the tension force in the 
rope. Will the rope break?

|  -

32.

FIGURE 4-35 Problem 31.

(II) A window washer pulls herself upward using the 
bucket-pulley apparatus shown in Fig. 4-36. (a) How hard 
must she pull downward to raise herself slowly at 
constant speed? (b) If she increases this force by 
15%, what will her acceleration be? The mass of 
the person plus the bucket is 72 kg.

€

FIGURE 4-36
Problem 32.

33. (II) One 3.2-kg paint bucket is hanging by a massless cord 
from another 3.2-kg paint bucket, also hanging by a mass- 
less cord, as shown in Fig. 4-37. (a) If the buckets are at 
rest, what is the tension in each cord? (b) If 
the two buckets are pulled upward with an 
acceleration of 1.25 m /s2 by the upper cord, 
calculate the tension in each cord.

FIGURE 4-37
Problems 33 and 34. s jfc /

34. (II) The cords accelerating the buckets in Problem 33b, 
Fig. 4-37, each has a weight of 2.0 N. Determine the tension 
in each cord at the three points of attachment.

35. (II) Two snowcats in Antarctica are towing a housing unit to 
a new location, as 
shown in Fig. 4-38.
The sum of the forces 
Fa and Fb exerted 
on the unit by the 
horizontal cables is 
parallel to the line L, 
and F& = 4500 N.
Determine FB and 
the magnitude of 
Fa + FB.

FIGURE 4-38
Problem 35. Top view

36. (II) A train locomotive is pulling two cars of the same mass 
behind it, Fig. 4-39. Determine the ratio of the tension in 
the coupling (think of it as a cord) between the locomotive 
and the first car (Fxl), to that between the first car and the 
second car (FT2), for any nonzero acceleration of the train.

FIGURE 4-39 Problem 36.

37. (II) The two forces Fi and F2 shown in Fig. 4-40a and b 
(looking down) act on a 18.5-kg object on a frictionless 
tabletop. If F\ = 10.2 N and F2 = 16.0 N, find the net 
force on the object and its acceleration for (a) and (b).

y y

^ N l 20°

38.

(b)

FIGURE 4-40 Problem 37.
(II) At the instant a race began, a 65-kg sprinter exerted a 
force of 720 N on the starting block at a 22° angle with 
respect to the ground, (a) What was the horizontal accelera­
tion of the sprinter? (b) If the force was exerted for 0.32 s, 
with what speed did the sprinter leave the starting block?

39. (II) A mass m  is at rest on a horizontal frictionless surface 
at t = 0. Then a constant force F0 acts on it for a time t0. 
Suddenly the force doubles to 2F0 and remains constant 
until t = 2t0. Determine the total distance traveled from 
t = 0 to t = 210.
(II) A 3.0-kg object has the following two forces acting on it:

Fi = ( l6i + 12j) N
F2 = (—101 + 22j) N

If the object is initially at rest, determine its velocity v at 
t = 3.0 s.

40.
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41. (II) Uphill escape ramps are sometimes provided to the 
side of steep downhill highways for trucks with overheated 
brakes. For a simple 11° upward ramp, what length would be 
needed for a runaway truck traveling 140 km/h? Note the 
large size of your calculated length. (If sand is used for the 
bed of the ramp, its length can be reduced by a factor of 
about 2.)

42. (II) A child on a sled reaches the bottom of a hill with a 
velocity of 10.0 m/s and travels 25.0 m along a horizontal 
straightaway to a stop. If the child and sled together have a 
mass of 60.0 kg, what is the average retarding force on the 
sled on the horizontal straightaway?

43. (II) A skateboarder, with an initial speed of 2.0 m/s, rolls virtu­
ally friction free down a straight incline of length 18 m in 3.3 s. 
At what angle 6 is the incline oriented above the horizontal?

44. (II) As shown in Fig. 4-41, five balls (masses 2.00, 2.05, 
2.10, 2.15, 2.20 kg) hang from a crossbar. Each mass is 
supported by “5-lb test” fishing line which will break 
when its tension force exceeds 22.2 N (= 5 lb). When this 
device is placed in an elevator,
which accelerates upward, 
only the lines attached [! a
to the 2.05 and
2.00 kg masses do not 
break. Within what 
range is the elevator’s 
acceleration?

130 2.1J 210 105 IWHi

FIGURE 4-41
Problem 44.

45. (II) A 27-kg chandelier hangs from a ceiling on a vertical
4.0-m-long wire, (a) What horizontal force would be neces­
sary to displace its position 0.15 m to one side? (b) What 
will be the tension in the wire?

46. (II) Three blocks on a frictionless horizontal surface are in 
contact with each other as shown in Fig. 4-42. A force F is 
applied to block A (mass mA). (a) Draw a free-body 
diagram for each block. Determine (b) the acceleration of 
the system (in terms of mA, raB, and rac), (c) the net force 
on each block, and (d) the force of contact that each block 
exerts on its neighbor. (e) If mA = mB = mc = 10.0 kg and 
F = 96.0 N, give numerical answers to (b), (c), and (d). 
Explain how your answers make sense intuitively.

FIGURE 4-42 Problem 46.

47. (II) Redo Example 4-13 but (a) set up the equations so that 
the direction of the acceleration a of each object is in the 
direction of motion of that object. (In Example 4-13, we 
took a as positive upward for both masses.) (b) Solve the 
equations to obtain the same answers as in Example 4-13.

48. (II) The block shown in Fig. 4-43 has mass m  = 7.0 kg 
and lies on a fixed smooth frictionless plane tilted at an angle
0 = 22.0° to the horizontal, (a) Determine the acceleration 
of the block as it slides down the plane, (b) If the block starts 
from rest 12.0 m up the plane from its base, what will be the 
block’s speed when it 
reaches the bottom of 
the incline?

0

FIGURE 4-43
Block on inclined 
plane. Problems 48 
and 49.

49. (II) A block is given an initial speed of 4.5 m/s up the 
22° plane shown in Fig. 4-43. (a) How far up the plane will 
it go? (b) How much time elapses before it returns to its 
starting point? Ignore friction.

50. (II) An object is hanging by a string from your rearview 
mirror. While you are accelerating at a constant rate from 
rest to 28 m/s in 6.0 s,
what angle 6 does the v
string make with the 
vertical? See Fig. 4-44.

FIGURE 4-44
Problem 50.

51. (II) Figure 4-45 shows a block (mass mA) on a smooth hori­
zontal surface, connected by a thin cord that passes over a 
pulley to a second block (raB), which hangs vertically, (a) Draw 
a free-body diagram for each block, showing the force of 
gravity on each, the force (tension) exerted by the cord, and any 
normal force. (b) Apply Newton’s second law to find formulas 
for the acceleration of the system and for the tension in the 
cord. Ignore friction and 
the masses of the pulley 
and cord. mA

FIGURE 4-45
Problems 51,52, 
and 53. Mass m A rests 
on a smooth horizontal 
surface, raB hangs 
vertically.

52. (II) (a) If m A = 13.0 kg and mB = 5.0 kg in Fig. 4-45, 
determine the acceleration of each block. (b) If initially m A 
is at rest 1.250 m from the edge of the table, how long does 
it take to reach the edge of the table if the system is allowed 
to move freely? (c) If mB = 1.0 kg, how large must mA be 
if the acceleration of the system is to be kept at XJ0 g?

53. (Ill) Determine a formula for the acceleration of the system 
shown in Fig. 4-45 (see Problem 51) if the cord has a 
non-negligible mass rac . Specify in terms of i A and £B, the 
lengths of cord from the respective masses to the pulley. 
(The total cord length is I = £A + fB.)

Problems 107



57.

C

54. (Ill) Suppose the pulley in Fig. 4-46 is suspended by a 
cord C. Determine the 
tension in this cord after the 
masses are released and 
before one hits the ground.
Ignore the mass of the 
pulley and cords.

1.2 kg

FIGURE 4-46
Problem 54.

55. (Ill) A small block of mass m  rests on the sloping side of a 
triangular block of mass M  which itself rests on a horizontal 
table as shown in Fig. 4-47. Assuming all surfaces are 
frictionless, determine the magnitude of the force F that 
must be applied to M  so that m remains in a fixed position 
relative to M  (that 
is, m  doesn’t move 
on the incline).
[Hint: Take x  and y  -   ̂
axes horizontal and 
vertical.!

58. (Ill) The two masses shown in Fig. 4-50 are each initially 
1.8 m above the ground, and the massless frictionless 
pulley is 4.8 m above the ground. What maximum height 
does the lighter object reach after the system is released? 
[Hint: First determine the acceleration of the lighter mass and 
then its velocity at the 
moment the heavier 
one hits the ground.
This is its “launch” 
speed. Assume the mass 
doesn’t hit the pulley.
Ignore the mass of 
the cord.l

3\

4.8 m

T 2.2 kg 3.6 kg

1.8 m

J L_____m

M

FIGURE 4-50
Problem 58.

59. (Ill) Determine a formula for the magnitude of the force F 
exerted on the large block (rac) in Fig. 4-51 so that the 
mass mA does not move relative to m c . Ignore all friction. 
Assume raB does not make contact with mc .

6

Problem 55. j I j „
56. (Ill) The double Atwood machine shown in Fig. 4-48 

has frictionless, massless 
pulleys and cords. Deter-

m A

r  J

mine (a) the acceleration 
of masses mA, mB, and

F mC

mc , and (b) the tensions
FTA and FJC in the cords.

FIGURE 4-48
Problem 56.

(Ill) Suppose two boxes on a frictionless table are 
connected by a heavy cord of mass 1.0 kg. Calculate the 
acceleration of each box and the tension at each end of the 
cord, using the free-body diagrams shown in Fig. 4-49. 
Assume FP = 35.0 N, and ignore sagging of the cord. 
Compare your results to Example 4-12 and Fig. 4-22.

FIGURE 4-51 Problem 59.

60. (Ill) A particle of mass m, initially at rest at x = 0, is 
accelerated by a force that increases in time as F = Ct2. 
Determine its velocity v and position x  as a function 
of time.

61. (Ill) A heavy steel cable of length i  and mass M  passes over a 
small massless, frictionless pulley, (a) If a length y hangs on one 
side of the pulley (so £ -  y  hangs on the other side), calculate 
the acceleration of the cable as a function of y. (b) Assuming 
the cable starts from rest with length y0 on one side of the 
pulley, determine the velocity Vf at the moment the whole 
cable has fallen from the pulley, (c) Evaluate Vf for y0 = \L  
[Hint: Use the chain rule, dv/d t = (dv /  dy)(dy /  d t), and 
integrate.]

FIGURE 4-49 Problem 57. Free-body diagrams for each of the objects of the system shown in Fig. 4-22a. 
Vertical forces, FN and FG, are not shown.

-  / \ V  ™A=
\ l  2.0 K g / f h t  Ftb Cord Fta 10.0 kg

mc = 1.0 kg /  v  <

(a) (b) <C)
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| General Problems
62. A person has a reasonable chance of surviving an automobile 

crash if the deceleration is no more than 30 g’s. Calculate the 
force on a 65-kg person accelerating at this rate. What distance 
is traveled if brought to rest at this rate from 95 km/h?

63. A 2.0-kg purse is dropped 58 m from the top of the Leaning 
Tower of Pisa and falls 55 m before reaching the ground 
with a speed of 27m/s. What was the average force of air 
resistance?

64. Tom’s hang glider supports his weight using the six ropes 
shown in Fig. 4-52. Each rope is designed to support an 
equal fraction of Tom’s weight. Tom’s mass is 74.0 kg. What 
is the tension in each of the support ropes?

68. (a) In Fig. 4-54, if m A = mB = 1.00 kg and 6 = 33.0°, what 
will be the acceleration of the system? (b) If mA = 1.00 kg 
and the system remains at rest, what must the mass mB be?
(c) Calculate the tension in the cord for (a) and (b).

69. The masses m A and mB slide on the smooth (frictionless) 
inclines fixed as shown in Fig. 4-55. (a) Determine a formula 
for the acceleration of the system in terms of raA, raB ,dA ,d B, 
and g. (b) If 0A = 32°, 0B = 23°, and raA = 5.0 kg, what 
value of raB would keep the system at rest? What would be the 
tension in the cord (negligible mass) in this case? (c) What 
ratio, mA/m B, would allow the masses to move at constant 
speed along their ramps in either direction?

FIGURE 4-52 Problem 64.

65. A wet bar of soap (m = 150 g) slides freely down a ramp
3.0 m long inclined at 8.5°. How long does it take to reach the 
bottom? How would this change if the soap’s mass were 300 g?

66. A crane’s trolley at point P in Fig. 4-53 moves for a few 
seconds to the right with constant acceleration, and the 
870-kg load hangs at a 5.0° angle to the vertical as shown. 
What is the acceleration of the trolley and load?

67. A block (mass raA) lying on a fixed frictionless inclined plane is 
connected to a mass mB by a cord passing over a pulley, as 
shown in Fig. 4-54. (a) Determine a formula for the acceler­
ation of the system in terms of mA, raB, 0, and g. (b) What 
conditions apply to masses m A and mB for the acceleration 
to be in one direction (say, m A down the plane), or in the 

opposite direction? Ignore the mass of the 
cord and pulley.

FIGURE 4-55
Problem 69.

,ha

6«f

70. A 75.0-kg person stands on a scale in an elevator. What does 
the scale read (in N and in kg) when (a) the elevator is at 
rest, (b) the elevator is climbing at a constant speed of
3.0 m/s, (c) the elevator is descending at 3.0 m/s, (d) the 
elevator is accelerating upward at 3.0 m /s2, (e) the elevator 
is accelerating downward at 3.0 m /s2?

71. A city planner is working on the redesign of a hilly portion 
of a city. An important consideration is how steep the roads 
can be so that even low-powered cars can get up the hills 
without slowing down. A particular small car, with a mass of 
920 kg, can accelerate on a level road from rest to 21 m/s 
(75 km/h) in 12.5 s. Using these data, calculate the maximum 
steepness of a hill.

72. If a bicyclist of mass 65 kg (including the bicycle) can coast 
down a 6.5° hill at a steady speed of 6.0 km /h because of air 
resistance, how much force must be applied to climb the hill 
at the same speed (and the same air resistance)?

73. A bicyclist can coast down a 5.0° hill at a constant speed of
6.0 km/h. If the force of air resistance is proportional to the 
speed v so that Fair = cv, calculate (a) the value of the 
constant c, and (b) the average force that must be applied in 
order to descend the hill at 18.0 km/h. The mass of the 
cyclist plus bicycle is 80.0 kg.

74. Francesca dangles her watch from a thin piece of string 
while the jetliner she is in accelerates for takeoff, which 
takes about 16 s. Estimate the takeoff speed of the aircraft 
if the string makes an angle of 25° with
respect to the vertical, Fig. 4-56.

l A

mB
125* \
1
1 ' *

! % r
FIGURE 4-54

o f  Problems 67 FIGURE 4-56 1
. and 68. Problem 74.
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75. (a) What minimum force F  is needed to lift the piano (mass M) 
using the pulley apparatus shown in 
Fig. 4-57? (b) Determine the tension 
in each section of rope: FT1, FT2, FT3, 
and Fx4 .

FIGURE 4-57
Problem 75.

76. In the design of a supermarket, there are to be several 
ramps connecting different parts of the store. Customers 
will have to push grocery carts up the ramps and it is obvi­
ously desirable that this not be too difficult. The engineer 
has done a survey and found that almost no one complains 
if the force required is no more than 18 N. Ignoring friction, 
at what maximum angle 0 should the ramps be built, 
assuming a full 25-kg grocery cart?

77. A jet aircraft is accelerating at 3.8 m/s2 as it climbs at an 
angle of 18° above the horizontal (Fig. 4-58). What is the 
total force that the cockpit seat exerts on the 75-kg pilot?

FIGURE 4-58
Problem 77. -------

78. A 7650-kg helicopter accelerates upward at 0.80 m /s2 while 
lifting a 1250-kg frame at a construction site, Fig. 4-59.
(a) What is the lift force 
exerted by the air on 
the helicopter rotors?
(b) What is the tension in 
the cable (ignore its mass) 
that connects the frame to 
the helicopter? (c) What 
force does the cable exert 
on the helicopter?

FIGURE 4-53
Problem 78.

79. A super high-speed 14-car Italian train has a mass of 
640 metric tons (640,000 kg). It can exert a maximum force of 
400 kN horizontally against the tracks, whereas at maximum 
constant velocity (300 km/h), it exerts a force of about 150 kN. 
Calculate (a) its maximum acceleration, and (b) estimate the 
force of friction and air resistance at top speed.

80. A fisherman in a boat is using a “10-lb test” fishing line. This 
means that the line can exert a force of 45 N without 
breaking (1 lb = 4.45 N). (a) How heavy a fish can the fish­
erman land if he pulls the fish up vertically at constant 
speed? (b) If he accelerates the fish upward at 2.0m /s2, 
what maximum weight fish can he land? (c) Is it possible to 
land a 15-lb trout on 10-lb test line? Why or why not?

81. An elevator in a tall building is allowed to reach a maximum 
speed of 3.5 m/s going down. What must the tension be in 
the cable to stop this elevator over a distance of 2.6 m if the 
elevator has a mass of 1450 kg including occupants?

82. Two rock climbers, Bill and Karen, use safety ropes of 
similar length. Karen’s rope is more elastic, called a dynamic 
rope by climbers. Bill has a static rope, not recommended for 
safety purposes in pro climbing, (a) Karen falls freely about
2.0 m and then the rope 
stops her over a distance 
of 1.0 m (Fig. 4-60). Esti­
mate how large a force 
(assume constant) she 
will feel from the rope.
(Express the result in 
multiples of her weight.)
(b) In a similar fall, Bill’s 
rope stretches by only 
30 cm. How many times 
his weight will the rope 
pull on him? Which 
climber is more likely to 
be hurt?

FIGURE 4-60
Problem 82.

83. Three mountain climbers who are roped together in a line 
are ascending an icefield inclined at 31.0° to the horizontal 
(Fig. 4-61). The last climber slips, pulling the second climber 
off his feet. The first climber is able to hold them both. If 
each climber has a mass of 75 kg, calculate the tension in 
each of the two sections of rope between the three climbers. 
Ignore friction between the ice and the fallen climbers.

FIGURE 4-61 Problem 83.

84. A “doomsday” asteroid with a mass of 1.0 X 1010kg is 
hurtling through space. Unless the asteroid’s speed is 
changed by about 0.20 cm/s, it will collide with Earth and 
cause tremendous damage. Researchers suggest that a small 
“space tug” sent to the asteroid’s surface could exert a gentle 
constant force of 2.5 N. For how long must this force act?
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85. A 450-kg piano is being unloaded from a truck by rolling it 
down a ramp inclined at 22°. There is negligible friction and 
the ramp is 11.5 m long. Two workers slow the rate at which 
the piano moves by pushing with a combined force of 
1420 N parallel to the ramp. If the piano starts from rest, 
how fast is it moving at the bottom?

86. Consider the system shown in Fig. 4-62 with raA = 9.5 kg 
and mB = 11.5 kg. The angles 0A = 59° and 0B = 32°.
(a) In the absence of friction, what force F would be 
required to pull the masses at a constant
velocity up the fixed inclines? (b) The 
force F is now removed. What p
is the magnitude and direc­
tion of the acceleration of m i|
the two blocks? (c) In 
the absence of F, 
what is the tension 
in the string? A

88. You are driving home in your 750-kg car at 15 m/s. At a point 
45 m from the beginning of an intersection, you see a green 
traffic light change to yellow, which you expect will last 4.0 s, 
and the distance to the far side of the intersection is 65 m 
(Fig. 4-64). (a) If you choose to accelerate, your car’s engine 
will furnish a forward force of 1200 N. Will you make it 
completely through the intersection before the light turns red?
(b) If you decide to panic stop, your brakes will provide a 
force of 1800 N. Will you stop before entering the intersection?

o \
45 m

FIGURE 4-62
Problem 86.

59

87. A 1.5-kg block rests on top of a 7.5-kg block (Fig. 4-63). 
The cord and pulley have negligible mass, and there is no 
significant friction anywhere, (a) What force F must be 
applied to the bottom block so the top block accelerates to 
the right at 2.5 m/s2? (b) What is the tension in the 
connecting cord?

15 ke

FIGURE 4-63
Problem 87.

7.5 kg

65 m

FIGURE 4-64 Problem 88.

Numerical/Computer
*89. (II) A large crate of mass 1500 kg starts sliding from rest 

along a frictionless ramp, whose length is t  and whose incli­
nation with the horizontal is 0. (a) Determine as a function 
of 6: (i) the acceleration a of the crate as it goes downhill,
(ii) the time t to reach the bottom of the incline, (iii) the 
final velocity v of the crate when it reaches the bottom of 
the ramp, and (iv) the normal force FN on the crate, (b) Now 
assume i  = 100 m. Use a spreadsheet to calculate and 
graph a, t, v, and FN as functions of 6 from 0 = 0° to 90° in 
1° steps. Are your results consistent with the known result 
for the limiting cases 0 = 0° and 6 = 90°?

Answers to Exercises

A: No force is needed. The car accelerates out from under the D: (e).
cup. Think of Newton’s first law (see Example 4-1). £. ^

B: (*)• F: (b). 
C: (a) The same; (b) the sports car; (c) third law for part (a), 

second law for part (b).
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Newton’s laws are fundamental in physics. 
These photos show two situations of using 
Newton’s laws which involve some new 
elements in addition to those discussed in 
the previous Chapter. The downhill skier 
illustrates friction on an incline, although at 
this moment she is not touching the snow, and 
so is retarded only by air resistance which is a 
velocity-dependent force (an optional topic in 
this Chapter). The people on the rotating 
amusement park ride below illustrate the 
dynamics of circular motion.

T £

Using Newton's Laws: Friction, 
Circular Motion, Drag Forces
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CHAPTER-OPENING QUESTIOT —Guess now! 
You revolve a ball around you in a horizontal circle 
at constant speed on a string, as shown here from 
above. Which path will the ball follow if you 
let go of the string at point P?

\

Ply, ---------------------
» / . i

/

This chapter continues our study of Newton’s laws and emphasizes their 
fundamental importance in physics. We cover some important applications 
of Newton’s laws, including friction and circular motion. Although some 
material in this Chapter may seem to repeat topics covered in Chapter 4, in 

fact, new elements are involved.



5—1 Applications of Newton's Laws 
Involving Friction

Until now we have ignored friction, but it must be taken into account in most prac­
tical situations. Friction exists between two solid surfaces because even the 
smoothest looking surface is quite rough on a microscopic scale, Fig. 5-1. When we 
try to slide an object across another surface, these microscopic bumps impede the 
motion. Exactly what is happening at the microscopic level is not yet fully under­
stood. It is thought that the atoms on a bump of one surface may come so close to 
the atoms of the other surface that attractive electric forces between the atoms 
could “bond” as a tiny weld between the two surfaces. Sliding an object across a 
surface is often jerky, perhaps due to the making and breaking of these bonds. 
Even when a round object rolls across a surface, there is still some friction, called 
rolling friction, although it is generally much less than when objects slide across a 
surface. We focus our attention now on sliding friction, which is usually called 
kinetic friction (kinetic is from the Greek for “moving”).

When an object slides along a rough surface, the force of kinetic friction acts 
opposite to the direction of the object’s velocity. The magnitude of the force of 
kinetic friction depends on the nature of the two sliding surfaces. For given 
surfaces, experiment shows that the friction force is approximately proportional to 
the normal force between the two surfaces, which is the force that either object 
exerts on the other and is perpendicular to their common surface of contact (see 
Fig. 5-2). The force of friction between hard surfaces in many cases depends very 
little on the total surface area of contact; that is, the friction force on this book is 
roughly the same whether it is being slid on its wide face or on its spine, assuming 
the surfaces have the same smoothness. We consider a simple model of friction in 
which we make this assumption that the friction force is independent of area. Then 
we write the proportionality between the magnitudes of the friction force Ffr and 
the normal force FN as an equation by inserting a constant of proportionality, : 

Ffr = t̂kFN. [kinetic friction]
This relation is not a fundamental law; it is an experimental relation between 

the magnitude of the friction force Ffr, which acts parallel to the two surfaces, 
and the magnitude of the normal force FN, which acts perpendicular to the surfaces. 
It is not a vector equation since the two forces have directions perpendicular to 
one another. The term /xk is called the coefficient o f kinetic friction, and its value 
depends on the nature of the two surfaces. Measured values for a variety of 
surfaces are given in Table 5-1. These are only approximate, however, since fi 
depends on whether the surfaces are wet or dry, on how much they have been 
sanded or rubbed, if any burrs remain, and other such factors. But fik is roughly 
independent of the sliding speed, as well as the area in contact.

TABLE 5-1 Coefficients of Friction1

Coefficient o f Coefficient o f
Surfaces Static Friction, f i s Kinetic Friction, f i k

Wood on wood 0.4 0.2
Ice on ice 0.1 0.03
Metal on metal (lubricated) 0.15 0.07
Steel on steel (unlubricated) 0.7 0.6
Rubber on dry concrete 1.0 0.8
Rubber on wet concrete 0.7 0.5
Rubber on other solid surfaces 1 -4 1
Teflon® on Teflon in air 0.04 0.04
Teflon on steel in air 0.04 0.04
Lubricated ball bearings <0.01 <0.01
Synovial joints (in human limbs) 0.01 0.01

FIGURE 5 -1  A n object moving to 
the right on a table or floor. The two 
surfaces in contact are rough, at least 
on a microscopic scale.

FIGURE 5 - 2  When an object is 
pulled along a surface by an 
applied force (Fa ), the force of 
friction Ffr opposes the motion.
The magnitude of Ffr is proportional 
to the magnitude of the normal 
force (Fn).

mg

Values are approximate and intended only as a guide.
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FIGURE 5 - 2  Repeated for 
Example 5-1.

FIGURE 5 - 3  Example 5-1. 
Magnitude of the force of friction as 
a function of the external force 
applied to an object initially at rest. 
As the applied force is increased in 
magnitude, the force of static friction 
increases linearly to just match it, 
until the applied force equals fis FN. 
If the applied force increases 
further, the object will begin to 
move, and the friction force drops to 
a roughly constant value 
characteristic of kinetic friction.

1-50 
.40 =

What we have been discussing up to now is kinetic friction, when one object slides 
over another. There is also static friction, which refers to a force parallel to the two 
surfaces that can arise even when they are not sliding. Suppose an object such as a desk 
is resting on a horizontal floor. If no horizontal force is exerted on the desk, there also 
is no friction force. But now suppose you try to push the desk, and it doesn’t move. You 
are exerting a horizontal force, but the desk isn’t moving, so there must be another 
force on the desk keeping it from moving (the net force is zero on an object at rest). 
This is the force of static friction exerted by the floor on the desk. If you push with a 
greater force without moving the desk, the force of static friction also has increased. If 
you push hard enough, the desk will eventually start to move, and kinetic friction takes 
over. At this point, you have exceeded the maximum force of static friction, which is 
given by (Ffr)max = /asFn , where /ls is the coefficient o f static friction (Table 5-1). 
Because the force of static friction can vary from zero to this maximum value, we write

Ffr <  ju,s FN . [static friction]
You may have noticed that it is often easier to keep a heavy object sliding than 

it is to start it sliding in the first place. This is consistent with ijls generally being 
greater than ju,k (see Table 5-1).

EXAMPLE 5-1 Friction: static and kinetic. Our 10.0-kg mystery box rests on 
a horizontal floor. The coefficient of static friction is /jls = 0.40 and the coeffi­
cient of kinetic friction is /JLk = 0.30. Determine the force of friction, Ffr, acting 
on the box if a horizontal external applied force FA is exerted on it of magnitude:
(a) 0, (b) 10 N, (c) 20 N, (d) 38 N, and (e) 40 N.
APPROACH We don’t know, right off, if we are dealing with static friction or 
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a 
free-body diagram, and then determine in each case whether or not the box will 
move: the box starts moving if FA is greater than the maximum static friction 
force (Newton’s second law). The forces on the box are gravity mg, the normal 
force exerted by the floor FN, the horizontal applied force FA, and the friction 
force Ffr, as shown in Fig. 5-2.
SOLUTION The free-body diagram of the box is shown in Fig. 5-2. In the vertical 
direction there is no motion, so Newton’s second law in the vertical direction 
gives 'ZFy = may = 0, which tells us FN — mg = 0. Hence the normal force is

FN = mg = (10.0 kg)(9.80 m /s2) = 98.0 N.

(a) Because FA = 0 in this first case, the box doesn’t move, and Ffr = 0.
(b) The force of static friction will oppose any applied force up to a maximum of

/*SFN = (0.40) (98.0 N) = 39 N.
When the applied force is FA = 10 N, the box will not move. Newton’s second 
law gives DF* = FA — Ffr = 0, so Ffr = 10 N.
(c) An applied force of 20 N is also not sufficient to move the box. Thus 
Ffr = 20 N to balance the applied force.
(d) The applied force of 38 N is still not quite large enough to move the box; so 
the friction force has now increased to 38 N to keep the box at rest.
(e) A force of 40 N will start the box moving since it exceeds the maximum force 
of static friction, /asFn = (0.40) (98 N) = 39 N. Instead of static friction, we now 
have kinetic friction, and its magnitude is

= /AkFN = (0.30)(98.0N) = 29 N.
There is now a net (horizontal) force on the box of magnitude F  = 40 N — 29 N = 
U N , so the box will accelerate at a rate

11N = 1.1  m/s>

H___ n? ___ Hhmotion

aY =
m 10.0 kg

as long as the applied force is 40 N. Figure 5-3 shows a graph that summarizes 
this Example.
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Friction can be a hindrance. It slows down moving objects and causes heating 
and binding of moving parts in machinery. Friction can be reduced by using lubri­
cants such as oil. More effective in reducing friction between two surfaces is to 
maintain a layer of air or other gas between them. Devices using this concept, 
which is not practical for most situations, include air tracks and air tables in which 
the layer of air is maintained by forcing air through many tiny holes. Another tech­
nique to maintain the air layer is to suspend objects in air using magnetic fields 
(“magnetic levitation”). On the other hand, friction can be helpful. Our ability to 
walk depends on friction between the soles of our shoes (or feet) and the ground. 
(Walking involves static friction, not kinetic friction. Why?) The movement of a 
car, and also its stability, depend on friction. When friction is low, such as on ice, 
safe walking or driving becomes difficult.

CONCEPTUAL EXAMPLE T T 1  A box against a wall. You can hold a box
against a rough wall (Fig. 5-4) and prevent it from slipping down by pressing hard 
horizontally. How does the application of a horizontal force keep an object from 
moving vertically?
RESPONSE This won’t work well if the wall is slippery. You need friction. Even 
then, if you don’t press hard enough, the box will slip. The horizontal force you 
apply produces a normal force on the box exerted by the wall (net force horizontally 
is zero since box doesn’t move horizontally.) The force of gravity mg, acting 
downward on the box, can now be balanced by an upward static friction force 
whose maximum magnitude is proportional to the normal force. The harder you 
push, the greater FN is and the greater Ffr can be. If you don’t press hard enough, 
then mg > jis FN and the box begins to slide down.

EXERCISE A If ixs = 0.40 and mg = 20 N, what minimum force F will keep the box 
from falling: (a) 100 N; (b ) 80 N; (c) 50 N; (d)  20 N; (e) 8 N?

Pulling against friction. A 10.0-kg box is pulled along a 
horizontal surface by a force FP of 40.0 N applied at a 30.0° angle above horizontal. 
This is like Example 4-11 except now there is friction, and we assume a coefficient 
of kinetic friction of 0.30. Calculate the acceleration.
APPROACH The free-body diagram is shown in Fig. 5-5. It is much like that in 
Fig. 4-21, but with one more force, that of friction.
SOLUTION The calculation for the vertical (y) direction is just the same 
as in Example 4-11, mg = (10.0 kg)(9.80 m/s2) = 98.0 N and 
(40.0N)(sin30.0°) = 20.0N. Withy positive upward and ay = 0, we have 

FN -  mg + FPy = may 
FN -  98.0 N + 20.0 N = 0, 

so the normal force is FN = 78.0 N. Now we apply Newton’s second law for the 
horizontal (jc) direction (positive to the right), and include the friction force:

Fpx ~ Ffr = max .
The friction force is kinetic as long as Ffr = ju-kFN is less than Fpx ~
(40.0 N) cos 30.0° = 34.6 N, which it is:

Ffr = VkFv = (0.30) (78.0 N) = 23.4 N.
Hence the box does accelerate:

Fpx ~ FfT 34.6 N — 23.4 N , , /2
ax = ------------  = ------———--------  = 1.1 m/s .m 10.0 kg

In the absence of friction, as we saw in Example 4-11, the acceleration would be
much greater than this.
NOTE Our final answer has only two significant figures because our least significant 
input value (/xk = 0.30) has two.

Fpy ~

mg

FIGURE 5 - 4  Example 5 -2 .

FIGURE 5 - 5  Example 5 -3 .

I EXERCISE B If /x,kFN were greater than Fpjc, what would you conclude?
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(c) mg 

FIGURE 5 - 6

(d) ™g' 

Example 5 -4 .

FIGURE 5 - 7  Example 5 -5 .

5.0

A -------

(a)

B
2.0 kc

wAg
(b) (C)

CONCEPTUAL EXAMPLE ~5̂ 4~| To push or to pull a sled? Your little sister
wants a ride on her sled. If you are on flat ground, will you exert less force if you push 
her or pull her? See Figs. 5-6a and b. Assume the same angle 6 in each case. 
RESPONSE Let us draw free-body diagrams for the sled-sister combination, as 
shown in Figs. 5- 6c and d. They show, for the two cases, the forces exerted by 
you, F (an unknown), by the snow, FN and Ffr, and gravity rag. (a) If you push 
her, and 0 > 0, there is a vertically downward component to your force. Hence 
the normal force upward exerted by the ground (Fig. 5-6c) will be larger than rag 
(where m is the mass of sister plus sled). (b) If you pull her, your force has a 
vertically upward component, so the normal force FN will be less than mg, 
Fig. 5-6d. Because the friction force is proportional to the normal force, Ffr will 
be less if you pull her. So you exert less force if you pull her.

■ frfM  I Two boxes and a pulley. In Fig. 5-7a, two boxes are
connected by a cord running over a pulley. The coefficient of kinetic friction 
between box A and the table is 0.20. We ignore the mass of the cord and pulley and 
any friction in the pulley, which means we can assume that a force applied to one 
end of the cord will have the same magnitude at the other end. We wish to find the 
acceleration, a, of the system, which will have the same magnitude for both boxes 
assuming the cord doesn’t stretch. As box B moves down, box A moves to the right. 
APPROACH The free-body diagrams for each box are shown in Figs. 5-7b and c. 
The forces on box A are the pulling force of the cord Fx , gravity raA g, the normal 
force exerted by the table FN, and a friction force exerted by the table Ffr; the 
forces on box B are gravity raB g, and the cord pulling up, FT.
SOLUTION Box A does not move vertically, so Newton’s second law tells us the 
normal force just balances the weight,

FN = mAg = (5.0 kg)(9.8 m/s2) = 49 N.
In the horizontal direction, there are two forces on box A (Fig. 5-7b): FT, the 
tension in the cord (whose value we don’t know), and the force of friction

Ffr = jukFN = (0.20) (49 N) = 9.8 N.
The horizontal acceleration is what we wish to find; we use Newton’s second law 
in the x direction, 2 FAJC = mAax , which becomes (taking the positive direction 
to the right and setting aAx = a):

J.Fax = Ft -  Ffr = mAa. [box A]
Next consider box B. The force of gravity mBg = (2.0kg)(9.8m/s2) = 19.6N 
pulls downward; and the cord pulls upward with a force FT. So we can write 
Newton’s second law for box B (taking the downward direction as positive):

ZFBy = mBg mBa. [box B]
[Notice that if a ^  0, then FT is not equal to raB g.]

We have two unknowns, a and FT, and we also have two equations. We solve 
the box A equation for FT:

Ft = Ffl + mAa, 
and substitute this into the box B equation: 

mBg -  Ffr -  mAa = mBa.
Now we solve for a and put in numerical values: 

mBg -  Ffr 19.6 N -  9.8 N
a = = 1.4 m/s"

raA + raB 5.0 kg + 2.0 kg 
which is the acceleration of box A to the right, and of box B down.

If we wish, we can calculate FT using the third equation up from here:
Ft  = Ffr + mAa = 9.8 N + (5.0 kg)(l.4 m/s2) = 17 N.

NOTE Box B is not in free fall. It does not fall at a = g because an additional 
force, Fx, is acting upward on it.
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In Chapter 4 we examined motion on ramps and inclines, and saw that it is usually 
an advantage to choose the x axis along the plane, in the direction of acceleration. 
There we ignored friction, but now we take it into account.

EXAMPLE 5 -6 The skier. The skier in Fig. 5- 8a is descending a 30° slope, at 
constant speed. What can you say about the coefficient of kinetic friction /jikl

APPROACH We choose the x axis along the slope, positive pointing downslope in 
the direction of the skier’s motion. The y axis is perpendicular to the surface 
as shown in Fig. 5-8b, which is the free-body diagram for our system which 
we choose as the skier and her skis (total mass ra). The forces acting are 
gravity, FG = rag, which points vertically downward (not perpendicular to the 
slope), and the two forces exerted on her skis by the snow—the normal force 
perpendicular to the snowy slope (not vertical), and the friction force parallel to 
the surface. These three forces are shown acting at one point in Fig. 5- 8b, 
for convenience.
SOLUTION We have to resolve only one vector into components, the weight FG, 
and its components are shown as dashed lines in Fig. 5- 8c:

Fgx = mg sin 0,
FGy = —mg cos 0,

where we have stayed general by using 0 rather than 30° for now. There 
is no acceleration, so Newton’s second law applied to the x and y components 
gives

'EFy = FN — mg cos 0 = may = 0

2,FX = mg sin 0 -  /JLk FN = max = 0.

From the first equation, we have FN = rag cos 0. We substitute this into the 
second equation:

rag sin 0 -  //,k(ragcos0) = 0.

Now we solve for jxk:

mg sin 0 sin 0
uk = --------- - = ------ = tan 0

mg cos 0 cos 0

which for 0 = 30° is

Hk = tan 0 = tan 30° = 0.58.

Notice that we could use the equation

ixk = tan 0

to determine iik under a variety of conditions. All we need to do is observe at 
what slope angle the skier descends at constant speed. Here is another reason 
why it is often useful to plug in numbers only at the end: we obtained a general 
result useful for other situations as well.

In problems involving a slope or “inclined plane,” avoid making errors 
in the directions of the normal force and gravity. The normal force is not 
vertical: it is perpendicular to the slope or plane. And gravity is not perpen­
dicular to the slope—gravity acts vertically downward toward the center of 
the Earth.

0 P H Y S I C S  A P P L I E D
Skiing

FIGURE 5-8 Example 5 -6 . A  
skier descending a slope; FG = mg 
is the force of gravity (weight) on 
the skier.

FG = mg 
(b)

fg
(c)

/ j \  CAUTI ON
Directions o f  gravity and 
the normal force
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{ease i) (OEL<ve M )
(a )

FIGURE 5 - 9  Example 5 -7 . Note
choice of x and y  axes. ___________________

A ramp, a pulley, and two boxes. A box of mass mA = 10.0 kg 
rests on a surface inclined at 6 = 37° to the horizontal. It is connected by a light­
weight cord, which passes over a massless and frictionless pulley, to a second box 
of mass raB, which hangs freely as shown in Fig. 5-9a. (a) If the coefficient of 
static friction is /jls = 0.40, determine what range of values for mass mB will 
keep the system at rest. (b) If the coefficient of kinetic friction is fik = 0.30, and 
mB = 10.0 kg, determine the acceleration of the system.

APPROACH Figure 5-9b shows two free-body diagrams for box mA because the 
force of friction can be either up or down the slope, depending on which direction 
the box slides: (i) if raB = 0 or is sufficiently small, mA would tend to slide down the 
incline, so Ffr would be directed up the incline; (ii) if mB is large enough, mA will 
tend to be pulled up the plane, so Ffr would point down the plane. The tension 
force exerted by the cord is labeled FT.
SOLUTION (a) For both cases (i) and (ii), Newton’s second law for the y direction 
(perpendicular to the plane) is the same:

FN — mAg cos 6 = mAay = 0

since there is no y motion. So

FN = mAg cos 6.

Now for the x motion. We consider case (i) first for which 2 F  = ma gives

mAg sin 6 -  FT -  Ffr = mAax .

We want ax = 0 and we solve for FT since FT is related to mB (whose value we 
are seeking) by FT = mBg (see Fig. 5-9c).Thus

mAg sin d -  Ffr = Fx = mBg.

We solve this for mB and set Ffr at its maximum value jjls FN = /xs mA g cos 6 to 
find the minimum value that mB can have to prevent motion (ax = 0):

mB = mA sin 6 — jiismA cos 0

= (10.0 kg)(sin 37° -  0.40 cos 37°) = 2.8 kg.

Thus if mB < 2.8 kg, then box A will slide down the incline.
Now for case (ii) in Fig. 5-9b, box A being pulled up the incline. Newton’s second 
law is

mAg sin 6 + Ffr -  Ft  = mAax = 0.

EXAMPLE 5 -7
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Then the maximum value mB can have without causing acceleration is given by 

FT = mBg = mAg sin 6 + fismAg cos d

mB = mAsinO + fismA cos 6

= (10.0 kg) (sin 37° + 0.40 cos 37°) = 9.2 kg.

Thus, to prevent motion, we have the condition

2.8 kg < raB < 9.2 kg.

(b) If raB = 10.0 kg and /jbk = 0.30, then raB will fall and mA will rise up the 
plane (case ii). To find their acceleration a, we use 2 F  = ma for box A:

mAa = FT -  mAg sin 0 -  /*kFN.

Since raB accelerates downward, Newton’s second law for box B (Fig. 5-9c) tells 
us mQa = mBg — Ft , or FT = mBg — mBa, and we substitute this into the 
equation above:

mAa = mBg -  mBa — mAg sin 6 -  /jLkFN.

We solve for the acceleration a and substitute FN = mAg cos 6, and then 
mA = mB = 10.0 kg, to find

mBg ~ mA g sin 6 -  ^ m Agcosd
a = --------------------------------------------

mA + mB

(10.0 kg)(9.80 m/s2)(l -  sin 37° -  0.30 cos 37°)
20.0 kg

= 0.079g = 0.78 m/s2.

NOTE It is worth comparing this equation for acceleration a with that obtained 
in Example 5-5: if here we let 0 = 0, the plane is horizontal as in Example 5-5, 
and we obtain a = (mBg — ^ m Ag)/(m A + mB) just as in Example 5-5.

5—2 Uniform Circular Motion—Kinematics
An object moves in a straight line if the net force on it acts in the direction of 
motion, or the net force is zero. If the net force acts at an angle to the direction of 
motion at any moment, then the object moves in a curved path. An example of the 
latter is projectile motion, which we discussed in Chapter 3. Another important case 
is that of an object moving in a circle, such as a ball at the end of a string revolving 
around one’s head, or the nearly circular motion of the Moon about the Earth.

An object that moves in a circle at constant speed v is said to experience 
uniform circular motion. The magnitude of the velocity remains constant in this 
case, but the direction of the velocity continuously changes as the object moves 
around the circle (Fig. 5-10). Because acceleration is defined as the rate of change 
of velocity, a change in direction of velocity constitutes an acceleration, just as a 
change in magnitude of velocity does. Thus, an object revolving in a circle is contin­
uously accelerating, even when the speed remains constant {vx = v2 = v). We 
now investigate this acceleration quantitatively.

FIGURE 5 -1 0  A  small object 
moving in a circle, showing how the 
velocity changes. A t each point, 
the instantaneous velocity is in a 
direction tangent to the circular path.
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(b)

FIGURE 5 -11  Determining the 
change in velocity, Av, for a particle 
moving in a circle. The length A t is the 
distance along the arc, from A  to B.

/j\ CAUTION____________
In uniform circular motion, the speed is 
constant, but the acceleration is not zero

FIGURE 5 -1 2  For uniform circular 
motion, a is always perpendicular to v.

Av d \
a = lim = — > o At dt

where Av is the change in velocity during the short time interval At. We will eventually 
consider the situation in which At approaches zero and thus obtain the instantaneous 
acceleration. But for purposes of making a clear drawing (Fig. 5-11), we consider a 
nonzero time interval. During the time interval At, the particle in Fig. 5-1 la  moves 
from point A to point B, covering a distance A£ along the arc which subtends an 
angle A0. The change in the velocity vector is v2 -  vx = Av, and is shown in Fig. 5 -llb .

Now we let At be very small, approaching zero. Then At and A0 are also very 
small, and v2 will be almost parallel to vx (Fig. 5-1 lc); Av will be essentially 
perpendicular to them. Thus Av points toward the center of the circle. Since a, by 
definition, is in the same direction as Av, it too must point toward the center of the 
circle. Therefore, this acceleration is called centripetal acceleration (“center- 
pointing” acceleration) or radial acceleration (since it is directed along the radius, 
toward the center of the circle), and we denote it by aR.

We next determine the magnitude of the radial (centripetal) acceleration, aR. 
Because CA in Fig. 5 - l la  is perpendicular to v1? and CB is perpendicular to v2, 
it follows that the angle A0, defined as the angle between CA and CB, is also 
the angle between and v2. Hence the vectors vl 5v2, and Av in Fig. 5 - l lb  
form a triangle that is geometrically similar * to triangle CAB in Fig. 5 - lla . 
If we take A0 to be very small (letting At be very small) and setting v = v1 = v2 
because the magnitude of the velocity is assumed not to change, we can write

Acceleration is defined as

or

Av

Av

Ai

- A t .r
This is an exact equality when At approaches zero, for then the arc length A£ 
equals the chord length AB. We want to find the instantaneous acceleration, aR, so 
we use the expression above to write

aR
Av

= limAr->o At
v At 

= lim — ■a?—»o r At
Then, because

At—>0 At
is just the linear speed, v, of the object, we have for the centripetal (radial) acceleration

flu — [centripetal (radial) acceleration] (5-1)

Equation 5-1 is valid even when v is not constant.
To summarize, an object moving in a circle o f radius r at constant speed v has 

an acceleration whose direction is toward the center o f the circle and whose magni­
tude is aR = v2/r. It is not surprising that this acceleration depends on v and r. 
The greater the speed v, the faster the velocity changes direction; and the larger 
the radius, the less rapidly the velocity changes direction.

The acceleration vector points toward the center of the circle. But the velocity 
vector always points in the direction of motion, which is tangential to the circle. 
Thus the velocity and acceleration vectors are perpendicular to each other at every 
point in the path for uniform circular motion (Fig. 5-12). This is another example 
that illustrates the error in thinking that acceleration and velocity are always in the 
same direction. For an object falling vertically, a and v are indeed parallel. But in 
circular motion, a and v are perpendicular, not parallel (nor were they parallel in 
projectile motion, Section 3-7).

EXERCISE C Can Equations 2 -12 , the kinematic equations for constant acceleration, be 
used for uniform circular motion? For example, could Eq. 2-12b  be used to calculate the 
time for the revolving ball in Fig. 5 -1 2  to make one revolution?
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Circular motion is often described in terms of the frequency / ,  the number of 
revolutions per second. The period T  of an object revolving in a circle is 
the time required for one complete revolution. Period and frequency are related by

T "  7  (5"2)
For example, if an object revolves at a frequency of 3 rev/s, then each revolution 
takes \  s. For an object revolving in a circle (of circumference 2irr) at constant 
speed v, we can write 

2irr
v = -=-»T

since in one revolution the object travels one circumference.

■ Acceleration of a revolving ball. A 150-g ball at the end of a
string is revolving uniformly in a horizontal circle of radius 0.600 m, as in Fig. 5-10 or
5-12. The ball makes 2.00 revolutions in a second. What is its centripetal acceleration?
APPROACH The centripetal acceleration is aR = v2/r. We are given r, and we
can find the speed of the ball, v, from the given radius and frequency.
SOLUTION If the ball makes two complete revolutions per second, then the ball
travels in a complete circle in a time interval equal to 0.500 s, which is its
period T. The distance traveled in this time is the circumference of the circle, 2irr,
where r is the radius of the circle. Therefore, the ball has speed

2irr 277(0.600 m) 
v = —— = — .— = 7.54 m/s.

T  (0.500 s) '
The centripetal acceleration is

v2 (7.54 m /s)2 
aR = — = —— = 94.7 m/s2.

r (0.600 m)

EXERCISE D If the radius is doubled to 1.20 m but the period stays the same, by what 
factor will the centripetal acceleration change? (a) 2, (b) 4, (c) \ , (d) \ , (e) none of these.

EXAMPLE 5 -9 Moon's centripetal acceleration. The Moon’s nearly circular 
orbit about the Earth has a radius of about 384,000 km and a period T  of 27.3 
days. Determine the acceleration of the Moon toward the Earth.
APPROACH Again we need to find the velocity v in order to find aR. We will 
need to convert to SI units to get v in m/s.
SOLUTION In one orbit around the Earth, the Moon travels a distance 2irr, 
where r = 3.84 X 108 m is the radius of its circular path. The time required for 
one complete orbit is the Moon’s period of 27.3 d. The speed of the Moon in its 
orbit about the Earth is v = 2irr/T. The period T  in seconds is 
T = (27.3 d) (24.0 h/d) (3600 s/h) = 2.36 X 106s. Therefore,

v2 (2irr f  47r2r 4it-2(3.84 X 108m)
aR

T2r T2 (2.36 X 106s)2

= 0.00272 m/s2 = 2.72 X 10“3 m/s2.
We can write this acceleration in terms of g = 9.80 m/s2 (the acceleration of 
gravity at the Earth’s surface) as

a = 2.72 X 10“3m/s2( -----r)  = 2.78X 10“V
\  9.80 m/s2/  6

NOTE The centripetal acceleration of the Moon, a = 2.78 X 10-4 g, is not the 
acceleration of gravity for objects at the Moon’s surface due to the Moon’s 
gravity. Rather, it is the acceleration due to the Earth’s gravity for any object 
(such as the Moon) that is 384,000 km from the Earth. Notice how small this 
acceleration is compared to the acceleration of objects near the Earth’s surface.

A  CAUTION________
Distinguish the M oon’s gravity 
on objects at its surface, 
from  the Earth’s gravity acting 
on the M oon (this Example)

differences in the final digit can depend on whether you keep all digits in your calculator for v (which 
gives aR = 94.7 m/s2), or if you use v = 7.54 m/s in which case you get aR = 94.8 m/s2. Both results 
are valid since our assumed accuracy is about + 0.1 m/s (see Section 1-3). SECTION 5-2  121



@  P H Y S 1 C S A P P L I E D
Centrifuge

Force exerted

FIGURE 5 -1 3  Two positions of a 
rotating test tube in a centrifuge (top 
view). A t A, the green dot represents a 
macromolecule or other particle being 
sedimented. It would tend to follow 
the dashed line, heading toward the 
bottom of the tube, but the fluid resists 
this motion by exerting a force on the 
particle as shown at point B.

FIGURE 5 -1 4  A  force is required 
to keep an object moving in a circle. 
If the speed is constant, the force is 
directed toward the circle’s center.

/j\ CAUTION_________
Centripetal force is not a new  

kind o f  force (Every force must 
be exerted by an object)

* Centrifugation
Centrifuges and very high speed ultracentrifuges, are used to sediment materials 
quickly or to separate materials. Test tubes held in the centrifuge rotor are accelerated 
to very high rotational speeds: see Fig. 5-13, where one test tube is shown in 
two positions as the rotor turns. The small green dot represents a small particle, 
perhaps a macromolecule, in a fluid-filled test tube. At position A the particle has 
a tendency to move in a straight line, but the fluid resists the motion of the particles, 
exerting a centripetal force that keeps the particles moving nearly in a circle. The 
resistive force exerted by the fluid (liquid, gas, or gel, depending on the application) 
usually does not quite equal mv2/r , and the particles move slowly toward the bottom 
of the tube. A centrifuge provides an “effective gravity” much larger than normal 
gravity because of the high rotational speeds, thus causing more rapid sedimentation.

Ultracentrifuge. The rotor of an ultracentrifuge rotates at
50,000 rpm (revolutions per minute). A particle at the top of a test tube (Fig. 5-13) 
is 6.00 cm from the rotation axis. Calculate its centripetal acceleration, in “g’s.”
APPROACH We calculate the centripetal acceleration from aR = v2/r. 
SOLUTION The test tube makes 5.00 X 104 revolutions each minute, or, dividing 
by 60 s/min, 833 rev/s. The time to make one revolution, the period T, is

T = /0„„ 1 ■ , = 1.20 X 10“3 s/rev.(833 rev/s) '
At the top of the tube, a particle revolves in a circle of circumference 
277r = (2tt) (0.0600 m) = 0.377 m per revolution. The speed of the particle is then

2irr _  ( 0.377 m/rev 
T \  1.20 X 10-3 s/rev 

The centripetal acceleration is
v2 (3.14 X 102m /s)2

= 7  -  0.0600m = t64  X 106m/s2
which, dividing by g = 9.80 m/s2, is 1.67 X 105 g’s = 167,000 g’s.

5—3 Dynamics of Uniform Circular Motion
According to Newton’s second law (SF = ma), an object that is accelerating 
must have a net force acting on it. An object moving in a circle, such as a ball on 
the end of a string, must therefore have a force applied to it to keep it moving in 
that circle. That is, a net force is necessary to give it centripetal acceleration. The 
magnitude of the required force can be calculated using Newton’s second law for 
the radial component, 2 FR = maR, where aR is the centripetal acceleration, 
aR = v2/ r> and 2 Fr  is the total (or net) force in the radial direction:

v 2EFr  = maR = m —  • [circular motion] (5-3)

For uniform circular motion (v = constant), the acceleration is aR, which is 
directed toward the center of the circle at any moment. Thus the net force too must 
be directed toward the center o f the circle, Fig. 5-14. A net force is necessary 
because if no net force were exerted on the object, it would not move in a circle 
but in a straight line, as Newton’s first law tells us. The direction of the net force is 
continually changing so that it is always directed toward the center of the circle. 
This force is sometimes called a centripetal (“pointing toward the center”) force. 
But be aware that “centripetal force” does not indicate some new kind of force. 
The term merely describes the direction of the net force needed to provide a 
circular path: the net force is directed toward the circle’s center. The force must be 
applied by other objects. For example, to swing a ball in a circle on the end of a 
string, you pull on the string and the string exerts the force on the ball. (Try it.)
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There is a common misconception that an object moving in a circle has an outward 
force acting on it, a so-called centrifugal (“center-fleeing”) force. This is incorrect: there 
is no outward force on the revolving object. Consider, for example, a person swinging a 
ball on the end of a string around her head (Fig. 5-15). If you have ever done this your­
self, you know that you feel a force pulling outward on your hand. The misconception 
arises when this pull is interpreted as an outward “centrifugal” force pulling on the ball 
that is transmitted along the string to your hand. This is not what is happening at all. To 
keep the ball moving in a circle, you pull inwardly on the string, and the string exerts 
this force on the ball. The ball exerts an equal and opposite force on the string 
(Newton’s third law), and this is the outward force your hand feels (see Fig. 5-15).

The force on the ball is the one exerted inwardly on it by you, via the string. To 
see even more convincing evidence that a “centrifugal force” does not act on the 
ball, consider what happens when you let go of the string. If a centrifugal force 
were acting, the ball would fly outward, as shown in Fig. 5-16a. But it doesn’t; the 
ball flies off tangentially (Fig. 5-16b), in the direction of the velocity it had at the 
moment it was released, because the inward force no longer acts. Try it and see!

EXERCISE E Return to the Chapter-Opening Question, page 112, and answer it again now. Try 
to explain why you may have answered differently the first time.

/ t\  CAUTI ON

EXAMPLE 5-11 ESTIMATE~| Force on revolving ball (horizontal). Estimate 
the force a person must exert on a string attached to a 0.150-kg ball to make the 
ball revolve in a horizontal circle of radius 0.600 m. The ball makes 2.00 revolutions 
per second (T = 0.500 s), as in Example 5-8. Ignore the string’s mass.

APPROACH First we need to draw the free-body diagram for the ball. The forces 
acting on the ball are the force of gravity, mg downward, and the tension force Fx 
that the string exerts toward the hand at the center (which occurs because the 
person exerts that same force on the string). The free-body diagram for the ball is 
as shown in Fig. 5-17. The ball’s weight complicates matters and makes it impos­
sible to revolve a ball with the cord perfectly horizontal. We assume the weight is 
small, and put <f> «  0 in Fig. 5-17. Thus Fx will act nearly horizontally and, in any 
case, provides the force necessary to give the ball its centripetal acceleration. 
SOLUTION We apply Newton’s second law to the radial direction, which we 
assume is horizontal:

(2 F )r  = maR,

where aR = v2/r  and v = 2irr/T = 27r(0.600m)/(0.500s) = 7.54 m/s. Thus

v2 (7.54 m/s):
FT = m — = (0.150kg) :r v (0.600 m) 14 N.

NOTE We keep only two significant figures in the answer because we ignored the 
ball’s weight; it is mg = (0.150 kg)(9.80m/s2) = 1.5 N, about ^  of our result, 
which is small but not so small as to justify stating a more precise answer for FT. 
NOTE To include the effect of rag, resolve Fx in Fig. 5-17 into components, and 
set the horizontal component of Fx equal to mv2/r  and its vertical component 
equal to mg.

There is no real “centrifugal force”

Force on ball N

FIGURE 5-15 Swinging a ball on 
the end of a string.

FIGURE 5-16 If centrifugal force 
existed, the revolving ball would fly 
outward as in (a) when released. In 
fact, it flies off tangentially as in (b). 
For example, in (c) sparks fly in 
straight lines tangentially from the 
edge of a rotating grinding wheel.

FIGURE 5-17 Example 5 -11.

(c)
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FIGURE 5-18 Example 5-12. Free- 
body diagrams for positions 1 and 2.

/ t\  C A U T I O N
Circular motion only if cord 

is under tension

EXAMPLE 5-12 Revolving ball (vertical circle). A 0.150-kg ball on the end
of a 1.10-m-long cord (negligible mass) is swung in a vertical circle, (a) Determine 
the minimum speed the ball must have at the top of its arc so that the ball 
continues moving in a circle. (b) Calculate the tension in the cord at the bottom 
of the arc, assuming the ball is moving at twice the speed of part (a).
APPROACH The ball moves in a vertical circle and is not undergoing uniform circular 
motion. The radius is assumed constant, but the speed v changes because of gravity. 
Nonetheless, Eq. 5-1 is valid at each point along the circle, and we use it at the top and 
bottom points. The free-body diagram is shown in Fig. 5-18 for both positions. 
SOLUTION (a) At the top (point 1), two forces act on the ball: rag, the force 
of gravity, and Fti> the tension force the cord exerts at point 1. Both act down­
ward, and their vector sum acts to give the ball its centripetal acceleration aR. We 
apply Newton’s second law, for the vertical direction, choosing downward as posi­
tive since the acceleration is downward (toward the center):

( I F )  R = maR

Ft i + mg
v\
m —  r [at top]

From this equation we can see that the tension force Ft1 at point 1  will get larger 
if Vx (ball’s speed at top of circle) is made larger, as expected. But we are asked 
for the minimum  speed to keep the ball moving in a circle. The cord will remain 
taut as long as there is tension in it. But if the tension disappears (because is 
too small) the cord can go limp, and the ball will fall out of its circular path. Thus, 
the minimum speed will occur if Ft1 = 0, for which we have

vl
m  —  rmg = ra — • [minimum speed at top]

We solve for v-l , keeping an extra digit for use in (b):
Vi = Vg? = V (9-80m /s2)(1.10m) = 3.283 m/s.

This is the minimum speed at the top of the circle if the ball is to continue 
moving in a circular path.
(b) When the ball is at the bottom of the circle (point 2 in Fig. 5-18), the cord 
exerts its tension force Ft 2 upward, whereas the force of gravity, rag, still acts 
downward. Choosing upward as positive, Newton’s second law gives:

( ^ F ) R -  maR 

Ft 2 ~ mg m  —  r [at bottom]

The speed v2 is given as twice that in (a), namely 6.566 m/s. We solve for F\T 2

T 2
V22= m ----- 1- mgr

= (0.150 kg)
(6.566 m/s)' 

(1 .10 m)
+ (0.150 kg)(9.80 m /s2) = 7.35 N.

EXERCISE F A rider on a Ferris wheel moves in a vertical circle of radius r at constant speed v 
(Fig. 5-19). Is the normal force that the seat exerts on the rider at the top of the wheel (a) less 
than, (b) more than, or (c) the same as, the force the seat exerts at the bottom of the wheel?

FIGURE 5-19 Exercise F.
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EXAMPLE 5-13 Conical pendulum. A small ball of mass m, suspended by a 
cord of length £, revolves in a circle of radius r = I sin 0, where 0 is the angle 
the string makes with the vertical (Fig. 5-20). (a) In what direction is the acceler­
ation of the ball, and what causes the acceleration? (b) Calculate the speed and 
period (time required for one revolution) of the ball in terms of 1, 0, g, and m.
APPROACH We can answer (a) by looking at Fig. 5-20, which shows the forces 
on the revolving ball at one instant: the acceleration points horizontally toward 
the center of the ball’s circular path (not along the cord). The force responsible 
for the acceleration is the net force which here is the vector sum of the 
forces acting on the mass m : its weight FG (of magnitude FG = mg) and the force 
exerted by the tension in the cord, FT. The latter has horizontal and vertical 
components of magnitude FT sin 0 and FT cos 0, respectively.
SOLUTION (b) We apply Newton’s second law to the horizontal and vertical 
directions. In the vertical direction, there is no motion, so the acceleration is zero 
and the net force in the vertical direction is zero:

FT cos 6 -  mg = 0.
In the horizontal direction there is only one force, of magnitude FT sin 0, that acts 
toward the center of the circle and gives rise to the acceleration v2/r. Newton’s 
second law tells us:

v2Ft sin 0 = m —  r
We solve the second equation for v, and substitute for FT from the first equation 
(and use r = £ sin 0):

v =
rFT sin 0

m
mg 

cos 0
sin0

£g sin2 0 
cos 0

The period T  is the time required to make one revolution, a distance of 
2irr = 2irl sin 0. The speed v can thus be written v = lir l sin 6/T; then

T =
2ir£ sin 6 

v
2it£ sin 6

Ig sin2 6 
cos 6

= 2tt
g

NOTE The speed and period do not depend on the mass m of the ball. They do 
depend on i  and 6.

FIGURE 5-20 Example 5 -13. 
Conical pendulum.

% O L v ,
c>

Uniform Circular Motion
1. Draw a free-body diagram, showing all the forces 

acting on each object under consideration. Be sure 
you can identify the source of each force (tension in 
a cord, Earth’s gravity, friction, normal force, and 
so on). Don’t put in something that doesn’t belong 
(like a centrifugal force).

2. Determine which of the forces, or which of their compo­
nents, act to provide the centripetal acceleration—that

is, all the forces or components that act radially,
toward or away from the center of the circular path. 
The sum of these forces (or components) provides the 
centripetal acceleration, aR = v2/r.

3. Choose a convenient coordinate system, preferably 
with one axis along the acceleration direction.

4. Apply Newton’s second law to the radial component:
v2(2 F )r  = maR = m —  • [radial direction]
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FIGURE 5-22 Race car heading 
into a curve. From the tire marks we 
see that most cars experienced a 
sufficient friction force to give them  
the needed centripetal acceleration 
for rounding the curve safely. But, we 
also see tire tracks of cars on which 
there was not sufficient force— and 
which unfortunately followed more 
nearly straight-line paths.

FIGURE 5-23 Example 5-14. 
Forces on a car rounding a curve on a 
flat road, (a) Front view, (b) top view.

Fn
1

<a) Fa = "'fi

<b)

FIGURE 5-21 The road exerts an 
inward force on a car (friction against 
the tires) to make it move in a 
circle. The car exerts an inward force 
on the passenger.

5 —4  Highway Curves: Banked and Unbanked
An example of circular dynamics occurs when an automobile rounds a curve, say to 
the left. In such a situation, you may feel that you are thrust outward toward the right 
side door. But there is no mysterious centrifugal force pulling on you. What is 
happening is that you tend to move in a straight line, whereas the car has begun to 
follow a curved path. To make you go in the curved path, the seat (friction) or the 
door of the car (direct contact) exerts a force on you (Fig. 5-21). The car also must 
have a force exerted on it toward the center of the curve if it is to move in that curve. 
On a flat road, this force is supplied by friction between the tires and the pavement.

If the wheels and tires of the car are rolling normally without slipping or 
sliding, the bottom of the tire is at rest against the road at each instant; so the fric­
tion force the road exerts on the tires is static friction. But if the static friction 
force is not great enough, as under icy conditions or high speed, sufficient friction 
force cannot be applied and the car will skid out of a circular path into a more 
nearly straight path. See Fig. 5-22. Once a car skids or slides, the friction force 
becomes kinetic friction, which is less than static friction.

Skidding on a curve. A 1000-kg car rounds a curve on a flat 
road of radius 50 m at a speed of 15 m/s (54 km/h). Will the car follow the curve, 
or will it skid? Assume: (a) the pavement is dry and the coefficient of static fric­
tion is ijls = 0.60; (b) the pavement is icy and = 0.25.
APPROACH The forces on the car are gravity mg downward, the normal force FN 
exerted upward by the road, and a horizontal friction force due to the road. They 
are shown in Fig. 5-23, which is the free-body diagram for the car. The car will 
follow the curve if the maximum static friction force is greater than the mass 
times the centripetal acceleration.
SOLUTION In the vertical direction there is no acceleration. Newton’s second 
law tells us that the normal force FN on the car is equal to the weight mg:

Fn = mg = (1000 kg)(9.80 m/s2) = 9800 N.
In the horizontal direction the only force is friction, and we must compare it to the 
force needed to produce the centripetal acceleration to see if it is sufficient. The net 
horizontal force required to keep the car moving in a circle around the curve is

v2 (15 m/s)2
(Z F)R = maR = m — = (1000 kg) = 4500 N.

Now we compute the maximum total static friction force (the sum of the friction 
forces acting on each of the four tires) to see if it can be large enough to provide 
a safe centripetal acceleration. For (a), /jls = 0.60, and the maximum friction 
force attainable (recall from Section 5-1 that Ffr < /asFn) is

(^fr)max =  =  (0.60)(9800 N) =  5880N.
Since a force of only 4500 N is needed, and that is, in fact, how much will be 
exerted by the road as a static friction force, the car can follow the curve. But in

EXAMPLE 5-14

Forcc on 
passenger

Force on car 
I sum of friel mil forces 
acting on each lire)

___ m aide ncy for
passenger lo 

- go straight
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(b) the maximum static friction force possible is

(FfrUx = fh K  = (0.25)(9800N) = 2450 N.
The car will skid because the ground cannot exert sufficient force (4500 N is 
needed) to keep it moving in a curve of radius 50 m at a speed of 54 km/h.

The banking of curves can reduce the chance of skidding. The normal force 
exerted by a banked road, acting perpendicular to the road, will have a component 
toward the center of the circle (Fig. 5-24), thus reducing the reliance on friction. 
For a given banking angle 0, there will be one speed for which no friction at all is 
required. This will be the case when the horizontal component of the normal force 
toward the center of the curve, FNsin0 (see Fig. 5-24), is just equal to the force 
required to give a vehicle its centripetal acceleration—that is, when

v2
Fn sin0 = m —  • [no friction required]

The banking angle of a road, 0, is chosen so that this condition holds for a partic­
ular speed, called the “design speed.”

Banking angle. (a) For a car traveling with speed v around a 
curve of radius r, determine a formula for the angle at which a road should be 
banked so that no friction is required. (b) What is this angle for an expressway 
off-ramp curve of radius 50 m at a design speed of 50 km/h?
APPROACH Even though the road is banked, the car is still moving along a horizontal 
circle, so the centripetal acceleration needs to be horizontal. We choose our x and y 
axes as horizontal and vertical so that aR, which is horizontal, is along the x axis. The 
forces on the car are the Earth’s gravity mg downward, and the normal force FN 
exerted by the road perpendicular to its surface. See Fig. 5-24, where the components 
of Fn are also shown. We don’t need to consider the friction of the road because we 
are designing a road to be banked so as to eliminate dependence on friction. 
SOLUTION (a) Since there is no vertical motion, 2Fy = may gives us 

F n  c o s  0  -  mg =  0 .

Thus,
m g_

N cos 0
[Note in this case that FN > mg since cos 0 < 1.]
We substitute this relation for FN into the equation for the horizontal motion,

v2Fn sin 0 = m — > 
r

and obtain
mg vz

sin 0 = m —

or
cos0 r

v2
tan 0 = —

rg
This is the formula for the banking angle 0: no friction needed at speed v.
(b) For r = 50 m and v = 50 km/h (or 14 m/s),

(14 m /s)2
tan0 = ---- v = 0.40,

(50m)(9.8 m/s )
so d = 22°.

EXERCISE G The banking angle of a curve for a design speed v  is $ i . What banking angle d2 
is needed for a design speed of 2-y? (a) $2 =  4 0 i; (b) 02 =  20\ ; (c) tan 02 =  4 tan 6\ ;
(d) tan 02 =  2 tan 61.

EXERCISE H Can a heavy truck and a small car travel safely at the same speed around an 
icy banked-curve road?

0 P H Y S I C S  A P P L I E D
Banked curves

y

FIGURE 5 -2 4  Normal force on a 
car rounding a banked curve, resolved 
into its horizontal and vertical 
components. The centripetal 
acceleration is horizontal (nor parallel 
to the sloping road). The friction force 
on the tires, not shown, could point up 
or down along the slope, depending on 
the car’s speed. The friction force will 
be zero for one particular speed.

/j\ CAUTION______
Fn is not always equal to m g
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(b)

FIGURE 5 -2 5  The speed of an 
object moving in a circle changes if 
the force on it has a tangential 
component, Ftan. Part (a) shows the 
force F  and its vector components; 
part (b) shows the acceleration 
vector and its vector components.

5 —5 Nonuniform Circular Motion
Circular motion at constant speed occurs when the net force on an object is 
exerted toward the center of the circle. If the net force is not directed toward the 
center but is at an angle, as shown in Fig. 5-25a, the force has two components. 
The component directed toward the center of the circle, FR, gives rise to the 
centripetal acceleration, aR, and keeps the object moving in a circle. The 
component tangent to the circle, Ftan, acts to increase (or decrease) the speed, and 
thus gives rise to a component of the acceleration tangent to the circle, atan. When 
the speed of the object is changing, a tangential component of force is acting.

When you first start revolving a ball on the end of a string around your head, you 
must give it tangential acceleration. You do this by pulling on the string with your hand 
displaced from the center of the circle. In athletics, a hammer thrower accelerates the 
hammer tangentially in a similar way so that it reaches a high speed before release.

The tangential component of the acceleration, atan, has magnitude equal to 
the rate of change of the magnitude of the object’s velocity:

dv /c ^“ tan dt ■ (5 4)

The radial (centripetal) acceleration arises from the change in direction of the 
velocity and, as we have seen, has magnitude

v2Ad — *R r

The tangential acceleration always points in a direction tangent to the circle, and is 
in the direction of motion (parallel to v, which is always tangent to the circle) if 
the speed is increasing, as shown in Fig. 5-25b. If the speed is decreasing, atan 
points antiparallel to v. In either case, atan and aR are always perpendicular to each 
other; and their directions change continually as the object moves along its circular 
path. The total vector acceleration a is the sum of the two components:

a = atan + Sr- (5-5)
Since aR and atan are always perpendicular to each other, the magnitude of a at any 
moment is

a =  V « ? a n  +  OR-

EXAMPLE 5-16 Two components of acceleration. A race car starts from 
rest in the pit area and accelerates at a uniform rate to a speed of 35 m/s in 11 s, 
moving on a circular track of radius 500 m. Assuming constant tangential 
acceleration, find (a) the tangential acceleration, and (b) the radial acceleration, 
at the instant when the speed is v = 15 m/s.
APPROACH The tangential acceleration relates to the change in speed of the car, 
and can be calculated as «tan = Av/At. The centripetal acceleration relates to the 
change in the direction of the velocity vector and is calculated using aR = v2/r. 
SOLUTION (a) During the 11-s time interval, we assume the tangential 
acceleration atan is constant. Its magnitude is 

Av (35 m/s -  0 m/s)
fl‘“  = a ?  = --------- u i --------- = 3'2 m /s -

(b) When v = 15 m/s, the centripetal acceleration is
v2 (15 m/s)2 

flR = — = ————— = 0.45 m /s .R r (500 m) '
NOTE The radial acceleration increases continually, whereas the tangential accel­
eration stays constant.

EXERCISE I When the speed of the race car in Example 5-16 is 30 m /s, how are (a) atan 
and (b) «R changed?
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These concepts can be used for an object moving along any curved path, such as 
that shown in Fig. 5-26. We can treat any portion of the curve as an arc of a circle with 
a “radius of curvature” r. The velocity at any point is always tangent to the path. The 
acceleration can be written, in general, as a vector sum of two components: the tangen­
tial component atan = dv/dt, and the radial (centripetal) component aR = v2/r.

5 —6 Velocity-Dependent Forces: 
Drag and Terminal Velocity

When an object slides along a surface, the force of friction acting on the object is 
nearly independent of how fast the object is moving. But other types of resistive forces 
do depend on the object’s velocity. The most important example is for an object 
moving through a liquid or gas, such as air. The fluid offers resistance to the motion of 
the object, and this resistive force, or drag force, depends on the velocity of the object.f

The way the drag force varies with velocity is complicated in general. But for small 
objects at very low speeds, a good approximation can often be made by assuming that 
the drag force, FD, is directly proportional to the magnitude of the velocity, v:

Fd = -bv . (5-6)
The minus sign is necessary because the drag force opposes the motion. Here b is a 
constant (approximately) that depends on the viscosity of the fluid and on the size 
and shape of the object. Equation 5-6 works well for small objects moving at low 
speed in a viscous liquid. It also works for very small objects moving in air at very 
low speeds, such as dust particles. For objects moving at high speeds, such as an 
airplane, a sky diver, a baseball, or an automobile, the force of air resistance can be 
better approximated as being proportional to v2:

Fd oc v2.
For accurate calculations, however, more complicated forms and numerical 
integration generally need to be used. For objects moving through liquids, Eq. 5-6 
works well for everyday objects at normal speeds (e.g., a boat in water).

Let us consider an object that falls from rest, through air or other fluid, under 
the action of gravity and a resistive force proportional to v. The forces acting on 
the object are the force of gravity, mg, acting downward, and the drag force, -b v , 
acting upward (Fig. 5-27a). Since the velocity v points downward, let us take the 
positive direction as downward. Then the net force on the object can be written

2 F  = mg — bv.
From Newton’s second law 2 F  = ma, we have

dv
mg — bv = m —  ’ (5-7)

dt
where we have written the acceleration according to its definition as rate of change of 
velocity, a = dv/dt. At t = 0, we set v = 0 and the acceleration dv/dt = g. As 
the object falls and increases in speed, the resistive force increases, and this reduces the 
acceleration, dv/dt (see Fig. 5-27b). The velocity continues to increase, but at a slower 
rate. Eventually, the velocity becomes so large that the magnitude of the resistive force, 
bv, approaches that of the gravitational force, mg; when the two are equal, we have

mg -  bv = 0. (5-8)
At this point dv/dt = 0 and the object no longer increases in speed. It has 
reached its terminal velocity and continues to fall at this constant velocity until it 
hits the ground. This sequence of events is shown in the graph of Fig. 5-27b. The 
value of the terminal velocity vT can be obtained from Eq. 5-8. 

mg
vT = - f -  (5-9)

If the resistive force is assumed proportional to v2, or an even higher power of v, 
the sequence of events is similar and a terminal velocity reached, although it will 
not be given by Eq. 5-9.

FIGURE 5-26 Object following a 
curved path (solid line). A t point P 
the path has a radius of curvature r. 
The object has velocity v, tangential 
acceleration atan (the object is here 
increasing in speed), and radial 
(centripetal) acceleration aR 
(magnitude aR =  v 2/r )  which 
points toward the center of 
curvature C.

FIGURE 5-27 (a) Forces acting on 
an object falling downward.
(b) Graph of the velocity of an object 
falling due to gravity when the air 
resistance drag force is FD =  —bv. 
Initially, v  =  0 and d v /d t  =  g, but 
as time goes on d v /d t  (=  slope of 
curve) decreases because of FD . 
Eventually, v  approaches a 
maximum value, v T, the terminal 
velocity, which occurs when FD has 
magnitude equal to mg.

F D = -bVt
mg
(a)

v

(b)

f Any buoyant force (Chapter 13) is ignored in this Section. ŜECTION 5-6 129



Summary

EXAMPLE 5-17 Force proportional to velocity. Determine the velocity as a 
function of time for an object falling vertically from rest when there is a resistive 
force linearly proportional to v.
APPROACH This is a derivation and we start with Eq. 5-7, which we rewrite as 

dv b
= gdt

— v. m
SOLUTION In this equation there are two variables, v and t. We collect variables 
of the same type on one or the other side of the equation:

dv

g
b

— v m

= dt
dv

or mg
b

b ,
= -----dt.m

Now we can integrate, remembering v = 0 at t = 0:
dv

-  A  f *
Jo _  m  Jomg

b
which gives

In \ v -
mg
b

or
In

v — mg/b

b
----- tm

b
----- 1.m- m g  l b

We raise each side to the exponential [note that the natural log and the exponen­
tial are inverse operations of each other: elnx = x, or ln(e*) = x] and obtain 

mg
V b b

v

This relation gives the velocity v as a function of time and corresponds to the 
graph of Fig. 5-27b. As a check, note that at t = 0, and v = 0

. ( * - 0) -  = ^ ( ^ ) =  8,m

as expected (see also Eq. 5-7). At large t, e m approaches zero, so v approaches 
mg lb, which is the terminal velocity, as we saw earlier. If we set r  = m/b, 
then v = vT(l -  e~t/T). So r  = m /b  is the time required for the velocity to 
reach 63% of the terminal velocity (since e 1 = 0.37). Figure 5-27b shows a plot 
of speed v vs. time t, where the terminal velocity vT = mg/b.

W hen two objects slide over one another, the force o f friction 
that each exerts on the other can be written approximately as 
F& =  Atk FN , where FN is the normal force (the force each object 
exerts on the other perpendicular to their contact surfaces), and 
is the coefficient o f kinetic friction. If the objects are at rest relative 
to each other, even though forces act, then Ffr is just large enough  
to hold them at rest and satisfies the inequality Ffr <  /xs FN , where 
/jls  is the coefficient o f static friction.

A n  object moving in a circle o f radius r  with constant speed v  
is said to be in uniform circular motion. It has a radial acceleration 
aR that is directed radially toward the center o f the circle (also 
called centripetal acceleration), and has magnitude 

v 2
aR = —  (5-1)

The direction o f  the velocity  vector and that o f  the accelera­

tion  aR are continually changing in direction, but are p erpen­
dicular to each other at each m om ent.

A  force is n eed ed  to k eep  an object revolving uniform ly  
in a circle, and the direction o f  this force is toward the  
center o f the circle. This force m ay be gravity (as for 
the M oon), or tension  in a cord, or a com ponent o f the  
norm al force, or another type o f  force or a com bination  of  
forces.

[*W hen the speed of circular m otion is not constant, the 
acceleration has two com ponents, tangential as w ell as radial. 
The force too  has tangential and radial components.]

[*A drag force acts on an object m oving through a fluid, 
such as air or water. The drag force FD can often  be approxi­
m ated by Fd =  —b v  or FD oc v 2, where v  is the speed o f the  
object relative to the fluid.]
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Questions
1. A heavy crate rests on the bed of a flatbed truck. When the 

truck accelerates, the crate remains where it is on the truck, so 
it, too, accelerates. What force causes the crate to accelerate?

2. A block is given a push so that it slides up a ramp. After the 
block reaches its highest point, it slides back down, but 
the magnitude of its acceleration is less on the descent than 
on the ascent. Why?

3. Why is the stopping distance of a truck much shorter than 
for a train going the same speed?

4. Can a coefficient of friction exceed 1.0?
5. Cross-country skiers prefer their skis to have a large coeffi­

cient of static friction but a small coefficient of kinetic fric­
tion. Explain why. [Hint: Think of uphill and downhill.]

6. When you must brake your car very quickly, why is it safer 
if the wheels don’t lock? When driving on slick roads, why is 
it advisable to apply the brakes slowly?

7. When attempting to stop a car quickly on dry pavement, which 
of the following methods will stop the car in the least time?
(a) Slam on the brakes as hard as possible, locking the wheels 
and skidding to a stop. (b) Press the brakes as hard as possible 
without locking the wheels and rolling to a stop. Explain.

8. You are trying to push your stalled car. Although you apply 
a horizontal force of 400 N to the car, it doesn’t budge, and 
neither do you. Which force(s) must also have a magnitude 
of 400 N: (a) the force exerted by the car on you; (b) the 
friction force exerted by the car on the road; (c) the normal 
force exerted by the road on you; (d) the friction force 
exerted by the road on you?

9. It is not easy to walk on an icy sidewalk without slipping. Even 
your gait looks different than on dry pavement. Describe what 
you need to do differently on the icy surface and why.

10. A car rounds a curve at a steady 50 km/h. If it rounds the 
same curve at a steady 70 km/h, will its acceleration be any 
different? Explain.

11. Will the acceleration of a car be the same when a car 
travels around a sharp curve at a constant 60 km/h as when 
it travels around a gentle curve at the same speed? Explain.

12. Describe all the forces acting on a child riding a horse on a 
merry-go-round. Which of these forces provides the 
centripetal acceleration of the child?

13. A child on a sled comes flying over the crest of a small hill, 
as shown in Fig. 5-28. His sled does not leave the ground, 
but he feels the normal force between his chest and the 
sled decrease as he 
goes over the hill.
Explain this decrease 
using Newton’s second 
law.

FIGURE 5-28
Question 13.

14. Sometimes it is said that water is removed from clothes in a 
spin dryer by centrifugal force throwing the water outward. 
Is this correct? Discuss.

15. Technical reports often specify only the rpm for centrifuge 
experiments. Why is this inadequate?

16. A girl is whirling a ball on a string around her head in a 
horizontal plane. She wants to let go at precisely the right 
time so that the ball will hit a target on the other side of the 
yard. When should she let go of the string?

17. The game of tetherball is played with a ball tied to a pole 
with a string. When the ball is struck, 
it whirls around the pole as shown in 
Fig. 5-29. In what direction is the 
acceleration of the ball, and what 
causes the acceleration?

FIGURE 5-29
Problem 17.

18. Astronauts who spend long periods in outer space could be 
adversely affected by weightlessness. One way to simulate 
gravity is to shape the spaceship like a cylindrical shell that 
rotates, with the astronauts walking on the inside surface 
(Fig. 5-30). Explain how 
this simulates gravity.
Consider (a) how objects 
fall, (b) the force we feel 
on our feet, and (c) any 
other aspects of gravity 
you can think of.

FIGURE 5-30
Question 18.

19. A bucket of water can be whirled in a vertical circle without 
the water spilling out, even at the top of the circle when the 
bucket is upside down. Explain.

20. A car maintains a constant speed v as it traverses the hill 
and valley shown in Fig. 5-31. Both the hill and valley have 
a radius of curvature R. At which point, A, B, or C, is the 
normal force acting on the car (a) the largest, (b) the 
smallest? Explain, (c) Where would the driver feel heaviest 
and (d) lightest? Explain, (e) How fast can the car go 
without losing contact with the road at A?

FIGURE 5-31 Question 20.

21. Why do bicycle riders lean in when rounding a curve at high 
speed?

22. Why do airplanes bank when they turn? How would you 
compute the banking angle given the airspeed and radius of 
the turn? [Hint: Assume an aerodynamic “lift” force acts 
perpendicular to the wings.]

*23. For a drag force of the form F = -bv , what are the units 
of bl

*24. Suppose two forces act on an object, one force proportional 
to v and the other proportional to v2. Which force domi­
nates at high speed?
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Problems
5-
1 .

10.

11.

12.

13.

14.

1 Friction and Newton's Laws
(I) If the coefficient of kinetic friction between a 22-kg crate 
and the floor is 0.30, what horizontal force is required to 
move the crate at a steady speed across the floor? What 
horizontal force is required if is zero?
(I) A force of 35.0 N is required to start a 6.0-kg box moving 
across a horizontal concrete floor, (a) What is the coefficient 
of static friction between the box and the floor? (b) If the 
35.0-N force continues, the box accelerates at 0.60 m /s2. 
What is the coefficient of kinetic friction?
(I) Suppose you are standing on a train accelerating at 0.20 g. 
What minimum coefficient of static friction must exist 
between your feet and the floor if you are not to slide?
(I) The coefficient of static friction between hard rubber 
and normal street pavement is about 0.90. On how steep a 
hill (maximum angle) can you leave a car parked?
(I) What is the maximum acceleration a car can undergo if 
the coefficient of static friction between the tires and the 
ground is 0.90?
(II) (a) A box sits at rest on a rough 33° inclined plane. 
Draw the free-body diagram, showing all the forces acting 
on the box. (b) How would the diagram change if the box 
were sliding down the plane, (c) How would it change if the 
box were sliding up the plane after an initial shove?
(II) A 25.0-kg box is released on a 27° incline and accelerates 
down the incline at 0.30 m /s2. Find the friction force impeding 
its motion. What is the coefficient of kinetic friction?
(II) A car can decelerate at —3.80 m /s2 without skidding 
when coming to rest on a level road. What would its decel­
eration be if the road is inclined at 9.3° and the car moves 
uphill? Assume the same static friction coefficient.
(II) A skier moves down a 27° slope at constant speed. What 
can you say about the coefficient of friction, /%? Assume 
the speed is low enough that air resistance can be ignored. 
(II) A wet bar of soap slides freely down a ramp 9.0 m long 
inclined at 8.0°. How long does it take to reach the bottom? 
Assume = 0.060.
(II) A box is given a push so that it slides across the floor. 
How far will it go, given that the coefficient of kinetic friction 
is 0.15 and the push imparts an initial speed of 3.5 m/s?
(II) (a) Show that the minimum stopping distance for an 
automobile traveling at speed v  is equal to v2/2 fxsg,  where fis 
is the coefficient of static friction between the tires and the 
road, and g is the acceleration of gravity. (b) What is this 
distance for a 1200-kg car traveling 95 km /h if /xs = 0.65? 
(c) What would it be if the car were on the Moon (the accel­
eration of gravity on the Moon is about g /6) but all else 
stayed the same?
(II) A 1280-kg car pulls a 350-kg trailer. The car exerts a hori­
zontal force of 3.6 X 103 N against the ground in order to 
accelerate. What force does the car exert on the trailer? 
Assume an effective friction coefficient of 0.15 for the trailer. 
(II) Police investigators, examining the scene of an accident 
involving two cars, measure 72-m-long skid marks of one of 
the cars, which nearly came to a stop before colliding. The 
coefficient of kinetic friction between rubber and the pave­
ment is about 0.80. Estimate the initial speed of that car 
assuming a level road.

15. (II) Piles of snow on slippery roofs can become dangerous 
projectiles as they melt. Consider a chunk of snow at the 
ridge of a roof with a slope of 34°. (a) What is the minimum 
value of the coefficient of static friction that will keep the 
snow from sliding down? (b) As the snow begins to melt the 
coefficient of static friction decreases and the snow finally 
slips. Assuming that the distance from the chunk to the edge 
of the roof is 6.0 m and the coefficient of kinetic friction is 
0.20, calculate the speed of the snow chunk when it slides off 
the roof, (c) If the edge of the roof is 10.0 m above ground, 
estimate the speed of the snow when it hits the ground.

16. (II) A small box is held in place against a rough vertical wall by 
someone pushing on it with a force directed upward at 28° 
above the horizontal. The coefficients of static and kinetic 
friction between the box and wall are 0.40 and 0.30, respec­
tively. The box slides down unless the applied force has 
magnitude 23 N. What is the mass of the box?

17. (II) Two crates, of mass 65 kg and 125 kg , are in contact and at 
rest on a horizontal surface (Fig. 5-32). A 650-N force is 
exerted on the 65-kg crate. If the coefficient of kinetic friction 
is 0.18, calculate (a) the acceleration of the system, and (b) the 
force that each crate exerts on the other, (c) Repeat with the 
crates reversed.

6 5 0  N 6? k£ 125 kg

FIGURE 5-32
Problem 17.

18. (II) The crate shown in Fig. 5-33 lies on a plane tilted at 
an angle 6 = 25.0° to the horizontal, with = 0.19.

(a) Determine the acceleration of the 
crate as it slides down the plane. 
(b) If the crate starts from rest 

8.15 m up the plane from its base, 
what will be the crate’s speed 

when it reaches the bottom of 
the incline?

V FIGURE 5-33
Crate on inclined plane. 
Problems 18 and 19.

19. (II) A crate is given an initial speed of 3.0 m/s up the 
25.0° plane shown in Fig. 5-33. (a) How far up the plane will 
it go? (b) How much time elapses before it returns to its 
starting point? Assume = 0.17.

20. (II) Two blocks made of different materials connected together 
by a thin cord, slide down a plane ramp inclined at an angle 6 
to the horizontal as shown in Fig. 5-34 (block B is above 
block A). The masses of the blocks are mA and mB, and the 
coefficients of friction are fiA and /xB. If mA = m B = 5.0 kg, 
and n A = 0.20 and /jlb = 0.30, deter­
mine (a) the acceleration of the
blocks and (b) the tension in the V
cord, for an angle 6 = 32°.

m.

FIGURE 5-34
Problems 20 and 21.

\ e
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21. (II) For two blocks, connected by a cord and sliding down 
the incline shown in Fig. 5-34 (see Problem 20), describe 
the motion (a) if fxA  <  > and (b) if fxA > fxB . (c) Deter­
mine a formula for the acceleration of each block and the 
tension FT in the cord in terms of m A, mB, and 0; interpret 
your results in light of your answers to (a) and (b).

22. (II) A flatbed truck is carrying a heavy crate. The coefficient 
of static friction between the crate and the bed of the truck 
is 0.75. What is the maximum rate at which the driver can 
decelerate and still avoid having the crate slide against the 
cab of the truck?

23. (II) In Fig. 5-35 the coefficient of static friction between 
mass mA and the table is 0.40, whereas the coefficient of 
kinetic friction is 0.30 (a) What minimum value of mA 
will keep the system from starting to move? (b) What 
value(s) of m A will keep the system moving at constant 
speed?

m* .....n V's

2.0 ku

FIGURE 5-35 Problems 23 and 24.

24. (II) Determine a formula for the acceleration of the system 
shown in Fig. 5-35 in terms of m A, raB, and the mass of the 
cord, mc . Define any other variables needed.

25. (II) A small block of mass m  is given an initial speed vQ up 
a ramp inclined at angle 6 to the horizontal. It travels a 
distance d up the ramp and comes to rest, (a) Determine 
a formula for the coefficient of kinetic friction between 
block and ramp. (b) What can you say about the value of 
the coefficient of static friction?

26. (II) A 75-kg snowboarder has an initial velocity of 5.0 m/s 
at the top of a 28° incline (Fig. 5-36). After sliding down the 
110 -m long incline (on which the coefficient of kinetic 
friction is /% = 0.18), the snowboarder has attained a 
velocity v. The snowboarder then slides along a flat surface 
(on which fx̂  =  0.15) and comes to rest after a distance x. 
Use Newton’s second law to find the snowboarder’s 
acceleration while on the incline and while on the flat 
surface. Then use these accelerations to determine x.

27. (II) A package of mass m  is dropped vertically onto a hori­
zontal conveyor belt whose speed is v = 1.5 m/s, and the 
coefficient of kinetic friction between the package and the 
belt is /ik = 0-70. (a) For how much time does the package 
slide on the belt (until it is at rest relative to the belt)?
(b) How far does the package move during this time?

28. (II) Two masses m A = 2.0 kg and mB = 5.0 kg are on 
inclines and are connected together by a string as shown in 
Fig. 5-37. The coefficient of kinetic friction between each 
mass and its incline is = 0.30. If m A moves up, and raB 
moves down, determine their acceleration.

y i ° ______________________ 2 r [

FIGURE 5-37 Problem 28.

29. (II) A child slides down a slide with a 34° incline, and at the 
bottom her speed is precisely half what it would have been 
if the slide had been frictionless. Calculate the coefficient of 
kinetic friction between the slide and the child.

30. (II) (a) Suppose the coefficient of kinetic friction between 
mA and the plane in Fig. 5-38 is \xk = 0.15, and that 
mA = mB = 2.7 kg. As raB moves down, determine the 
magnitude of the acceleration of mA and raB, given 
6 = 34°. (b) What smallest value of [x  ̂will keep the system 
from accelerating?

/ VI_________________ [_____ ^^1

FIGURE 5-38 Problem 30.

31. (Ill) A 3.0-kg block sits on top of a 5.0-kg block which is on 
a horizontal surface. The 5.0-kg block is pulled to the right 
with a force F  as shown in Fig. 5-39. The coefficient of static 
friction between all surfaces is 0.60 and the kinetic coeffi­
cient is 0.40. (a) What is the minimum value of F  needed to 
move the two blocks? (b) If the force is 10% greater than 
your answer for (a), what is the acceleration of each block?

2»y V  <
*

------------------ 3.0 kg

| -------------- 5.0 kg
F

Jik = (? 15 *

x

FIGURE 5-36 Problem 26. FIGURE 5-39 Problem 31.
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32. (Ill) A 4.0-kg block is stacked on top of a 12.0-kg block, 
which is accelerating along a horizontal table at a = 5.2 m /s2 
(Fig. 5-40). Let ^  = /jls = /jl. (a) What minimum coefficient 
of friction /x between the two blocks will prevent the 4.0-kg 
block from sliding off? (b) If \x is only half this minimum 
value, what is the acceleration of the 4.0-kg block with respect 
to the table, and (c) with respect to the 12 .0-kg block?
(d) What is the force 
that must be applied to 
the 12 .0-kg block in (a) 
and in (b), assuming that 
the table is frictionless?

FIGURE 5-40
Problem 32.

33. (Ill) A small block of mass m  rests on the rough, sloping side 
of a triangular block of mass M  which itself rests on a hori­
zontal frictionless table as shown in Fig. 5-41. If the coeffi­
cient of static friction is /jl, determine the minimum horizontal 
force F  applied to M  
that will cause the 
small block m to 
start moving up the 
incline.

FIGURE 5-41
Problem 33.

5-2 to 5-4  Uniform Circular Motion
34. (I) What is the maximum speed with which a 1200-kg car 

can round a turn of radius 80.0 m on a flat road if the coeffi­
cient of friction between tires and road is 0.65? Is this result 
independent of the mass of the car?

35. (I) A child sitting 1.20 m from the center of a merry-go- 
around moves with a speed of 1.30 m/s. Calculate (a) the 
centripetal acceleration of the child and (b) the net hori­
zontal force exerted on the child (mass = 22.5 kg).

36. (I) A jet plane traveling 1890 km /h (525 m/s) pulls out of a 
dive by moving in an arc of radius 4.80 km. What is the 
plane’s acceleration in g’s?

37. (II) Is it possible to whirl a bucket of water fast enough in a 
vertical circle so that the water won’t fall out? If so, what is 
the minimum speed? Define all quantities needed.

38. (II) How fast (in rpm) must a centrifuge rotate if a particle
8.00 cm from the axis of rotation is to experience an acceler­
ation of 125,000 g’s?

39. (II) Highway curves are marked with a suggested speed. If 
this speed is based on what would be safe in wet weather, 
estimate the radius of curvature for a curve marked 50 km/h. 
Use Table 5-1.

40. (II) At what minimum speed must a roller coaster be 
traveling when upside down 
at the top of a circle 
(Fig. 5-42) so that the 
passengers do not fall out?
Assume a radius of curva­
ture of 7.6 m.

FIGURE 5-42
Problem 40.

41. (II)A  sports car crosses the bottom of a valley with a radius 
of curvature equal to 95 m. At the very bottom, the normal 
force on the driver is twice his weight. At what speed was 
the car traveling?

42. (II) How large must the coefficient of static friction be 
between the tires and the road if a car is to round a level 
curve of radius 85 m at a speed of 95 km/h?

43. (II) Suppose the space shuttle is in orbit 400 km from the 
Earth’s surface, and circles the Earth about once every 
90 min. Find the centripetal acceleration of the space shuttle 
in its orbit. Express your answer in terms of g, the gravita­
tional acceleration at the Earth’s surface.

44. (II) A bucket of mass 2.00 kg is whirled in a vertical circle of 
radius 1.10 m. At the lowest point of its motion the tension 
in the rope supporting the bucket is 25.0 N. (a) Find the 
speed of the bucket, (b) How fast must the bucket move at 
the top of the circle so that the rope does not go slack?

45. (II) How many revolutions per minute would a 22-m- 
diameter Ferris wheel need to make for the passengers to 
feel “weightless” at the topmost point?

46. (II) Use dimensional analysis (Section 1-7) to obtain the 
form for the centripetal acceleration, aR = v2/r.

47. (II) A jet pilot takes his aircraft in a vertical loop 
(Fig. 5-43). (a) If the jet is moving at a speed of 1200 km /h 
at the lowest point of the loop, determine the minimum 
radius of the circle so that the centripetal acceleration at the 
lowest point does not exceed 6.0 g’s. (b) Calculate the 78-kg 
pilot’s effective weight (the 
force with which the seat pushes 
up on him) at the bottom of the 
circle, and (c) at the top of the 
circle (assume the same speed).

FIGURE 5-43
Problem 47.

48.

49. (II) On an ice rink two skaters of equal mass grab hands 
and spin in a mutual circle once every 2.5 s. If we assume 
their arms are each 0.80 m long and their individual masses 
are 60.0 kg, how hard are they pulling on one another?

50. (II) Redo Example 5-11, precisely this time, by not ignoring 
the weight of the ball which revolves on a string 0.600 m long. 
In particular, find the magnitude of Fx , and the angle it makes 
with the horizontal. [Hint. Set the horizontal component of FT 
equal to maR; also, since there is no vertical motion, what can 
you say about the vertical component of FT ?]

(II) A proposed space station consists of a circular tube that 
will rotate about its center (like a tubular bicycle tire), 
Fig. 5-44. The circle formed by the tube has a diameter of 
about 1.1 km. What must be the rotation speed (revolutions 
per day) if an effect equal to ^
gravity at the surface of the 
Earth (1.0 g) is to be felt?

FIGURE 5-44
Problem 48.
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51. (II) A coin is placed 12.0 cm from the axis of a rotating 
turntable of variable speed. When the speed of the turntable 
is slowly increased, the coin remains fixed on the turntable 
until a rate of 35.0 rpm (revolutions per minute) is reached, 
at which point the coin slides off. What is the coefficient of 
static friction between the coin and the turntable?

52. (II) The design of a new road includes a straight stretch that 
is horizontal and flat but that suddenly dips down a steep 
hill at 22°. The transition should be rounded with what 
minimum radius so that cars traveling 95 km/h will not leave 
the road (Fig. 5-45)?

FIGURE 5-45
Problem 52.

53. (II) A 975-kg sports car (including driver) crosses the 
rounded top of a hill (radius = 88.0 m) at 12.0 m/s. 
Determine (a) the normal force exerted by the road on the 
car, (b) the normal force exerted by the car on the 72.0-kg 
driver, and (c) the car speed at which the normal force on 
the driver equals zero.

54. (II) Two blocks, with masses mA and mB, are connected to 
each other and to a central post by cords as shown in 
Fig. 5-46. They rotate about the post at frequency /  
(revolutions per second) on a frictionless horizontal surface 
at distances rA and rB from the post. Derive an algebraic 
expression for the tension in each segment of the cord 
(assumed massless).

FIGURE 5-46 Problem 54.

55.

FIGURE 5-47
Problem 55.

56. (II) A pilot performs an evasive maneuver by diving verti­
cally at 310 m/s. If he can withstand an acceleration of
9.0 g’s without blacking out, at what altitude must he begin 
to pull out of the dive to avoid crashing into the sea?

57. (Ill) The position of a particle moving in the xy plane is 
given by r = 2.0cos (3.0rad/s t) i  + 2.0sin (3.0rad/s t) \, 
where r is in meters and t is in seconds, (a) Show that this 
represents circular motion of radius 2.0 m centered at the 
origin, (b) Determine the velocity and acceleration vectors as 
functions of time, (c) Determine the speed and magnitude of 
the acceleration. (d) Show that a = v2/r. (e) Show that the 
acceleration vector always points toward the center of the 
circle.

58. (Ill) If a curve with a radius of 85 m is properly banked for a 
car traveling 65 km/h, what must be the coefficient of static 
friction for a car not to skid when traveling at 95 km/h?

59. (Ill) A curve of radius 68 m is banked for a design speed of 
85 km/h. If the coefficient of static friction is 0.30 (wet pave­
ment), at what range of speeds can a car safely make the 
curve? [Hint: Consider the direction of the friction force 
when the car goes too slow or too fast.]

*5-5  Nonuniform Circular Motion
*60. (II) A particle starting from rest revolves with uniformly 

increasing speed in a clockwise circle in the xy plane. The 
center of the circle is at the origin of an xy coordinate 
system. At t = 0, the particle is at x = 0.0, y = 2.0 m. At 
t = 2.0 s, it has made one-quarter of a revolution and is at 
x = 2.0 m, y = 0.0. Determine (a) its speed at t = 2.0 s,
(b) the average velocity vector, and (c) the average acceler­
ation vector during this interval.

*61. (II) In Problem 60 assume the tangential acceleration is 
constant and determine the components of the instantaneous 
acceleration at (a) t = 0.0, (b) t = 1.0 s, and (c) t = 2.0 s.

*62. (II) An object moves in a circle of radius 22 m with its speed 
given by v = 3.6 + 1.512, with v in meters per second and t 
in seconds. At t — 3.0 s, find (a) the tangential acceleration 
and (b) the radial acceleration.

*63. (Ill) A particle rotates in a circle of radius 3.80 m. At a 
particular instant its acceleration is 1.15 m /s2 in a direction 
that makes an angle of 38.0° to its direction of motion. 
Determine its speed (a) at this moment and (b) 2.00 s later, 
assuming constant tangential acceleration.

*64. (Ill) An object of mass m  is constrained to move in a circle of 
radius r. Its tangential acceleration as a function of time is given 
by atan = b + ct2, where b and c are constants. If v = v0 at 
t = 0, determine the tangential and radial components of the 
force, /'tan and FR , acting on the object at any time t > 0.

*5-6  Velocity-Dependent Forces
*65. (I) Use dimensional analysis (Section 1-7) in Example 5-17 

to determine if the time constant r  is r  = m /b  or r  = b/m.
* 66. (II) The terminal velocity of a 3 X 10 5 kg raindrop is about 

9 m/s. Assuming a drag force FD = —bv, determine (a) the 
value of the constant b and (b) the time required for such a 
drop, starting from rest, to reach 63% of terminal velocity.

*67. (II) An object moving vertically has v = v0 at t = 0. 
Determine a formula for its velocity as a function of time 
assuming a resistive force F = —bv as well as gravity for 
two cases: (a) v0 is downward and (b) v0 is upward.

(II) Tarzan plans to cross a gorge by swinging in an arc from
a hanging vine (Fig. 5-47). If his arms are capable of
exerting a force of 1350 N on the rope, what is the maximum
speed he can tolerate at the „
lowest point of his swing? His
mass is 78 kg and the vine is
5.2 m long.
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68. (Ill) The drag force on large objects such as cars, planes, and 
sky divers moving through air is more nearly Fd = ~bv2.
(a) For this quadratic dependence on v, determine a 
formula for the terminal velocity Vj, of a vertically falling 
object, (b) A 75-kg sky diver has a terminal velocity of 
about 60 m/s; determine the value of the constant b.
(c) Sketch a curve like that of Fig. 5-27b for this case of 
Fd oc v2. For the same terminal velocity, would this curve lie 
above or below that in Fig. 5-27? Explain why.

69. (Ill) A bicyclist can coast down a 7.0° hill at a steady
9.5 km/h. If the drag force is proportional to the square of 
the speed v, so that FD = —cv2, calculate (a) the value of 
the constant c and (b) the average force that must be applied 
in order to descend the hill at 25 km/h. The mass of the 
cyclist plus bicycle is 80.0 kg. Ignore other types of friction.

70. (Ill) Two drag forces act on a bicycle and rider: FD i due to 
rolling resistance, which is essentially velocity independent; 
and Fd2 due to air resistance, which is proportional to v2. 
For a specific bike plus rider of total mass 78 kg, 
Fd1 «  4.0 N; and for a speed of 2.2 m/s, FD2 ~ 1.0 N.
(a) Show that the total drag force is

Fd = 4.0 + 0.21v2, 
where v is in m/s, and FD is in N and opposes the motion.
(b) Determine at what slope angle 0 the bike and rider can 
coast downhill at a constant speed of 8.0 m/s.

* 71. (Ill) Determine a formula for the position and acceleration
of a falling object as a function of time if the object starts 
from rest at t = 0 and undergoes a resistive force 
F = —bv, as in Example 5-17.

*72. (Ill) A block of mass m  slides along a horizontal surface 
lubricated with a thick oil which provides a drag force 
proportional to the square root of velocity:

Fd = —bv 2.

If v = v0 at t = 0, determine v and x  as functions of 
time.

* 73. (Ill) Show that the maximum distance the block in Problem 72
can travel is 2m Vq/2/3 b.

* 74. (Ill) You dive straight down into a pool of water. You hit the
water with a speed of 5.0 m/s, and your mass is 75 kg. Assuming 
a drag force of the form FD = -(1.00 X 104 kg/s) v, how 
long does it take you to reach 2% of your original speed? 
(Ignore any effects of buoyancy.)

*75. (Ill) A motorboat traveling at a speed of 2.4 m/s shuts off 
its engines at t = 0. How far does it travel before coming 
to rest if it is noted that after 3.0 s its speed has dropped to 
half its original value? Assume that the drag force of the 
water is proportional to v.

| General Problems
76. A coffee cup on the horizontal dashboard of a car slides 81. 

forward when the driver decelerates from 45 km /h to rest 
in 3.5 s or less, but not if she decelerates in a longer time.
What is the coefficient of static friction between the cup 
and the dash? Assume the road and the dashboard are 
level (horizontal).

77. A 2.0-kg silverware drawer does not slide readily. The 
owner gradually pulls with more and more force, and when 
the applied force reaches 9.0 N, the drawer suddenly 
opens, throwing all the utensils to the floor. What is the 
coefficient of static friction between the drawer and the 
cabinet?

78. A roller coaster reaches the top of the steepest hill with a 
speed of 6.0 km /h. It then descends the hill, which is at an 
average angle of 45° and is 45.0 m long. What will its 
speed be when it reaches the bottom? Assume = 0.12.

79. An 18.0-kg box is released on a 37.0° incline and accelerates 
down the incline at 0.220 m /s2. Find the friction force 
impeding its motion. How large is the coefficient of friction?

80. A flat puck (mass M ) is revolved in a circle on a frictionless 
air hockey table top, and is held in this orbit by a light cord 
which is connected to a dangling mass (mass m) through a 
central hole as shown in Fig. 5-48. Show that the speed of 
the puck is given by v = V m gR /M .

FIGURE 5-48 Problem 80.

A motorcyclist is coasting with the engine off at a steady 
speed of 20.0 m /s but enters a sandy stretch where the coef­
ficient of kinetic friction is 0.70. Will the cyclist emerge from 
the sandy stretch without having to start the engine if the 
sand lasts for 15 m? If so, what will be the speed upon 
emerging?

82. In a “Rotor-ride” at a carnival, people rotate in a vertical 
cylindrically walled “room.” (See Fig. 5-49). If the room 
radius was 5.5 m, and the rotation frequency 0.50 revo­
lutions per second when the floor drops out, what 
minimum coefficient of static friction keeps the people from 
slipping down? People on this ride said they were “pressed 
against the wall.” Is there really an outward force pressing 
them against the wall? If so, what is its source? If not, what 
is the proper description of their situation (besides nausea)? 
[Hint: Draw a free-body diagram for a person.]

FIGURE 5-49 Problem 82.

83. A device for training astronauts and jet fighter pilots is 
designed to rotate the trainee in a horizontal circle of radius
11.0 m. If the force felt by the trainee is 7.45 times her own 
weight, how fast is she rotating? Express your answer in 
both m/s and rev/s.
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84. A 1250-kg car rounds a curve of radius 72 m banked at an 
angle of 14°. If the car is traveling at 85 km/h, will a friction 
force be required? If so, how much and in what direction?

85. Determine the tangential and centripetal components of the 
net force exerted on a car (by the ground) when its speed is 
27 m/s, and it has accelerated to this speed from rest in 9.0 s 
on a curve of radius 450 m. The car’s mass is 1150 kg.

86. The 70.0-kg climber in Fig. 5-50 is supported in the 
“chimney” by the friction forces exerted on his shoes and 
back. The static coefficients of fric­
tion between his shoes and the wall, 
and between his back and the wall, 
are 0.80 and 0.60, respectively. What 
is the minimum normal force he 
must exert? Assume the walls are 
vertical and that the static friction 
forces are both at their maximum.
Ignore his grip on the rope.

FIGURE 5-50
Problem 86.

An airplane traveling at 480 km/h needs to reverse its course. 
The pilot decides to accomplish this by banking the wings at 
an angle of 38°. (a) Find the time needed to reverse course.
(b) Describe any additional force the passengers experience 
during the turn. [Hint: Assume an 
aerodynamic “lift” force that acts 
perpendicularly to the flat wings; see 
Fig. 5-53.]

FIGURE 5-53
Problem 91.

87. A small mass m is set on the surface of a sphere, Fig. 5-51. 
If the coefficient of static 
friction is fis = 0.70, at 

thewhat angle <f> would 
mass start sliding?

It 7

-V

28,0 kii

FIGURE 5-51
Problem 87.

88. A 28.0-kg block is connected to an empty 2.00-kg bucket by 
a cord running over a frictionless pulley (Fig. 5-52). The 
coefficient of static friction between the table and the block 
is 0.45 and the coefficient of kinetic friction between the 
table and the block is 0.32.
Sand is gradually added 
to the bucket until the 
system just begins to move.
(a) Calculate the mass of 
sand added to the bucket.
(b) Calculate the accelera­
tion of the system.

FIGURE 5-52
Problem 88.

89. A car is heading down a slippery road at a speed of 95 km/h. 
The minimum distance within which it can stop without 
skidding is 66 m. What is the sharpest curve the car can 
negotiate on the icy surface at the same speed without 
skidding?

90. What is the acceleration experienced by the tip of the
1.5-cm-long sweep second hand on your wrist watch?

FIGURE 5-54
Problem 93.

94. Earth is not quite an inertial frame. We often make measure­
ments in a reference frame fixed on the Earth, assuming 
Earth is an inertial reference frame. But the Earth rotates, so 
this assumption is not quite valid. Show that this assumption 
is off by 3 parts in 1000 by calculating the acceleration of an 
object at Earth’s equator due to Earth’s daily rotation, and 
compare to g = 9.80 m /s2, the acceleration due to gravity.

95. While fishing, you get bored and start to swing a sinker 
weight around in a circle below you on a 0.45-m piece of 
fishing line. The weight makes a complete circle every 0.50 s. 
What is the angle that the fishing line makes with the 
vertical? [Hint: See Fig. 5-20.]

96. Consider a train that rounds a curve with a radius of 570 m 
at a speed of 160 km /h (approximately 100 mi/h). (a) Calcu­
late the friction force needed on a train passenger of mass 
75 kg if the track is not banked and the train does not tilt.
(b) Calculate the friction force on the passenger if the train 
tilts at an angle of 8.0° toward the center of the curve.

97. A car starts rolling down a l-in-4 hill (l-in-4 means that for 
each 4 m traveled along the road, the elevation change is 
1 m). How fast is it going when it reaches the bottom after 
traveling 55 m? (a) Ignore friction. (b) Assume an effective 
coefficient of friction equal to 0.10 .

92. A banked curve of radius R  in a new highway is designed so 
that a car traveling at speed v0 can negotiate the turn safely 
on glare ice (zero friction). If a car travels too slowly then it 
will slip toward the center of the circle. If it travels too fast, 
it will slip away from the center of the circle. If the 
coefficient of static friction increases, it becomes possible for 
a car to stay on the road while traveling at a speed within 
a range from vm\n to vmax. Derive formulas for vmjn and 
Umax as functions of fJLs,v 0, and R.

93. A small bead of mass m is constrained to slide without 
friction inside a circular vertical hoop of radius r which 
rotates about a vertical axis
(Fig. 5-54) at a frequency / .
(a) Determine the angle 6 
where the bead will be in 
equilibrium—that is, where 
it will have no tendency to 
move up or down along the 
hoop, (b) If /  = 2.00 rev/s 
and r = 22.0 cm, what is 61
(c) Can the bead ride as 
high as the center of the 
circle (0 = 90°)? Explain.
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98. The sides of a cone make an angle <j> with the vertical. A 
small mass m  is placed on the inside of the cone and the cone, 
with its point down, is revolved at a frequency /  (revolutions 
per second) about its symmetry axis. If the coefficient of static 
friction is /xs, at what positions on the cone can the mass be 
placed without sliding on the cone? (Give the maximum and 
minimum distances, r, from the axis).

99. A 72-kg water skier is being accelerated by a ski boat on a 
flat (“glassy”) lake. The coefficient of kinetic friction 
between the skier’s skis and the water surface is = 0-25 
(Fig. 5-55). (a) What is the skier’s acceleration if the rope 
pulling the skier behind the boat applies a horizontal tension 
force of magnitude FT = 240 N to the skier (0 = 0°)?
(b) What is the skier’s horizontal acceleration if the rope 
pulling the skier exerts a force of FT = 240 N on the skier 
at an upward angle 6 = 12°? (c) Explain why the skier’s 
acceleration in part (b) is greater than that in part (a).

Ft = 240 N 
« ___ 10-

= 0.25

FIGURE 5-55 Problem 99.

100. A ball of mass m  = 1.0 kg at the end of a thin cord of length 
r = 0.80 m revolves in a vertical circle about point O, as 
shown in Fig. 5-56. During the time we observe it, the only 
forces acting on the ball are gravity and the tension in the 
cord. The motion is circular but not uniform because of the 
force of gravity. The ball increases in speed as it descends and 
decelerates as it rises on the other side of the circle. A t the 
moment the cord makes an angle 0 = 30° below the 
horizontal, the ball’s .___
speed is 6.0 m/s. At 
this point, determine 
the tangential accel­
eration, the radial 
acceleration, and the 
tension in the cord, 
FT. Take 0 increasing 
downward as shown.

FIGURE 5-56
Problem 100.

s \
/ \

\

101. A car drives at a constant speed around a banked circular 
track with a diameter of 127 m. The motion of the car can 
be described in a coordinate system with its origin at the 
center of the circle. At a particular instant the car’s accel­
eration in the horizontal plane is given by

a = (—15.71 — 23.2j) m /s2.

(a) What is the car’s speed? (b) Where (* and y ) is the car 
at this instant?

18 Numerical/Computer
* 102. (Ill) The force of air resistance (drag force) on a rapidly 

falling body such as a skydiver has the form FD = —kv2, so 
that Newton’s second law applied to such an object is

dv i 2 m  —  = mg — k v ,  
dt

where the downward direction is taken to be positive.
(a) Use numerical integration [Section 2-9] to estimate 
(within 2%) the position, speed, and acceleraton, from t = 0 
up to t = 15.0 s, for a 75-kg skydiver who starts from rest, 
assuming k  = 0.22 kg/m. (ft) Show that the diver eventually 
reaches a steady speed, the terminal speed, and explain why 
this happens, (c) How long does it take for the skydiver to 
reach 99.5% of the terminal speed?

“103. (Ill) The coefficient of kinetic friction between two 
surfaces is not strictly independent of the velocity of the 
object. A possible expression for for wood on wood is

0.20
(1 + 0.0020'y2)

where v is in m/s. A wooden block of mass 8.0 kg is at rest 
on a wooden floor, and a constant horizontal force of 41 N 
acts on the block. Use numerical integration [Section 2-9] 
to determine and graph (a) the speed of the block, and (b) its 
position, as a function of time from 0 to 5.0 s. (c) Determine 
the percent difference for the speed and position at 5.0 s 
if /% is constant and equal to 0.20.

‘ 104. (Ill) Assume a net force F  = -m g  -  kv2 acts during the 
upward vertical motion of a 250-kg rocket, starting at 
the moment (t = 0) when the fuel has burned out and the 
rocket has an upward speed of 120 m/s. Let k  = 0.65 kg/m. 
Estimate v and y  at 1.0-s intervals for the upward motion 
only, and estimate the maximum height reached. Compare 
to free-flight conditions without air resistance (k  = 0).

Answers to Exercises

A: (c).
B: FPx is insufficient to keep the box moving for long. 
C: No—the acceleration is not constant (in direction). 
D: (a), it doubles.
E: (d).

F: (a).

G: (c).

H: Yes.

I: (a) No change; (b) 4 times larger.
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The astronauts in the upper left of 
this photo are working on the Space 
Shuttle. A s they orbit the Earth— at 
a rather high speed— they experience 
apparent weightlessness. The Moon, 
in the background, also is orbiting 
the Earth at high speed. What keeps 
the M oon and the space shuttle (and 
its astronauts) from moving off in a 
straight line away from Earth? It is 
the force of gravity. N ew ton’s law of 
universal gravitation states that all 
objects attract all other objects with 
a force proportional to their masses 
and inversely proportional to the 
square of the distance between them.

T £
*

Gravitation and 
Newton's Synthesis

CHAPTER-OPENING QUESTIOr —Guess now!
A space station revolves around the Earth as a satellite, 100 km above Earth’s 
surface. What is the net force on an astronaut at rest inside the space station?

(a) Equal to her weight on Earth.
(b) A little less than her weight on Earth.
(c) Less than half her weight on Earth.
(d) Zero (she is weightless).
(e) Somewhat larger than her weight on Earth.

Sir Isaac Newton not only put forth the three great laws of motion that serve as 
the foundation for the study of dynamics. He also conceived of another 
great law to describe one of the basic forces in nature, gravitation, and he 
applied it to understand the motion of the planets. This new law, published 

in 1687 in his book Philosophiae Naturalis Principia Mathematica (the Principia, 
for short), is called Newton’s law of universal gravitation. It was the capstone of 
Newton’s analysis of the physical world. Indeed, Newtonian mechanics, with its 
three laws of motion and the law of universal gravitation, was accepted for 
centuries as a mechanical basis for the way the universe works.
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6 -7  Types of Forces in Nature
*6-8  Principle of Equivalence; 
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FIGURE 6 -1  Anywhere on Earth, 
whether in Alaska, Australia, or 
Peru, the force of gravity acts 
downward toward the center of the 
Earth.

FIGURE 6 - 2  The gravitational 
force one object exerts on a second 
object is directed toward the first 
object, and is equal and opposite to 
the force exerted by the second 
object on the first.

Gravitational 
force exerted on 
Moon by Earth

6—1 Newton's Law of Universal Gravitation
Among his many great accomplishments, Sir Isaac Newton examined the motion 
of the heavenly bodies—the planets and the Moon. In particular, he wondered 
about the nature of the force that must act to keep the Moon in its nearly circular 
orbit around the Earth.

Newton was also thinking about the problem of gravity. Since falling objects 
accelerate, Newton had concluded that they must have a force exerted on them, a 
force we call the force of gravity. Whenever an object has a force exerted on it, that 
force is exerted by some other object. But what exerts the force of gravity? Every 
object on the surface of the Earth feels the force of gravity, and no matter where 
the object is, the force is directed toward the center of the Earth (Fig. 6-1). 
Newton concluded that it must be the Earth itself that exerts the gravitational 
force on objects at its surface.

According to legend, Newton noticed an apple drop from a tree. He is said to 
have been struck with a sudden inspiration: If gravity acts at the tops of trees, and 
even at the tops of mountains, then perhaps it acts all the way to the Moon! With 
this idea that it is Earth’s gravity that holds the Moon in its orbit, Newton devel­
oped his great theory of gravitation. But there was controversy at the time. Many 
thinkers had trouble accepting the idea of a force “acting at a distance.” Typical 
forces act through contact—your hand pushes a cart and pulls a wagon, a bat hits 
a ball, and so on. But gravity acts without contact, said Newton: the Earth exerts a 
force on a falling apple and on the Moon, even though there is no contact, and the 
two objects may even be very far apart.

Newton set about determining the magnitude of the gravitational force that 
the Earth exerts on the Moon as compared to the gravitational force on objects at 
the Earth’s surface. At the surface of the Earth, the force of gravity accelerates 
objects at 9.80 m/s2. The centripetal acceleration of the Moon is calculated from 
aR = v2/r  (see Example 5-9) and gives aR = 0.00272 m/s2. In terms of the 
acceleration of gravity at the Earth’s surface, g, this is equivalent to

aR
0.00272 m/s2 1

8 8-9.80 m/s2 ° 3600
That is, the acceleration of the Moon toward the Earth is about ^  as great as the 
acceleration of objects at the Earth’s surface. The Moon is 384,000 km from the 
Earth, which is about 60 times the Earth’s radius of 6380 km. That is, the Moon is 
60 times farther from the Earth’s center than are objects at the Earth’s surface. 
But 60 X 60 = 602 = 3600. Again that number 3600! Newton concluded that the 
gravitational force F exerted by the Earth on any object decreases with the square 
of its distance, r, from the Earth’s center:

F oc
rL

The Moon is 60 Earth radii away, so it feels a gravitational force only ^  = mo 
times as strong as it would if it were a point at the Earth’s surface.

Newton realized that the force of gravity on an object depends not only on 
distance but also on the object’s mass. In fact, it is directly proportional to its mass, 
as we have seen. According to Newton’s third law, when the Earth exerts its gravi­
tational force on any object, such as the Moon, that object exerts an equal and 
opposite force on the Earth (Fig. 6-2). Because of this symmetry, Newton 
reasoned, the magnitude of the force of gravity must be proportional to both the 
masses. Thus

Earth Gravitational force 
exerted on Earth 
by the Moon

F oc mEmB

where raE is the mass of the Earth, mB the mass of the other object, and r the 
distance from the Earth’s center to the center of the other object.
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Newton went a step further in his analysis of gravity. In his examination of the 
orbits of the planets, he concluded that the force required to hold the different 
planets in their orbits around the Sun seems to diminish as the inverse square of 
their distance from the Sun. This led him to believe that it is also the gravitational 
force that acts between the Sun and each of the planets to keep them in their 
orbits. And if gravity acts between these objects, why not between all objects? Thus 
he proposed his law of universal gravitation, which we can state as follows:

Every particle in the universe attracts every other particle with a force that is 
proportional to the product of their masses and inversely proportional to the 
square of the distance between them. This force acts along the line joining the 
two particles.

The magnitude of the gravitational force can be written as 
mi m2

F = G — (6-1)
rL

where m1 and m2 are the masses of the two particles, r is the distance between 
them, and G is a universal constant which must be measured experimentally and 
has the same numerical value for all objects.

The value of G must be very small, since we are not aware of any force of 
attraction between ordinary-sized objects, such as between two baseballs. The force 
between two ordinary objects was first measured by Henry Cavendish in 1798, 
over 100 years after Newton published his law. To detect and measure the incred­
ibly small force between ordinary objects, he used an apparatus like that shown in 
Fig. 6-3. Cavendish confirmed Newton’s hypothesis that two objects attract one 
another and that Eq. 6-1 accurately describes this force. In addition, because 
Cavendish could measure F, m1,m 2, and r accurately, he was able to determine 
the value of the constant G as well. The accepted value today is 

G = 6.67 X 10-n N*m7kg2.
(See Table inside front cover for values of all constants to highest known precision.)

Strictly speaking, Eq. 6-1 gives the magnitude of the gravitational force that one 
particle exerts on a second particle that is a distance r away. For an extended object 
(that is, not a point), we must consider how to measure the distance r. You might 
think that r would be the distance between the centers of the objects. This is true for 
two spheres, and is often a good approximation for other objects. A correct calculation 
treats each extended body as a collection of particles, and the total force is the 
sum of the forces due to all the particles. The sum over all these particles is often 
best done using integral calculus, which Newton himself invented. When extended 
bodies are small compared to the distance between them (as for the Earth-Sun 
system), little inaccuracy results from considering them as point particles.

Newton was able to show (see derivation in Appendix D) that the gravitational 
force exerted on a particle outside a sphere, with a spherically symmetric mass 
distribution, is the same as if the entire mass o f the sphere was concentrated at its 
center. Thus Eq. 6-1 gives the correct force between two uniform spheres where r is 
the distance between their centers.

■ ESTIMATE I Can you attract another person gravitationally?
A 50-kg person and a 70-kg person are sitting on a bench close to each other.
Estimate the magnitude of the gravitational force each exerts on the other.
APPROACH This is an estimate: we let the distance between the centers of the
two people be ^m (about as close as you can get).
SOLUTION We use Eq. 6-1, which gives

(6.67 X 10-11 N-m2/kg2)(50 kg)(70 kg)
(0.5 m):

rounded off to an order of magnitude. Such a force is unnoticeably small unless
extremely sensitive instruments are used.
NOTE As a fraction of their weight, this force is (10“6 N )/(70 kg)(9.8 m/s2) ~ 10 9.

NEWTON’S

LAW

OF

UNIVERSAL

GRAVITATION

FIGURE 6 - 3  Schematic diagram of 
Cavendish’s apparatus. Two spheres 
are attached to a light horizontal 
rod, which is suspended at its center 
by a thin fiber. When a third sphere 
(labeled A ) is brought close to one of 
the suspended spheres, the 
gravitational force causes the latter 
to move, and this twists the fiber 
slightly. The tiny movement is 
magnified by the use of a narrow 
light beam directed at a mirror 
mounted on the fiber. The beam  
reflects onto a scale. Previous 
determination of how large a force 
will twist the fiber a given amount 
then allows the experimenter to 
determine the magnitude of the 
gravitational force between two 
objects.

Fiber
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Motion

FIGURE 6 - 4  Example 6 -2 .

FIGURE 6 - 5  Example 6 -3 . 
Orientation of Sun (S), Earth (E), 
and M oon (M) at right angles to 
each other (not to scale).

Moon

MS

ME
© E arth

Sun

Distinguish between 
N ew ton ’s second law and  

the law  o f  universal gravitation

EXAMPLE 6-2 Spacecraft at 2rE. What is the force of gravity acting on a 
2000-kg spacecraft when it orbits two Earth radii from the Earth’s center (that is, 
a distance rE = 6380 km above the Earth’s surface, Fig. 6-4)? The mass of the 
Earth is mE = 5.98 X 1024 kg.
APPROACH We could plug all the numbers into Eq. 6-1, but there is a simpler 
approach. The spacecraft is twice as far from the Earth’s center as when it is at 
the surface of the Earth. Therefore, since the force of gravity decreases as the 
square of the distance (and ^  = J), the force of gravity on the satellite will be 
only one-fourth its weight at the Earth’s surface.
SOLUTION At the surface of the Earth, FG = mg. At a distance from the 
Earth’s center of 2rE, FG is \  as great:

Fg = I mg = \  (2000 kg)(9.80 m/s2) = 4900 N.

EXAMPLE 6 -3__________________  Force on the Moon. Find the net force on the Moon
mM = 7.35 X 1022kg) due to the gravitational attraction of both the Earth 
mE = 5.98 X 1024kg) and the Sun (ras = 1.99 X 1030kg), assuming they are at 

right angles to each other as in Fig. 6-5.
APPROACH The forces on our object, the Moon, are the gravitational force 
exerted on the Moon by the Earth FME and the force exerted by the Sun Fms , as 
shown in the free-body diagram of Fig. 6-5. We use the law of universal gravi­
tation to find the magnitude of each force, and then add the two forces as vectors. 
SOLUTION The Earth is 3.84 X 105km = 3.84 X 108m from the Moon, so FME 
(the gravitational force on the Moon due to the Earth) is

(6.67 X 10-11 N • m2/kg2)(7.35 X 1022kg)(5.98 X 1024kg)

(3.84 X 108 m)2
= 1.99 X 10 N.

The Sun is 1.50 X 108 km from the Earth and the Moon, so FMS (the gravitational 
force on the Moon due to the Sun) is

(6.67 X 10-11 N • m2/kg2)(7.35 X 1022kg)(l.99 X 1030kg)
M̂S — = 4.34 X 10 N.

(1.50 X 1011 m)

The two forces act at right angles in the case we are considering (Fig. 6-5), so 
we can apply the Pythagorean theorem to find the magnitude of the total force:

F  = V(1.99 X 102ON)2 + (4.34 X 1020N)2 = 4.77 X lO^N.

The force acts at an angle 0 (Fig. 6-5) given by 0 = tan_1(l.99/4.34) = 24.6°. 
NOTE The two forces, FME and FMS, have the same order of magnitude (1020N). 
This may be surprising. Is it reasonable? The Sun is much farther from Earth than 
the Moon (a factor of 10n m/108m « 103), but the Sun is also much more 
massive (a factor of 1030 kg/1023 kg « 107). Mass divided by distance squared 
(107/ 106) comes out within an order of magnitude, and we have ignored factors of 
3 or more. Yes, it is reasonable.

Note carefully that the law of universal gravitation describes a particular force 
(gravity), whereas Newton’s second law of motion (F = ma) tells how an object 
accelerates due to any type of force.

* Spherical Shells
Newton was able to show, using the calculus he invented for the purpose, that a thin
uniform spherical shell exerts a force on a particle outside it as if all the shell’s mass
were at its center; and that such a thin uniform shell exerts zero force on a particle
inside the shell. (The derivation is given in Appendix D.) The Earth can be
modelled as a series of concentric shells starting at its center, each shell uniform but
perhaps having a different density to take into account Earth’s varying density in various
layers. As a simple example, suppose the Earth were uniform throughout; what is
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the gravitational force on a particle placed exactly halfway from Earth’s center to 
its surface? Only the mass inside this radius r = \  rE would exert a net force on this 
particle. The mass of a sphere is proportional to its volume V  = f t t t3, so  the mass m 
inside r = \  rE is Q) = |  the mass of the entire Earth. The gravitational force
on the particle at r = \  rE, which is proportional to m /r  (Eq. 6-1), is reduced to 
(!)/0 )2 = i  the gravitational force it would experience at Earth’s surface.

6—2  Vector Form of Newton's Law of 
Universal Gravitation

We can write Newton’s law of universal gravitation in vector form as

F 12 = -G
m2

ri\
r21> (6- 2)

where Fl2 is the vector force on particle 1 (of mass exerted by particle 2 
(of mass m2), which is a distance r21 away; r21 is a unit vector that points from 
particle 2 toward particle 1 along the line joining them so that r21 = ?2i/r21, 
where r21 is the displacement vector as shown in Fig. 6- 6. The minus sign in 
Eq. 6-2 is necessary because the force on particle 1 due to particle 2 points 
toward ra2, in the direction opposite to r21. The displacement vector r12 is a vector 
of the same magnitude as r21, but it points in the opposite direction so that

r 12 =  — r 21 •

By Newton’s third law, the force F21 acting on m2 exerted by mx must have the 
same magnitude as F12 but acts in the opposite direction (Fig. 6-7), so that

m i ra2 „
F2i = —F12 = G y ^ r 21

A  i
^  m2m x .

— {j 2 1*12 •
r\2

The force of gravity exerted on one particle by a second particle is always 
directed toward the second particle, as in Fig. 6- 6. When many particles interact, 
the total gravitational force on a given particle is the vector sum of the forces 
exerted by each of the others. For example, the total force on particle number 1 is

n
Fi = F12 + F13 + F14 + ••• + Fln = 2 ^ 1 ;  (6-3)

i=2
where Flf- means the force on particle 1 exerted by particle i, and n is the total 
number of particles.

This vector notation can be very helpful, especially when sums over many 
particles are needed. However, in many cases we do not need to be so formal and 
we can deal with directions by making careful diagrams.

6—3 Gravity Near the Earth's Surface; 
Geophysical Applications

When Eq. 6-1 is applied to the gravitational force between the Earth and an 
object at its surface, mx becomes the mass of the Earth raE, m2 becomes the mass 
of the object m, and r becomes the distance of the object from the Earth’s center, 
which is the radius of the Earth rE. This force of gravity due to the Earth is the 
weight of the object, which we have been writing as mg. Thus, 

mmE
mg = G —j—

ri.
We can solve this for g, the acceleration of gravity at the Earth’s surface: 

raF
g = G - ^ -  (6-4)

r E
Thus, the acceleration of gravity at the surface of the Earth, g, is determined 
by mB and rE. (Don’t confuse G with g; they are very different quantities, but are 
related by Eq. 6-4.)

FIGURE 6-6 The displacement 
vector r21 points from particle of 
mass m 2 to particle of mass m i . The 
unit vector shown, r21 is in the same 
direction as r21, but is defined as 
having length one.

FIGURE 6-7 By N ew ton’s third 
law, the gravitational force on 
particle 1 exerted by particle 2, F12, 
is equal and opposite to that on 
particle 2 exerted by particle 1, F2i ; 
that is F21 =  —F12.

mi

'12

m2

/ j \  CAUTI ON
Distinguish G from g
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FIGURE 6 - 8  Example 6 -4 . Mount 
Everest, 8850 m (29,035 ft) above sea 
level; in the foreground, the author 
with sherpas at 5500 m (18,000 ft).

Until G was measured, the mass of the Earth was not known. But once G was 
measured, Eq. 6-4 could be used to calculate the Earth’s mass, and Cavendish 
was the first to do so. Since g = 9.80 m/s2 and the radius of the Earth is 
rB = 6.38 X 106 m, then, from Eq. 6-4, we obtain

?r |  (9.80m/s2)(6.38 X 106m)2
G~ ~~ 6.67 X 10_u N • m2/kg2

= 5.98 X 1024 kg

mE =

for the mass of the Earth.
Equation 6-4 can be applied to other planets, where g, m, and r would refer to 

that planet.

EXAMPLE 6 -4 ESTIMATE- ! Gravity on Everest. Estimate the effective 
value of g on the top of Mt. Everest, 8850 m (29,035 ft) above sea level (Fig. 6- 8). 
That is, what is the acceleration due to gravity of objects allowed to fall freely 
at this altitude?

APPROACH The force of gravity (and the acceleration due to gravity g) depends 
on the distance from the center of the Earth, so there will be an effective value g' 
on top of Mt. Everest which will be smaller than g at sea level. We assume the 
Earth is a uniform sphere (a reasonable “estimate”).
SOLUTION We use Eq. 6-4, with rE replaced by r = 6380 km + 8.9 km = 
6389 km = 6.389 X 106m:

8 = G —rL
(6.67 X 10-11 N • m2/kg2)(5.98 X 1024kg)

(6.389 X 106m

= 9.77 m/s2

which is a reduction of about 3 parts in a thousand (0.3%).
NOTE This is an estimate because, among other things, we ignored the mass 
accumulated under the mountaintop.

TABLE 6-1
Acceleration Due to Gravity 
at Various Locations on Earth

Location
Elevation

(m) 8,r(m /s2)

New York 0 9.803
San Francisco 0 9.800
Denver 1650 9.796
Pikes Peak 4300 9.789
Sydney,

Australia 0 9.798
Equator 0 9.780
North Pole 

(calculated)
0 9.832

0 P H Y S I C S  A P P L I E D
Geology— mineral and oil exploration

Note that Eq. 6-4 does not give precise values for g at different locations 
because the Earth is not a perfect sphere. The Earth not only has mountains and 
valleys, and bulges at the equator, but also its mass is not distributed precisely 
uniformly (see Table 6-1). The Earth’s rotation also affects the value of g (see 
Example 6-5). However, for most practical purposes when an object is near the 
Earth’s surface, we will simply use g = 9.80 m/s2 and write the weight of an object 
as mg.

EXERCISE A Suppose you could double the mass of a planet but kept its volum e the 
same. H ow  would the acceleration of gravity, g, at the surface change?

The value of g can vary locally on the Earth’s surface because of the presence 
of irregularities and rocks of different densities. Such variations in g, known as 
“gravity anomalies,” are very small—on the order of 1 part per 106 or 107 in the 
value of g. But they can be measured (“gravimeters” today can detect variations 
in g to 1 part in 109). Geophysicists use such measurements as part of their 
investigations into the structure of the Earth’s crust, and in mineral and oil 
exploration. Mineral deposits, for example, often have a greater density than 
surrounding material; because of the greater mass in a given volume, g can have 
a slightly greater value on top of such a deposit than at its flanks. “Salt domes,” 
under which petroleum is often found, have a lower than average density and 
searches for a slight reduction in the value of g in certain locales have led to the 
discovery of oil.
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EXAMPLE 6-5 Effect of Earth's rotation on g. Assuming the Earth is a 
perfect sphere, determine how the Earth’s rotation affects the value of g at the 
equator compared to its value at the poles.

APPROACH Figure 6-9 shows a person of mass ra standing on a doctor’s scale 
at two places on the Earth. At the North Pole there are two forces acting on the 
mass ra: the force of gravity, FG = rag, and the force with which the scale pushes 
up on the mass, w. We call this latter force w because it is what the scale reads as 
the weight of the object, and by Newton’s third law it equals the force with which the 
mass pushes down on the scale. Since the mass is not accelerating, Newton’s 
second law tells us

mg — w = 0,

so w = mg. Thus the weight w that the spring registers equals mg, which is no 
surprise. Next, at the equator, there is an acceleration because the Earth is 
rotating. The same magnitude of the force of gravity FG = mg acts downward (we are 
letting g represent the acceleration of gravity in the absence of rotation and we ignore 
the slight bulging of the equator). The scale pushes upward with a force w'; w' 
is also the force with which the person pushes down on the scale (Newton’s third 
law) and hence is the weight registered on the scale. From Newton’s second law 
we now have (see Fig. 6-9)

mg — w' = m

because the person of mass ra now has a centripetal acceleration due to Earth’s 
rotation; rE = 6.38 X 106 m is the Earth’s radius and v is the speed of ra due to the 
Earth’s daily rotation.
SOLUTION First we determine the speed v of an object at rest on the Earth’s 
equator, rembering that Earth makes one rotation (distance = circumference of 
Earth = 2irrE) in 1 day = (24h)(60min/h)(60s/min) = 8.64 X 104s:

277TE (6.283)(6.38 X 106m)
V 1 day ~~ (8.64 x  104s)

= 4.640 X 102m/s.

The effective weight is w' = mg' where g' is the effective value of g, and so 
g' = w '/m . Solving the equation above for w ', we have

w = m\ g

so
w' V2

8 =
Hence

8 m 8 rE

v2 (4.640 X 102m/s) 
Ag = g ~ g' = —rE (6.38 X 106m)

= 0.0337 m/s2, 

which is about Ag ~ 0.003g, a difference of 0.3%.
NOTE In Table 6-1 we see that the difference in g at the pole and equator is actually 
greater than this: (9.832 -  9.780) m/s2 = 0.052 m/s2. This discrepancy is due mainly 
to the Earth being slightly fatter at the equator (by 21 km) than at the poles.
NOTE The calculation of the effective value of g at latitudes other than at the 
poles or equator is a two-dimensional problem because FG acts radially toward 
the Earth’s center whereas the centripetal acceleration is directed perpendicular 
to the axis of rotation, parallel to the equator and that means that a plumb line (the 
effective direction of g) is not precisely vertical except at the equator and the poles.

FIGURE 6 - 9  Example 6 -5 .
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Earth as Inertial Reference Frame
We often make the assumption that reference frames fixed on the Earth are 
inertial reference frames. Our calculation in Example 6-5 above shows that this 
assumption can result in errors no larger than about 0.3% in the use of Newton’s 
second law, for example. We discuss the effects of Earth’s rotation and reference 
frames in more detail in Chapter 11, including the Coriolis effect.

6 - 4  Satellites and "Weightlessness"
Satellite Motion

P H Y S I C S  A P P L I E D  Artificial satellites circling the Earth are now commonplace (Fig. 6-10). A satellite 
Artificial Earth satellites is put into orbit by accelerating it to a sufficiently high tangential speed 

with the use of rockets, as shown in Fig. 6-11. If the speed is too high, the 
spacecraft will not be confined by the Earth’s gravity and will escape, never to 
return. If the speed is too low, it will return to Earth. Satellites are usually put 
into circular (or nearly circular) orbits, because such orbits require the least 
takeoff speed.

FIGURE 6-10 A  satellite, the International Space 
Station, circling the Earth.

27,00(1 km/h 
circular

.10,000 km/h 
elliptical

FIGURE 6-11 Artificial satellites launched at 
different speeds.

FIGURE 6-12 A  moving satellite 
“falls” out of a straight-line path 
toward the Earth.

Without
gravity

With''- N 
gravity s

It is sometimes asked: “What keeps a satellite up?” The answer is: its high 
speed. If a satellite stopped moving, it would fall directly to Earth. But at the very 
high speed a satellite has, it would quickly fly out into space (Fig. 6-12) if it 
weren’t for the gravitational force of the Earth pulling it into orbit. In fact, a 
satellite is falling (accelerating toward Earth), but its high tangential speed keeps it 
from hitting Earth.

For satellites that move in a circle (at least approximately), the needed 
acceleration is centripetal and equals v2/r. The force that gives a satellite this 
acceleration is the force of gravity exerted by the Earth, and since a satellite may 
be at a considerable distance from the Earth, we must use Newton’s law of 
universal gravitation (Eq. 6-1) for the force acting on it. When we apply Newton’s 
second law, 2 FR = maR in the radial direction, we find

mmF v
G — z— = m — 5 

r r
(6-5)

where m is the mass of the satellite. This equation relates the distance of the satellite 
from the Earth’s center, r, to its speed, v, in a circular orbit. Note that only one 
force—gravity—is acting on the satellite, and that r is the sum of the Earth’s 
radius rB plus the satellite’s height h above the Earth: r = rE + h.
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EXAMPLE 6-6 Geosynchronous satellite. A geosynchronous satellite is one 
that stays above the same point on the Earth, which is possible only if it is above 
a point on the equator. Such satellites are used for TV and radio transmission, for 
weather forecasting, and as communication relays. Determine (a) the height 
above the Earth’s surface such a satellite must orbit, and (b) such a satellite’s speed,
(c) Compare to the speed of a satellite orbiting 200 km above Earth’s surface. 
APPROACH To remain above the same point on Earth as the Earth rotates, the 
satellite must have a period of 24 hours. We can apply Newton’s second law, 
F = ma, where a = v2/r  if we assume the orbit is circular.
SOLUTION (a) The only force on the satellite is the force of universal gravitation 
due to the Earth. (We can ignore the gravitational force exerted by the Sun. 
Why?) We apply Eq. 6-5, assuming the satellite moves in a circle:

mSatmE v2
G ----- —̂  = mSat r

This equation has two unknowns, r and v. But the satellite revolves around the 
Earth with the same period that the Earth rotates on its axis, namely once in 
24 hours. Thus the speed of the satellite must be 

2irr
v = -=->T

where T = 1 day = (24h)(3600s/h) = 86,400 s. We substitute this into the 
“satellite equation” above and obtain (after canceling mSat on both sides)

mE (2irr)2 
C t ^ t  —

r2 rT2
3.After cancelling an r, we can solve for r

GmET2 (6.67 X 10-11 N • m2/kg2)(5.98 X 1024kg)(86,400s):
4tt 47T

= 7.54 X 1022 m3.
We take the cube root and find 

r = 4.23 X 107m,
or 42,300 km from the Earth’s center. We subtract the Earth’s radius of 6380 km 
to find that a geosynchronous satellite must orbit about 36,000 km (about 6 rE) 
above the Earth’s surface.
(b) We solve for v in the satellite equation, Eq. 6-5:

GmE (6.67 X 10-11 N • m2/kg2)(5.98 X 1024kg)
---------  = 3070 m/s.

(4.23 X 107m)
We get the same result if we use v = lirr/T.
(c) The equation in part (b) for v shows v oc V l / r .  So for r = rE + h = 
6380 km + 200 km = 6580 km, we get

= ( 3 0 7 0 m / s ) ^ g g ^  = 7780m /,

NOTE The center of a satellite orbit is always at the center of the Earth; so it is 
not possible to have a satellite orbiting above a fixed point on the Earth at any 
latitude other than 0°.

CONCEPTUAL EXAMPLE I P T l  Catching a satellite. You are an astronaut in the 
space shuttle pursuing a satellite in need of repair. You find yourself in a circular orbit 
of the same radius as the satellite, but 30 km behind it. How will you catch up with it?
RESPONSE We saw in Example 6-6 (or see Eq. 6-5) that the velocity is propor­
tional to 1 /V r . Thus you need to aim for a smaller orbit in order to increase your 
speed. Note that you cannot just increase your speed without changing your orbit. 
After passing the satellite, you will need to slow down and rise upward again.

0 P H Y S I C S  A P P L I E D
Geosynchronous satellites
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FIGURE 6 -1 3  (a) A n object in an 
elevator at rest exerts a force on a 
spring scale equal to its weight.
(b) In an elevator accelerating upward 
at §g, the object’s apparent weight is 
1 \  times larger than its true weight.
(c) In a freely falling elevator, the 
object experiences “weightlessness”: 
the scale reads zero.

EXERCISE B Two satellites orbit the Earth in circular orbits of the same radius. One satel­
lite is twice as massive as the other. Which of the following statements is true about the 
speeds of these satellites? (a) The heavier satellite moves twice as fast as the lighter one.
(b) The two satellites have the same speed, (c) The lighter satellite moves twice as fast as 
the heavier one. (d ) The heavier satellite moves four times as fast as the lighter one.

Weightlessness
People and other objects in a satellite circling the Earth are said to experience 
apparent weightlessness. Let us first look at a simpler case, that of a falling 
elevator. In Fig. 6 -13a, an elevator is at rest with a bag hanging from a spring scale. 
The scale reading indicates the downward force exerted on it by the bag. This 
force, exerted on  the scale, is equal and opposite to the force exerted b y  the scale 
upward on the bag, and we call its magnitude w .  Two forces act on the bag: the 
downward gravitational force and the upward force exerted by the scale equal to 
w .  Because the bag is not accelerating (a  = 0) when we apply 2 F  = m a  to the 
bag in Fig. 6-13a we obtain

w  -  m g 0,

where m g  is the weight of the bag. Thus, w  =  m g ,  and since the scale indicates the 
force w  exerted on it by the bag, it registers a force equal to the weight of the bag, 
as we expect.

Now let the elevator have an acceleration, a. Applying Newton’s second law, 
2 F  =  m a , to the bag as seen from an inertial reference frame (the elevator itself 
is not an inertial frame) we have

w  — m g  =  m a. 

Solving for w ,  we have

w  =  m g  +  m a. [a is + upward]

We have chosen the positive direction up. Thus, if the acceleration a  is up, a  is posi­
tive; and the scale, which measures w ,  will read more than m g. We call w  the 
a p p a re n t w e ig h t  of the bag, which in this case would be greater than its actual 
weight (m g ). If the elevator accelerates downward, a  will be negative and w ,  the 
apparent weight, will be less than m g. The direction of the velocity v doesn’t 
matter. Only the direction of the acceleration a (and its magnitude) influences the 
scale reading.

Suppose, for example, the elevator’s acceleration is \ g  upward; then we find

w  =  m g  +  m ( lg )  =  I m g .

That is, the scale reads i \  times the actual weight of the bag (Fig. 6-13b). The 
apparent weight of the bag is 1 \  times its real weight. The same is true of the person: 
her apparent weight (equal to the normal force exerted on her by the elevator 
floor) is l  \  times her real weight. We can say that she is experiencing l \ g’s, just as 
astronauts experience so many g’s at a rocket’s launch.

If, instead, the elevator’s acceleration is a = - \ g  (downward), then 
w  =  m g  -  \ m g  =  \ m g .  That is, the scale reads half the actual weight. If the 
elevator is in fre e  fa l l  (for example, if the cables break), then a =  —g  and 
w  = m g  -  m g  = 0. The scale reads zero. See Fig. 6-13c. The bag appears 
weightless. If the person in the elevator accelerating at —g let go of a pencil, say, 
it would not fall to the floor. True, the pencil would be falling with acceleration g. 
But so would the floor of the elevator and the person. The pencil would hover 
right in front of the person. This phenomenon is called a p p a re n t w e ig h tle ssn ess  
because in the reference frame of the person, objects don’t fall or seem to have 
weight—yet gravity does not disappear. Gravity is still acting on each object, 
whose weight is still mg. The person and other objects seem weightless only 
because the elevator is accelerating in free fall, and there is no contact force on 
the person to make her feel the weight.
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The “weightlessness” experienced by people in a satellite orbit close to the 
Earth (Fig. 6-14) is the same apparent weightlessness experienced in a freely falling 
elevator. It may seem strange, at first, to think of a satellite as freely falling. But a 
satellite is indeed falling toward the Earth, as was shown in Fig. 6-12. The force of 
gravity causes it to “fall” out of its natural straight-line path. The acceleration of the 
satellite must be the acceleration due to gravity at that point, since the only force 
acting on it is gravity. (We used this to obtain Eq. 6-5.) Thus, although the force of 
gravity acts on objects within the satellite, the objects experience an apparent 
weightlessness because they, and the satellite, are accelerating together as in free fall.

EXERCISE C Return to the Chapter-Opening Question, page 139, and answer it again now.
Try to explain why you may have answered differently the first time.

Figure 6-15 shows some examples of “free fall,” or apparent weightlessness, 
experienced by people on Earth for brief moments.

A completely different situation occurs if a spacecraft is out in space 
far from the Earth, the Moon, and other attracting bodies. The force of gravity 
due to the Earth and other heavenly bodies will then be quite small because of 
the distances involved, and persons in such a spacecraft would experience real 
weightlessness.

EXERCISE D Could astronauts in a spacecraft far out in space easily play catch with a
bowling ball (m  = 7 kg)?

FIGURE 6 -1 4  This astronaut is 
moving outside the International 
Space Station. H e must feel very free 
because he is experiencing apparent 
weightlessness.

FIGURE 6 -1 5  Experiencing “weightlessness” on Earth.

i r -

(a) (b) (c)

6—5 Kepler's Laws and Newton's 
Synthesis

More than a half century before Newton proposed his three laws of motion and 
his law of universal gravitation, the German astronomer Johannes Kepler 
(1571-1630) had worked out a detailed description of the motion of the planets 
about the Sun. Kepler’s work resulted in part from the many years he spent exam­
ining data collected by Tycho Brahe (1546-1601) on the positions of the planets in 
their motion through the heavens.
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FIGURE 6-16 Kepler’s first law. An ellipse is a closed curve such that the 
sum of the distances from any point P on the curve to two fixed points (called 
the foci, Fi and F2) remains constant. That is, the sum of the distances,
FiP + F2P, is the same for all points on the curve. A circle is a special case of 
an ellipse in which the two foci coincide, at the center of the circle. The 
semimajor axis is s (that is, the long axis is 2s) and the semiminor axis is b, as 
shown. The eccentricity, e, is defined as the ratio of the distance from either 
focus to the center divided by the semimajor axis a. Thus es is the distance 
from the center to either focus, as shown. For a circle, e = 0. The Earth and 
most of the other planets have nearly circular orbits. For Earth e = 0.017.

FIGURE 6-17 Kepler’s second law. 
The two shaded regions have equal 
areas. The planet moves from point 1 
to point 2 in the same time as it takes 
to move from point 3 to point 4. 
Planets move fastest in that part of 
their orbit where they are closest to 
the Sun. Exaggerated scale.

TABLE 6-2  Planetary Data 
Applied to Kepler's Third Law

Mean

Planet

Distance
from Sun, s Period, J  
(106 km) (Earth yr)

s*/T2

(» “ $
Mercury 57.9 0.241 3.34
Venus 108.2 0.615 3.35
Earth 149.6 1.0 3.35
Mars 227.9 1.88 3.35
Jupiter 778.3 11.86 3.35
Saturn 1427 29.5 3.34
Uranus 2870 84.0 3.35
Neptune 4497 165 3.34
Pluto 5900 248 3.34

Among Kepler’s writings were three empirical findings that we now refer to as 
Kepler’s laws of planetary motion. These are summarized as follows, with addi­
tional explanation in Figs. 6-16 and 6-17.

Kepler’s first law: The path of each planet about the Sun is an ellipse with the 
Sun at one focus (Fig. 6-16).
Kepler’s second law: Each planet moves so that an imaginary line drawn from the 
Sun to the planet sweeps out equal areas in equal periods of time (Fig. 6-17). 
Kepler’s third law: The ratio of the squares of the periods of any two planets 
revolving about the Sun is equal to the ratio of the cubes of their semimajor 
axes. [The semimajor axis is half the long (major) axis of the orbit, as shown 
in Fig. 6-16, and represents the planet’s mean distance from the Sun.1-] 
That is, if 7\ and T2 represent the periods (the time needed for one revolution 
about the Sun) for any two planets, and sx and s2 represent their semimajor 
axes, then

T\
T2

We can rewrite this as

T\

meaning that s3/T 2 should be the same for each planet. Present-day data are 
given in Table 6-2; see the last column.

Kepler arrived at his laws through careful analysis of experimental data. Fifty 
years later, Newton was able to show that Kepler’s laws could be derived mathe­
matically from the law of universal gravitation and the laws of motion. He also 
showed that for any reasonable form for the gravitational force law, only one that 
depends on the inverse square of the distance is fully consistent with Kepler’s 
laws. He thus used Kepler’s laws as evidence in favor of his law of universal 
gravitation, Eq. 6-1.

We will derive Kepler’s second law later, in Chapter 11. Here we derive 
Kepler’s third law, and we do it for the special case of a circular orbit, in which 
case the semimajor axis is the radius r of the circle. (Most planetary orbits are 
close to a circle.) First, we write Newton’s second law of motion, 'ZF = ma. For F  
we use the law of universal gravitation (Eq. 6-1) for the force between the Sun 
and a planet of mass m 1, and for a the centripetal acceleration, v2/r. We assume 
the mass of the Sun Ms is much greater than the mass of its planets, so we 
ignore the effects of the planets on each other. Then

2 F
m 1Ms

~ W ~

ma

m 1

tThe semimajor axis is equal to the planet’s mean distance from the Sun in the sense that it equals 
half the sum of the planet’s nearest and farthest distances from the Sun (points Q and R in Fig. 6-16). 
Most planetary orbits are close to circles, and for a circle the semimajor axis is the radius of the circle.
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Here is the mass of a particular planet, rx its distance from the Sun, and vx its 
average speed in orbit; Ms is the mass of the Sun, since it is the gravitational attrac­
tion of the Sun that keeps each planet in its orbit. The period 7\ of the planet is the 
time required for one complete orbit, which is a distance equal to 27rrl5 the 
circumference of a circle. Thus

2-7771
Vl = " t T

We substitute this formula for vx into the equation above:

m1Ms 4tt\
& r2 ml T2 

r l 1 1

We rearrange this to get

T\ = _4^_
A GMS

(6- 6)

We derived this for planet 1 (say, Mars). The same derivation would apply for a 
second planet (say, Saturn) orbiting the Sun,

T\ =
r\ GMs ’

where T2 and r2 are the period and orbit radius, respectively, for the second 
planet. Since the right sides of the two previous equations are equal, we have 
Tl/r\ = T \/r\ or, rearranging,

Tl\ 2
(6-7)

which is Kepler’s third law. Equations 6-6 and 6-7 are valid also for elliptical 
orbits if we replace r with the semimajor axis 5.

The derivations of Eqs. 6-6 and 6-7 (Kepler’s third law) compared two 
planets revolving around the Sun. But they are general enough to be applied to 
other systems. For example, we could apply Eq. 6-6 to our Moon revolving around 
Earth (then Ms would be replaced by ME, the mass of the Earth). Or we could 
apply Eq. 6-7 to compare two moons revolving around Jupiter. But Kepler’s third 
law, Eq. 6-7, applies only to objects orbiting the same attracting center. Do not use 
Eq. 6-7 to compare, say, the Moon’s orbit around the Earth to the orbit of Mars 
around the Sun because they depend on different attracting centers.

In the following Examples, we assume the orbits are circles, although it is not 
quite true in general.

Where is Mars? Mars’ period (its “year”) was first noted by 
Kepler to be about 687 days (Earth-days), which is (687 d/365 d) = 1.88 yr 
(Earth years). Determine the mean distance of Mars from the Sun using the 
Earth as a reference.

APPROACH We are given the ratio of the periods of Mars and Earth. We can 
find the distance from Mars to the Sun using Kepler’s third law, given the 
Earth-Sun distance as 1.50 X 1011 m (Table 6-2; also Table inside front cover). 
SOLUTION Let the distance of Mars from the Sun be rMS, and the Earth-Sun 
distance be rES = 1.50 X 10n m. From Kepler’s third law (Eq. 6-7):

s  - d ) ! - ( ^ ) ! - -
So Mars is 1.52 times the Earth’s distance from the Sun, or 2.28 X 1011 m.

EXAMPLE 6 -8

/j\ CAUTION______
Compare orbits o f  objects 
only around the same center
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P H Y S I C S  A P P L I E D
Determining the 

Sun’s mass

EXAMPLE 6 -9 The Sun's mass determined. Determine the mass of the Sun
given the Earth’s distance from the Sun as rES = 1.5 X 1011 m.
APPROACH Equation 6-6 relates the mass of the Sun Ms to the period and 
distance of any planet. We use the Earth.
SOLUTION The Earth’s period is TE = ly r  = (365^d)(24 h/d)(3600 s/h) = 
3.16 X 107 s. We solve Eq. 6-6 for M s :

=
4-772rlES 4tt2(1.5 X 10n m)2

(6.67 X 10-11 N • m2/kg2)(3.16 X 107
= 2.0 X 1030 kg.

P H Y S I C S  A P P L I E D
Perturbations and  

discovery o f  planets

P H Y S I C S  A P P L I E D
Planets around  

other stars

EXERCISE E Suppose there were a planet in circular orbit exactly halfway betw een  
the orbits o f Mars and Jupiter. What would its period be in Earth-years? U se Table 6 -2 .

Accurate measurements on the orbits of the planets indicated that they did not 
precisely follow Kepler’s laws. For example, slight deviations from perfectly elliptical 
orbits were observed. Newton was aware that this was to be expected because any 
planet would be attracted gravitationally not only by the Sun but also (to a much lesser 
extent) by the other planets. Such deviations, or perturbations, in the orbit of Saturn 
were a hint that helped Newton formulate the law of universal gravitation, that all 
objects attract gravitationally. Observation of other perturbations later led to the 
discovery of Neptune and Pluto. Deviations in the orbit of Uranus, for example, could 
not all be accounted for by perturbations due to the other known planets. Careful calcu­
lation in the nineteenth century indicated that these deviations could be accounted for 
if another planet existed farther out in the solar system. The position of this planet was 
predicted from the deviations in the orbit of Uranus, and telescopes focused on that 
region of the sky quickly found it; the new planet was called Neptune. Similar but much 
smaller perturbations of Neptune’s orbit led to the discovery of Pluto in 1930.

Starting in the mid 1990s, planets revolving about distant stars (Fig. 6-18) were 
inferred from the regular “wobble” of each star due to the gravitational attraction of 
the revolving planet(s). Many such “extrasolar” planets are now known.

The development by Newton of the law of universal gravitation and the three 
laws of motion was a major intellectual achievement: with these laws, he was able 
to describe the motion of objects on Earth and in the heavens. The motions of 
heavenly bodies and objects on Earth were seen to follow the same laws (not 
recognized previously). For this reason, and also because Newton integrated the 
results of earlier scientists into his system, we sometimes speak of Newton’s synthesis.

The laws formulated by Newton are referred to as causal laws. By causality we 
mean the idea that one occurrence can cause another. When a rock strikes a 
window, we infer that the rock causes the window to break. This idea of “cause and 
effect” relates to Newton’s laws: the acceleration of an object was seen to be 
caused by the net force acting on it.

As a result of Newton’s theories the universe came to be viewed by many 
scientists and philosophers as a big machine whose parts move in a deterministic 
way. This deterministic view of the universe, however, had to be modified by 
scientists in the twentieth century (Chapter 38).

FIGURE 6 -1 8  Our solar system (a) is 
compared to recently discovered planets 
orbiting (b) the star 47 Ursae Majoris and 
(c) the star Upsilon Andromedae with at 
least three planets, mj is the mass of 
Jupiter. (Sizes not to scale.)

(a)

(b)

SunQ
47

Ursae
Majoris

£ Jupiter

O

Planet

G
3mj

(c) Upsilon
Andromedae

B

> C
0.7mj 2mj 4m t

152 CHAPTER 6 Gravitation and Newton's Synthesis



EXAMPLE 6-10 Lagrange Point. The mathematician Joseph-Louis Lagrange 
discovered five special points in the vicinity of the Earth’s orbit about the Sun 
where a small satellite (mass ra) can orbit the Sun with the same period T  as 
Earth’s (= 1 year). One of these “Lagrange Points,” called LI, lies between the 
Earth (mass ME) and Sun (mass Ms), on the line connecting them (Fig. 6-19). 
That is, the Earth and the satellite are always separated by a distance d. If the Earth’s 
orbital radius is RES, then the satellite’s orbital radius is (RES — d). Determine d.
APPROACH We use Newton’s law of universal gravitation and set it equal to the 
mass times the centripetal acceleration. But how could an object with a smaller 
orbit than Earth’s have the same period as Earth? Kepler’s third law clearly tells 
us a smaller orbit around the Sun results in a smaller period. But that law 
depends on only the Sun’s gravitational attraction. Our mass ra is pulled by both 
the Sun and the Earth.
SOLUTION Because the satellite is assumed to have negligible mass in comparison 
to the masses of the Earth and Sun, to an excellent approximation the Earth’s 
orbit will be determined solely by the Sun. Applying Newton’s second law to the 
Earth gives

Me (27tRes)2g m e m s w V2
n2----  = M* - jT^ESLES les

or
GMs 477 ES

^ES
Next we apply Newton’s second law to the satellite ra (which has the same period T 
as Earth), including the pull of both Sun and Earth (see simplified form, Eq. (i))

GMS GMe 4t72(Res -  d)
(RES- d f  d2 T2

which we rewrite as
GMs ( _  _ d _ Y 2 _  GMe _  4tt2R
R2es V * es / d2 ~ T

We now use the binomial expansion (1 + x)f 
x = d /R ES and assuming d «  RES, we have

ES

^ES,
1 + nx, if x «  1. Setting

GMs
^ES

1 + 2
les

GMp lES 1 -
d

^ES
(ii)

Substituting GMS/R ES from Eq. (i) into Eq. (ii) we find 

GMS
^ES

/  „ d \ g m e GMS /  d \
(1 + 2̂ d d2 Ris I Res)

Simplifying, we have 

GMs

d =

ÊS V ÊS
We solve for d to find

Me 
,3 Ms

Substituting in values we find 
d = 1.0 X IQ”2R

ES

ES = 1.5 X 106 km.

NOTE Since d /R ES = 10 2, we were justified in using the binomial expansion. 
NOTE Placing a satellite at LI has two advantages: the satellite’s view of the Sun 
is never eclipsed by the Earth, and it is always close enough to Earth to transmit 
data easily. The LI point of the Earth-Sun system is currently home to the Solar 
and Heliospheric Observatory (SOHO) satellite, Fig. 6-20.

7 /  n  \
/ /  \  \

' \  >i Sun m»*-d-€)
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FIGURE 6-19 Finding the position 
of the Lagrange Point LI for a 
satellite that can remain along the 
revolving line between the Sun and 
Earth, at distance d  from the Earth. 
Thus a mass m  at LI has the same 
period around the Sun as the 
Earth has. (Not to scale.)

FIGURE 6-20 Artist’s rendition 
of the Solar and Heliospheric 
Observatory (SOHO) satellite 
in orbit.
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*6-6 Gravitational Field
Most of the forces we meet in everyday life are contact forces: you push or 
pull on a lawn mower, a tennis racket exerts a force on a tennis ball when 
they make contact, or a ball exerts a force on a window when they make 
contact. But the gravitational force acts over a distance: there is a force 
even when the two objects are not in contact. The Earth, for example, exerts 
a force on a falling apple. It also exerts a force on the Moon, 384,000 km 
away. And the Sun exerts a gravitational force on the Earth. The idea of 
a force acting at a distance was a difficult one for early thinkers. Newton 
himself felt uneasy with this concept when he published his law of universal 
gravitation.

Another point of view that helps with these conceptual difficulties is 
the concept of the field, developed in the nineteenth century by Michael 
Faraday (1791-1867) to aid understanding of electric and magnetic forces 
which also act over a distance. Only later was it applied to gravity. According to 
the field concept, a gravitational field surrounds every object that has mass, and 
this field permeates all of space. A second object at a particular location near the 
first object experiences a force because of the gravitational field that exists 
there. Because the gravitational field at the location of the second mass is 
considered to act directly on this mass, we are a little closer to the idea of a 
contact force.

To be quantitative, we can define the gravitational field as the gravitational 
force per unit mass at any point in space. If we want to measure the gravitational 
field at any point, we place a small “test” mass m at that point and measure the 
force F exerted on it (making sure only gravitational forces are acting). Then the 
gravitational field, g, at that point is defined as

F
g = —  [gravitational field] (6-8)

The units of g are N/kg.
From Eq. 6-8 we see that the gravitational field an object experiences has 

magnitude equal to the acceleration due to gravity at that point. (When we speak 
of acceleration, however, we use units m/s2, which is equivalent to N/kg, since 
1 N = 1 kg-m/s2.)

If the gravitational field is due to a single spherically symmetric (or small) 
object of mass M, such as when m is near the Earth’s surface, then the gravitational 
field at a distance r from M  has magnitude

1 mM M
g — — G —T- — G —=-• 

m r2 r2

In vector notation we write

. = _ GM T dUe to a
® r2 F’ [single mass M \

where r is a unit vector pointing radially outward from mass M, and the minus 
sign reminds us that the field points toward mass M  (see Eqs. 6-1 ,6-2 , and 6-4). 
If several different bodies contribute significantly to the gravitational field, then 
we write the gravitational field g as the vector sum of all these contributions. 
In interplanetary space, for example, g at any point in space is the vector sum 
of terms due to the Earth, Sun, Moon, and other bodies that contribute. The 
gravitational field g at any point in space does not depend on the value of our 
test mass, m, placed at that point; g depends only on the masses (and locations) 
of the bodies that create the field there.
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6—7 Types of Forces in Nature
We have already discussed that Newton’s law of universal gravitation, Eq. 6-1, 
describes how a particular type of force—gravity—depends on the distance 
between, and masses of, the objects involved. Newton’s second law, 2F = ma, on 
the other hand, tells how an object will accelerate due to any type of force. But what 
are the types of forces that occur in nature besides gravity?

In the twentieth century, physicists came to recognize four different funda­
mental forces in nature: (1 ) the gravitational force; (2) the electromagnetic force 
(we shall see later that electric and magnetic forces are intimately related); (3) the 
strong nuclear force; and (4) the weak nuclear force. In this Chapter, we discussed 
the gravitational force in detail. The nature of the electromagnetic force will be 
discussed in detail in Chapters 21 to 31. The strong and weak nuclear forces 
operate at the level of the atomic nucleus; although they manifest themselves in 
such phenomena as radioactivity and nuclear energy (Chapters 41 to 43), they are 
much less obvious in our daily lives.

Physicists have been working on theories that would unify these four forces—that 
is, to consider some or all of these forces as different manifestations of the same basic 
force. So far, the electromagnetic and weak nuclear forces have been theoretically 
united to form electroweak theory, in which the electromagnetic and weak forces are 
seen as two different manifestations of a single electroweak force. Attempts to further 
unify the forces, such as in grand unified theories (GUT), are hot research topics today.

But where do everyday forces fit into this scheme? Ordinary forces, other than 
gravity, such as pushes, pulls, and other contact forces like the normal force and 
friction, are today considered to be due to the electromagnetic force acting at the 
atomic level. For example, the force your fingers exert on a pencil is the result of 
electrical repulsion between the outer electrons of the atoms of your finger and 
those of the pencil.

*6-8 Principle of Equivalence; 
Curvature of Space; Black Holes

We have dealt with two aspects of mass. In Chapter 4, we defined mass as a 
measure of the inertia of a body. Newton’s second law relates the force acting on a 
body to its acceleration and its inertial mass, as we call it. We might say that 
inertial mass represents a resistance to any force. In this Chapter we have dealt 
with mass as a property related to the gravitational force—that is, mass as a 
quantity that determines the strength of the gravitational force between two 
bodies. This we call the gravitational mass.

It is not obvious that the inertial mass of a body should be equal to its gravitational 
mass. The force of gravity might have depended on a different property of a body, just 
as the electrical force depends on a property called electric charge. Newton’s and 
Cavendish’s experiments indicated that the two types of mass are equal for a body, 
and modern experiments confirm it to a precision of about 1 part in 1012.

Albert Einstein (1879-1955) called this equivalence between gravitational and 
inertial masses the principle of equivalence, and he used it as a foundation for his 
general theory o f relativity (c. 1916). The principle of equivalence can be stated in 
another way: there is no experiment observers can perform to distinguish if an 
acceleration arises because of a gravitational force or because their reference 
frame is accelerating. If you were far out in space and an apple fell to the floor of 
your spacecraft, you might assume a gravitational force was acting on the apple. 
But it would also be possible that the apple fell because your spacecraft accelerated 
upward (relative to an inertial system). The effects would be indistinguishable, 
according to the principle of equivalence, because the apple’s inertial and 
gravitational masses—that determine how a body “reacts” to outside influences—are 
indistinguishable.
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FIGURE 6-21 (a) Light beam goes 
straight across an elevator that is not 
accelerating, (b) The light beam bends 
(exaggerated) in an elevator accelerating 
in an upward direction.

FIGURE 6-22 (a) Three stars in 
the sky. (b) If the light from one of 
these stars passes very near the Sun, 
whose gravity bends the light beam, 
the star will appear higher than it 
actually is.

Earth (a)

Apparent 
position 
of star

Earth (b)

(b)

The principle of equivalence can be used to show that light ought to be 
deflected due to the gravitational force of a massive object. Let us consider a thought 
experiment in an elevator in free space where virtually no gravity acts. If a light 
beam enters a hole in the side of the elevator, the beam travels straight across the 
elevator and makes a spot on the opposite side if the elevator is at rest (Fig. 6-21 a). 
If the elevator is accelerating upward as in Fig. 6-21b, the light beam still travels 
straight as observed in the original reference frame at rest. In the upwardly 
accelerating elevator, however, the beam is observed to curve downward. Why? 
Because during the time the light travels from one side of the elevator to the 
other, the elevator is moving upward at ever-increasing speed.

According to the equivalence principle, an upwardly accelerating reference frame 
is equivalent to a downward gravitational field. Hence, we can picture the curved light 
path in Fig. 6-21b as being the effect of a gravitational field. Thus we expect gravity 
to exert a force on a beam of light and to bend it out of a straight-line path!

Einstein’s general theory of relativity predicts that light should be affected by 
gravity. It was calculated that light from a distant star would be deflected by 1.75" 
of arc (tiny but detectable) as it passed near the Sun, as shown in Fig. 6-22. Such a 
deflection was measured and confirmed in 1919 during an eclipse of the Sun. (The 
eclipse reduced the brightness of the Sun so that the stars in line with its edge at 
that moment would be visible.)

That a light beam can follow a curved path suggests that space itself is curved 
and that it is gravitational mass that causes the curvature. The curvature is greatest 
near very massive objects. To visualize this curvature of space, we might think of 
space as being like a thin rubber sheet; if a heavy weight is hung from it, it curves 
as shown in Fig. 6-23. The weight corresponds to a huge mass that causes space 
(space itself!) to curve.

The extreme curvature of space-time shown in Fig. 6-23 could be produced by 
a black hole, a star that becomes so dense and massive that gravity would be so strong 
that even light could not escape it. Light would be pulled back in by the force of 
gravity. Since no light could escape from such a massive star, we could not see it—it 
would be black. An object might pass by it and be deflected by its gravitational field, 
but if the object came too close it would be swallowed up, never to escape. Hence the 
name black holes. Experimentally there is good evidence for their existence. 
One likely possibility is a giant black hole at the center of our Galaxy and probably 
at the center of other galaxies.

FIGURE 6-23 Rubber-sheet 
analogy for space (technically 
space-time) curved by matter.

I
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Summary
Newton’s law of universal gravitation states that every particle 
in the universe attracts every other particle with a force propor­
tional to the product of their masses and inversely proportional 
to the square of the distance between them:

r2

The direction of this force is along the line joining the two parti­
cles, and is always attractive. It is this gravitational force that 
keeps the Moon revolving around the Earth and the planets 
revolving around the Sun.

The total gravitational force on any object is the vector sum 
of the forces exerted by all other objects; frequently the effects 
of all but one or two objects can be ignored.

Satellites revolving around the Earth are acted on by 
gravity, but “stay up” because of their high tangential speed.

Questions
1. Does an apple exert a gravitational force on the Earth? If 

so, how large a force? Consider an apple (a) attached to a 
tree and (b) falling.

2. The Sun’s gravitational pull on the Earth is much larger 
than the Moon’s. Yet the Moon’s is mainly responsible for 
the tides. Explain. [Hint: Consider the difference in gravita­
tional pull from one side of the Earth to the other.]

3. Will an object weigh more at the equator or at the poles? 
What two effects are at work? Do they oppose each other?

4. Why is more fuel required for a spacecraft to travel from 
the Earth to the Moon than it does to return from the Moon 
to the Earth?

5. The gravitational force on the Moon due to the Earth is only 
about half the force on the Moon due to the Sun (see 
Example 6-3). Why isn’t the Moon pulled away from the Earth?

6. How did the scientists of Newton’s era determine the 
distance from the Earth to the Moon, despite not knowing 
about spaceflight or the speed of light? [Hint: Think about 
why two eyes are useful for depth perception.]

7. If it were possible to drill a hole all the way through the 
Earth along a diameter, then it would be possible to drop a 
ball through the hole. When the ball was right at the center 
of the Earth, what would be the total gravitational force 
exerted on it by the Earth?

8. Why is it not possible to put a satellite in geosynchronous 
orbit above the North Pole?

9. Which pulls harder gravitationally, the Earth on the Moon, 
or the Moon on the Earth? Which accelerates more?

10. Would it require less speed to launch a satellite (a) toward 
the east or (b) toward the west? Consider the Earth’s rota­
tion direction.

11. An antenna loosens and becomes detached from a satellite in a 
circular orbit around the Earth. Describe the antenna’s motion 
subsequently. If it will land on the Earth, describe where; if not, 
describe how it could be made to land on the Earth.

12. Describe how careful measurements of the variation in g in 
the vicinity of an ore deposit might be used to estimate the 
amount of ore present.

Newton’s three laws of motion, plus his law of universal 
gravitation, constituted a wide-ranging theory of the universe. 
With them, motion of objects on Earth and in the heavens could 
be accurately described. And they provided a theoretical base 
for Kepler’s laws of planetary motion.

[*According to the field concept, a gravitational field 
surrounds every object that has mass, and it permeates all of 
space. The gravitational field at any point in space is the vector 
sum of the fields due to all massive objects and can be defined as

where F is the force acting on a small “test” mass m  placed at 
that point.]

The four fundamental forces in nature are (1) the gravita­
tional force, (2) electromagnetic force, (3) strong nuclear force, 
and (4) weak nuclear force. The first two fundamental forces are 
responsible for nearly all “everyday” forces.

13. The Sun is below us at midnight, nearly in line with the 
Earth’s center. Are we then heavier at midnight, due to the 
Sun’s gravitational force on us, than we are at noon? Explain.

14. When will your apparent weight be the greatest, as 
measured by a scale in a moving elevator: when the elevator
(a) accelerates downward, (b) accelerates upward, (c) is in 
free fall, or (d) moves upward at constant speed? In which 
case would your apparent weight be the least? When would 
it be the same as when you are on the ground?

15. If the Earth’s mass were double what it actually is, in what 
ways would the Moon’s orbit be different?

16. The source of the Mississippi River is closer to the center of 
the Earth than is its outlet in Louisiana (since the Earth is 
fatter at the equator than at the poles). Explain how the 
Mississippi can flow “uphill.”

17. People sometimes ask, “What keeps a satellite up in its orbit 
around the Earth?” How would you respond?

18. Explain how a runner experiences “free fall” or “apparent 
weightlessness” between steps.

19. If you were in a satellite orbiting the Earth, how might you cope 
with walking, drinking, or putting a pair of scissors on a table?

20. Is the centripetal acceleration of Mars in its orbit around 
the Sun larger or smaller than the centripetal acceleration 
of the Earth?

21. The mass of the planet Pluto was not known until it was 
discovered to have a moon. Explain how this enabled an 
estimate of Pluto’s mass.

22. The Earth moves faster in its orbit around the Sun in 
January than in July. Is the Earth closer to the Sun in 
January, or in July? Explain. [Note: This is not much of a 
factor in producing the seasons—the main factor is the tilt 
of the Earth’s axis relative to the plane of its orbit.]

23. Kepler’s laws tell us that a planet moves faster when it is 
closer to the Sun than when it is farther from the Sun. What 
causes this change in speed of the planet?

*24. Does your body directly sense a gravitational field? 
(Compare to what you would feel in free fall.)

*25. Discuss the conceptual differences between g as accelera­
tion due to gravity and g as gravitational field.
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Problems
6-1 to 6-3 Law of Universal Gravitation
1. (I) Calculate the force of Earth’s gravity on a spacecraft 

2.00 Earth radii above the Earth’s surface if its mass is 1480 kg.
2. (I) Calculate the acceleration due to gravity on the Moon. 

The Moon’s radius is 1.74 X 106m and its mass is 
7.35 X 1022 kg.

3. (I) A hypothetical planet has a radius 2.3 times that of 
Earth, but has the same mass. What is the acceleration due 
to gravity near its surface?

4. (I) A hypothetical planet has a mass 1.80 times that of 
Earth, but the same radius. What is g near its surface?

5. (I) If you doubled the mass and tripled the radius of a 
planet, by what factor would g at its surface change?

6. (II) Calculate the effective value of g, the acceleration of gravity, 
at (a) 6400 m, and (b) 6400 km, above the Earth’s surface.

7. (II) You are explaining to friends why astronauts feel 
weightless orbiting in the space shuttle, and they respond that 
they thought gravity was just a lot weaker up there. Convince 
them and yourself that it isn’t so by calculating how much 
weaker gravity is 300 km above the Earth’s surface.

8. (II) Every few hundred years most of the planets line up on 
the same side of the Sun. Calculate the total force on the Earth 
due to Venus, Jupiter, and Saturn, assuming all four planets 
are in a line, Fig. 6-24. The masses are Mv = 0.815 ME, 
Mj = 318 Me , MSat = 95.1 ME, and the mean distances 
of the four planets from the Sun are 108, 150, 778, and 
1430 million km. What fraction of the Sun’s force on the 
Earth is this?

o

9.

10.

11.

FIGURE 6-24  Problem 8 (not to scale).

(II) Four 8.5-kg spheres are located at the corners of a square 
of side 0.80 m. Calculate the magnitude and direction of the 
gravitational force exerted on one sphere by the other three. 
(II) Two objects attract each other gravitationally with a 
force of 2.5 X 10-10N when they are 0.25 m apart. Their 
total mass is 4.00 kg. Find their individual masses.
(II) Four masses are arranged as shown in Fig. 6-25. 
Determine the x  and y  components of the gravitational 
force on the mass at 
the origin (m). Write ^ 
the force in vector 
notation (i, j).

0̂

FIGURE 6-25
Problem 11.
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12. (II) Estimate the acceleration due to gravity at the surface 
of Europa (one of the moons of Jupiter) given that its mass 
is 4.9 X 1022 kg and making the assumption that its density 
is the same as Earth’s.

13.

14.

15.

16.

17.

18.

(II) Suppose the mass of the Earth were doubled, but it 
kept the same density and spherical shape. How would the 
weight of objects at the Earth’s surface change?
(II) Given that the acceleration of gravity at the surface of 
Mars is 0.38 of what it is on Earth, and that Mars’ radius is 
3400 km, determine the mass of Mars.
(II) At what distance from the Earth will a spacecraft trav­
eling directly from the Earth to the Moon experience zero 
net force because the Earth and Moon pull with equal and 
opposite forces?
(II) Determine the mass of the Sun using the known value 
for the period of the Earth and its distance from the Sun. 
[Hint: The force on the Earth due to the Sun is related to 
the centripetal acceleration of the Earth.] Compare your 
answer to that obtained using Kepler’s laws, Example 6-9. 
(II) Two identical point masses, each of mass M, always 
remain separated by a distance of 2R. A third mass m  is then 
placed a distance x  along the perpendicular bisector of the 
original two masses, as shown in Fig. 6-26. Show that the 
gravitational force on the third 
mass is directed inward along 
the perpendicular bisector and 
has a magnitude of 

IG M m x

j Q M

R

F =
(x2 + R 2) 2

R

f  I - '  
I

m
o

±(j)MFIGURE 6-26
Problem 17.

(II) A mass M  is ring shaped with radius r. A small mass m  
is placed at a distance x  along the ring’s axis as shown in 
Fig. 6-27. Show that the gravitational force on the mass m  due 
to the ring is directed inward along the axis and has magnitude

GM mx
F  =

{x2 + r2)
[Hint: Think of the ring as made up 
of many small point masses dM ; sum 
over the forces due to each dM, and 
use symmetry.]

FIGURE 6-27
Problem 18.

19. (Ill) (a) Use the binomial expansion 

(1 + x )n = 1 + nx + n(n ~  X) 2 .----- r------x L +

to show that the value of g is altered by approximately 
Ar

Ag «  -2 g  -
r E

at a height Ar above the Earth’s surface, where rE is the 
radius of the Earth, as long as Ar «  rE. (b) What is the 
meaning of the minus sign in this relation? (c) Use this 
result to compute the effective value of g at 125 km above 
the Earth’s surface. Compare to a direct use of Eq. 6-1.

20. (Ill) The center of a 1.00 km diameter spherical pocket of oil 
is 1.00 km beneath the Earth’s surface. Estimate by what 
percentage g directly above the pocket of oil would differ 
from the expected value of g for a uniform Earth? Assume 
the density of oil is 8.0 X 102 kg/m3.
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21. (Ill) Determine the magnitude and direction of the effec­
tive value of g at a latitude of 45° on the Earth. Assume the 
Earth is a rotating sphere.

*22. (Ill) It can be shown (Appendix D) that for a uniform sphere 
the force of gravity at a point inside the sphere depends only 
on the mass closer to the center than that point. The net force 
of gravity due to points outside the radius of the point 
cancels. How far would you have to drill into the Earth, to 
reach a point where your weight is reduced by 5.0%? 
Approximate the Earth as a uniform sphere.

6-4  Satellites and Weightlessness
23. (I) The space shuttle releases a satellite into a circular orbit 

680 km above the Earth. How fast must the shuttle be 
moving (relative to Earth’s center) when the release occurs?

24. (I) Calculate the speed of a satellite moving in a stable 
circular orbit about the Earth at a height of 5800 km.

25. (II) You know your mass is 65 kg, but when you stand on a 
bathroom scale in an elevator, it says your mass is 76 kg. What 
is the acceleration of the elevator, and in which direction?

26. (II) A 13.0-kg monkey hangs from a cord suspended from the 
ceiling of an elevator. The cord can withstand a tension of 
185 N and breaks as the elevator accelerates. What was the 
elevator’s minimum acceleration (magnitude and direction)?

27. (II) Calculate the period of a satellite orbiting the Moon, 
120 km above the Moon’s surface. Ignore effects of the 
Earth. The radius of the Moon is 1740 km.

28. (II) Two satellites orbit Earth at altitudes of 5000 km and
15,000 km. Which satellite is faster, and by what factor?

29. (II) What will a spring scale read for the weight of a 53-kg 
woman in an elevator that moves (a) upward with constant 
speed 5.0 m/s, (b) downward with constant speed 5.0 m/s,
(c) upward with acceleration 0.33 g, (d) downward with 
acceleration 0.33 g, and (e) in free fall?

30. (II) Determine the time it takes for a satellite to orbit the 
Earth in a circular “near-Earth” orbit. A “near-Earth” orbit 
is at a height above the surface of the Earth that is very small 
compared to the radius of the Earth. [Hint. You may take the 
acceleration due to gravity as essentially the same as that on the 
surface.] Does your result depend on the mass of the satellite?

31. (II) What is the apparent weight of a 75-kg astronaut 
2500 km from the center of the Earth’s Moon in a space 
vehicle (a) moving at constant velocity and (b) accelerating 
toward the Moon at 2.3 m /s2? State “direction” in each case.

32. (II) A Ferris wheel 22.0 m in diameter rotates once every
12.5 s (see Fig. 5-19). What is the ratio of a person’s apparent 
weight to her real weight (a) at the top, and (b) at the bottom?

33. (II) Two equal-mass stars maintain a constant distance apart 
of 8.0 X 1011 m and rotate about a point midway between 
them at a rate of one revolution every 12.6 yr. (a) Why don’t 
the two stars crash into one another due to the gravitational 
force between them? (b) What must be the mass of each star?

34. (Ill) (a) Show that if a satellite orbits very near the surface of a 
planet with period T, the density (= mass per unit volume) of 
the planet is p = m /V  = 3tt/G T2. (b) Estimate the density 
of the Earth, given that a satellite near the surface orbits with a 
period of 85 min. Approximate the Earth as a uniform sphere.

35. (Ill) Three bodies of identical mass M  form the vertices of 
an equilateral triangle of side I and rotate in circular orbits 
about the center of the triangle. They are held in place by 
their mutual gravitation. What is the speed of each?

36. (Ill) An inclined plane, fixed to the inside of an elevator, 
makes a 32° angle with the floor. A mass m  slides on the 
plane without friction. What is its acceleration relative to 
the plane if the elevator (a) accelerates upward at 0.50 g,
(b) accelerates downward at 0.50 g, (c) falls freely, and 
(<d) moves upward at constant speed?

6-5 Kepler's Laws
37. (I) Use Kepler’s laws and the period of the Moon (27.4 d) to 

determine the period of an artificial satellite orbiting very 
near the Earth’s surface.

38. (I) Determine the mass of the Earth from the known period 
and distance of the Moon.

39. (I) Neptune is an average distance of 4.5 X 109 km from the 
Sun. Estimate the length of the Neptunian year using the fact 
that the Earth is 1.50 X 108 km from the Sun on the average.

40. (II) Planet A and planet B are in circular orbits around a 
distant star. Planet A is 9.0 times farther from the star than 
is planet B. What is the ratio of their speeds va / vb ?

41. (II) Our Sun rotates about the center of our Galaxy 
m G ~  4 X 1041 kg) at a distance of about 3 X 104 light-years
1 ly = (3.00 X 108 m/s) • (3.16 X 107s/yr) • (l.OO yr)]. What is the

period of the Sun’s orbital motion about the center of the Galaxy?
42. (II) Table 6-3 gives the mean distance, period, and mass for 

the four largest moons of Jupiter (those discovered by 
Galileo in 1609). (a) Determine the mass of Jupiter using the 
data for Io. (b) Determine the mass of Jupiter using data for 
each of the other three moons. Are the results consistent?

TABLE 6-3 Principal Moons of Jupiter
(Problems 42 ,43 , and 47)

Period Mean distance
Moon Mass (kg) (Earth days) from Jupiter (km)

Io 8.9 X 1022 1.77 422 X 103
Europa 4.9 X 1022 3.55 671 X 103
Ganymede 15 X 1022 7.16 1070 X 103
Callisto 11 X 1022 16.7 1883 X 103

43. (II) Determine the mean distance from Jupiter for each of 
Jupiter’s moons, using Kepler’s third law. Use the distance 
of Io and the periods given in Table 6-3. Compare your 
results to the values in the Table.

44. (II) The asteroid belt between Mars and Jupiter consists of 
many fragments (which some space scientists think came 
from a planet that once orbited the Sun but was destroyed).
(a) If the mean orbital radius of the asteroid belt (where the 
planet would have been) is about three times farther from 
the Sun than the Earth is, how long would it have taken this 
hypothetical planet to orbit the Sun? (b) Can we use these 
data to deduce the mass of this planet?

45. (Ill) The comet Hale-Bopp has a period of 2400 years.
(a) What is its mean distance from the Sun? (b) At its 
closest approach, the comet is about 1.0 AU from the Sun 
(1 AU = distance from Earth to the Sun). What is the 
farthest distance? (c) What is the ratio of the speed at the 
closest point to the speed at the farthest point?

46. (Ill) (a) Use Kepler’s second law to show that the ratio of the 
speeds of a planet at its nearest and farthest points from the 
Sun is equal to the inverse ratio of the near and far distances: 
v^/vp = dF/d N. (b) Given that the Earth’s distance from the 
Sun varies from 1.47 to 1.52 X 1011 m, determine the minimum 
and maximum velocities of the Earth in its orbit around the Sun.
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47. (Ill) The orbital periods T  and mean orbital distances r 
for Jupiter’s four largest moons are given in Table 6-3, on the 
previous page, (a) Starting with Kepler’s third law in the form

\Gntj J
where mj is the mass of Jupiter, show that this relation 
implies that a plot of log(T) vs. log(r) will yield a straight 
line. Explain what Kepler’s third law predicts about the 
slope and ^-intercept of this straight-line plot. (b) Using the 
data for Jupiter’s four moons, plot log(T) vs. log(r) and 
show that you get a straight line. Determine the slope of 
this plot and compare it to the value you expect if the data are 
consistent with Kepler’s third law. Determine the ^-intercept 
of the plot and use it to compute the mass of Jupiter.

| General Problems___________

*6-6  Gravitational Field
* 48. (II) What is the magnitude and direction of the gravitational

field midway between the Earth and Moon? Ignore effects 
of the Sun.

* 49. (II) (a) What is the gravitational field at the surface of the
Earth due to the Sun? (b) Will this affect your weight 
significantly?

* 50. (Ill) Two identical particles, each of mass m, are located on
the x  axis at x = +x0 and x  = —x0. (a) Determine a 
formula for the gravitational field due to these two particles 
for points on the y axis; that is, write g as a function of y, m, 
jc0 , and so on. (b) At what point (or points) on the y  axis is 
the magnitude of g a maximum value, and what is its value 
there? [Hint Take the derivative dg/dy.]

51. How far above the Earth’s surface will the acceleration of 
gravity be half what it is at the surface?

52. A t the surface of a certain planet, the gravitational accelera­
tion g has a magnitude of 12.0 m /s2. A 13.0-kg brass ball is 
transported to this planet. What is (a) the mass of the brass 
ball on the Earth and on the planet, and (b) the weight of 
the brass ball on the Earth and on the planet?

53. A certain white dwarf star was once an average star like our 
Sun. But now it is in the last stage of its evolution and is the 
size of our Moon but has the mass of our Sun. {a) Estimate 
gravity on the surface on this star. (b) How much would a 65-kg 
person weigh on this star? (c) What would be the speed of a 
baseball dropped from a height of 1.0 m when it hit the surface?

54. What is the distance from the Earth’s center to a point out­
side the Earth where the gravitational acceleration due to 
the Earth is ^  of its value at the Earth’s surface?

55. The rings of Saturn are composed of chunks of ice that orbit 
the planet. The inner radius of the rings is 73,000 km, while 
the outer radius is 170,000 km. Find the period of an 
orbiting chunk of ice at the inner radius and the period of a 
chunk at the outer radius. Compare your numbers with 
Saturn’s mean rotation period of 10 hours and 39 minutes. 
The mass of Saturn is 5.7 X 1026 kg.

56. During an Apollo lunar landing mission, the command 
module continued to orbit the Moon at an altitude of about 
100 km. How long did it take to go around the Moon once?

57. Hailey’s comet orbits the Sun roughly once every 76 years. It 
comes very close to the surface of the Sun on its closest 
approach (Fig. 6-28). Estimate the greatest distance of the 
comet from the Sun. Is it still “in” the
solar system? What planet’s orbit is T — —;— ^ -----^
nearest when it is out there? ey s comet ^Sun /

FIGURE 6-28
Problem 57.

58. The Navstar Global Positioning System (GPS) utilizes a group 
of 24 satellites orbiting the Earth. Using “triangulation” and 
signals transmitted by these satellites, the position of a receiver 
on the Earth can be determined to within an accuracy of a few 
centimeters. The satellite orbits are distributed evenly around 
the Earth, with four satellites in each of six orbits, allowing 
continuous navigational “fixes.” The satellites orbit at an alti­
tude of approximately 11,000 nautical miles [1 nautical mile = 
1.852 km = 6076 ft], (a) Determine the speed of each satellite.
(b) Determine the period of each satellite.

59. Jupiter is about 320 times as massive as the Earth. Thus, 
it has been claimed that a person would be crushed by 
the force of gravity on a planet the size of Jupiter since 
people can’t survive more than a few g’s. Calculate the 
number of g’s a person would experience at the equator 
of such a planet. Use the following data for Jupiter: 
mass = 1.9 X 1027kg, equatorial radius = 7.1 X 104km, 
rotation period = 9 hr 55 min. Take the centripetal accelera­
tion into account.

60. The Sun rotates about the center of the Milky Way 
Galaxy (Fig. 6-29) at a distance of about 30,000 light- 
years from the center (l ly = 9.5 X 1015 m). If it takes 
about 200 million years to make one rotation, estimate 
the mass of our Galaxy. Assume that the mass distribu­
tion of our Galaxy is concentrated mostly in a central 
uniform sphere. If all the stars had about the mass of our 
Sun (2 X 1030 kg), how many stars would there be in our 
Galaxy?

Sun

h------- 30,000 ly-------- H

FIGURE 6-29 Edge-on view of our galaxy. Problem 60.

61. Astronomers have observed an otherwise normal star, 
called S2, closely orbiting an extremely massive but small 
object at the center of the Milky Way Galaxy called SgrA. 
S2 moves in an elliptical orbit around SgrA with a period of
15.2 yr and an eccentricity e = 0.87 (Fig. 6-16). In 2002, S2 
reached its closest approach to SgrA, a distance of only 
123 AU (1AU = 1.50 X 10n m is the mean Earth-Sun 
distance). Determine the mass M  of SgrA, the massive 
compact object (believed to be a supermassive black hole) 
at the center of our Galaxy. State M  in kg and in terms of the 
mass of our Sun.

62. A satellite of mass 5500 kg orbits the Earth and has a period 
of 6200 s. Determine (a) the radius of its circular orbit,
(b) the magnitude of the Earth’s gravitational force on the 
satellite, and (c) the altitude of the satellite.

160  CHAPTER 6 Gravitation and Newton's Synthesis



63. Show that the rate of change of your weight is
m Em

—2G —^ — v 
r3

if you are traveling directly away from Earth at constant 
speed v. Your mass is m, and r is your distance from the 
center of the Earth at any moment.

64. Astronomers using the Hubble Space Telescope deduced the 
presence of an extremely massive core in the distant galaxy 
M87, so dense that it could be a black hole (from which no 
light escapes). They did this by measuring the speed of gas 
clouds orbiting the core to be 780km/s at a distance of 
60 light-years (5.7 X 1017 m) from the core. Deduce the mass 
of the core, and compare it to the mass of our Sun.

65. Suppose all the mass of the Earth were compacted into a small 
spherical ball. What radius must the sphere have so that the 
acceleration due to gravity at the Earth’s new surface was equal 
to the acceleration due to gravity at the surface of the Sun?

66. A plumb bob (a mass m  hanging on a string) is deflected from 
the vertical by an angle 6 due to a massive mountain nearby 
(Fig. 6-30). (a) Find an approximate formula for 6 in terms of 
the mass of the mountain, mM, the distance to its center, Dm , 
and the radius and mass of the Earth, (b) Make a rough estimate 
of the mass of Mt. Everest, assuming it has the shape of a cone 
4000 m high and base of diameter 4000 m. Assume its mass 
per unit volume is 3000 kg per m3. (c) Estimate the angle 0 of 
the plumb bob if it is 5 km from the center of Mt. Everest.

r
£  i i*ii

ii
•

FIGURE 6-30  Problem 66.
67. A geologist searching for oil finds that the gravity at a 

certain location is 2 parts in 107 smaller than average. 
Assume that a deposit of oil is located 2000 m directly 
below. Estimate the size of the deposit, assumed spherical. 
Take the density (mass per unit volume) of rock to be 
3000 kg/m3 and that of oil to be 800 kg/m3.

68. You are an astronaut in the space shuttle pursuing a satellite 
in need of repair. You are in a circular orbit of the same 
radius as the satellite (400 km above the Earth), but 25 km 
behind it. (a) How long will it take to overtake the satellite if 
you reduce your orbital radius by 1.0 km? (b) By how much 
must you reduce your orbital radius to catch up in 7.0 h?

69. A science-fiction tale describes an artificial “planet” in the 
form of a band completely encircling a sun (Fig. 6-31). The 
inhabitants live on the inside surface (where it is always 
noon). Imagine that this sun is exactly like our own, that the 
distance to the band is the same as the Earth-Sun distance 
(to make the climate temperate), and that the ring rotates 
quickly enough to produce an apparent gravity of g as on 
Earth. What will be
the period of revo­
lution, this planet’s 
year, in Earth days?

Sun

70. How long would a day be if the Earth were rotating so fast 
that objects at the equator were apparently weightless?

71. An asteroid of mass m  is in a circular orbit of radius r 
around the Sun with a speed v. It has an impact with 
another asteroid of mass M  and is kicked into a new circular 
orbit with a speed of 1.5 v. What is the radius of the new 
orbit in terms of r?

72. Newton had the data listed in Table 6-4, plus the relative 
sizes of these objects: in terms of the Sun’s radius R, the 
radii of Jupiter and Earth were 0.0997R  and 0.0109i?. 
Newton used this information to determine that the 
average density p (=  mass/volume) of Jupiter is slightly 
less than that of the Sun, while the average density of 
the Earth is four times that of the Sun. Thus, without leaving 
his home planet, Newton was able to predict that the 
composition of the Sun and Jupiter is markedly different 
than that of Earth. Reproduce Newton’s calculation 
and find his values for the ratios pj/psun and pe/psuii 
(the modern values for these ratios are 0.93 and 3.91, 
respectively).

TABLE 6-4 Problem 72

Orbital Radius, R  
(in AU =

1.50 X 1011 m)
Orbital Period, T  

(Earth days)

Venus about Sun 0.724 224.70
Callisto about Jupiter 0.01253 16.69
Moon about Earth 0.003069 27.32

73. A satellite circles a spherical planet of unknown mass in a 
circular orbit of radius 2.0 X 107m. The magnitude of the 
gravitational force exerted on the satellite by the planet is 
120 N. (a) What would be the magnitude of the gravitational 
force exerted on the satellite by the planet if the radius of 
the orbit were increased to 3.0 X 107m? (b) If the satellite 
circles the planet once every 2.0 h in the larger orbit, what is 
the mass of the planet?

74. A uniform sphere has mass M  and radius r. A spherical 
cavity (no mass) of radius r /2 is then carved within this 
sphere as shown in Fig. 6-32 (the cavity’s surface passes 
through the sphere’s center and just touches the sphere’s 
outer surface). The centers of the original sphere and the 
cavity lie on a straight line, which defines the x  axis. 
With what gravitational force will the hollowed-out sphere 
attract a point mass m  which lies on the x  axis a distance d 
from the sphere’s center? [Hint. Subtract the effect of 
the “small” sphere (the cavity) from that of the larger entire 
sphere.]

FIGURE 6-31
Problem 69. FIGURE 6-32 Problem 74.
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75. The gravitational force at different places on Earth due to 
the Sun and the Moon depends on each point’s distance 
from the Sun or Moon, and this variation is what causes the 
tides. Use the values inside the front cover of this book for 
the Earth-Moon distance REM, the Earth-Sun distance RES, 
the Moon’s mass Mm , the Sun’s mass, Ms , and the Earth’s 
radius RE. (a) First consider two small pieces of the Earth, 
each of mass ra, one on the side of the Earth nearest the Moon, 
the other on the side farthest from the Moon. Show that the 
ratio of the Moon’s gravitational forces on these two masses is

fiiear \
Ffar J

= 1.0687.
M

(b) Next consider two small pieces of the Earth, each of 
mass ra, one on the nearest point of Earth to the Sun, the 
other at the farthest point from the Sun. Show that 
the ratio of the Sun’s gravitational forces on these two 
masses is

= 1.000171.
Ft:ar /S

(c) Show that the ratio of the Sun’s average gravitational 
force on the Earth compared to that of the Moon’s is

9 )  = m-^M/  avg

Note that the Moon’s smaller force varies much more 
across the Earth’s diameter than the Sun’s larger force.
(d) Estimate the resulting “force difference” (the cause of 
the tides)

AF FneaT FfaT Ffs ( Fnear _
rV Ffar J F fa r

- 1

for the Moon and for the Sun. Show that the ratio of the 
tide-causing force differences due to the Moon compared to 
the Sun is

A F,M
A Fe

2.3.

Thus the Moon’s influence on tide production is over two 
times as great as the Sun’s.

* 76. A particle is released at a height rE (radius of Earth) above
the Earth’s surface. Determine its velocity when it hits the 
Earth. Ignore air resistance. [Hint: Use Newton’s second law, 
the law of universal gravitation, the chain rule, and integrate.]

77. Estimate the value of the gravitational constant G in 
Newton’s law of universal gravitation using the following 
data: the acceleration due to gravity at the Earth’s surface is 
about 10 m /s2; the Earth has a circumference of about
40 X 106m; rocks found on the Earth’s surface typically 
have densities of about 3000 kg/m3 and assume this density 
is constant throughout (even though you suspect it is not true).

78. Between the orbits of Mars and Jupiter, several thousand 
small objects called asteroids move in nearly circular orbits 
around the Sun. Consider an asteroid that is spherically 
shaped with radius r and density 2700 kg/m3, (a) You find 
yourself on the surface of this asteroid and throw a baseball at 
a speed of 22 m /s (about 50 mi/h). If the baseball is to travel 
around the asteroid in a circular orbit, what is the largest 
radius asteroid on which you are capable of accomplishing 
this feat? (b) After you throw the baseball, you turn around 
and face the opposite direction and catch the baseball. How 
much time T  elapses between your throw and your catch?

* Numerical/Computer
*79. (II) The accompanying table shows the data for the mean 

distances of planets (except Pluto) from the Sun in our solar 
system, and their periods of revolution about the Sun.

Planet Mean Distance (AU) Period (Years)

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.524 1.881
Jupiter 5.203 11.88
Saturn 9.539 29.46
Uranus 19.18 84.01
Neptune 30.06 164.8

(a) Graph the square of the periods as a function of the 
cube of the average distances, and find the best-fit straight 
line. (b) If the period of Pluto is 247.7 years, estimate the 
mean distance of Pluto from the Sun from the best-fit line.

Answers to Exercises

A: g would double. D: No; even though they are experiencing weightlessness, the
massive ball would require a large force to throw and to 
decelerate when caught (inertial mass, Newton’s second law). 

C: (b). E: 6.17 yr.
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Force Displacement

This baseball pitcher is about to accelerate the 
baseball to a high velocity by exerting a force on it. H e  

will be doing work on the ball as he exerts the force over a 
displacem ent o f several meters, from behind his head until he  

releases the ball with arm outstretched in front o f him. The 
total work done on the ball will be equal to the kinetic 

energy i^m v2) acquired by the ball, a result known as the 
w ork-energy principle.

Work and Energy

T £
*

CHAPTER-OPENING QUESTION—Guess now!
You push very hard on a heavy desk, trying to move it. You do work on the desk:

(a) Whether or not it moves, as long as you are exerting a force.
(b) Only if it starts moving.
(c) Only if it doesn’t move.
(d) Never—it does work on you.
(e) None of the above.

U ntil now we have been studying the translational motion of an object in 
terms of Newton’s three laws of motion. In that analysis, force has 
played a central role as the quantity determining the motion. In this 
Chapter and the two that follow, we discuss an alternative analysis of 

the translational motion of objects in terms of the quantities energy and 
momentum. The significance of energy and momentum is that they are conserved. 
In quite general circumstances they remain constant. That conserved quantities 
exist gives us not only a deeper insight into the nature of the world but also gives 
us another way to approach solving practical problems.

The conservation laws of energy and momentum are especially valuable in 
dealing with systems of many objects, in which a detailed consideration of the 
forces involved would be difficult or impossible. These laws are applicable to a 
wide range of phenomena, including the atomic and subatomic worlds, where 
Newton’s laws cannot be applied.

This Chapter is devoted to the very important concept of energy and the 
closely related concept of work. These two quantities are scalars and so have no 
direction associated with them, which often makes them easier to work with than 
vector quantities such as acceleration and force.

CONTENTS
7 -1  Work D one by a Constant 

Force

7 -2  Scalar Product of Two 
Vectors

7 -3  Work D one by a Varying 
Force

7 -4  Kinetic Energy and the 
Work-Energy Principle
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FIGURE 7 -1  A  person pulling a 
crate along the floor. The work done 
by the force F is W  =  F d  cos 6, 
where d is the displacement.

FIGURE 7 - 2  The person does no 
work on the bag of groceries since FP 
is perpendicular to the displacement d.

7 -1  Work Done by a Constant Force
The word work has a variety of meanings in everyday language. But in physics, 
work is given a very specific meaning to describe what is accomplished when a 
force acts on an object, and the object moves through a distance. We consider only 
translational motion for now and, unless otherwise explained, objects are assumed 
to be rigid with no complicating internal motion, and can be treated like particles. Then 
the work done on an object by a constant force (constant in both magnitude and 
direction) is defined to be the product o f the magnitude o f the displacement times the 
component o f the force parallel to the displacement. In equation form, we can write

W = F\\ d,
where ^  is the component of the constant force F parallel to the displacement d. 
We can also write

W = Fd cos0, (7-1)
where F is the magnitude of the constant force, d is the magnitude of the displace­
ment of the object, and 6 is the angle between the directions of the force and the 
displacement (Fig. 7-1). The cos 0 factor appears in Eq. 7-1 because F cos 0 (= i*j|) 
is the component of F that is parallel to d. Work is a scalar quantity—it has only 
magnitude, which can be positive or negative.

Let us consider the case in which the motion and the force are in the same 
direction, so 6 = 0 and cos0 = 1; in this case, W = Fd. For example, if you 
push a loaded grocery cart a distance of 50 m by exerting a horizontal force of 
30 N on the cart, you do 30 N X 50 m = 1500 N • m of work on the cart.

As this example shows, in SI units work is measured in newton-meters (N-m). 
A special name is given to this unit, the joule (J): 1 J = 1 N • m.

[In the cgs system, the unit of work is called the erg and is defined as 
1 erg = 1 dyne • cm. In British units, work is measured in foot-pounds. It is easy to 
show that 1 J = 107 erg = 0.7376 ft • lb.]

A force can be exerted on an object and yet do no work. If you hold a 
heavy bag of groceries in your hands at rest, you do no work on it. You do exert a 
force on the bag, but the displacement of the bag is zero, so the work done by 
you on the bag is W = 0. You need both a force and a displacement to do work. 
You also do no work on the bag of groceries if you carry it as you walk horizontally 
across the floor at constant velocity, as shown in Fig. 7-2. No horizontal force is 
required to move the bag at a constant velocity. The person shown in Fig. 7-2 does exert 
an upward force FP on the bag equal to its weight. But this upward force is perpendicular 
to the horizontal displacement of the bag and thus is doing no work. This conclusion 
comes from our definition of work, Eq. 7-1: W = 0, because 6 = 90° and cos 90° = 0.
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Thus, when a particular force is perpendicular to the displacement, no work is done 
by that force. When you start or stop walking, there is a horizontal acceleration and 
you do briefly exert a horizontal force, and thus do work on the bag.

When we deal with work, as with force, it is necessary to specify whether you 
are talking about work done by a specific object or done on a specific object. It is / j \  CAUTI ON 
also important to specify whether the work done is due to one particular force State that work is done 
(and which one), or the total (net) work done by the net force on the object. on or by_ an object

EXAMPLE 7-1 Work done on a crate. A person pulls a 50-kg crate 40 m along 
a horizontal floor by a constant force FP = 100 N, which acts at a 37° angle as 
shown in Fig. 7-3. The floor is smooth and exerts no friction force. Determine (a) the 
work done by each force acting on the crate, and (b) the net work done on the crate.

FIGURE 7-3 Example 7 -1 . 
A  50-kg crate is pulled along a 
smooth floor.

APPROACH We choose our coordinate system so that x can be the vector that 
represents the 40-m displacement (that is, along the x axis). Three forces act on 
the crate, as shown in Fig. 7-3: the force exerted by the person FP; the gravitational 
force exerted by the Earth, mg; and the normal force FN exerted upward by the 
floor. The net force on the crate is the vector sum of these three forces. 
SOLUTION (a) The work done by the gravitational and normal forces is zero, 
since they are perpendicular to the displacement x (0 = 90° in Eq. 7-1):

Wq = mgx cos 90° = 0 
WN = Fn jccos90° = 0.

The work done by FP is

WP = Fp x cos 0 = (100 N) (40 m) cos 37° = 3200 J.

(b) The net work can be calculated in two equivalent ways:
(1) The net work done on an object is the algebraic sum of the work done by 
each force, since work is a scalar:

Wnet = WG + WN + Wp
= 0 + 0 + 3200 J = 3200 J.

(2) The net work can also be calculated by first determining the net force on the 
object and then taking its component along the displacement: (Fnet)x = FPcos0. 
Then the net work is

W n e t =  ( f n e t ) * *  =  ( f P COSe) AC

= (100 N)(cos 37°)(40 m) = 3200 J.

In the vertical (y) direction, there is no displacement and no work done.

EXERCISE A A  box is dragged a distance d across a floor by a force FP which makes an angle 0 
with the horizontal as in Fig. 7 -1  or 7-3 . If the magnitude of FP is held constant but the angle 0 
is increased, the work done by FP (a) remains the same; (b ) increases; (c) decreases; 
(d) first increases, then decreases.

EXERCISE B Return to the Chapter-Opening Question, page 163, and answer it again now. Try 
to explain why you may have answered differently the first time.

L ,
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Work ® ---------------------------------
1. Draw a free-body diagram showing all the forces 

acting on the object you choose to study.
2. Choose an xy coordinate system. If the object is in 

motion, it may be convenient to choose one of the 
coordinate directions as the direction of one of the 
forces, or as the direction of motion. [Thus, for an 
object on an incline, you might choose one coordi­
nate axis to be parallel to the incline.]

3. Apply Newton’s laws to determine any unknown 
forces.

Find the work done by a specific force on the object 
by using W = FdcosO for a constant force. Note 
that the work done is negative when a force tends to 
oppose the displacement.
To find the net work done on the object, either
(a) find the work done by each force and add the 
results algebraically; or (b) find the net force on 
the object, -Fnet, and then use it to find the net work 
done, which for constant net force is:

n̂et — -̂ net̂  cos

FIGURE 7-4 Example 7 -2 .

(c)

P R O B L E M  S O L V I N G
Work done by gravity depends on 

the height o f  the hill and  
not on the angle o f  incline
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EXAMPLE 7 -2 Work on a backpack, (a) Determine the work a hiker must 
do on a 15.0-kg backpack to carry it up a hill of height h = 10.0 m, as shown in 
Fig. 7-4a. Determine also (b) the work done by gravity on the backpack, and
(c) the net work done on the backpack. For simplicity, assume the motion is 
smooth and at constant velocity (i.e., acceleration is zero).
APPROACH We explicitly follow the steps of the Problem Solving Strategy above. 
SOLUTION
1. Draw a free-body diagram. The forces on the backpack are shown in Fig. 7-4b: 

the force of gravity, rag, acting downward; and Fh , the force the hiker must 
exert upward to support the backpack. The acceleration is zero, so horizontal 
forces on the backpack are negligible.

2. Choose a coordinate system. We are interested in the vertical motion of the 
backpack, so we choose the y coordinate as positive vertically upward.

3. Apply Newton’s laws. Newton’s second law applied in the vertical direction to 
the backpack gives

^F y = may 
FH -  mg = 0 

since ay = 0. Hence,
FH = mg = (15.0 kg)(9.80 m/s2) = 147 N.

4. Work done by a specific force, (a) To calculate the work done by the hiker on 
the backpack, we write Eq. 7-1 as

WH = FH(d cos 6), 
and we note from Fig. 7-4a that d cos 0 = h. So the work done by the hiker is 

WH = Fu(d cos 0) = Fn h = mgh
= (147 N)(10.0 m) = 1470 J.

Note that the work done depends only on the change in elevation and not on 
the angle of the hill, 0. The hiker would do the same work to lift the pack 
vertically the same height h.
(b) The work done by gravity on the backpack is (from Eq. 7-1 and Fig. 7-4c) 

WG = FGd cos(180° -  0).
Since cos(180° — 0) = -cos0, we have

WG = FGd(-cosd) = m g (-d  cos 6)
= —mgh
= — (15.0 kg)(9.80 m/s2)(10.0 m) = -1470J. 

NOTE The work done by gravity (which is negative here) doesn’t depend on the 
angle of the incline, only on the vertical height h of the hill. This is because gravity acts 
vertically, so only the vertical component of displacement contributes to work done.
5. Net work done, (c) The net work done on the backpack is Wnet = 0, since the 

net force on the backpack is zero (it is assumed not to accelerate significantly). 
We can also determine the net work done by adding the work done by each force:

Wnet = WG + WH = —1470 J + 1470 J = 0.
NOTE Even though the net work done by all the forces on the backpack is zero, 
the hiker does do work on the backpack equal to 1470 J.



CONCEPTUAL EXAMPLE T T 1  Does the Earth do work on the Moon? The
Moon revolves around the Earth in a nearly circular orbit, with approximately constant 
tangential speed, kept there by the gravitational force exerted by the Earth. Does 
gravity do {a) positive work, (b) negative work, or (c) no work at all on the Moon?

RESPONSE The gravitational force FG on the Moon (Fig. 7-5) acts toward the Earth 
and provides its centripetal force, inward along the radius of the Moon’s orbit. The 
Moon’s displacement at any moment is tangent to the circle, in the direction of its 
velocity, perpendicular to the radius and perpendicular to the force of gravity. 
Hence the angle 0 between the force FG and the instantaneous displacement of 
the Moon is 90°, and the work done by gravity is therefore zero (cos 90° = 0). 
This is why the Moon, as well as artificial satellites, can stay in orbit without 
expenditure of fuel: no work needs to be done against the force of gravity.

7—2  Scalar Product of Two Vectors
Although work is a scalar, it involves the product of two quantities, force and 
displacement, both of which are vectors. Therefore, we now investigate the 
multiplication of vectors, which will be useful throughout the book, and apply it 
to work.

Because vectors have direction as well as magnitude, they cannot be 
multiplied in the same way that scalars are. Instead we must define what the 
operation of vector multiplication means. Among the possible ways to define 
how to multiply vectors, there are three ways that we find useful in physics:
(1) multiplication of a vector by a scalar, which was discussed in Section 3-3;
(2) multiplication of one vector by a second vector to produce a scalar;
(3) multiplication of one vector by a second vector to produce another vector. 
The third type, called the vector product, will be discussed later, in Section 11-2.

We now discuss the second type, called the scalar product, or dot product 
(because a dot is used to indicate the multiplication). If we have two vectors, A 
and B, then their scalar (or dot) product is defined to be

A B  = AB cosd, (7-2)

where A  and B are the magnitudes of the vectors and 0 is the angle (< 180°) 
between them when their tails touch, Fig. 7-6. Since A, B, and cos 0 are scalars, 
then so is the scalar product A • B (read “A dot B”).

This definition, Eq. 7-2, fits perfectly with our definition of the work done by 
a constant force, Eq. 7-1. That is, we can write the work done by a constant force 
as the scalar product of force and displacement:

W = F d  = Fd cos0. (7-3)

Indeed, the definition of scalar product, Eq. 7-2, is so chosen because many physically 
important quantities, such as work (and others we will meet later), can be described 
as the scalar product of two vectors.

An equivalent definition of the scalar product is that it is the product of the 
magnitude of one vector (say B) and the component (or projection) of the other 
vector along the direction of the first (A  cos 0). See Fig. 7-6.

Since A, B, and cos0 are scalars, it doesn’t matter in what order they are 
multiplied. Hence the scalar product is commutative:

A • B = B • A. [commutative property]

It is also easy to show that it is distributive (see Problem 33 for the proof):

A • (B + C) = A -B  + A - C. [distributive property]

FIGURE 7-5 Example 7 -3 .

FIGURE 7-6 The scalar product, or 
dot product, of two vectors A  and B 
is A  • B =  A B  cos 0. The scalar 
product can be interpreted as the 
magnitude of one vector (B  in this 
case) times the projection of the 
other vector, A  cos 0, onto B.

A
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Let us write our vectors A and B in terms of their rectangular components 
using unit vectors (Section 3-5, Eq. 3-5) as

A = A x i + A yj + A z k

B = Bx i + By} + Bz i .

We will take the scalar product, A • B, of these two vectors, remembering that the 
unit vectors, i, j, and k, are perpendicular to each other

i • i = j • j = k • k = 1

i j = i k = j k  = 0.

Thus the scalar product equals

A • B = (Ax i + A y j  + Azk) • (Bx\ + Byj + Bzk)

= A XBX + Ay By + A ZBZ. (7—4)

Equation 7-4 is very useful.
If A is perpendicular to B, then Eq. 7-2 tells us A • B = AB  cos 90° = 0. But 

the converse, given that A • B = 0, can come about in three different ways: 
A = 0, B = 0, or A _L B.

FIGURE 7-7 Example 7-4. Work 
done by a force FP acting at an angle 0 
to the ground is W = FP • d.

Using the dot product. The force shown in Fig. 7-7 has 
magnitude FP = 20 N and makes an angle of 30° to the ground. Calculate the 
work done by this force using Eq. 7-4 when the wagon is dragged 100 m along 
the ground.

APPROACH We choose the x axis horizontal to the right and the y axis vertically 
upward, and write FP and d in terms of unit vectors.
SOLUTION

FP = Fxi + Fy\ = (FP cos 30°) i + (FPsin30°)j = (17N )i + (10N)j,

whereas d = (100 m)i. Then, using Eq. 7-4,

W = FP -d  = (17 N)(100 m) + (10 N)(0) + (0)(0) = 1700 J.

Note that by choosing the x axis along d we simplified the calculation because d 
then has only one component.

7—3 Work Done by a Varying Force
If the force acting on an object is constant, the work done by that force 
can be calculated using Eq. 7-1. In many cases, however, the force varies in 
magnitude or direction during a process. For example, as a rocket moves 
away from Earth, work is done to overcome the force of gravity, which 
varies as the inverse square of the distance from the Earth’s center. Other 
examples are the force exerted by a spring, which increases with the amount of 
stretch, or the work done by a varying force exerted to pull a box or cart up an 
uneven hill.

EXAMPLE 7 -4

168 CHAPTER 7 Work and Energy



FIGURE 7-8 A  particle acted on 
by a variable force, F, moves along 
the path shown from point a to point b.

Figure 7-8 shows the path of an object in the xy plane as it moves from 
point a to point b. The path has been divided into short intervals each of 
length A£x, A£2,. • •, A£7. A force F acts at each point on the path, and is 
indicated at two points as F\ and F5. During each small interval A£, the force is 
approximately constant. For the first interval, the force does work A W  of 
approximately (see Eq. 7-1)

AW  ~ F1ca&01M 1.
In the second interval the work done is approximately F2 cos 02 A£2, and so on. The
total work done in moving the particle the total distance £ 
is the sum of all these terms:

7

W ~ '^ F , cos8l M l. (7-5)

We can examine this graphically by plotting F cos 6 versus the distance £ 
along the path as shown in Fig. 7-9a. The distance £ has been subdivided 
into the same seven intervals (see the vertical dashed lines). The value of 
F cos 9 at the center of each interval is indicated by the horizontal dashed 
lines. Each of the shaded rectangles has an area (Ft cos 0)(A£*), which is a good 
estimate of the work done during the interval. The estimate of the work done along 
the entire path given by Eq. 7-5, equals the sum of the areas of all the rectangles. 
If we subdivide the distance into a greater number of intervals, so that each A£t is 
smaller, the estimate of the work done becomes more accurate (the assumption that F 
is constant over each interval is more accurate). Letting each A£t approach zero (so we 
approach an infinite number of intervals), we obtain an exact result for the work done:

W = lim 27^-cos0;A£j = f F  cos 0 d t  (7-6)A f ^ O  J a
This limit as A£f —> 0 is the integral of (F cos 0 d£) from point a to point b. The 
symbol for the integral, J, is an elongated S to indicate an infinite sum; and A£ has 
been replaced by d£, meaning an infinitesimal distance. [We also discussed this in 
the optional Section 2-9.]

In this limit as A£ approaches zero, the total area of the rectangles (Fig. 7-9a) 
approaches the area between the (F cos 0) curve and the £ axis from a to b as 
shown shaded in Fig. 7-9b. That is, the work done by a variable force in moving 
an object between two points is equal to the area under the (F cos 0) versus (£) curve 
between those two points.

In the limit as A£ approaches zero, the infinitesimal distance d£ equals 
the magnitude of the infinitesimal displacement vector di. The direction of 
the vector di is along the tangent to the path at that point, so 0 is the angle 
between F and di at any point. Thus we can rewrite Eq. 7-6, using dot-product 
notation:

■ d i (7-7)

This is a general definition o f work. In this equation, a and b represent 
two points in space, (xa, ya, za) and (xb, yh, zb). The integral in Eq. 7-7 is called a 
line integral since it is the integral of F cos 0 along the line that represents the path 
of the object. (Equation 7-1 for a constant force is a special case of Eq. 7-7.)

FIGURE 7-9 Work done by a 
force F  is (a) approximately equal to 
the sum of the areas of the 
rectangles, (b) exactly equal to the 
area under the curve of F  cos 0 vs. L

3 0 0 -

a A£j A£2 A£3 A£4 A£5 A£6 A£7 b 
(a) Distance, £
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(a) Unstretched

j - x - l

(c) Compressed

FIGURE 7 -1 0  (a) Spring in normal 
(unstretched) position, (b) Spring is 
stretched by a person exerting a 
force FP to the right (positive 
direction). The spring pulls back 
with a force Fs where Fs =  —kx.
(c) Person compresses the spring 
(x <  0), and the spring pushes back 
with a force Fs =  —kx  where 
Fs >  0 because x <  0.

FIGURE 7 -11  Work done to 
stretch a spring a distance x  equals 
the triangular area under the 
curve F  = kx. The area of a 
triangle is | X  base X altitude, 
so W = \ { x ) { k x )  =  \ k x 2.

F

In rectangular coordinates, any force can be written 
F = Fxi + Fyj  + Fz k 

and the displacement di is
dt = dxi + dyj + dzk.

Then the work done can be written
•*b m  rzb

W =
r*b ryb r z  b

= \ Fx dx + \ Fydy + \ Fz dz. 
Jxa Jva Jz«ly  a

To actually use Eq. 7-6 or 7-7 to calculate the work, there are several options: 
(1) If F cos 0 is known as a function of position, a graph like that of Fig. 7-9b can 
be made and the area determined graphically. (2) Another possibility is to use 
numerical integration (numerical summing), perhaps with the aid of a computer or 
calculator. (3) A third possibility is to use the analytical methods of integral 
calculus, when it is doable. To do so, we must be able to write F as a function of 
position, F(x, y, z), and we must know the path. Let’s look at some specific examples.

Work Done by a Spring Force
Let us determine the work needed to stretch or compress a coiled spring, such as 
that shown in Fig. 7-10. For a person to hold a spring either stretched or 
compressed an amount x from its normal (relaxed) length requires a force FP that 
is directly proportional to x. That is,

FP = kx,
where A: is a constant, called the spring constant (or spring stiffness constant), and is 
a measure of the stiffness of the particular spring. The spring itself exerts a force in 
the opposite direction (Fig. 7 -10b or c):

Fs = -k x .  (7-8)
This force is sometimes called a “restoring force” because the spring exerts 
its force in the direction opposite the displacement (hence the minus sign), 
and thus acts to return the spring to its normal length. Equation 7-8 is known 
as the spring equation or Hooke’s law, and is accurate for springs as long as x is 
not too great (see Section 12-4) and no permanent deformation occurs.

Let us calculate the work a person does to stretch (or compress) a spring 
from its normal (unstretched) length, xa = 0, to an extra length, xb = x. 
We assume the stretching is done slowly, so that the acceleration is essentially 
zero. The force FP is exerted parallel to the axis of the spring, along the x axis, 
so FP and d l are parallel. Hence, since dl = dxi in this case, the work done by 
the person isf

.xb=*I [x f x
[FP(jt)i] • [dxi] = Fp(x)dx = kx dx

J*a=o J°
= \k x 2 = \k x 2.

(As is frequently done, we have used x to represent both the variable of integra­
tion, and the particular value of x at the end of the interval xa = 0 to xb = x.) 
Thus we see that the work needed is proportional to the square of the distance 
stretched (or compressed), x.

This same result can be obtained by computing the area under the graph of F vs. x 
(with cos 6 = 1 in this case) as shown in Fig. 7-11. Since the area is a triangle of 
altitude kx and base x, the work a person does to stretch or compress a spring an 
amount x is

W = \(x){kx) = \k x 2,
which is the same result as before. Because W  oc x2, it takes the same amount of 
work to stretch a spring or compress it the same amount x.

tSee the Table of Integrals, Appendix B.
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EXAMPLE 7-5 Work done on a spring, (a) A person pulls on the spring in 
Fig. 7-10, stretching it 3.0 cm, which requires a maximum force of 75 N. How 
much work does the person do? (b) If, instead, the person compresses the 
spring 3.0 cm, how much work does the person do?

APPROACH The force F = kx  holds at each point, including xmax. Hence Fmax 
occurs at x = %max.
SOLUTION (a) First we need to calculate the spring constant k :

*  = ^  = - Z 5 I L  =  2.5 X 103N /m .
*max 0 .0 3 0  m

Then the work done by the person on the spring is

W = \kx^ax = |(2.5 X 103N/m)(0.030m)2 = 1.1 J.

(b) The force that the person exerts is still FP = kx, though now both x and FP 
are negative (x is positive to the right). The work done is

=
r x = -0 .0 3 0  m rJC=-0.030 m

= FP(x)dx = \ kxd x  = \k x
J x = 0 Jo

—0.030 m

0

= \  (2.5 X 103N/m)(-0.030 m)2 = 1.1 J,

which is the same as for stretching it.
NOTE We cannot use W = Fd (Eq. 7-1) for a spring because the force is not 
constant.

A More Complex Force Law—Robot Arm
Force as function of x. A robot arm that controls the 

position of a video camera (Fig. 7-12) in an automated surveillance system 
is manipulated by a motor that exerts a force on the arm. The force is 
given by

F(x) = F0 [ 1 + 7 3l x 2 
6 xl

where F0 = 2.0 N, x0 = 0.0070 m, and x is the position of the end of the 
arm. If the arm moves from x1 = 0.010 m to x2 = 0.050 m, how much 
work did the motor do?

APPROACH The force applied by the motor is not a linear function of x. We can 
determine the integral fF (x)dx , or the area under the F(x) curve (shown in 
Fig. 7-13).
SOLUTION We integrate to find the work done by the motor:

Wm = FrrJxt
dx = Fn [ dx + —\̂  f :

jXi 6x0 JXl

We put in the values given and obtain

2.0 N (0.050 m -  0.010 m) +
(0.050 m)3 -  (0.010 m)'

(3) (6) (0.0070 m )A
= 0.36 J.

FIGURE 7-12 Robot arm positions 
a video camera.

FIGURE 7-13 Example 7 -6 .

20.0 T  F (N)

\x(m)
0.01 0.02 0.03 0.04 0.05
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7—4  Kinetic Energy and the 
Work-Energy Principle

Energy is one of the most important concepts in science. Yet we cannot give a 
simple general definition of energy in only a few words. Nonetheless, each specific 
type of energy can be defined fairly simply. In this Chapter we define translational 
kinetic energy; in the next Chapter, we take up potential energy. In later Chapters 
we will examine other types of energy, such as that related to heat (Chapters 19 
and 20). The crucial aspect of all the types of energy is that the sum of all types, the 
total energy, is the same after any process as it was before: that is, energy is a 
conserved quantity.

For the purposes of this Chapter, we can define energy in the traditional way 
as “the ability to do work.” This simple definition is not very precise, nor is it really 
valid for all types of energy. * It works, however, for mechanical energy which we 
discuss in this Chapter and the next. We now define and discuss one of the basic 
types of energy, kinetic energy.

A moving object can do work on another object it strikes. A flying cannonball 
does work on a brick wall it knocks down; a moving hammer does work on a nail 
it drives into wood. In either case, a moving object exerts a force on a second 
object which undergoes a displacement. An object in motion has the ability to do 
work and thus can be said to have energy. The energy of motion is called kinetic 
energy, from the Greek word kinetikos, meaning “motion.”

To obtain a quantitative definition for kinetic energy, let us consider a simple 
rigid object of mass ra (treated as a particle) that is moving in a straight line with 
an initial speed . To accelerate it uniformly to a speed v2, a constant net force 
-̂ net is exerted on it parallel to its motion over a displacement d, Fig. 7-14.

FIGURE 7 -1 4  A  constant net force 
Fnet accelerates a car from speed Vi 
to speed v2 over a displacement d. 
The net work done is Wnet =  Fnet d.

net net

(defined)

Then the net work done on the object is Wnet = Fnetd- We apply Newton’s
second law, F,net = ma, and use Eq. 2-12c (v2 = v\ + lad), which we rewrite as

2 2 
V 2 -

U = 2d
where vx is the initial speed and v2 the final speed. Substituting this into f i i e t  = ma, 
we determine the work done:

( v j - v l
Wnet = Fnetd = mad = m l — —— jd  = m l ---------

or
Wnet = \ m v \ -  \m v\. (7-9)

We define the quantity \m v2 to be the translational kinetic energy, K, of the object:
Kinetic energy v  _  \K = \m v  . (7-10)

(We call this “translational” kinetic energy to distinguish it from rotational kinetic 
energy, which we discuss in Chapter 10.) Equation 7-9, derived here for one­
dimensional motion with a constant force, is valid in general for translational 
motion of an object in three dimensions and even if the force varies, as we will 
show at the end of this Section.

tEnergy associated with heat is often not available to do work, as we will discuss in Chapter 20.
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We can rewrite Eq. 7-9 as:
w„et = K2 -  K,

or
W„et = AK  = \m v\ -  \m v\. (7-11)

Equation 7-11 (or Eq. 7-9) is a useful result known as the work-energy principle. 
It can be stated in words:

The net work done on an object is equal to the change in the object’s
kinetic energy.

Notice that we made use of Newton’s second law, - n̂et =  ma, where -^net is the net 
force—the sum of all forces acting on the object. Thus, the work-energy principle 
is valid only if W  is the net work done on the object—that is, the work done by all 
forces acting on the object.

The work-energy principle is a very useful reformulation of Newton’s 
laws. It tells us that if (positive) net work W  is done on an object, the object’s 
kinetic energy increases by an amount W. The principle also holds true for 
the reverse situation: if the net work W  done on an object is negative, 
the object’s kinetic energy decreases by an amount W. That is, a net force 
exerted on an object opposite to the object’s direction of motion decreases its 
speed and its kinetic energy. An example is a moving hammer (Fig. 7-15) 
striking a nail. The net force on the hammer ( - F  in Fig. 7-15, where F is 
assumed constant for simplicity) acts toward the left, whereas the displacement d 
of the hammer is toward the right. So the net work done on the hammer, 
Wh = (F)(d)(cos 180°) = -F d ,  is negative and the hammer’s kinetic energy 
decreases (usually to zero).

Figure 7-15 also illustrates how energy can be considered the ability to 
do work. The hammer, as it slows down, does positive work on the nail: 
Wn = (+F)(+ d)(cos0°) = Fd and is positive. The decrease in kinetic energy of 
the hammer (= Fd by Eq. 7-11) is equal to the work the hammer can do on 
another object, the nail in this case.

The translational kinetic energy (= \m v2) is directly proportional to the mass 
of the object, and it is also proportional to the square of the speed. Thus, if the 
mass is doubled, the kinetic energy is doubled. But if the speed is doubled, the 
object has four times as much kinetic energy and is therefore capable of doing four 
times as much work.

Because of the direct connection between work and kinetic energy, energy is 
measured in the same units as work: joules in SI units. [The energy unit is ergs in 
the cgs, and foot-pounds in the British system.] Like work, kinetic energy is a 
scalar quantity. The kinetic energy of a group of objects is the sum of the kinetic 
energies of the individual objects.

The work-energy principle can be applied to a particle, and also to an object 
that can be approximated as a particle, such as an object that is rigid or whose 
internal motions are insignificant. It is very useful in simple situations, as we will 
see in the Examples below. The work-energy principle is not as powerful and 
encompassing as the law of conservation of energy which we treat in the next 
Chapter, and should not itself be considered a statement of energy conservation.

Kinetic energy and work done on a baseball. A 145-g baseball 
is thrown so that it acquires a speed of 25 m/s. (a) What is its kinetic energy? 
(b) What was the net work done on the ball to make it reach this speed, if it started 
from rest?
APPROACH We use K  = \m v2, and the work-energy principle, Eq. 7-11. 
SOLUTION (a) The kinetic energy of the ball after the throw is

K  = \m v2 = |(0.145 kg) (25 m/s)2 = 45 J.
(b) Since the initial kinetic energy was zero, the net work done is just equal to the 
final kinetic energy, 45 J.

EXAMPLE 7 -7

W O R K -E N E R G Y  P R IN C IP L E

W O R K -E N E R G Y  P R IN C IP L E

/?\ CAUTION____________
Work-energy valid only fo r  net w ork

(on hammer) (on nail)

FIGURE 7 -1 5  A  moving hammer 
strikes a nail and comes to rest. The 
hammer exerts a force F  on the nail; 
the nail exerts a force —F  on the 
hammer (N ew ton’s third law). The 
work done on the nail by the 
hammer is positive (Wn =  F d  >  0). 
The work done on the hammer by 
the nail is negative (W  ̂ =  —Fd).
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V] ^ 20 m/s t?j = 30 m/s

FIGURE 7-16 Example 7 -8 .

FIGURE 7-17 Example 7 -9 .

0 P H Y S I C S  A P P L I E D
Car’s stopping distance oc 

initial speed squared

ESTIMATE-!  Work on a car, to increase its kinetic energy.
How much net work is required to accelerate a 1000-kg car from 20 m/s to 30 m/s 
(Fig. 7-16)?

APPROACH A car is a complex system. The engine turns the wheels and tires 
which push against the ground, and the ground pushes back (see Example 4-4). 
We aren’t interested right now in those complications. Instead, we can get a 
useful result using the work-energy principle, but only if we model the car as a 
particle or simple rigid object.
SOLUTION The net work needed is equal to the increase in kinetic energy:

W = K2 ~ K\ = \m v\ ~ \rnv\

= \  (1000 kg) (30 m /s)2 -  \  (1000 kg) (20 m /s)2 = 2.5 X 105J.

EXERCISE C {a) Make a guess: will the work needed to accelerate the car in Example 7 -8  
from rest to 20 m /s be more than, less than, or equal to the work already calculated to 
accelerate it from 20 m /s to 30 m /s? (b ) Make the calculation.

EXAMPLE 7-8

(u)

(b)

d {d = 20 m)
p, a 120 km/h 1̂  = 0

dW = ?)

CONCEPTUAL EXAMPLE 7 -9  | Work to stop a car. A car traveling 60 km/h 
can brake to a stop within a distance d of 20 m (Fig. 7-17a). If the car is going twice 
as fast, 120 km/h, what is its stopping distance (Fig. 7-17b)? Assume the maximum 
braking force is approximately independent of speed.

RESPONSE Again we model the car as if it were a particle. Because the net 
stopping force F is approximately constant, the work needed to stop the car, Fd, is 
proportional to the distance traveled. We apply the work-energy principle, noting 
that F and d are in opposite directions and that the final speed of the car is zero:

Wnet = Fd cos 180° = -F d .
Then

—Fd = A K = \m v  \ — \m v\

= 0 -  \m v\.

Thus, since the force and mass are constant, we see that the stopping distance, d, 
increases with the square of the speed:

d oc v2.

If the car’s initial speed is doubled, the stopping distance is (2)2 = 4 times as 
great, or 80 m.

| EXERCISE D Can kinetic energy ever be negative?

EXERCISE E (a) If the kinetic energy of an arrow is doubled, by what factor has its speed 
increased? (b) If its speed is doubled, by what factor does its kinetic energy increase?
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A compressed spring. A horizontal spring has spring 
constant k = 360 N/m. (a) How much work is required to compress it from its 
uncompressed length (x = 0) to x = 11.0 cm? (b) If a 1.85-kg block is placed 
against the spring and the spring is released, what will be the speed of the block 
when it separates from the spring at x = 0? Ignore friction, (c) Repeat part (b) 
but assume that the block is moving on a table as in Fig. 7-18 and that some kind 
of constant drag force FD = 7.0 N is acting to slow it down, such as friction 
(or perhaps your finger).

EXAMPLE 7-10

FIGURE 7-18 Example 7-10.

mg

APPROACH We use our result from Section 7-3 that the net work, W, needed to 
stretch or compress a spring by a distance x is W = \k x 2. In (b) and (c) we use 
the work-energy principle.
SOLUTION (a) The work needed to compress the spring a distance x = 0.110 m is 

W = \  (360 N/m)(0.110 m)2 = 2.18 J, 

where we have converted all units to SI.
(b) In returning to its uncompressed length, the spring does 2.18 J of work on the 
block (same calculation as in part (a), only in reverse). According to the work-energy 
principle, the block acquires kinetic energy of 2.18 J. Since K  = \m v2, the block’s 
speed must be

v =

2(2.18 J)
————  = 1.54 m/s.1.85 kg '

(c) There are two forces on the block: that exerted by the spring and that exerted 
by the drag force, FD. Work done by a force such as friction is complicated. For one 
thing, heat (or, rather, “thermal energy”) is produced—try rubbing your hands 
together. Nonetheless, the product FD • d for the drag force, even when it is 
friction, can be used in the work-energy principle to give correct results for a 
particle-like object. The spring does 2.18 J of work on the block. The work done 
by the friction or drag force on the block, in the negative x  direction, is

WD = -F dx = -  (7.0 N) (0.110 m) = -0.77 J.

This work is negative because the drag force acts in the direction opposite to the 
displacement x. The net work done on the block is Wnet = 2.18 J -  0.77 J = 1.41 J. 
From the work-energy principle, Eq. 7-11 (with v2 = v and vx = 0), we have

v = m

2(1.41 J) _  ,
T i J k T  = 1'23m/s

for the block’s speed at the moment it separates from the spring (x = 0).
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A  particle acted on by a variable 
force F, moves along the path shown 
from point a to point b.

General Derivation of the Work-Energy Principle
We derived the work-energy principle, Eq. 7-11, for motion in one dimension with 
a constant force. It is valid even if the force is variable and the motion is in two or 
three dimensions, as we now show. Suppose the net force Fnet on a particle varies in 
both magnitude and direction, and the path of the particle is a curve as in Fig. 7-8. 
The net force may be considered to be a function of I, the distance along the curve. 
The net work done is (Eq. 7-6):

Wnet == |  Fnet • dl = j" Fnet cos 6 di =

where F\ \ represents the component of the net force parallel to the curve at any point. 
By Newton’s second law,

Z7 dv
F u =  m a w =  m ~ ^ '

where fly, the component of a parallel to the curve at any point, is equal to the rate 
of change of speed, dv I dt. We can think of v as a function of i, and using the chain 
rule for derivatives, we have

dv
dt

dv di 
~didt

dv
~di v,

since di/dt is the speed v. Thus (letting 1 and 2 refer to the initial and final quantities, 
respectively):

Wnet =
= [ m i de = = I

2 d V  AOmv —  dll = mv dv,

which integrates to

^net = \m v2 -  \m v\ = AK.

This is again the work-energy principle, which we have now derived for motion in 
three dimensions with a variable net force, using the definitions of work and 
kinetic energy plus Newton’s second law.

Notice in this derivation that only the component of ®net parallel to the 
motion, i*j|, contributes to the work. Indeed, a force (or component of a force) 
acting perpendicular to the velocity vector does no work. Such a force changes 
only the direction of the velocity. It does not affect the magnitude of the velocity. 
One example of this is uniform circular motion in which an object moving with 
constant speed in a circle has a (“centripetal”) force acting on it toward the center of 
the circle. This force does no work on the object, because (as we saw in Example 7-3) 
it is always perpendicular to the object’s displacement di.

Summary
Work is done on an object by a force when the object moves 
through a distance, d. The work W  done by a constant force F on 
an object whose position changes by a displacement d is given by

W  =  F d cosd =  F d ,  (7 -1 , 7 -3 )

where 6 is the angle between F and d.
The last expression is called the scalar product of F and d. 

In general, the scalar product of any two vectors A  and B is 
defined as

A  • B =  AB cosO (7 -2 )

where e is the angle between A  and B. In rectangular coordi­
nates we can also write

A  • B =  A XBX +  A y  By +  A ZBZ. (7 -4 )

The work W  done by a variable force F on an object that

moves from point a to point b is

W  =  j F • d l  =  j F c o s t f d f ,  (7 -7 )

where d l  represents an infinitesimal displacement along the 
path of the object and e is the angle between d l  and F at each 
point of the object’s path.

The translational kinetic energy, K, of an object of mass m 
moving with speed v is defined to be

K = \mv2. (7 -10)

The work-energy principle states that the net work done on an 
object by the net resultant force is equal to the change in kinetic 
energy of the object:

Wnet =  AK  =  \ m v \ -  \m v \ .  (7 -11 )
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Questions
1. In what ways is the word “work” as used in everyday 

language the same as defined in physics? In what ways is it 
different? Give examples of both.

2. A woman swimming upstream is not moving with respect to 
the shore. Is she doing any work? If she stops swimming and 
merely floats, is work done on her?

3. Can a centripetal force ever do work on an object? Explain.
4. Why is it tiring to push hard against a solid wall even 

though you are doing no work?
5. Does the scalar product of two vectors depend on the 

choice of coordinate system?
6. Can a dot product ever be negative? If yes, under what 

conditions?
7. If A • C = B • C, is it necessarily true that A = B?
8. Does the dot product of two vectors have direction as well 

as magnitude?
9. Can the normal force on an object ever do work? Explain.

10. You have two springs that are identical except that spring 1 
is stiffer than spring 2 (k\ > /c2). On which spring is more 
work done: (a) if they are stretched using the same force; 
(ib) if they are stretched the same distance?

11. If the speed of a particle triples, by what factor does its 
kinetic energy increase?

12. In Example 7-10, it was stated that the block separates 
from the compressed spring when the spring reached its 
equilibrium length (x  = 0). Explain why separation 
doesn’t take place before (or after) this point.

13. Two bullets are fired at the same time with the same kinetic 
energy. If one bullet has twice the mass of the other, which 
has the greater speed and by what factor? Which can do the 
most work?

14. Does the net work done on a particle depend on the choice 
of reference frame? How does this affect the work-energy 
principle?

15. A hand exerts a constant horizontal force on a block that is free 
to slide on a frictionless surface (Fig. 7-19). The block starts 
from rest at point A, and by the time it has traveled a distance d 
to point B it is traveling with speed vB. When the block has

traveled another distance d to point C, will its 
speed be greater than, less than, or equal to 

2vB ? Explain your reasoning.

FIGURE 7-19
Question 15.

| Problems
7-1 Work, Constant Force
1. (I) How much work is done by the gravitational force when 

a 280-kg pile driver falls 2.80 m?
2. (I) How high will a 1.85-kg rock go if thrown straight up 

by someone who does 80.0 J of work on it? Neglect air 
resistance.

3. (I) A 75.0-kg firefighter climbs a flight of stairs 20.0 m high. 
How much work is required?

4. (I) A hammerhead with a mass of 2.0 kg is allowed to fall 
onto a nail from a height of 0.50 m. What is the maximum 
amount of work it could do on the nail? Why do people 
not just “let it fall” but add their own force to the hammer 
as it falls?

5. (II) Estimate the work you do to mow a lawn 10 m by 20 m 
with a 50-cm wide mower. Assume you push with a force of 
about 15 N.

6. (II) A lever such as that shown in Fig. 7-20 can be used 
to lift objects we might 
not otherwise be able to 
lift. Show that the ratio 
of output force, Fo, to 
input force, Fi, is related 
to the lengths ^  and 
£0 from the pivot by 
F0/Fi = l i / l o . Ignore 
friction and the mass of 
the lever, and assume the 
work output equals work 
input.

FIGURE 7-20
A lever. Problem 6.

7. (II) What is the minimum work needed to push a 950-kg car 
310 m up along a 9.0° incline? Ignore friction.

8. (II) Eight books, each 4.0 cm thick with mass 1.8 kg, lie flat 
on a table. How much work is required to stack them one 
on top of another?

9. (II) A box of mass 6.0 kg is accelerated from rest by a force 
across a floor at a rate of 2.0 m /s2 for 7.0 s. Find the net 
work done on the box.

10. (II) (a) What magnitude force is required to give a 
helicopter of mass M  an acceleration of 0.10 g upward?
(b) What work is done by this force as the helicopter moves 
a distance h upward?

11. (II) A 380-kg piano slides 3.9 m down a 27° incline and is 
kept from accelerating by a man who is pushing back on it 
parallel to the incline (Fig. 7-21). Determine: (a) the force 
exerted by the man, (b) the 
work done by the man on the 
piano, (c) the work done by 
the force of gravity, and
(d) the net work done on 
the piano. Ignore friction.

FIGURE 7-21
Problem 11.

12. (II) A gondola can carry 20 skiers, with a total mass of up to 
2250 kg. The gondola ascends at a constant speed from the base 
of a mountain, at 2150 m, to the summit at 3345 m. (a) How 
much work does the motor do in moving a full gondola up the 
mountain? (b) How much work does gravity do on the 
gondola? (c) If the motor is capable of generating 10% more 
work than found in (a), what is the acceleration of the gondola?

Problems 177



13. (II) A 17,000-kg jet takes off from an aircraft carrier via a cata­
pult (Fig. 7-22a). The gases thrust out from the jet’s engines 
exert a constant force of 130 kN on the jet; the force exerted 
on the jet by the catapult is plotted in Fig. 7-22b. Determine:
(a) the work done on the jet by the gases expelled by its 
engines during launch of the jet; and (b) the work done on 
the jet by the catapult during launch of the jet.

F (kN)
1100

(a)

14.

15.

7 -
16.

17.

18.

19.
20.

FIGURE 7-22 Problem 13.

(II) A 2200-N crate rests on the floor. How much work is 
required to move it at constant speed (a) 4.0 m along the 
floor against a drag force of 230 N, and (b) 4.0 m vertically?
(II) A grocery cart with mass of 16 kg is being pushed at 
constant speed up a flat 12° ramp by a force FP which acts 
at an angle of 17° below the horizontal. Find the work done 
by each of the forces (mg, FN, FP) on the cart if the ramp is 
15 m long.

2 Scalar Product
(I) What is the dot product of A = 2.0x2i — 4.0jcj + 5.0k 
and B = 11.Oi + 2.5xj?

(I) For any vector V = Vx i + Vy\ + Vz k  show that

Vx = i • V, Vy = j • V, y7 = k • v .

(I) Calculate the angle between the vectors:
A = 6.8i -  3.4j -  6.2k and B = 8.2i + 2.3j -  7.0k.

(I) Show that A • (-B ) = - A  • B.
(I) Vector Vi points along the z axis and has magnitude 
V\ = 75. Vector V2 lies in the xz  plane, has magnitude 
V2 = 58, and makes a —48° angle with the x  axis (points 
below x  axis). What is the scalar product Vi • V2?

21. (II) Given the vector A = 3.0i + 1.5j, find a vector B that 
is perpendicular to A.

22. (II) A constant force F = (2.0i + 4.0j) N acts on an object 
as it moves along a straight-line path. If the object’s displace­
ment is d = (l.Oi + 5.0j) m, calculate the work done by 
F using these alternate ways of writing the dot product:
(a) W = FdcosO; (b) W = Fx dx + Fy dy .

23. (II) If A = 9.0i -  8.5j, B = —8.01 + 7.1j + 4.2k, and 
C = 6.8i -  9.2j, determine (a) A • (B + C); (b) (A + C) • B;
(c) (B + A) • C.

24. (II) Prove that A • B = A XBX + A y By + A ZBZ, starting 
from Eq. 7-2 and using the distributive property (p. 167, 
proved in Problem 33).

25. (II) Given vectors A = -4 .8 i + 6.8j and B = 9.6i + 6.7j, 
determine the vector C that lies in the xy plane perpendic­
ular to B and whose dot product with A is 20.0.

26. (II) Show that if two nonparallel vectors have the same 
magnitude, their sum must be perpendicular to their difference.

27. (II) Let V = 20.0i + 22.0j -  14.0k. What angles does this 
vector make with the x, y, and z axes?

28. (II) Use the scalar product to prove the law o f cosines for a 
triangle:

c2 = a2 + b2 -  lab  cos 0,

where a, b, and c are the lengths of the sides of a triangle 
and 0 is the angle opposite side c.

29. (II) Vectors A and B are in the xy  plane and their scalar 
product is 20.0 units. If A makes a 27.4° angle with the x  axis 
and has magnitude A  = 12.0 units, and B has magnitude 
B  = 24.0 units, what can you say about the direction of B?

30. (II) A and B are two vectors in the xy plane that make 
angles a and /3 with the x  axis respectively. Evaluate the scalar 
product of A and B and deduce the following trigonometric 
identity: cos (a — /3) = cos a cos /3 + sin a  sin /3.

31. (II) Suppose A = l.Oi + l.Oj -  2.0k and B = 
-l.O i + l.Oj + 2.0k, (a) what is the angle between these 
two vectors? (b) Explain the significance of the sign in part (a).

32. (II) Find a vector of unit length in the xy plane that is 
perpendicular to 3.0i + 4.0j.

33. (Ill) Show that the scalar product of two vectors is distributive: 
A • (B + C) = A • B + A • C. [Hint: Use a diagram showing 
all three vectors in a plane and indicate dot products on the 
diagram.]

7-3 Work, Varying Force
34. (I) In pedaling a bicycle uphill, a cyclist exerts a downward 

force of 450 N during each stroke. If the diameter of the 
circle traced by each pedal is 36 cm, calculate how much 
work is done in each stroke.

35.

36.

37. (II) The net force exerted on a particle acts in the positive 
x  direction. Its magnitude increases linearly from zero at 
x = 0, to 380 N at x = 3.0 m. It remains constant at 380 N 
from x = 3.0 m to x = 7.0 m, and then decreases linearly 
to zero at x = 12.0 m. Determine the work done to move 
the particle from x  = 0 to x  = 12.0 m graphically, by 
determining the area under the Fx versus x  graph.

38. (II) If it requires 5.0 J of work to stretch a particular spring 
by 2.0 cm from its equilibrium length, how much more 
work will be required to stretch it an additional 4.0 cm?

39. (II) In Fig. 7-9 assume the distance axis is the x  axis and 
that a = 10.0 m and b = 30.0 m. Estimate the work done 
by this force in moving a 3.50-kg object from a to b.

(II) A spring has k  = 65N/m. Draw a graph like that in 
Fig. 7-11 and use it to determine the work needed to stretch 
the spring from x  = 3.0 cm to x  = 6.5 cm, where x = 0 
refers to the spring’s unstretched length.
(II) If the hill in Example 7-2 (Fig. 7-4) was not an even 
slope but rather an irregular curve as in Fig. 7-23, show that 
the same result would be obtained as in Example 7-2: 
namely, that the work done by gravity depends 
only on the height of the hill and not on its 
shape or the path taken.

FIGURE 7-23
Problem 36.
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40. (II) The force on a particle, acting along the x  axis, varies as 
shown in Fig. 7-24. Determine the work done by this force 
to move the particle along the x  axis: (a) from x  = 0.0 to 
x = 10.0 m; (b) from x  = 0.0 to x  = 15.0 m.

x  (m)

FIGURE 7-24
Problem 40.

41. (II) A child is pulling a wagon down the sidewalk. For 9.0 m 
the wagon stays on the sidewalk and the child pulls with a 
horizontal force of 22 N. Then one wheel of the wagon goes 
off on the grass so the child has to pull with a force of 38 N 
at an angle of 12° to the side for the next 5.0 m. Finally the 
wagon gets back on the sidewalk so the child makes the rest 
of the trip, 13.0 m, with a force of 22 N. How much total 
work did the child do on the wagon?

42. (II) The resistance of a packing material to a sharp object 
penetrating it is a force proportional to the fourth power of 
the penetration depth*; that is, F = k x 4i. Calculate the work 
done to force a sharp object a distance d into the material.

43. (II) The force needed to hold a particular spring 
compressed an amount x  from its normal length is given by 
F = kx  + ax3 + bx4 How much work must be done to 
compress it by an amount X, starting from x  = 0?

44. (II) At the top of a pole vault, an athlete actually can do 
work pushing on the pole before releasing it. Suppose the 
pushing force that the pole exerts back on the athlete is given by 
F(x) =  (1.5 X 102N /m )x -  (1.9 X 102N/m 2)jt2 acting over 
a distance of 0.20 m. How much work is done on the athlete?

45. (II) Consider a force F\ = A /^ /x  which acts on an object 
during its journey along the x  axis from x  = 0.0 to 
x  = 1.0 m, where A  = 2.0 N-m 1/2. Show that during this 
journey, even though F1 is infinite at x  = 0.0, the work 
done on the object by this force is finite.

46. (II) Assume that a force acting on an object is given 
by F = axi + by\, where the constants a = 3.0 N*m-1 
and b = 4.0 N-m -1. Determine the work done on the 
object by this force as it moves in a straight line from the 
origin to r = (lO.Oi + 20.0j) m.

47. (II) An object, moving along the circumference of a circle 
with radius R, is acted upon by a force of constant magni­
tude F. The force is

3o;>____ _directed at all times at a 
30° angle with respect to 
the tangent to the circle 
as shown in Fig. 7-25.
Determine the work done 
by this force when the 
object moves along the 
half circle from A to B.

FIGURE 7-25
Problem 47.

48. (Ill) A 2800-kg space vehicle, initially at rest, falls vertically 
from a height of 3300 km above the Earth’s surface. 
Determine how much work is done by the force of 
gravity in bringing the vehicle to the Earth’s surface.

49. (Ill) A 3.0-m-long steel chain is stretched out along the top 
level of a horizontal scaffold at a construction site, in such a 
way that 2.0 m of the chain remains on the top level and
1.0 m hangs vertically, Fig. 7-26. At this point, the force on 
the hanging segment is sufficient to pull the entire chain 
over the edge. Once the chain is moving, the kinetic friction 
is so small that it can be neglected. How much work is 
performed on the chain by the force of gravity as the chain 
falls from the point where 2.0 m remains on the scaffold to the 
point where the entire chain has left the scaffold? (Assume 
that the chain has a 
linear weight density 
of 18 N/m.)

FIGURE 7-26
Problem 49.

1.0 m

7-4  Kinetic Energy; Work-Energy Principle
50. (I) At room temperature, an oxygen molecule, with mass of 

5.31 X 10_26kg, typically has a kinetic energy of about 
6.21 X 10-21 J. How fast is it moving?

51. (I) (a) If the kinetic energy of a particle is tripled, by what 
factor has its speed increased? (b) If the speed of a particle 
is halved, by what factor does its kinetic energy change?

52. (I) How much work is required to stop an electron 
(m = 9.11 X 10-31 kg) which is moving with a speed of
1.40 X 106 m/s?

53. (I) How much work must be done to stop a 1300-kg car 
traveling at 95 km/h?

54. (II) Spiderman uses his spider webs to save a runaway 
train, Fig. 7-27. His web stretches a few city blocks before the 
104-kg train comes to a stop. Assuming the web acts like a 
spring, estimate the spring constant.

FIGURE 7-27
Problem 54.

55. (II) A baseball (m  = 145 g) traveling 32 m /s moves a 
fielder’s glove backward 25 cm when the ball is caught. What 
was the average force exerted by the ball on the glove?

56. (II) An 85-g arrow is fired from a bow whose string exerts 
an average force of 105 N on the arrow over a distance of 
75 cm. What is the speed of the arrow as it leaves the bow?

57. (II) A mass m  is attached to a spring which is held stretched a 
distance x  by a force F  (Fig. 7-28), and then released. The

spring compresses, pulling the mass. Assuming there is no 
friction, determine the speed of the mass m  when the 

spring returns: (a) to its normal length (x = 0);
(b) to half its orig­

in inal extension (x/2).

| FIGURE 7-28
x  = 0 Problem 57.

Problems 179



58. (II) If the speed of a car is increased by 50%, by what factor 
will its minimum braking distance be increased, assuming all 
else is the same? Ignore the driver’s reaction time.

59. (II) A 1200-kg car rolling on a horizontal surface has speed 
v = 66 km /h when it strikes a horizontal coiled spring and 
is brought to rest in a distance of 2.2 m. What is the spring 
constant of the spring?

60. (II) One car has twice the mass of a second car, but only 
half as much kinetic energy. When both cars increase their 
speed by 7.0 m/s, they then have the same kinetic energy. 
What were the original speeds of the two cars?

61. (II) A 4.5-kg object moving in two dimensions initially has a 
velocity vi = (lO.Oi + 20.0j) m/s. A net force F then acts 
on the object for 2.0 s, after which the object’s velocity 
is v2 = (15.0i + 30.0j) m/s. Determine the work done by 
F on the object.

62. (II) A 265-kg load is lifted 23.0 m vertically with an acceler­
ation a = 0.150 g by a single cable. Determine (a) the 
tension in the cable; (b) the net work done on the load;
(c) the work done by the cable on the load; (d) the work 
done by gravity on the load; (e) the final speed of the load 
assuming it started from rest.

63. (II) (a) How much work is done by the horizontal force 
Fp = 150 N on the 18-kg block of Fig. 7-29 when the 
force pushes the block 5.0 m up along the 32° frictionless 
incline? (b) How much work is done by the gravitational 
force on the block during this displacement? (c) How 
much work is done by the normal force? (d) What 
is the speed of the block (assume that it is zero initially) 
after this displacement? [Hint. Work-energy involves net 
work done.l

FIGURE 7-29
Problems 63 and 64.

64. (II) Repeat Problem 63 assuming a coefficient of friction
= 0.10.

65. (II) At an accident scene on a level road, investigators 
measure a car’s skid mark to be 98 m long. It was a rainy 
day and the coefficient of friction was estimated to be 0.38. 
Use these data to determine the speed of the car when the 
driver slammed on (and locked) the brakes. (Why does the 
car’s mass not matter?)

66. (II) A 46.0-kg crate, starting from rest, is pulled across a 
floor with a constant horizontal force of 225 N. For the first
11.0 m the floor is frictionless, and for the next 10.0 m the 
coefficient of friction is 0.20. What is the final speed of the 
crate after being pulled these 21.0 m?

67. (II) A train is moving along a track with constant speed 
relative to the ground. A person on the train holds a ball of 
mass m  and throws it toward the front of the train with a 
speed v2 relative to the train. Calculate the change in kinetic 
energy of the ball (a) in the Earth frame of reference, and 
(b) in the train frame of reference, (c) Relative to each 
frame of reference, how much work was done on the ball?
(d) Explain why the results in part (b) are not the same for 
the two frames—after all, it’s the same ball.

68. (Ill) We usually neglect the mass of a spring if it is small 
compared to the mass attached to it. But in some applications, 
the mass of the spring must be taken into account. Consider 
a spring of unstretched length £ and mass Ms uniformly 
distributed along the length of the spring. A mass m is 
attached to the end of the spring. One end of the spring is 
fixed and the mass m is allowed to vibrate horizontally 
without friction (Fig. 7-30). Each point on the spring moves 
with a velocity proportional to the distance from that point 
to the fixed end. For example, if the mass on the end moves 
with speed vQ, the midpoint of the spring moves with speed 
Vq/ 2 .  Show that the kinetic energy of the mass plus spring 
when the mass is moving with velocity v is

K  = \M v 2

where M  = m + |M S is the “effective mass” of the system. 
[Hint: Let D  be the total length of the stretched spring. Then 

the velocity of a mass dm  of a spring of length dx 
located at x  is v(x) = v0(x/D ). Note also that

dm = dx(Ms/D).]

- H !11
dx

FIGURE 7-30
Problem 68.

69. (Ill) An elevator cable breaks when a 925-kg elevator 
is 22.5 m above the top of a huge spring (k  =
8.00 X 104N/m) at the bottom of the shaft. Calculate
(a) the work done by gravity on the elevator before it hits 
the spring; (b) the speed of the elevator just before 
striking the spring; (c) the amount the spring compresses 
(note that here work is done by both the spring and 
gravity).

| General Problems__________
70. (a) A 3.0-g locust reaches a speed of 3.0 m /s during its jump. 

What is its kinetic energy at this speed? (b) If the locust 
transforms energy with 35% efficiency, how much energy is 
required for the jump?

71. In a certain library the first shelf is 12.0 cm off the ground, 
and the remaining 4 shelves are each spaced 33.0 cm above 
the previous one. If the average book has a mass of 1.40 kg 
with a height of 22.0 cm, and an average shelf holds 28 
books (standing vertically), how much work is required to 
fill all the shelves, assuming the books are all laying flat on 
the floor to start?

72. A 75-kg meteorite buries itself 5.0 m into soft mud. The 
force between the meteorite and the mud is given by 
F{x) = (640N/m3)x3, where x  is the depth in the mud. 
What was the speed of the meteorite when it initially impacted 
the mud?

73. A 6.10-kg block is pushed 9.25 m up a smooth 37.0° inclined 
plane by a horizontal force of 75.0 N. If the initial speed of 
the block is 3.25 m /s up the plane, calculate (a) the initial 
kinetic energy of the block; (b) the work done by the 
75.0-N force; (c) the work done by gravity; (d) the work done 
by the normal force; (e) the final kinetic energy of the block.
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74. The arrangement of atoms in zinc is an example of “hexagonal 
close-packed” structure. Three of the nearest neighbors are 
found at the following (x, y, z ) coordinates, given in 
nanometers (l0-9 m): atom 1 is at (0, 0, 0); atom 2 is at 
(0.230, 0.133, 0); atom 3 is at (0.077, 0.133, 0.247). Find the 
angle between two vectors: one that connects atom 1 with 
atom 2 and another that connects atom 1 with atom 3.

75. Two forces, Fj = (l.50i -  0.80j + 0.70k) N and F2 = 
(—0.70i + 1.20j) N, are applied on a moving object of mass
0.20 kg. The displacement vector produced by the 
two forces is d = (8.0i + 6.0j + 5.0k) m. What is the work 
done by the two forces?

76. The barrels of the 16-in. guns (bore diameter = 16 in. =
41 cm) on the World War II battleship U.S.S. Massachusetts 
were each 15 m long. The shells each had a mass of 1250 kg 
and were fired with sufficient explosive force to provide them 
with a muzzle velocity of 750 m/s. Use the work-energy 
principle to determine the explosive force (assumed to be a 
constant) that was applied to the shell within the barrel of the 
gun. Express your answer in both newtons and in pounds.

77. A varying force is given by F = Ae~kx, where x  is the position; 
A  and k  are constants that have units of N and m_1, respectively. 
What is the work done when x  goes from 0.10 m to infinity?

78. The force required to compress an imperfect horizontal 
spring an amount x  is given by F = 150x + 12x3, where x  is 
in meters and F  in newtons. If the spring is compressed
2.0 m, what speed will it give to a 3.0-kg ball held against it 
and then released?

79. A force F = (lO.Oi + 9.0j + 12.0k) kN acts on a small 
object of mass 95 g. If the displacement of the object is 
d = (5.0i + 4.0j) m, find the work done by the force. What 
is the angle between F and d?

80. In the game of paintball, players use guns powered by 
pressurized gas to propel 33-g gel capsules filled with paint 
at the opposing team. Game rules dictate that a paintball 
cannot leave the barrel of a gun with a speed greater than 
85m/s. Model the shot by assuming the pressurized gas 
applies a constant force F to a 33-g capsule over the length 
of the 32-cm barrel. Determine F (a) using the work-energy 
principle, and (b) using the kinematic equations (Eqs. 2-12) 
and Newton’s second law.

81. A softball having a mass of 0.25 kg is pitched horizontally at 
110 km/h. By the time it reaches the plate, it may have 
slowed by 10%. Neglecting gravity, estimate the average 
force of air resistance during a pitch, if the distance between 
the plate and the pitcher is about 15 m.

82. An airplane pilot fell 370 m after jumping from an aircraft 
without his parachute opening. He landed in a snowbank, 
creating a crater 1.1 m deep, but survived with only minor 
injuries. Assuming the pilot’s mass was 88 kg and his 
terminal velocity was 45 m/s, estimate: (a) the work done by 
the snow in bringing him to rest; (b) the average force 
exerted on him by the snow to stop him; and (c) the work done 
on him by air resistance as he fell. Model him as a particle.

83. Many cars have “5 mi/h (8 km/h) bumpers” that are designed 
to compress and rebound elastically without any physical 
damage at speeds below 8 km/h. If the material of the bumpers 
permanently deforms after a compression of 1.5 cm, but remains 
like an elastic spring up to that point, what must be the effective 
spring constant of the bumper material, assuming the car has a 
mass of 1050 kg and is tested by ramming into a solid wall?

84. What should be the spring constant A: of a spring designed to 
bring a 1300-kg car to rest from a speed of 90 km /h so that 
the occupants undergo a maximum acceleration of 5.0 g?

85. Assume a cyclist of weight mg can exert a force on the 
pedals equal to 0.90 mg on the average. If the pedals rotate 
in a circle of radius 18 cm, the wheels have a radius of 34 cm, 
and the front and back sprockets on which the chain runs 
have 42 and 19 teeth respectively (Fig. 7-31), determine the 
maximum steepness of hill the cyclist can climb at constant 
speed. Assume the mass of the bike is 12 kg and that of the 
rider is 65 kg. Ignore friction. Assume the cyclist’s average 
force is always: (a) downward; (b) tangential to pedal motion.

FIGURE 7-31 Problem 85.

86. A simple pendulum consists of a small object of mass m (the 
“bob”) suspended by a cord of length £ (Fig. 7-32) of negli­
gible mass. A force F is applied in the horizontal direction 
(so F = Fi), moving the bob very slowly so the acceleration is 
essentially zero. (Note that the magnitude of F will need to 
vary with the angle 6 that the cord makes with the vertical at 
any moment.) (a) Determine the work done by this force, F, to 
move the pendulum 
from 0 = 0 to 
6 = 60. (b) Deter­
mine the work done 
by the gravitational 
force on the bob,
Fg = mg, and the 
work done by the 
force Ft that the 
cord exerts on the 
bob.

FIGURE 7-32
Problem 86.

87. A car passenger buckles himself in with a seat belt and 
holds his 18-kg toddler on his lap. Use the work-energy 
principle to answer the following questions, (a) While 
traveling 25 m/s, the driver has to make an emergency stop 
over a distance of 45 m. Assuming constant deceleration, 
how much force will the arms of the parent need to exert on 
the child during this deceleration period? Is this force 
achievable by an average parent? (b) Now assume that the 
car (v  = 25 m/s) is in an accident and is brought to stop 
over a distance of 12 m. Assuming constant deceleration, 
how much force will the parent need to exert on the child? 
Is this force achievable by an average parent?

General Problems 181



88. As an object moves along the x  axis from x  = 0.0 m 
to x  = 20.0 m it is acted upon by a force given by 
F  = (100 -  (x -  10)2)N. Determine the work done by the 
force on the object: (a) by first sketching the F  vs. x  graph 
and estimating the area under this curve; (b) by evaluating 
the integral dx.

89. A cyclist starts from rest and coasts down a 4.0° hill. 
The mass of the cyclist plus bicycle is 85 kg. After the cyclist 
has traveled 250 m, (a) what was the net work 
done by gravity on the cyclist? (b) How fast is the 
cyclist going? Ignore air resistance.

90. Stretchable ropes are used to safely arrest the fall of 
rock climbers. Suppose one end of a rope with unstretched 
length £ is anchored to a cliff and a climber of mass m  is 
attached to the other end. When the climber is a height £ 
above the anchor point, he slips and falls under the influence of 
gravity for a distance 2£, after which the rope becomes taut 
and stretches a distance x  as it stops the climber (see Fig. 7-33). 
Assume a stretchy rope behaves as a spring with spring 
constant k. (a) Applying the work-energy principle, show that

x  =
mg
k

1 + J l  +
4 k£ 
mg

(b) Assuming m = 85 kg, £ = 8.0 m and k  = 850 N/m, 
determine x/£  (the 
fractional stretch of 
the rope) and kx /m g  
(the force that the 
rope exerts on the 
climber compared to 
his own weight) at 
the moment the 
climber’s fall has 
been stopped.

FIGURE 7-33
Problem 90.

91. A small mass m  hangs at rest from a vertical rope of 
length £ that is fixed to the ceiling. A force F then pushes on 
the mass, perpendicular to the taut rope at all times, until 
the rope is oriented at an angle 6 = 0O and the mass has 
been raised by a vertical distance h (Fig. 7-34). Assume the 
force’s magnitude F  is adjusted so that the mass moves at 
constant speed along its curved trajectory. Show that the 
work done by F during this process equals mgh, which is 
equivalent to the amount of work it takes to slowly lift a 
mass m  straight up by a height h. [Hint: When the angle is 
increased by dd (in radians), the mass moves along an arc 
length ds = £ d6.\
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15 92. (II) The net force along the linear path of a particle of 

mass 480 g has been measured at 10.0-cm intervals, starting 
at jc = 0.0, to be 26.0, 28.5, 28.8, 29.6, 32.8, 40.1, 46.6, 42.2, 
48.8,52.6,55.8,60.2,60.6,58.2,53.7,50.3,45.6,45.2,43.2,38.9, 
35.1, 30.8, 27.2, 21.0, 22.2, and 18.6, all in newtons. Determine 
the total work done on the particle over this entire range.

H93. (II) When different masses are suspended from a spring, 
the spring stretches by different amounts as shown in the 
Table below. Masses are +1.0 gram.

Mass (g) 0 50 100 150 200 250 300 350 400 
Stretch (cm) 0 5.0 9.8 14.8 19.4 24.5 29.6 34.1 39.2

(a) Graph the applied force (in Newtons) versus the stretch (in 
meters) of the spring, and determine the best-fit straight line.
(b) Determine the spring constant (N/m) of the spring from 
the slope of the best-fit line, (c) If the spring is stretched by
20.0 cm, estimate the force acting on the spring using the 
best-fit line.

Answers to Exercises
A: (c). D: No, because the speed v would be the square root of a
B: 0b). negative number, which is not real.

C: (b) 2.0 X 105 J (i.e., less). E: (a) \ f l ,  (b) 4.

182 CHAPTER 7 Work and Energy



Conservation of Energy
CHAPTER-OPENING QUESTION —Guess now!
A  skier starts at the top of a hill. O n which run does her gravitational potential 
energy change the most: (a), (b), (c), or (d); or are they (e) all the same? O n which run 
would her speed at the bottom  be the fastest if the runs are icy and we assume 
no friction? Recognizing that
there is always some friction, 
answ er the above two ques­
tions again. List your four 
answers now.

\\

Easy
Intermediate 
D ifficu lt  

♦ ♦  V ery d ifficult

A polevaulter running toward the 
high bar has kinetic energy. When 
he plants the pole and puts his 
weight on it, his kinetic energy 
gets transformed: first into elastic 
potential energy of the bent pole and 
then into gravitational potential 
energy as his body rises. As he crosses 
the bar, the pole is straight and has 
given up all its elastic potential 
energy to the athlete’s gravitational 
potential energy. Nearly all his 
kinetic energy has disappeared, also 
becoming gravitational potential 
energy of his body at the great height 
of the bar (world record over 6 m), 
which is exactly what he wants. In 
these, and all other energy 
transformations that continually take 
place in the world, the total energy 
is always conserved. Indeed, the 
conservation of energy is one of 
the greatest laws of physics, and 
finds applications in a wide range of 
other fields.

CONTENTS
8 - 1  C onservative and

N onconservative Forces

8 - 2  P otential E nergy

8 - 3  M echanical E nergy and Its 
C onservation

8 - 4  Problem  Solving U sin g  
C onservation  o f  
M echanical E nergy

8 - 5  The Law  o f C onservation  
o f E nergy

8 - 6  E nergy C onservation  with  
D issipative Forces: Solving  
P roblem s

8 - 7  G ravitational Potential
E nergy and E scape V elocity

8 - 8  Pow er

* 8 - 9  P otential E nergy Diagram s; 
Stable and U nstab le  
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183



This chapter continues the discussion of the concepts of work and energy 
begun in Chapter 7 and introduces additional types of energy, in particular 
potential energy. Now we will see why the concept of energy is so 
important. The reason, ultimately, is that energy is conserved—the total 

energy always remains constant in any process. That a quantity can be defined 
which remains constant, as far as our best experiments can tell, is a remarkable 
statement about nature. The law of conservation of energy is, in fact, one of the 
great unifying principles of science.

The law of conservation of energy also gives us another tool, another 
approach, to solving problems. There are many situations for which an analysis 
based on Newton’s laws would be difficult or impossible—the forces may not be 
known or accessible to measurement. But often these situations can be dealt with 
using the law of conservation of energy.

In this Chapter we will mainly treat objects as if they were particles or rigid 
objects that undergo only translational motion, with no internal or rotational 
motion.

FIGURE 8 -1  Object of mass m:
(a) falls a height h vertically;
(b) is raised along an arbitrary 
two-dimensional path.

o

■D.

(a)

8 -1  Conservative and Nonconservative 
Forces

We will find it important to categorize forces into two types: conservative and 
nonconservative. By definition, we call any force a conservative force if

the work done by the force on an object moving from one point to another 
depends only on the initial and final positions of the object, and is independent of the 
particular path taken.

A conservative force can be a function only o f position, and cannot depend on 
other variables like time or velocity.

We can readily show that the force of gravity is a conservative force. The 
gravitational force on an object of mass m near the Earth’s surface is F = mg, 
where g is a constant. The work done by this gravitational force on an object 
that falls a vertical distance h is WG = Fd = mgh (see Fig. 8-la). Now 
suppose that instead of moving vertically downward or upward, an object follows 
some arbitrary path in the xy plane, as shown in Fig. 8-lb . The object starts at a 
vertical height y1 and reaches a height y2, where y2 ~ y\ = h. To calculate the 
work done by gravity, WG, we use Eq. 7-7:

W n  = J>• di

=  J mg cos 6 d t

We now let <£ = 180° — 6 be the angle between di and its vertical component dy, 
as shown in Fig. 8 - lb. Then, since cos0 =  -cos (f> and dy = di cos (f), we have

Wo =
ry2

~ I mg dy
J yi

= ~mg(y2 -  yj). (8- 1)

Since (y2 — y j  is the vertical height h, we see that the work done depends only on 
the vertical height and does not depend on the particular path taken! Hence, by 
definition, gravity is a conservative force.

Note that in the case shown in Fig. 8 -lb , y2 > y1 and therefore the work done 
by gravity is negative. If on the other hand y2 < y1, so that the object is falling, 
then WG is positive.
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We can give the definition of a conservative force in another, completely 
equivalent way:

a force is conservative if the net work done by the force on an object moving 
around any closed path is zero.

To see why this is equivalent to our earlier definition, consider a small object that 
moves from point 1 to point 2 via either of two paths labeled A and B in Fig. 8-2a. If 
we assume a conservative force acts on the object, the work done by this force is the 
same whether the object takes path A or path B, by our first definition. This work to get 
from point 1 to point 2 we will call W. Now consider the round trip shown in Fig. 8-2b. 
The object moves from 1 to 2 via path A and our force does work W. Our object then 
returns to point 1 via path B. How much work is done during the return? In going from
1 to 2 via path B the work done is W, which by definition equals Jx F • dl. In doing the 
reverse, going from 2 to 1, the force F at each point is the same, but dl is directed in 
precisely the opposite direction. Consequently F • dl has the opposite sign at each 
point so the total work done in making the return trip from 2 to 1 must be —W. 
Hence the total work done in going from 1 to 2 and back to l i s  W + (~W ) = 0, 
which proves the equivalence of the two above definitions for a conservative force.

The second definition of a conservative force illuminates an important aspect of 
such a force: the work done by a conservative force is recoverable in the sense that if 
positive work is done by an object (on something else) on one part of a closed path, 
an equivalent amount of negative work will be done by the object on its return.

As we saw above, the force of gravity is conservative, and it is easy to show 
that the elastic force (F = —kx) is also conservative.

FIGURE 8-2 (a) A  tiny object 
moves between points 1 and 2 via 
two different paths, A  and B. (b) The 
object makes a round trip, via path A  
from point 1 to point 2 and via path B 
back to point 1.

/
m . m i M l

FIGURE 8-3 A  crate is pushed at constant speed across a rough floor 
from position 1 to position 2 via two paths, one straight and one curved. 
The pushing force FP is always in the direction of motion. (The friction 
force opposes the motion.) H ence for a constant magnitude pushing 
force, the work it does is W  =  Fp d, so if d  is greater (as for the curved 
path), then W  is greater. The work done does not depend only on 
points 1 and 2; it also depends on the path taken.

Many forces, such as friction and a push or pull exerted by a person, are 
nonconservative forces since any work they do depends on the path. For example, 
if you push a crate across a floor from one point to another, the work you do 
depends on whether the path taken is straight, or is curved. As shown in Fig. 8-3, 
if a crate is pushed from point 1 to point 2 along the longer semicircular path, you 
do more work against friction than if you push it along the straight path. This is 
because the distance is greater and, unlike the gravitational force, the pushing 
force FP is always in the direction of motion. Thus the work done by the person in 
Fig. 8-3 does not depend only on points 1 and 2; it depends also on the path taken. 
The force of kinetic friction, also shown in Fig. 8-3, always opposes the motion; it too is 
a nonconservative force, and we discuss how to treat it later in this Chapter 
(Section 8-6). Table 8-1 lists a few conservative and nonconservative forces.

TABLE 8-1 Conservative and 
Nonconservative Forces

Conservative Nonconservative
Forces Forces

Gravitational Friction
Elastic Air resistance
Electric Tension in cord

Motor or rocket
propulsion

Push or pull by
a person
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i_____
3 f  (exertedd ext  ̂ , j-v by hand)

rFG = mg

i_____
FIGURE 8 - 4  A  person exerts an 
upward force Fext =  m g  to lift a 
brick from y1 to y2.

8—2  Potential Energy
In Chapter 7 we discussed the energy associated with a moving object, which is its 
kinetic energy K  = \m v2. Now we introduce potential energy, which is the 
energy associated with forces that depend on the position or configuration of 
objects relative to the surroundings. Various types of potential energy 
can be defined, and each type is associated with a particular conservative force.

The wound-up spring of a toy is an example of potential energy. The spring 
acquired its potential energy because work was done on it by the person winding 
the toy. As the spring unwinds, it exerts a force and does work to make the toy move.

Gravitational Potential Energy
Perhaps the most common example of potential energy is gravitational potential 
energy. A heavy brick held above the ground has potential energy because of its 
position relative to the Earth. The raised brick has the ability to do work, for if it is 
released, it will fall to the ground due to the gravitational force, and can do work 
on a stake, driving it into the ground. Let us seek the form for the gravitational 
potential energy of an object near the surface of the Earth. For an object of 
mass m to be lifted vertically, an upward force at least equal to its weight, mg, must 
be exerted on it, say by a person’s hand. To lift it without acceleration a vertical 
displacement of height h, from position y1 to y2 in Fig. 8-4 (upward direction 
chosen positive), a person must do work equal to the product of the “external” 
force she exerts, Fext = mg upward, times the vertical displacement h. That is,

Wext = Fext • d = mgh cos 0° = mgh = mg(y2 -  y j
where both ^ext and d point upward. Gravity is also acting on the object as it 
moves from y1 to y2, and does work on the object equal to

WG = FG • d = mgh cos 180° = -m g h  = ~mg(y2 — y j,
where 6 = 180° because FG and d point in opposite directions. Since FG is 
downward and d is upward, WG is negative. If the object follows an arbitrary path, 
as in Fig. 8 -lb , the work done by gravity still depends only on the change in 
vertical height (Eq. 8-1): WG = ~mg(y2 — y j  = -m gh.

Next, if we allow the object to start from rest and fall freely under the action of 
gravity, it acquires a velocity given by v2 = 2gh (Eq. 2-12c) after falling a height h. 
It then has kinetic energy \m v2 = \m(2gh) = mgh, and if it strikes a stake it can do 
work on the stake equal to mgh.

To summarize, raising an object of mass m to a height h requires an amount of 
work equal to mgh. And once at height h, the object has the ability to do an 
amount of work equal to mgh. Thus we can say that the work done in lifting the 
object has been stored as gravitational potential energy.

Indeed, we can define the change in gravitational potential energy U, when an 
object moves from a height y1 to a height y2, as equal to the work done by a net 
external force to accomplish this without acceleration:

AU  = U2 -  U, = Wext = mg(y2 -  y,).
Equivalently, we can define the change in gravitational potential energy as equal 
to the negative of the work done by gravity itself in the process:

AU = U2 -  U, = -W a = mg(y2 -  y,). (8-2)
Equation 8-2 defines the change in gravitational potential energy when an 

object of mass m moves between two points near the surface of the Earth.f 
The gravitational potential energy, U, at any point a vertical height y above some 
reference point (the origin of the coordinate system) can be defined as

ĝrav = mgy. [gravity only] (8-3)
Note that the potential energy is associated with the force of gravity between the 
Earth and the mass m. Hence t/grav represents the gravitational potential energy, 
not simply of the mass m alone, but of the mass-Earth system.
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Gravitational potential energy depends on the vertical height of the object above 
some reference level, U = mgy. Sometimes you may wonder from what point to 
measure y. The gravitational potential energy of a book held high above a table, for 
example, depends on whether we measure y from the top of the table, from the floor, 
or from some other reference point. What is physically important in any situation is 
the change in potential energy, A U, because that is what is related to the work 
done, and it is A U that can be measured. We can thus choose to measure y from 
any reference point that is convenient, but we must choose the reference point 
at the start and be consistent throughout any given calculation. The change 
in potential energy between any two points does not depend on this choice.

Potential energy belongs to a system, and not to a single object alone. Potential 
energy is associated with a force, and a force on one object is always exerted by 
some other object. Thus potential energy is a property of the system as a whole. For 
an object raised to a height y above the Earth’s surface, the change in gravitational 
potential energy is mgy. The system here is the object plus the Earth, and properties 
of both are involved: object (ra) and Earth (g). In general, a system is one or more 
objects that we choose to study. The choice of what makes up a system is always 
ours, and we often try to choose a simple system. Below, when we deal with the 
potential energy of an object in contact with a spring, our system will be the object 
and the spring.

EXERCISE A Return to the Chapter-Opening Question, page 183, and answer it again now.
Try to explain why you may have answered differently the first time.

A  C A U T I O N
Change in potential energy is 
what is physically meaningful

/ j \  CAUTI ON
Potential energy belongs to a system, 
not to a single object

EXAMPLE 8-1 Potential energy changes for a roller coaster. A 1000-kg 
roller-coaster car moves from point 1, Fig. 8-5, to point 2 and then to point 3.
(a) What is the gravitational potential energy at points 2 and 3 relative to point 1? 
That is, take y = 0 at point 1. (b) What is the change in potential energy when 
the car goes from point 2 to point 3? (c) Repeat parts (a) and (b), but take the 
reference point (y = 0) to be at point 3.
APPROACH We are interested in the potential energy of the car-Earth system. 
We take upward as the positive y direction, and use the definition of gravitational 
potential energy to calculate the potential energy.
SOLUTION (a) We measure heights from point 1 = 0), which means initially 
that the gravitational potential energy is zero. At point 2, where y2 = 10 m,

U2 = mgy2 = (1000 kg)(9.8 m/s2)(10 m) = 9.8 X 104J.
At point 3, y3 = -15  m, since point 3 is below point 1. Therefore,

U3 = mgy3 = (1000 kg)(9.8 m/s2)(-15  m) = -1.5 X 105J.
(b) In going from point 2 to point 3, the potential energy change (U fm3L\ — C/initiai) is

U3 -  U 2 =  (-1.5 X 105J) -  (9.8 X 104J) = -2.5 X 105J.
The gravitational potential energy decreases by 2.5 X 105 J.
(c) Now we set y3 = 0. Then y1 = +15 m at point 1, so the potential energy 
initially (at point 1) is

Ux = (1000 kg)(9.8 m/s2)(15 m) = 1.5 X 105J.
At point 2, y2 = 25 m, so the potential energy is

U2 = 2.5 X 105J.
At point 3, y3 = 0, so the potential energy is zero. The change in potential 
energy going from point 2 to point 3 is

U3 -  U2 = 0 -  2.5 X 105J = -2.5 X 105J,
which is the same as in part (b).
NOTE Work done by gravity depends only on the vertical height, so changes 
in gravitational potential energy do not depend on the path taken.

FIGURE 8-5 Example 8 -1 .

EXERCISE B By how much does the potential energy change when a 1200-kg car climbs to 
the top of a 300-m-tall hill? (a) 3.6 X 105 J; (b) 3.5 X 106 J; (c) 4 J; (d) 40 J; (e) 39.2 J. SECTION 8-2  187



Potential energy can be defined 
only fo r  conservative forces

FIGURE 8 - 6  A  spring (a) can 
store energy (elastic potential 
energy) when compressed (b), which 
can be used to do work when 
released (c) and (d).

(a)
x = 0

(b)

(C)

(d)

Potential Energy in General
We have defined the change in gravitational potential energy (Eq. 8-2) to be 
equal to the negative of the work done by gravity when the object moves from 
height yi to y2, which we now write as

At/ = -W o = - j V *

There are other types of potential energy besides gravitational. In general, we 
define the change in potential energy associated with a particular conservative 
force F as the negative o f the work done by that force:

A U = U2 - U x =
- - r

f  • di -W . (8-4)

However, we cannot use this definition to define a potential energy for all possible 
forces. It makes sense only for conservative forces such as gravity, for which the 
integral depends only on the end points and not on the path taken. It does not 
apply to nonconservative forces like friction, because the integral in Eq. 8-4 would 
not have a unique value depending on the end points 1 and 2. Thus the concept of 
potential energy cannot be defined and is meaningless for a nonconservative force.

Elastic Potential Energy
We consider now potential energy associated with elastic materials, which includes a 
great variety of practical applications.

Consider a simple coil spring as shown in Fig. 8-6, whose mass is so small 
that we can ignore it. When the spring is compressed and then released, it can do 
work on a ball (mass m). Thus the spring-ball system has potential energy when 
compressed (or stretched). Like other elastic materials, a spring is described by 
Hooke’s law (see Section 7-3) as long as the displacement x is not too great. Let 
us take our coordinate system so the end of the uncompressed spring is at x = 0 
(Fig. 8-6a) and x is positive to the right. To hold the spring compressed (or 
stretched) a distance x from its natural (unstretched) length requires the 
person’s hand to exert a force Ff = kx  on the spring (Fig. 8-6b), where k 
is the spring stiffness constant. The spring pushes back with a force (Newton’s 
third law),

Fs = -k x ,

Fig. 8-6c. The negative sign appears because the force Fs is in the direction opposite 
to the displacement x. From Eq. 8-4, the change in potential energy when the 
spring is compressed or stretched from xx = 0 (its uncompressed position) to 
x2 = x (where x can be + or - )  is

•2

A U = U(x) -  1/(0) = - j  Fs -d l =  - j  ( - k x )d x

Here, U(x) means the potential energy at x, and t/(0) means U at x = 0. It is 
usually convenient to choose the potential energy at x = 0 to be zero: t/(0) = 0, 
so the potential energy of a spring compressed or stretched an amount x from 
equilibrium is

Uel(x) = \k x 2. [elastic spring] (8-5)

Potential Energy Related to Force (1-D )
In the one-dimensional case, where a conservative force can be written as a function 
of x, say, the potential energy can be written as an indefinite integral

U(x) = -  F(x) dx + C, (8-6)

where the constant C represents the value of U at x = 0; we can sometimes
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choose C = 0. Equation 8-6 tells us how to obtain U(x) when given F(x). If, 
instead, we are given U(x), we can obtain F(x) by inverting the above equation: 
that is, we take the derivative of both sides, remembering that integration and 
differentiation are inverse operations:

dx
Thus

-y- I F(x) dx = F(x).
I

dU(x)
" M ' - s r 1 - « - 7>

EXAMPLE 8 -2 Determine F  from U. Suppose U(x) = -a x /(b 2 + x2), where 
a and b are constants. What is F as a function of x l

APPROACH Since U(x) depends only on x, this is a one-dimensional problem. 
SOLUTION Equation 8-7 gives

dU d ax
b2 + x2 b2 + x 2 (b1 + x2)2 (b2 + x2)2

* Potential Energy in Three Dimensions
In three dimensions, we can write the relation between F(jc, y, z) and U as:

dU dU dU----» Fv — -------» F7 — ------- ;
dx y dy dz

or
N ,d U  ,d U  ~dU

F(x, y ,z) =  - i - ---- j - ----- k —
dx dy dz

Here, d/dx, d/dy and d/dz are called partial derivatives; d/dx, for example, means 
that although U may be a function of x, y, and z, written U(x, y, z), we take the 
derivative only with respect to x with the other variables held constant.

8—3 Mechanical Energy and Its Conservation
Let us consider a conservative system (meaning only conservative forces do work) 
in which energy is transformed from kinetic to potential or vice versa. Again, we 
must consider a system because potential energy does not exist for an isolated 
object. Our system might be a mass m oscillating on the end of a spring or moving 
in the Earth’s gravitational field.

According to the work-energy principle (Eq. 7-11), the net work Wnet done on 
an object is equal to its change in kinetic energy:

W„et =  A X .

(If more than one object of our system has work done on it, then Wnet and AK  can 
represent the sum for all of them.) Since we assume a conservative system, we can 
write the net work done on an object or objects in terms of the change in total potential 
energy (see Eq. 8-4) between points 1 and 2:

At/U1.al = -  J \ e t ■ dt = ~WM . (8-8)

We combine the previous two equations, letting U be the total potential energy:

AK  + A U = 0 [conservative forces only] (8-9a)
or

(K2 — K-l) + (U2 — Ui) = 0. [conservative forces only] (8-9b)
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MECHANICAL ENERGY

CONSERVATION OF 
MECHANICAL ENERGY

FIGURE 8 - 7  The rock’s potential 
energy changes to kinetic energy as 
it falls. Note bar graphs representing 
potential energy U  and kinetic 
energy K  for the three different 
positions.
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We now define a quantity E, called the total mechanical energy of our system, as 
the sum of the kinetic energy plus the potential energy of the system at any moment 

E = K  + U.
We can rewrite Eq. 8-9b as

K2 + U2 = Kx + Ui [conservative forces only] (8-10a)
or

E2 = E1 = constant. [conservative forces only] (8-10b)
Equations 8-10 express a useful and profound principle regarding the total 
mechanical energy—it is a conserved quantity, as long as no nonconservative 
forces do work; that is, the quantity E = K  + U at some initial time 1 is equal 
to K  + U at any later time 2.

To say it another way, consider Eq. 8-9a which tells us A U = -  AK; that is, if 
the kinetic energy K  increases, then the potential energy U must decrease by an 
equivalent amount to compensate. Thus the total, K  + U, remains constant. This is 
called the principle of conservation of mechanical energy for conservative forces:

If only conservative forces are doing work, the total mechanical energy of a system 
neither increases nor decreases in any process. It stays constant—it is conserved.

We now see the reason for the term “conservative force”—because for such forces, 
mechanical energy is conserved.

If only one object of a system1 has significant kinetic energy, then Eqs. 8-10 become
E = \m v2 + U = constant, [conservative forces only] (8-lla )

If we let Vx and Ux represent the velocity and potential energy at one instant, and 
v2 and U2 represent them at a second instant, then we can rewrite this as

\m v2 + Ux = \m v2 + U2. [conservative system] (8-llb )
From this equation we can see again that it doesn’t make any difference where we 
choose the potential energy to be zero: adding a constant to U merely adds a 
constant to both sides of Eq. 8 -llb , and these cancel. A constant also doesn’t 
affect the force obtained using Eq. 8-7, F = —dU/dx, since the derivative of a 
constant is zero. Only changes in the potential energy matter.

8—4 Problem Solving Using 
Conservation of Mechanical Energy

A simple example of the conservation of mechanical energy (neglecting air resistance) 
is a rock allowed to fall due to Earth’s gravity from a height h above the ground, as 
shown in Fig. 8-7. If the rock starts from rest, all of the initial energy is potential 
energy. As the rock falls, the potential energy mgy decreases (because y decreases), 
but the rock’s kinetic energy increases to compensate, so that the sum of the two 
remains constant. At any point along the path, the total mechanical energy is given by

E = K  + U = \m v2 + mgy
where y is the rock’s height above the ground at a given instant and v is its speed 
at that point. If we let the subscript 1 represent the rock at one point along its path 
(for example, the initial point), and the subscript 2 represent it at some other 
point, then we can write

total mechanical energy at point 1 = total mechanical energy at point 2

or (see also Eq. 8 -llb )

\m v\ + mgyx = \m v\ + mgy2. [gravity only] (8-12)

Just before the rock hits the ground, where we chose y = 0, all of the initial 
potential energy will have been transformed into kinetic energy.

energy
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EXAMPLE 8-3 Falling rock. If the original height of the rock in Fig. 8-7 is yx = 
h = 3.0 m, calculate the rock’s speed when it has fallen to 1.0 m above the ground. 
APPROACH We apply the principle of conservation of mechanical energy, Eq. 8-12, 
with only gravity acting on the rock. We choose the ground as our reference level
(y =  °)-
SOLUTION At the moment of release (point 1) the rock’s position is y1 = 3.0 m 
and it is at rest: vx = 0. We want to find v2 when the rock is at position 
y2 = 1.0 m. Equation 8-12 gives

\m v\ + mgyi = \m v\ + mgy2.
The ra’s cancel out; setting vx = 0 and solving for v2 we find

v2 = V ~ yi) = V 2(9-8m/s2)[(3.0m) -  (1.0m)] = 6.3m/s. 
The rock’s speed 1.0 m above the ground is 6.3 m/s downward.
NOTE The velocity of the rock is independent of the rock’s mass.

I EXERCISE C In Example 8 -3 , what is the rock’s speed just before it hits the ground? 
| (a) 6.5 m /s; (b) 7.0 m /s; (c) 7.7 m /s; (d ) 8.3 m /s; (e) 9.8 m /s.

Equation 8-12 can be applied to any object moving without friction under the 
action of gravity. For example, Fig. 8-8 shows a roller-coaster car starting from rest 
at the top of a hill, and coasting without friction to the bottom and up the hill on the 
other side. True, there is another force besides gravity acting on the car, the normal 
force exerted by the tracks. But this “constraint” force acts perpendicular to the 
direction of motion at each point and so does zero work. We ignore rotational 
motion of the car’s wheels and treat the car as a particle undergoing simple translation. 
Initially, the car has only potential energy. As it coasts down the hill, it loses potential 
energy and gains in kinetic energy, but the sum of the two remains constant. At the 
bottom of the hill it has its maximum kinetic energy, and as it climbs up the other 
side the kinetic energy changes back to potential energy. When the car comes to rest 
again at the same height from which it started, all of its energy will be potential 
energy. Given that the gravitational potential energy is proportional to the vertical 
height, energy conservation tells us that (in the absence of friction) the car comes to 
rest at a height equal to its original height. If the two hills are the same height, the 
car will just barely reach the top of the second hill when it stops. If the second hill 
is lower than the first, not all of the car’s kinetic energy will be transformed to 
potential energy and the car can continue over the top and down the other side. If 
the second hill is higher, the car will only reach a height on it equal to its original 
height on the first hill. This is true (in the absence of friction) no matter how steep 
the hill is, since potential energy depends only on the vertical height.

I f r f M I J W n a  Roller-coaster car speed using energy conservation. Assuming 
the height of the hill in Fig. 8-8 is 40 m, and the roller-coaster car starts from rest at 
the top, calculate {a) the speed of the roller-coaster car at the bottom of the hill, and 
(b) at what height it will have half this speed. Take y = 0 at the bottom of the hill. 
APPROACH We choose point 1 to be where the car starts from rest (vx = 0) at 
the top of the hill (^  = 40 m). Point 2 is the bottom of the hill, which we choose 
as our reference level, so y2 = 0. We use conservation of mechanical energy. 
SOLUTION (a) We use Eq. 8-12 with vx = 0 and y2 = 0, which gives

mgyx = \m v\
or

v2 = V 2 gy1 = V /5(9^n7s2)(4^in) = 28 m/s.
(b) We again use conservation of energy,

\m v\ + mgyx = \m v\ + mgy2, 
but now v2 = \  (28 m/s) = 14 m/s, vx = 0, and y2 is the unknown. Thus

v\
yi = yx ~ Yg = 30m-

That is, the car has a speed of 14 m/s when it is 30 vertical meters above the lowest 
point, both when descending the left-hand hill and when ascending the right-hand hill.

FIGURE 8-8 A  roller-coaster car 
moving without friction illustrates 
the conservation of mechanical 
energy.
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The mathematics of the roller-coaster Example 8-4 is almost the same as in 
Example 8-3. But there is an important difference between them. In Example 8-3 
the motion is all vertical and could have been solved using force, acceleration, and 
the kinematic equations (Eqs. 2-12). But for the roller coaster, where the motion is 
not vertical, we could not have used Eqs. 2-12 because a is not constant on the 
curved track; but energy conservation readily gives us the answer.

CONCEPTUAL EXAMPLE 8 -51  Speeds on two water slides. Two water slides 
at a pool are shaped differently, but start at the same height h (Fig. 8-9). Two riders, 
Paul and Kathleen, start from rest at the same time on different slides, (a) Which 
rider, Paul or Kathleen, is traveling faster at the bottom? (b) Which rider makes it to 
the bottom first? Ignore friction and assume both slides have the same path length.

RESPONSE (a) Each rider’s initial potential energy mgh gets transformed to kinetic 
energy, so the speed v at the bottom is obtained from \m v2 = mgh. The mass 
cancels and so the speed will be the same, regardless of the mass of the rider. Since 
they descend the same vertical height, they will finish with the same speed. (b) Note 
that Kathleen is consistently at a lower elevation than Paul at any instant, until the 
end. This means she has converted her potential energy to kinetic energy earlier. 
Consequently, she is traveling faster than Paul for the whole trip, and because the 
distance is the same, Kathleen gets to the bottom first.

P R O B L E M  S O L V I N G
Use energy, or Newton's laws?

0 P H Y S I C S  A P P L I E D
Sports

FIGURE 8 -1 0  Transformation of 
energy during a pole vault.

EXERCISE D Two balls are released from the same height above the floor. Ball A  falls 
freely through the air, whereas ball B slides on a curved frictionless track to the floor. How  
do the speeds of the balls compare when they reach the floor?

You may wonder sometimes whether to approach a problem using work and 
energy, or instead to use Newton’s laws. As a rough guideline, if the force(s) 
involved are constant, either approach may succeed. If the forces are not constant, 
and/or the path is not simple, energy is probably the better approach.

There are many interesting examples of the conservation of energy in sports, 
such as the pole vault illustrated in Fig. 8-10. We often have to make approximations, 
but the sequence of events in broad outline for the pole vault is as follows. The 
initial kinetic energy of the running athlete is transformed into elastic potential 
energy of the bending pole and, as the athlete leaves the ground, into gravitational 
potential energy. When the vaulter reaches the top and the pole has straightened 
out again, the energy has all been transformed into gravitational potential energy 
(if we ignore the vaulter’s low horizontal speed over the bar). The pole does not 
supply any energy, but it acts as a device to store energy and thus aid in the 
transformation of kinetic energy into gravitational potential energy, which is the net 
result. The energy required to pass over the bar depends on how high the center of 
mass ( c m ) of the vaulter must be raised. By bending their bodies, pole vaulters 
keep their c m  so low that it can actually pass slightly beneath the bar (Fig. 8-11), 
thus enabling them to cross over a higher bar than would otherwise be possible. 
(Center of mass is covered in Chapter 9.)

FIGURE 8 -1 1  By bending their bodies, 
pole vaulters can keep their center of mass 
so low that it may even pass below the bar. 
By changing their kinetic energy (of running) 
into gravitational potential energy (=  m gy)  
in this way, vaulters can cross over a higher 
bar than if the change in potential energy 
were accomplished without carefully bending 
the body.
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ESTIMATE I Pole vault. Estimate the kinetic energy and theEXAMPLE 8-6
speed required for a 70-kg pole vaulter to just pass over a bar 5.0 m high. Assume 
the vaulter’s center of mass is initially 0.90 m off the ground and reaches its 
maximum height at the level of the bar itself.
APPROACH We equate the total energy just before the vaulter places the end of 
the pole onto the ground (and the pole begins to bend and store potential 
energy) with the vaulter’s total energy when passing over the bar (we ignore the 
small amount of kinetic energy at this point). We choose the initial position of the 
vaulter’s center of mass to be y1 = 0. The vaulter’s body must then be raised to 
a height y2 = 5.0 m -  0.9 m = 4.1 m.
SOLUTION We use Eq. 8-12,

\m v  i + 0 = 0 + mgy2

Kx = \m v\ = mgy2 = (70 kg)(9.8 m/s2)(4.1 m) = 2.8 X 103J.
The speed is

Vi = 70 kg = 8.9 m/s ~ 9 m/s.

NOTE This is an approximation because we have ignored such things as the 
vaulter’s speed while crossing over the bar, mechanical energy transformed when 
the pole is planted in the ground, and work done by the vaulter on the pole. All 
would increase the needed initial kinetic energy.

As another example of the conservation of mechanical energy, let us consider 
an object of mass m connected to a horizontal spring (Fig. 8-6) whose 
own mass can be neglected and whose spring stiffness constant is k. The mass m has 
speed v at any moment. The potential energy of the system (object plus spring) 
is \k x 2, where x is the displacement of the spring from its unstretched length. If 
neither friction nor any other force is acting, conservation of mechanical energy 
tells us that

\m v i + \k x \  =  \m v\ + \k x \ ,  [elastic pe only] (8-13)
where the subscripts 1 and 2 refer to the velocity and displacement at two different 
moments.

Toy dart gun. A dart of mass 0.100 kg is pressed against the 
spring of a toy dart gun as shown in Fig. 8 -12a. The spring (with spring stiffness 
constant k = 250 N/m and ignorable mass) is compressed 6.0 cm and released. If 
the dart detaches from the spring when the spring reaches its natural length (x = 0), 
what speed does the dart acquire?
APPROACH The dart is initially at rest (point 1), so Kx = 0. We ignore friction 
and use conservation of mechanical energy; the only potential energy is elastic. 
SOLUTION We use Eq. 8-13 with point 1 being at the maximum compression of 
the spring, so vx = 0 (dart not yet released) and xx = -0.060 m. Point 2 we 
choose to be the instant the dart flies off the end of the spring (Fig. 8 -12b), so 
x2 = 0 and we want to find v2. Thus Eq. 8-13 can be written

0 + \k x \  = \m v2 + 0.
Then

and

v\ =

v2

kx\
m

(250 N/m) (-0.060 m):
= 3.0 m/s.

(0.100 kg)
NOTE In the horizontal direction, the only force on the dart (neglecting friction) 
was the force exerted by the spring. Vertically, gravity was counterbalanced by 
the normal force exerted on the dart by the gun barrel. After it leaves the barrel, 
the dart will follow a projectile’s path under gravity.

FIGURE 8 -1 2  Example 8 -7 .
(a) A  dart is pushed against a spring, 
compressing it 6.0 cm. The dart is 
then released, and in (b) it leaves the 
spring at velocity v2.

«|=0

U K

I
(h)£=4m r-

6.C)
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SECTION 8-4  Problem Solving Using Conservation of Mechanical Energy 193



P R O B L E M  S O L V I N G
Alternate Solution

EXAMPLE 8 -8 Two kinds of potential energy. A ball of mass m = 2.60 kg, 
starting from rest, falls a vertical distance h = 55.0 cm before striking a vertical 
coiled spring, which it compresses an amount Y  = 15.0 cm (Fig. 8-13). Deter­
mine the spring stiffness constant of the spring. Assume the spring has negligible 
mass, and ignore air resistance. Measure all distances from the point where the 
ball first touches the uncompressed spring (y = 0 at this point).
APPROACH The forces acting on the ball are the gravitational pull of the Earth and 
the elastic force exerted by the spring. Both forces are conservative, so we can use 
conservation of mechanical energy, including both types of potential energy. We must 
be careful, however: gravity acts throughout the fall (Fig. 8-13), whereas the elastic 
force does not act until the ball touches the spring (Fig. 8-13b). We choose y positive 
upward, and y = 0 at the end of the spring in its natural (uncompressed) state. 
SOLUTION We divide this solution into two parts. (An alternate solution follows.) 
Part 1: Let us first consider the energy changes as the ball falls from a height 
yi = h = 0.55 m, Fig. 8-13a, to y2 = 0, just as it touches the spring, Fig. 8-13b. 
Our system is the ball acted on by gravity plus the spring (which up to this point 
doesn’t do anything). Thus

\m v\ + mgy1 = \m v22 + mgy2
0 + mgh = \m v2 + 0.

We solve for v2 = V2gh = y / 2(9.80 m/s2)(0.550 m) = 3.283 m/s «  3.28 m/s. 
This is the speed of the ball just as it touches the top of the spring, Fig. 8-13b. 
Part 2: As the ball compresses the spring, Figs. 8-13b to c, there are two conservative 
forces on the ball—gravity and the spring force. So our conservation of energy 
equation is

E2 (ball touches spring) = E3 (spring compressed)
\m v\ + mgy2 + \k y \ = \m v\ + mgy3 + \k y \ .

Substituting y2 = 0, v2 = 3.283 m/s, v3 = 0 (the ball comes to rest for an instant), 
and y3 = —Y  = -0.150 m, we have

\m v2 + 0 + 0 = 0 -  mgY  + \ k ( - Y ) 2.

We know m, v2, and Y, so we can solve for k\

k = - ^ H mv2 + m g Y ]  = ^ [ v l  + 2 g Y ]

(2.60 kg) 
(0.150 m)2

[(3.283 m/s)2 + 2(9.80 m/s2)(0.150m)] = 1590 N/m.

Alternate Solution Instead of dividing the solution into two parts, we can do it 
all at once. After all, we get to choose what two points are used on the left and 
right of the energy equation. Let us write the energy equation for points 1 and 3 
in Fig. 8-13. Point 1 is the initial point just before the ball starts to fall 
(Fig. 8-13a), so vx = 0, and y\ = h = 0.550 m. Point 3 is when the spring is 
fully compressed (Fig. 8-13c), so v3 = 0, y3 = —Y  = -0.150 m. The forces on 
the ball in this process are gravity and (at least part of the time) the spring. So 
conservation of energy tells us

\m v\ + mgyx + |A:(0)2 = \m v\ + mgy3 + \ k y 3
0 + mgh + 0  = 0 -  mgY  + \ k Y 2

where we have set y = 0 for the spring at point 1 because it is not acting and is 
not compressed or stretched. We solve for k :

2 mg(h + y) 2(2.60 kg)(9.80m/s2)(0.550m + 0.150 m)
k =

just as in our first method of solution.
(0.150 m)2

1590 N/m
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A swinging pendulum. The simple pendulum shown in 
Fig. 8-14 consists of a small bob of mass m suspended by a massless cord of 
length I. The bob is released (without a push) at t = 0, where the cord makes 
an angle 0 = 0O to the vertical, (a) Describe the motion of the bob in terms of 
kinetic energy and potential energy. Then determine the speed of the bob (b) as 
a function of position 0 as it swings back and forth, and (c) at the lowest point of 
the swing. (d) Find the tension in the cord, FT. Ignore friction and air resistance. 
APPROACH We use the law of conservation of mechanical energy (only the conser­
vative force of gravity does work), except in (d) where we use Newton’s second law. 
SOLUTION (a) At the moment of release, the bob is at rest, so its kinetic energy 
K  = 0. As the bob moves down, it loses potential energy and gains kinetic energy. 
At the lowest point its kinetic energy is a maximum and the potential energy 
is a minimum. The bob continues its swing until it reaches an equal height and 
angle (0O) on the opposite side, at which point the potential energy is a maximum 
and K  = 0. It continues the swinging motion as U —» K  —» U and so on, but it 
can never go higher than 0 = ± d 0 (conservation of mechanical energy).
(b) The cord is assumed to be massless, so we need to consider only the bob’s 
kinetic energy, and the gravitational potential energy. The bob has two forces 
acting on it at any moment: gravity, mg, and the force the cord exerts on it, Fx. 
The latter (a constraint force) always acts perpendicular to the motion, so it does 
no work. We need be concerned only with gravity, for which we can write the 
potential energy. The mechanical energy of the system is

E = \m v2 + mgy, 
where y is the vertical height of the bob at any moment. We take y = 0 at the 
lowest point of the bob’s swing. Hence at t = 0,

y = y0 = £ -  £ cos 0O = ^(l -  cos0o) 
as can be seen from the diagram. At the moment of release 

E = mgy0,
since v = v0 = 0. At any other point along the swing 

E = \m v2 + mgy = mgy0.
We solve this for v:

v = V 2s ( »  -  y).
In terms of the angle 0 of the cord, we can write

(>b — y) = (i ~ Zcosdo) — (£ -  tcosd) = £(cos 0 -  cos0o)
so

v = '\/2g£(cos 0-cos 0O) .
(c) At the lowest point, y = 0, so

» = V 2 gyi>
or _____________

v = \ /2 g i ( l  -  cos 0O) .
(d) The tension in the cord is the force FT that the cord exerts on the bob. As 
we’ve seen, there is no work done by this force, but we can calculate the force 
simply by using Newton’s second law 2F  = ma and by noting that at any point 
the acceleration of the bob in the inward radial direction is v2/i, since the bob is 
constrained to move in an arc of a circle of radius t  In the radial direction, Fx acts 
inward, and a component of gravity equal to mg cos 0 acts outward. Hence

v2
m — = FT — mg cos 0.

We solve for FT and use the result of part (b) for v2\

Ft = + g c o s 0 j = 2mg(cos0 -  cos0o) + mg cos 0

= (3 cos 0 — 2 cos 0o)mg.

EXAMPLE 8 -9

FIGURE 8-14 Example 8-9: a 
simple pendulum; y  is measured 
positive upward.
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FIGURE 8 -1 5  The burning of fuel 
(a chemical reaction) releases 
energy to boil water in this steam  
engine. The steam produced expands 
against a piston to do work in 
turning the wheels.

LAW OF CONSERVATION 
OF ENERGY

LAW OF CONSERVATION 
OF ENERGY

8—5 The Law of Conservation of Energy
We now take into account nonconservative forces such as friction, since they are 
important in real situations. For example, consider again the roller-coaster car in 
Fig. 8-8, but this time let us include friction. The car will not in this case reach the 
same height on the second hill as it had on the first hill because of friction.

In this, and in other natural processes, the mechanical energy (sum of the 
kinetic and potential energies) does not remain constant but decreases. Because 
frictional forces reduce the mechanical energy (but not the total energy), they 
are called dissipative forces. Historically, the presence of dissipative forces hindered 
the formulation of a comprehensive conservation of energy law until well into 
the nineteenth century. It was not until then that heat, which is always produced 
when there is friction (try rubbing your hands together), was interpreted in 
terms of energy. Quantitative studies in the nineteenth-century (Chapter 19) 
demonstrated that if heat is considered as a transfer of energy (sometimes called 
thermal energy), then the total energy is conserved in any process. For example, if 
the roller-coaster car in Fig. 8-8 is subject to frictional forces, then the initial total 
energy of the car will be equal to the car’s kinetic energy plus the potential energy 
at any subsequent point along its path plus the amount of thermal energy produced 
in the process. A block sliding freely across a table, for example, comes to rest 
because of friction. Its initial kinetic energy is all transformed into thermal energy. 
The block and table are a little warmer as a result of this process: both have 
absorbed some thermal energy. Another example of the transformation of kinetic 
energy into thermal energy can be observed by vigorously striking a nail several 
times with a hammer and then gently touching the nail with your finger.

According to the atomic theory, thermal energy represents kinetic energy of 
rapidly moving molecules. We shall see in Chapter 18 that a rise in temperature 
corresponds to an increase in the average kinetic energy of the molecules. Because 
thermal energy represents the energy of atoms and molecules that make up an 
object, it is often called internal energy. Internal energy, from the atomic point of 
view, can include not only kinetic energy of molecules but also potential energy 
(usually electrical in nature) because of the relative positions of atoms within 
molecules. On a macroscopic level, thermal or internal energy corresponds to 
nonconservative forces such as friction. But at the atomic level, the energy is partly 
kinetic, partly potential corresponding to forces that are conservative. For 
example, the energy stored in food or in a fuel such as gasoline can be regarded as 
potential energy stored by virtue of the relative positions of the atoms within a 
molecule due to electric forces between atoms (referred to as chemical bonds). For 
this energy to be used to do work, it must be released, usually through chemical 
reactions (Fig. 8-15). This is analogous to a compressed spring which, when 
released, can do work.

To establish the more general law of conservation of energy, it required nine- 
teenth-century physicists to recognize electrical, chemical, and other forms of 
energy in addition to heat and to explore if in fact they could fit into a conserva­
tion law. For each type of force, conservative or nonconservative, it has always 
been found possible to define a type of energy that corresponds to the work done 
by such a force. And it has been found experimentally that the total energy E  
always remains constant. That is, the change in the total energy, kinetic plus poten­
tial plus all other forms of energy, equals zero:

AK  + A U + [change in all other forms of energy] = 0. (8-14)

This is one of the most important principles in physics. It is called the law of 
conservation of energy and can be stated as follows:

The total energy is neither increased nor decreased in any process. Energy can
be transformed from one form to another, and transferred from one object to
another, but the total amount remains constant.
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For conservative mechanical systems, this law can be derived from Newton’s laws 
(Section 8-3) and thus is equivalent to them. But in its full generality, the validity 
of the law of conservation of energy rests on experimental observation.

Even though Newton’s laws have been found to fail in the submicroscopic 
world of the atom, the law of conservation of energy has been found to hold there 
and in every experimental situation so far tested.

8—6 Energy Conservation with 
Dissipative Forces: Solving Problems

In Section 8-4 we discussed several Examples of the law of conservation of energy 
for conservative systems. Now let us consider in detail some examples that involve 
nonconservative forces.

Suppose, for example, that the roller-coaster car rolling on the hills of Fig. 8-8 
is subject to frictional forces. In going from some point 1 to a second point 2, the 
energy dissipated by the friction force Ffr acting on the car (treating it as a particle) is 
Ji Ffr • dl. If Ffr is constant in magnitude, the energy dissipated is simply Ffr £, where £ is 
the actual distance along the path traveled by the object from point 1 to point 2. Thus 
we write our conservation of energy equation, Eq. 8-14, as

AK  + AU  + Ffl£ = 0,
or

\m (v\ -  v§ + mg(y2 -  * )  + Fbl  = 0.
We can rewrite this, comparing the initial energy E1 to the final energy E2:

1 mv\ + mgy, = \m v\ + mgy2 + Fbl. [ f S S m g ]  (8" 15>
That is,

= E2
initial energy = final energy (including thermal energy).

On the left we have the mechanical energy of the system initially. It equals the 
mechanical energy at any subsequent point along the path plus the amount of 
thermal (or internal) energy produced in the process.

Other nonconservative forces can be treated similarly. If you are not sure 
about the sign of the last term (JF  • dt) on the right, use your intuition: is the 
mechanical energy increased or decreased in the process.

Work-Energy versus Energy Conservation
The law of conservation of energy is more general and more powerful than the work- 
energy principle. Indeed, the work-energy principle should not be viewed as a statement 
of conservation of energy. It is nonetheless useful for some mechanical problems; and 
whether you use it, or use the more powerful conservation of energy, can depend on your 
choice of the system under study. If you choose as your system a particle or rigid object 
on which external forces do work, then you can use the work-energy principle: the work 
done by the external forces on your object equals the change in its kinetic energy.

On the other hand, if you choose a system on which no external forces do 
work, then you need to apply conservation of energy to that system directly.

Consider, for example, a spring connected to a block on a frictionless table 
(Fig. 8-16). If you choose the block as your system, then the work done on the block 
by the spring equals the change in kinetic energy of the block: the work-energy 
principle. (Energy conservation does not apply to this system—the block’s energy 
changes.) If instead you choose the block plus the spring as your system, no 
external forces do work (since the spring is part of the chosen system). To this 
system you need to apply conservation of energy: if you compress the spring and then 
release it, the spring still exerts a force on the block, but the subsequent motion 
can be discussed in terms of kinetic energy ( |mv2) plus potential energy ( |kx2), 
whose total remains constant.

FIGURE 8 -1 6  A  spring connected  
to a block on a frictionless table. If 
you choose your system to be the 
block plus spring, then  

E = \mv2 + \kx2 
is conserved.
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Problem solving is not a process that can be done by simply following a set 
of rules. The following Problem Solving Strategy, like all others, is thus not a 
prescription, but is a summary to help you get started solving problems 
involving energy.

o
&

V
Conservation of Energy
1. Draw a picture of the physical situation.
2. Determine the system for which you will apply 

energy conservation: the object or objects and the 
forces acting.

3. Ask yourself what quantity you are looking for, and 
choose initial (point 1) and final (point 2) positions.

4. If the object under investigation changes its height 
during the problem, then choose a reference frame 
with a convenient y = 0 level for gravitational 
potential energy; the lowest point in the problem is 
often a good choice.

If springs are involved, choose the unstretched 
spring position to be x (or y) = 0 .

5. Is mechanical energy conserved? If no friction or 
other nonconservative forces act, then conservation 
of mechanical energy holds:

Kx + Ux = K2 + U2.
6. Apply conservation of energy. If friction (or other 

nonconservative forces) are present, then an additional 
term of the form J F • dl will be needed. For a constant 
friction force acting over a distance I

K\ + U\ = K2 + U2 + FhL
For other nonconservative forces use your intuition 
for the sign of J F • dl\ is the total mechanical energy 
increased or decreased in the process?

7. Use the equation(s) you develop to solve for the 
unknown quantity.

FIGURE 8-17 Example 8-10. 
Because of friction, a roller-coaster 
car does not reach the original 
height on the second hill. (Not to scale)

EXAMPLE 8-10 ESTIMATE- ! Friction on the roller-coaster car. The roller­
coaster car in Example 8-4 reaches a vertical height of only 25 m on the second 
hill before coming to a momentary stop (Fig. 8-17). It traveled a total distance of 
400 m. Determine the thermal energy produced and estimate the average friction 
force (assume it is roughly constant) on the car, whose mass is 1000 kg.

APPROACH We explicitly follow the Problem Solving Strategy above. 
SOLUTION
1. Draw a picture. See Fig. 8-17.
2. The system. The system is the roller-coaster car and the Earth (which exerts 

the gravitational force). The forces acting on the car are gravity and friction. 
(The normal force also acts on the car, but does no work, so it does not affect 
the energy.)

3. Choose initial and final positions. We take point 1 to be the instant when the 
car started coasting (at the top of the first hill), and point 2 to be the instant it 
stopped 25 m up the second hill.

4. Choose a reference frame. We choose the lowest point in the motion to be 
y = 0 for the gravitational potential energy.

5. Is mechanical energy conserved? No. Friction is present.
6. Apply conservation of energy. There is friction acting on the car, so we use 

conservation of energy in the form of Eq. 8-15, with vx = 0, yx = 40 m, 
v2 = 0, y2 = 25 m, and I = 400 m. Thus

0 + (1000 kg) (9.8 m/s2) (40 m) = 0 + (1000kg)(9.8m/s2)(25m) + Fhi.

7. Solve. We solve the above equation for Ffr£, the energy dissipated to thermal 
energy: FfT£ = (1000 kg)(9.8 m/s2)(40 m -  25 m) = 147,000 J. The average 
force of friction was Ffr = (1.47 X 105 j)/400m = 370 N. [This result is only 
a rough average: the friction force at various points depends on the normal 
force, which varies with slope.]
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EXAMPLE 8-11 Friction with a spring. A block of mass ra sliding along a 
rough horizontal surface is traveling at a speed v0 when it strikes a massless 
spring head-on (see Fig. 8-18) and compresses the spring a maximum distance X. 
If the spring has stiffness constant k, determine the coefficient of kinetic friction 
between block and surface.

APPROACH At the moment of collision, the block has K = \m vl and the 
spring is presumably uncompressed, so U = 0. Initially the mechanical energy of 
the system is \m v§. By the time the spring reaches maximum compression, 
K  = 0 and U = \ k X 2. In the meantime, the friction force (= (JiyiFN = /xkmg) 
has transformed energy FiTX  = m gX  into thermal energy.
SOLUTION Conservation of energy allows us to write

energy (initial) = energy (final)
\m v  § = \ k X 2 + fi^mgX.

We solve for and find

'I*

k X
2 g X  2 mg

m m m m m

FIGURE 8-18

(3 )

i—
<b)

Example 8 -11.

'LIA

8—7 Gravitational Potential Energy and 
Escape Velocity

We have been dealing with gravitational potential energy so far in this Chapter 
assuming the force of gravity is constant, F = rag. This is an accurate assumption for 
ordinary objects near the surface of the Earth. But to deal with gravity more 
generally, for points not close to the Earth’s surface, we must consider that the 
gravitational force exerted by the Earth on a particle of mass ra decreases inversely 
as the square of the distance r from the Earth’s center. The precise relationship is 
given by Newton’s law of universal gravitation (Sections 6-1 and 6-2):

raMF  ̂
F = - G —

where ME is the mass of the Earth and r is a unit vector (at the position of ra) 
directed radially away from the Earth’s center. The minus sign indicates that the 
force on ra is directed toward the Earth’s center, in the direction opposite to r. This 
equation can also be used to describe the gravitational force on a mass ra in the 
vicinity of other heavenly bodies, such as the Moon, a planet, or the Sun, in which case 
Me must be replaced by that body’s mass.

Suppose an object of mass ra moves from one position to another along an 
arbitrary path (Fig. 8-19) so that its distance from the Earth’s center changes 
from rx to r2. The work done by the gravitational force is

-£W = I F  • di = -G m M E
dt

where dt represents an infinitesimal displacement. Since r • dt = dr is the 
component of dt along r (see Fig. 8-19), then

dr[r'd  

i  r
W = -G m M E \ - r  = GmME\ ---------

or
GmME GmME

FIGURE 8-19 Arbitrary path of 
particle of mass m moving from 
point 1 to point 2.

Because the value of the integral depends only on the position of the end points 
(^ and r2) and not on the path taken, the gravitational force is a conservative force.
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FIGURE 8 - 2 0  Gravitational 
potential energy plotted as a 
function of r, the distance from 
Earth’s center. Valid only for points 
r > rE, the radius of the Earth.

We can therefore use the concept of potential energy for the gravitational force. 
Since the change in potential energy is always defined (Section 8-2) as the 
negative of the work done by the force, we have

GmMp GmMp
AU  = U2 -  £/j = ----------- + ------- -• (8-16)

r2 r l

From Eq. 8-16 the potential energy at any distance r from the Earth’s center can 
be written:

GmME 
U{r) = ------ + C,

where C is a constant. It is usual to choose C = 0, so that 

GmM¥
U(r) [,r>t>] «-»>

With this choice for C, U = 0 at r = oo. As an object approaches the Earth, its 
potential energy decreases and is always negative (Fig. 8-20).

Equation 8-16 reduces to Eq. 8-2, A U = mg(y2 ~ yi), for objects near the 
surface of the Earth (see Problem 48).

For a particle of mass m, which experiences only the force of the Earth’s 
gravity, the total energy is conserved because gravity is a conservative force. 
Therefore we can write

1 2 2mv{ mMF 1 mMF [ gravity 1 /Q ^
G — — = ^mv2 -  G — — = constant. [ only J

EXAMPLE 8-12 Package dropped from high-speed rocket. A box of
empty film canisters is allowed to fall from a rocket traveling outward from 
Earth at a speed of 1800 m/s when 1600 km above the Earth’s surface. The 
package eventually falls to the Earth. Estimate its speed just before impact. 
Ignore air resistance.

APPROACH We use conservation of energy. The package initially has a speed 
relative to Earth equal to the speed of the rocket from which it falls.
SOLUTION Conservation of energy in this case is expressed by Eq. 8-18:

1 2 ^  mME 1 2 ^  mME 2mv{ — G ------- = 2mv2 — G -------
ri r2

where v1 = 1.80 X 103m/s, rx = (1.60 X 106m) + (6.38 X 106m) = 7.98 X 106m, 
and r2 = 6.38 X 106m (the radius of the Earth). We solve for v2:

'(1.80 X 103 m/s)2 -  2(6.67 X 10”11 N • m2/kg2)(5.98 X 1024kg)
1 1

7.98 X 106 m 6.38 X 106m
= 5320 m/s.

NOTE In reality, the speed will be considerably less than this because of air 
resistance. Note, incidentally, that the direction of the velocity never entered into 
this calculation, and this is one of the advantages of the energy method. The rocket 
could have been heading away from the Earth, or toward it, or at some other 
angle, and the result would be the same.
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Escape Velocity
When an object is projected into the air from the Earth, it will return to Earth unless 
its speed is very high. But if the speed is high enough, it will continue out into space 
never to return to Earth (barring other forces or collisions). The minimum initial 
velocity needed to prevent an object from returning to the Earth is called the escape 
velocity from Earth, vesc. To determine vesc from the Earth’s surface (ignoring air 
resistance), we use Eq. 8-18 with vx = vesc and rx = rE = 6.38 X 106 m, the radius 
of the Earth. Since we want the minimum speed for escape, we need the object to 
reach r2 = oo with merely zero speed, v2 = 0. Applying Eq. 8-18 we have 

mMF
lm vlsc — G ------  = 0 + 0

rE
or

vssc = \ / 2 G M e A e  = 1-12 X 104m/s (8-19)
or 11.2 km/s. It is important to note that although a mass can escape from the 
Earth (or solar system) never to return, the force on it due to the Earth’s gravitational 
field is never actually zero for a finite value of r.

IflfM IJ W B M  Escaping the Earth or the Moon, (a) Compare the escape 
velocities of a rocket from the Earth and from the Moon. (b) Compare the 
energies required to launch the rockets. For the Moon, Mu = 7.35 X 1022 kg and 
rM = 1.74 X 106m, and for Earth, ME = 5.98 X 1024kg and rE = 6.38 X 106m. 
APPROACH We use Eq. 8-19, replacing ME and rE with Mm and rM for finding 
vesc from the Moon.
SOLUTION (a) Using Eq. 8-19, the ratio of the escape velocities is 

.(Earth) /ME /m = 4?
Vesc(M oon) v Mu rE 

To escape Earth requires a speed 4.7 times that required to escape the M oon .
(b) The fuel that must be burned provides energy proportional to v2 (K  = \m v2)\ 
so to launch a rocket to escape Earth requires (4.7)2 = 22 times as much energy 
as to escape from the Moon.

8—8 Power
Power is defined as the rate at which work is done. The average power, P, equals 
the work W  done divided by the time t it takes to do it:

-  W
P = y  (8-20a)

Since the work done in a process involves the transformation of energy from 
one type (or object) to another, power can also be defined as the rate at which energy 
is transformed:

— W  energy transformed 
t time

The instantaneous power, P, is 
dW

P = — • (8-20b)

The work done in a process is equal to the energy transferred from one 
object to another. For example, as the potential energy stored in the spring of 
Fig. 8-6c is transformed to kinetic energy of the ball, the spring is doing work on the 
ball. Similarly, when you throw a ball or push a grocery cart, whenever work is 
done, energy is being transferred from one body to another. Hence we can also say 
that power is the rate at which energy is transformed: 

dE
P = - ■  (8-20C)

The power of a horse refers to how much work it can do per unit of time.
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The power rating of an engine refers to how much chemical or electrical energy 
can be transformed into mechanical energy per unit of time. In SI units, power is 
measured in joules per second, and this unit is given a special name, the watt (W): 
1 W = 1 J/s. We are most familiar with the watt for electrical devices: the rate at 
which an electric lightbulb or heater changes electric energy into light or thermal 
energy. But the watt is used for other types of energy transformation as well. In the 
British system, the unit of power is the foot-pound per second (ft - lb/s). For practical 
purposes a larger unit is often used, the horsepower. One horsepowerf (hp) is 
defined as 550 ft - lb/s, which equals 746 watts. An engine’s power is usually 
specified in hp or in kW (l kW ~ 1 f hp).

To see the distinction between energy and power, consider the following 
example. A person is limited in the work he or she can do, not only by the 
total energy required, but also by how fast this energy is transformed: that is, by 
power. For example, a person may be able to walk a long distance or climb many 
flights of stairs before having to stop because so much energy has been expended. 
On the other hand, a person who runs very quickly up stairs may feel exhausted 
after only a flight or two. He or she is limited in this case by power, the rate at 
which his or her body can transform chemical energy into mechanical energy.

FIGURE 8-21 Example 8-14.

0 P H Y S I C S  A P P L I E D
Power needs o f  a car

EXAMPLE 8-14 Stair-climbing power. A 60-kg jogger runs up a long flight 
of stairs in 4.0 s (Fig. 8-21). The vertical height of the stairs is 4.5 m. (a) Estimate 
the jogger’s power output in watts and horsepower. (b) How much energy did 
this require?

APPROACH The work done by the jogger is against gravity, and equals 
W = mgy. To find her average output, we divide W  by the time it took. 
SOLUTION (a) The average power output was

mgy (60 kg)(9.8 m/s2)(4.5 m)
4.0 s

= 660 W.

Since there are 746 W in 1 hp, the jogger is doing work at a rate of just under 1 hp. 
A human cannot do work at this rate for very long.
(b) The energy required is E = Pt = (660 J/s)(4.0 s) = 2600 J. This result 
equals W = mgy.
NOTE The person had to transform more energy than this 2600 J. The total energy 
transformed by a person or an engine always includes some thermal energy (recall 
how hot you get running up stairs).

Automobiles do work to overcome the force of friction (and air resistance), to 
climb hills, and to accelerate. A car is limited by the rate it can do work, which is 
why automobile engines are rated in horsepower. A car needs power most when it 
is climbing hills and when accelerating. In the next Example, we will calculate how 
much power is needed in these situations for a car of reasonable size. Even when a 
car travels on a level road at constant speed, it needs some power just to do work 
to overcome the retarding forces of internal friction and air resistance. These 
forces depend on the conditions and speed of the car, but are typically in the range 
400 N to 1000 N.

It is often convenient to write the power in terms of the net force F 
applied to an object and its velocity v. Since P = dW/dt and dW = F • dt 
(Eq. 7-7), then

dW = ^ d t  = 
dt ' dtP = F • v. (8- 21)

fThe unit was chosen by James Watt (1736-1819), who needed a way to specify the power of his newly 
developed steam engines. He found by experiment that a good horse can work all day at an average 
rate of about 360 ft-lb/s. So as not to be accused of exaggeration in the sale of his steam engines, he 
multiplied this by roughly 1 \  when he defined the hp.
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EXAMPLE 8-15 Power needs of a car. Calculate the power required of a 
1400-kg car under the following circumstances: (a) the car climbs a 10° hill (a 
fairly steep hill) at a steady 80 km/h; and (b) the car accelerates along a level 
road from 90 to 110 km/h in 6.0 s to pass another car. Assume that the average 
retarding force on the car is FR = 700 N throughout. See Fig. 8-22.
APPROACH First we must be careful not to confuse FR, which is due to air resis­
tance and friction that retards the motion, with the force F needed to accelerate 
the car, which is the frictional force exerted by the road on the tires—the reaction 
to the motor-driven tires pushing against the road. We must determine the latter 
force F before calculating the power.
SOLUTION (a) To move at a steady speed up the hill, the car must, by Newton’s 
second law, exert a force F  equal to the sum of the retarding force, 700 N, and the 
component of gravity parallel to the hill, mg sin 10°. Thus

F = 700 N + mg sin 10°
= 700 N + (1400 kg)(9.80 m/s2)(0.174) = 3100 N.

Since v = 80 km/h = 22 m/s and is parallel to F, then (Eq. 8-21) the power is 

P = Fv = (3100 N) (22 m/s) = 6.80 X 104W = 68.0 kW = 91 hp.

(b) The car accelerates from 25.0 m/s to 30.6 m/s (90 to 110 km/h). Thus the car 
must exert a force that overcomes the 700-N retarding force plus that required to 
give it the acceleration

(30.6 m/s -  25.0 m/s)
aY =

6.0 s
= 0.93 m /s.

We apply Newton’s second law with x being the direction of motion:
max = ZFX = F -  FR.

We solve for the force required, F:
F = max + Fr

= (1400 kg)(0.93 m/s2) + 700 N = 1300 N + 700 N = 2000 N.
Since P = F • v, the required power increases with speed and the motor must 
be able to provide a maximum power output of

P = (2000N)(30.6m/s) = 6.12 X 104W = 61.2kW = 82hp.

NOTE Even taking into account the fact that only 60 to 80% of the engine’s 
power output reaches the wheels, it is clear from these calculations that an engine 
of 75 to 100 kW (100 to 130 hp) is adequate from a practical point of view.

We mentioned in the Example above that only part of the energy output of a 
car engine reaches the wheels. Not only is some energy wasted in getting from the 
engine to the wheels, in the engine itself much of the input energy (from the 
gasoline) does not end up doing useful work. An important characteristic of all 
engines is their overall efficiency e, defined as the ratio of the useful power output 
of the engine, ^out J to the power input, Pin:

e = Pout
Pir,

The efficiency is always less than 1.0 because no engine can create energy, and in 
fact, cannot even transform energy from one form to another without some going 
to friction, thermal energy, and other nonuseful forms of energy. For example, an 
automobile engine converts chemical energy released in the burning of gasoline 
into mechanical energy that moves the pistons and eventually the wheels. But 
nearly 85% of the input energy is “wasted” as thermal energy that goes into the cooling 
system or out the exhaust pipe, plus friction in the moving parts. Thus car engines are 
roughly only about 15% efficient. We discuss efficiency in detail in Chapter 20.

FIGURE 8-22 Example 8-15: 
Calculation of power needed for a 
car to climb a hill.
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U(x)

FIGURE 8-23
diagram.

A  potential energy

8 -9  Potential Energy Diagrams; 
Stable and Unstable Equilibrium

If only conservative forces do work on an object, we can learn a great deal 
about its motion simply by examining a potential energy diagram—the graph of 
U(x) versus x. An example of a potential energy diagram is shown in Fig. 8-23. The 
rather complex curve represents some complicated potential energy U(x). The 
total energy E  = K  + U is constant and can be represented as a horizontal line 
on this graph. Four different possible values for E  are shown, labeled E0, Et , E2, 
and E3. What the actual value of E  will be for a given system depends on the 
initial conditions. (For example, the total energy E  of a mass oscillating on the end 
of a spring depends on the amount the spring is initially compressed or stretched.) 
Kinetic energy K = \m v2 cannot be less than zero (v would be imaginary), and 
because E  = U + K  = constant, then U(x) must be less than or equal to E  for all 
situations: U(x) < E. Thus the minimum value which the total energy can take 
for the potential energy shown in Fig. 8-23 is that labeled E0. For this value of E, 
the mass can only be at rest at x = jc0 . The system has potential energy but no kinetic 
energy at this position.

If the system’s total energy E  is greater than E0, say it is E1 on our plot, the 
system can have both kinetic and potential energy. Because energy is conserved,

K = E -  U{x).

Since the curve represents U(x) at each x, the kinetic energy at any value of x is 
represented by the distance between the E  line and the curve U(x) at that value 
of x. In the diagram, the kinetic energy for an object at x1, when its total energy 
is E1, is indicated by the notation Kx.

An object with energy E1 can oscillate only between the points x2 and x3. This 
is because if x > x2 or x < x3, the potential energy would be greater than E, 
meaning K  = \m v2 < 0 and v would be imaginary, and so impossible. At x2 and 
x3 the velocity is zero, since E = U at these points. Hence x2 and x3 are called the 
turning points of the motion. If the object is at x0, say, moving to the right, its 
kinetic energy (and speed) decreases until it reaches zero at x = x2. The object 
then reverses direction, proceeding to the left and increasing in speed until it 
passes x0 again. It continues to move, decreasing in speed until it reaches x = x3, 
where again v = 0, and the object again reverses direction.

If the object has energy E = E2 in Fig. 8-23, there are four turning points. The 
object can move in only one of the two potential energy “valleys,” depending on 
where it is initially. It cannot get from one valley to the other because of the barrier 
between them—for example at a point such as x4, U > E2, which means v would 
be imaginary.f For energy E3, there is only one turning point since U(x) < E3 for 
all x > x5. Thus our object, if moving initially to the left, varies in speed as it passes 
the potential valleys but eventually stops and turns around at x = x5. It then 
proceeds to the right indefinitely, never to return.

How do we know the object reverses direction at the turning points? Because 
of the force exerted on it. The force F is related to the potential energy U by 
Eq. 8-7, F = —dU/dx. The force F is equal to the negative of the slope of the 
£/-versus-x curve at any point x. At x = x2, for example, the slope is positive so the 
force is negative, which means it acts to the left (toward decreasing values of x).

At x = x0 the slope is zero, so F = 0. At such a point the particle is said to 
be in equilibrium. This term means simply that the net force on the object is zero. 
Hence, its acceleration is zero, and so if it is initially at rest, it remains at rest. If the 
object at rest at x = x0 were moved slightly to the left or right, a nonzero force 
would act on it in the direction to move it back toward x0. An object that returns

tAlthough this is true according to Newtonian physics, modern quantum mechanics predicts that 
objects can “tunnel” through such a barrier, and such processes have been observed at the atomic and 
subatomic level.
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toward its equilibrium point when displaced slightly is said to be at a point of 
stable equilibrium. Any minim um  in the potential energy curve represents a point 
of stable equilibrium.

A n object at x  = x 4 would also be in equilibrium, since F  = —d U /dx  = 0. 
If the object were displaced a bit to either side of x A, a force would act to pull the 
object away from the equilibrium point. Points like x A, where the potential energy 
curve has a maximum, are points of unstable equilibrium. The object will not 
return to equilibrium if displaced slightly, but instead will move farther away.

W hen an object is in a region over which U is constant, such as near x = x 6 in 
Fig. 8-23, the force is zero over some distance. The object is in equilibrium and if 
displaced slightly to one side the force is still zero. The object is said to be in 
neutral equilibrium in this region.

Summary
A conservative force is one for which the work done by the 
force in moving an object from one position to another depends 
only on the two positions and not on the path taken. The work 
done by a conservative force is recoverable, which is not true for 
nonconservative forces, such as friction.

Potential energy, U, is energy associated with conservative 
forces that depend on the position or configuration of objects. 
Gravitational potential energy is

t/grav = mgy, (8-3)
where the mass ra is near the Earth’s surface, a height y above 
some reference point. Elastic potential energy is given by

C/e j = \k x 2 (8-5)

for a spring with stiffness constant k  stretched or compressed a 
displacement x from equilibrium. Other potential energies include 
chemical, electrical, and nuclear energy.

Potential energy is always associated with a conservative 
force, and the change in potential energy, AC/, between two 
points under the action of a conservative force F is defined as 
the negative of the work done by the force:

AC/ = U2 — Ui = - dt.

Inversely, we can write, for the one-dimensional case, 

dU(x)
F =

dx

(8-4)

(8-7)

Only changes in potential energy are physically meaningful, so 
the position where U = 0 can be chosen for convenience.

Potential energy is not a property of an object but is associated 
with the interaction of two or more objects.

When only conservative forces act, the total mechanical 
energy, E, defined as the sum of kinetic and potential energies, 
is conserved:

E = K + U = constant. (8- 10)

If nonconservative forces also act, additional types of energy are 
involved, such as thermal energy. It has been found experimen­
tally that, when all forms of energy are included, the total 
energy is conserved. This is the law of conservation of energy:

A K  + AC/ + A (other energy types) = 0. (8-14)

The gravitational force as described by Newton’s law of 
universal gravitation is a conservative force. The potential 
energy of an object of mass ra due to the gravitational force 
exerted on it by the Earth is given by

GmMF
U ( r ) ------- (8-17)

where ME is the mass of the Earth and r is the distance of the 
object from the Earth’s center (r > radius of Earth).

Power is defined as the rate at which work is done or the 
rate at which energy is transformed from one form to another:

dE
dt

P  =  =  —
dt

P = F v.

(8- 20)

(8- 21)

Questions
1. List some everyday forces that are not conservative, and 

explain why they aren’t.
2. You lift a heavy book from a table to a high shelf. List the 

forces on the book during this process, and state whether 
each is conservative or nonconservative.

3. The net force acting on a particle is conservative and 
increases the kinetic energy by 300 J. What is the change in 
{a) the potential energy, and (b) the total energy, of the 
particle?

4. When a “superball” is dropped, can it rebound to a greater 
height than its original height?

5. A hill has a height h. A child on a sled (total mass ra) 
slides down starting from rest at the top. Does the velocity 
at the bottom depend on the angle of the hill if (a) it is 
icy and there is no friction, and (b) there is friction (deep 
snow)?

6. Why is it tiring to push hard against a solid wall even 
though no work is done?

7. Analyze the motion of a simple swinging pendulum in 
terms of energy, (a) ignoring friction, and (b) taking friction 
into account. Explain why a grandfather clock has to be 
wound up.
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8. Describe precisely what is “wrong” physically in the famous 
Escher drawing shown in Fig. 8-24.

17.

10

11.

K M FIGURE 8-24
^  Question 8.

9. In Fig. 8-25, water balloons are tossed from the roof of a 
building, all with the same speed 
but with different launch angles.
Which one has the highest speed 
when it hits the ground? Ignore 
air resistance. i\

FIGURE 8-25
Question 9. □

1 t 
I I 
I 1 
I I 
I I
I I
I I
I I

A coil spring of mass m rests upright on a table. If you 
compress the spring by pressing down with your hand and 
then release it, can the spring leave the table? Explain using 
the law of conservation of energy.
What happens to the gravitational potential energy when 
water at the top of a waterfall falls to the pool below?

12. Experienced hikers prefer to step over a fallen log in their 
path rather than stepping on top and jumping down on the 
other side. Explain.

13. (a) Where does the kinetic energy come from when a car 
accelerates uniformly starting from rest? (b) How is the 
increase in kinetic energy related to the friction force the 
road exerts on the tires?

14. The Earth is closest to the Sun in winter (Northern Hemi­
sphere). When is the gravitational potential energy the 
greatest?

15. Can the total mechanical energy E  = K  + U ever be 
negative? Explain.

16. Suppose that you wish to launch a rocket from the surface 
of the Earth so that it escapes the Earth’s gravitational field. 
You wish to use minimum fuel in doing this. From what 
point on the surface of the Earth should you make the 
launch and in what direction? Do the launch location and 
direction matter? Explain.

FIGURE 8-26
Question 17.

18. Two identical arrows, one with twice the speed of the other, 
are fired into a bale of hay. Assuming the hay exerts a 
constant “frictional” force on the arrows, the faster arrow 
will penetrate how much farther than the slower arrow? 
Explain.

19. from the ceiling by a steel

i l
%
L

Ml

f a
J L

20.

A bowling ball is hung 
wire (Fig. 8-27). The 
instructor pulls the ball 
back and stands against 
the wall with the ball 
against his nose. To avoid 
injury the instructor is 
supposed to release the 
ball without pushing it.
Why?

FIGURE 8-27
Question 19.

A pendulum is launched from a point that is a height h 
above its lowest point in two different ways (Fig. 8-28). 
During both launches, the pendulum is given an initial speed 
of 3.0 m/s. On the first launch, the initial velocity of the
_______________  pendulum is directed upward along

the trajectory, and on the second 
launch it is directed downward 

along the trajectory. Which 
launch will cause the 

highest speed when 
the pendulum bob 

passes the
v

B

(First launch)

(Second launch)

lowest point 
of its swing? 
Explain.

FIGURE 8-28
Question 20.

21. Describe the energy transformations when a child hops 
around on a pogo stick.

22. Describe the energy transformations that take place when a 
skier starts skiing down a hill, but after a time is brought to 
rest by striking a snowdrift.

23. Suppose you lift a suitcase from the floor to a table. The 
work you do on the suitcase depends on which of the 
following: (a) whether you lift it straight up or along a more 
complicated path, (b) the time the lifting takes, (c) the 
height of the table, and (d) the weight of the suitcase?

24. Repeat Question 23 for the power needed instead of the 
work.

Recall from Chapter 4, Example 4-14, that you can use 
pulley and ropes to decrease the force needed 
to raise a heavy load (see Fig. 8-26). But 
for every meter the load is raised, how 
much rope must be pulled up? Account 
for this, using energy concepts.
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25. Why is it easier to climb a mountain via a zigzag trail rather 
than to climb straight up?

15 26. Figure 8-29 shows a potential energy curve, U{x). (a) At 
which point does the force have greatest magnitude? (b) For 
each labeled point, state whether the force acts to the left or 
to the right, or is * 
zero, (c) Where is X 
there equilibrium 
and of what type is 
it?

FIGURE 8-29
Question 26.

H 27. (a) Describe in detail the velocity changes of a particle that has 
energy E3 in Fig. 8-23 as it moves from x6 to x5 and back to x6.
(b) Where is its kinetic energy the greatest and the least?

*28. Name the type of equilibrium for each position of the balls 
in Fig. 8-30.

Question 28.

Problems
8-1 and 8-2 Conservative Forces and Potential Energy
1. (I) A spring has a spring constant k  of 82.0 N/m. How much 

must this spring be compressed to store 35.0 J of potential 
energy?

2. (I) A 6.0-kg monkey swings from one branch to another 1.3 m 
higher. What is the change in gravitational potential energy?

3. (II) A spring with k  = 63 N /m  hangs vertically next to a 
ruler. The end of the spring is next to the 15-cm mark on the 
ruler. If a 2.5-kg mass is now attached to the end of the spring, 
where will the end of the spring line up with the ruler marks?

4. (II) A 56.5-kg hiker starts at an elevation of 1270 m and 
climbs to the top of a 2660-m peak, (a) What is the hiker’s 
change in potential energy? (b) What is the minimum work 
required of the hiker? (c) Can the actual work done be 
greater than this? Explain.

5. (II) A 1.60-m tall person lifts a 1.95-kg book off the ground 
so it is 2.20 m above the ground. What is the potential 
energy of the book relative to (a) the ground, and (b) the 
top of the person’s head? (c) How is the work done by the 
person related to the answers in parts (a) and (6)?

6. (II) A 1200-kg car rolling on a horizontal surface has speed 
v = 75 km /h when it strikes a horizontal coiled spring and 
is brought to rest in a distance of 2.2 m. What is the spring 
stiffness constant of the spring?

7. (II) A particular spring obeys the force law F = 
(—kx + ax3 + bxA) i. (a) Is this force conservative? 
Explain why or why not. (b) If it is conservative, determine 
the form of the potential energy function.

8. (II) If U = 3x2 + 2xy + 4y2z, what is the force, F?
9. (II) A particle is constrained to move in one dimension 

along the x  axis and is acted upon by a force given by

F(*) =
XJ

where k  is a constant with units appropriate to the SI system. 
Find the potential energy function U(x), if U is arbitrarily 
defined to be zero at x = 2.0 m, so that U (2.0 m) = 0.

10. (II) A particle constrained to move in one dimension is 
subject to a force F (x) that varies with position x  as

F(*) = A sm (k x ) i

where A  and k  are constants. What is the potential energy 
function U(x), if we take U = 0 at the point x = 0?

8-3 and 8-4  Conservation of Mechanical Energy
11. (I) A novice skier, starting from rest, slides down a friction­

less 13.0° incline whose vertical height is 125 m. How fast is 
she going when she reaches the bottom?

12. (I) Jane, looking for Tarzan, is running at top speed 
(5.0 m /s) and grabs a vine hanging vertically from a tall tree 
in the jungle. How high can she swing upward? Does the 
length of the vine affect your answer?

13. (II) In the high jump, the kinetic energy of an athlete is 
transformed into gravitational potential energy without the 
aid of a pole. With what minimum speed must the athlete 
leave the ground in order to lift his center of mass 2.10 m 
and cross the bar with a speed of 0.70 m/s?

14. (II) A  sled is initially given a shove up a frictionless 23.0° 
incline. It reaches a maximum vertical height 1.12 m higher 
than where it started. What was its initial speed?

15. (II) A 55-kg bungee jumper leaps from a bridge. She is tied 
to a bungee cord that is 12 m long when unstretched, and 
falls a total of 31 m. (a) Calculate the spring constant k  of 
the bungee cord assuming Hooke’s law applies. (b) Calcu­
late the maximum acceleration she experiences.

16. (II) A 72-kg trampoline artist jumps vertically upward from 
the top of a platform with a 
speed of 4.5 m/s. (a) How 
fast is he going as he lands on 
the trampoline, 2.0 m below 
(Fig. 8-31)? (b) If the trampo­
line behaves like a spring of 
spring constant 5.8 X 104N/m, 
how far does he depress it?

I

FIGURE 8-31
Problem 16.

17. (II) The total energy E  of an object of mass m  that moves in 
one dimension under the influence of only conservative 
forces can be written as

E = \ m v 2 + U.
2

Use conservation of energy, dE /dt = 0, to predict Newton’s 
second law.

18. (II) A 0.40-kg ball is thrown with a speed of 8.5 m/s at an 
upward angle of 36°. {a) What is its speed at its highest point, 
and (b) how high does it go? (Use conservation of energy.)
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19. (II) A  vertical spring (ignore its mass), whose spring 
constant is 875 N/m, is attached to a table and is 
compressed down by 0.160 m. (a) What upward speed can it 
give to a 0.380-kg ball when released? (b) How high above 
its original position (spring compressed) will the ball fly?

20. (II) A roller-coaster car shown in Fig. 8-32 is pulled up to 
point 1 where it is released from rest. Assuming no friction, 
calculate the speed at points 2, 3, and 4.

12 in 26 m
FIGURE 8-32
Problems 20 
and 34.

21. (II) When a mass m  sits at rest on a spring, the spring is 
compressed by a distance d from its undeformed length 
(Fig. 8-33a). Suppose instead that the mass is released 
from rest when it barely touches the undeformed 
spring (Fig. 8-33b).
Find the distance D 
that the spring is 
compressed before it 
is able to stop the 
mass. Does D = d l 
If not, why not?

FIGURE 8-33
Problem 21.

Ai resi
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* spring

J L
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22. (II) Two masses are connected by a string as shown in 
Fig. 8-34. Mass m A = 4.0 kg rests on a frictionless inclined 
plane, while mB = 5.0 kg is initially held at a height of 
h = 0.75 m above the floor, (a) If mB is allowed to fall, what 
will be the resulting acceleration of the masses? (b) If the 
masses were initially at rest, use the kinematic equations 
(Eqs. 2-12) to find their velocity just before raB hits the floor, 
(c) Use conservation of energy to 
find the velocity of the masses 
just before raB hits the floor.
You should get the same
answer as in part (b).

\ e  -32°
FIGURE 8-34
Problem 22.

23. (II) A block of mass m is attached to the end of a spring (spring 
stiffness constant k ), Fig. 8-35. The mass is given an initial 
displacement x0 from equilibrium, and an initial speed v0. 
Ignoring friction and the mass of the spring, use energy 
methods to find (a) its maximum speed, and (b) its maximum 
stretch from equilibrium, in terms of the given quantities.

jffiQ2£Q5.2!

FIGURE 8-35 Problems 23,37, and 38.

24. (II) A cyclist intends to cycle up a 9.50° hill whose vertical 
height is 125 m. The pedals turn in a circle of diameter 
36.0 cm. Assuming the mass of bicycle plus person is 75.0 kg,
(a) calculate how much work must be done against gravity.
(b) If each complete revolution of the pedals moves the 
bike 5.10 m along its path, calculate the average force that 
must be exerted on the pedals tangent to their circular path. 
Neglect work done by friction and other losses.

25. (II) A pendulum 2.00 m long is released (from rest) at an 
angle 0O = 30.0° (Fig. 8-14). Determine the speed of the 
70.0-g bob: (a) at the lowest point (0 = 0); (b) at 0 = 15.0°,
(c) at 0 = -15.0° (i.e., on the opposite side). (d) Determine 
the tension in the cord at each of these three points. (e) If the 
bob is given an initial speed v0 = 1.20 m/s when released at 
6 = 30.0°, recalculate the speeds for parts (a), (b), and (c).

26. (II) What should be the spring constant A: of a spring designed 
to bring a 1200-kg car to rest from a speed of 95 km /h so 
that the occupants undergo a maximum acceleration of 5.0 g?

27. (Ill) An engineer is designing a spring to be placed at the 
bottom of an elevator shaft. If the elevator cable breaks 
when the elevator is at a height h above the top of the 
spring, calculate the value that the spring constant k  should 
have so that passengers undergo an acceleration of no more 
than 5.0 g when brought to rest. Let M  be the total mass of 
the elevator and passengers.

28. (Ill) A skier of mass m  starts from rest at the top of a solid 
sphere of radius r and slides down its frictionless surface. 
(a) At what angle 0 (Fig. 8-36) will the skier leave the 
sphere? (b) If friction were present, 
would the skier fly off at a greater or 
lesser angle?

FIGURE 8-36
Problem 28.

8-5 and 8-6  Law of Conservation of Energy
29. (I) Two railroad cars, each of mass 56,000 kg, are traveling 

95 km /h toward each other. They collide head-on and come 
to rest. How much thermal energy is produced in this collision?

30. (I) A 16.0-kg child descends a slide 2.20 m high and reaches 
the bottom with a speed of 1.25 m/s. How much thermal 
energy due to friction was generated in this process?

31. (II) A ski starts from rest and slides down a 28° incline 85 m 
long, (a) If the coefficient of friction is 0.090, what is the ski’s 
speed at the base of the incline? (b) If the snow is level at the 
foot of the incline and has the same coefficient of friction, how 
far will the ski travel along the level? Use energy methods.

32. (II) A 145-g baseball is dropped from a tree 14.0 m above 
the ground, (a) With what speed would it hit the ground if 
air resistance could be ignored? (b) If it actually hits the 
ground with a speed of 8.00 m/s, what is the average force 
of air resistance exerted on it?

33. (II) A 96-kg crate, starting from rest, is pulled across a floor 
with a constant horizontal force of 350 N. For the first 15 m 
the floor is frictionless, and for the next 15 m the coefficient 
of friction is 0.25. What is the final speed of the crate?

34. (II) Suppose the roller-coaster car in Fig. 8-32 passes point 1 
with a speed of 1.70 m/s. If the average force of friction is 
equal to 0.23 of its weight, with what speed will it reach 
point 2? The distance traveled is 45.0 m.
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35. (II) A skier traveling 9.0 m /s reaches the foot of a steady 
upward 19° incline and glides 12 m up along this slope before 
coming to rest. What was the average coefficient of friction?

36. (II) Consider the track shown in Fig. 8-37. The section AB 
is one quadrant of a circle of radius 2.0 m and is frictionless. 
B to C is a horizontal span 3.0 m long with a coefficient of 
kinetic friction = 0.25. The section CD under the spring is 
frictionless. A block of mass 1.0 kg is released from rest at A. 
After sliding on the track, it compresses the spring by 
0.20 m. Determine: (a) the velocity of the block at point B;
(b) the thermal energy produced as the block slides from B 
to C; (c) the velocity of the block at point C; (d) the stiffness 
constant k  for the spring.

m ^  1.0 kg

D FIGURE 8-37
Problem 36.C

37. (II) A 0.620-kg wood block is firmly attached to a very light 
horizontal spring (k = 180 N/m) as shown in Fig. 8-35. 
This block-spring system, when compressed 5.0 cm and 
released, stretches out 2.3 cm beyond the equilibrium posi­
tion before stopping and turning back. What is the coeffi­
cient of kinetic friction between the block and the table?

38. (II) A 180-g wood block is firmly attached to a very light 
horizontal spring, Fig. 8-35. The block can slide along a 
table where the coefficient of friction is 0.30. A force of 25 N 
compresses the spring 18 cm. If the spring is released from 
this position, how far beyond its equilibrium position will it 
stretch on its first cycle?

39. (II) You drop a ball from a height of 2.0 m, and it bounces back 
to a height of 1.5 m. (a) What fraction of its initial energy is lost 
during the bounce? (b) What is the ball’s speed just before 
and just after the bounce? (c) Where did the energy go?

40. (II) A 56-kg skier starts from rest at the top of a 1200-m- 
long trail which drops a total of 230 m from top to bottom. 
A t the bottom, the skier is moving 11.0 m/s. How much 
energy was dissipated by friction?

41. (II) How much does your gravitational energy change when 
you jump as high as you can (say, 1.0 m)?

42. (Ill) A spring (k  = 75 N/m ) has an equilibrium length of
1.00 m. The spring is compressed to a length of 0.50 m and a 
mass of 2.0 kg is placed at its free end on a frictionless slope 
which makes an angle of 41° with respect to the horizontal 
(Fig. 8-38). The spring is then released, (a) If the mass is not 
attached to the spring, how far up the slope will the mass 
move before coming to rest? (b) If the mass is attached to 
the spring, how far up the slope will the mass move before 
coming to rest? (c) Now the incline has a coefficient of 
kinetic friction /%. If the block, attached to the spring, is 
observed to stop just as it reaches the spring’s equilibrium 
position, what is the coefficient of friction /%?

FIGURE 8-38
Problem 42.

0 = 41c

43. (Ill) A 2.0-kg block slides along a horizontal surface with a 
coefficient of kinetic friction fjLk = 0.30. The block has a 
speed v = 1.3 m /s when it strikes a massless spring head-on 
(as in Fig. 8-18). (a) If the spring has force constant 
k  = 120 N/m, how far is the spring compressed? (b) What 
minimum value of the coefficient of static friction, /jls  , will 
assure that the spring remains compressed at the maximum 
compressed position? (c) If /jls is less than this, what is the 
speed of the block when it detaches from the decompressing 
spring? [Hint. Detachment occurs when the spring reaches 
its natural length (x = 0); explain why.]

44. (Ill) Early test flights for the space shuttle used a “glider” 
(mass of 980 kg including pilot). After a horizontal launch at 
480 km /h at a height of 3500 m, the glider eventually landed 
at a speed of 210 km/h. (a) What would its landing speed 
have been in the absence of air resistance? (b) What was the 
average force of air resistance exerted on it if it came in at a 
constant glide angle of 12° to the Earth’s surface?

8-7  Gravitational Potential Energy
45. (I) For a satellite of mass ras in a circular orbit of radius rs 

around the Earth, determine (a) its kinetic energy K, (b) its 
potential energy U (U = 0 at infinity), and (c) the ratio K/U .

46. (I) Jill and her friends have built a small rocket that soon 
after lift-off reaches a speed of 850 m/s. How high above 
the Earth can it rise? Ignore air friction.

47. (I) The escape velocity from planet A is double that for 
planet B. The two planets have the same mass. What is the 
ratio of their radii, rA/rB?

48. (II) Show that Eq. 8-16 for gravitational potential energy 
reduces to Eq. 8-2, A U = mg(y2 — yi), for objects near 
the surface of the Earth.

49. (II) Determine the escape velocity from the Sun for an 
object (a) at the Sun’s surface (r = 7.0 X 105km, 
M  = 2.0 X IO30 kg), and (b) at the average distance of the 
Earth (1.50 X 108 km). Compare to the speed of the Earth 
in its orbit.

50. (II) Two Earth satellites, A and B, each of mass m  = 950 kg, 
are launched into circular orbits around the Earth’s center. 
Satellite A orbits at an altitude of 4200 km, and satellite B 
orbits at an altitude of 12,600 km. (a) What are the potential 
energies of the two satellites? (b) What are the kinetic ener­
gies of the two satellites? (c) How much work would it require 
to change the orbit of satellite A to match that of satellite B?

51. (II) Show that the escape velocity for any satellite in a 
circular orbit is V2 times its velocity.

52. (II) (a) Show that the total mechanical energy of a satellite 
(mass m) orbiting at a distance r from the center of the 
Earth (mass ME) is

1 GmME 
E  = ~ 2 ~r '

if U = 0 at r = oo. (b) Show that although friction causes 
the value of E  to decrease slowly, kinetic energy must actu­
ally increase if the orbit remains a circle.

53. (II) Take into account the Earth’s rotational speed (1 rev/day) 
and determine the necessary speed, with respect to Earth, for a 
rocket to escape if fired from the Earth at the equator in a 
direction (a) eastward; (b) westward; (c) vertically upward.
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54. (II) (a) Determine a formula for the maximum height h that a 
rocket will reach if launched vertically from the Earth’s 
surface with speed vQ (< vesc). Express in terms of v0,rE, ME, 
and G. (b) How high does a rocket go if v0 = 8.35 km/s? 
Ignore air resistance and the Earth’s rotation.

55. (II) (a) Determine the rate at which the escape velocity from 
the Earth changes with distance from the center of the Earth, 
dvesc/dr. (b) Use the approximation Av ~  (dv/dr) Ar to 
determine the escape velocity for a spacecraft orbiting the 
Earth at a height of 320 km.

56. (II) A meteorite has a speed of 90.0 m/s when 850 km above 
the Earth. It is falling vertically (ignore air resistance) and 
strikes a bed of sand in which it is brought to rest in 3.25 m. 
(a) What is its speed just before striking the sand? (b) How much 
work does the sand do to stop the meteorite (mass = 575 kg)? 
(c) What is the average force exerted by the sand on the 
meteorite? (d) How much thermal energy is produced?

57. (II) How much work would be required to move a satellite 
of mass m from a circular orbit of radius r\ = 2rE about 
the Earth to another circular orbit of radius r2 = 3rEl  
(rE is the radius of the Earth.)

58. (II) (a) Suppose we have three masses, m i,m 2, and m3, 
that initially are infinitely far apart from each other. Show 
that the work needed to bring them to the positions shown 
in Fig. 8-39 is

W
G ( m l m2 + minis + m 2m3\
V r12 r13 r23

(b) Can we say that this formula also gives the potential 
energy of the system, or the potential energy of one or two of 
the objects? (c) Is W  equal 
to the binding energy of 
the system—that is, equal 
to the energy required to 
separate the components 
by an infinite distance?
Explain.

FIGURE 8-39
Problem 58.

59. (II) A NASA satellite has just observed an asteroid that is 
on a collision course with the Earth. The asteroid has an 
estimated mass, based on its size, of 5 X 109kg. It is 
approaching the Earth on a head-on course with a velocity 
of 660 m/s relative to the Earth and is now 5.0 X 106km 
away. With what speed will it hit the Earth’s surface, 
neglecting friction with the atmosphere?

60. (II) A sphere of radius has a concentric spherical cavity of 
radius r2 (Fig. 8-40). Assume this spherical shell of thickness 
ri -  r2 is uniform and has a total mass M. Show that the 
gravitational potential energy of a mass m  at a distance r from 
the center of the shell
(r > Tx) is given by

U = -
GmM

FIGURE 8-40
Problem 60.

61. (Ill) To escape the solar system, an interstellar spacecraft 
must overcome the gravitational attraction of both the 
Earth and Sun. Ignore the effects of other bodies in the 
solar system. (a) Show that the escape velocity is

v = \ / v E + (vs -  Vq)2 = 16.7 km/s,

where: vE is the escape velocity from the Earth (Eq. 8-19); 
vs = V2GMs/r8E is the escape velocity from the gravita­
tional field of the Sun at the orbit of the Earth but far from 
the Earth’s influence (rSE is the Sun-Earth distance); and v0 is 
the Earth’s orbital velocity about the Sun. (b) Show that the 
energy required is 1.40 X 108J per kilogram of spacecraft 
mass. [Hint: Write the energy equation for escape from Earth 
with v' as the velocity, relative to Earth, but far from Earth; 
then let v' + vQ be the escape velocity from the Sun.]

8-8  Power
62. (I) How long will it take a 1750-W motor to lift a 335-kg 

piano to a sixth-story window 16.0 m above?
63. (I) If a car generates 18 hp when traveling at a steady 

95 km/h, what must be the average force exerted on the car 
due to friction and air resistance?

64. (I) An 85-kg football player traveling 5.0 m /s is stopped in 
1.0 s by a tackier, (a) What is the original kinetic energy of 
the player? (b) What average power is required to stop him?

65. (II) A driver notices that her 1080-kg car slows down from 
95 km /h to 65 km /h in about 7.0 s on the level when it is in 
neutral. Approximately what power (watts and hp) is 
needed to keep the car traveling at a constant 80 km/h?

66. (II) How much work can a 3.0-hp motor do in 1.0 h?
67. (II) An outboard motor for a boat is rated at 55 hp. If it can 

move a particular boat at a steady speed of 35 km/h, what is 
the total force resisting the motion of the boat?

68. (II) A 1400-kg sports car accelerates from rest to 95 km /h in 
7.4 s. What is the average power delivered by the engine?

69. (II) During a workout, football players ran up the stadium 
stairs in 75 s. The stairs are 78 m long and inclined at an angle 
of 33°. If a player has a mass of 92 kg, estimate his average 
power output on the way up. Ignore friction and air resistance.

70. (II) A pump lifts 21.0 kg of water per minute through a 
height of 3.50 m. What minimum output rating (watts) must 
the pump motor have?

71. (II) A ski area claims that its lifts can move 47,000 people 
per hour. If the average lift carries people about 200 m 
(vertically) higher, estimate the maximum total power 
needed.

72. (II) A 75-kg skier grips a moving rope that is powered by an 
engine and is pulled at constant speed to the top of a 23° 
hill. The skier is pulled a distance x  = 220 m along the 
incline and it takes 2.0 min to reach the top of the hill. If the 
coefficient of kinetic friction between the snow and skis is 
/% = 0.10, what horsepower engine is required if 30 such 
skiers (max) are on the rope at one time?

73. (Ill) The position of a 280-g object is given (in meters) by 
x  = 5.013 — 8.012 -  441, where t is in seconds. Determine 
the net rate of work done on this object (a) at t = 2.0 s and 
(b) at t = 4.0 s. (c) What is the average net power input 
during the interval from t = 0 s to t = 2.0 s, and in the 
interval from t = 2.0 s to 4.0 s?
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74. (Ill) A bicyclist coasts down a 6.0° hill at a steady speed of
4.0 m/s. Assuming a total mass of 75 kg (bicycle plus rider), 
what must be the cyclist’s power output to climb the same 
hill at the same speed?

8-9  Potential Energy Diagrams
75. (II) Draw a potential energy diagram, U vs. x, and analyze 

the motion of a mass m  resting on a frictionless horizontal 
table and connected to a horizontal spring with stiffness 
constant k. The mass is pulled a distance to the right so that 
the spring is stretched a distance x0 initially, and then the 
mass is released from rest.

76. (II) The spring of Problem 75 has a stiffness constant 
k  = 160 N/m. The mass m = 5.0 kg is released from rest 
when the spring is stretched x0 = 1.0 m from equilibrium. 
Determine (a) the total energy of the system; (b) the kinetic 
energy when x  = |x 0; (c) the maximum kinetic energy; 
((d) the maximum speed and at what positions it occurs;
(e) the maximum acceleration and where it occurs.

*77. (Ill) The potential energy of the two atoms in a diatomic 
(two-atom) molecule can be written

where r is the distance between the two atoms and a and b 
are positive constants, (a) A t what values of r is U{r) a 
minimum? A maximum? (b) At what values of r is 
U(r) = 0? (c) Plot U(r) as a function of r from r = 0 to r 
at a value large enough for all the features in (a) and (b) to 
show, (d) Describe the motion of one atom with respect to 
the second atom when E < 0, and when E  >  0. (e) Let F 
be the force one atom exerts on the other. For what values 
of r is F > 0, F  <  0, F = 0? ( /)  Determine F  as a func­
tion of r.

* 78. (Ill) The binding energy of a two-particle system is defined 
as the energy required to separate the two particles 
from their state of lowest energy to r = oo. Determine 
the binding energy for the molecule discussed in 
Problem 77.

| General Problems
79. What is the average power output of an elevator that lifts 

885 kg a vertical height of 32.0 m in 11.0 s?
80. A projectile is fired at an upward angle of 48.0° from the 

top of a 135-m-high cliff with a speed of 165 m/s. What will be its 
speed when it strikes the ground below? (Use conservation 
of energy.)

81. Water flows over a dam at the rate of 580 kg/s and falls 
vertically 88 m before striking the turbine blades. Calculate
(a) the speed of the water just before striking the turbine 
blades (neglect air resistance), and (b) the rate at which 
mechanical energy is transferred to the turbine blades, 
assuming 55% efficiency.

82. A bicyclist of mass 75 kg (including the bicycle) can coast 
down a 4.0° hill at a steady speed of 12 km/h. Pumping hard, 
the cyclist can descend the hill at a speed of 32 km/h. Using 
the same power, at what speed can the cyclist climb the same 
hill? Assume the force of friction is proportional to the 
square of the speed v; that is, Ffr = bv2, where b is a constant.

83. A 62-kg skier starts from rest at the top of a ski jump, point A 
in Fig. 8-41, and travels down the ramp. If friction and air 
resistance can be neglected, (a) determine her speed vq when

she reaches the horizontal end of the ramp 
at B. (b) Determine the distance s to 

where she strikes the ground 
at C.

FIGURE 8-41 Problems 83 and 84.

84. Repeat Problem 83, but now assume the ski jump turns 
upward at point B and gives her a vertical component of 
velocity (at B) of 3.0 m/s.

85. A ball is attached to a horizontal cord of length £ whose 
other end is fixed, Fig. 8-42. (a) If the ball is released, what 
will be its speed at the lowest point of its path? (b) A peg is 
located a distance h directly 
below the point of attach­
ment of the cord. If 
h = 0.80£, what will be the 
speed of the ball when it 
reaches the top of its circular
path about the peg? \  \

Peg I
FIGURE 8-42
Problems 85 and 86.

86. Show that h must be greater than 0.60£ if the ball in Fig. 8-42 
is to make a complete circle about the peg.

87. Show that on a roller coaster with a circular vertical loop 
(Fig. 8-43), the difference in your apparent weight at the top of 
the loop and the bottom of the loop is 6 g’s—that is, six times 
your weight. Ignore friction. Show also that as long as your 
speed is above the 
minimum needed, 
this answer doesn’t 
depend on the size 
of the loop or 
how fast you go 
through it.

FIGURE 8-43
Problem 87.

88. If you stand on a bathroom scale, the spring inside the 
scale compresses 0.50 mm, and it tells you your weight is 
760 N. Now if you jump on the scale from a height of 1.0 m, 
what does the scale read at its peak?

89. A 65-kg hiker climbs to the top of a 4200-m-high moun­
tain. The climb is made in 5.0 h starting at an elevation of 
2800 m. Calculate (a) the work done by the hiker against 
gravity, (b) the average power output in watts and in 
horsepower, and (c) assuming the body is 15% efficient, 
what rate of energy input was required.
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90. The small mass m  sliding without friction along the looped 
track shown in Fig. 8-44 is to remain on the track at all times, 
even at the very top of the loop of radius r. (a) In terms of the 
given quantities, determine the minimum release height h. 
Next, if the actual release height is 2h, calculate the normal 
force exerted (b) by the track at the bottom of the loop,
(c) by the track at the top of the loop, and (d) by the track 
after the block exits the loop onto the flat section.

FIGURE 8-44
Problem 90.

91. A 56-kg student runs at 5.0 m/s, grabs a hanging rope, 
and swings out over a lake (Fig. 8-45). He releases the 
rope when his velocity
is zero, (a) What is 
the angle 0 when he 
releases the rope?
(b) What is the tension 
in the rope just before 
he releases it? (c) What 
is the maximum tension 
in the rope?

FIGURE 8-45
Problem 91.

92. The nuclear force between two neutrons in a nucleus is 
described roughly by the Yukawa potential

U{r) = -U 0j e ~ rlr\

where r is the distance between the neutrons and C/0 and 
r0 (~ 10-15m) are constants, (a) Determine the force F(r).
(b) What is the ratio F(3r0)/F (r0)? (c) Calculate this same 
ratio for the force between two electrically charged parti­
cles where U(r) = —C/r, with C a constant. Why is the 
Yukawa force referred to as a “short-range” force?

93. A fire hose for use in urban areas must be able to shoot a 
stream of water to a maximum height of 33 m. The water 
leaves the hose at ground level in a circular stream 3.0 cm 
in diameter. What minimum power is required to create 
such a stream of water? Every cubic meter of water has a 
mass of 1.00 X 103kg.

94. A 16-kg sled starts up a 28° incline with a speed of 2.4 m/s. 
The coefficient of kinetic friction is /z  ̂ = 0.25. (a) How 
far up the incline does the sled travel? (b) What condition 
must you put on the coefficient of static friction if the sled 
is not to get stuck at the point determined in part (a)l
(c) If the sled slides back down, what is its speed when it 
returns to its starting point?

95. The Lunar Module could make a safe landing if its vertical 
velocity at impact is 3.0 m/s or less. Suppose that you want 
to determine the greatest height h at which the pilot could 
shut off the engine if the velocity of the lander relative to 
the surface is (a) zero; (b) 2.0 m /s downward; (c) 2.0 m/s 
upward. Use conservation of energy to determine h in 
each case. The acceleration due to gravity at the surface of 
the Moon is 1.62 m /s2.

96. Proper design of automobile braking systems must account 
for heat buildup under heavy braking. Calculate the 
thermal energy dissipated from brakes in a 1500-kg car 
that descends a 17° hill. The car begins braking when its 
speed is 95 km /h and slows to a speed of 35 km /h in a 
distance of 0.30 km measured along the road.

97. Some electric power companies use water to store energy. 
Water is pumped by reversible turbine pumps from a low 
reservoir to a high reservoir. To store the energy produced in
1.0 hour by a 180-MW electric power plant, how many cubic 
meters of water will have to be pumped from the lower to 
the upper reservoir? Assume the upper reservoir is 380 m 
above the lower one, and we can neglect the small change in 
depths of each. Water has a mass of 1.00 X 103 kg for every
1.0 m3.

98. Estimate the energy required from fuel to launch a 1465-kg 
satellite into orbit 1375 km above the Earth’s surface. 
Consider two cases: (a) the satellite is launched into an 
equatorial orbit from a point on the Earth’s equator, and
(b) it is launched from the North Pole into a polar orbit.

99. A satellite is in an elliptic orbit around the Earth (Fig. 8-46). 
Its speed at the perigee A is 8650 m/s. (a) Use conservation 
of energy to determine its speed at B. The radius of the Earth 
is 6380 km. (b) Use conservation of energy to determine the 
speed at the apogee C.

B

FIGURE 8-46
Problem 99.

100. Suppose the gravitational potential energy of an object of 
mass m  at a distance r from the center of the Earth is given by

U(r) = -
GMm

where a  is a positive constant and e is the exponential function. 
(Newton’s law of universal gravitation has a = 0 ). (a) What 
would be the force on the object as a function of rl (b) What 
would be the object’s escape velocity in terms of the Earth’s 
radius RE7

101. (a) If the human body could convert a candy bar directly 
into work, how high could a 76-kg man climb a ladder if 
he were fueled by one bar (= 1100 kJ)? (ft) If the man 
then jumped off the ladder, what will be his speed when he 
reaches the bottom?

102. Electric energy units are often expressed in the form of “kilo- 
watt-hours.” (a) Show that one kilowatt-hour (kWh) is equal 
to 3.6 X 106J. (b) If a typical family of four uses electric 
energy at an average rate of 580 W, how many kWh would 
their electric bill show for one month, and (c) how many 
joules would this be? (d) At a cost of $0.12 per kWh, what 
would their monthly bill be in dollars? Does the monthly bill 
depend on the rate at which they use the electric energy?
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103. Chris jumps off a bridge with a bungee cord (a heavy 
stretchable cord) tied around his ankle, Fig. 8-47. He falls 
for 15 m before the bungee cord begins to stretch. Chris’s 
mass is 75 kg and we assume the cord obeys Hooke’s law, 
F  = — kx, with k  = 50N/m. If we neglect air resistance, 
estimate how far below the bridge Chris’s foot will be before 
coming to a stop. Ignore the mass of the cord (not realistic, 
however) and treat Chris as a particle.

106. A film of Jesse Owens’s famous 
the 1936 Olympics shows that 
his center of mass rose 1.1m 
from launch point to the top of 
the arc. What minimum speed 
did he need at launch if he was 
traveling at 6.5 m/s at the top 
of the arc?

{ b jH  (cT 

w ;  J

v = J - __________-■

FIGURE 8-47 Problem 103. (a) Bungee jumper 
about to jump, (b) Bungee cord at its unstretched 
length, (c) Maximum stretch of cord.

104. In a common test for cardiac function (the “stress test”), 
the patient walks on an inclined treadmill (Fig. 8-48). 
Estimate the power required from a 75-kg patient when 
the treadmill is sloping at an angle of 12° and the velocity 
is 3.3 km/h. (How does this power compare to the power 
rating of a lightbulb?)

FIGURE 8-48
Problem 104.

105. (a) If a volcano spews a 450-kg rock vertically upward 
a distance of 320 m, what was its velocity when it left 
the volcano? (b) If the volcano spews 1000 rocks of this size 
every minute, estimate its power output.

FIGURE 8-49
Problem 106.

107. An elevator cable breaks when a 920-kg elevator is 24 m 
above a huge spring (k  =  2.2 X 105N/m) at the bottom 
of the shaft. Calculate (a) the work done by gravity on the 
elevator before it hits the spring, (b) the speed of the 
elevator just before striking the spring, and (c) the amount 
the spring compresses (note that work is done by both the 
spring and gravity in this part).

108. A particle moves where its potential energy is given by 
U (r) = U0 [(2/r2) -  (1 /r )\. (a) Plot U(r) versus r. Where 
does the curve cross the U(r) = 0  axis? At what value 
of r does the minimum value of U(r) occur? (b) Suppose 
that the particle has an energy of E  = -0.050C/0. Sketch in 
the approximate turning points of the motion of the particle 
on your diagram. What is the maximum kinetic energy of the 
particle, and for what value of r does this occur?

109. A particle of mass m  moves under the influence of a 
potential energy

U(x) = — + bx

where a and b are positive constants and the particle is 
restricted to the region x > 0. Find a point of equilibrium 
for the particle and demonstrate that it is stable.

18 Numerical/Computer
* 110. (Ill) The two atoms in a diatomic molecule exert an 

attractive force on each other at large distances and a 
repulsive force at short distances. The magnitude of the 
force between two atoms in a diatomic molecule can 
be approximated by the Lennard-Jones force, or 
F(r) = F0 [2(cr/r)13 — (cr/r)7], where r is the separation 
between the two atoms, and a  and F0 are constant. For an 
oxygen molecule (which is diatomic) F0 = 9.60 X 10-11 N 
and a  = 3.50 X 10-11 m. (a) Integrate the equation for 
F(r) to determine the potential energy U(r) of the oxygen 
molecule. (b) Find the equilibrium distance r0 between the 
two atoms, (c) Graph F(r) and U(r) between 0.9 r0 and 2.5 r0.

Answers to Exercises

A: (e),(e);(e),(c). C: (c).
B: (b). D: Equal speeds.

long jump (Fig. 8-49) in
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Conservation of linear momentum is another great conservation law of 
physics. Collisions, such as between billiard or pool balls, illustrate this 
vector law very nicely: the total vector momentum just before the 
collision equals the total vector momentum just after the collision. In this 
photo, the moving cue ball strikes the 11 ball at rest. Both balls move 
after the collision, at angles, but the sum of their vector momenta equals 
the initial vector momentum of the incoming cue ball.
We will consider both elastic collisions (where kinetic energy is also 
conserved) and inelastic collisions. We also examine the concept of center 
of mass, and how it helps us in the study of complex motion.

m 2v  2 (a fter)

*

m l \ l (before) i l l *

T £

rajV  \  (after)
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CHAPTER-OPENING QUESTIO —Guess now!
1. A railroad car loaded with rocks coasts on a level track without friction. A worker 

on board starts throwing the rocks horizontally backward from the car. Then what 
happens?
(a) The car slows down.
(b) The car speeds up.
(c) First the car speeds up and then it slows down.
(d) The car’s speed remains constant.
(e) None of these.

2. Which answer would you choose if the rocks fall out through a hole in the floor of 
the car, one at a time?

The law of conservation of energy, which we discussed in the previous 
Chapter, is one of several great conservation laws in physics. Among the 
other quantities found to be conserved are linear momentum, angular 
momentum, and electric charge. We will eventually discuss all of these 

because the conservation laws are among the most important ideas in science. In 
this Chapter, we discuss linear momentum, and its conservation. The law of 
conservation of momentum is essentially a reworking of Newton’s laws that gives 
us tremendous physical insight and problem-solving power.
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We make use of the laws of conservation of linear momentum and of energy 
to analyze collisions. Indeed, the law of conservation of momentum is particularly 
useful when dealing with a system of two or more objects that interact with each 
other, such as in collisions of ordinary objects or nuclear particles.

Our focus up to now has been mainly on the motion of a single object, often 
thought of as a “particle” in the sense that we have ignored any rotation or 
internal motion. In this Chapter we will deal with systems of two or more objects, 
and toward the end of the Chapter, the concept of center of mass.

9 —1 Momentum and Its Relation to Force
The linear momentum (or “momentum” for short) of an object is defined as the 
product of its mass and its velocity. Momentum (plural is momenta) is represented 
by the symbol p. If we let m  represent the mass of an object and v represent its 
velocity, then its momentum p is defined as

p = m v .  (9-1)

Velocity is a vector, so momentum too is a vector. The direction of the momentum 
is the direction of the velocity, and the magnitude of the momentum is p  = mv. 
Because velocity depends on the reference frame, so does momentum; thus 
the reference frame must be specified. The unit of momentum is that of 
mass X velocity, which in SI units is kg • m/s. There is no special name for this unit.

Everyday usage of the term momentum is in accord with the definition above. 
According to Eq. 9-1, a fast-moving car has more momentum than a slow-moving 
car of the same mass; a heavy truck has more momentum than a small car moving 
with the same speed. The more momentum an object has, the harder it is to stop it, 
and the greater effect it will have on another object if it is brought to rest by 
striking that object. A football player is more likely to be stunned if tackled by a 
heavy opponent running at top speed than by a lighter or slower-moving tackier. A 
heavy, fast-moving truck can do more damage than a slow-moving motorcycle.

A force is required to change the momentum of an object, whether it is to 
increase the momentum, to decrease it, or to change its direction. Newton origi­
nally stated his second law in terms of momentum (although he called the product 
mv the “quantity of motion”). Newton’s statement of the second law of motion, 
translated into modern language, is as follows:

The rate of change of momentum of an object is equal to the net force applied to it.
We can write this as an equation,

dn
2F  = I ’ <9- 2>

where EF is the net force applied to the object (the vector sum of all forces acting 
on it). We can readily derive the familiar form of the second law, EF = ma, from 
Eq. 9-2 for the case of constant mass. If v is the velocity of an object at any 
moment, then Eq. 9-2 gives

dp d(m?) dv _
2 F  = —  = —------- = m —  = ma [constant mass]

dt dt dt 1 1

because, by definition, a = dv/dt and we assume m = constant. Newton’s state­
ment, Eq. 9-2, is actually more general than the more familiar one because it 
includes the situation in which the mass may change. This is important in certain 
circumstances, such as for rockets which lose mass as they burn fuel (Section 9-10) 
and in relativity theory (Chapter 36).

EXERCISE A Light carries m om entum , so if a light beam  strikes a surface, it will exert a 
force on that surface. If the light is reflected rather than absorbed, the force will be (a) the 
same, (b ) less, (c) greater, (d ) im possible to tell, (e) none o f these.

NEWTON’S SECOND LAW

/j\ CAUTION____________
The change in the m om entum  vector  
is in the direction o f  the net force
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EXAMPLE 9-1

FIGURE 9 -1  Example 9 -1 .

ESTIMATE"! Force of a tennis serve. For a top player, a 
tennis ball may leave the racket on the serve with a speed of 55 m/s (about 
120mi/h), Fig. 9-1. If the ball has a mass of 0.060 kg and is in contact with the 
racket for about 4 ms (4 X 10-3 s), estimate the average force on the ball. Would 
this force be large enough to lift a 60-kg person?
APPROACH We write Newton’s second law, Eq. 9-2, for the average force as 

Ap mv2 — mvi
Favg = a 7  = I t  ’

where mvx and mv2 are the initial and final momenta. The tennis ball is hit when 
its initial velocity vx is very nearly zero at the top of the throw, so we set vx = 0, 
whereas v2 = 55 m/s is in the horizontal direction. We ignore all other forces on the 
ball, such as gravity, in comparison to the force exerted by the tennis racket. 
SOLUTION The force exerted on the ball by the racket is

F = —avg
Ap
At

mv2 -  mvx (0.060 kg)(55 m/s) -  0
At 0.004 s

800 N.

This is a large force, larger than the weight of a 60-kg person, which would 
require a force mg = (60kg)(9.8m/s2) «  600 N to lift.
NOTE The force of gravity acting on the tennis ball is mg = (0.060 kg)(9.8 m/s2) = 
0.59 N, which justifies our ignoring it compared to the enormous force the 
racket exerts.
NOTE High-speed photography and radar can give us an estimate of the contact 
time and the velocity of the ball leaving the racket. But a direct measurement of 
the force is not practical. Our calculation shows a handy technique for deter­
mining an unknown force in the real world.

I Washing a car: momentum change and force. Water leaves
a hose at a rate of 1.5 kg/s with a speed of 20 m/s and is aimed at the side of a 
car, which stops it, Fig. 9-2. (That is, we ignore any splashing back.) What is the 
force exerted by the water on the car?

FIGURE 9 - 2  Example 9 -2 .

APPROACH The water leaving the hose has mass and velocity, so it has a 
momentum initial in the horizontal (x) direction, and we assume gravity doesn’t 
pull the water down significantly. When the water hits the car, the water loses this 
momentum (pfinai = 0). We use Newton’s second law in the momentum form to 
find the force that the car exerts on the water to stop it. By Newton’s third law, 
the force exerted by the water on the car is equal and opposite. We have a 
continuing process: 1.5 kg of water leaves the hose in each 1.0-s time interval. So 
let us write F = Ap/A t where At = 1.0 s, and mwinitial = (1.5 kg)(20m/s). 
SOLUTION The force (assumed constant) that the car must exert to change the 
momentum of the water is

p  = = Pfinal ~ Pimtial = 0 ~ 30kg-m/s =  _ 3 qn  
At At 1.0 s

The minus sign indicates that the force exerted by the car on the water is oppo­
site to the water’s original velocity. The car exerts a force of 30 N to the left to 
stop the water, so by Newton’s third law, the water exerts a force of 30 N to the 
right on the car.
NOTE Keep track of signs, although common sense helps too. The water is moving 
to the right, so common sense tells us the force on the car must be to the right.

EXERCISE B If the water splashes back from the car in Example 9 -2 , would the force on 
I the car be larger or smaller?
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9 —2  Conservation o f Momentum
The concept of momentum is particularly important because, if no net external 
force acts on a system, the total momentum of the system is a conserved quantity. 
Consider, for example, the head-on collision of two billiard balls, as shown in 
Fig. 9-3. We assume the net external force on this system of two balls is zero—that 
is, the only significant forces during the collision are the forces that each ball exerts 
on the other. Although the momentum of each of the two balls changes as a result 
of the collision, the sum of their momenta is found to be the same before as after 
the collision. If mAvA is the momentum of ball A and mBvB the momentum of 
ball B, both measured just before the collision, then the total momentum of the 
two balls before the collision is the vector sum mAvA + mBvB. Immediately after 
the collision, the balls each have a different velocity and momentum, which we 
designate by a “prime” on the velocity: raAvA and raBvB. The total momentum 
after the collision is the vector sum raAvA + raBvB. No matter what the velocities 
and masses are, experiments show that the total momentum before the collision is 
the same as afterward, whether the collision is head-on or not, as long as no net 
external force acts:

momentum before = momentum after 

raAvA + mBvB = mAvA + m Bv'B. [X?ext = 0] (9-3)

That is, the total vector momentum of the system of two colliding balls is 
conserved: it stays constant.

Although the law of conservation of momentum was discovered experimen­
tally, it can be derived from Newton’s laws of motion, which we now show.

Let us consider two objects of mass mA and m B that have momenta pA and pB 
before they collide and pA and pB after they collide, as in Fig. 9-4. During the 
collision, suppose that the force exerted by object A on object B at any instant is F. 
Then, by Newton’s third law, the force exerted by object B on object A is -F . 
During the brief collision time, we assume no other (external) forces are acting 
(or that F is much greater than any other external forces acting). Thus we have

and

F =

F =

^Pb
dt

^Pa
dt

We add these two equations together and find 

^(Pa + Pb)0 =
dt

which tells us that

Pa + Pb = constant.

The total momentum thus is conserved.
We have put this derivation in the context of a collision. As long as no 

external forces act, it is valid over any time interval, and conservation of 
momentum is always valid as long as no external forces act. In the real world, 
external forces do act: friction on billiard balls, gravity acting on a tennis ball, and 
so on. So it may seem that conservation of momentum cannot be applied. Or can 
it? In a collision, the force each object exerts on the other acts only over a very 
brief time interval, and is very strong relative to the other forces. If we measure the 
momenta immediately before and after the collision, momentum will be very 
nearly conserved. We cannot wait for the external forces to produce their effect 
before measuring pA and pB.

mAvA mBvB -----

¥  An B

mAvA
/|\\ 

= <
mBvB

FIGURE 9-3 Momentum is 
conserved in a collision of two balls, 
labeled A and B.

CONSERVATION OF MOMENTUM  
(two objects colliding)

FIGURE 9-4 Collision of two 
objects. Their momenta before 
collision are pA and pB, and after 
collision are pA and pB. At any 
moment during the collision each 
exerts a force on the other of equal 
magnitude but opposite direction.

Before Pa.
collision

At
collision

Pb
mB

After
collision
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NEWTON’S SECOND LAW  
(for a system o f objects)

LAW OF 
CONSERVATION 

OF LINEAR 
MOMENTUM

For example, when a racket hits a tennis ball or a bat hits a baseball, both 
before and after the “collision” the ball moves as a projectile under the action of 
gravity and air resistance. However, when the bat or racket hits the ball, during this 
brief time of the collision those external forces are insignificant compared to the 
collision force the bat or racket exerts on the ball. Momentum is conserved (or 
very nearly so) as long as we measure pA and pB just before the collision and p'A 
and Pb immediately after the collision (Eq. 9-3).

Our derivation of the conservation of momentum can be extended to include 
any number of interacting objects. Let P represent the total momentum of a 
system of n interacting objects which we number from 1 to n\

P = m xvx + m2v2 + ••• + m nyn = 2p,-.

We differentiate with respect to time:
dP dpi
df = * dT  = 2 F ‘ <9 " 4 >

where Ff represents the net force on the ith object. The forces can be of two types: 
(1) external forces on objects of the system, exerted by objects outside the system, 
and (2) internal forces that objects within the system exert on other objects in the 
system. By Newton’s third law, the internal forces occur in pairs: if one object 
exerts a force on a second object, the second exerts an equal and opposite force on 
the first object. Thus, in the sum over all the forces in Eq. 9-4, all the internal 
forces cancel each other in pairs. Thus we have

J  = SFext, (9-5)

where 2Fext is the sum of all external forces acting on our system. If the net external 
force is zero, then dP/dt = 0, so AP = 0 or P = constant. Thus we see that 

when the net external force on a system of objects is zero, the total momentum 
of the system remains constant.

This is the law of conservation of momentum. It can also be stated as
the total momentum of an isolated system of objects remains constant.

By an isolated system, we mean one on which no external forces act—the only 
forces acting are those between objects of the system.

If a net external force acts on a system, then the law of conservation of 
momentum will not apply. However, if the “system” can be redefined so as to 
include the other objects exerting these forces, then the conservation of 
momentum principle can apply. For example, if we take as our system a falling 
rock, it does not conserve momentum since an external force, the force of gravity 
exerted by the Earth, is acting on it and its momentum changes. However, if we 
include the Earth in the system, the total momentum of rock plus Earth is 
conserved. (This of course means that the Earth comes up to meet the ball. Since 
the Earth’s mass is so great, its upward velocity is very tiny.)

Although the law of conservation of momentum follows from Newton’s 
second law, as we have seen, it is in fact more general than Newton’s laws. In the 
tiny world of the atom, Newton’s laws fail, but the great conservation laws—those 
of energy, momentum, angular momentum, and electric charge—have been found 
to hold in every experimental situation tested. It is for this reason that the 
conservation laws are considered more basic than Newton’s laws.

■ Railroad cars collide: momentum conserved. A 10,000-kg
railroad car, A, traveling at a speed of 24.0 m /s strikes an identical car, B, at rest. 
If the cars lock together as a result of the collision, what is their common speed 
immediately after the collision? See Fig. 9-5.

APPROACH We choose our system to be the two railroad cars. We consider a very 
brief time interval, from just before the collision until just after, so that external
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j — : -  24.0 m/s r-

U
(at rest)

(a) Before collision

Ji-
w *

(h J Alter e d it io n FIGURE 9-5 Example 9-3.

forces such as friction can be ignored. Then we apply conservation of momentum:
^initial — - f̂inal •

SOLUTION The initial total momentum is
initial = mAvA + m BvQ = mAvA 

because car B is at rest initially (vB = 0). The direction is to the right in the +x 
direction. After the collision, the two cars become attached, so they will have the 
same speed, call it v '. Then the total momentum after the collision is

ffinai = (mA + mB)v'.
We have assumed there are no external forces, so momentum is conserved:

i n i tial — - f̂ilial

mAvA = (mA + mB)v'.
Solving for v ', we obtain

mA (  10,000 kg
v' = ------------- vA = -------  — (24.0 m /s) = 12.0 m/s,

m A + mB \  10,000 kg + 10,000 kg /

to the right. Their mutual speed after collision is half the initial speed of car A 
because their masses are equal.
NOTE We kept symbols until the very end, so we have an equation we can use in 
other (related) situations.
NOTE We haven’t mentioned friction here. Why? Because we are examining 
speeds just before and just after the very brief time interval of the collision, and 
during that brief time friction can’t do much—it is ignorable (but not for long: 
the cars will slow down because of friction).

EXERCISE C A 50-kg child runs off a dock at 2.0 m/s (horizontally) and lands in a waiting 
rowboat of mass 150 kg. At what speed does the rowboat move away from the dock?

EXERCISE D In Example 9-3, what result would you get if (a) mB = 3mA , (b) mB is much 
larger than mA [mB »  mA), and (c) mB «  mA ?

The law of conservation of momentum is particularly useful when we are dealing 
with fairly simple systems such as colliding objects and certain types of “explosions.” 
For example, rocket propulsion, which we saw in Chapter 4 can be understood on the 
basis of action and reaction, can also be explained on the basis of the conservation of 
momentum. We can consider the rocket and fuel as an isolated system if it is far out in 
space (no external forces). In the reference frame of the rocket before any fuel is 
ejected, the total momentum of rocket plus fuel is zero. When the fuel burns, the total 
momentum remains unchanged: the backward momentum of the expelled gases is just 
balanced by the forward momentum gained by the rocket itself (see Fig. 9-6). Thus, a 
rocket can accelerate in empty space. There is no need for the expelled gases to push 
against the Earth or the air (as is sometimes erroneously thought). Similar examples of 
(nearly) isolated systems where momentum is conserved are the recoil of a gun when 
a bullet is fired, and the movement of a rowboat just after a package is thrown from it.

FIGURE 9-6 (a) A rocket, 
containing fuel, at rest in some 
reference frame, (b) In the same 
reference frame, the rocket fires, and 
gases are expelled at high speed out 
the rear. The total vector momentum, 
P = Pgas + Procket. remains zero.

(a)

(l»

Pen*

P — 0

Pnwkti

( f ) P H Y S I C S  A P P L I E D
Rocket propulsion

CAUTION________
A rocket pushes on the gases 
released by the fuel, not on the 
Earth or other objects
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(;i) liel’nn; shooling (at rest)

(b) After shooting 

FIGURE 9-7 Example 9 -4 .

FIGURE 9-8 Tennis racket striking 
a ball. Both the ball and the racket 
strings are deformed due to the 
large force each exerts on the other.

FIGURE 9-9 Force as a function of 
time during a typical collision: F can 
becom e very large; At  is typically 
milliseconds for macroscopic 
collisions.

EXAMPLE 9-4 Rifle recoil. Calculate the recoil velocity of a 5.0-kg rifle that 
shoots a 0.020-kg bullet at a speed of 620 m/s, Fig. 9-7.
APPROACH Our system is the rifle and the bullet, both at rest initially, just 
before the trigger is pulled. The trigger is pulled, an explosion occurs, and we look 
at the rifle and bullet just as the bullet leaves the barrel. The bullet moves to the 
right (+x), and the gun recoils to the left. During the very short time interval of 
the explosion, we can assume the external forces are small compared to the 
forces exerted by the exploding gunpowder. Thus we can apply conservation of 
momentum, at least approximately.
SOLUTION Let subscript B represent the bullet and R the rifle; the final velocities 
are indicated by primes. Then momentum conservation in the x direction gives 

momentum before = momentum after 
mBvB + mRvR = mBvB + mRvR 

0 “I- 0 =  nxB v b “I- n tR Ur
so

mB vB (0.020 kg) (620 m /s)
vr = -2.5 m/s.mR (5.0 kg)

Since the rifle has a much larger mass, its (recoil) velocity is much less than that 
of the bullet. The minus sign indicates that the velocity (and momentum) of the 
rifle is in the negative x direction, opposite to that of the bullet.

CONCEPTUAL EXAMPLE 9 -5  I Falling on or off a sled, (a) An empty sled is
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sliding on frictionless ice when Susan drops vertically from a tree above onto the 
sled. When she lands, does the sled speed up, slow down, or keep the same speed?
(b) Later: Susan falls sideways off the sled. When she drops off, does the sled speed 
up, slow down, or keep the same speed?
RESPONSE (a) Because Susan falls vertically onto the sled, she has no initial 
horizontal momentum. Thus the total horizontal momentum afterward equals the 
momentum of the sled initially. Since the mass of the system (sled + person) has 
increased, the speed must decrease, (b) At the instant Susan falls off, she is 
moving with the same horizontal speed as she was while on the sled. At the 
moment she leaves the sled, she has the same momentum she had an instant 
before. Because momentum is conserved, the sled keeps the same speed.

EXERCISE E Return to the Chapter-Opening Questions, page 214, and answer them again 
| now. Try to explain why you may have answered differently the first time.

9 -3  Collisions and Impulse
Conservation of momentum is a very useful tool for dealing with everyday collision 
processes, such as a tennis racket or a baseball bat striking a ball, two billiard balls 
colliding, a hammer hitting a nail. At the subatomic level, scientists learn about the 
structure of nuclei and their constituents, and about the nature of the forces 
involved, by careful study of collisions between nuclei and/or elementary particles.

During a collision of two ordinary objects, both objects are deformed, often 
considerably, because of the large forces involved (Fig. 9-8). When the collision occurs, 
the force each exerts on the other usually jumps from zero at the moment of contact 
to a very large value within a very short time, and then abruptly returns to zero again. 
A graph of the magnitude of the force one object exerts on the other during a 
collision, as a function of time, is something like the red curve in Fig. 9-9. The time 
interval At is usually very distinct and usually very small.

From Newton’s second law, Eq. 9-2, the net force on an object is equal to the 
rate of change of its momentum:

f  = — . 
dt

(We have written F instead of 2F for the net force, which we assume is entirely 
due to the brief but large force that acts during the collision.) This equation applies



to each of the objects in a collision. During the infinitesimal time interval dt, the 
momentum changes by

dp = F dt.
If we integrate this over the duration of a collision, we have

= f *F dt.|  <*P = Pf -  Pi = j (

where p; and pf are the initial and final momenta of the object, just before and just 
after the collision. The integral of the net force over the time interval during which it 
acts is called the impulse, J:

J = I ¥ dt.J>
Thus the change in momentum of an object, 
impulse acting on it:

Ap = pf -  pi = F dt = J.

Ap = pf — pi, is equal to the

(9-6)

The units for impulse are the same as for momentum, kg • m/s (or N • s) in SI. Since 
J = JF dt, we can state that the impulse J of a force is equal to the area under the 
F versus t curve, as indicated by the shading in Fig. 9-9.

Equation 9-6 is true only if F is the net force on the object. It is valid for any 
net force F where pt and pf correspond precisely to the times t{ and tt . But the 
impulse concept is really most useful for so-called impulsive forces—that is, for a 
force like that shown in Fig. 9-9, which has a very large magnitude over a very 
short time interval and is essentially zero outside this time interval. For most 
collision processes, the impulsive force is much larger than any other force acting, 
and the others can be neglected. For such an impulsive force, the time interval over 
which we take the integral in Eq. 9-6 is not critical as long as we start before ^ and 
end after tt , since F is essentially zero outside this time interval. (Of course, if the 
chosen time interval is too large, the effect of the other forces does become signif­
icant—such as the flight of a tennis ball which, after the impulsive force adminis­
tered by the racket, begins to fall under gravity.)

It is sometimes useful to speak of the average force, Favg, during a collision, 
defined as that constant force which, if acting over the same time interval A t = tf -  tx 
as the actual force, would produce the same impulse and change in momentum. Thus 

•*f
F dt.

- r
Figure 9-10 shows the magnitude of the average force, Favg, for the impulsive force of 
Fig. 9-9. The rectangular area Favg At equals the area under the impulsive force curve.

M A M J m r B  ESTIMATE- ! Karate blow. Estimate the impulse and the 
average force delivered by a karate blow (Fig. 9-11) that breaks a board a few 
cm thick. Assume the hand moves at roughly 10 m/s when it hits the board. 
APPROACH We use the momentum-impulse relation, Eq. 9-6. The hand’s 
speed changes from 10 m/s to zero over a distance of perhaps one cm (roughly 
how much your hand and the board compress before your hand comes to a stop, 
or nearly so, and the board begins to give way). The hand’s mass should probably 
include part of the arm, and we take it to be roughly m ~ 1 kg.
SOLUTION The impulse J  equals the change in momentum 

J = Ap = (lkg)(10m /s -  0) = 10kg-m/s.
We obtain the force from the definition of impulse Favg = J /  At; but what is At? 
The hand is brought to rest over the distance of roughly a centimeter: Ax «  1 cm. 
The average speed during the impact is v = (10 m/s + 0)/2 = 5 m/s and equals 
Ax/At. Thus At = A x /v  «  (l0_2m)/(5 m/s) = 2 X 10_3s or about 2 ms. The 
force is thus (Eq. 9-6) about

_ J _  10 kg-m/s 
Favg At ~ 2 X 10“3 s

5000 N = 5 kN.

FIGURE 9-10 The average force 
Favg acting over a very brief time 
interval At gives the same impulse 
(Favg At) as the actual force.

FIGURE 9-11 Example 9 -6 .
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9—4 Conservation of Energy and 
Momentum in Collisions

—^  fA —A;---- ► -«----B:
(a) Approach

(b ) Collision

#4 — « =  d ® — ^
(c) If clastic

(d) If inch si ic

FIGURE 9-12 Two equal-mass 
objects (a) approach each other with 
equal speeds, (b) collide, and then
(c) bounce off with equal speeds in 
the opposite directions if the 
collision is elastic, or (d) bounce 
back much less or not at all if the 
collision is inelastic.

FIGURE 9 -1 3  Two small objects of 
masses m A and raB, (a) before the 
collision and (b) after the collision.
v

mA % wtBt

(a)

V

mA mn

<b>

During most collisions, we usually don’t know how the collision force varies over 
time, and so analysis using Newton’s second law becomes difficult or impossible. 
But by making use of the conservation laws for momentum and energy, we can still 
determine a lot about the motion after a collision, given the motion before the 
collision. We saw in Section 9-2 that in the collision of two objects such as billiard 
balls, the total momentum is conserved. If the two objects are very hard and no heat 
or other form of energy is produced in the collision, then the kinetic energy of 
the two objects is the same after the collision as before. For the brief moment 
during which the two objects are in contact, some (or all) of the energy is stored 
momentarily in the form of elastic potential energy. But if we compare the total 
kinetic energy just before the collision with the total kinetic energy just after the 
collision, and they are found to be the same, then we say that the total kinetic 
energy is conserved. Such a collision is called an elastic collision. If we use the 
subscripts A and B to represent the two objects, we can write the equation for 
conservation of total kinetic energy as

total kinetic energy before = total kinetic energy after

hmAvA + hmBvB = \ mAvA + [elastic collision] (9-7)

Primed quantities (') mean after the collision, and unprimed mean before the 
collision, just as in Eq. 9-3 for conservation of momentum.

At the atomic level the collisions of atoms and molecules are often elastic. But 
in the “macroscopic” world of ordinary objects, an elastic collision is an ideal that 
is never quite reached, since at least a little thermal energy (and perhaps sound 
and other forms of energy) is always produced during a collision. The collision of 
two hard elastic balls, such as billiard balls, however, is very close to being perfectly 
elastic, and we often treat it as such.

We do need to remember that even when the kinetic energy is not conserved, 
the total energy is always conserved.

Collisions in which kinetic energy is not conserved are said to be inelastic 
collisions. The kinetic energy that is lost is changed into other forms of energy, 
often thermal energy, so that the total energy (as always) is conserved. In this case,

KA + KB = K'a + K B + thermal and other forms of energy.

See Fig. 9-12, and the details in its caption. We discuss inelastic collisions in Section 9-6.

9—5 Elastic Collisions in One Dimension
We now apply the conservation laws for momentum and kinetic energy to an elastic 
collision between two small objects that collide head-on, so all the motion is along a 
line. Let us assume that the two objects are moving with velocities vA and vB along 
the x axis before the collision, Fig. 9-13a. After the collision, their velocities are vA 
and v'B, Fig. 9-13b. For any v > 0, the object is moving to the right (increasing x), 
whereas for v <  0, the object is moving to the left (toward decreasing values of x).

From conservation of momentum, we have

mAvA + mBvB = mA v'A + mBv'B.

Because the collision is assumed to be elastic, kinetic energy is also conserved:

\m Av \  + \m Bv \ = \m Av'l + \m Bv%.

We have two equations, so we can solve for two unknowns. If we know the masses 
and velocities before the collision, then we can solve these two equations for the
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velocities after the collision, vA and vB. We derive a helpful result by rewriting the 
momentum equation as

mA{vA -  v'A) = mB(v'B ~ %), (i)
and we rewrite the kinetic energy equation as 

mA{v\ -  v'l) = -  vl).
Noting that algebraically (a — b)(a + b) = a2 -  b2, we write this last equation as 

mA(yA -  v'A)(vA + v'A) = mB(v'B -  + vB). (ii)
We divide Eq. (ii) by Eq. (i), and (assuming vA # v'A and vB #  Vb)* obtain 

vA + v'A = v'B + vB.
We can rewrite this equation as

vA -  vB = v’B -  v'A
or

vA ~ vB = ~(y'A -  ^b)- [head-on (1-D) elastic collision] (9-8)
This is an interesting result: it tells us that for any elastic head-on collision, the 
relative speed of the two objects after the collision has the same magnitude (but 
opposite direction) as before the collision, no matter what the masses are.

Equation 9-8 was derived from conservation of kinetic energy for elastic collisions, 
and can be used in place of it. Because the v’s are not squared in Eq. 9-8, it is simpler to 
use in calculations than the conservation of kinetic energy equation (Eq. 9-7) directly.

Equal m asses. Billiard ball A of mass m  moving with speed 
vA collides head-on with ball B of equal mass. What are the speeds of the two 
balls after the collision, assuming it is elastic? Assume (a) both balls are moving 
initially (vA and t>B), (b) ball B is initially at rest (vB = 0).
APPROACH There are two unknowns, vA and vB, so we need two independent 
equations. We focus on the time interval from just before the collision until just 
after. No net external force acts on our system of two balls (mg and the normal 
force cancel), so momentum is conserved. Conservation of kinetic energy applies 
as well because we are told the collision is elastic.
SOLUTION (a) The masses are equal (raA = mB = m) so conservation of 
momentum gives

vA + vB = v'A + v'B.
We need a second equation, because there are two unknowns. We could use the 
conservation of kinetic energy equation, or the simpler Eq. 9-8 derived from it: 

vA -  vB = v'B -  v'A.
We add these two equations and obtain 

= vA
and then subtract the two equations to obtain 

vA = vB.
That is, the balls exchange velocities as a result of the collision: ball B acquires 
the velocity that ball A had before the collision, and vice versa.
(b) If ball B is at rest initially, so that vB = 0, we have 

vB = vA and vA = 0.
That is, ball A is brought to rest by the collision, whereas ball B acquires the 
original velocity of ball A. This result is often observed by billiard and pool 
players, and is valid only if the two balls have equal masses (and no spin is given 
to the balls). See Fig. 9-14.

fNote that Eqs. (i) and (ii), which are the conservation laws for momentum and kinetic energy, are 
both satisfied by the solution v[ = and v'2 = v2. This is a valid solution, but not very interesting. 
It corresponds to no collision at all—when the two objects miss each other.

EXAMPLE 9 -7

Relative speeds (1-D only)

FIGURE 9-14 In this multi-flash 
photo of a head-on collision  
between two balls of equal mass, the 
white cue ball is accelerated from  
rest by the cue stick and then strikes 
the red ball, initially at rest. The 
white ball stops in its tracks and the 
(equal mass) red ball moves off with 
the same speed as the white ball had 
before the collision. See Example 9-7.
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EXAMPLE 9-8 Unequal masses, target at rest. A very common practical 
situation is for a moving object (raA) to strike a second object (raB, the “target”) 
at rest (vB = 0). Assume the objects have unequal masses, and that the collision 
is elastic and occurs along a line (head-on), {a) Derive equations for v B and v A 
in terms of the initial velocity v A of mass mA and the masses mA and mB.
(b) Determine the final velocities if the moving object is much more massive 
than the target (raA »  mB). (c) Determine the final velocities if the moving 
object is much less massive than the target (raA «  mB).
APPROACH The momentum equation (with v B = 0) is 

m B v b = rnA(v A -  v'A).

Kinetic energy is also conserved, and to use it we use Eq. 9-8 and rewrite it as
v ’a =  v'B -  VA .

SOLUTION (a) We substitute the above v'A equation into the momentum equation 
and rearrange to find

mA + mB
We substitute this value for v B back into the equation v A = v B — v A to obtain

V'A =  v A
mA -  mB
mA + tnB

To check these two equations we have derived, we let mA = mB, and we obtain
V B  =  V A  a n ( l  V A  =  0 .

This is the same case treated in Example 9-7, and we get the same result: for 
objects of equal mass, one of which is initially at rest, the velocity of the one 
moving initially is completely transferred to the object originally at rest.
(b) We are given v B = 0 and mA »  mB. A very heavy moving object strikes a 
light object at rest, and we have, using the relations for v B and v'A above,

v'B ~  2 v a  

v 'a «  v A .

Thus the velocity of the heavy incoming object is practically unchanged, whereas 
the light object, originally at rest, takes off with twice the velocity of the heavy 
one. The velocity of a heavy bowling ball, for example, is hardly affected by 
striking a much lighter bowling pin.
(c) This time we have v B = 0 and mA raB. A moving light object strikes a 
very massive object at rest. In this case, using the equations in part (a)

v ’B ~  0 

v ’a ~  - v A .

The massive object remains essentially at rest and the very light incoming object 
rebounds with essentially its same speed but in the opposite direction. For 
example, a tennis ball colliding head-on with a stationary bowling ball will hardly 
affect the bowling ball, but will rebound with nearly the same speed it had 
initially, just as if it had struck a hard wall.

It can readily be shown (it is given as Problem 40) for any elastic head-on 
collision that

and

These general equations, however, should not be memorized. They can always be 
derived quickly from the conservation laws. For many problems, it is simplest just to start 
from scratch, as we did in the special cases above and as shown in the next Example.
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EXAMPLE 9-9 A nuclear collision. A proton (p) of mass 1.01 u (unified 
atomic mass units) traveling with a speed of 3.60 X 104m/s has an elastic head- 
on collision with a helium (He) nucleus (mHe = 4.00 u) initially at rest. What are 
the velocities of the proton and helium nucleus after the collision? (As 
mentioned in Chapter 1, 1 u = 1.66 X 10_27kg, but we won’t need this fact.) 
Assume the collision takes place in nearly empty space.
APPROACH This is an elastic head-on collision. The only external force is Earth’s 
gravity, but it is insignificant compared to the strong force during the collision. So 
again we use the conservation laws of momentum and of kinetic energy, and 
apply them to our system of two particles.
SOLUTION Let the proton (p) be particle A and the helium nucleus (He) be 
particle B. We have v B =  ?;He =  0 and v A = v p =  3.60 X 104m/s. We want to 
find the velocities v'v and v'He after the collision. From conservation of momentum,

m p Vp + 0 = m v V p + WHe^He-

Because the collision is elastic, the kinetic energy of our system of two particles is 
conserved and we can use Eq. 9-8, which becomes

Thus
v p -  0 = v'He v'p.

- «He -  Vp,
and substituting this into our momentum equation displayed above, we get

m v v p =  m p v'He 

Solving for , we obtain
2 m v v v

mr

+ mHeV He-

2(1.01 u)(3.60 X 104m/s) 
5.01 u

= 1.45 X 104 m/s.
•p +  m He

The other unknown is v'v , which we can now obtain from

= ^He -  vv = (1.45 X 104 m/s) -  (3.60 X 104m/s) = -2.15 X 104m/s.

The minus sign for v'v tells us that the proton reverses direction upon collision, 
and we see that its speed is less than its initial speed (see Fig. 9-15).
NOTE This result makes sense: the lighter proton would be expected to “bounce 
back” from the more massive helium nucleus, but not with its full original velocity 
as from a rigid wall (which corresponds to extremely large, or infinite, mass).

O
He

(a)

(b)

O r
He

FIGURE 9-15 Example 9-9: 
(a) before collision, (b) after 
collision.

9—6 Inelastic Collisions
Collisions in which kinetic energy is not conserved are called inelastic collisions. Some 
of the initial kinetic energy is transformed into other types of energy, such as thermal or 
potential energy, so the total kinetic energy after the collision is less than the total kinetic 
energy before the collision. The inverse can also happen when potential energy (such as 
chemical or nuclear) is released, in which case the total kinetic energy after the interac­
tion can be greater than the initial kinetic energy. Explosions are examples of this type.

Typical macroscopic collisions are inelastic, at least to some extent, and often to a 
large extent. If two objects stick together as a result of a collision, the collision is said to 
be completely inelastic. Two colliding balls of putty that stick together or two railroad 
cars that couple together when they collide are examples of completely inelastic 
collisions. The kinetic energy in some cases is all transformed to other forms of energy in 
an inelastic collision, but in other cases only part of it is. In Example 9-3, for instance, 
we saw that when a traveling railroad car collided with a stationary one, the coupled cars 
traveled off with some kinetic energy. In a completely inelastic collision, the maximum 
amount of kinetic energy is transformed to other forms consistent with conservation of 
momentum. Even though kinetic energy is not conserved in inelastic collisions, the 
total energy is always conserved, and the total vector momentum is also conserved.
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EXAMPLE 9-10 Railroad cars again. For the completely inelastic collision 
of two railroad cars that we considered in Example 9-3, calculate how 
much of the initial kinetic energy is transformed to thermal or other forms 
of energy.
APPROACH The railroad cars stick together after the collision, so this is a 
completely inelastic collision. By subtracting the total kinetic energy after the 
collision from the total initial kinetic energy, we can find how much energy is 
transformed to other types of energy.
SOLUTION Before the collision, only car A is moving, so the total initial kinetic 
energy is \m Av \  = \  (10,000 kg)(24.0 m /s)2 = 2.88 X 106 J. After the collision, 
both cars are moving with a speed of 12.0 m/s, by conservation of momentum 
(Example 9-3). So the total kinetic energy afterward is \  (20,000 kg)(12.0 m /s)2 = 
1.44 X 106 J. Hence the energy transformed to other forms is

(2.88 X 106J) -  (1.44 X 106J) = 1.44 X 106J, 
which is half the original kinetic energy.

EXAMPLE 9-11

1 M

(a)

Si + m 

(b)

T .i'.____

FIGURE 9-16 Ballistic pendulum. 
Example 9-11.

Ballistic pendulum. The ballistic pendulum is a device used 
to measure the speed of a projectile, such as a bullet. The projectile, of mass m, is 
fired into a large block (of wood or other material) of mass M, which is 
suspended like a pendulum. (Usually, M  is somewhat greater than m.) As a result 
of the collision, the pendulum and projectile together swing up to a maximum 
height h, Fig. 9-16. Determine the relationship between the initial horizontal 
speed of the projectile, v, and the maximum height h.
APPROACH We can analyze the process by dividing it into two parts or two time 
intervals: (1 ) the time interval from just before to just after the collision itself, 
and (2) the subsequent time interval in which the pendulum moves from the 
vertical hanging position to the maximum height h.

In part (1), Fig. 9-16a, we assume the collision time is very short, so that the 
projectile comes to rest in the block before the block has moved significantly 
from its rest position directly below its support. Thus there is effectively no net 
external force, and we can apply conservation of momentum to this completely 
inelastic collision. In part (2), Fig. 9 -16b, the pendulum begins to move, subject to 
a net external force (gravity, tending to pull it back to the vertical position); so for 
part (2), we cannot use conservation of momentum. But we can use conservation 
of mechanical energy because gravity is a conservative force (Chapter 8). The 
kinetic energy immediately after the collision is changed entirely to gravitational 
potential energy when the pendulum reaches its maximum height, h.
SOLUTION In part (1) momentum is conserved: 

total P before = total P after
mv = (m + M )v', (i)

where v' is the speed of the block and embedded projectile just after the collision, 
before they have moved significantly.

In part (2), mechanical energy is conserved. We choose y = 0 when the 
pendulum hangs vertically, and then y = h when the pendulum-projectile 
system reaches its maximum height. Thus we write

(K  + U) just after collision = (K + U) at pendulum’s maximum height
or

\{m  + M )v'2 + 0 = 0 + (m + M)gh. (ii)
We solve for v'\

v' = V 2~gh.
Inserting this result for v' into Eq. (i) above, and solving for v, gives

m + M , m + M ^
v = ---------- v = ----------- V 2 gh,m m

which is our final result.
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NOTE The separation of the process into two parts was crucial. Such an analysis 
is a powerful problem-solving tool. But how do you decide how to make such a 
division? Think about the conservation laws. They are your tools. Start a problem 
by asking yourself whether the conservation laws apply in the given situation. 
Here, we determined that momentum is conserved only during the brief collision, 
which we called part (1). But in part (1), because the collision is inelastic, the 
conservation of mechanical energy is not valid. Then in part (2), conservation of 
mechanical energy is valid, but not conservation of momentum.

Note, however, that if there had been significant motion of the pendulum 
during the deceleration of the projectile in the block, then there would have been 
an external force (gravity) during the collision, so conservation of momentum 
would not have been valid in part (1 ).

j P R O B L E M  S O L V I N G
Use the conservation laws to 
analyze a problem

9—7 Collisions in Two or Three Dimensions
Conservation of momentum and energy can also be applied to collisions in 
two or three dimensions, where the vector nature of momentum is especially 
important. One common type of non-head-on collision is that in which a 
moving object (called the “projectile”) strikes a second object initially at rest 
(the “target”). This is the common situation in games such as billiards and 
pool, and for experiments in atomic and nuclear physics (the projectiles, from 
radioactive decay or a high-energy accelerator, strike a stationary target nucleus; 
Fig. 9-17).

Figure 9-18 shows the incoming projectile, m A, heading along the x axis 
toward the target object, mB, which is initially at rest. If these are billiard balls, m A 
strikes raB not quite head-on and they go off at the angles dA and 0B, respectively, 
which are measured relative to mA s initial direction (the x  axis).f

Let us apply the law of conservation of momentum to a collision like that of 
Fig. 9-18. We choose the xy plane to be the plane in which the initial and final 
momenta lie. Momentum is a vector, and because the total momentum is conserved, 
its components in the x and y directions also are conserved. The x component of 
momentum conservation gives

P ax  +  P bx =  P'ax  +  P bx 

or, with pBx = mBvBx = 0,

mAvA = rnAvA cos d'A + mBi;Bcos 0B, (9-9a)
where the primes ( ') refer to quantities after the collision. Because there is no 
motion in the y  direction initially, the y  component of the total momentum is 
zero before the collision. The y component equation of momentum conservation 
is then

or
PAy PBy PAy PBy

0 = mAvA sind'A + raBi;Bsin0B. (9-9b)

When we have two independent equations, we can solve for two unknowns, at most.

FIGURE 9-17 A recent color- 
enhanced version of a cloud-chamber 
photograph made in the early days 
(1920s) of nuclear physics. Green lines 
are paths of helium nuclei (He) 
coming from the left. One He, 
highlighted in yellow, strikes a proton 
of the hydrogen gas in the chamber, 
and both scatter at an angle; the 
scattered proton’s path is shown in red.

px conserved

Py conserved

mA

V r ,

0'a

Pa mB\ ,

P b

FIGURE 9-18 Object A, the projectile, collides 
with object B, the target. After the collision, they 
move off with momenta pA and pB at angles 0'A and 
0B. The objects are shown here as particles, as we 
would visualize them in atomic or nuclear physics. 
But they could also be macroscopic pool balls.

trThe objects may begin to deflect even before they touch if electric, magnetic, or nuclear forces act 
between them. You might think, for example, of two magnets oriented so that they repel each other: 
when one moves toward the other, the second moves away before the first one touches it. SECTION 9 -7  227



FIGURE 9-19 Example 9-12.

/|\ CAUTION_________
Equation 9-8 applies only in 1-D

EXAMPLE 9-12 Billiard ball collision in 2-D. Billiard ball A moving with 
speed vA = 3.0 m/s in the +x direction (Fig. 9-19) strikes an equal-mass 
ball B initially at rest. The two balls are observed to move off at 45° to the x axis, 
ball A above the x axis and ball B below. That is, d'A = 45° and dB = -45° 
in Fig. 9-19. What are the speeds of the two balls after the collision?
APPROACH There is no net external force on our system of two balls, assuming 
the table is level (the normal force balances gravity). Thus momentum conservation 
applies, and we apply it to both the x and y components using the xy coordinate 
system shown in Fig. 9-19. We get two equations, and we have two unknowns, vA 
and vB. From symmetry we might guess that the two balls have the same speed. 
But let us not assume that now. Even though we are not told whether the collision 
is elastic or inelastic, we can still use conservation of momentum.
SOLUTION We apply conservation of momentum for the x and y components, 
Eqs. 9-9a and b, and we solve for vA and vB. We are given mA = mB(= ra), so

(forx) mvA = mvaCos(45°) + mvB cos(-45°)
and

(fory) 0 = ravAsin(45°) + mvB sin(-45°).

The ra’s cancel out in both equations (the masses are equal). The second 
equation yields [recall that s in ( -0) = - s in 0]:

sin(45°) (  sin 45
Vb = - Va ^ T 4T ) = - VA{ ^ r '  = *A-

So they do have equal speeds as we guessed at first. The x  component equation 
gives [recall that c o s (-0) = cos0]:

v a  =  v a c o s ( 4 5 ° )  +  vB cos(45°) =  2?;^ cos (45°), 

Va 3.0 m/s , 
= 2cos(45°y = 2(0707) = 2 1  m /s'

If we know that a collision is elastic, we can also apply conservation of kinetic 
energy and obtain a third equation in addition to Eqs. 9-9a and b:

KA + KB = K fA + K i

or, for the collision shown in Fig. 9-18 or 9-19,

\m Av \  = \m Ava + \m BvB. [elastic collision] (9-9c)

If the collision is elastic, we have three independent equations and can solve for 
three unknowns. If we are given raA,m B,v A (and vB, if it is not zero), we cannot, 
for example, predict the final variables, vA, vB, dA, and dB, because there are four 
of them. However, if we measure one of these variables, say dA, then the other 
three variables (vA, vB, and d'B) are uniquely determined, and we can determine 
them using Eqs. 9-9a, b, and c.

A note of caution: Eq. 9-8 does not apply for two-dimensional collisions. It 
works only when a collision occurs along a line.

EXAMPLE 9-13 Proton-proton collision. A proton traveling with speed 
8.2 X 105m/s collides elastically with a stationary proton in a hydrogen target as 
in Fig. 9-18. One of the protons is observed to be scattered at a 60° angle. At 
what angle will the second proton be observed, and what will be the velocities of 
the two protons after the collision?
APPROACH We saw a two-dimensional collision in Example 9-12, where we 
needed to use only conservation of momentum. Now we are given less information: 
we have three unknowns instead of two. Because the collision is elastic, we can use 
the kinetic energy equation as well as the two momentum equations.
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SOLUTION Since raA = mB, Eqs. 9-9a, b, and c become 

va = v'a cos 6a + v'B cos 
0 = vAsin0A + ^Bsin^B 

v2a = v'l + vg,

(i)
(ii)

(iii)

where vA = 8.2 X 105m/s and 0'A = 60° are given. In the first and second equa­
tions, we move the v'A terms to the left side and square both sides of the equations:

va ~ 2vA?;Acos0A + v'a cos2 6l̂  = vB cos26B
v'l sin2 Q'a = v% sin2 dB.

We add these two equations and use sin2 0 + cos2 0 = 1 to get:

v2a ~ 2va v'a cos 0a + v'l = v%.

Into this equation we substitute v% = v \  ~ v 'l , from equation (iii) above, and get

2 v'l = 2vA?;Acos0A
or

va = vAcos Q'a = (8.2 X 105 m/s)(cos 60°) = 4.1 X 105m/s.

To obtain v'B, we use equation (iii) above (conservation of kinetic energy):

VB = V va -  v'l = 7.1 X 105m/s.

Finally, from equation (ii), we have

sin 0k va .—  sin 0 a =
v'b

4.1 X 105 m/s
7.1 X 105 m/s

(0.866) = -0.50,

so 0'Q = -30°. (The minus sign means particle B moves at an angle below the 
x axis if particle A is above the axis, as in Fig. 9-19.) An example of such a 
collision is shown in the bubble chamber photo of Fig. 9-20. Notice that the two 
trajectories are at right angles to each other after the collision. This can be shown 
to be true in general for non-head-on elastic collisions of two particles of equal 
mass, one of which was at rest initially (see Problem 61).

FIGURE 9 - 2 0  Photo of a proton- 
proton collision in a hydrogen bubble 
chamber (a device that makes visible 
the paths of elementary particles). 
The many lines represent incoming 
protons which can strike the protons 
of the hydrogen in the chamber.

Momentum Conservation and Collisions

1. Choose your system. If the situation is complex, 
P* think about how you might break it up into separate

parts when one or more conservation laws apply.
2. If a significant net external force acts on your 

chosen system, be sure the time interval At is so 
short that the effect on momentum is negligible. 
That is, the forces that act between the interacting 
objects must be the only significant ones if 
momentum conservation is to be used. [Note: If this 
is valid for a portion of the problem, you can use 
momentum conservation only for that portion.]

3. Draw a diagram of the initial situation, just before 
the interaction (collision, explosion) takes place, and 
represent the momentum of each object with an 
arrow and a label. Do the same for the final situa­
tion, just after the interaction.

4. Choose a coordinate system and “ + ” and direc­
tions. (For a head-on collision, you will need only an 
x axis.) It is often convenient to choose the +x axis in 
the direction of one object’s initial velocity.

5. Apply the momentum conservation equation(s):
total initial momentum = total final momentum.

You have one equation for each component (x, y, z): 
only one equation for a head-on collision.

6. If the collision is elastic, you can also write down a 
conservation of kinetic energy equation:

total initial kinetic energy = total final kinetic energy.

[Alternately, you could use Eq. 9-8: vA ~ vQ = 
vB v'a 5 if the collision is one dimensional (head-on).]

7. Solve for the unknown(s).
8. Check your work, check the units, and ask yourself 

whether the results are reasonable.
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9 —8 Center o f  Mass (cm )
Momentum is a powerful concept not only for analyzing collisions but also for 
analyzing the translational motion of real extended objects. Until now, whenever 
we have dealt with the motion of an extended object (that is, an object that has 
size), we have assumed that it could be approximated as a point particle or that it 
undergoes only translational motion. Real extended objects, however, can undergo 
rotational and other types of motion as well. For example, the diver in Fig. 9-21a 
undergoes only translational motion (all parts of the object follow the same path), 
whereas the diver in Fig. 9-21b undergoes both translational and rotational 
motion. We will refer to motion that is not pure translation as g e n e ra l m o tio n .

Observations indicate that even if an object rotates, or several parts of a 
system of objects move relative to one another, there is one point that moves 
in the same path that a particle would move if subjected to the same net force. 
This point is called the center of mass (abbreviated c m ) .  The general motion 
of an extended object (or system of objects) can be considered as the  s u m  o f  th e  

t r a n s la t io n a l m o t io n  o f  th e  c m , p lu s  ro ta t io n a l, v ib r a t io n a l ,  o r  o th e r  types  o f  m o t io n  

a b o u t  the  c m .

As an example, consider the motion of the center of mass of the diver in Fig. 9-21; 
the c m  follows a parabolic path even when the diver rotates, as shown in Fig. 9-21b. 
This is the same parabolic path that a projected particle follows when acted on only 
by the force of gravity (projectile motion, Section 3-7). Other points in the rotating 
diver’s body, such as her feet or head, follow more complicated paths.

Figure 9-22 shows a wrench acted on by zero net force, translating and rotating 
along a horizontal surface. Note that its c m , marked by a red cross, moves in a 
straight line, as shown by the dashed white line.

(b)

FIGURE 9-21 The motion of the 
diver is pure translation in (a), but is 
translation plus rotation in (b). The 
black dot represents the diver’s cm 
at each moment.

FIGURE 9-22 Translation plus rotation: a wrench moving over a horizontal surface. 
The cm , marked with a red cross, moves in a straight line.

FIGURE 9-23 The center of mass 
of a two-particle system lies on the 
line joining the two masses. Here 
mA > mB, so the cm is closer to raA 
than to raB.

y
j

XA  *■
r$ '1

mA 
[ *■

We will show in Section 9-9 that the important properties of the c m  follow 
from Newton’s laws if the c m  is defined in the following way. We can consider any 
extended object as being made up of many tiny particles. But first we consider a 
system made up of only two particles (or small objects), of masses m A and mQ. We 
choose a coordinate system so that both particles lie on the x  axis at positions x A 

and x B , Fig. 9-23. The center of mass of this system is defined to be at the position 
xCM, given by

m A x A +  m B x B m A x A +  m B x B
XrM m A + m B M

where M  = mA + mB is the total mass of the system. The center of mass lies on 
the line joining m A and mB. If the two masses are equal (mA = m B = m), then 
xCM is midway between them, since in this case

m(x A + *B) U a + * b )

*CM "  2m "  2

If one mass is greater than the other, say, mA >  mB, then the c m  is closer 
to the larger mass. If all the mass is concentrated at xB, so mA = 0, then 
*cm = (0*a + mBxB)/{® + rnB) = xB, as we would expect.
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Now let us consider a system consisting of n particles, where n could be very 
large. This system could be an extended object which we consider as being made 
up of n tiny particles. If these n particles are all along a straight line (call it the 
x axis), we define the cm  of the system to be located at

rrixXi + m2x2 + + mnxn
X C M  =  — (9-10)

are their
rrii + m2 + ■■■ + mn M

where m1,m 2, .. .m n are the masses of each particle and x1,x 2,.. 
positions. The symbol 2"=i is the summation sign meaning to sum over all the 
particles, where i takes on integer values from 1 to n. (Often we simply write 
'2mixi , leaving out the i = 1 to n.) The total mass of the system is M = '2mi.

CM three guys on a raft. Three people of roughly equal 
masses m o m .  lightweight (air-filled) banana boat sit along the x  axis at positions 
x A = 1.0 m, x B = 5.0 m, and x c = 6.0 m, measured from the left-hand end as 
shown in Fig. 9-24. Find the position of the cm. Ignore the boat’s mass. 
APPROACH We are given the mass and location of the three people, so we 
use three terms in Eq. 9-10. We approximate each person as a point particle. 
Equivalently, the location of each person is the position of that person’s own cm. 
SOLUTION We use Eq. 9-10 with three terms:

m x A + m x B + m x c  m { x A +  x B +  x c )

m m m 3m
(1.0m + 5.0m 6.0 m) 12.0 m

= 4.0m.
3 3

The cm  is 4.0 m from the left-hand end of the boat. This makes sense—it should 
be closer to the two people in front than the one at the rear.

Note that the coordinates of the cm  depend on the reference frame or coordinate 
system chosen. But the physical location of the cm  is independent of that choice.

EXERCISE F Calculate the cm of the three people in Example 9-14 taking the origin at 
the driver (xc =  0) on the right. Is the physical location of the cm the same?

If the particles are spread out in two or three dimensions, as for a typical 
extended object, then we define the coordinates of the cm  as

Sm/*,- _ 2 m^- _  Sm/Z/ /n ^
*CM — M y™ ~ M ZcM ~ M ’ { ) 

where xh yt , Zi are the coordinates of the particle of mass mt and again M = 'Zrrii 
is the total mass.

Although from a practical point of view we usually calculate the components of 
the cm  (Eq. 9-11), it is sometimes convenient (for example, for derivations) to write 
Eq. 9-11 in vector form. If ?*• = xt\ + + Z;k is the position vector of the zth particle, 
and ?CM = xCMi + yCMj + zCMk is the position vector of the center of mass, then

M  (9-12)
M

EXAMPLE 9-15 Three particles in 2-D. Three particles, each of mass 2.50 kg, 
are located at the corners of a right triangle whose sides are 2.00 m and 1.50 m 
long, as shown in Fig. 9-25. Locate the center of mass.
APPROACH We choose our coordinate system as shown (to simplify calculations) with 
mA at the origin and mB on the x axis. Then raA has coordinates xA = yA = 0; mB has 
coordinates xB = 2.0 m, yB = 0; and rac has coordinates xc = 2.0 m, yc = 1.5 m. 
SOLUTION From Eqs. 9-11,

(2.50 kg) (0) + (2.50 kg) (2.00 m) + (2.50 kg) (2.00 m)
Xriji

3̂cm —

3(2.50 kg)
(2.50 kg) (0) + (2.50 kg) (0) + (2.50 kg) (1.50 m)

= 1.33 m

0.50 m.7.50 kg
The cm and the position vector rCM are shown in Fig. 9-25, inside the “triangle” as 
we should expect.

0 14) m 5,0 m 6.0 m 1

FIGURE 9 -2 4  Example 9-14.

FIGURE 9 -2 5  Example 9-15.
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FIGURE 9-26 An extended object, 
here shown in only two dimensions, 
can be considered to be made up of 
many tiny particles (n), each having 
a mass Am,-. One such particle is 
shown located at a point 
fi = Xji + yi\ + n  k. We take the 
limit of n —> oo so Am,- becomes the 
infinitesimal dm.

FIGURE 9-27 Example 9-16.

dm = Xdx

x --------H
dx

EXERCISE G A diver does a high dive involving a flip and a half-pike (legs and arms 
straight, but body bent in half). What can you say about the diver’s center of mass? (a) It 
accelerates with a magnitude of 9.8 m/s2 (ignoring air friction). (b) It moves in a circular 
path because of the rotation of the diver, (c) It must always be roughly located inside the 
diver’s body, somewhere in the geometric center, (d) All of the above are true.

It is often convenient to think of an extended object as made up of a continuous 
distribution of matter. In other words, we consider the object to be made up of 
n particles, each of mass Am, in a tiny volume around a point xz-, yt , z ,, and we take 
the limit of n approaching infinity (Fig. 9-26). Then Am, becomes the infinitesimal 
mass dm at points x, y, z. The summations in Eqs. 9-11 and 9-12 become integrals:

* CM = ~h \ xdm ’ yctl = J t f y d m ’ ZcM = f z d m ’ <9-13)

where the sum over all the mass elements is fd m  = M, the total mass of the 
object. In vector notation, this becomes

(9-14)

A concept similar to center o f mass is center of gravity (c g ). The c g  of an object 
is that point at which the force of gravity can be considered to act. The force of gravity 
actually acts on all the different parts or particles of an object, but for purposes of 
determining the translational motion of an object as a whole, we can assume that the 
entire weight of the object (which is the sum of the weights of all its parts) acts at 
the c g . There is a conceptual difference between the center of gravity and the center 
of mass, but for nearly all practical purposes, they are at the same point.t

CM of 3 thin rod. (a) Show that the cm  of a uniform thin rod 
of length I and mass M  is at its center. (b) Determine the cm  of the rod assuming 
its linear mass density A (its mass per unit length) varies linearly from A = A0 at 
the left end to double that value, A = 2A0, at the right end.
APPROACH We choose a coordinate system so that the rod lies on the x  axis 
with the left end at x = 0, Fig. 9-27. Then yCM = 0 and zCM = 0.
SOLUTION (a) The rod is uniform, so its mass per unit length (linear mass density A) is 
constant and we write it as A = M /L  We now imagine the rod as divided into infin­
itesimal elements of length dx, each of which has mass dm = A dx. We use Eq. 9-13:

XpM
v r AX

= m T
Al2 
2 M

1 ft  1  f t  1 - 2  

J.
where we used A = M /L  This result, xCM at the center, is what we expected.
(b) Now we have A = A0 at x = 0 and we are told that A increases linearly to 
A = 2A0 at x = L So we write 

A = A0(l + ax)
which satisfies A = A0 at x = 0, increases linearly, and gives A = 2A0 at x  = £ 
if (1 + a£) = 2. In other words, a = 1 /I. Again we use Eq. 9-13, with 
A = Aq(1 + x/l):

1  fV  AqxCM = —  I Ax dx = —  An I 11 + — )x dx = —=  7 7  [ Ax dx =  A0 [
M  J x = o  M  J o M

x^ x^ 
2 + U

5 Ao
6 M  '

Now let us write M  in terms of A0 and L We can write

M \ d m  = [A  dx = A„Jo ( l + f ) < f c  -  A0(* + ^ ) f  Ao*.

Then
=  02 = 

6 M !<■
which is more than halfway along the rod, as we would expect since there is more 
mass to the right.

fThere would be a difference between the cm and cg  only in the unusual case of an object so large that 
the acceleration due to gravity, g, was different at different parts of the object.
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For symmetrically shaped objects of uniform composition, such as spheres, 
cylinders, and rectangular solids, the cm  is located at the geometric center of the 
object. Consider a uniform circular cylinder, such as a solid circular disk. We expect 
the cm  to be at the center of the circle. To show that it is, we first choose a coordi­
nate system whose origin is at the center of the circle with the z axis perpendicular 
to the disk (Fig. 9-28). When we take the sum in Eqs. 9-11, there is as
much mass at any +xt as there is at —jcf. So all terms cancel out in pairs and 
x c m  =  0- The same is true for y CM. In the vertical (z) direction, the cm  must lie 
halfway between the circular faces: if we choose our origin of coordinates at that 
point, there is as much mass at any +zf as at —Zi, so zCM = 0. For other uniform, 
symmetrically shaped objects, we can make similar arguments to show that the cm  
must lie on a line of symmetry. If a symmetric body is not uniform, then these 
arguments do not hold. For example, the cm  of a wheel or disk weighted on one 
side is not at the geometric center but closer to the weighted side.

To locate the center of mass of a group of extended objects, we can use 
Eqs. 9-11, where the mf are the masses of these objects and x t , y t , and Zi are the 
coordinates of the cm  of each of the objects.

CM of L-shaped flat object. Determine the cm  of the
uniform thin L-shaped construction brace shown in Fig. 9-29.
APPROACH We can consider the object as two rectangles: rectangle A, which is 
2.06 m X 0.20 m, and rectangle B, which is 1.48 m X 0.20 m. We choose the origin 
at 0 as shown. We assume a uniform thickness t.
SOLUTION The cm  of rectangle A is at

x A = 1.03 m, yA = 0.10 m.
The cm  of B is at

x B = 1.96 m, y B = -0.74 m.
The mass of A, whose thickness is t, is

Ma = (2.06 m)(0.20 m) (i) (p) = (0.412 m2)(pt), 
where p is the density (mass per unit volume). The mass of B is 

Mb = (1.48 m)(0.20 m)(pt) = (0.296 m 2)(pt), 
and the total mass is M = (0.708 m2)(pt). Thus

M a x a  + M b x  b (0.412 m2)(1.03m) + (0.296 m2)(1.96m)
M  (0.708 m2)

where pt was canceled out in numerator and denominator. Similarly, 
(0.412 m2)(0.10m) + (0.296 m2)(-0.74 m)

= 1.42 m,

yCM — (0.708 m2)
= -0.25 m,

which puts the cm  approximately at the point so labeled in Fig. 9-29. In thickness, 
£cm = t/2, since the object is assumed to be uniform.

Note in this last Example that the cm  can actually lie outside the object. 
Another example is a doughnut whose cm is at the center of the hole.

It is often easier to determine the cm or cg  of an extended object experimentally 
rather than analytically. If an object is suspended from any point, it will swing 
(Fig. 9-30) due to the force of gravity on it, unless it is placed so its cg  lies on a 
vertical line directly below the point from which it is suspended. If the object is 
two-dimensional, or has a plane of symmetry, it need only be hung from two 
different pivot points and the respective vertical (plumb) lines drawn. Then the cg  
will be at the intersection of the two lines, as in Fig. 9-31. If the object doesn’t 
have a plane of symmetry, the CG with respect to the third dimension is found by 
suspending the object from at least three points whose plumb lines do not lie in 
the same plane. For symmetrically shaped objects, the cm is located at the 
geometric center of the object.

FIGURE 9-28 Cylindrical disk with 
origin of coordinates at geometric 
center.

FIGURE 9-29 Example 9 -17. This 
L-shaped object has thickness t (not 
shown on diagram).

FIGURE 9-30 Determining the cm 
of a flat uniform body.

FIGURE 9-31 Finding the cg.
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9—9 Center of Mass and Translational Motion
As mentioned in Section 9-8, a major reason for the importance of the concept of 
center of mass is that the translational motion of the cm  for a system of particles 
(or an extended object) is directly related to the net force acting on the system as 
a whole. We now show this, by examining the motion of a system of n particles of 
total mass M, and we assume all the masses remain constant. We begin by 
rewriting Eq. 9-12 as

NEWTON’S SECOND LAW  
(for a system)

TRANSLATIONAL 
MOTION OF CM

We differentiate this equation with respect to time:

J/f ^cm dr iM ——  = zm ; —— 
dt 1 dt

M \cm = Dm/Vf, (9-15)

where vf = d rjd t is the velocity of the zth particle of mass mt, and vCM is the 
velocity of the cm . We take the derivative with respect to time again and obtain

d v CMM dt

where a{- = dvjd t is the acceleration of the zth particle. Now d \CM/dt is the 
acceleration of the cm , aCM. By Newton’s second law, ra*-a?- = Fj where Fj is 
the net force on the /th particle. Therefore

^ a CM -  Fi + F2 + ••• + F„ -  2Fj. (9-16)

That is, the vector sum of all the forces acting on the system is equal to the total 
mass of the system times the acceleration of its center of mass. Note that our 
system of n particles could be the n particles that make up one or more extended 
objects.

The forces Fj exerted on the particles of the system can be divided into two 
types: (1 ) external forces exerted by objects outside the system and (2) internal 
forces that particles within the system exert on one another. By Newton’s third 
law, the internal forces occur in pairs: if one particle exerts a force on a second 
particle in our system, the second must exert an equal and opposite force on the 
first. Thus, in the sum over all the forces in Eq. 9-16, these internal forces cancel 
each other in pairs. We are left, then, with only the external forces on the right side 
of Eq. 9-16:

ext [constant M\ (9-17)

where 2F ext is the sum of all the external forces acting on our system, which is the 
net force acting on the system. Thus

the sum of all the forces acting on the system is equal to the total mass of the 
system times the acceleration of its center of mass.

This is Newton’s second law for a system of particles. It also applies to an extended 
object (which can be thought of as a collection of particles), and to a system of 
objects. Thus we conclude that

the center of mass of a system of particles (or objects) with total mass M  
moves like a single particle of mass M  acted upon by the same net external 
force.

That is, the system translates as if all its mass were concentrated at the cm  and all the 
external forces acted at that point. We can thus treat the translational motion of any 
object or system of objects as the motion of a particle (see Figs. 9-21 and 9-22).
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This result clearly simplifies our analysis of the motion of complex systems and 
extended objects. Although the motion of various parts of the system may be 
complicated, we may often be satisfied with knowing the motion of the center of 
mass. This result also allows us to solve certain types of problems very easily, as 
illustrated by the following Example.

CONCEPTUAL EXAMPLE 9-18 I A two-stage rocket A rocket is shot into the
air as shown in Fig. 9-32. At the moment it reaches its highest point, a horizontal 
distance d from its starting point, a prearranged explosion separates it into two parts 
of equal mass. Part I is stopped in midair by the explosion and falls vertically to 
Earth. Where does part II land? Assume g = constant.

/

„  - £ - j »  £ r r ------

: ' x

RESPONSE After the rocket is fired, the path of the cm  of the system continues 
to follow the parabolic trajectory of a projectile acted on only by a constant 
gravitational force. The cm  will thus arrive at a point 2d from the starting point. 
Since the masses of I and II are equal, the cm  must be midway between them. 
Therefore, part II lands a distance 3d from the starting point.
NOTE If part I had been given a kick up or down, instead of merely falling, the 
solution would have been somewhat more complicated.

I EXERCISE H A  woman stands up in a rowboat and walks from one end of the boat to the 
| other. How does the boat move, as seen from the shore?

We can write Eq. 9-17, MaCM = 2F ext, in terms of the total momentum P of 
a system of particles. P is defined, as we saw in Section 9-2 as

P = m1\ 1 + m2v2 + ••• + mnyn = 2p  f.
From Eq. 9-15 (Mvcm = 2ra,Vj) we have

P = Mvcm. (9-18)
Thus, the total linear momentum o f a system o f particles is equal to the product o f 
the total mass M and the velocity o f the center o f mass o f the system. Or, the linear 
momentum o f an extended object is the product o f the object’s mass and the velocity 
o f its CM.

If we differentiate Eq. 9-18 with respect to time, we obtain (assuming the total 
mass M  is constant)

dP  ^v CM 

dt ~ M dt ~ CM- 
From Eq. 9-17, we see that

dP
—  = 2F ext, [same as Eq. 9-5]

where 2F ext is the net external force on the system. This is just Eq. 9-5 obtained 
earlier: Newton’s second law for a system of objects. It is valid for any definite 
fixed system of particles or objects. If we know 2Fext, we can determine how the 
total momentum changes.

FIGURE 9-32 Example 9-18 .

NEWTON’S SECOND LAW 
(for a system)
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@  P H Y S I C S  A P P L I E D  An interesting application is the discovery of nearby stars (see Section 6-5)
Distant planets discovered  that seem to “wobble.” What could cause such a wobble? It could be that a planet 

orbits the star, and each exerts a gravitational force on the other. The planets are 
too small and too far away to have been observed directly by existing telescopes. 
But the slight wobble in the motion of the star suggests that both the planet and 
the star (its sun) orbit about their mutual center of mass, and hence the star 
appears to have a wobble. Irregularities in the star’s motion can be obtained to 
high accuracy, and from the data the size of the planets’ orbits can be obtained 
as well as their masses. See Fig. 6-18 in Chapter 6.

v + d \

FIGURE 9 -3 3  (a) A t time t, a mass 
dM  is about to be added to our 
system M. (b) A t time t +  dt, the 
mass dM  has been added to our 
system.

9 -1 0  Systems of Variable Mass; 
Rocket Propulsion

We now treat objects or systems whose mass varies. Such systems could be 
treated as a type of inelastic collision, but it is simpler to use Eq. 9-5, 
d P /d t = 2 Fext, where P  is the total momentum of the system and 2 Fext is the 
net external force exerted on it. Great care must be taken to define the system, 
and to include all changes in momentum. An important application is to rockets, 
which propel themselves forward by the ejection of burned gases: the force 
exerted by the gases on the rocket accelerates the rocket. The mass M  of the 
rocket decreases as it ejects gas, so for the rocket dM /dt <  0. Another 
application is the dropping of material (gravel, packaged goods) onto a conveyor 
belt. In this situation, the mass M  of the loaded conveyor belt increases and 
dM/dt > 0.

To treat the general case of variable mass, let us consider the system 
shown in Fig. 9-33. At some time t, we have a system of mass M  and 
momentum Mv. We also have a tiny (infinitesimal) mass dM  traveling with 
velocity u which is about to enter our system. An infinitesimal time dt later, 
the mass dM  combines with the system. For simplicity we will refer to this as a 
“collision.” So our system has changed in mass from M  to M  + dM in the 
time dt. Note that dM  can be less than zero, as for a rocket propelled by 
ejected gases whose mass M  thus decreases.

In order to apply Eq. 9-5, d P /d t  = 2 Fext, we must consider a definite 
fixed system of particles. That is, in considering the change in momentum, 
dP, we must consider the momentum of the same particles initially and 
finally. We will define our total system as including M  plus dM. Then 
initially, at time t, the total momentum is Mv + u dM  (Fig. 9-33). At time 
t + dt, after dM  has combined with M, the velocity of the whole is now
v + dy and the total momentum is (M + dM)(y + dy). So the change in 
momentum dP  is

dP = (M + dM)(y + dy) -  (My + u dM)

= M dy + v dM + dM dy — u dM.

The term dM dy is the product of two differentials and is zero even after we 
“divide by d t” which we do, and apply Eq. 9-5 to obtain

dP M dy + y dM -  u dM2Fext — —— — 
ext dt dt

Thus we get

-* dy dM
£Fext = M j -  (a —v ) ^ -  (9-19a)

Note that the quantity (u — v) is the relative velocity, vrei , of dM  with respect to M.
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Vrel =  U -  V

is the velocity of the entering mass dM  as seen by an observer on M. We can 
rearrange Eq. 9-19a:

= 2Fext + vrelf l  (9-19b)

We can interpret this equation as follows. M dv/dt is the mass times the acceleration 
of M. The first term on the right, 2F ext, refers to the external force on the 
mass M  (for a rocket, it would include the force of gravity and air resistance). It 
does not include the force that dM  exerts on M  as a result of their collision. This 
is taken care of by the second term on the right, %ex(dM/dt), which represents 
the rate at which momentum is being transferred into (or out of) the mass M  
because of the mass that is added to (or leaves) it. It can thus be interpreted as 
the force exerted on the mass M  due to the addition (or ejection) of mass. For a 
rocket this term is called the thrust, since it represents the force exerted on the 
rocket by the expelled gases. For a rocket ejecting burned fuel, dM /dt <  0, but 
so is vrei (gases are forced out the back), so the second term in Eq. 9 -19b acts 
to increase v.

That is,

EXAMPLE 9-19 Conveyor belt. You are designing a conveyor system for a 
gravel yard. A hopper drops gravel at a rate of 75.0 kg/s onto a conveyor belt 
that moves at a constant speed v = 2.20 m/s (Fig. 9-34). (a) Determine the 
additional force (over and above internal friction) needed to keep the conveyor 
belt moving as gravel falls on it. (b) What power output would be needed from 
the motor that drives the conveyor belt?

APPROACH We assume that the hopper is at rest so u = 0, and that the hopper 
has just begun dropping gravel so dM/dt = 75.0 kg/s.
SOLUTION (a) The belt needs to move at a constant speed (dv/dt = 0), so 
Eq. 9-19 as written for one dimension, gives:

, ,  dv . . dM
ext "  d f  ~ { u ~ v ) ~dT

n \ d M= 0 - ( 0 - v )  —

= VW  = (2-2° m/s) (75.0 kg/s) = 165 N.

(b) This force does work at the rate (Eq. 8-21)

dW  * 9 dM
d T  = F- ‘ v = v d T

= 363 W,

which is the power output required of the motor.
NOTE This work does not all go into kinetic energy of the gravel, since

dK d (1 w 1 dM  ,
= — -  M r  = 

dt d t \  2  J 2 dt

which is only half the work done by Fexf The other half of the external work 
done goes into thermal energy produced by friction between the gravel and the 
belt (the same friction force that accelerates the gravel).

0 P H Y S I C S  A P P L I E D
M oving conveyor belt

FIGURE 9 -3 4  Example 9-19. 
Gravel dropped from hopper onto 
conveyor belt.
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@  P H Y S I C S A P P L I E D
Rocket propulsion

r̂ocket

Vgases

FIGURE 9-35 Example 9-20; 
vrel =  vgases — vrocket • M  is the mass 
of the rocket at any instant and is 
decreasing until burnout.

EXAMPLE 9-20 Rocket propulsion. A fully fueled rocket has a mass of
21,000 kg, of which 15,000 kg is fuel. The burned fuel is spewed out the rear at a 
rate of 190 kg/s with a speed of 2800 m/s relative to the rocket. If the rocket is 
fired vertically upward (Fig. 9-35) calculate: (a) the thrust of the rocket; (b) the 
net force on the rocket at blastoff, and just before burnout (when all the fuel has 
been used up); (c) the rocket’s velocity as a function of time, and (d) its final 
velocity at burnout. Ignore air resistance and assume the acceleration due to 
gravity is constant at g = 9.80 m/s2.

APPROACH To begin, the thrust is defined (see discussion after Eq. 9-19b) as 
the last term in Eq. 9 -19b, vTe\(dM/dt). The net force [for (b)] is the vector sum 
of the thrust and gravity. The velocity is found from Eq. 9-19b.
SOLUTION (a) The thrust is:

t̂hrust = = (-2800 m /s)(-190 kg/s) = 5.3 X 105N,

where we have taken upward as positive so vrQ\ is negative because it is down­
ward, and dM/dt is negative because the rocket’s mass is diminishing.
(b) Fext = Mg = (2.1 X 104kg)(9.80m/s2) = 2.1 X 105N initially, and at burnout 
Fext = (6.0 X 103kg)(9.80m/s2) = 5.9 X 104 N. Hence, the net force on the rocket 
at blastoff is

Fnet = 5.3 X 105N -  2.1 X 105N = 3.2 X 105N, [blastoff] 

and just before burnout it is

Fnet = 5.3 X 105N -  5.9 X 104N = 4.7 X 105N. [burnout]

After burnout, of course, the net force is that of gravity, -5.9 X 104 N.
(c) From Eq. 9-19b we have

^
M  ^  M ’

where ^ext = -M g , and M  is the mass of the rocket and is a function of time. 
Since vTe\ is constant, we can integrate this easily:

U  -  - ( 'JVn JO

M, dMg d t + t)rei | —

or

v(t) = v0 -  gt + vxe\ In —— s

where v(t) is the rocket’s velocity and M  its mass at any time t. Note that urel is 
negative (-2800 m/s in our case) because it is opposite to the motion, and 
that In (M /M q) is also negative because M0 > M. Hence, the last term—which 
represents the thrust—is positive and acts to increase the velocity.
(d) The time required to reach burnout is the time needed to use up all the fuel 
(15,000 kg) at a rate of 190 kg/s; so at burnout,

1.50 X 104 kg
t  =  ---------------------- =  79  s

190 kg/s

If we take v0 = 0, then using the result of part (c):

6000 kg
v = -(9.80m /s2)(79 s) + (-2800 m/s) ̂ ln

21,000 kg
= 2700 m/s.
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Summary
The linear momentum, p, of an object is defined as the product 
of its mass times its velocity,

p = my. (9-1)
In terms of momentum, Newton’s second law can be 

written as
^ dfi

2F  = ~  
dt

(9-2)

That is, the rate of change of momentum of an object equals the 
net force exerted on it.

When the net external force on a system of objects is zero, 
the total momentum remains constant. This is the law of conser­
vation of momentum. Stated another way, the total momentum 
of an isolated system of objects remains constant.

The law of conservation of momentum is very useful in 
dealing with the class of events known as collisions. In a colli­
sion, two (or more) objects interact with each other for a very 
short time, and the force each exerts on the other during this 
time interval is very large compared to any other forces acting. 
The impulse of such a force on an object is defined as

J = | F dt

and is equal to the change in momentum of the object as long as 
F is the net force on the object:

Ap = pf -  pi = F dt = J. (9-6)

Total momentum is conserved in any collision:

Pa + Pb = Pa + Pb

The total energy is also conserved; but this may not be useful 
unless kinetic energy is conserved, in which case the collision is 
called an elastic collision:

\m A v \  + \m Bv I  = \m A v'l + %mBvg. (9-7)

If kinetic energy is not conserved, the collision is called inelastic.

If two colliding objects stick together as the result of a collision, 
the collision is said to be completely inelastic.

For a system of particles, or for an extended object that can 
be considered as having a continuous distribution of matter, the 
center o f mass (cm) is defined as

SmjXj
M yCM — M

or

*CM = T7 [ * dm, ycM = 77  [ y dm, zCM = 77  \ z  dm,M M M
(9-13)

where M  is the total mass of the system.
The center of mass of a system is important because this point 

moves like a single particle of mass M  acted on by the same net 
external force, 2Fext. In equation form, this is just Newton’s 
second law for a system of particles (or extended objects):

M arM = 2 Fext > (9-17)

where M  is the total mass of the system, aCM is the acceleration 
of the cm of the system, and 2 Fext is the total (net) external 
force acting on all parts of the system.

For a system of particles of total linear momentum 
P = Sm/Vj = Mvcm, Newton’s second law is

dP
~dt = 2Fext' (9_5) 

[*If the mass M  of an object is not constant, then

= 2Fext + (9-19b)

where v is the velocity of the object at any instant and vrei is the 
relative velocity at which mass enters (or leaves) the object.]

Questions
1. We claim that momentum is conserved. Yet most moving 

objects eventually slow down and stop. Explain.
2. Two blocks of mass m \ and m 2 rest on a frictionless table 

and are connected by a spring. The blocks are pulled apart, 
stretching the spring, and then released. Describe the subse­
quent motion of the two blocks.

3. A light object and a heavy object have the same kinetic 
energy. Which has the greater momentum? Explain.

4. When a person jumps from a tree to the ground, what happens 
to the momentum of the person upon striking the ground?

5. Explain, on the basis of conservation of momentum, how a 
fish propels itself forward by swishing its tail back and forth.

6. Two children float motionlessly in a space station. The 20-kg 
girl pushes on the 40-kg boy and he sails away at 1.0 m/s. 
The girl (a) remains motionless; (b) moves in the same 
direction at 1.0 m/s; (c) moves in the opposite direction at
1.0 m/s; (d) moves in the opposite direction at 2.0 m/s; 
(1e) none of these.

7. A truck going 15 km /h has a head-on collision with a small car 
going 30 km/h. Which statement best describes the situation?
(a) The truck has the greater change of momentum because it 
has the greater mass, (b) The car has the greater change of 
momentum because it has the greater speed, (c) Neither the 
car nor the truck changes its momentum in the collision 
because momentum is conserved, (d) They both have the same 
change in magnitude of momentum because momentum is 
conserved. (e) None of the above is necessarily true.

8. If a falling ball were to make a perfectly elastic collision with 
the floor, would it rebound to its original height? Explain.

9. A boy stands on the back of a rowboat and dives into the water. 
What happens to the rowboat as the boy leaves it? Explain.

10. It is said that in ancient times a rich man with a bag of gold 
coins was stranded on the surface of a frozen lake. Because 
the ice was frictionless, he could not push himself to shore 
and froze to death. What could he have done to save himself 
had he not been so miserly?
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11. The speed of a tennis ball on the return of a serve can be 
just as fast as the serve, even though the racket isn’t swung 
very fast. How can this be?

12. Is it possible for an object to receive a larger impulse from a 
small force than from a large force? Explain.

13. How could a force give zero impulse over a nonzero time 
interval even though the force is not zero for at least a part 
of that time interval?

14. In a collision between two cars, which would you expect to 
be more damaging to the occupants: if the cars collide and 
remain together, or if the two cars collide and rebound 
backward? Explain.

15. A superball is dropped from a height h onto a hard steel 
plate (fixed to the Earth), from which it rebounds at very 
nearly its original speed, (a) Is the momentum of the ball 
conserved during any part of this process? (b) If we consider 
the ball and the Earth as our system, during what parts of 
the process is momentum conserved? (c) Answer part (b) for 
a piece of putty that falls and sticks to the steel plate.

16. Cars used to be built as rigid as possible to withstand colli­
sions. Today, though, cars are designed to have “crumple 
zones” that collapse upon impact. What is the advantage of 
this new design?

17. A t a hydroelectric power plant, water is directed at high 
speed against turbine blades on an axle that turns an elec­
tric generator. For maximum power generation, should the 
turbine blades be designed so that the water is brought to a 
dead stop, or so that the water rebounds?

18. A squash ball hits a wall at a 45° angle as shown in Fig. 9-36. 
What is the direction (a) of the change in 
momentum of the ball, (b) of the force on the
wall?

FIGURE 9-36 *
Question 18.

19. Why can a batter hit a pitched baseball farther than a ball 
he himself has tossed up in the air?

20. Describe a collision in which all kinetic energy is lost.

| Problems__________________
9 - 1  M om entum

1. (I) Calculate the force exerted on a rocket when the 
propelling gases are being expelled at a rate of 1300 kg/s 
with a speed of 4.5 X 104 m/s.

2. (I) A constant friction force of 25 N acts on a 65-kg skier for 
15 s. What is the skier’s change in velocity?

3. (II) The momentum of a particle, in SI units, is given by p = 
4.812\ -  8.0j -  8.9 tk. What is the force as a function of time?

4. (II) The force on a particle of mass m  is given by F = 26i - 1 2 12 j 
where F  is in N and t in s. What will be the change in the 
particle’s momentum between t = 1.0 s and t = 2.0 s?

5. (II) A 145-g baseball, moving along the x  axis with speed
30.0 m/s, strikes a fence at a 45° angle and rebounds along 
the y axis with unchanged speed. Give its change in 
momentum using unit vector notation.

21. Inelastic and elastic collisions are similar in that (a) momentum 
and kinetic energy are conserved in both; (b) momentum is 
conserved in both; (c) momentum and potential energy are 
conserved in both; (d) kinetic energy is conserved in both.

22. If a 20-passenger plane is not full, sometimes passengers are 
told they must sit in certain seats and may not move to 
empty seats. Why might this be?

23. Why do you tend to lean backward when carrying a heavy 
load in your arms?

24. Why is the cm of a 1-m length of pipe at its midpoint, 
whereas this is not true for your arm or leg?

25. Show on a diagram how your cm shifts when you move 
from a lying position to a sitting position.

26. Describe an analytic way of determining the cm of any thin, 
triangular-shaped, uniform plate.

27. Place yourself facing the edge of an open door. Position 
your feet astride the door with your nose and abdomen 
touching the door’s edge. Try to rise on your tiptoes. Why 
can’t this be done?

28. If only an external force can change the momentum of the 
center of mass of an object, how can the internal force of 
the engine accelerate a car?

29. A rocket following a parabolic path through the air 
suddenly explodes into many pieces. What can you say 
about the motion of this system of pieces?

30. How can a rocket change direction when it is far out in 
space and essentially in a vacuum?

31. In observations of nuclear /3-decay, the electron and recoil 
nucleus often do not separate along the same line. Use 
conservation of momentum in two dimensions to explain 
why this implies the emission of at least one other particle 
in the disintegration.

32. Bob and Jim decide to play tug-of-war on a frictionless (icy) 
surface. Jim is considerably stronger than Bob, but Bob weighs 
160 lbs while Jim weighs 145 lbs. Who loses by crossing over 
the midline first?

33. At a carnival game you try to knock over a heavy cylinder by 
throwing a small ball at it. You have a choice of throwing 
either a ball that will stick to the cylinder, or a second ball of 
equal mass and speed that will bounce backward off the 
cylinder. Which ball is more likely to make the cylinder move?

6. (II) A 0.145-kg baseball pitched horizontally at 32.0 m/s 
strikes a bat and is popped straight up to a height of 36.5 m. 
If the contact time between bat and ball is 2.5 ms, calculate 
the average force between the ball and bat during contact.

7. (II) A rocket of total mass 3180 kg is traveling in outer 
space with a velocity of 115 m/s. To alter its course by 35.0°, 
its rockets can be fired briefly in a direction perpendicular 
to its original motion. If the rocket gases are expelled at a 
speed of 1750 m/s, how much mass must be expelled?

8. (Ill) Air in a 120-km/h wind strikes head-on the face of a 
building 45 m wide by 65 m high and is brought to rest. If air 
has a mass of 1.3 kg per cubic meter, determine the average 
force of the wind on the building.

9-2  Conservation of Momentum
9. (I) A 7700-kg boxcar traveling 18 m /s strikes a second car. 

The two stick together and move off with a speed of
5.0 m/s. What is the mass of the second car?
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10. (I) A 9150-kg railroad car travels alone on a level frictionless 
track with a constant speed of 15.0 m/s. A 4350-kg load, 
initially at rest, is dropped onto the car. What will be the 
car’s new speed?

11. (I) An atomic nucleus at rest decays radioactively into an 
alpha particle and a smaller nucleus. What will be the speed 
of this recoiling nucleus if the speed of the alpha particle is 
2.8 X 105m/s? Assume the recoiling nucleus has a mass 
57 times greater than that of the alpha particle.

12. (I) A 130-kg tackier moving at 2.5 m/s meets head-on (and 
tackles) an 82-kg halfback moving at 5.0 m/s. What will be 
their mutual speed immediately after the collision?

13. (II) A child in a boat throws a 5.70-kg package out horizontally 
with a speed of 10.0 m/s, Fig. 9-37. Calculate the velocity of 
the boat immediately after, assuming it was initially at rest. 
The mass of
the child is
24.0 kg and 
that of the 
boat is 35.0 kg.

FIGURE 9-37
Problem 13.

14. (II) An atomic nucleus initially moving at 420 m/s emits an 
alpha particle in the direction of its velocity, and the 
remaining nucleus slows to 350 m/s. If the alpha particle has 
a mass of 4.0 u and the original nucleus has a mass of 222 u, 
what speed does the alpha particle have when it is emitted?

15. (II) An object at rest is suddenly broken apart into two frag­
ments by an explosion. One fragment acquires twice the 
kinetic energy of the other. What is the ratio of their masses?

16. (II) A 22-g bullet traveling 210 m/s penetrates a 2.0-kg 
block of wood and emerges going 150 m/s. If the block is 
stationary on a frictionless surface when hit, how fast does it 
move after the bullet emerges?

17. (II) A rocket of mass m traveling with speed v0 along the 
x axis suddenly shoots out fuel equal to one-third its mass, 
perpendicular to the x  axis (along the y axis) with speed 2v0. 
Express the final velocity of the rocket in i, j, k notation.

18. (II) The decay of a neutron into a proton, an electron, and a 
neutrino is an example of a three-particle decay process. 
Use the vector nature of momentum to show that if the 
neutron is initially at rest, the velocity vectors of the three 
must be coplanar (that is, all in the same plane). The result 
is not true for numbers greater than three.

19. (II) A mass raA = 2.0 kg, moving with velocity \ A = 
(4.0i + 5.0j -  2.0k) m/s, collides with mass mB = 3.0 kg, 
which is initially at rest. Immediately after the collision, mass mA 
is observed traveling at velocity \ A = (-2 .0 i + 3.0k) m/s. 
Find the velocity of mass raB after the collision. Assume no 
outside force acts on the two masses during the collision.

20. (II) A 925-kg two-stage rocket is traveling at a speed of
6.60 X 103 m/s away from Earth when a predesigned explo­
sion separates the rocket into two sections of equal mass 
that then move with a speed of 2.80 X 103 m/s relative to 
each other along the original line of motion, (a) What is the 
speed and direction of each section (relative to Earth) after 
the explosion? (b) How much energy was supplied by the 
explosion? [Hint: What is the change in kinetic energy as a 
result of the explosion?]

21. (Ill) A 224-kg projectile, fired with a speed of 116 m/s at a 
60.0° angle, breaks into three pieces of equal mass at the 
highest point of its arc (where its velocity is horizontal). Two 
of the fragments move with the same speed right after 
the explosion as the entire projectile had just before the 
explosion; one of these moves vertically downward and the 
other horizontally. Determine (a) the velocity of the third 
fragment immediately after the explosion and (b) the 
energy released in the explosion.

9-3 Collisions and Impulse
22. (I) A 0.145-kg baseball pitched at 35.0 m/s is hit on a hori­

zontal line drive straight back at the pitcher at 56.0 m/s. If 
the contact time between bat and ball is 5.00 X 10-3 s, calcu­
late the force (assumed to be constant) between the ball 
and bat.

23. (II) A golf ball of mass 0.045 kg is hit off the tee at a speed 
of 45 m/s. The golf club was in contact with the ball for
3.5 X 10 3 s. Find (a) the impulse imparted to the golf ball, 
and (b) the average force exerted on the ball by the golf club.

24. (II) A 12-kg hammer strikes a nail at a velocity of 8.5 m/s 
and comes to rest in a time interval of 8.0 ms. (a) What is the 
impulse given to the nail? (b) What is the average force 
acting on the nail?

25. (II) A tennis ball of mass m = 0.060 kg and speed 
v = 25 m/s strikes a wall at a 45° angle and rebounds with 
the same speed at 45° (Fig. 9-38). What 
is the impulse (magnitude and direction) 
given to the ball? v

V  45 
\

45°

FIGURE 9-38
Problem 25.

26. (II) A 130-kg astronaut (including space suit) acquires a 
speed of 2.50 m/s by pushing off with his legs from a 1700-kg 
space capsule, (a) What is the change in speed of the space 
capsule? (b) If the push lasts 0.500 s, what is the average 
force exerted by each on the other? As the reference frame, 
use the position of the capsule before the push, (c) What is 
the kinetic energy of each after the push?

27. (II) Rain is falling at the rate of 5.0 cm/h and accumulates 
in a pan. If the raindrops hit at 8.0 m/s, estimate the force on 
the bottom of a 1.0 m2 pan due to the impacting rain which 
does not rebound. Water has a mass of 1.00 X 103 kg per m3.

28. (II) Suppose the force acting on a tennis ball (mass 
0.060 kg) points in the +x direction and is given by the 
graph of Fig. 9-39 as a function of time. Use graphical 
methods to estimate (a) the total impulse given the ball, and 
(b) the velocity of the
ball after being struck, 
assuming the ball is 
being served so it is 
nearly at rest initially.

FIGURE 9-39
Problem 28.
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29. (II) With what impulse does a 0.50-kg newspaper have to be 
thrown to give it a velocity of 3.0 m/s?

30. (II) The force on a bullet is given by the formula 
F  = [7 4 0  — (2 .3  X 1 0 5 s_1) ? ] N  over the time interval 
t = 0  to t = 3 .0  X 1 0 -3  s. (a) Plot a graph of F  versus t for 
t = 0  to t = 3 .0  ms. (b) Use the graph to estimate the 
impulse given the bullet, (c) Determine the impulse by inte­
gration. (d) If the bullet achieves a speed of 2 6 0  m/s as a 
result of this impulse, given to it in the barrel of a gun, what 
must the bullet’s mass be? (e) What is the recoil speed of 
the 4.5-kg gun?

31. (II) (a) A molecule of mass m  and speed v strikes a wall at 
right angles and rebounds back with the same speed. If the 
collision time is A t, what is the average force on the wall 
during the collision? (b) If molecules, all of this type, strike 
the wall at intervals a time t apart (on the average) what is 
the average force on the wall averaged over a long time?

32. (Ill) (a) Calculate the impulse experienced when a 65-kg 
person lands on firm ground after jumping from a height of
3.0 m. (ib) Estimate the average force exerted on the 
person’s feet by the ground if the landing is stiff-legged, and 
again (c) with bent legs. With stiff legs, assume the body 
moves 1.0 cm during impact, and when the legs are bent, 
about 50 cm. [Hint: The average net force on her which is 
related to impulse, is the vector sum of gravity and the 
force exerted by the ground.]

33. (Ill) A scale is adjusted so that when a large, shallow pan is 
placed on it, it reads zero. A water faucet at height 
h = 2.5 m above is turned on and water falls into the pan at 
a rate R = 0.14 kg/s. Determine (a) a formula for the scale 
reading as a function of time t and (b) the reading for 
t = 9.0 s. (c) Repeat (a) and (b), but replace the shallow pan 
with a tall, narrow cylindrical container of area A  = 20 cm2 
(the level rises in this case).

9-4  and 9-5  Elastic Collisions
34. (II) A 0.060-kg tennis ball, moving with a speed of 4.50 m/s, 

has a head-on collision with a 0.090-kg ball initially moving 
in the same direction at a speed of 3.00 m/s. Assuming a 
perfectly elastic collision, determine the speed and direction 
of each ball after the collision.

35. (II) A 0.450-kg hockey puck, moving east with a speed of
4.80 m/s, has a head-on collision with a 0.900-kg puck 
initially at rest. Assuming a perfectly elastic collision, what 
will be the speed and direction of each object after the 
collision?

36. (II) A 0.280-kg croquet ball makes an elastic head-on 
collision with a second ball initially at rest. The second ball 
moves off with half the original speed of the first ball.
(a) What is the mass of the second ball? (b) What fraction 
of the original kinetic energy (AK /K )  gets transferred to 
the second ball?

37. (II) A ball of mass 0.220 kg that is moving with a speed 
of 7.5 m/s collides head-on and elastically with another ball 
initially at rest. Immediately after the collision, the incoming 
ball bounces backward with a speed of 3.8 m/s. Calculate
(a) the velocity of the target ball after the collision, and
(b) the mass of the target ball.

38. (II) A ball of mass m  makes a head-on elastic collision with a 
second ball (at rest) and rebounds with a speed equal to 0.350 
its original speed. What is the mass of the second ball?

39. (II) Determine the fraction of kinetic energy lost by a neutron 
(mi = 1.01 u) when it collides head-on and elastically 
with a target particle at rest which is (a) }H (m  = 1.01 u); 
(b) 2H (heavy hydrogen, m  = 2.01 u); (c) x\C (m = 12.00 u);
(d) 2jgPb (lead, m = 208 u).

40. (II) Show that, in general, for any head-on one-dimensional 
elastic collision, the speeds after collision are

2 mA
vb = vA

and
mA + raB

fm B -  m A
+ M ------7-----\m A + mB

( m A — m B\  ( 
+ %

2 m B
\ m A  + m B /

where vA and vB are the initial speeds of the two objects of 
mass m A and mB.

41. (Ill) A 3.0-kg block slides along a frictionless tabletop at
8.0 m/s toward a second block (at rest) of mass 4.5 kg. A 
coil spring, which obeys Hooke’s law and has spring 
constant k  = 850 N/m, is attached to the second block in 
such a way that it will be compressed when struck by the 
moving block, Fig. 9-40. (a) What will be the maximum 
compression of the spring? (b) What will be the final velocities 
of the blocks after the collision? (c) Is the collision elastic? 
Ignore the mass of the spring.

3.0 kg
v = 8.0 m/s M M M

4.5 kgi f f w r

FIGURE 9-40 Problem 41.

9 -6  Inelastic Collisions
42. (I) In a ballistic pendulum experiment, projectile 1 results in 

a maximum height h of the pendulum equal to 2.6 cm. A 
second projectile (of the same mass) causes the the pendulum 
to swing twice as high, h2 = 5.2 cm. The second projectile 
was how many times faster than the first?

43. (II) (a) Derive a formula for the fraction of kinetic energy 
lost, A K /K , in terms of m  and M  for the ballistic pendulum 
collision of Example 9-11. (b) Evaluate for m  = 16.0 g and 
M  = 380 g.

44. (II) A 28-g rifle bullet traveling 210 m/s buries itself in a 3.6-kg 
pendulum hanging on a 2.8-m-long string, which makes the 
pendulum swing upward in an arc. Determine the vertical 
and horizontal components of the pendulum’s maximum 
displacement.

45. (II) An internal explosion breaks an object, initially at rest, 
into two pieces, one of which has 1.5 times the mass of the 
other. If 7500 J is released in the explosion, how much 
kinetic energy does each piece acquire?

46. (II) A 920-kg sports car collides into the rear end of a 
2300-kg SUV stopped at a red light. The bumpers lock, the 
brakes are locked, and the two cars skid forward 2.8 m before 
stopping. The police officer, estimating the coefficient of 
kinetic friction between tires and road to be 0.80, calculates 
the speed of the sports car at impact. What was that speed?

47. (II) You drop a 12-g ball from a height of 1.5 m and it only 
bounces back to a height of 0.75 m. What was the total impulse 
on the ball when it hit the floor? (Ignore air resistance).

48. (II) Car A hits car B (initially at rest and of equal mass) 
from behind while going 35 m/s. Immediately after the 
collision, car B moves forward at 25 m /s and car A is at rest. 
What fraction of the initial kinetic energy is lost in the collision?
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49. (II) A measure of inelasticity in a head-on collision of two 
objects is the coefficient o f restitution, e, defined as

e = Va  ~ vb
vb ~ v a

where vA — vB is the relative velocity of the two objects after 
the collision and — vA is their relative velocity before it.
(a) Show that e = 1 for a perfectly elastic collision, and 
e = 0 for a completely inelastic collision, (b) A simple 
method for measuring the coefficient of restitution for an 
object colliding with a very hard surface like steel is to drop 
the object onto a heavy steel plate, as shown in Fig. 9-41. 
Determine a formula for e in 
terms of the original height h 
and the maximum height h' 
reached after collision.

o
IO
I II I

h i !

FIGURE 9-41 Problem 49. 
Measurement of coefficient 
of restitution.

1 1 h' i i n
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50. (II) A pendulum consists of a mass M  hanging at the bottom 
end of a massless rod of length £, 
which has a frictionless pivot at its 
top end. A mass m, moving as shown N\
in Fig. 9-42 with velocity v, impacts \
M  and becomes embedded. What is 
the smallest value of v sufficient \
to cause the pendulum (with _ \
embedded mass m ) to swing 
clear over the top of its arc?

\

FIGURE 9-42
Problem 50.

I

/

M

51. (II) A bullet of mass m = 0.0010 kg embeds itself in a 
wooden block with mass M  = 0.999 kg, which then 
compresses a spring (k  = 120 N/m) by a distance 
x  = 0.050 m before coming to rest. The coefficient of 
kinetic friction between the block and table is fi = 0.50.
(a) What is the initial speed of the bullet? (b) What fraction 
of the bullet’s initial kinetic energy is dissipated (in damage 
to the wooden block, rising temperature, etc.) in the collision 
between the bullet and the block?

52. (II) A 144-g baseball moving 28.0 m/s strikes a stationary 
5.25-kg brick resting on small rollers so it moves without 
significant friction. After hitting the brick, the baseball 
bounces straight back, and the brick moves forward at 
1.10 m/s. (a) What is the baseball’s speed after the collision?
(b) Find the total kinetic energy before and after the 
collision.

53. (II) A 6.0-kg object moving in the +x direction at 5.5 m/s 
collides head-on with an 8.0-kg object moving in the 
—x  direction at 4.0 m/s. Find the final velocity of each mass if:
(a) the objects stick together; (b) the collision is elastic; (c) the
6.0-kg object is at rest after the collision; (d) the 8.0-kg 
object is at rest after the collision; (e) the 6.0-kg object has a 
velocity of 4.0 m/s in the —x  direction after the collision. 
Are the results in (c), (d), and (e) “reasonable”? Explain.

9-7  Collisions in Two Dimensions
54. (II) Billiard ball A of mass mA = 0.120 kg moving with 

speed vA = 2.80 m /s strikes ball B, initially at rest, of mass 
me = 0.140 kg. As a result of the collision, ball A is 
deflected off at an angle of 30.0° with a speed vA = 2.10 m/s.
(a) Taking the x  axis to be the original direction of motion of 
ball A, write down the equations expressing the conservation 
of momentum for the components in the x  and y directions 
separately, (b) Solve these equations for the speed, vB, and 
angle, 0’B, of ball B. Do not assume the collision is elastic.

55. (II) A radioactive nucleus at rest decays into a second 
nucleus, an electron, and a neutrino. The electron and 
neutrino are emitted at right angles and have momenta of
9.6 X 10_23kg-m /s and 6.2 X 10_23kg-m/s, respectively. 
Determine the magnitude and the direction of the 
momentum of the second (recoiling) nucleus.

56. (II) Two billiard balls of equal mass move at right angles and 
meet at the origin of an xy coordinate system. Initially ball A 
is moving upward along the y axis at 2.0 m/s, and ball B is 
moving to the right along the x  axis with speed 3.7 m/s. After 
the collision (assumed elastic), 
the second ball is moving along 
the positive y  axis (Fig. 9-43).
What is the final direction 
of ball A, and what are 
the speeds of the two 
balls? B

vB= 3.7 m/s 0
+x

va = 2 . 0  m/s

FIGURE 9-43 Problem 56.
(Ball A after the collision is not shown.)

57. (II) An atomic nucleus of mass m traveling with speed v 
collides elastically with a target particle of mass 2m (initially 
at rest) and is scattered at 90°. (a) At what angle does the 
target particle move after the collision? (b) What are the final 
speeds of the two particles? (c) What fraction of the initial 
kinetic energy is transferred to the target particle?

58. (II) A neutron collides elastically with a helium nucleus (at 
rest initially) whose mass is four times that of the neutron. 
The helium nucleus is observed to move off at an angle 
#He = 45°. Determine the angle of the neutron, 0'n , and 
the speeds of the two particles, v ’n and ^He > after the colli­
sion. The neutron’s initial speed is 6.2 X 105 m/s.

59. (Ill) A neon atom (m = 20.0 u) makes a perfectly elastic 
collision with another atom at rest. After the impact, the 
neon atom travels away at a 55.6° angle from its original 
direction and the unknown atom travels away at a 
-50.0° angle. What is the mass (in u) of the unknown atom? 
[Hint: You could use the law of sines.]

60. (Ill) For an elastic collision between a projectile particle of 
mass mA and a target particle (at rest) of mass mB, show 
that the scattering angle, 0A , of the projectile (a) can take 
any value, 0 to 180°, for mA <  mB, but (b) has a maximum 
angle (f) given by cos2(f> = 1  — (mB/m A)2 for m A > mB.

61. (Ill) Prove that in the elastic collision of two objects of 
identical mass, with one being a target initially at rest, the 
angle between their final velocity vectors is always 90°.
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9-8  Center of Mass (cm)
62. (I) The cm of an empty 1250-kg car is 2.50 m behind the front 

of the car. How far from the front of the car will the cm be 
when two people sit in the front seat 2.80 m from the front of 
the car, and three people sit in the back seat 3.90 m from the 
front? Assume that each person has a mass of 70.0 kg.

63. (I) The distance between a carbon atom (m = 12 u) and an 
oxygen atom (m = 16 u) in the CO molecule is 
1.13 X 10- 10m. How far from the carbon atom is the center 
of mass of the molecule?

64. (II) Three cubes, of side £0, 2£0, and 3£0, are placed next to 
one another (in contact) with their centers along a straight 
line as shown in Fig. 9-44. What is the position, along this 
line, of the cm of this r  _ q
system? Assume the 
cubes are made of the 
same uniform material.

FIGURE 9-44
Problem 64. - V — 2f0-

65. (II) A square uniform raft, 18 m by 18 m, of mass 6200 kg, is 
used as a ferryboat. If three cars, each of mass 1350 kg, 
occupy the NE, SE, and SW corners, determine the cm of 
the loaded ferryboat relative to the center of the raft.

66. (II) A uniform circular plate of radius 2R  has a circular 
hole of radius R  cut out of
it. The center C' of the 
smaller circle is a distance 
0.80i? from the center C of 
the larger circle, Fig. 9-45.
What is the position of the 
center of mass of the plate?
[Hint: Try subtraction.]

FIGURE 9-45
Problem 66.

67. (II) A uniform thin wire is bent into a semicircle of radius r. 
Determine the coordinates of its center of mass with respect 
to an origin of coordinates at the center of the “full” circle.

68. (II) Find the center of mass of the ammonia molecule. The 
chemical formula is NH3. The hydrogens are at the corners 
of an equilateral triangle (with sides 0.16 nm) that forms the 
base of a pyramid, with nitrogen at the apex (0.037 nm verti­
cally above the plane of the triangle).

69. (Ill) Determine the cm of a machine part that is a uniform 
cone of height h and radius R,
Fig. 9-46. [Hint: Divide the 
cone into an infinite number ^  
of disks of thickness dz, one of 
which is shown.l

FIGURE 9-46
Problem 69.

7
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9-9  CM and Translational Motion
72. (II) Mass Ma = 35 kg and mass AfB = 25 kg. They have 

velocities (in m/s) vA = 12i -  16j and vB = -2 0 i + 14j. 
Determine the velocity of the center of mass of the system.

73. (II) The masses of the Earth and Moon are 5.98 X 1024 kg 
and 7.35 X 1022 kg, respectively, and their centers are sepa­
rated by 3.84 X 108m. (a) Where is the cm of this system 
located? (b) What can you say about the motion of the 
Earth-M oon system about the Sun, and of the Earth and 
Moon separately about the Sun?

74. (II) A mallet consists of a uniform cylindrical head of mass
2.80 kg and a diameter 0.0800 m mounted on a uniform 
cylindrical handle of mass 0.500 kg and length 0.240 m, as 
shown in Fig. 9-47. If this mallet is tossed, spinning, into the 
air, how far above the bottom of the handle 
is the point that will 
follow a parabolic 
trajectory?

24.0 cm

c

70. (Ill) Determine the cm of a uniform pyramid that has four 
triangular faces and a square base with equal sides all of 
length s. [Hint: See Problem 69.]

71. (Ill) Determine the cm of a thin, uniform, semicircular plate.

FIGURE 9-47
Problem 74. *00 cm

75. (II) A 55-kg woman and a 72-kg man stand 10.0 m apart on 
frictionless ice. (a) How far from the woman is their cm? 
(b) If each holds one end of a rope, and the man pulls on 
the rope so that he moves 2.5 m, how far from the woman 
will he be now? (c) How far will the man have moved when 
he collides with the woman?

76. (II) Suppose that in Example 9-18 (Fig. 9-32), ran = 3m i .
(a) Where then would ran land? (b) What if mi = 3mn?

77. (II) Two people, one of mass 85 kg and the other of mass 
55 kg, sit in a rowboat of mass 78 kg. With the boat initially 
at rest, the two people, who have been sitting at opposite 
ends of the boat, 3.0 m apart from each other, now exchange 
seats. How far and in what direction will the boat move?

78. (Ill) A 280-kg flatcar 25 m long is moving with a speed of
6.0 m/s along horizontal frictionless rails. A 95-kg worker 
starts walking from one end of the car to the other in the 
direction of motion, with speed 2.0 m/s with respect to the 
car. In the time it takes for him to reach the other end, how 
far has the flatcar moved?

79. (Ill) A huge balloon and its gondola, of mass M, are in the 
air and stationary with respect to the ground. A passenger, 
of mass m, then climbs out and slides down a rope with 
speed v, measured with respect to the balloon. With what 
speed and direction (relative to Earth) does the balloon 
then move? What happens if the passenger stops?

*9-10 Variable Mass
*80. (II) A 3500-kg rocket is to be accelerated at 3.0 g at take-off 

from the Earth. If the gases can be ejected at a rate of 
27 kg/s, what must be their exhaust speed?

*81. (II) Suppose the conveyor belt of Example 9-19 is retarded 
by a friction force of 150 N. Determine the required output 
power (hp) of the motor as a function of time from the moment 
gravel first starts falling (t = 0) until 3.0 s after the gravel begins 
to be dumped off the end of the 22-m-long conveyor belt.

* 82. (II) The jet engine of an airplane takes in 120 kg of air per second, 
which is burned with 4.2 kg of fuel per second. The burned gases 
leave the plane at a speed of 550 m/s (relative to the plane). If 
the plane is traveling 270 m /s (600mi/h), determine: (a) the 
thrust due to ejected fuel; (b) the thrust due to accelerated air 
passing through the engine; and (c) the power (hp) delivered.
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*83. (II) A rocket traveling 1850 m/s away from the Earth at an 
altitude of 6400 km fires its rockets, which eject gas at a 
speed of 1300 m/s (relative to the rocket). If the mass of 
the rocket at this moment is 25,000 kg and an acceleration 
of 1.5 m /s2 is desired, at what rate must the gases be 
ejected?

| General Problems__________

*84. (Ill) A sled filled with sand slides without friction down a 
32° slope. Sand leaks out a hole in the sled at a rate of
2.0 kg/s. If the sled starts from rest with an initial total mass 
of 40.0 kg, how long does it take the sled to travel 120 m 
along the slope?

85. A novice pool player is faced with the corner pocket shot 
shown in Fig. 9-48. Relative dimensions are also shown. Should 
the player worry that this 
might be a “scratch shot,” in 
which the cue ball will also 
fall into a pocket? Give 
details. Assume equal mass 
balls and an elastic collision.

FIGURE 9-48
Problem 85.

86. During a Chicago storm, winds can whip horizontally at 
speeds of 120 km/h. If the air strikes a person at the rate of 
45 kg/s per square meter and is brought to rest, calculate 
the force of the wind on a person. Assume the person is
1.60 m high and 0.50 m wide. Compare to the typical 
maximum force of friction (/x ~ 1 .0) between the person 
and the ground, if the person has a mass of 75 kg.

87. A ball is dropped from a height of 1.50 m and rebounds to 
a height of 1.20 m. Approximately how many rebounds will 
the ball make before losing 90% of its energy?

88. In order to convert a tough split in bowling, it is necessary 
to strike the pin a glancing blow as shown in Fig. 9-49. 
Assume that the bowling ball, initially traveling at 13.0 m/s, 
has five times the mass of a pin and that the pin goes off at 
75° from the original direction of the ball. Calculate the 
speed (a) of the pin and (b) of
the ball just after collision, 
and (c) calculate the angle 
through which the ball was 
deflected. Assume the colli­
sion is elastic and ignore any 
spin of the ball.

FIGURE 9-49
Problem 88.

89. A gun fires a bullet vertically into a 1.40-kg block of wood 
at rest on a thin horizontal sheet,
Fig. 9-50. If the bullet has a mass 
of 24.0 g and a speed of 310 m/s, 
how high will the block rise into 
the air after the bullet becomes 
embedded in it?

1.40 kg

(\v= 310 m/s

90. A hockey puck of mass 4 m  has been rigged to explode, as 
part of a practical joke. Initially the puck is at rest on a 
frictionless ice rink. Then it bursts into three pieces. One 
chunk, of mass m, slides across the ice at velocity vi. 
Another chunk, of mass 2m, slides across the ice at velocity 
2vj. Determine the velocity of the third chunk.

91. For the completely inelastic collision of two railroad cars 
that we considered in Example 9-3, calculate how much of 
the initial kinetic energy is transformed to thermal or 
other forms of energy.

92. A 4800-kg open railroad car coasts along with a constant 
speed of 8.60 m/s on a level track. Snow begins to fall verti­
cally and fills the car at a rate of 3.80 kg/min. Ignoring friction 
with the tracks, what is the speed of the car after 60.0 min? 
(See Section 9-2.)

*93. Consider the railroad car of Problem 92, which is slowly 
filling with snow, (a) Determine the speed of the car as a 
function of time using Eqs. 9-19. ( b )  What is the speed of 
the car after 60.0 min? Does this agree with the simpler 
calculation (Problem 92)?

94. Two blocks of mass raA and mB, resting on a frictionless 
table, are connected by a stretched spring and then released 
(Fig. 9-51). (a) Is there a net external force on the system? 
( b )  Determine the ratio of their speeds, v a / v q  . (c) What 
is the ratio of their kinetic energies? (d) Describe the 
motion of the cm  of this system. (e) How would the pres­
ence of friction alter the above results?

mA M /V V W V ^ m B

FIGURE 9-50
Problem 89.

FIGURE 9-51 Problem 94.

95. You have been hired as an expert witness in a court case 
involving an automobile accident. The accident involved 
car A of mass 1500 kg which crashed into stationary car B 
of mass 1100 kg. The driver of car A applied his brakes 
15 m before he skidded and crashed into car B. After the 
collision, car A slid 18 m while car B slid 30 m. The coeffi­
cient of kinetic friction between the locked wheels and the 
road was measured to be 0.60. Show that the driver of 
car A was exceeding the 55-mi/h (90 km/h) speed limit 
before applying the brakes.

96. A meteor whose mass was about 2.0 X 108kg struck the 
Earth (raE = 6.0 X 1024kg) with a speed of about 25km/s 
and came to rest in the Earth, (a) What was the Earth’s 
recoil speed (relative to Earth at rest before the collision)? 
( b )  What fraction of the meteor’s kinetic energy was trans­
formed to kinetic energy of the Earth? (c) By how much did 
the Earth’s kinetic energy change as a result of this collision?
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Ax FIGURE 9-54

Problem 103.

97. Two astronauts, one of mass 65 kg and the other 85 kg, are 
initially at rest in outer space. They then push each other 
apart. How far apart are they when the lighter astronaut 
has moved 12 m?

98. A 22-g bullet strikes and becomes embedded in a 1.35-kg 
block of wood placed on a horizontal surface just in front 
of the gun. If the coefficient of kinetic friction between the 
block and the surface is 0.28, and the impact drives the 
block a distance of 8.5 m before it comes to rest, what was 
the muzzle speed of the bullet?

99. Two balls, of masses mA = 45 g and mB = 65 g, are 
suspended as shown in Fig. 9-52. The lighter ball is pulled 
away to a 66° angle with the vertical and released.
(a) What is the velocity of the lighter ball before impact?
(b) What is the velocity 
of each ball after the 
elastic collision? (c) What 
will be the maximum 
height of each ball
after the elastic A\
collision? /wa\

G6

30 cm

FIGURE 9-52
Problem 99.

A :,I?J
mA

103. A 0.25-kg skeet (clay target) is fired at an angle of 28° to 
the horizon with a speed of 25 m/s (Fig. 9-54). When it 
reaches the maximum height, h, it is hit from below by a 15-g 
pellet traveling vertically upward at a speed of 230 m/s. 
The pellet is embedded in the skeet. (a) How much higher, 
h', did the skeet go up? (b) How much extra distance, Ax, 
does the skeet travel because of the collision?

104. A massless spring with spring constant k  is placed between a 
block of mass ra and a block of mass 3 ra. Initially the blocks 
are at rest on a frictionless surface and they are held 
together so that the spring between them is compressed by 
an amount D from its equilibrium length. The blocks are 
then released and the spring pushes them off in opposite 
directions. Find the speeds of the two blocks when they 
detach from the spring.

105. The gravitational slingshot effect. Figure 9-55 shows the 
planet Saturn moving in the negative x direction at its 
orbital speed (with respect to the Sun) of 9.6 km/s. The 
mass of Saturn is 5.69 X 1026 kg. A spacecraft with mass 
825 kg approaches Saturn. When far from Saturn, it moves 
in the +x direction at 10.4 km/s. The gravitational attrac­
tion of Saturn (a conservative force) acting on the space­
craft causes it to swing around the planet (orbit shown as 
dashed line) and head off in the opposite direction. Esti­
mate the final speed of the spacecraft after it is far enough 
away to be considered free of Saturn’s gravitational pull.

100. A block of mass ra = 2.20 kg slides down a 30.0° incline 
which is 3.60 m high. At the bottom, it strikes a block of mass 
M  = 7.00 kg which is at rest on a horizontal surface, 
Fig. 9-53. (Assume a smooth transition at the bottom of the 
incline.) If the collision is elastic, and friction can be ignored, 
determine (a) the speeds of the two blocks after the collision, 
and (b) how far back up the incline the smaller mass will go.

jti

3*60 Hi
M

FIGURE 9-53 Problems 100 and 101.

101. In Problem 100 (Fig. 9-53), what is the upper limit on mass 
ra if it is to rebound from M, slide up the incline, stop, slide 
down the incline, and collide with M  again?

102. After a completely inelastic collision between two objects 
of equal mass, each having initial speed, v, the two move 
off together with speed v/3. What was the angle between 
their initial directions?

106. Two bumper cars in an amusement park ride collide elastically 
as one approaches the other directly from the rear (Fig. 9-56). 
Car A has a mass of 450 kg and car B 490 kg, owing to differ­
ences in passenger mass. If car A approaches at 4.50 m/s and 
car B is moving at 3.70 m/s, calculate (a) their velocities 
after the collision,
and (b) the change mA = 
in momentum of 450 kg
each.

FIGURE 9-56 U)
Problem 106:
(a) before collision,
(b) after collision. (“)

m„ = 
490 kg

4.50 m/s -V70 m/s 

___a*1"--*-__
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107. In a physics lab, a cube slides down 
shown in Fig. 9-57 and 
elastically strikes another 
cube at the bottom that is 
only one-half its mass. If 
the incline is 35 cm high 
and the table is 95 cm off 
the floor, where does each 
cube land? [Hint: Both 
leave the incline moving 
horizontally.]

frictionless incline as

95 cm

FIGURE 9-57
Problem 107.

108. The space shuttle launches an 850-kg satellite by ejecting it 
from the cargo bay. The ejection mechanism is activated and 
is in contact with the satellite for 4.0 s to give it a velocity of
0.30 m/s in the z-direction relative to the shuttle. The mass 
of the shuttle is 92,000 kg. (a) Determine the component of 
velocity Vf of the shuttle in the minus z-direction resulting 
from the ejection, (b) Find the average force that the shuttle 
exerts on the satellite during the ejection.

109. You are the design engineer in charge of the crashworthi­
ness of new automobile models. Cars are tested by smashing 
them into fixed, massive barriers at 45 km/h. A new model 
of mass 1500 kg takes 0.15 s from the time of impact until it 
is brought to rest, (a) Calculate the average force exerted 
on the car by the barrier, (b) Calculate the average decel­
eration of the car.

110. Astronomers estimate that a 2.0-km-wide asteroid collides 
with the Earth once every million years. The collision 
could pose a threat to life on Earth, (a) Assume a spherical 
asteroid has a mass of 3200 kg for each cubic meter of 
volume and moves toward the Earth at 15km/s. How 
much destructive energy could be released when it embeds 
itself in the Earth? (b) For comparison, a nuclear bomb 
could release about 4.0 X 1016J. How many such bombs 
would have to explode simultaneously to release the 
destructive energy of the asteroid collision with the Earth?

111. An astronaut of mass 210 kg including his suit and jet pack 
wants to acquire a velocity of 2.0 m/s to move back toward 
his space shuttle. Assuming the jet pack can eject gas with a 
velocity of 35 m/s, what mass of gas will need to be ejected?

112. An extrasolar planet can be detected by observing the wobble it 
produces on the star around which it revolves. Suppose an extra­
solar planet of mass raB revolves around its star of mass mA. 
If no external force acts on this simple two-object system, then 
its cm  is stationary. Assume mA and raB are in circular orbits 
with radii rA and rB about the system’s cm . (a) Show that 

raB
rA mA rB-

(b) Now consider a Sun-like star and a single planet with the 
same characteristics as Jupiter. That is, mB = 1.0 X 10_3mA 
and the planet has an orbital radius of 8.0 X 1011 m. Deter­
mine the radius rA of the star’s orbit about the system’s cm .
(c) When viewed from Earth, the distant system appears 
to wobble over a distance of 2 rA . If astronomers 
are able to detect angular displacements 6 of about 
1 milliarcsec (1 arcsec = ^  of a degree), from what 
distance d (in light-years) can the star’s wobble be detected 
(l ly = 9.46 X 1015 m)? (d) The star nearest to our Sun is 
about 4 ly away. Assuming stars are uniformly distributed 
throughout our region of the Milky Way Galaxy, about how 
many stars can this technique be applied to in the search for 
extrasolar planetary systems?

113. Suppose two asteroids strike head on. Asteroid A 
(mA = 7.5 X 1012kg) has velocity 3.3km/s before the 
collision, and asteroid B (mB = 1.45 X 1013kg) has 
velocity 1.4 km/s before the collision in the opposite direction. 
If the asteroids stick together, what is the velocity (magni­
tude and direction) of the new asteroid after the collision?

* Numerical/Computer
*114. (Ill) A particle of mass raA traveling with speed v A  

collides elastically head-on with a stationary particle of 
smaller mass mB. (a) Show that the speed of mB after the 
collision is

, _  2 va  

Vb 1 + mB/m A
(b) Consider now a third particle of mass mc at rest 
between mA and mB so that mA first collides head on with 
mc and then mc collides head on with mB. Both collisions 
are elastic. Show that in this case,

, _  _______mc mA_______
VB VA(mC + + m c)

(c) From the result of part (b), show that for 
maximum v'B , mc = \Jm AmB. (d) Assume mB = 2.0 kg, 
mA = 18.0 kg and v A  = 2.0 m/s. Use a spreadsheet to 
calculate and graph the values of v'B from rac = 0.0 kg to 
mc = 50.0 kg in steps of 1.0 kg. For what value of mc is the 
value of v B maximum? Does your numerical result agree 
with your result in part (c)?

A nsw ers to Exercises

A: (c) because the momentum change is greater.
B: Larger (Ap  is greater).
C: 0.50 m/s.
D: (a) 6.0 m/s; (b) almost zero; (c) almost 24.0 m/s.

E: (&);(<*).
*cm = “ 2.0 m; yes.

G: (a).
H: The boat moves in the opposite direction.
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You too  can experience  
rapid rotation— if your 
stom ach can take the high 
angular velocity and 
centripetal acceleration of  
som e of the faster 
am usem ent park rides. If 
not, try the slower merry- 
go-round or Ferris wheel. 
Rotating carnival rides have 
rotational kinetic energy as 
w ell as angular m omentum. 
Angular acceleration is 
produced by a net torque, 
and rotating objects have 
rotational kinetic energy.

T £

Rotational Motion
CHAPTER-OPENING QUESTION—Guess Now!
A solid ball and a solid cylinder roll down a ramp. They both start from rest at the 
same time. Which gets to the bottom first?

(a) They get there at the same time.
(b) They get there at almost exactly the same time except for frictional differences.
(c) The ball gets there first.
(d) The cylinder gets there first.
(e) Can’t tell without knowing the mass and radius of each.

U ntil now, we have been concerned mainly with translational motion. We 
discussed the kinematics and dynamics of translational motion (the role 
of force), and the energy and momentum associated with it. In this 
Chapter and the next we will deal with rotational motion. We will 

discuss the kinematics of rotational motion and then its dynamics (involving 
torque), as well as rotational kinetic energy and angular momentum (the rotational 
analog of linear momentum). Our understanding of the world around us will be 
increased significantly—from rotating bicycle wheels and compact discs to 
amusement park rides, a spinning skater, the rotating Earth, and a centrifuge—and 
there may be a few surprises.

1 0

CONTENTS
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We will consider mainly the rotation of rigid objects. A rigid object is an object 
with a definite shape that doesn’t change, so that the particles composing it stay in 
fixed positions relative to one another. Any real object is capable of vibrating or 
deforming when a force is exerted on it. But these effects are often very small, so 
the concept of an ideal rigid object is very useful as a good approximation.

Our development of rotational motion will parallel our discussion of translational 
motion: rotational position, angular velocity, angular acceleration, rotational inertia, 
and the rotational analog of force, “torque.”

10—1 Angular Quantities
The motion of a rigid object can be analyzed as the translational motion of its center 
of mass plus rotational motion about its center of mass (Sections 9-8 and 9-9). We 
have already discussed translational motion in detail, so now we focus our attention 
on purely rotational motion. By purely rotational motion of an object about a fixed 
axis, we mean that all points in the object move in circles, such as the point P on the 
rotating wheel of Fig. 10-1, and that the centers of these circles all lie on a line 
called the axis of rotation. In Fig. 10-1 the axis of rotation is perpendicular to the 
page and passes through point O. We assume the axis is fixed in an inertial reference 
frame, but we will not always insist that the axis pass through the center of mass.

For a three-dimensional rigid object rotating about a fixed axis, we will use the 
symbol R to represent the perpendicular distance of a point or particle from the axis 
of rotation. We do this to distinguish R from r, which will continue to represent the 
position of a particle with reference to the origin (point) of some coordinate system. 
This distinction is illustrated in Fig. 10-2. This distinction may seem like a small 
point, but not being fully aware of it can cause huge errors when working with 
rotational motion. For a flat, very thin object, like a wheel, with the origin in the plane 
of the object (at the center of a wheel, for example), R and r will be nearly the same.

Every point in an object rotating about a fixed axis moves in a circle (shown 
dashed in Fig. 10-1 for point P) whose center is on the axis of rotation and whose radius 
is R, the distance of that point from the axis of rotation. A straight line drawn from the 
axis to any point in the object sweeps out the same angle 0 in the same time interval.

To indicate the angular position of the object, or how far it has rotated, we 
specify the angle 0 of some particular line in the object (red in Fig. 10-1) with respect 
to some reference line, such as the x axis in Fig. 10-1. A point in the object, such as P 
in Fig. 10-lb, moves through an angle 0 when it travels the distance £ measured along 
the circumference of its circular path. Angles are commonly stated in degrees, but the 
mathematics of circular motion is much simpler if we use the radian for angular 
measure. One radian (abbreviated rad) is defined as the angle subtended by an arc 
whose length is equal to the radius. For example, in Fig. 10-1, point P is a distance R 
from the axis of rotation, and it has moved a distance I along the arc of a circle. The 
arc length t  is said to “subtend” the angle 0. In general, any angle 0 is given by 

£
0 = — > [0 in radians] (10-la)

R
where R is the radius of the circle and £ is the arc length subtended by the angle 0, 
which is specified in radians. If £ = R, then 0 = 1 rad.

The radian, being the ratio of two lengths, is dimensionless. We thus do not have 
to mention it in calculations, although it is usually best to include it to remind us the 
angle is in radians and not degrees. We can rewrite Eq. 10-la in terms of arc length £: 

£ = Re. (10-lb)
Radians can be related to degrees in the following way. In a complete circle there 
are 360°, which must correspond to an arc length equal to the circumference of the 
circle, £ = 2ttR. Thus 6 = £/R = 2itR /R  = 2tt rad in a complete circle, so 

360° = 27rrad.
One radian is therefore 360°/27r «  360°/6.28 «  57.3°. An object that makes one 
complete revolution (rev) has rotated through 360°, or 2tt radians:

1 rev = 360° = 2ir rad.

\  d ?

FIGURE 10-1  Looking at a wheel 
that is rotating counterclockwise 
about an axis through the w heel’s 
center at O (axis perpendicular to 
the page). Each point, such as point P, 
moves in a circular path; £ is the 
distance P travels as the wheel 
rotates through the angle 6.

FIGURE! 0 - 2  Showing the 
distinction between r (the position  
vector) and R  (the distance from the 
rotation axis) for a point P on the 
edge of a cylinder rotating about the 
z  axis.

/ j \  CAUTI ON
Use radians in calculating, 
not degrees
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Chord

(a)

Arc length

(b)

FIGURE 10-3 (a) Example 10-1. 
(b) For small angles, arc length and 
the chord length (straight line) are 
nearly equal. For an angle as large as 
15°, the error in making this estimate 
is only 1%. For larger angles the 
error increases rapidly.

FIGURE 10-4 A w h ee l rotates 
from (a) initial position to 
(b) final position 02 . The angular 
displacement is A0 =  02 ~~ #i-

EXAMPLE 10-1 Birds of prey—in radians. A particular bird’s eye can just 
distinguish objects that subtend an angle no smaller than about 3 X 10 4 rad. 
(a) How many degrees is this? (b) How small an object can the bird just distinguish 
when flying at a height of 100 m (Fig. 10-3a)?

APPROACH For (a) we use the relation 360° = 2tt rad. For (b) we use Eq. 10-lb, 
£ = Rd, to find the arc length.
SOLUTION (a) We convert 3 X 10“4 rad to degrees:

(3 X 10“4 rad)
360° 

2tt rad
= 0.017°,

or about 0.02°.
(b) We use Eq. 10-lb, £ = Rd. For small angles, the arc length £ and the chord length 
are approximately the same (Fig. 10-3b). Since R = 100 m and 0 = 3 X 10“4 rad, 
we find

£ = (100 m)(3 X 10“4 rad) = 3 X 10“2 m = 3 cm.

A bird can distinguish a small mouse (about 3 cm long) from a height of 100 m. 
That is good eyesight.
NOTE Had the angle been given in degrees, we would first have had to convert it 
to radians to make this calculation. Equation 10-1 is valid only if the angle is 
specified in radians. Degrees (or revolutions) won’t work.

To describe rotational motion, we make use of angular quantities, such as 
angular velocity and angular acceleration. These are defined in analogy to the 
corresponding quantities in linear motion, and are chosen to describe the rotating 
object as a whole, so they have the same value for each point in the rotating object. 
Each point in a rotating object also has translational velocity and acceleration, but 
they have different values for different points in the object.

When an object, such as the bicycle wheel in Fig. 10-4, rotates from 
some initial position, specified by 0ly to some final position, 02, its angular 
displacement is

A0 = 0, 0i.

The angular velocity (denoted by a>, the Greek lowercase letter omega) is 
defined in analogy with linear (translational) velocity that was discussed in 
Chapter 2. Instead of linear displacement, we use the angular displacement. Thus 
the average angular velocity of an object rotating about a fixed axis is defined as 
the time rate of change of angular position:

(0 =
A0
At (10-2a)

where A0 is the angle through which the object has rotated in the time interval At. 
The instantaneous angular velocity is the limit of this ratio as At approaches zero:

A0 d6
= lim —— = —— 

A*-x> A* dt (10-2b)

Angular velocity has units of radians per second (rad/s). Note that all points in a 
rigid object rotate with the same angular velocity, since every position in the object 
moves through the same angle in the same time interval.

An object such as the wheel in Fig. 10-4 can rotate about a fixed axis either 
clockwise or counterclockwise. The direction can be specified with a + or -  sign, 
just as we did in Chapter 2 for linear motion toward the +x or —x direction. The usual 
convention is to choose the angular displacement A0 and angular velocity w as 
positive when the wheel rotates counterclockwise. If the rotation is clockwise, 
then 0 would decrease, so A0 and (o would be negative.
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Angular acceleration (denoted by a, the Greek lowercase letter alpha), in 
analogy to linear acceleration, is defined as the change in angular velocity divided by 
the time required to make this change. The average angular acceleration is defined as 

co2 ~ (Oi Aa)
“ = = a t  (10_3a)

where is the angular velocity initially, and co2 is the angular velocity after a time 
interval At. Instantaneous angular acceleration is defined as the limit of this ratio 
as At approaches zero:

Aw do)
a = lim —— = —— (10-3b)a^o At dt

Since to is the same for all points of a rotating object, Eq. 10-3 tells us that a also 
will be the same for all points. Thus, o) and a are properties of the rotating object 
as a whole. With co measured in radians per second and t in seconds, a has units of 
radians per second squared (rad/s2).

Each point or particle of a rotating rigid object has, at any instant, a linear 
velocity v and a linear acceleration a. We can relate the linear quantities at each 
point, v and a, to the angular quantities, (o and a, of the rotating object. Consider a 
point P located a distance R from the axis of rotation, as in Fig. 10-5. If the object 
rotates with angular velocity w, any point will have a linear velocity whose direction 
is tangent to its circular path. The magnitude of that point’s linear velocity is 
v = d£/dt. From Eq. 10-lb, a change in rotation angle dO (in radians) is related to 
the linear distance traveled by d£ = R dd. Hence

di „d0
v = —  = R —

dt dt

v = R(o, (10-4)
where R is a fixed distance from the rotation axis and a> is given in rad/s. Thus, 
although (o is the same for every point in the rotating object at any instant, the 
linear velocity v is greater for points farther from the axis (Fig. 10-6). Note that 
Eq. 10-4 is valid both instantaneously and on the average.

CONCEPTUAL EXAMPLE 10-2 I Is the lion faster than the horse? On a
rotating carousel or merry-go-round, one child sits on a horse near the outer edge 
and another child sits on a lion halfway out from the center, (a) Which child has the 
greater linear velocity? (b) Which child has the greater angular velocity?
RESPONSE (a) The linear velocity is the distance traveled divided by the time 
interval. In one rotation the child on the outer edge travels a longer distance than 
the child near the center, but the time interval is the same for both. Thus the child 
at the outer edge, on the horse, has the greater linear velocity. (b) The angular 
velocity is the angle of rotation divided by the time interval. In one rotation both 
children rotate through the same angle (360° = 2ir rad). The two children have 
the same angular velocity.

If the angular velocity of a rotating object changes, the object as a whole—and 
each point in it—has an angular acceleration. Each point also has a linear acceler­
ation whose direction is tangent to that point’s circular path. We use Eq. 10-4 
(v = Rw) to show that the angular acceleration a is related to the tangential 
linear acceleration atan of a point in the rotating object by

_ dv _ d(o
fltan ~ dF ~ d f

fltan =  Ra- (10-5)
In this equation, R is the radius of the circle in which the particle is moving, and 
the subscript “tan” in atan stands for “tangential.”

FIGURE 1 0 -5  A  point P on a 
rotating wheel has a linear velocity v 
at any moment.

FIGURE 1 0 -6  A  wheel rotating 
uniformly counterclockwise. Two 
points on the wheel, at distances R A 
and R b from the center, have the 
same angular velocity co because 
they travel through the same angle 0 
in the same time interval. But the 
two points have different linear 
velocities because they travel 
different distances in the same time 
interval. Since R B >  R A , then 
Vb >  vA (because v  =  Roy).
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FIGURE 1 0 -7  On a rotating wheel 
whose angular speed is increasing, a 
point P has both tangential and radial 
(centripetal) components of linear 
acceleration. (See also Chapter 5.)

TABLE 10-1 
Linear and Rotational Quantities

Linear Type
Rota- Relation 
tional (0 in radians)

x displacement 0 
v  velocity cd

a tan acceleration

x = R6 
v  =  Ra) 

^ t̂an R&

(a)

The total linear acceleration of a point at any instant is the vector sum of two 
components:

** = ®tan + 3r ,
where the radial component, aR, is the radial or “centripetal” acceleration and its 
direction is toward the center of the point’s circular path; see Fig. 10-7. We saw in 
Chapter 5 (Eq. 5-1) that a particle moving in a circle of radius R with linear speed v 
has a radial acceleration aR = v2/R; we can rewrite this in terms of oj using Eq. 10-4:

u2 (R(of 
R RaR ~ = (o2R. (10- 6)

FIGURE 1 0 -8  Example 10-3. 
The total acceleration vector 
a =  atan + aR, at t =  8.0 s.

Equation 10-6 applies to any particle of a rotating object. Thus the centripetal 
acceleration is greater the farther you are from the axis of rotation: the children 
farthest out on a carousel experience the greatest acceleration.

Table 10-1 summarizes the relationships between the angular quantities 
describing the rotation of an object to the linear quantities for each point of 
the object.

■ Angular and linear velocities and accelerations. A carousel
is initially at rest. At t = 0 it is given a constant angular acceleration a =
0.060 rad/s2, which increases its angular velocity for 8.0 s. At t = 8.0 s, determine 
the magnitude of the following quantities: (a) the angular velocity of the carousel; 
(b) the linear velocity of a child (Fig. 10-8a) located 2.5 m from the center, point P 
in Fig. 10-8b; (c) the tangential (linear) acceleration of that child; (d) the centripetal 
acceleration of the child; and (e) the total linear acceleration of the child. 
APPROACH The angular acceleration a is constant, so we can use a = A (o/ A t to 
solve for (o after a time t = 8.0 s. With this a> and the given a, we determine the 
other quantities using the relations we just developed, Eqs. 10-4,10-5, and 10-6. 
SOLUTION (a) In Eq. 10-3a, a = (<w2 -  (o^)/At, we put At = 8.0 s, a = 0.060 rad/s2, 
and ^  = 0. Solving for o)2, we get

o)2 = (Ox + a At = 0 + (0.060 rad/s2)(8.0 s) = 0.48 rad/s.
During the 8.0-s interval, the carousel has accelerated from = 0 (rest) to 
co2 = 0.48 rad/s.
(b) The linear velocity of the child, with R = 2.5 m at time t = 8.0 s, is found 
using Eq. 10-4:

v = R(o = (2.5 m)(0.48 rad/s) = 1.2 m/s.
Note that the “rad” has been dropped here because it is dimensionless (and only 
a reminder)—it is a ratio of two distances, Eq. 10-la.
(c) The child’s tangential acceleration is given by Eq. 10-5:

at&n = Ra = (2.5 m)(0.060 rad/s2) = 0.15 m/s2, 
and it is the same throughout the 8.0-s acceleration interval.
(d) The child’s centripetal acceleration at t = 8.0 s is given by Eq. 10-6: 

v* _ (1.2 m/s)2 
R

aR = 0.58 m/s2.(2.5 m)
(e) The two components of linear acceleration calculated in parts (c) and (d) are 
perpendicular to each other. Thus the total linear acceleration at t = 8.0 s has 
magnitude

a = V^tan + «R = V ^ - ^ m / s 2)2
Its direction (Fig. 10-8b) is

. ( flt0r, \  „ ( 0.15 m/s’2
6 = tan

(0.58 m/s2)2 = 0.60 m/s2

atan
aR = 0.25 rad,

/ 0.15 m/s2
= tan V 0.58 m/s2, 

so 6 «  15°.
NOTE The linear acceleration at this chosen instant is mostly centripetal, keeping 
the child moving in a circle with the carousel. The tangential component that 
speeds up the motion is smaller.
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We can relate the angular velocity w to the frequency of rotation, / .  The 
frequency is the number of complete revolutions (rev) per second, as we saw in 
Chapter 5. One revolution (of a wheel, say) corresponds to an angle of 2tt radians, 
and thus 1 rev/s = 2ir rad/s. Hence, in general, the frequency /  is related to the 
angular velocity a> by

a> =  2 tTf .  (10-7)

The unit for frequency, revolutions per second (rev/s), is given the special name 
the hertz (Hz). That is

1 Hz = 1 rev/s.

Note that “revolution” is not really a unit, so we can also write 1 Hz = 1 s-1.
The time required for one complete revolution is the period T, and it is 

related to the frequency by

T = ~  (10-8)

If a particle rotates at a frequency of three revolutions per second, then the period 
of each revolution is ^s.

EXERCISE A In Example 10-3 , we found that the carousel, after 8.0 s, rotates at an angular 
velocity cd =  0.48 rad/s, and continues to do so after t =  8.0 s because the acceleration 
ceased. Determ ine the frequency and period of the carousel after it has reached a constant 
angular velocity.

EXAMPLE 10-4 Hard drive. The platter of the hard drive of a computer 
rotates at 7200 rpm (rpm = revolutions per minute = rev/min). (a) What is the 
angular velocity (rad/s) of the platter? (b) If the reading head of the drive is 
located 3.00 cm from the rotation axis, what is the linear speed of the point on the 
platter just below it? (c) If a single bit requires 0.50/xm of length along the 
direction of motion, how many bits per second can the writing head write when it 
is 3.00 cm from the axis?

APPROACH We use the given frequency /  to find the angular velocity a> of 
the platter and then the linear speed of a point on the platter (v = Rco). The 
bit rate is found by dividing the linear speed by the length of one bit 
(v = distance/time).
SOLUTION (a) First we find the frequency in rev/s, given /  = 7200 rev/min:

(7200 rev/min)
/  = , ■ x = 120 rev/s = 120 Hz.J (60 s/min) '

Then the angular velocity is

o) = 2irf = 754 rad/s.

(b) The linear speed of a point 3.00 cm out from the axis is given by Eq. 10-4:

v  = R(o = (3.00 X 10“2m)(754 rad/s) = 22.6 m/s.

(c) Each bit requires 0.50 X 10 6 m, so at a speed of 22.6 m/s, the number of bits 
passing the head per second is

22.6 m/s mA*.------------- 7— -—  = 45 X 106 bits per second,
0.50 X 10“6 m/bit F

or 45 megabits/s (Mbps).

( ^ P H Y S I C S  A P P L I E D
Hard drive 
and bit speed
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Given o> as function of time. A disk of radius i? = 3.0m 
rotates at an angular velocity a> = (1.6 + 1.21) rad/s, where t is in seconds. At 
the instant t = 2.0 s, determine (a) the angular acceleration, and (b) the speed v 
and the components of the acceleration a of a point on the edge of the disk.

APPROACH We use a = da)/dt, v = Rcj, «tan = Ra, and aR = w2R, which 
are Eqs. 10-3b, 10-4,10-5 and 10-6. We can write a) explicitly showing units of 
the constants (in case we want to check later): o) = [1.6 s-1 + (1.2 s~2)t] which 
will give us s-1 (= rad/s) for each term.
SOLUTION (a) The angular acceleration is

a = -j— = ^ - ( 1.6 + 1.2 f)s-1 = 1.2 rad/s2. 
dt dt

(b) The speed v of a point 3.0 m from the center of the rotating disk at t = 2.0 s 
is, using Eq. 10-4,

v = Rco = (3.0m)(1.6 + 1.2 f)s-1 = (3.0 m)(4.0 s-1) = 12.0 m/s.

The components of the linear acceleration of this point at t = 2.0 s are

atan = Ret = (3.0 m)(l.2 rad/s2) = 3.6 m /s2

= od2R = [(1.6 + 1.2£)s- 1]2(3.0m) = (4.0 s_1)2(3.0m) = 48 m /s2.

EXAMPLE 10-5

00 (b)

FIGURE 10-9 (a) Rotating wheel, 
(b) Right-hand rule for obtaining 
direction of o).

FIGURE 10-10 (a) Velocity is a true 
vector. The reflection of v points in 
the same direction, (b) Angular 
velocity is a pseudovector since it does 
not follow this rule. As can be seen, 
the reflection of the wheel rotates in 
the opposite direction, so the direction 
of to is opposite for the reflection.

(a)

f \

(b)

10-2  Vector Nature of Angular Quantities
Both to and a  can be treated as vectors, and we define their directions in the 
following way. Consider the rotating wheel shown in Fig. 10-9a. The linear 
velocities of different particles of the wheel point in all different directions. The only 
unique direction in space associated with the rotation is along the axis of rotation, 
perpendicular to the actual motion. We therefore choose the axis of rotation to be 
the direction of the angular velocity vector, w. Actually, there is still an ambiguity 
since a> could point in either direction along the axis of rotation (up or down 
in Fig. 10-9a). The convention we use, called the right-hand rule, is this: when 
the fingers of the right hand are curled around the rotation axis and point in the 
direction of the rotation, then the thumb points in the direction of <o. This is shown 
in Fig. 10-9b. Note that 6b points in the direction a right-handed screw would move 
when turned in the direction of rotation. Thus, if the rotation of the wheel in 
Fig. 10-9a is counterclockwise, the direction of w  is upward as shown in Fig. 10-9b. 
If the wheel rotates clockwise, then w points in the opposite direction, downward.1 
Note that no part of the rotating object moves in the direction of w.

If the axis of rotation is fixed in direction, then w  can change only in magnitude. 
Thus a  = dio/dt must also point along the axis of rotation. If the rotation is counter­
clockwise as in Fig. 10-9a and the magnitude of cj is increasing, then a  points upward; 
but if o) is decreasing (the wheel is slowing down), a  points downward. If the rotation is 
clockwise, a  points downward if oj is increasing, and a  points upward if co is decreasing.

f Strictly speaking, <5 and a  are not quite vectors. The problem is that they do not behave like vectors 
under reflection. Suppose, as we are looking directly into a mirror, a particle moving with velocity v to 
the right passes in front of and parallel to the mirror. In the reflection of the mirror, v still points to the 
right, Fig. lO-lOa. Thus a true vector, like velocity, when pointing parallel to the face of the mirror has the 
same direction in the reflection as in actuality. Now consider a wheel rotating in front of the mirror, so 
i5 points to the right. (We will be looking at the edge of the wheel.) As viewed in the mirror, 
Fig. 10-10b, the wheel will be rotating in the opposite direction. So &» will point in the opposite direction 
(to the left) in the mirror. Because a> is different under reflection than a true vector, &> is called a 
pseudovector or axial vector. The angular acceleration a  is also a pseudovector, as are all cross 
products of true vectors (Section 11-2). The difference between true vectors and pseudovectors is 
important in elementary particle physics, but will not concern us in this book.
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10—3 Constant Angular Acceleration
In Chapter 2, we derived the useful kinematic equations (Eqs. 2-12) that relate 
acceleration, velocity, distance, and time for the special case of uniform linear 
acceleration. Those equations were derived from the definitions of linear velocity 
and acceleration, assuming constant acceleration. The definitions of angular 
velocity and angular acceleration are the same as those for their linear counter­
parts, except that 6 has replaced the linear displacement x , to has replaced v ,  and a  
has replaced a. Therefore, the angular equations for constant angular acceleration 
will be analogous to Eqs. 2-12 with x  replaced by 6, v  by a>, and a  by a ,  and they 
can be derived in exactly the same way. We summarize them here, opposite their 
linear equivalents (we have chosen x0 = 0 and 60 = 0 at the initial time t = 0):

Angular Linear

(Oq + at

(O0t

a>o + 2 ad
0) + (Oq

v = Vq + at 

x = Vq t + \a t2 

v2 = Vq + 2 ax 
v + V q

[constant a, a] (10-9a)

[constant a, a] (10-9b)

[constant a, a] (10-9c)

[constant a, a] (10-9d)

Kinematic equations 

for constant 

angular acceleration 

(x0 =  0, 0O =  0)

Note that (o0 represents the angular velocity at t = 0, whereas 0 and a) 
represent the angular position and velocity, respectively, at time t. Since the angular 
acceleration is constant, a = a.

~ [ 2 5 E I 2 H I iH S  Centrifuge acceleration. A centrifuge rotor is accelerated 
from rest to 20,000 rpm in 30 s. (a) What is its average angular acceleration? 
(b) Through how many revolutions has the centrifuge rotor turned during its 
acceleration period, assuming constant angular acceleration?
APPROACH To determine a = Aco/At, we need the initial and final angular 
velocities. For (b), we use Eqs. 10-9 (recall that one revolution corresponds to
0 = 277 rad).
SOLUTION (a) The initial angular velocity is co = 0. The final angular velocity is

(20,000 rev/min)
CO = 2 n f = (2ir rad/rev) (60s/min) = 2100rad/ s'

Then, since a = Ac*/At and At = 30 s, we have

- (Qq 2100 rad/s -  0
a = 70 rad/s .

At 30 s
That is, every second the rotor’s angular velocity increases by 70 rad/s, or by 
(70/27t) = 11 revolutions per second.
(b) To find 6 we could use either Eq. 10-9b or 10-9c, or both to check our 
answer. The former gives

6 = 0 + |(70rad/s2)(30s)2 = 3.15 X 104rad,

where we have kept an extra digit because this is an intermediate result. To find 
the total number of revolutions, we divide by 2ir rad/rev and obtain

3.15 X 104 rad  ̂ .
— --------------  = 5.0 X 103 rev.

27t rad/rev
NOTE Let us calculate 6 using Eq. 10-9c:

£o2 — col (2100 rad/s)2
6 =

0
2 a 2(70 rad/s2)

which checks our answer using Eq. 10-9b perfectly.

= 3.15 X 104 rad

0 P H Y S 1 C S  A P P L I E D
Centrifuge
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10-4 Torque

r " 4Fb |

FIGURE 10-11 Top view of a door. 
Applying the same force with 
different lever arms, R A and R B. If 
R a  =  3RB , then to create the same 
effect (angular acceleration), FB needs 
to be three times FA , or FA =  \  FB.

FIGURE 1 0 -1 2  (a) A  tire iron too  
can have a long lever arm. (b) A  
plumber can exert greater torque 
using a wrench with a long lever arm.

Axis of rotation

(b)

FIGURE 1 0 -1 3  (a) Forces acting at 
different angles at the doorknob.
(b) The lever arm is defined as the 
perpendicular distance from the axis 
of rotation (the hinge) to the line of 
action of the force.

We have so far discussed rotational kinematics—the description of rotational 
motion in terms of angular position, angular velocity, and angular acceleration. 
Now we discuss the dynamics, or causes, of rotational motion. Just as we found 
analogies between linear and rotational motion for the description of motion, so 
rotational equivalents for dynamics exist as well.

To make an object start rotating about an axis clearly requires a force. But the 
direction of this force, and where it is applied, are also important. Take, for 
example, an ordinary situation such as the overhead view of the door in Fig. 10-11. 
If you apply a force FA to the door as shown, you will find that the greater the 
magnitude, FA , the more quickly the door opens. But now if you apply the same 
magnitude force at a point closer to the hinge—say, FB in Fig. 10-11—the door 
will not open so quickly. The effect of the force is less: where the force acts, as well 
as its magnitude and direction, affects how quickly the door opens. Indeed, if only 
this one force acts, the angular acceleration of the door is proportional not only to 
the magnitude of the force, but is also directly proportional to the perpendicular 
distance from the axis o f rotation to the line along which the force acts. This distance 
is called the lever arm, or moment arm, of the force, and is labeled Ra and Rb for 
the two forces in Fig. 10-11. Thus, if Ra in Fig. 10-11 is three times larger than Rb , 
then the angular acceleration of the door will be three times as great, assuming 
that the magnitudes of the forces are the same. To say it another way, if 
Ra = 3Rb , then FB must be three times as large as FA to give the same angular 
acceleration. (Figure 10-12 shows two examples of tools whose long lever arms are 
very effective.)

The angular acceleration, then, is proportional to the product of the force times 
the lever arm. This product is called the moment o f the force about the axis, or, more 
commonly, it is called the torque, and is represented by r  (Greek lowercase letter 
tau). Thus, the angular acceleration a of an object is directly proportional to the net 
applied torque r:

a  oc t ,

and we see that it is torque that gives rise to angular acceleration. This is the rotational 
analog of Newton’s second law for linear motion, a oc F.

We defined the lever arm as the perpendicular distance from the axis of rotation 
to the line of action of the force—that is, the distance which is perpendicular both to 
the axis of rotation and to an imaginary line drawn along the direction of the force. 
We do this to take into account the effect of forces acting at an angle. It is clear that 
a force applied at an angle, such as Fc in Fig. 10-13, will be less effective than the 
same magnitude force applied perpendicular to the door, such as FA (Fig. 10-13a). 
And if you push on the end of the door so that the force is directed at the hinge (the 
axis of rotation), as indicated by FD, the door will not rotate at all.

The lever arm for a force such as Fc is found by drawing a line along the direction 
of Fc (this is the “line of action” of Fc). Then we draw another line, perpendicular to 
this line of action, that goes to the axis of rotation and is perpendicular also to it. 
The length of this second line is the lever arm for Fc and is labeled Rc in Fig. 10-13b. 
The lever arm for FA is the full distance from the hinge to the door knob, Ra ; thus 
Rc is much smaller than Ra .

The magnitude of the torque associated with Fc is then RCFC. This short lever 
arm Rc and the corresponding smaller torque associated with Fc is consistent with 
the observation that Fc is less effective in accelerating the door than is FA. When 
the lever arm is defined in this way, experiment shows that the relation a  oc t  is 
valid in general. Notice in Fig. 10-13 that the line of action of the force FD passes 
through the hinge, and hence its lever arm is zero. Consequently, zero torque is 
associated with FD and it gives rise to no angular acceleration, in accord with 
everyday experience.

Axis of rotation

(a)
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In general, then, we can write the magnitude of the torque about a given axis as 
r = R±F, (lO-lOa)

where R± is the lever arm, and the perpendicular symbol (_L) reminds us that we 
must use the distance from the axis of rotation that is perpendicular to the line of 
action of the force (Fig. 10-14a).

An equivalent way of determining the torque associated with a force is to 
resolve the force into components parallel and perpendicular to the line that 
connects the axis to the point of application of the force, as shown in Fig. 10-14b. 
The component exerts no torque since it is directed at the rotation axis (its 
moment arm is zero). Hence the torque will be equal to F± times the distance R  from 
the axis to the point of application of the force:

t  = RF±. (lO-lOb)
This gives the same result as Eq. lO-lOa because F± = F sin 6 and R± = R sin 0. So 

r  = RF sin 6 (lO-lOc)
in either case. [Note that 0 is the angle between the directions of F and R  (radial 
line from the axis to the point where F acts)]. We can use any of Eqs. 10-10 to 
calculate the torque, whichever is easiest.

Because torque is a distance times a force, it is measured in units of m • N in SI 
units,f cm • dyne in the cgs system, and ft • lb in the English system.

When more than one torque acts on an object, the angular acceleration a is 
found to be proportional to the net torque. If all the torques acting on an object 
tend to rotate it about a fixed axis of rotation in the same direction, the net torque 
is the sum of the torques. But if, say, one torque acts to rotate an object in one 
direction, and a second torque acts to rotate the object in the opposite direction 
(as in Fig. 10-15), the net torque is the difference of the two torques. We normally 
assign a positive sign to torques that act to rotate the object counterclockwise (just 
as 6 is usually positive counterclockwise), and a negative sign to torques that act to 
rotate the object clockwise, when the rotation axis is fixed.

Point of
Axis o f v  application
rotation of force

' R
I /  /

(a)

(b)

FIGURE 10-14 Torque =  R±F = RF±

EXAMPLE 10-7 Torque on a compound wheel. Two thin disk-shaped wheels, 
of radii RA = 30 cm and RB = 50 cm, are attached to each other on an axle 
that passes through the center of each, as shown in Fig. 10-15. Calculate 
the net torque on this compound wheel due to the two forces shown, each of 
magnitude 50 N.
APPROACH The force FA acts to rotate the system counterclockwise, whereas FB 
acts to rotate it clockwise. So the two forces act in opposition to each other. We 
must choose one direction of rotation to be positive—say, counterclockwise. 
Then FA exerts a positive torque, rA = RaFa , since the lever arm is RA. On the 
other hand, FB produces a negative (clockwise) torque and does not act perpen­
dicular to RB, so  we must use its perpendicular component to calculate the 
torque it produces: rB = ~R BFB± = - R BFB sin 0, where 0 = 60°. (Note that 0 
must be the angle between FB and a radial line from the axis.)
SOLUTION The net torque is

T =  r a Fa  -  R b Fb sin60°
= (0.30m)(50N) -  (0.50m)(50N)(0.866) = -6.7 m-N.

This net torque acts to accelerate the rotation of the wheel in the clockwise 
direction.

FIGURE 10-15 Example 10-7 . The 
torque due to FA tends to accelerate 
the wheel counterclockwise, whereas 
the torque due to FB tends to 
accelerate the wheel clockwise.

EXERCISE B Two forces (FB =  20 N and FA =  30 N) are applied to a meter stick which 
can rotate about its left end, Fig. 10-16. Force FB is applied perpendicularly at the 
midpoint. Which force exerts the greater torque: FA , FB, or both the same?

fNote that the units for torque are the same as those for energy. We write the unit for torque here as m-N 
(in SI) to distinguish it from energy (N • m) because the two quantities are very different. An obvious differ­
ence is that energy is a scalar, whereas torque has a direction and is a vector (as we will see in Chapter 11). 
The special name joule (1J = 1 N • m) is used only for energy (and for work), never for torque.

FIGURE 10-16 Exercise B. 
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FIGURE 10-17 A mass m rotating 
in a circle of radius R about a fixed 
point.

10—5 Rotational Dynamics; 
Torque and Rotational Inertia

We discussed in Section 10-4 that the angular acceleration a  of a rotating object is 
proportional to the net torque t  applied to it:

a  oc 2 t ,

where we write E r to remind us that it is the net torque (sum of all torques acting 
on the object) that is proportional to a. This corresponds to Newton’s second law 
for translational motion, a oc 2 F, but here torque has taken the place of force, 
and, correspondingly, the angular acceleration a takes the place of the linear 
acceleration a. In the linear case, the acceleration is not only proportional to the 
net force, but it is also inversely proportional to the inertia of the object, which we 
call its mass, m. Thus we could write a = 'ZF/m. But what plays the role of mass 
for the rotational case? That is what we now set out to determine. At the same 
time, we will see that the relation a oc E r follows directly from Newton’s second 
law, E F = ma.

We first consider a very simple case: a particle of mass m rotating in a circle of 
radius R at the end of a string or rod whose mass we can ignore compared to m 
(Fig. 10-17), and we assume that a single force F acts on m tangent to the circle as 
shown. The torque that gives rise to the angular acceleration is r  = RF. If we use 
Newton’s second law for linear quantities, 2 F  = ma, and Eq. 10-5 relating 
the angular acceleration to the tangential linear acceleration, atan = Ra, then 
we have

F = ma 

= mRa,

where a is given in rad/s2. When we multiply both sides of this equation by R, we 
find that the torque r  = RF = R(mRa), or

r  = mR2a. [single particle] (10-11)

Here at last we have a direct relation between the angular acceleration and the 
applied torque r. The quantity mR2 represents the rotational inertia of the particle 
and is called its moment o f inertia.

Now let us consider a rotating rigid object, such as a wheel rotating about 
a fixed axis through its center, such as an axle. We can think of the wheel as 
consisting of many particles located at various distances from the axis of rotation. 
We can apply Eq. 10-11 to each particle of the object; that is, we write rt = mt R2 a 
for the ith particle of the object. Then we sum over all the particles. The sum of the 
various torques is just the total torque, 2 r, so we obtain:

2r,- = ('2miR2)a  [axis fixed] (10-12)

where we factored out the a since it is the same for all the particles of a rigid 
object. The resultant torque, 2 t ,  represents the sum of all internal torques that 
each particle exerts on another, plus all external torques applied from the outside:

= 2 r ext + 2 tjnt. The sum of the internal torques is zero from Newton’s third 
law. Hence E r represents the resultant external torque.

The sum Drazi?2 in Eq. 10-12 represents the sum of the masses of each 
particle in the object multiplied by the square of the distance of that particle from 
the axis of rotation. If we give each particle a number (1 ,2,3,...), then

2 mtR2 = mxR2 + m2R\ + m3R\ + •••.
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This summation is called the moment o f inertia (or rotational inertia) I  of the object:

I  = 2 iriiR2 = m 1Rl + m 2R\ (10-13)

Combining Eqs. 10-12 and 10-13, we can write

x' _  t I axis fixed in 1
T a ' [inertial reference frame J  ̂ ^

This is the rotational equivalent of Newton’s second law. It is valid for the rotation 
of a rigid object about a fixed axis.1" It can be shown (see Chapter 11) that 
Eq. 10-14 is valid even when the object is translating with acceleration, as long as I  
and a are calculated about the center of mass of the object, and the rotation axis 
through the cm  doesn’t change direction. (A ball rolling down a ramp is an 
example.) Then

(2 r)< [axis fixed in direction, 1 ^  
but may accelerate J '  '

where the subscript cm  means “calculated about the center of mass.”
We see that the moment of inertia, I, which is a measure of the rotational 

inertia of an object, plays the same role for rotational motion that mass does for 
translational motion. As can be seen from Eq. 10-13, the rotational inertia of an 
object depends not only on its mass, but also on how that mass is distributed with 
respect to the axis. For example, a large-diameter cylinder will have greater 
rotational inertia than one of equal mass but smaller diameter (and therefore 
greater length), Fig. 10-18. The former will be harder to start rotating, and harder 
to stop. When the mass is concentrated farther from the axis of rotation, the 
rotational inertia is greater. For rotational motion, the mass of an object cannot be 
considered as concentrated at its center of mass.

NEWTON’S SECOND LAW  
FOR ROTATION

FIGURE 10-18 A  large-diameter 
cylinder has greater rotational 
inertia than one of equal mass but 
smaller diameter.

/j\ CAUTION_________
Mass can not be considered 
concentrated at CM for rotational 
motion

EXAMPLE 10-8 Two weights on a bar: different axis, different I. Two
small “weights,” of mass 5.0 kg and 7.0 kg, are mounted 4.0 m apart on a light rod 
(whose mass can be ignored), as shown in Fig. 10-19. Calculate the moment of 
inertia of the system (a) when rotated about an axis halfway between the weights, 
Fig. 10-19a, and (b) when rotated about an axis 0.50 m to the left of the 5.0-kg 
mass (Fig. 10-19b).

APPROACH In each case, the moment of inertia of the system is found by 
summing over the two parts using Eq. 10-13.
SOLUTION (a) Both weights are the same distance, 2.0 m, from the axis of rotation. 
Thus

I  = Z m R 2 = (5.0 kg) (2.0 m )2 + (7.0 kg) (2.0 m )2 
= 20 kg • m2 + 28 kg • m2 = 48kg-m2.

(b) The 5.0-kg mass is now 0.50 m from the axis, and the 7.0-kg mass is 4.50 m 
from the axis. Then

I  = Z m R 2 = (5.0 kg) (0.50 m )2 + (7.0 kg) (4.5 m )2
= 1.3 kg-m2 + 142 kg-m2 = 143 kg-m2.

NOTE This Example illustrates two important points. First, the moment of inertia 
of a given system is different for different axes of rotation. Second, we see in 
part (b) that mass close to the axis of rotation contributes little to the total moment 
of inertia; here, the 5.0-kg object contributed less than 1% to the total.

FIGURE 10-19 Exam ple 10 -8 . 
Calculating the m om ent o f inertia.

^ 5

5.0 kg

0.50 m

5.0

Axis

4.0 m 
I
I
I

Axis

(a)

4.0 m

(b)

/ j \  C AUT I ON

7.0 kg

7.0 kg

I depends on axis of rotation 
and on distribution of mass

trThat is, the axis is fixed relative to the object and is fixed in an inertial reference frame. This includes 
an axis moving at uniform velocity in an inertial frame, since the axis can be considered fixed in a 
second inertial frame that moves with respect to the first.
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FIGURE 10-20 M om ents o f inertia 
for various objects o f uniform  
com position. [We use R  for radial 
distance from an axis, and r  for 
distance from a point (only in e, the  
sphere), as discussed in Fig. 10-2.]

Location 
Object o f axis

(a) Thin hoop, Through 
radius R0 center

(b) Thin hoop, Through 
radius R0 central 
width w  diameter

(c) Solid cylinder, Through
radius R 0 center

(d) Hollow cylinder, Through 
inner radius R± center 
outer radius R2

(e) Uniform sphere, Through 
radius r0 center

(f) Long uniform rod, Through 
length £ center

(g) Long uniform rod, Through 
length i  end

(h) Rectangular Through 
thin plate, center 
length £, width w

Moment of 
inertia

For most ordinary objects, the mass is distributed continuously, and the calculation 
of the moment of inertia, HmR2, can be difficult. Expressions can, however, be worked 
out (using calculus) for the moments of inertia of regularly shaped objects in terms of 
the dimensions of the objects, as we will discuss in Section 10-7. Figure 10-20 gives 
these expressions for a number of solids rotated about the axes specified. The only one 
for which the result is obvious is that for the thin hoop or ring rotated about an axis 
passing through its center perpendicular to the plane of the hoop (Fig. 10-20a). 
For this hoop, all the mass is concentrated at the same distance from the axis, R0. 
Thus Drai?2 = (2m)i?o = M Rq, where M  is the total mass of the hoop.

When calculation is difficult, I  can be determined experimentally by measuring 
the angular acceleration a about a fixed axis due to a known net torque, Dr, and 
applying Newton’s second law, I  = 2 r /a ,  Eq. 10-14.

10-6  Solving Problems in Rotational 
Dynamics

When working with torque and angular acceleration (Eq. 10-14), it is important to 
use a consistent set of units, which in SI is: a in rad/s2; r  in m-N; and the moment 
of inertia, I, in kg • m2.
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Rotational Motion
1. As always, draw a clear and complete diagram.

5* 2. Choose the object or objects that will be the system 
to be studied.

3. Draw a free-body diagram for the object under consid­
eration (or for each object, if more than one), showing 
all (and only) the forces acting on that object and exactly 
where they act, so you can determine the torque due to 
each. Gravity acts at the cg  of the object (Section 9-8).

4. Identify the axis of rotation and determine the torques 
about it. Choose positive and negative directions of

rotation (counterclockwise and clockwise), and assign 
the correct sign to each torque.

5. Apply Newton’s second law for rotation, E r = la. 
If the moment of inertia is not given, and it is not the 
unknown sought, you need to determine it first. 
Use consistent units, which in SI are: a in rad/s2; 
t  in m • N; and I  in kg • m2.

6. Also apply Newton’s second law for translation, 
2F = ma, and other laws or principles as needed.

7. Solve the resulting equation(s) for the unknown(s).
8. Do a rough estimate to determine if your answer is 

reasonable.

EXAMPLE 10-9 A heavy pulley. A 15.0-N force (represented by Fx) is applied
to a cord wrapped around a pulley of mass M = 4.00 kg and radius R0 = 33.0 cm,
Fig. 10-21. The pulley accelerates uniformly from rest to an angular speed of
30.0rad/s in 3.00s. If there is a frictional torque r fr = 1.10 m-N at the axle,
determine the moment of inertia of the pulley. The pulley rotates about its center.
APPROACH We follow the steps of the Problem Solving Strategy above.
SOLUTION
1. Draw a diagram. The pulley and the attached cord are shown in Fig. 10-21.
2. Choose the system: the pulley.
3. Draw a free-body diagram. The cord exerts a force FT on the pulley as shown 

in Fig. 10-21. The friction force retards the motion and acts all around the 
axle in a clockwise direction, as suggested by the arrow Ffr in Fig. 10-21; 
we are given its torque, which is all we need. Two other forces should be 
included in the diagram: the force of gravity mg down, and whatever force 
holds the axle in place. They do not contribute to the torque (their lever arms 
are zero) and so we omit them for convenience (or tidiness).

4. Determine the torques. The torque exerted by the cord equals R0FT and is 
counterclockwise, which we choose to be positive. The frictional torque is 
given as r fr = 1.10m-N; it opposes the motion and is negative.

5. Apply Newton’s second law for rotation. The net torque is
= RoFT — Tfr = (0.330m)(15.0N) -  1.10m-N = 3.85m-N. 

The angular acceleration a is found from the given data that it takes 3.0 s to 
accelerate the pulley from rest to a> = 30.0 rad/s:

A(o 30.0 rad/s -  0
“  "" ~Kt 3.00 s

We can now solve for I  in Newton’s second law (see step 7).
6. Other calculations: None needed.
7. Solve for unknowns. We solve for I  in Newton’s second law for rotation

= la , and insert our values for 2 t  and a:
3.85 m-N

= 10.0 rad/s2

a = 0.385 kg • m .
10.0 rad/s2

8. Do a rough estimate. We can do a rough estimate of the moment of inertia by 
assuming the pulley is a uniform cylinder and using Fig. 10-20c:

I  «  \M R l = \  (4.00 kg) (0.330 m)2 = 0.218 kg-m2.
This is the same order of magnitude as our result, but numerically somewhat 
less. This makes sense, though, because a pulley is not usually a uniform 
cylinder but instead has more of its mass concentrated toward the outside 
edge. Such a pulley would be expected to have a greater moment of inertia 
than a solid cylinder of equal mass. A thin hoop, Fig. 10-20a, ought to have a 
greater I  than our pulley, and indeed it does: I  = MRq = 0.436 kg • m2.

33.0 cm

FIGURE 10-21 Example 10-9 .

j P R O B L E M  S O L V I N G
Usefulness and p o w er  
o f  rough estimates
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(a)

njg
(b)

FIGURE 10-22 Example 10-10.
(a) Pulley and falling bucket of 
mass ra. (b) Free-body diagram for 
the bucket.

EXAMPLE 10-10 Pulley and bucket. Consider again the pulley in Fig. 10-21 
and Example 10-9 with the same friction. But this time, instead of a constant
15.0-N force being exerted on the cord, we now have a bucket of weight 
w = 15.0 N (mass m = w /g  = 1.53 kg) hanging from the cord. See Fig. 10-22a. 
We assume the cord has negligible mass and does not stretch or slip on the pulley.
(a) Calculate the angular acceleration a of the pulley and the linear acceleration a of 
the bucket. (b) Determine the angular velocity a) of the pulley and the linear 
velocity v of the bucket at t = 3.00 s if the pulley (and bucket) start from rest 
at t = 0.

APPROACH This situation looks a lot like Example 10-9, Fig. 10-21. But there is 
a big difference: the tension in the cord is now an unknown, and it is no longer 
equal to the weight of the bucket if the bucket accelerates. Our system has two 
parts: the bucket, which can undergo translational motion (Fig. 10-22b is its 
free-body diagram); and the pulley. The pulley does not translate, but it can rotate. 
We apply the rotational version of Newton’s second law to the pulley, = la , 
and the linear version to the bucket, 2 F = ma.
SOLUTION (a) Let Ft  be the tension in the cord. Then a force Fx acts at the edge 
of the pulley, and we apply Newton’s second law, Eq. 10-14, for the rotation of 
the pulley:

la  = = R0Ft — r fr, [pulley]

Next we look at the (linear) motion of the bucket of mass m. Figure 10-22b, the 
free-body diagram for the bucket, shows that two forces act on the bucket: the 
force of gravity mg acts downward, and the tension of the cord FT pulls upward. 
Applying Newton’s second law, E F = ma, for the bucket, we have (taking 
downward as positive):

mg — FT = ma. [bucket]

Note that the tension FT, which is the force exerted on the edge of the pulley, is 
not equal to the weight of the bucket (= mg = 15.0 N). There must be a net 
force on the bucket if it is accelerating, so FT < mg. Indeed from the last 
equation above, FT = mg — ma.

To obtain a, we note that the tangential acceleration of a point on the edge 
of the pulley is the same as the acceleration of the bucket if the cord doesn’t 
stretch or slip. Hence we can use Eq. 10-5, atan = a = R0 a. Substituting 
Ft = mg -  ma = mg -  mR0a into the first equation above (Newton’s second 
law for rotation of the pulley), we obtain

la  = 2 t  = R0 FT — t  fr = Ro(mg — mR0a) — Tfr = mgR0 — mR^a — Tfr .

The variable a appears on the left and in the second term on the right, so we 
bring that term to the left side and solve for a:

mgR0 ~ r fr
I  + mRl

The numerator (mgR0 -  Tfr) is the net torque, and the denominator (/ + mRl) is 
the total rotational inertia of the system. Then, since I  = 0.385 kg • m2, 
m = 1.53 kg, and r fr = 1.10m-N (from Example 10-9),

(15.0N)(0.330m) -  1.10m-N 
a 0.385 kg-m2 + (1.53 kg) (0.330 m)2

The angular acceleration is somewhat less in this case than the 10.0 rad/s2 of 
Example 10-9. Why? Because FT (= mg — ma) is less than the 15.0-N weight 
of the bucket, mg. The linear acceleration of the bucket is

a = R0a = (0.330 m) (6.98 rad/s2) = 2.30 m/s2.

NOTE The tension in the cord FT is less than mg because the bucket accelerates.
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(ib) Since the angular acceleration is constant, after 3.00 s
o) = (o0 + at = 0 + (6.98rad/s2)(3.00s) = 20.9 rad/s.

The velocity of the bucket is the same as that of a point on the wheel’s edge:
v = R0(o = (0.330 m) (20.9 rad/s) = 6.91 m/s.

The same result can also be obtained by using the linear equation 
v = v0 + at = 0 + (2.30 m/s2)(3.00 s) = 6.90 m/s. (The difference is due to 
rounding off.)

E E E E H M E H II  Rotating rod. A uniform rod of mass M  and length £ can 
pivot freely (i.e., we ignore friction) about a hinge or pin attached to the case of a 
large machine, as in Fig. 10-23. The rod is held horizontally and then released. At the 
moment of release (when you are no longer exerting a force holding it up), determine
(a) the angular acceleration of the rod and (b) the linear acceleration of the tip of the 
rod. Assume the force of gravity acts at the center of mass of the rod, as shown.
APPROACH (a) The only torque on the rod about the hinge is that due to 
gravity, which acts with a force F = Mg downward with a lever arm 1/2 at the 
moment of release (the cm is at the center of a uniform rod). There is also a force 
on the rod at the hinge, but with the hinge as axis of rotation, the lever arm of 
this force is zero. The moment of inertia of a uniform rod pivoted about its end is 
(Fig. 10-20g) I  = \M f .  In part (b) we use atan = Ra.
SOLUTION We use Eq. 10-14, solving for a to obtain the initial angular acceler­
ation of the rod:

a  = j  = m4
\M£2

3 g 
2 £

As the rod descends, the force of gravity on it is constant but the torque due to 
this force is not constant since the lever arm changes. Hence the rod’s angular 
acceleration is not constant.
(b) The linear acceleration of the tip of the rod is found from the relation 
fltan = Rot (Eq. 10-5) with R = £:

«tan =  =  |  g-

NOTE The tip of the rod falls with an acceleration greater than g! A small object 
balanced on the tip of the rod would be left behind when the rod is released. In 
contrast, the cm of the rod, at a distance £/2 from the pivot, has acceleration
"tan =  W 2 ) a  =  Jg-

____________ CM.

F ' I
Mg

FIGURE 10-23 Example 10-11.

10—7 Determining Moments of Inertia
By Experiment
The moment of inertia of any object about any axis can be determined experi­
mentally, such as by measuring the net torque D t required to give the object an 
angular acceleration a. Then, from Eq. 10-14, I  = 'Er/a. See Example 10-9.

Using Calculus
For simple systems of masses or particles, the moment of inertia can be calculated 
directly, as in Example 10-8. Many objects can be considered as a continuous 
distribution of mass. In this case, Eq. 10-13 defining moment of inertia becomes

= 1
I  = \ R2 dm , (10- 16)

where dm represents the mass of any infinitesimal particle of the object and R is the 
perpendicular distance of this particle from the axis of rotation. The integral is taken 
over the whole object. This is easily done only for objects of simple geometric shape.
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FIGURE 1 0 -2 4  Determining the 
moment of inertia of a hollow  
cylinder (Example 10-12).

FIGURE 1 0 -2 5  Example 10-13.

Axis
C_ 3

- A -

EXAMPLE 10-12 Cylinder, solid or hollow, (a) Show that the moment of inertia 
of a uniform hollow cylinder of inner radius , outer radius R2, and mass M, 
is I  = \M {R\ + R$), as stated in Fig. 10-20d, if the rotation axis is through 
the center along the axis of symmetry. (b) Obtain the moment of inertia for a 
solid cylinder.
APPROACH We know that the moment of inertia of a thin ring of radius R is 
mR2. So we divide the cylinder into thin concentric cylindrical rings or hoops of 
thickness dR, one of which is indicated in Fig. 10-24. If the density (mass per unit 
volume) is p, then

dm = p dV,
where dV  is the volume of the thin ring of radius R, thickness dR, and height h. 
Since dV = (2iTR)(dR)(h), we have

dm = lirphR dR.

SOLUTION (a) The moment of inertia is obtained by integrating (summing) over 
all these rings:

f f R2 R 4 — 7?4
/  =  J R2 dm = J lirphR3 dR = 2irph =  ^ ( * 2  -  « l ) ,

where we are given that the cylinder has uniform density, p = constant. (If this 
were not so, we would have to know p as a function of R before the integration 
could be carried out.) The volume V  of this hollow cylinder is V = (jtR\ -  7rR2)h, 
so its mass M  is

M = pV = pit(R22 -  R2)h.

Since {R\ -  R§ = (R\ -  R$(R\ + RI), we have

I  = ^ ( « 2  -  « l)(«2 + *l) = \M {R\ + Rl), 

as stated in Fig. 10-20d.
(b) For a solid cylinder, = 0 and if we set = > then

I  = \M R l,
which is that given in Fig. 10-20c for a solid cylinder of mass M  and radius R0. 

The Parallel-Axis Theorem
There are two simple theorems that are helpful in obtaining moments of inertia. 
The first is called the parallel-axis theorem. It relates the moment of inertia I  of an 
object of total mass M  about any axis, and its moment of inertia /CM about an axis 
passing through the center of mass and parallel to the first axis. If the two axes are 
a distance h apart, then

I  = /CM + Mh2. [parallel axis] (10-17)
Thus, for example, if the moment of inertia about an axis through the cm  is known, 
the moment of inertia about any axis parallel to this axis is easily obtained.

EXAMPLE 10-13 Parallel axis. Determine the moment of inertia of a solid 
cylinder of radius R0 and mass M  about an axis tangent to its edge and parallel 
to its symmetry axis, Fig. 10-25.
APPROACH We use the parallel-axis theorem with /CM = \M R \ (Fig. 10-20c). 
SOLUTION Since h = R0, Eq. 10-17 gives

/  = /c m  + Mh1 = I M R l

EXERCISE C In Figs. 10-20f and g, the moments of inertia for a thin rod about two 
different axes are given. Are they related by the parallel-axis theorem? Please show how.
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* Proof of the Parallel-Axis Theorem
The proof of the parallel-axis theorem is as follows. We choose our coordinate 
system so the origin is at the cm , and / CM is the moment of inertia about the z axis. 
Figure 10-26 shows a cross section of an object of arbitrary shape in the xy plane. 
We let I  represent the moment of inertia of the object about an axis parallel to 
the z axis that passes through the point A in Fig. 10-26 where the point A has 
coordinates xA and yA. Let xt , yt , and ra* represent the coordinates and mass 
of an arbitrary particle of the object. The square of the distance from this point 
to A is [ ( x j  -  xA)2 + (yt -  }>a)2]- S o  the moment of inertia, I ,  about the axis 
through A is

I  = XmiKxi -  xA)2 + (y, -  yA)2]
= + yf) -  2xA2 m,xi -  2yA2mjyf + ('Zml)(x2A + y2A).

The first term on the right is just /CM = Sm,(x] + yf) since the cm is at the 
origin. The second and third terms are zero since, by definition of the cm , 
EmjXj = = 0 because xCM = ycu = 0. The last term is Mh2 since
Em/ = M  and (pc\ + y i) = h2 where h is the distance of A from the c m . Thus 
we have proved /  = /CM + Mh2, which is Eq. 10-17.

FIGURE 1 0 -2 6  Derivation of the 
parallel-axis theorem.

* The Perpendicular-Axis Theorem
The parallel-axis theorem can be applied to any object. The second theorem, the 
perpendicular-axis theorem, can be applied only to plane (flat) objects—that is, to 
two-dimensional objects, or objects of uniform thickness whose thickness can be 
neglected compared to the other dimensions. This theorem states that the sum of 
the moments of inertia of a plane object about any two perpendicular axes in the 
plane of the object, is equal to the moment of inertia about an axis through their 
point of intersection perpendicular to the plane of the object. That is, if the object 
is in the xy plane (Fig. 10-27),

Iz = Ix + Iy . [object in xy plane] (10-18)

Here Iz , Ix , Iy are moments of inertia about the z, x, and y axes. The proof is 
simple: since Ix = 'Zrriiy2, Iy = 'ZrriiX2, and Iz = 'Zm^x2 + y2), Eq. 10-18 
follows directly.

FIGURE 1 0 -2 7
axis theorem.

The perpendicular-

10-8 Rotational Kinetic Energy
The quantity \m v2 is the kinetic energy of an object undergoing translational 
motion. An object rotating about an axis is said to have rotational kinetic energy. 
By analogy with translational kinetic energy, we would expect this to be given by 
the expression \la>2 where I  is the moment of inertia of the object and a) is its 
angular velocity. We can indeed show that this is true.

Consider any rigid rotating object as made up of many tiny particles, each of 
mass mi. If we let Rt represent the distance of any one particle from the axis of 
rotation, then its linear velocity is vt = Rico. The total kinetic energy of the whole 
object will be the sum of the kinetic energies of all its particles:

K = S ( |rriivj) = ^ n i iR ja ) 2)

= \^{miR])(D2.

We have factored out the \  and the (o2 since they are the same for every particle of 
a rigid object. Since 2 rriiR2 = I, the moment of inertia, we see that the kinetic 
energy, K, of an object rotating about a fixed axis is, as expected,

K = \lo)2. [rotation about a fixed axis] (10-19)

If the axis is not fixed in space, the rotational kinetic energy can take on a more 
complicated form.
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FIGURE 1 0 -2 8  Calculating the 
work done by a torque acting on a 
rigid object rotating about a fixed 
axis.

The work done on an object rotating about a fixed axis can be written in 
terms of angular quantities. Suppose a force F is exerted at a point whose 
distance from the axis of rotation is R, as in Fig. 10-28. The work done by this 
force is

| f  • di = | f ,  R de.

where dt is an infinitesimal distance perpendicular to R with magnitude d£ = R dd, 
and F± is the component of F perpendicular to R and parallel to di (Fig. 10-28). 
But F±R is the torque about the axis, so

2

Je1
dd (10- 20)

is the work done by a torque t  to rotate an object through the angle 0 2 — #i- 
The rate of work done, or power P, at any instant is

P = dW
dt

cW
dt

TO). (10- 21)

The work-energy principle holds for rotation of a rigid object about a fixed 
axis. From Eq. 10-14 we have

T da) do) dO da)
t  = l a  = I —— = I  —— — = la )——’ 

dt dd dt dd

where we used the chain rule and co = dd/dt. Then t dd = I  co do) and

W = I rd e  = I Icodto = \lw \ -  \lw \. (10-22)= f t  d d  =  f
J 0! Jc

This is the work-energy principle for a rigid object rotating about a fixed axis. It states 
that the work done in rotating an object through an angle 02 — is equal to the 
change in rotational kinetic energy of the object.

P H Y S I C S  A P P L I E D EXAMPLE 10-14
Energy from  a flyw heel

ESTIMATE"! Flywheel. Flywheels, which are simply large 
rotating disks, have been suggested as a means of storing energy for solar- 
powered generating systems. Estimate the kinetic energy that can be stored in an
80,000-kg (80-ton) flywheel with a diameter of 10 m (a three-story building). 
Assume it could hold together (without flying apart due to internal stresses) at 
100 rpm.

APPROACH We use Eq. 10-19, K = \l(D2, but only after changing 100 rpm to cd 
in rad/s.
SOLUTION We are given

I*™ rev ,\ ( 1 min ,\ rad \0, = lOOrpm = ( m — ) = 10.5 rad/s.

The kinetic energy stored in the disk (for which I  = \ MRf y  is

K = \l(o2 = \§ M R § w 2

= \  (8.0 X 104kg)(5m)2(10.5 rad/s)2 = 5.5 X 107J.

NOTE In terms of kilowatt-hours [l kWh = (1000 J/s)(3600s/h)(l h) =
3.6 X 106j], this energy is only about 15 kWh, which is not a lot of energy 
(one 3-kW oven would use it all in 5 h). Thus flywheels seem unlikely for this 
application.
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EXAMPLE 10-15 Rotating rod. A rod of mass M  is pivoted on a frictionless 
hinge at one end, as shown in Fig. 10-29. The rod is held at rest horizontally and 
then released. Determine the angular velocity of the rod when it reaches the 
vertical position, and the speed of the rod’s tip at this moment.

APPROACH We can use the work-energy principle here. The work done is due to 
gravity, and is equal to the change in gravitational potential energy of the rod. 
SOLUTION Since the cm  of the rod drops a vertical distance £/2, the work done 
by gravity is

w  = Mg

The initial kinetic energy is zero. Hence, from the work-energy principle,

\lw 2 = M g ~

Since I  = \ M f  for a rod pivoted about its end (Fig. 10-20g), we can solve 
for a):

>CM

CM

FIGURE 1 0 -2 9  Example 10-15.

The tip of the rod will have a linear speed (see Eq. 10-4) 

v = £w = \/3g£.

NOTE By comparison, an object that falls vertically a height £ has a speed 
v = V2g£.

EXERCISE D Estimate the energy stored in the rotational motion of a hurricane. M odel the 
hurricane as a uniform cylinder 300 km in diameter and 5 km high, made of air whose mass 
is 1.3 kg per m3. Estimate the outer edge of the hurricane to move at a speed of 200 km /h.

10-9 Rotational Plus Translational 
Motion; Rolling

Rolling Without Slipping
The rolling motion of a ball or wheel is familiar in everyday life: a ball rolling 
across the floor, or the wheels and tires of a car or bicycle rolling along the pavement. 
Rolling without slipping depends on static friction between the rolling object and 
the ground. The friction is static because the rolling object’s point of contact with 
the ground is at rest at each moment.

Rolling without slipping involves both rotation and translation. There is a simple 
relation between the linear speed v of the axle and the angular velocity o) of the 
rotating wheel or sphere: namely, v = Rco, where R is the radius, as we now show. 
Figure 10-30a shows a wheel rolling to the right without slipping. At the instant 
shown, point P on the wheel is in contact with the ground and is momentarily at 
rest. The velocity of the axle at the wheel’s center C is v. In Fig. 10-30b we have 
put ourselves in the reference frame of the wheel—that is, we are moving to the 
right with velocity v relative to the ground. In this reference frame the axle C is at 
rest, whereas the ground and point P are moving to the left with velocity — v as 
shown. Here we are seeing pure rotation. We can then use Eq. 10-4 to obtain 
v = R(o, where R is the radius of the wheel. This is the same v as in Fig. 10-30a, so 
we see that the linear speed v of the axle relative to the ground is related to the 
angular velocity (o by

v = Ro),

This is valid only if there is no slipping.

[rolling without slipping]

FIGURE 1 0 -3 0  (a) A  wheel rolling 
to the right. Its center C moves with 
velocity v. Point P is at rest at this 
instant, (b) The same wheel as seen  
from a reference frame in which the 
axle of the wheel C is at rest— that 
is, we are moving to the right with 
velocity v relative to the ground. 
Point P, which was at rest in (a), 
here in (b) is moving to the left with 
velocity - v  as shown. (See also 
Section 3 -9  on relative velocity.)

(a)

SECTION 10-9 Rotational Plus Translational Motion; Rolling 267



FIGURE 10-31  (a) A  rolling wheel rotates 
about the instantaneous axis (perpendicular to 
the page) passing through the point of contact 
with the ground, P. The arrows represent the 
instantaneous velocity of each point.
(b) Photograph of a rolling wheel. The spokes 
are more blurred where the speed is greater.

FIGURE 1 0 -3 2  A  wheel rolling 
without slipping can be considered 
as translation of the wheel as a 
whole with velocity vCM plus rotation 
about the cm.

Translation

Rotation

Rolling

Instantaneous Axis
When a wheel rolls without slipping, the point of contact of the wheel with the 
ground is instantaneously at rest. It is sometimes useful to think of the motion of 
the wheel as pure rotation about this “instantaneous axis” passing through that 
point P (Fig. 10-31a). Points close to the ground have a small linear speed, as they 
are close to this instantaneous axis, whereas points farther away have a greater 
linear speed. This can be seen in a photograph of a real rolling wheel (Fig. 10—31b): 
spokes near the top of the wheel appear more blurry because they are moving 
faster than those near the bottom of the wheel.

Total Kinetic Energy = KCM + Krot
An object that rotates while its center of mass (cm) undergoes translational 
motion will have both translational and rotational kinetic energy. Equation 10-19, 
K  = \l(o2, gives the rotational kinetic energy if the rotation axis is fixed. If the 
object is moving, such as a wheel rolling along the ground, Fig. 10-32, this equation 
is still valid as long as the rotation axis is fixed in direction. To obtain the total 
kinetic energy, we note that the rolling wheel undergoes pure rotation about its 
instantaneous point of contact P, Fig. 10-31. As we saw above relative to the 
discussion of Fig. 10-30, the speed v of the cm relative to the ground equals the 
speed of a point on the edge of the wheel relative to its center. Both of these 
speeds are related to the radius R by v = a)R. Thus the angular velocity co about 
point P is the same w for the wheel about its center, and the total kinetic energy is

tftot = \ h 0)2,
where /P is the rolling object’s moment of inertia about the instantaneous axis at P. 
We can write Ktot in terms of the center of mass using the parallel-axis theorem: 
h  = ĉm + MR2, where we have substituted h = R in Eq. 10-17. Thus

K« = ilcu<02 + \M R 20)2.

But Ra) = vCM, the speed of the center of mass. So the total kinetic energy of a 
rolling object is

* t o t  — 2 I  CM 0)2 +  2 , (10-23)

where vCM is the linear velocity of the cm, / cm is the moment of inertia about an 
axis through the cm, (o is the angular velocity about this axis, and M  is the total 
mass of the object.

EXAMPLE 10-16 Sphere rolling down an incline. What will be the speed of 
a solid sphere of mass M  and radius r0 when it reaches the bottom of an incline if it 
starts from rest at a vertical height H  and rolls without slipping? See Fig. 10-33. 
(Assume no slipping occurs because of static friction, which does no work.) 
Compare your result to that for an object sliding down a frictionless incline.
APPROACH We use the law of conservation of energy with gravitational potential 
energy, now including rotational as well as translational kinetic energy.
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SOLUTION The total energy at any point a vertical distance y above the base of the 
incline is

jM *2 2 l CM a)2 + Mgy,
where v is the speed of the center of mass, and Mgy is the gravitational potential 
energy. Applying conservation of energy, we equate the total energy at the top 
(y = H, v = 0, co = 0) to the total energy at the bottom (y = 0):

0 + 0 + MgH = \M v2 + i l CMco2 + 0.
The moment of inertia of a solid sphere about an axis through its center of mass 
is leu = \M r\, Fig. 10-20e. Since the sphere rolls without slipping, we have 
(o = v/r0 (recall Fig. 10-30). Hence

MgH = \M v2 +

Canceling the M’s and r0’s we obtain 
6  + i)v2 = gH

or /—
* = V f g H -

We can compare this result for the speed of a rolling sphere to that for an object 
sliding down a plane without rotating and without friction, \m v2 = mgH  (see 
our energy equation above, removing the rotational term). For the sliding object, 
v = V2gH, which is greater than for a rolling sphere. An object sliding without fric­
tion or rotation transforms its initial potential energy entirely into translational kinetic 
energy (none into rotational kinetic energy), so the speed of its center of mass is greater. 
NOTE Our result for the rolling sphere shows (perhaps surprisingly) that v is 
independent of both the mass M  and the radius r0 of the sphere.

FIGURE 1 0 -3 3  A  sphere rolling 
down a hill has both translational 
and rotational kinetic energy. 
Example 10-16.

/j\ CAUTION________
Rolling objects go slow er  
than sliding objects because o f  
rotational kinetic energy

CONCEPTUAL EXAMPLE 10-17 Which is fastest? Several objects roll without 
slipping down an incline of vertical height H , all starting from rest at the same 
moment. The objects are a thin hoop (or a plain wedding band), a spherical marble, 
a solid cylinder (a D-cell battery), and an empty soup can. In what order do they 
reach the bottom of the incline? Compare also to a greased box that slides down an 
incline at the same angle, ignoring sliding friction.
RESPONSE We use conservation of energy with gravitational potential energy 
plus rotational and translational kinetic energy. The sliding box would be fastest 
because the potential energy loss (MgH) is transformed completely into transla­
tional kinetic energy of the box, whereas for rolling objects the initial potential 
energy is shared between translational and rotational kinetic energies, and so 
the speed of the cm  is less. For each of the rolling objects we can state that the loss 
in potential energy equals the increase in kinetic energy:

MgH = \M v2 + | / CMo)2.
For all our rolling objects, the moment of inertia /CM is a numerical factor times 
the mass M  and the radius R2 (Fig. 10-20). The mass M  is in each term, so the 
translational speed vCM doesn’t depend on M; nor does it depend on the radius R 
since a) = v/R , so R2 cancels out for all the rolling objects. Thus the speed v at 
the bottom depends only on that numerical factor in /CM which expresses how 
the mass is distributed. The hoop, with all its mass concentrated at radius 
^  (̂ cm = MR2), has the largest moment of inertia; hence it will have the lowest 
vCM and will arrive at the bottom behind the D-cell (/CM = \M R 2), which in 
turn will be behind the marble (/CM = I MR2). The empty can, which is mainly a 
hoop plus a small disk, has most of its mass concentrated at R; so it will be a bit 
faster than the pure hoop but slower than the D-cell. See Fig. 10-34.
NOTE The objects do not have to have the same radius: the speed at the bottom 
does not depend on the object’s mass M  or radius R, but only on the shape (and 
the height of the hill H).

FIGURE 1 0 -3 4  Example 10-17.

cytindcr { l>-cel11

Box (slid ing)
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Sphere, rutting U j ihc right — ►

FIGURE 10-35 A  sphere rolling to 
the right on a plane surface. The 
point in contact with the ground at 
any moment, point P, is momentarily 
at rest. Point A  to the left of P is 
moving nearly vertically upward at 
the instant shown, and point B to the 
right is moving nearly vertically 
downward. A n instant later, point B 
will touch the plane and be at rest 
momentarily. Thus no work is done 
by the force of static friction.

/ j \  CAUTI ON
When is 2 t  =  l a  valid?

FIGURE 10-36 Example 10-18.

If there had been little or no static friction between the rolling objects and the 
plane in these Examples, the round objects would have slid rather than rolled, or a 
combination of both. Static friction must be present to make a round object roll. We 
did not need to take friction into account in the energy equation for the rolling 
objects because it is static friction and does no work—the point of contact of a 
sphere at each instant does not slide, but moves perpendicular to the plane (first 
down and then up as shown in Fig. 10-35) as it rolls. Thus, no work is done 
by the static friction force because the force and the motion (displacement) are 
perpendicular. The reason the rolling objects in Examples 10-16 and 10-17 move 
down the slope more slowly than if they were sliding is not because friction slows 
them down. Rather, it is because some of the gravitional potential energy is converted 
to rotational kinetic energy, leaving less for the translational kinetic energy.

EXERCISE E Return to the Chapter-Opening Question, p. 248, and answer it again now. 
Try to explain why you may have answered differently the first time.

Using D tcm ~ I c m  **cm
We can examine objects rolling down a plane not only from the point of view of 
kinetic energy, as we did in Examples 10-16 and 10-17, but also in terms of forces 
and torques. If we calculate torques about an axis fixed in direction (even if the axis 
is accelerating) which passes through the center of mass of the rolling sphere, then

2 t cm = /cm ̂ cm
is valid, as we discussed in Section 10-5. See Eq. 10-15, whose validity we will show 
in Chapter 11. Be careful, however: Do not assume 2 r  = la  is always valid. You 
cannot just calculate r, I, and a about any axis unless the axis is (1 ) fixed in an iner­
tial reference frame or (2) fixed in direction but passes through the cm  of the object.

Analysis of a sphere on an incline using forces. Analyze 
the rolling sphere of Example 10-16, Fig. 10-33, in terms of forces and torques. In 
particular, find the velocity v and the magnitude of the friction force, Ffr, Fig. 10-36. 
APPROACH We analyze the motion as translation of the cm  plus rotation about 
the cm. Ffr is due to static friction and we cannot assume Ffr = /jlsFn , only 
FfT — iisFtf.
SOLUTION For translation in the x direction we have from ST7 = ma,

Mg sin 0 — Ffr = Ma, 
and in the y direction

Fn -  Mg cos 0 = 0 
since there is no acceleration perpendicular to the plane. This last equation 
merely tells us the magnitude of the normal force,

Fn = Mg cos 0.
For the rotational motion about the c m , we use Newton’s second law for rotation 
2 t cm = IcMacM (Eq. 10-15), calculating about an axis passing through the cm  
but fixed in direction:

Fb r0 = (| Mrl)a.
The other forces, FN and Mg, point through the axis of rotation ( cm ) , so have 
lever arms equal to zero and do not appear here. As we saw in Example 10-16 
and Fig. 10-30, co = v/r0 where v is the speed of the cm . Taking derivatives of 00 = v/r0 
with respect to time we have a = a/r0\ substituting into the last equation we find 

Fh = \Ma.
When we substitute this into the top equation, we get 

Mg sin 0 -  \M a  = Ma,
or

a = fg s in 0.
We thus see that the acceleration of the cm  of a rolling sphere is less than that 
for an object sliding without friction (a = gsin0). The sphere started from rest

EXAMPLE 10-18
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at the top of the incline (height H). To find the speed v at the bottom we use 
Eq. 2-12c where the total distance traveled along the plane is x = H /sin0 
(see Fig. 10-36). Thus _________________

= \ f la x
H

sin0 = A/ y g t f -

This is the same result obtained in Example 10-16 although less effort was 
needed there. To get the magnitude of the force of friction, we use the equations 
obtained above:

Ffr = \M a  = §M(fgsin0) = |M gsin0.
NOTE If the coefficient of static friction is sufficiently small, or 0 sufficiently 
large so that Ffr > /xs FN (that is, iff tan 0 > |/xs), the sphere will not simply roll but 
will slip as it moves down the plane.

*More Advanced Examples
Here we do three more Examples, all of them fun and interesting. When they use 

= la , we must remember that this equation is valid only if r, a, and I  are 
calculated about an axis that either (1 ) is fixed in an inertial reference frame, or (2) 
passes through the cm  of the object and remains fixed in direction.

A falling yo-yo. String is wrapped around a uniform solid 
cylinder (something like a yo-yo) of mass M  and radius R, and the cylinder starts 
falling from rest, Fig. 10-37a. As the cylinder falls, find (a) its acceleration and
(b) the tension in the string.
APPROACH As always we begin with a free-body diagram, Fig. 10-37b, which 
shows the weight of the cylinder acting at the cm  and the tension of the string Fx 
acting at the edge of the cylinder. We write Newton’s second law for the linear 
motion (down is positive)

Ma = 2 F
= Mg -  Ft .

Since we do not know the tension in the string, we cannot immediately solve for a. 
So we try Newton’s second law for the rotational motion, calculated about the 
center of mass:

2 t CM = /CM̂CM
FTR = \M R 2a.

Because the cylinder “rolls without slipping” down the string, we have the additional 
relation that a = aR  (Eq. 10-5).
SOLUTION The torque equation becomes

FrR _ ihMRl \ —

so

Substituting this into the force equation, we obtain 
Ma = Mg — Fx 

= Mg -  \Ma.
Solving for a, we find that a = \g . That is, the linear acceleration is less than 
what it would be if the cylinder were simply dropped. This makes sense since 
gravity is not the only vertical force acting; the tension in the string is acting as well.
(b) Since a = §g, Fx = \M a = \Mg.

EXERCISE F Find the acceleration a of a yo-yo whose spindle has radius \R .  Assume the 
moment of inertia is still \M R 2 (ignore the mass of the spindle).

FIGURE

tFfr >  ju,s^N is equivalent to tan# > \ i i s because Ffr = fMgsin6 and = /xsM gcos6.
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FIGURE 1 0 -3 8  Example 10-20.

EXAMPLE 10-20 What if a rolling ball slips? A bowling ball of mass M  and 
radius r0 is thrown along a level surface so that initially (t = 0) it slides with a 
linear speed v0 but does not rotate. As it slides, it begins to spin, and eventually 
rolls without slipping. How long does it take to begin rolling without slipping?

APPROACH The free-body diagram is shown in Fig. 10-38, with the ball moving to 
the right. The friction force does two things: it acts to slow down the translational 
motion of the cm; and it immediately acts to start the ball rotating clockwise. 
SOLUTION Newton’s second law for translation gives

M a x =  ^ F x =  — Ffr =  ~ t i k FN =  M g ,

where is the coefficient of kinetic friction because the ball is sliding. Thus 
a x = —fJLkg- The velocity of the cm is

ĈM = v0 + ax t = v0 -  fLkgt.

Next we apply Newton’s second law for rotation about the cm, / CMa CM = ^ t cm: 

|  M r \  qicm =  Ffrr0

= VkMgr0.

The angular acceleration is thus aCM = 5 fikg/2r0, which is constant. Then the 
angular velocity of the ball is (Eq. 10-9a)

-  <»0 + “CM* -  0 +
5 Vkgt 

2rn

The ball starts rolling immediately after it touches the ground, but it rolls and 
slips at the same time to begin with. It eventually stops slipping, and then rolls 
without slipping. The condition for rolling without slipping is that

VCM =  w cm ro »

which is Eq. 10-4, and is not valid if there is slipping. This rolling without slipping 
begins at a time t = tx given by vCM = oiCMro and we apply the equations 
for vCM and a>CM above:

so

Vo -  fLtgh

2v0

5 ^kg ti
2r0 r0

7/^k g

0 P H Y S I C S  A P P L I E D
Braking distribution of a car

FIGURE 1 0 -3 9  Forces on a 
braking car (Example 10-21).

EXAMPLE 10-21 ESTIMATE"! Braking a car. When the brakes of a car are
applied, the front of the car dips down a bit; and the force on the front tires is 
greater than on the rear tires. To see why, estimate the magnitude of the normal 
forces, ^N1 and on the front and rear tires of the car shown in Fig. 10-39 when 
the car brakes and decelerates at a rate a = 0.50 g. The car has mass M = 1200 kg, 
the distance between the front and rear axles is 3.0 m, and its cm (where the force of 
gravity acts) is midway between the axles 75 cm above the ground.

APPROACH Figure 10-39 is the free-body diagram showing all the forces on the 
car. Fi and F2 are the frictional forces that decelerate the car. We let Fx be 
the sum of the forces on both front tires, and F2 likewise for the two rear tires. 
-̂ Nl and ^N2 are the normal forces the road exerts on the tires and, for our 
estimate, we assume the static friction force acts the same for all the tires, so that 
Fx and F2 are proportional respectively to ^N1 and Fm-

Fi = pFm and F2 = nFN2.
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SOLUTION The friction forces F1 and F2 decelerate the car, so Newton’s second 
law gives

Fi + F2 = Ma
= (1200 kg)(0.50)(9.8 m/s2) = 5900 N. (i)

While the car is braking its motion is only translational, so the net torque on the 
car is zero. If we calculate the torques about the cm as axis, the forces Fx, F2, and 
Fm all act to rotate the car clockwise, and only Fm acts to rotate it counterclock­
wise; so Ffil must balance the other three. Hence, FN1 must be significantly greater 
than ■̂N2- Mathematically, we have for the torques calculated about the cm:

(1.5 m)FN1 -  (1.5 m)FN2 -  (0.75 m)F1 -  (0.75 m)F2 = 0.

Since Fx and F2 are proportional1 to FN1 and FN2 (Fx = /aFn1, F2 = fiFm), we 
can write this as

(1.5m)(FN1 -  Fm) -  (0.75m)(M)(FN1 + FN2) = 0. (ii)

Also, since the car does not accelerate vertically, we have

F  + F
Mg = Fm + FN2 = - L- — -• (iii)

Comparing (iii) to (i), we see that fi = a/g = 0.50. Now we solve (ii) for ^N1 
and use /jl = 0.50 to obtain

Fm = = IFn2-
Thus Fm is 1 f times greater than FN2 • Actual magnitudes are determined from 
(iii) and (i): FN1 +  FN2 =  (5900 N)/(0.50) =  11,800 N which equals FN2(l +  f ) ;  

so FN2 = 4400 N and FN1 = 7400 N.
NOTE Because the force on the front tires is generally greater than on the rear 
tires, cars are often designed with larger brake pads on the front wheels than on 
the rear. Or, to say it another way, if the brake pads are equal, the front ones 
wear out a lot faster.

10-10 Why Does a Rolling Sphere 
Slow Down?

A sphere of mass M  and radius r0 rolling on a horizontal flat surface eventually 
comes to rest. What force causes it to come to rest? You might think it is friction, 
but when you examine the problem from a simple straightforward point of view, a 
paradox seems to arise.

Suppose a sphere is rolling to the right as shown in Fig. 10-40, and is slowing 
down. By Newton’s second law, 2F = Ma, there must be a force F (presumably 
frictional) acting to the left as shown, so that the acceleration a will also point to 
the left and v will decrease. Curiously enough, though, if we now look at the 
torque equation (calculated about the center of mass), S rCM = ICMa, we see 
that the force F acts to increase the angular acceleration a, and thus to increase 
the velocity of the sphere. Thus the paradox. The force F acts to decelerate the 
sphere if we look at the translational motion, but speeds it up if we look at 
the rotational motion.

FIGURE 1 0 -4 0  Sphere rolling to 
the right.

fOur proportionality constant /jl is not equal to /jls, the static coefficient of friction (Ffr <  nsFN), unless 
the car is just about to skid.
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FIGURE 10-41 The normal force, 
Fn , exerts a torque that slows down 
the sphere. The deformation of the 
sphere and the surface it moves on 
has been exaggerated for detail.

The resolution of this apparent paradox is that some other force must be 
acting. The only other forces acting are gravity, Mg, and the normal force 
Fn (= —Mg). These act vertically and hence do not affect the horizontal transla­
tional motion. If we assume the sphere and plane are rigid, so the sphere is in 
contact at only one point, these forces give rise to no torques about the cm either, 
since they act through the cm.

The only recourse we have to resolve the paradox is to give up our idealization 
that the objects are rigid. In fact, all objects are deformable to some extent. Our 
sphere flattens slightly and the level surface also acquires a slight depression 
where the two are in contact. There is an area of contact, not a point. Hence there 
can be a torque at this area of contact which acts in the opposite direction to the 
torque associated with F, and thus acts to slow down the rotation of the sphere. 
This torque is associated with the normal force FN that the table exerts on the 
sphere over the whole area of contact. The net effect is that we can consider FN 
acting vertically a distance £ in front of the cm as shown in Fig. 10-41 (where the 
deformation is greatly exaggerated).

Is it reasonable that the normal force FN should effectively act in front of the 
CM as shown in Fig. 10-41? Yes. The sphere is rolling, and the leading edge strikes 
the surface with a slight impulse. The table therefore pushes upward a bit more 
strongly on the front part of the sphere than it would if the sphere were at rest. 
At the back part of the area of contact, the sphere is starting to move upward 
and so the table pushes upward on it less strongly than when the sphere is at rest. 
The table pushing up more strongly on the front part of the area of contact gives 
rise to the necessary torque and justifies the effective acting point of FN being in 
front of the cm.

When other forces are present, the tiny torque rN due to FN can usually be 
ignored. For example, when a sphere or cylinder rolls down an incline, the force of 
gravity has far more influence than rN, so the latter can be ignored. For many 
purposes (but not all), we can assume a hard sphere is in contact with a hard 
surface at essentially one point.

Summary
When a rigid object rotates about a fixed axis, each point of the 
object moves in a circular path. Lines drawn perpendicularly 
from the rotation axis to different points in the object all sweep 
out the same angle 0 in any given time interval.

Angles are conveniently measured in radians. One radian is 
the angle subtended by an arc whose length is equal to the radius, or

2-77 rad =  360° so lr a d  «  57.3°.

A ll parts of a rigid object rotating about a fixed axis have 
the same angular velocity to and the same angular acceleration a
at any instant, where

and
dt

do)
dt

(10-2b)

(10-3b)

The units of o) and a  are rad/s and rad/s2.
The linear velocity and acceleration of any point in an object 

rotating about a fixed axis are related to the angular quantities by

v  =  R(o (10-4)

«tan = R a  (10-5)
aR = (o2R  (10-6)

where R  is the perpendicular distance of the point from the 
rotation axis, and atan and aR are the tangential and radial

components o f the linear acceleration. The frequency /  and 
period T  are related to o) (rad/s) by

to =  2tr f  (10-7)
T  =  1 / / .  (10-8)

Angular velocity and angular acceleration are vectors. For a 
rigid object rotating about a fixed axis, both and a  point along 
the rotation axis. The direction of to is given by the right-hand rule.

If a rigid object undergoes uniformly accelerated rotational 
motion (a  =  constant), equations analogous to those for linear 
motion are valid:

0 =  (Opt +  \ a t 2;

0) + (Oq
to =  o)q +  at; 

a)2 =  o)q +  2 a0\ go =

(10-9)

The torque due to a force F exerted on a rigid object is 
equal to

r =  R± F = RF± =  RF  sin0, (10-10)

where R±, called the lever arm, is the perpendicular distance 
from the axis of rotation to the line along which the force acts, 
and 6 is the angle between F and R.

The rotational equivalent of N ew ton’s second law is

S t  =  la ,  (10-14)

where I  =  'ZrriiR2 is the moment o f inertia of the object about 
the axis of rotation. This relation is valid for a rigid object
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r o ta t in g  a b o u t  a n  a x is  f ix e d  in  a n  in e r t ia l  r e f e r e n c e  fr a m e , o r  

w h e n  t , / ,  a n d  a a r e  c a lc u la te d  a b o u t  t h e  c e n t e r  o f  m a s s  o f  a n  

o b j e c t  e v e n  i f  t h e  c m  is  m o v in g .

The rotational kinetic energy of an object rotating about a 
fixed axis with angular velocity o) is

K  = \la>2. (10-19)

For an object undergoing both translational and rotational 
motion, the total kinetic energy is the sum of the translational 
kinetic energy of the object’s c m  plus the rotational kinetic 
energy of the object about its c m :

Km  = \M v 2ck + \ I VM0? (10-23)

as long as the rotation axis is fixed in direction.

The following Table summarizes angular (or rotational) 
quantities, comparing them to their translational analogs.

Translation Rotation Connection

X 0 x =  R0
V (O v = Rco
a a a = Ra
m I I  = Z m R 2
F
K  = \m v 2 
W  = Fd 
'IF  = ma

I/O,2 
W  =  t 0  

2 t  =  la

t  =  RF  sin 0

Questions
1. A bicycle odometer (which counts revolutions and is 

calibrated to report distance traveled) is attached near the 
wheel hub and is calibrated for 27-inch wheels. What 
happens if you use it on a bicycle with 24-inch wheels?

2. Suppose a disk rotates at constant angular velocity. Does a 
point on the rim have radial and/or tangential acceleration? 
If the disk’s angular velocity increases uniformly, does the 
point have radial and/or tangential acceleration? For which 
cases would the magnitude of either component of linear 
acceleration change?

3. Could a nonrigid object be described by a single value of 
the angular velocity a>? Explain.

4. Can a small force ever exert a greater torque than a larger 
force? Explain.

5. Why is it more difficult to do a sit-up with your hands 
behind your head than when your arms are stretched out in 
front of you? A diagram may help you to answer this.

6. Mammals that depend on being able to run fast have slender 
lower legs with flesh and muscle concentrated high, close to 
the body (Fig. 10-42). On the basis of rotational dynamics, 
explain why this distribution of mass is advantageous.

FIGURE 10-42
Question 6.
A gazelle.

7. If the net force on a system is zero, is the net torque also 
zero? If the net torque on a system is zero, is the net force 
zero?

8. Two inclines have the same height but make different angles 
with the horizontal. The same steel ball is rolled down each 
incline. On which incline will the speed of the ball at the 
bottom be greater? Explain.

9. Two spheres look identical and have the same mass. 
However, one is hollow and the other is solid. Describe an 
experiment to determine which is which.

10. Two solid spheres simultaneously start rolling (from rest) 
down an incline. One sphere has twice the radius and twice 
the mass of the other. Which reaches the bottom of the 
incline first? Which has the greater speed there? Which has 
the greater total kinetic energy at the bottom?

11. Why do tightrope walkers (Fig. 10-43) carry a long, narrow 
beam?

FIGURE 10-43 Question 11.

12. A sphere and a cylinder have the same radius and the same 
mass. They start from rest at the top of an incline. Which 
reaches the bottom first? Which has the greater speed at the 
bottom? Which has the greater total kinetic energy at the 
bottom? Which has the greater rotational kinetic energy?

13. The moment of inertia of this textbook would be the least 
about which symmetry axis through its center?

14. The moment of inertia of a rotating solid disk about an axis 
through its c m  is \M R 7 (Fig. 10-20c). Suppose instead that a 
parallel axis of rotation passes through a point on the edge 
of the disk. Will the moment of inertia be the same, larger, 
or smaller?

15. The angular velocity of a wheel rotating on a horizontal axle 
points west. In what direction is the linear velocity of a 
point on the top of the wheel? If the angular acceleration 
points east, describe the tangential linear acceleration of 
this point at the top of the wheel. Is the angular speed 
increasing or decreasing?
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Problems
10-1 Angular Quantities
1. (I) Express the following angles in radians: (a) 45.0°, (b) 60.0°,

(c) 90.0°, (d) 360.0°, and (e) 445°. Give as numerical values and 
as fractions of tt.

2. (I) The Sun subtends an angle of about 0.5° to us on Earth, 
150 million km away. Estimate the radius of the Sun.

3. (I) A laser beam is directed at the Moon, 380,000 km from 
Earth. The beam diverges at an angle 0 (Fig. 10-44) of
1.4 X 10-5 rad. What diameter spot will it make on the 
Moon?

Earili

FIGURE 10-44
Problem 3.

4. (I) The blades in a blender rotate at a rate of 6500 rpm. 
When the motor is turned off during operation, the blades 
slow to rest in 4.0 s. What is the angular acceleration as the 
blades slow down?

5. (II) (a) A grinding wheel 0.35 m in diameter rotates at 
2500 rpm. Calculate its angular velocity in rad/s. (b) What 
are the linear speed and acceleration of a point on the edge 
of the grinding wheel?

6. (II) A bicycle with tires 68 cm in diameter travels 7.2 km. 
How many revolutions do the wheels make?

7. (II) Calculate the angular velocity of (a) the second hand, 
(ib) the minute hand, and (c) the hour hand, of a clock. State 
in rad/s. (d) What is the angular acceleration in each case?

8. (II) A rotating merry-go-round makes one complete revolu­
tion in 4.0 s (Fig. 10-45). (a) What is the linear speed of a child 
seated 1.2 m from the center? (b) What is her acceleration 
(give components)?

FIGURE 10-45
Problem 8.

9. (II) What is the linear speed of a point (a) on the equator,
(b) on the Arctic Circle (latitude 66.5° N), and (c) at a 
latitude of 45.0° N, due to the Earth’s rotation?

10. (II) Calculate the angular velocity of the Earth (a) in its 
orbit around the Sun, and (b) about its axis.

11. (II) How fast (in rpm) must a centrifuge rotate if a particle
7.0 cm from the axis of rotation is to experience an acceler­
ation of 100,000 g’s?

12. (II) A 64-cm-diameter wheel accelerates uniformly about its 
center from 130 rpm to 280 rpm in 4.0 s. Determine (a) its 
angular acceleration, and (b) the radial and tangential 
components of the linear acceleration of a point on the edge 
of the wheel 2.0 s after it has started accelerating.

13. (II) In traveling to the Moon, astronauts aboard the Apollo 
spacecraft put themselves into a slow rotation to distribute 
the Sun’s energy evenly. A t the start of their trip, they accel­
erated from no rotation to 1.0 revolution every minute 
during a 12-min time interval. The spacecraft can be thought 
of as a cylinder with a diameter of 8.5 m. Determine (a) the 
angular acceleration, and (b) the radial and tangential 
components of the linear acceleration of a point on the skin 
of the ship 7.0 min after it started this acceleration.

14. (II) A turntable of radius R x is turned by a circular rubber 
roller of radius R2 in contact with it at their outer edges. 
What is the ratio of their angular velocities, «i/g>2?

10-2 Vector Nature of w  and a
15. (II) The axle of a wheel is mounted on supports that rest on 

a rotating turntable as shown in Fig. 10-46. The wheel has 
angular velocity a>i = 44.0 rad/s about its axle, and the 
turntable has angular velocity a)2 = 35.0 rad/s about a 
vertical axis. (Note arrows showing these motions in the 
figure.) (a) What are the directions of <*>i and ia2 at the 
instant shown? (b) What is the resultant angular velocity of 
the wheel, as seen by an outside observer, at the instant 
shown? Give the magnitude and direction, (c) What is the 
magnitude and direction of the angular acceleration of the 
wheel at the instant shown? Take the z axis vertically 
upward and the direction of 
the axle at the moment 
shown to be the 
x  axis pointing to 
the right.

J
FIGURE 10-46
Problem 15.

10-3 Constant Angular Acceleration
16. (I) An automobile engine slows down from 3500 rpm to 

1200 rpm in 2.5 s. Calculate (a) its angular acceleration, 
assumed constant, and (b) the total number of revolutions 
the engine makes in this time.

17. (I) A centrifuge accelerates uniformly from rest to
15,000 rpm in 220 s. Through how many revolutions did it 
turn in this time?

18. (I) Pilots can be tested for the stresses of flying high-speed 
jets in a whirling “human centrifuge,” which takes 1.0 min to 
turn through 20 complete revolutions before reaching its 
final speed, (a) What was its angular acceleration (assumed 
constant), and (b) what was its final angular speed in rpm?

19. (II) A cooling fan is turned off when it is running at 
850 rev/min. It turns 1350 revolutions before it comes to a 
stop, (a) What was the fan’s angular acceleration, assumed 
constant? (b) How long did it take the fan to come to a 
complete stop?

20. (II) Using calculus, derive the angular kinematic equations 
10-9a and 10-9b for constant angular acceleration. Start 
with a = dco/dt.
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21. (II) A small rubber wheel is used to drive a large pottery 
wheel. The two wheels are mounted so that their circular 
edges touch. The small wheel has a radius of 2.0 cm and 
accelerates at the rate of 7.2 rad/s2, and it is in contact with 
the pottery wheel (radius 21.0 cm) without slipping. Calcu­
late (a) the angular acceleration of the pottery wheel, and
(b) the time it takes the pottery wheel to reach its required 
speed of 65 rpm.

22. (II) The angle through which a rotating wheel has turned in 
time t is given by 6 = 8.51 -  15.012 + 1.6 tA, where 6 is in 
radians and t in seconds. Determine an expression (a) for 
the instantaneous angular velocity a) and (b) for the instan­
taneous angular acceleration a. (c) Evaluate oo and a at 
t = 3.0 s. (d) What is the average angular velocity, and
(e) the average angular acceleration between t = 2.0 s and 
t = 3.0 s?

23. (II) The angular acceleration of a wheel, as a function of 
time, is a = 5.012 — 8.5 t, where a is in rad/s2 and t in 
seconds. If the wheel starts from rest (6 = 0, o) = 0, at 
t = 0), determine a formula for (a) the angular velocity co 
and (b) the angular position 6, both as a function of time.
(c) Evaluate o> and 0 at t = 2.0 s.

10-4 Torque
24. (I) A 62-kg person riding a bike puts all her weight on each 

pedal when climbing a hill. The pedals rotate in a circle of 
radius 17 cm. (a) What is the maximum torque she exerts?
(b) How could she exert more torque?

25. (I) Calculate the net torque about the axle of the wheel 
shown in Fig. 10-47. Assume that a friction torque of 
0.40 m • N opposes the motion.

35 N j  28 N

FIGURE 10-47
Problem 25.

26. (II) A person exerts a horizontal force of 32 N on the end of 
a door 96 cm wide. What is the magnitude of the torque if the 
force is exerted (a) perpendicular to the door and (b) at a 60.0° 
angle to the face of the door?

27. (II) Two blocks, each of mass ra, are attached to the ends of 
a massless rod which pivots as shown in Fig. 10-48. Initially 
the rod is held in the horizontal position and then released. 
Calculate the magnitude and direction of the net torque on 
this system when it is first released.

f,
m nt

FIGURE 10-48 Problem 27.

28. (II) A wheel of diameter 27.0 cm is constrained to rotate in 
the xy plane, about the z axis, which passes through its 
center. A force F = ( —31.0i + 43.4j) N acts at a point on 
the edge of the wheel that lies exactly on the x  axis at a 
particular instant. What is the torque about the rotation axis 
at this instant?

29. (II) The bolts on the cylinder head of an engine require 
tightening to a torque of 75 m • N. If a wrench is 28 cm long, 
what force perpendicular to the wrench must the mechanic 
exert at its end? If the six-sided bolt head is 15 mm across 
(Fig. 10-49), estimate the force applied near each of the six 
points by a socket wrench.

2« cm

15

rCM| WIYflL’h

cm bolt

FIGURE 10-49 Problem 29.

30. (II) Determine the net torque on the 2.0-m-long uniform 
beam shown in Fig. 10-50.
Calculate about (a) point C, ,
the cm, and (b) point P at \3(Yj
one end.

65 N

,%N

FIGURE 10-50
Problem 30.

52 N

10-5 and 10-6 Rotational Dynamics
31. (I) Determine the moment of inertia of a 10.8-kg sphere of 

radius 0.648 m when the axis of rotation is through its 
center.

32. (I) Estimate the moment of inertia of a bicycle wheel 
67 cm in diameter. The rim and tire have a combined mass 
of 1.1 kg. The mass of the hub can be ignored (why?).

33. (II) A potter is shaping a bowl on a potter’s wheel rotating at 
constant angular speed (Fig. 10-51). The friction force 
between her hands and the clay is 1.5 N total, (a) How large is 
her torque on the wheel, if the diameter of the bowl is 12 cm?
(b) How long would it take for the potter’s wheel to stop 
if the only torque 
acting on it is due to 
the potter’s hand?
The initial angular 
velocity of the wheel 
is 1.6 rev/s, and the 
moment of inertia of 
the wheel and the 
bowl is 0.11 kg-m2.

FIGURE 10-51
Problem 33.
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34. (II) An oxygen molecule consists of two oxygen atoms whose 
total mass is 5.3 X 10-26kg and whose moment of inertia 
about an axis perpendicular to the line joining the two atoms, 
midway between them, is 1.9 X 10-46 kg-m2. From these 
data, estimate the effective distance between the atoms.

35. (II) A softball player swings a bat, accelerating it from rest 
to 2.7 rev/s in a time of 0.20 s. Approximate the bat as a 
2.2-kg uniform rod of length 0.95 m, and compute the 
torque the player applies to one end of it.

36. (II) A grinding wheel is a uniform cylinder with a radius of
8.50 cm and a mass of 0.380 kg. Calculate (a) its moment of 
inertia about its center, and (b) the applied torque needed 
to accelerate it from rest to 1750 rpm in 5.00 s if it is known 
to slow down from 1500 rpm to rest in 55.0 s.

37. (II) A small 650-g ball on the end of a thin, light rod is rotated 
in a horizontal circle of radius 1.2 m. Calculate (a) the moment 
of inertia of the ball about the center of the circle, and (b) the 
torque needed to keep the ball rotating at constant angular 
velocity if air resistance exerts a force of 0.020 N on the ball. 
Ignore the rod’s moment of inertia and air resistance.

38. (II) The forearm in Fig. 10-52 accelerates a 3.6-kg ball at
7.0 m /s2 by means of the triceps
muscle, as shown. Calculate (a) the } 
torque needed, and (b) the force 
that must be exerted by the 
triceps muscle. Ignore the mass 3 1 cm 
of the arm.

2,5 cm'

FIGURE 10-52
Problems 38 and 39.

r  -
f

Triceps
TIiusl'Il-

Axis of rotaiior 
(;it elbow)

39. (II) Assume that a 1.00-kg ball is thrown solely by the 
action of the forearm, which rotates about the elbow joint 
under the action of the triceps muscle, Fig. 10-52. The ball is 
accelerated uniformly from rest to 8.5 m/s in 0.35 s, at 
which point it is released. Calculate (a) the angular acceler­
ation of the arm, and (b) the force required of the triceps 
muscle. Assume that the forearm has a mass of 3.7 kg and 
rotates like a uniform rod about an axis at its end.

40. (II) Calculate the moment of inertia of the array of point 
objects shown in Fig. 10-53 about (a) the vertical axis, and
(b) the horizontal axis. Assume m  = 2.2 kg, M  = 3.1 kg, 
and the objects are wired together by very light, rigid pieces 
of wire. The array is rectangular and is split through the 
middle by the horizontal axis, (c) About which axis would it 
be harder to accelerate this array?

0.50 m i.V
Il

1.501

i

M M

41. (II) A merry-go-round accelerates from rest to 0.68 rad/s in 
24 s. Assuming the merry-go-round is a uniform disk of 
radius 7.0 m and mass 31,000 kg, calculate the net torque 
required to accelerate it.

42. (II) A 0.72-m-diameter solid sphere can be rotated about an 
axis through its center by a torque of 10.8m-N which 
accelerates it uniformly from rest through a total of 180 
revolutions in 15.0 s. What is the mass of the sphere?

43. (II) Suppose the force FT in the cord hanging from the 
pulley of Example 10-9, Fig. 10-21, is given by the relation 
FT = 3.001 — 0.2012 (newtons) where t is in seconds. If the 
pulley starts from rest, what is the linear speed of a point on 
its rim 8.0 s later? Ignore friction.

44. (II) A dad pushes tangentially on a small hand-driven 
merry-go-round and is able to accelerate it from rest to a 
frequency of 15 rpm in 10.0 s. Assume the merry-go-round is 
a uniform disk of radius 2.5 m and has a mass of 760 kg, and 
two children (each with a mass of 25 kg) sit opposite each 
other on the edge. Calculate the torque required to produce 
the acceleration, neglecting frictional torque. What force is 
required at the edge?

45. (II) Four equal masses M  are spaced at equal intervals, £, 
along a horizontal straight rod whose mass can be ignored. 
The system is to be rotated about a vertical axis passing 
through the mass at the left end of the rod and perpendicular 
to it. (a) What is the moment of inertia of the system about 
this axis? (b) What minimum force, applied to the farthest 
mass, will impart an angular acceleration a l  (c) What is the 
direction of this force?

46. (II) Two blocks are connected by a light string passing over 
a pulley of radius 0.15 m and moment of inertia I. The 
blocks move (towards the right) with an acceleration of
1.00 m /s2 along their frictionless inclines (see Fig. 10-54).
(a) Draw free-body diagrams for each of the two blocks and 
the pulley, (b) Determine F ix  and Ftb> the tensions in the 
two parts of the string, (c) Find the net torque acting on the 
pulley, and determine its moment of inertia, /.

IA

inA =■ 8,0 kg

w p *
V w u = 10.0 kg

\32Q 61

FIGURE 10-53 Problem 40.

FIGURE 10-54 Problem 46.

47. (II) A helicopter rotor blade can be considered a long thin 
rod, as shown in Fig. 10-55. (a) If each of the three rotor 
helicopter blades is 3.75 m long and has a mass of 135 kg, 
calculate the moment of inertia of the three rotor blades 
about the axis of rotation, (b) How 
much torque must the motor apply 
to bring the blades from rest up to 
a speed of 5.0 rev/s in 8.0 s?

FIGURE 10-55
Problem 47.

m = 135 kg
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48. (II) A centrifuge rotor rotating at 10,300 rpm is shut off and 
is eventually brought uniformly to rest by a frictional torque 
of 1.20 m • N. If the mass of the rotor is 3.80 kg and it can be 
approximated as a solid cylinder of radius 0.0710 m, through 
how many revolutions will the rotor turn before coming to 
rest, and how long will it take?

49. (II) When discussing moments of inertia, especially for 
unusual or irregularly shaped objects, it is sometimes conve­
nient to work with the radius o f gyration, k. This radius is 
defined so that if all the mass of the object were concentrated 
at this distance from the axis, the moment of inertia would be 
the same as that of the original object. Thus, the moment of 
inertia of any object can be written in terms of its mass M  
and the radius of gyration as I  = M k2. Determine the 
radius of gyration for each of the objects (hoop, cylinder, 
sphere, etc.) shown in Fig. 10-20.

50. (II) To get a flat, uniform cylindrical satellite spinning at the 
correct rate, engineers fire four tangential rockets as shown 
in Fig. 10-56. If the satellite has a mass of 3600 kg, a radius of

4.0 m, and the rockets each add 
a mass of 250 kg, what is the 

required steady force

''R End view of 
cylindrical 

satellite

of each rocket if the 
satellite is to reach

/II satellite 32 rpm in 5.0 min, 
starting from rest?

FIGURE 10-56
Problem 50.

51. (Ill) An Atwood’s machine consists of two masses, m A and 
mB, which are connected by a massless inelastic cord that 
passes over a pulley, Fig. 10-57. If the
pulley has radius R  and moment of R O R
inertia I  about its axle, determine the
acceleration of the masses mA and mB,
and compare to the situation in which
the moment of inertia of the pulley is v i
ignored. [Hint: The tensions FTA and 1 1 jj?TA
Ftb are not equal. We discussed the
Atwood machine in Example 4-13,
assuming I  = 0 for the pulley.] A |  ^TU

FIGURE 10-57 Problem 51. I ,
Atwood’s machine.

52. (Ill) A string passing over a pulley has a 3.80-kg mass 
hanging from one end and a 3.15-kg mass hanging from the 
other end. The pulley is a uniform solid cylinder of radius
4.0 cm and mass 0.80 kg. (a) If the bearings of the pulley 
were frictionless, what would be the acceleration of the two 
masses? (b) In fact, it is found that if the heavier mass is 
given a downward speed of 0.20 m/s, it comes to rest in 6.2 s. 
What is the average frictional torque acting on the pulley?

53. (Ill) A hammer thrower accelerates the hammer 
(mass = 7.30 kg) from rest within four full turns (revolutions) 
and releases it at a speed of 26.5 m/s. Assuming a uniform rate 
of increase in angular velocity and a horizontal circular path of 
radius 1.20 m, calculate (a) the angular acceleration, (b) the 
(linear) tangential acceleration, (c) the centripetal acceleration 
just before release, (d) the net force being exerted on the 
hammer by the athlete just before release, and (e) the angle of 
this force with respect to the radius of the circular motion. 
Ignore gravity.

54. (Ill) A thin rod of length £ stands vertically on a table. The 
rod begins to fall, but its lower end does not slide, (a) Deter­
mine the angular velocity of the rod as a function of the 
angle cf> it makes with the tabletop. (b) What is the speed of 
the tip of the rod just before it strikes the table?

10-7 Moment of Inertia
55. (I) Use the parallel-axis theorem to show that the moment 

of inertia of a thin rod about an axis perpendicular to the 
rod at one end is I  = \M l2, given that if the axis passes 
through the center, I  = ^M f2 (Fig. 10-20f and g).

56. (II) Determine the moment of inertia of a 19-kg door that is
2.5 m high and 1.0 m wide and is hinged along one side. 
Ignore the thickness of the door.

57. (II) Two uniform solid spheres of mass M  and radius r0 are 
connected by a thin (massless) rod of length r0 so that the 
centers are 3r0 apart, (a) Determine the moment of inertia 
of this system about an axis perpendicular to the rod at its 
center, (b) What would be the percentage error if the 
masses of each sphere were assumed to be concentrated at 
their centers and a very simple calculation made?

58. (II) A ball of mass M  and radius rx on the end of a thin 
massless rod is rotated in a horizontal circle of radius R0 
about an axis of rotation AB, as shown in Fig. 10-58.
(a) Considering the mass of the ball to be concentrated at 
its center of mass, calculate its moment of inertia about AB.
(b) Using the parallel-axis theorem and considering the 
finite radius of the ball, calculate the moment of inertia of 
the ball about AB. (c) Calculate the percentage error intro­
duced by the point mass approximation for r\ = 9.0 cm and 
Rn = 1.0 m.

U

FIGURE 10-58
Problem 58. A

59. (II) A thin 7.0-kg wheel of radius 32 cm is weighted to one 
side by a 1.50-kg weight, small in size, placed 22 cm from 
the center of the wheel. Calculate (a) the position of the 
center of mass of the weighted wheel and (b) the moment 
of inertia about an axis through its cm, perpendicular to 
its face.

60. (Ill) Derive the formula for the moment of inertia of a 
uniform thin rod of length £ about an axis through its 
center, perpendicular to the rod (see Fig. 10-20f).

61. (Ill) (a) Derive the formula given in Fig. 10-20h for the 
moment of inertia of a uniform, flat, rectangular plate of 
dimensions £ X w  about an axis through its center, 
perpendicular to the plate, (b) What is the moment of inertia 
about each of the axes through the center that are parallel 
to the edges of the plate?

10-8 Rotational Kinetic Energy
62. (I) An automobile engine develops a torque of 255 m • N at 

3750 rpm. What is the horsepower of the engine?
63. (I) A centrifuge rotor has a moment of inertia of 

4.25 X 10_2kg-m2. How much energy is required to bring it 
from rest to 9750 rpm?
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64. (II) A rotating uniform cylindrical platform of mass 220 kg and 
radius 5.5 m slows down from 3.8 rev/s to rest in 16 s when 
the driving motor is disconnected. Estimate the power 
output of the motor (hp) required to maintain a steady 
speed of 3.8 rev/s.

65. (II) A merry-go-round has a mass of 1640 kg and a radius of
7.50 m. How much net work is required to accelerate it from 
rest to a rotation rate of 1.00 revolution per 8.00 s? Assume 
it is a solid cylinder.

66. (II) A uniform thin rod of length £ and mass M  is suspended 
freely from one end. It is pulled to the side an angle 6 and 
released. If friction can be ignored, what is its angular 
velocity, and the speed of its free end, at the lowest point?

67. (II) Two masses, raA = 35.0 kg and raB = 38.0 kg, are 
connected by a rope that hangs 
over a pulley (as in Fig. 10-59).
The pulley is a uniform cylinder of 
radius 0.381m and mass 3.1kg.
Initially mA is on the ground and 
mB rests 2.5 m above the ground.
If the system is released, use 
conservation of energy to deter­
mine the speed of mB just before 
it strikes the ground. Assume the 
pulley bearing is frictionless.

FIGURE 10-59
Problem 67.

68. (Ill) A 4.00-kg mass and a 3.00-kg mass are attached to 
opposite ends of a thin 42.0-cm-long horizontal rod 
(Fig. 10-60). The system is rotating at angular speed 
a) = 5.60 rad/s about a vertical axle at the center of the 
rod. Determine (a) the kinetic energy K  of the system, and
(b) the net force on each mass, (c) Repeat parts (a) and (b) 
assuming that the axle passes through the cm of the system.

69. (Ill) A 2.30-m-long pole is balanced vertically on its tip. It 
starts to fall and its lower end does not slip. What will be the 
speed of the upper end of the pole just before it hits the 
ground? [Hint: Use conservation of energy.]

10-9 Rotational Plus Translational Motion
70. (I) Calculate the translational speed of a cylinder when it 

reaches the foot of an incline 7.20 m high. Assume it starts 
from rest and rolls without slipping.

71. (I) A bowling ball of mass 7.3 kg and radius 9.0 cm rolls 
without slipping down a lane at 3.7 m/s. Calculate its total 
kinetic energy.

72. (I) Estimate the kinetic energy of the Earth with respect to 
the Sun as the sum of two terms, (a) that due to its daily 
rotation about its axis, and (b) that due to its yearly revolu­
tion about the Sun. [Assume the Earth is a uniform sphere 
with mass = 6.0 X 1024 kg, radius = 6.4 X 106 m, and is
1.5 X 108 km from the Sun.]

73. (II) A sphere of radius r0 = 24.5 cm and mass m = 1.20 kg 
starts from rest and rolls without slipping down a 30.0° 
incline that is 10.0 m long, (a) Calculate its translational and 
rotational speeds when it reaches the bottom. (b) What is 
the ratio of translational to rotational kinetic energy at the 
bottom? Avoid putting in numbers until the end so you can 
answer: (c) do your answers in (a) and (b) depend on the 
radius of the sphere or its mass?

74. (II) A narrow but solid spool of thread has radius R  and 
mass M. If you pull up on the thread so that the cm of the 
spool remains suspended in the air at the same place as it 
unwinds, (a) what force must you exert on the thread?
(b) How much work have you done by the time the spool 
turns with angular velocity w?

75. (II) A ball of radius r0 rolls on the inside of a track of radius R0 
(see Fig. 10-61). If the ball starts from rest at the vertical 
edge of the track, what will be its speed when it reaches the 
lowest point of the track, rolling without slipping?
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FIGURE 10-61 Problems 75 and 81.

76. (II) A solid rubber ball rests on the floor of a railroad car 
when the car begins moving with acceleration a. Assuming 
the ball rolls without slipping, what is its acceleration 
relative to (a) the car and (b) the ground?

77. (II) A thin, hollow 0.545-kg section of pipe of radius 10.0 cm 
starts rolling (from rest) down a 17.5° incline 5.60 m long.
(a) If the pipe rolls without slipping, what will be its speed at 
the base of the incline? (b) What will be its total kinetic energy 
at the base of the incline? (c) What minimum value must the 
coefficient of static friction have if the pipe is not to slip?

*78. (II) In Example 10-20, (a) how far has the ball moved 
down the lane when it starts rolling without slipping?
(b) What are its final linear and rotational speeds?

79. (Ill) The 1100-kg mass of a car includes four tires, each of 
mass (including wheels) 35 kg and diameter 0.80 m. Assume 
each tire and wheel combination acts as a solid cylinder. 
Determine (a) the total kinetic energy of the car when trav­
eling 95 km /h and (b) the fraction of the kinetic energy in 
the tires and wheels, (c) If the car is initially at rest and is 
then pulled by a tow truck with a force of 1500 N, what is 
the acceleration of the car? Ignore frictional losses. (d) What 
percent error would you make in part (c) if you ignored the 
rotational inertia of the tires and wheels?

*80. (Ill) A wheel with rotational inertia I  = \M R 2 about its 
central axle is set spinning with initial angular speed a>0 and is 
then lowered onto the ground so that it touches the ground 
with no horizontal speed. Initially it slips, but then begins to 
move forward and eventually rolls without slipping, (a) In 
what direction does friction act on the slipping wheel?
(b) How long does the wheel slip before it begins to roll 
without slipping? (c) What is the wheel’s final translational 
speed? [Hint Use 2 F  = ma, 2 t cm = ICM ciCM, and recall 
that only when there is rolling without slipping is -yCM = a>i?.]
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81. (Ill) A small sphere of radius r0 = 1.5 cm rolls without 
slipping on the track shown in Fig. 10-61 whose radius is 
Rq = 26.0 cm. The sphere starts rolling at a height R0 above 
the bottom of the track. When it leaves the track after 
passing through an angle of 135° as shown, (a) what will be 
its speed, and (b) at what distance D from the base of the 
track will the sphere hit the ground?

| General Problems__________

*10-10 Rolling Sphere Slows Down
*82. (I) A rolling ball slows down because the normal force does 

not pass exactly through the cm  of the ball, but passes in front 
of the c m . Using Fig. 10-41, show that the torque resulting from 
the normal force ( tn = £FN in Fig. 10-41) is |  of that due to 
the frictional force, Tfr = r0F where r0 is the ball’s radius;
that is, show that tn = gTfr.

83. A large spool of rope rolls on the ground with the end of 
the rope lying on the top edge of the spool. A person grabs 
the end of the rope and walks a distance £, holding onto it, 
Fig. 10-62. The spool rolls behind the person without 
slipping. What length of rope unwinds from the 
spool? How far does the spool’s center of 
mass move?

85.

86.

FIGURE 10-62
Problem 83. ;

84. On a 12.0-cm-diameter audio compact disc (CD), digital bits 
of information are encoded sequentially along an outward 
spiraling path. The spiral starts at radius Rx = 2.5 cm and 
winds its way out to radius R2 = 5.8 cm. To read the digital 
information, a CD player rotates the CD so that the player’s 
readout laser scans along the spiral’s sequence of bits at a 
constant linear speed of 1.25 m/s. Thus the player must accu­
rately adjust the rotational frequency /  of the CD as the 
laser moves outward. Determine the values for /  (in units of 
rpm) when the laser is located at Ri and when it is at R2.
(a) A yo-yo is made of two solid cylindrical disks, each of 
mass 0.050 kg and diameter 0.075 m, joined by a (concentric) 
thin solid cylindrical hub of mass 0.0050 kg and diameter 
0.010 m. Use conservation of energy to calculate the linear 
speed of the yo-yo just before it reaches the end of its 
1.0-m-long string, if it is released from rest, (b) What fraction 
of its kinetic energy is rotational?
A cyclist accelerates from rest at a rate of 1.00 m/s2. How 
fast will a point at the top of the rim of the tire 
(diameter = 68 cm) be moving after 2.5 s? [Hint: At any 
moment, the lowest point on the tire is in contact with the 
ground and is at rest—see Fig. 10-

u -  L00m/s2
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FIGURE 10-63 Problem 86.

87. Suppose David puts a 0.50-kg rock into a sling of length
1.5 m and begins whirling the rock in a nearly horizontal 
circle, accelerating it from rest to a rate of 85 rpm after 5.0 s. 
What is the torque required to achieve this feat, and where 
does the torque come from?

88.

H

90. Figure 10-65 illustrates an H20  molecule. The O — H bond 
length is 0.96 nm and the H — O — H bonds make an angle 
of 104°. Calculate the moment of inertia 
for the H20  molecule about an axis 
passing through the center of the oxygen 
atom (a) perpendicular to the plane of the 
molecule, and (b) in the plane of the 
molecule, bisecting the H — O — H bonds.

104"

FIGURE 10-65
Problem 90.

H

91. One possibility for a low-pollution automobile is for it to use 
energy stored in a heavy rotating flywheel. Suppose such a 
car has a total mass of 1100 kg, uses a uniform cylindrical 
flywheel of diameter 1.50 m and mass 240 kg, and should be 
able to travel 350 km without needing a flywheel “spinup.” 
(a) Make reasonable assumptions (average frictional 
retarding force = 450 N, twenty acceleration periods from 
rest to 95 km/h, equal uphill and downhill, and that energy 
can be put back into the flywheel as the car goes downhill), 
and estimate what total energy needs to be stored in the 
flywheel, (b) What is the angular velocity of the flywheel 
when it has a full “energy charge”? (c) About how long 
would it take a 150-hp motor to give the flywheel a full 
energy charge before a trip?

A 1.4-kg grindstone in the shape of a uniform cylinder of 
radius 0.20 m acquires a rotational rate of 1800 rev/s from 
rest over a 6.0-s interval at constant angular acceleration. 
Calculate the torque delivered by the motor.
Bicycle gears: (a) How is the angular velocity &>R of the rear 
wheel of a bicycle related to the angular velocity (oF of the 
front sprocket and pedals? Let NF and NR be the number of 
teeth on the front and rear sprockets, respectively, Fig. 10-64. 
The teeth are spaced the same on both sprockets and the rear 
sprocket is firmly attached to the rear wheel. (b) Evaluate the 

ratio w r/^ f when the front and rear sprockets 
r,lR have 52 and 13 teeth, respectively, and

(c) when they have 42 
Rev  sprocket and 28 teeth.

FIGURE 10-64
Problem 89.
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92. A hollow cylinder (hoop) is rolling on a horizontal surface 97. 
at speed v = 3.3 m/s when it reaches a 15° incline.
(a) How far up the incline will it go? (b) How long will it be 
on the incline before it arrives back at the bottom?

93. A wheel of mass M  has radius R. It is standing vertically on 
the floor, and we want to exert a horizontal force F at its
axle so that it will climb a step against which it rests 98. 
(Fig. 10-66). The step has height h, where h < R. What 
minimum force F is needed?

h

FIGURE 10-66 Problem 93.

94. A marble of mass m and radius r rolls along the looped 
rough track of Fig. 10-67. What is the minimum value of the 
vertical height h that the marble must drop if it is to reach 
the highest point of the loop without leaving the track? 
(a) Assume r « .  R; (b) do not make this assumption. 
Ignore frictional losses.

If the coefficient of static friction between tires and pavement 
is 0.65, calculate the minimum torque that must be applied 
to the 66-cm-diameter tire of a 950-kg automobile in 
order to “lay rubber” (make the wheels spin, slipping as 
the car accelerates). Assume each wheel supports an equal 
share of the weight.
A cord connected at one end to a block which can slide on 
an inclined plane has its other end wrapped around a 
cylinder resting in a depression at the top of the plane as 
shown in Fig. 10-69. Determine the speed of the block after 
it has traveled 1.80 m along the plane, starting from rest. 
Assume (a) there is no friction, (b) the coefficient of friction 
between all surfaces is {jl = 0.055. [Hint: In part (b) first 
determine the normal force on the cylinder, and make any 
reasonable assumptions needed.]

M = 33k*
R  = 0.20 m

3.0 k£

\ J g ‘
_J__

FIGURE 10-69 Problem 98.
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FIGURE 10-67 Problem 94.

95. The density (mass per unit length) of a thin rod of length £ 
increases uniformly from A0 at one end to 3A0 at the other 
end. Determine the moment of inertia about an axis 
perpendicular to the rod through its geometric center.

96. If a billiard ball is hit in just the right way by a cue stick, the 
ball will roll without slipping immediately after losing 
contact with the stick. Consider a billiard ball (radius r, 
mass M ) at rest on a horizontal pool table. A cue stick 
exerts a constant horizontal force F on the ball for a 
time t at a point that is a height h above the table’s surface 
(see Fig. 10-68). Assume that the coefficient of kinetic friction 
between the ball and table is . Determine the value for h 
so that the ball will roll without slipping immediately after 
losing contact with the stick.

99. The radius of the roll of paper shown in Fig. 10-70 is
7.6 cm and its moment of inertia is I  = 3.3 X 10-3 kg • m2. 
A force of 2.5 N is exerted on the end of the roll for 1.3 s, 
but the paper does not tear so it begins to unroll. A 
constant friction torque of 0.11 m-N is exerted on the roll 
which gradually brings it to a stop. Assuming that the 
paper’s thickness is negligible, calculate (a) the length of 
paper that unrolls during the time that 
the force is applied (1.3 s) and (b) the 
length of paper that unrolls from the 
time the force ends to the time when 
the roll has stopped moving.

FIGURE 10-70 j
Problem 99. TF

100. A solid uniform disk of mass 21.0 kg and radius 85.0 cm is at 
rest flat on a frictionless surface. Figure 10-71 shows a view 
from above. A string is wrapped around the rim of the disk 
and a constant force of 35.0 N is applied to the string. The 
string does not slip on the rim. (a) In what direction does 
the cm  move? When the disk has moved a distance of 5.5 m, 
determine (b) how fast it is moving, (c) how fast it is spinning 
(in radians per second), 
and (d) how much 
string has unwrapped 
from around the rim.

FIGURE 10-68
Problem 96.

FIGURE 10-71
Problem 100, looking 
down on the disk.
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101. When bicycle and motorcycle riders “pop a wheelie,” a 
large acceleration causes the bike’s front wheel to leave 
the ground. Let M  be the total mass of the bike-plus-rider 
system; let x  and y be the horizontal and vertical distance 
of this system’s cm  from the rear wheel’s point of contact 
with the ground (Fig. 10-72). (a) Determine the horizontal 
acceleration a required to barely lift the bike’s front wheel 
off of the ground. (b) To minimize the acceleration 
necessary to pop a wheelie, should x  be made as small or 
as large as possible? How about y l  How should a rider 
position his or her body on the bike in order to achieve 
these optimal values for x  and y l  (c) If x  = 35 cm and 
y = 95 cm, find a.

103. A thin uniform stick of mass M  and length i  is 
positioned vertically, with its tip on a frictionless table. It 
is released and allowed to fall.
Determine the speed of its 
c m  just before it hits the 
table (Fig. 10-74).

. - A
FIGURE 10-74
Problem 103.

* 104. (a) For the yo-yo-like cylinder of Example 10-19, we saw
that the downward acceleration of its cm  was a = \g .  
If it starts from rest, what will be the cm  velocity after it 
has fallen a distance h i  (b) Now use conservation of 
energy to determine the cylinder’s c m  velocity after it has 
fallen a distance h, starting from rest.

* Numerical/Computer
* 105. (II) Determine the torque produced about the support A of

the rigid structure, shown in Fig. 10-75, as a function of the 
leg angle 6 if a force F = 500 N is applied at the point P 
perpendicular to the leg end. Graph the values of the torque r  
as a function of 6 from 0 = 0° to 90°, in 1° increments.

102. A crucial part of a piece of machinery starts as a flat 
uniform cylindrical disk of radius R0 and mass M. It then 
has a circular hole of radius R\ drilled into it (Fig. 10-73). 
The hole’s center is a distance h from the center of the disk. 
Find the moment of inertia of this disk (with off-center 
hole) when rotated about its center, C. [Hint: Consider a 
solid disk and “subtract” the hole; use the parallel-axis 
theorem.]

FIGURE 10-73
Problem 102.

F  ~ 500 N

FIGURE 10-75 Problem 105.

* 106. (II) Use the expression that was derived in Problem 51 for 
the acceleration of masses on an Atwood’s machine 
to investigate at what point the moment of inertia of 
the pulley becomes negligible. Assume raA = 0.150 kg, 
raB = 0.350 kg, and R = 0.040 m. (a) Graph the acceler­
ation as a function of the moment of inertia. (b) Find 
the acceleration of the masses when the moment of 
inertia goes to zero, (c) Using your graph to guide 
you, at what minimum value of I  does the calculated 
acceleration deviate by 2.0% from the acceleration found 
in part (b)l (d) If the pulley could be thought of as a 
uniform disk, find the mass of the pulley using the I  found 
in part (c).

mo cm

Answers to Exercises

A: /  = 0.076 Hz; T = 13 s. D: 4 X 1017 J.
B: Fa . E: (c).
C: Yes; ^ M i 2 + M g £)2 = \M £2. F: a = lg .

FIGURE 10-72 Problem 101.
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This skater is doing a spin. W hen her 
arms are spread outward horizontally, 
she spins less fast than when her 
arms are held close to the axis o f  
rotation. This is an exam ple of the 
conservation o f angular momentum.

Angular m om entum , which we 
study in this Chapter, is conserved  
only if no net torque acts on the 
object or system. Otherwise, the rate 
o f change o f angular m om entum  is 
proportional to the net applied  
torque— which, if zero, m eans the 
angular m om entum  is conserved. In 
this Chapter w e also exam ine more 
com plicated aspects o f rotational 
m otion.

T £

Angular Momentum; 
General Rotation
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CHAPTER-OPENING QUESTION—Guess now!
You are standing on a platform at rest, but that is free to rotate. You hold a spinning 
bicycle wheel by its axle as shown here. You then flip the wheel over so its axle 
points down. What happens then?

(a) The platform starts rotating in the direction 
the bicycle wheel was originally rotating.

(b) The platform starts rotating in the direction 
opposite to the original rotation of the 
bicycle wheel.

(c) The platform stays at rest.
(d) The platform turns only while you are 

flipping the wheel.
(e) None of these is correct.



I n Chapter 10 we dealt with the kinematics and dynamics of the rotation of a 
rigid object about an axis whose direction is fixed in an inertial reference 
frame. We analyzed the motion in terms of the rotational equivalent of 
Newton’s laws (torque plays the role that force does for translational 

motion), as well as rotational kinetic energy.
To keep the axis of a rotating object fixed, the object must usually be 

constrained by external supports (such as bearings at the end of an axle). The 
motion of objects that are not constrained to move about a fixed axis is more 
difficult to describe and analyze. Indeed, the complete analysis of the general 
rotational motion of an object (or system of objects) is very complicated, 
and we will only look at some aspects of general rotational motion in this Chapter.

We start this Chapter by introducing the concept of angular momentum, 
which is the rotational analog of linear momentum. We first treat angular 
momentum and its conservation for an object rotating about a fixed axis. After 
that, we examine the vector nature of torque and angular momentum. We will 
derive some general theorems and apply them to some interesting types of motion.

11-1 Angular Momentum—Objects 
Rotating About a Fixed Axis

In Chapter 10 we saw that if we use the appropriate angular variables, the kinematic 
and dynamic equations for rotational motion are analogous to those for ordinary 
linear motion. In like manner, the linear momentum, p = mv, has a rotational 
analog. It is called angular momentum, L, and for an object rotating about a fixed 
axis with angular velocity co, it is defined as

L = Io), (11-1)
where I  is the moment of inertia. The SI units for L  are kg*m2/s; there is no 
special name for this unit.

We saw in Chapter 9 (Section 9-1) that Newton’s second law can be written 
not only as 2 F  = ma, but also more generally in terms of momentum (Eq. 9-2), 
2 F  = dp/dt. In a similar way, the rotational equivalent of Newton’s second law, 
which we saw in Eqs. 10-14 and 10-15 can be written as 2 r  = la , can also be 
written in terms of angular momentum: since the angular acceleration a = dco/dt 
(Eq. 10-3), then la  = I(d(o/dt) = d(Io))/dt = dL/dt, so

v dL2,T =
dt

(11- 2)

This derivation assumes that the moment of inertia, I, remains constant. However, 
Eq. 11-2 is valid even if the moment of inertia changes, and applies also to a 
system of objects rotating about a fixed axis where E r is the net external torque 
(discussed in Section 11-4). Equation 11-2 is Newton’s second law for rotational 
motion about a fixed axis, and is also valid for a moving object if its rotation is 
about an axis passing through its center of mass (as for Eq. 10-15).

Conservation of Angular Momentum
Angular momentum is an important concept in physics because, under certain 
conditions, it is a conserved quantity. What are the conditions for which it is 
conserved? From Eq. 11-2 we see immediately that if the net external torque 2 r  on 
an object (or system of objects) is zero, then 

dL
[ S t =  0]

This, then, is the law of conservation of angular momentum for a rotating object:

= 0 and L = I(o = constant.
dt

The total angular momentum of a rotating object remains constant if the net 
external torque acting on it is zero.

NEWTON’S SECOND LAW  
FOR ROTATION

CONSERVATION OF 
ANGULAR MOMENTUM
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FIGURE 11-1 A  skater doing a spin 
on ice, illustrating conservation of 
angular momentum: (a) /  is large and 
Q) is small; (b) I  is smaller so o) is larger.

FIGURE 11-2 A  diver rotates 
faster when arms and legs are tucked 
in than when they are outstretched. 
Angular momentum is conserved.
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When there is zero net torque acting on an object, and the object is rotating 
about a fixed axis or about an axis through its center of mass whose direction 
doesn’t change, we can write

I(o = I0(o0 = constant.

I0 and (o0 are the moment of inertia and angular velocity, respectively, about the axis 
at some initial time (t = 0), and I  and co are their values at some other time. The 
parts of the object may alter their positions relative to one another, so that I  changes. 
But then (o changes as well and the product I(o remains constant.

Many interesting phenomena can be understood on the basis of conservation 
of angular momentum. Consider a skater doing a spin on the tips of her skates, 
Fig. 11-1. She rotates at a relatively low speed when her arms are outstretched, 
but when she brings her arms in close to her body, she suddenly spins much faster. 
From the definition of moment of inertia, I  = 'LmR2, it is clear that when she 
pulls her arms in closer to the axis of rotation, R  is reduced for the arms so her 
moment of inertia is reduced. Since the angular momentum I(o remains constant 
(we ignore the small torque due to friction), if I  decreases, then the angular 
velocity (o must increase. If the skater reduces her moment of inertia by a factor 
of 2, she will then rotate with twice the angular velocity.

A similar example is the diver shown in Fig. 11-2. The push as she leaves the 
board gives her an initial angular momentum about her center of mass. When she 
curls herself into the tuck position, she rotates quickly one or more times. She then 
stretches out again, increasing her moment of inertia which reduces the angular 
velocity to a small value, and then she enters the water. The change in moment of 
inertia from the straight position to the tuck position can be a factor of as much as ?>\.

Note that for angular momentum to be conserved, the net torque must be 
zero, but the net force does not necessarily have to be zero. The net force on the 
diver in Fig. 11-2, for example, is not zero (gravity is acting), but the net torque 
about her c m  is zero because the force of gravity acts at her center of mass.

FIGURE 11-3 Example 11-1.
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EXAMPLE 11-1 Object rotating on a string of changing length. A small 
mass m attached to the end of a string revolves in a circle on a frictionless 
tabletop. The other end of the string passes through a hole in the table (Fig. 11-3). 
Initially, the mass revolves with a speed vx = 2.4 m/s in a circle of radius 
Rx = 0.80 m. The string is then pulled slowly through the hole so that the radius 
is reduced to R2 = 0.48 m. What is the speed, v2, of the mass now?

APPROACH There is no net torque on the mass m because the force exerted by 
the string to keep it moving in a circle is exerted toward the axis; hence the lever 
arm is zero. We can thus apply conservation of angular momentum.
SOLUTION Conservation of angular momentum gives 

1\ = I2 (*)2 •
Our small mass is essentially a particle whose moment of inertia about the hole is 
I  = mR2 (Eq. 10-11), so we have

mR2a>] = mR\(o2,
or

a>2 = (o}

Then, since v = Rco, we can write

-  D  -  Dv2 — R2(o2 — R2(o1\ J — R2 g =

(2.4 m/s)
0.80 m
0.48 m = 4.0 m/s.



EXAMPLE 11-2 Clutch. A simple clutch consists of two cylindrical plates that 
can be pressed together to connect two sections of an axle, as needed, in a piece 
of machinery. The two plates have masses MA = 6.0 kg and MB = 9.0 kg, with 
equal radii R0 = 0.60 m. They are initially separated (Fig. 11-4). Plate MA is 
accelerated from rest to an angular velocity = 7.2 rad/s in time At = 2.0 s. 
Calculate (a) the angular momentum of MA, and (b) the torque required to have 
accelerated MA from rest to . (c) Next, plate MB, initially at rest but free to 
rotate without friction, is placed in firm contact with freely rotating plate MA, and 
the two plates both rotate at a constant angular velocity o)2, which is considerably 
less than . Why does this happen, and what is a)2 ?
APPROACH We use the definition of angular momentum L = I  to (Eq. 11-1) 
plus Newton’s second law for rotation, Eq. 11-2.
SOLUTION (a) The angular momentum of MA will be

L a = IAa> 1 = lM ARl(Oi = \  (6.0 kg)(0.60m)2(7.2 rad/s) = 7.8kg-m2/s.
(b) The plate started from rest so the torque, assumed constant, was

A L 7.8kg-m2/s — 0
t  =  — —  =  ---------------— ------------------- = 3.9 m-N.At 2.0 s

(c) Initially, MA is rotating at constant (we ignore friction). When plate B comes in 
contact, why is their joint rotation speed less? You might think in terms of the torque 
each exerts on the other upon contact. But quantitatively, it’s easier to use conserva­
tion of angular momentum, since no external torques are assumed to act. Thus

angular momentum before = angular momentum after
= Ĉ a + ^b)w2-

Solving for o)2 we find

"2 = f r ^  r W  = f  w , ,  V i  = ( 150kg )^7’2 rad;/S) = 2'9rad/S'

FIGURE 11-4

EXAMPLE 11-3 ESTIMATE"! Neutron star. Astronomers detect stars that are @ _P_H_Y_SJJ 
rotating extremely rapidly, known as neutron stars. A neutron star is believed to Neutron star 
form from the inner core of a larger star that collapsed, under its own gravitation, to 
a star of very small radius and very high density. Before collapse, suppose the core of 
such a star is the size of our Sun ( r ~ 7 X  105 km) with mass 2.0 times as great as the 
Sun, and is rotating at a frequency of 1.0 revolution every 100 days. If it were to 
undergo gravitational collapse to a neutron star of radius 10 km, what would its rota­
tion frequency be? Assume the star is a uniform sphere at all times, and loses no mass.
APPROACH We assume the star is isolated (no external forces), so we can use 
conservation of angular momentum for this process. We use r for the radius of a 
sphere, as compared to R used for distance from an axis of rotation or cylindrical 
symmetry: see Fig. 10-2.
SOLUTION From conservation of angular momentum,

I\ <*>1 = h  <*>2 5
where the subscripts 1 and 2 refer to initial (normal star) and final (neutron star), 
respectively. Then, assuming no mass is lost in the process,

h \  (Irn ^ W  r\
I2J Vs^2 r\J r2

The frequency /  = ai/lir, so
w2 r\

f l  ~  n>_ ~  2 / l
2 t t  r2

( l  X  105k m \2/  1.0rev \  ,  .
— 1 I I u lA\fn£nnc /u\ ~ rev/s.

Example 11-2.
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(a)

| I'pLutami

(b)

FIGURE 11-5 (a) A person on 
a circular platform, both initially 
at rest, begins walking along the 
edge at speed v. The platform, 
assumed to be mounted on friction- 
free bearings, begins rotating in the 
opposite direction, so that the total 
angular momentum remains zero, as 
shown in (b).

Directional Nature of Angular Momentum
Angular momentum is a vector, as we shall discuss later in this Chapter. For now 
we consider the simple case of an object rotating about a fixed axis, and the 
direction of L is specified by a plus or minus sign, just as we did for one-dimensional 
linear motion in Chapter 2.

For a symmetrical object rotating about a symmetry axis (such as a cylinder or 
wheel), the direction of the angular momentum1 can be taken as the direction of 
the angular velocity co. That is,

L = In .
As a simple example, consider a person standing at rest on a circular platform 

capable of rotating friction-free about an axis through its center (that is, a simplified 
merry-go-round). If the person now starts to walk along the edge of the platform, 
Fig. ll-5a , the platform starts rotating in the opposite direction. Why? One explanation 
is that the person’s foot exerts a force on the platform. Another explanation (and this 
is the most useful analysis here) is as an example of the conservation of angular 
momentum. If the person starts walking counterclockwise, the person’s angular 
momentum will be pointed upward along the axis of rotation (remember how we 
defined the direction of co  using the right-hand rule in Section 10-2). The magnitude 
of the person’s angular momentum will be L = Io) = (mR2)(v/R), where v is the 
person’s speed (relative to the Earth, not the platform), R is his distance from 
the rotation axis, m is his mass, and mR2 is his moment of inertia if we consider 
him a particle (mass concentrated at one point). The platform rotates in the opposite 
direction, so its angular momentum points downward. If the initial total angular 
momentum was zero (person and platform at rest), it will remain zero after the 
person starts walking. That is, the upward angular momentum of the person just 
balances the oppositely directed downward angular momentum of the platform 
(Fig. 11-5b), so the total vector angular momentum remains zero. Even though the 
person exerts a force (and torque) on the platform, the platform exerts an equal and 
opposite torque on the person. So the net torque on the system of person plus 
platform is zero (ignoring friction) and the total angular momentum remains constant.

Running on a circular platform. Suppose a 60-kg person 
stands at the edge of a 6.0-m-diameter circular platform, which is mounted on 
frictionless bearings and has a moment of inertia of 1800 kg • m2. The platform is 
at rest initially, but when the person begins running at a speed of 4.2 m/s (with 
respect to the Earth) around its edge, the platform begins to rotate in the 
opposite direction as in Fig. 11-5. Calculate the angular velocity of the platform.
APPROACH We use conservation of angular momentum. The total angular 
momentum is zero initially. Since there is no net torque, L is conserved and will 
remain zero, as in Fig. 11-5. The person’s angular momentum is Lper = (mR2)(v/R), 
and we take this as positive. The angular momentum of the platform is Lplat = —Ioj. 
SOLUTION Conservation of angular momentum gives

L  =  -^per +  -^plat

0 = mR2( ^ J  -  I m.

So
mRv (60 kg) (3.0 m) (4.2 m/s)

(o = ——  = --------— —------ -̂------- = 0.42 rad/s.
I  1800 kg-m2

NOTE The frequency of rotation is /  = o)/2tt = 0.067 rev/s and the period T = 
1 /f  = 15 s per revolution.

tFor more complicated situations of objects rotating about a fixed axis, there will be a component of L 
along the direction of w and its magnitude will be equal to / « ,  but there could be other components as

Tf tliA tntol onmilor mAmAntnm io mncAnrprl tVitVip mmnnnpnt Tm  nnll alcr* Ka Qa

EXAMPLE 11-4



CONCEPTUAL EXA M PLE 1 1 - 5  Spinning b icycle  w h ee l. Yo u r physics teacher 
is holding a spinning bicycle wheel while he stands on a stationary friction less 
turntable {Fig. 11 -6 ). What will happen if the teacher suddenly flips the bicycle wheel 
over so thtit it is spinning in (he opposite direction?

RESPONSE We consider I he system of I urn table, teacher, and bicycle wheel. The 
lotal angular momentum in ilia lly is L  vertically upward. Thai is also what the 
system's angular momentum must be afterward, since L  is conserved when there 
is no net torque. Thus, if the wheel's angular momentum after being flipped over



Victor Cross Product
To deal with the veetoi nature of angular momentum and torque in general, we 
will need the concept of the oecior cross product (often called simply the sector 
product or cross product). In general, the vector or cross product of two vectors A 
and 6  is defined as another vector £  = A x  B whose magnitude is

C -  A x B| -  AB  sintf, Ul-3a)

where ft is thtj angle (< 180°) between A and B, and whose direction is perpendicular 
to both A and B in the sense o f the right-hand rule. Fiy 11- 7 . The ancle ti is



Some properties of the cross product are the following:

FIGURE 11-8 The vector B X A  
e q u a ls -A  X B; compare to Fig. 11-7.

FIGURE 11-9 Exercise D.

A

\ / '

FIGURE 11-10 The torque due to 
the force F (in the plane of the 
wheel) starts the wheel rotating 
counterclockwise so ci) and a  point 
out of the page.

r k
Axt&

FIGURE 11-11 t  =  r X F, where 
r is the position vector.

A X A 
A X B

A X (g + C)

i ( A x s )

= 0
-B  X A
(A X B) + (A X C)
dA -> r dB 
—  X B  + A X  • 
dt dt

(ll-4a)
(ll-4b)

[distributive law] (11-4c) 

(ll-4d)

Equation 11-4a follows from Eqs. 11-3 (since 6 = 0). So does Eq. 11-4b, since 
the magnitude of B X A is the same as that for A X B, but by the right-hand 
rule the direction is opposite (see Fig. 11-8). Thus the order of the two vectors is 
crucial. If you change the order, you change the result. That is, the commutative 
law does not hold for the cross product (A X s  *  s  X A), although it does hold 
for the dot product of two vectors and for the product of scalars. Note in Eq. 11-4d 
that the order of quantities in the two products on the right must not be changed 
(because of Eq. ll-4b ).

EXERCISE D For the vectors A  and B in the plane of the page as shown in Fig. 11-9 , in 
what direction is (i) A  • B, (ii) A  X B, (iii) B X A? (a) Into the page; (b) out of the page; 
(c) between A  and B; (d) it is a scalar and has no direction; (e) it is zero and has no direction.

The Torque Vector
Torque is an example of a quantity that can be expressed as a cross product. To see this, 
let us take a simple example: the thin wheel shown in Fig. 11-10 which is free to rotate 
about an axis through its center at point O. A force F acts at the edge of the wheel, at a 
point whose position relative to the center O is given by the position vector ? as shown. 
The force F tends to rotate the wheel (assumed initially at rest) counterclockwise, so 
the angular velocity w will point out of the page toward the viewer (remember the 
right-hand rule from Section 10-2). The torque due to F will tend to increase «  so 
a  also points outward along the rotation axis. The relation between angular acceleration 
and torque that we developed in Chapter 10 for an object rotating about a fixed axis is 

Dr = la ,
(Eq. 10-14) where I  is the moment of inertia. This scalar equation is the rotational 
equivalent of 2 F = ma, and we would like to make it a vector equation just 
as 2F  = ma is a vector equation. To do so in the case of Fig. 11-10 we must have 
the direction of f  point outward along the rotation axis, since a  (= d(b/dt) has 
that direction; and the magnitude of the torque must be (see Eqs. 10-10 and 
Fig. 11-10) r  = rF± = rF sin 0. We can achieve this by defining the torque vector 
to be the cross product of r and F:

f  =  r X F. (1 1 -5 )

From the definition of the cross product above (Eq. 11-3a) the magnitude of f  will 
be rF sin 6 and the direction will be along the axis, as required for this special case.

We will see in Sections 11-3 through 11-5 that if we take Eq. 11-5 as the 
general definition o f torque, then the vector relation Df = l a  will hold in 
general. Thus we state now that Eq. 11-5 is the general definition of torque. It 
contains both magnitude and direction information. Note that this definition 
involves the position vector r and thus the torque is being calculated about a point. 
We can choose that point O as we wish.

For a particle of mass m on which a force F is applied, we define the torque 
about a point O as

f  =  r X F

where r is the position vector of the particle relative to O (Fig. 11-11). If we have a 
system of particles (which could be the particles making up a rigid object) the total 
torque f  on the system will be the sum of the torques on the individual particles: 

f  =  2 ( f ,  X F,),

B x A



EXAMPLE 11-6 Torque Vector. Suppose the vector r is in the xz plane, as in 
Fig. 11-11, and is given by r = (1.2 m) i + (1.2 m) k. Calculate the torque 
vector f  if F = (150 N)i.
APPROACH We use the determinant form, Eq. 11-3b.

i j k 
1.2 m 0 1.2 m 
150 N 0 0

So r  has magnitude 180 m • N and points along the positive y axis.

SOLUTION f  = r X F = = Oi + (180m*N)j + Ok.

I EXERCISE E l f  F =  5.0 N i and f  =  2.0 m j, what is t?  (a) lOmN, (b) - 1 0  mN, 
| (c) 10 mN k, (d) - lO m N j , (e) - lO m N k .

11—3 Angular Momentum of a Particle
The most general way of writing Newton’s second law for the translational motion 
of a particle (or system of particles) is in terms of the linear momentum p = mv as 
given by Eq. 9-2 (or 9-5): 

dp
2 F  =  ~  

dt
The rotational analog of linear momentum is angular momentum. Just as the rate 
of change of p is related to the net force 2 F ,  so we might expect the rate of change 
of angular momentum to be related to the net torque. Indeed, we saw this was true 
in Section 11-1 for the special case of a rigid object rotating about a fixed axis. 
Now we will see it is true in general. We first treat a single particle.

Suppose a particle of mass m has momentum p and position vector r with 
respect to the origin O in some chosen inertial reference frame. Then the general 
definition of the angular momentum, L, of the particle about point O is the vector 
cross product of r and p:

L = r X p. [particle] (11-6)
Angular momentum is a vector.f Its direction is perpendicular to both r and p as 
given by the right-hand rule (Fig. 11-12). Its magnitude is given by 

L  = rp sin 6
or

L = rp± = r±p
where 0 is the angle between ? and p and p±{= p  sin 0) and r± (= r sin 6) are the 
components of p and r perpendicular to r and p, respectively.

Now let us find the relation between angular momentum and torque for a 
particle. If we take the derivative of L  with respect to time we have

But

dL d ^  dr dp
d T = d t { t X ») = d i x p  + r x d f

dr _ _
—  X p = v X mv =  m( v X v) = 0 ,

since sin 6 = 0 for this case. Thus
d t  _ dp___ =  j  x  •
dt dt

If we let 2 F  represent the resultant force on the particle, then in an inertial reference 
frame, 2 F = dp/dt and

 ̂ dp d t  
r X 2 F  = r X — • 

dt dt
But f X 2F  = 2 f  is the net torque on our particle. Hence 

dL
dt

• [particle, inertial frame] (11-7)

y

L=r xp

m

FIGURE 11 -1 2  The angular 
momentum of a particle of mass m  is 
given by L = r X p  =  r X  mv.



second law for a particle, written in its most general form. Equation 11-7 is valid 
only in an inertial frame since only then is it true that 2 F = dp/dt, which was 
used in the proof.

p =  m \

FIGURE 11-13 The angular 
momentum of a particle of mass m  
rotating in a circle of radius r 
with velocity v is L =  r X mv 
(Example 11-7).

NEWTON’S SECOND LAW 
(rotation, system of particles)

CONCEPTUAL EXAMPLE 11-71 A particle's angular momentum. What is the 
angular momentum of a particle of mass m moving with speed v in a circle of radius r 
in a counterclockwise direction?
RESPONSE The value of the angular momentum depends on the choice of the 
point O. Let us calculate L with respect to the center of the circle, Fig. 11-13. 
Then ? is perpendicular to p so L = |r X p = rmv. By the right-hand rule, 
the direction of L is perpendicular to the plane of the circle, outward toward the 
viewer. Since v = cor and I  = mr2 for a single particle rotating about an axis a 
distance r away, we can write

L = mvr = mr2(o = loo.

11—4  Angular Momentum and Torque for 
a System of Particles; General Motion

Relation Between Angular Momentum and Torque
Consider a system of n particles which have angular momenta , L 2 , . . . ,  L „ . The 
system could be anything from a rigid object to a loose assembly of particles whose 
positions are not fixed relative to each other. The total angular momentum L of the 
system is defined as the vector sum of the angular momenta of all the particles in 
the system:

L = i ) £ i .  (1 1 - 8)
i= i

The resultant torque acting on the system is the sum of the net torques acting on 
all the particles:

"̂net — .

This sum includes (1) internal torques due to internal forces that particles of the 
system exert on other particles of the system, and (2) external torques due to 
forces exerted by objects outside our system. By Newton’s third law, the force each 
particle exerts on another is equal and opposite (and acts along the same line as) 
the force that the second particle exerts on the first. Hence the sum of all internal 
torques adds to zero, and

^"net — Tf — ^ext •
i

Now we take the time derivative of Eq. 11-8 and use Eq. 11-7 for each particle to 
obtain

~ ±  dt ~ 2 ' Text

= 2  ̂ ext • [inertial reference frame] (ll-9 a)

This fundamental result states that the time rate of change of the total angular 
momentum of a system of particles (or a rigid object) equals the resultant external 
torque on the system. It is the rotational equivalent of Eq. 9-5, dP/dt = 2 Fext 
for translational motion. Note that L and must be calculated about the same 
origin O.

Eauation 11-9a is valid when L and are calculated with reference to a noint

d t

dt

d t
dt



valid only in this case.) It is also valid when f ext and L are calculated about a point 
which is moving uniformly in an inertial reference frame since such a point can be 
considered the origin of a second inertial reference frame. It is not valid in general 
when f ext and L are calculated about a point that is accelerating, except for one special 
(and very important) case—when that point is the center of mass (cm) of the system:

d L cu
dt = 2  ĉm • [even if accelerating] (ll-9b )

Equation 1 1 -9b is valid no matter how the cm moves, and 2 t cm is the net external 
torque calculated about the center of mass. The derivation is in the optional 
subsection below.

It is because of the validity of Eq. 1 1 -9b that we are justified in describing the 
general motion of a system of particles, as we did in Chapter 1 0 , as translational 
motion of the center of mass plus rotation about the center of mass. Equations 1 1 -9b 
plus 9-5 (dPCM/dt = SFext) provide the more general statement of this principle. 
(See also Section 9-8.)

Derivation of dLCM/dt = Dtcm
The proof of Eq. l l-9 b  is as follows. Let ?f be the position vector of the z'th particle 
in an inertial reference frame, and rCM be the position vector of the center of mass 
of the system in this reference frame. The position of the zth particle with respect to 
the cm is rf where (see Fig. 1 1 - 1 4 )

?i = ?cm + ?*•
If we multiply each term by ra, and take the derivative of this equation, we can write 

^ = = + ?CM̂ = mi** + m^ CM = + m^ CM’ 
The angular momentum with respect to the cm is

L c m  =  X  P * )  =  2 f *  X  (pi ~  m i ̂ c m )-
i i

Then, taking the time derivative, we have

?(?**)+?(>?*£)•
The first term on the right is v f X ravf and equals zero because vf is parallel to itself 
(sin 0 = 0). Thus

d^cM v* w d /_ \m,yc

dt V i /  dt
The second term on the right is zero since, by Eq. 9-12, Em,-?* = M rJM, 
and r*M = 0 by definition (the position of the cm is at the origin of the cm reference 
frame). Furthermore, by Newton’s second law we have

—  = j?. 
dt

where Fj is the net force on (Note that dp*/dt # Fj because the cm may be 
accelerating and Newton’s second law does not hold in a noninertial reference 
frame.) Consequently

f 9* = = 2 6 ) c m  -  s r CM,

where D fCM is the resultant external torque on the entire system calculated about 
the cm. (By Newton’s third law, the sum over all the f t eliminates the net torque 
due to internal forces, as we saw on d. 292.) This last equation is Ea. ll-9b . and this

NEWTON’S SECOND LAW  
(for cm even if accelerating)

FIGURE 1 1 -1 4  The position of mt 
in the inertial frame is rz; with 
regard to the cm (which could be 
accelerating) it is r f , where 
ri =  r f  +  rCM and rCM is the 
position of the cm in the inertial 
frame.



0 ^

FIGURE 11-15
Calculating Lw = Lz = 2LzZ.
Note that Lz is perpendicular to r*, 
and Rj is perpendicular to the z axis, 
so the three angles marked 4> are 
equal.

Summary
To summarize, the relation 

Y  - _  dLi 
ZTcxt _  dt

is valid only when f ext and L are calculated with respect to either (1) the origin of an 
inertial reference frame or (2) the center of mass of a system of particles (or of a 
rigid object).

11-5 Angular Momentum and 
Torque for a Rigid Object

Let us now consider the rotation of a rigid object about an axis that has a fixed 
direction in space, using the general principles just developed.

Let us calculate the component of angular momentum along the rotation axis 
of the rotating object. We will call this component since the angular velocity co 
points along the rotation axis. For each particle of the object,

U  = ?i X Pi-
Let <f> be the angle between Lf and the rotation axis. (See Fig. 11-15; <f> is not 
the angle between r* and p?, which is 90°). Then the component of Lf along the 
rotation axis is

Li(0 = rt pi cos cf) = mt vt rt cos </>, 
where mt is the mass and vt the velocity of the zth particle. Now vt = Ri(o where a) 
is the angular velocity of the object and Rt is the perpendicular distance of from 
the axis of rotation. Furthermore, Rt = rt cos (f), as can be seen in Fig. 11-15, so

Li(0 = miVif/iCOScf)) = miRj a).
We sum over all the particles to obtain

Lo, =

But 'EmiRj is the moment of inertia I  of the object about the axis of rotation. There­
fore the component of the total angular momentum along the rotation axis is given by

= Ico. (11-10)
Note that we would obtain Eq. 11-10 no matter where we choose the point O 
(for measuring ?j) as long as it is on the axis of rotation. Equation 11-10 is the 
same as Eq. 11-1, which we have now proved from the general definition of 
angular momentum.

If the object rotates about a symmetry axis through the center of mass, then is 
the only component of L, as we now show. For each point on one side of the axis 
there will be a corresponding point on the opposite side. We can see from 
Fig. 11-15 that each L* has a component parallel to the axis (L i(l)) and a component 
perpendicular to the axis. The components parallel to the axis add together for 
each pair of opposite points, but the components perpendicular to the axis for 
opposite points will have the same magnitude but opposite direction and so will 
cancel. Hence, for an object rotating about a symmetry axis, the angular momentum 
vector is parallel to the axis and we can write

L = Iw, [rotation axis = symmetry axis, through cm ] (11-11)

where L is measured relative to the center of mass.
The general relation between angular momentum and torque is Eq. 11-9:

x'' -
= d f

where and L are calculated either about H") the origin of an inertial reference



therefore be valid for each component. Hence, for a rigid object, the component 
along the rotation axis is

dLM d . T . T da)
- (/a,) = I n r  = Ia 'dt dt

which is valid for a rigid object rotating about an axis fixed relative to the object; 
also this axis must be either (1 ) fixed in an inertial system or (2) passing through 
the cm  of the object. This is equivalent to Eqs. 10-14 and 10-15, which we now see 
are special cases of Eq. 11-9, = dL/dt.

Atwood's machine. An Atwood machine consists of two 
masses, mA and raB, which are connected by an inelastic cord of negligible mass that 
passes over a pulley, Fig. 11-16. If the pulley has radius R0 and moment of inertia 7 
about its axle, determine the acceleration of the masses mA and raB, and compare 
to the situation where the moment of inertia of the pulley is ignored.
APPROACH We first determine the angular momentum of the system, and then 
apply Newton’s second law, r  = dL/dt.
SOLUTION The angular momentum is calculated about an axis along the axle 
through the center O of the pulley. The pulley has angular momentum la), where 
co = v/Rq and v is the velocity of mA and mB at any instant. The angular momentum 
of mA is R0mAv and that of mB is R0raB v. The total angular momentum is

L = (mA + mB)vR0 + 7-^--

The external torque on the system, calculated about the axis O (taking clockwise 
as positive), is

r  = mBgR0 -  mAgR0.
(The force on the pulley exerted by the support on its axle gives rise to no torque 
because the lever arm is zero.) We apply Eq. 11-9a:

dL 
T ~ dt

(mB -  mA)gi?0 = {mA + mB)R0d̂t R0 dt
Solving for a = dv/dt, we get

dv _  __ {mB -  mA)g
dt

a =
(mA + mB) + I /R l

If we were to ignore 7, a = (mB -  mA)g/(m B + raA) and we see that the effect 
of the moment of inertia of the pulley is to slow down the system. This is just 
what we would expect.

CONCEPTUAL EXAMPLE I I - 9  I Bicycle wheel. Suppose you are holding a 
bicycle wheel by a handle connected to its axle as in Fig. ll-17a. The wheel is 
spinning rapidly so its angular momentum L points horizontally as shown. Now you 
suddenly try to tilt the axle upward as shown by the dashed line in Fig. 11-17a (so the 
cm  moves vertically). You expect the wheel to go up (and it would if it weren’t 
rotating), but it unexpectedly swerves to the right! Explain.
RESPONSE To explain this seemingly odd behavior—you may need to do it to 
believe it—we only need to use the relation f net = dL/dt. In the short time At, 
you exert a net torque (about an axis through your wrist) that points along the x axis 
perpendicular to L. Thus the change in L is 

AL «  ?netAf;
so AL must also point (approximately) along the x axis, since f net does (Fig. ll-17b). 
Thus the new angular momentum, L + AL, points to the right, looking along 
the axis of the wheel, as shown in Fig. 11-17b. Since the angular momentum is 
directed along the axle of the wheel, we see that the axle, which now is along

FIGURE 1 1 -1 6  A tw ood’s machine, 
Example 11-8 . We also discussed 
this in Example 4 -13.

FIGURE 11 -1 7  When you try to 
tilt a rotating bicycle wheel vertically 
upward, it swerves to the side instead.

Koiaiion 
axis for 
ginning 
wheel

for lifting 
wheel



A  CAUTI ON
L = I  co is not 

always valid

Although Eq. 11-11, L =  I a > , is often very useful, it is not valid in general 
if the rotation axis is not along a symmetry axis through the center of mass. 
Nonetheless, it can be shown that every rigid object, no matter what its 
shape, has three “principal axes” about which Eq. 11-11 is valid (we will 
not go into the details here). As an example of a case where Eq. 11-11 is not 
valid, consider the nonsymmetrical object shown in Fig. 11-18. It consists of two 
equal masses, mA and raB, attached to the ends of a rigid (massless) rod which 
makes an angle (f> with the axis of rotation. We calculate the angular momentum 
about the cm  at point O. At the moment shown, mA is coming toward the viewer, 
and mB is moving away, so L A = rA X p A and L B = ?B X p B are as shown. The 
total angular momentum is L = L A + L B , which is clearly not along &> 
if 0  *  90°.

F Bearing

FIGURE 1 1 -1 8  In this system L 
and «  are not parallel. This is an 
example of rotational imbalance.

* Rotational Imbalance
Let us go one step further with the system shown in Fig. 11-18, since it is a 
fine illustration of = dL/dt. If the system rotates with constant angular 
velocity, a), the magnitude of L will not change, but its direction will. As the 
rod and two masses rotate about the z axis, L also rotates about the axis. At the 
moment shown in Fig. 11-18, L is in the plane of the paper. A time dt later, 
when the rod has rotated through an angle dd = co dt, L will also have rotated 
through an angle dd (it remains perpendicular to the rod). L will then have a 
component pointing into the page. Thus dL points into the page and so must dL/dt. 
Because

_ dL 
= d f '

@ P H Y S I C S  A P P L I E D
Autom obile wheel balancing

FIGURE 1 1 -1 9  Unbalanced  
automobile wheel.

Axis

we see that a net torque, directed into the page at the moment shown, must be 
applied to the axle on which the rod is mounted. The torque is supplied by 
bearings (or other constraint) at the ends of the axle. The forces F  exerted by the 
bearings on the axle are shown in Fig. 11-18. The direction of each force F rotates 
as the system does, always being in the plane of L and a> for this system. If the 
torque due to these forces were not present, the system would not rotate about the 
fixed axis as desired.

The axle tends to move in the direction of F  and thus tends to wobble 
as it rotates. This has many practical applications, such as the vibrations felt 
in a car whose wheels are not balanced. Consider an automobile wheel that 
is symmetrical except for an extra mass mA on one rim and an equal 
mass raB opposite it on the other rim, as shown in Fig. 11-19. Because of the 
nonsymmetry of mA and mB, the wheel bearings would have to exert a force 
perpendicular to the axle at all times simply to keep the wheel rotating, just 
as in Fig. 11-18. The bearings would wear excessively and the wobble of the 
wheel would be felt by occupants of the car. When the wheels are balanced, they 
rotate smoothly without wobble. This is why “dynamic balancing” of automobile 
wheels and tires is important. The wheel of Fig. 11-19 would balance statically 
just fine. If equal masses mc and raD are added symmetrically, below mA and 
above mB, the wheel will be balanced dynamically as well (L  will be parallel to to, 
and f ext = 0).

EXAMPLE 11-10 Torque on imbalanced system. Determine the magnitude 
of the net torque rnet needed to keep the system turning in Fig. 11-18.

APPROACH Figure 11-20  is a view of the angular momentum vector, looking 
down the rotation axis (z axis) of the object depicted in Fig. 11-18, as it rotates. 
L  cos (f> is the component of L perpendicular to the axle (points to the right in
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SOLUTION In a time dt, L changes by an amount (Fig. 11-20 and Eq. 10-2b) 
dL =  (L cos ( f > ) d d  =  L  cos <f) a ) dt, 

where w = d6/dt. Hence

dL T A.Tnet =  ~ T T  =  0 )L  COS (f).at
Now L = L a + L b = rAmAvA + rBmBvB = rAmA((orAsin<f)) + rBmB((orBsin<f>) = 
(mA r \  + mB rB) w sin (f>. Since I  = (mA rA + mB rB) sin2 (f> is the moment of inertia 
about the axis of rotation, then L  = /o>/sin<£. So

'net (oL cos (j) = (mAr \  + mB r|)a>2 sin <£ cos <£ = /w2/tan<£.

The situation of Fig. 11-18 illustrates the usefulness of the vector nature of 
torque and angular momentum. If we had considered only the components of 
angular momentum and torque along the rotation axis, we could not have calculated 
the torque due to the bearings (since the forces F act at the axle and hence 
produce no torque along that axis). By using the concept of vector angular 
momentum we have a far more powerful technique for understanding and for 
attacking problems.

Axis ------- J
L cos <f> (at time t)

FIGURE 11-20 Angular momentum 
vector looking down along the rotation 
axis of the system of Fig. 11-18 as it 
rotates during a time dt.

11—6 Conservation of Angular Momentum
In Chapter 9 we saw that the most general form of Newton’s second law for the 
translational motion of a particle or system of particles is

2 * -  -  f  ’

where P is the (linear) momentum, defined as mv for a particle, or Mvcm for a 
system of particles of total mass M  whose cm  moves with velocity vCM, and SFext is 
the net external force acting on the particle or system. This relation is valid only in 
an inertial reference frame.

In this Chapter, we have found a similar relation to describe the general rotation 
of a system of particles (including rigid objects):

V f  =  — >
^  dt

where is the net external torque acting on the system, and L is the total angular 
momentum. This relation is valid when and L are calculated about a point fixed 
in an inertial reference frame, or about the cm  of the system.

For translational motion, if the net force on the system is zero, dP/dt = 0, so 
the total linear momentum of the system remains constant. This is the law of 
conservation of linear momentum. For rotational motion, if the net torque on the 
system is zero, then

dh ->
—  = 0 and L = constant. dt I f  = 0] (11-12)

In words:

The total angular momentum of a system remains constant if the net external 
torque acting on the system is zero.

This is the law of conservation of angular momentum in full vector form. It ranks 
with the laws of conservation of energy and linear momentum (and others to be 
discussed later) as one of the great laws of physics. In Section 11-1 we saw some 
Examples of this important law applied to the special case of a rigid object rotating 
about a fixed axis. Here we have it in general form. We use it now in interesting

CONSERVATION OF 
ANGULAR MOMENTUM
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v tit sin 0

FIGURE 11-21 Kepler’s 
second law of planetary motion 
(Example 11-11).

FIGURE 11 -2 2  Bullet strikes and 
becomes embedded in cylinder at its 
edge (Example 11-12).
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EXAMPLE 11-11 Kepler's second law derived. Kepler’s second law states 
that each planet moves so that a line from the Sun to the planet sweeps out 
equal areas in equal times (Section 6-5). Use conservation of angular momentum to 
show this.
APPROACH We determine the angular momentum of a planet in terms of the 
area swept out with the help of Fig. 11-21.
SOLUTION The planet moves in an ellipse as shown in Fig. 11-21. In a time dt, 
the planet moves a distance v dt and sweeps out an area dA equal to the area of 
a triangle of base r and height v dt sin 0 (shown exaggerated in Fig. 11-21). Hence

dA = \(r)(v  dtsm 0)
and

dA i • „—— = 2^ s m 0. dt
The magnitude of the angular momentum L about the Sun is 

L  = |r X mv| = mrv sin 9,

dA _  1 
dt 2m

But L = constant, since the gravitational force F is directed toward the Sun so 
the torque it produces is zero (we ignore the pull of the other planets). Hence 
dA/dt = constant, which is what we set out to prove.

EXAMPLE 11-12 Bullet strikes cylinder edge. A bullet of mass m moving 
with velocity v strikes and becomes embedded at the edge of a cylinder of mass M  
and radius R0, as shown in Fig. 11-22. The cylinder, initially at rest, begins to 
rotate about its symmetry axis, which remains fixed in position. Assuming no 
frictional torque, what is the angular velocity of the cylinder after this collision? 
Is kinetic energy conserved?
APPROACH We take as our system the bullet and cylinder, on which there is no 
net external torque. Thus we can use conservation of angular momentum, and we 
calculate all angular momenta about the center O of the cylinder.
SOLUTION Initially, because the cylinder is at rest, the total angular momentum 
about O is solely that of the bullet:

L = |r X p| = R0mv,
since R0 is the perpendicular distance of p from O. After the collision, the 
cylinder (/cyl = I MRl) rotates with the bullet (/b = mRl) embedded in it at 
angular velocity (o:

L  = Iw = (/cy i + mRl)(o = Qm  + m )Rl(o.
Hence, because angular momentum is conserved, we find that a> is 

L mvR0 mv
(|M  + m )Rl + m )Rl f&M + m)R0

Angular momentum is conserved in this collision, but kinetic energy is not: 
Kf -  K[ = i l cy\(o2 + \(m Ro)(o2 -  \m v2

= \{^M Rq)(o2 + l(m Rl)(o2 — \m v2

= \{ \M  + m ) ( T ^ — ) 2 ~  W  VoM + m J■ 2 
mM

2 M  + 4m
which is less than zero. Hence Kt < K{. This energy is transformed to thermal



*11—7 The Spinning Top and Gyroscope
The motion of a rapidly spinning top, or a gyroscope, is an interesting example of 
rotational motion and of the use of the vector equation

Y  - dL

Consider a symmetrical top of mass M spinning rapidly about its symmetry axis, as 
in Fig. 11-23. The top is balanced on its tip at point O in an inertial reference 
frame. If the axis of the top makes an angle to the vertical (z axis), when the top 
is carefully released its axis will move, sweeping out a cone about the vertical as 
shown by the dashed lines in Fig. 11-23. This type of motion, in which a torque 
produces a change in the direction of the rotation axis, is called precession. The 
rate at which the rotation axis moves about the vertical (z) axis is called the 
angular velocity of precession, Cl (capital Greek omega). Let us now try to 
understand the reasons for this motion, and calculate Cl.

If the top were not spinning, it would immediately fall to the ground when 
released due to the pull of gravity. The apparent mystery of a top is that when it is 
spinning, it does not immediately fall to the ground but instead precesses—it 
moves slowly sideways. But this is not really so mysterious if we examine it from 
the point of view of angular momentum and torque, which we calculate about the 
point O. When the top is spinning with angular velocity o) about its symmetry axis, 
it has an angular momentum L directed along its axis, as shown in Fig. 11-23. 
(There is also angular momentum due to the precessional motion, so that the total 
L is not exactly along the axis of the top; but if fl «  w, which is usually the case, 
we can ignore this.) To change the angular momentum, a torque is required. If no 
torque were applied to the top, L would remain constant in magnitude and direction; 
the top would neither fall nor precess. But the slightest tip to the side results in a 
net torque about O, equal to f net = r X Mg, where ? is the position vector of the 
top’s center of mass with respect to O, and M is the mass of the top. The direction 
of f  net is perpendicular to both ? and Mg and by the right-hand rule is, as shown in 
Fig. 11-23, in the horizontal (xy) plane. The change in L in a time dt is

dL Tnet dt,
which is perpendicular to L and horizontal (parallel to f net), as shown in Fig. 11-23. 
Since dt, is perpendicular to L, the magnitude of L does not change. Only the 
direction of L changes. Since L points along the axis of the top, we see that 
this axis moves to the right in Fig. 11-23. That is, the upper end of the top’s axis 
moves in a horizontal direction perpendicular to L. This explains why the top 
precesses rather than falls. The vector L and the top’s axis move together in a 
horizontal circle. As they do so, f net and dL rotate as well so as to be horizontal 
and perpendicular to L.

To determine fi, we see from Fig. 11-23 that the angle dd (which is in a 
horizontal plane) is related to dL by

dL = L  sin (f> dd,
since L makes an angle <f) to the z axis. The angular velocity of precession is 
fl = dd/dt, which becomes (since dd = dL /L  sin <£ )

P H Y S I C S  A P P L I E D
A spinning top

Cl =
1 dL

[spinning top] (ll-13a)
L  sin <f> dt L  sin <f>

But tnet = |? X Mg| = rMg sin (p [because sin(7r -</>) = sin (/>] so we can also write

^  _ Mjgr [spinning top] (ll-13b)

Thus the rate of precession does not depend on the angle <£; but it is inversely 
orooortional to the ton’s angular momentum. The faster the too soins. the greater L is

FIGURE 1 1 -2 3  Spinning top.
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FIGURE 1 1 -2 4  A  toy gyroscope.

FIGURE 11 - 2 5  Path of a ball 
released on a rotating merry-go- 
round (a) in the reference frame of 
the merry-go-round, and (b) in a 
reference frame fixed on the ground.

Pen pie on grwirnJ 
appear lo move 
ihis way

Path oI'hull 
wiih res pec l 
to rotating 
platform (i.e. 
as seen by 
observer on 
platform)

(a) Rotting reference frame

Path of ball 
with respect 
to ground 
\i.e.. as seen 
by observers 
on l he yrminJ)

Plytform rotating 
counterclockwise

(b) Inertial reference frnme

From Eq. 11-1 (or Eq. 11-11) we can write L = Ico, where I  and (o are the 
moment of inertia and angular velocity of the spinning top about its spin axis. Then 
Eq. ll-13b  for the top’s precession angular velocity becomes 

Mgr
5 (11-13c)

1(0

*

Equations 11-13 apply also to a toy gyroscope, which consists of a rapidly spinning 
wheel mounted on an axle (Fig. 11-24). One end of the axle rests on a support. 
The other end of the axle is free and will precess like a top if its “spin” angular 
velocity a> is large compared to the precession rate (co »  O). As a> decreases due 
to friction and air resistance, the gyroscope will begin to fall, just as does a top.

11-8 Rotating Frames of Reference; 
Inertial Forces

Inertial and Noninertial Reference Frames
Up to now, we have examined the motion of objects, including circular and rotational 
motion, from the outside, as observers fixed on the Earth. Sometimes it is convenient 
to place ourselves (in theory, if not physically) into a reference frame that is rotating. 
Let us examine the motion of objects from the point of view, or frame of reference, of 
persons seated on a rotating platform such as a merry-go-round. It looks to them as if 
the rest of the world is going around them. But let us focus attention on what they 
observe when they place a tennis ball on the floor of the rotating platform, which 
we assume is frictionless. If they put the ball down gently, without giving it any 
push, they will observe that it accelerates from rest and moves outward as shown 
in Fig. 11-25a. According to Newton’s first law, an object initially at rest should 
stay at rest if no net force acts on it. But, according to the observers on the rotating 
platform, the ball starts moving even though there is no net force acting on it. To 
observers on the ground this is all very clear: the ball has an initial velocity when it is 
released (because the platform is moving), and it simply continues moving in a 
straight-line path as shown in Fig. 11-25b, in accordance with Newton’s first law.

But what shall we do about the frame of reference of the observers on the rotating 
platform? Since the ball moves without any net force on it, Newton’s first law, the 
law of inertia, does not hold in this rotating frame of reference. For this reason, 
such a frame is called a noninertial reference frame. An inertial reference frame 
(as we discussed in Chapter 4) is one in which the law of inertia—Newton’s first 
law—does hold, and so do Newton’s second and third laws. In a noninertial reference 
frame, such as our rotating platform, Newton’s second law also does not hold. For 
instance in the situation described above, there is no net force on the ball; yet, with 
respect to the rotating platform, the ball accelerates.

Fictitious (Inertial) Forces
Because Newton’s laws do not hold when observations are made with respect to a 
rotating frame of reference, calculation of motion can be complicated. However, we 
can still make use of Newton’s laws in such a reference frame if we make use of a 
trick. The ball on the rotating platform of Fig. 11-25a flies outward when released 
(even though no force is actually acting on it). So the trick we use is to write down 
the equation DF = ma as if a force equal to mv2/r  (or mo)2r) were acting radially 
outward on the object in addition to any other forces that may be acting. This extra 
force, which might be designated as “centrifugal force” since it seems to act 
outward, is called a fictitious force or pseudoforce. It is a pseudoforce (“pseudo” 
means “false”) because there is no object that exerts this force. Furthermore, when 
viewed from an inertial reference frame, the effect doesn’t exist at all. We have 
made up this pseudoforce so that we can make calculations in a noninertial frame 
using Newton’s second law, DF = ma. Thus the observer in the noninertial frame 
of Fig. ll-25a  uses Newton’s second law for the ball’s outward motion by assuming



The Earth itself is rotating on its axis. Thus, strictly speaking, Newton’s laws 
are not valid on the Earth. However, the effect of the Earth’s rotation is usually so 
small that it can be ignored, although it does influence the movement of large air 
masses and ocean currents. Because of the Earth’s rotation, the material of the 
Earth is concentrated slightly more at the equator. The Earth is thus not a perfect 
sphere but is slightly fatter at the equator than at the poles.

* 11—9 The Coriolis Effect
In a reference frame that rotates at a constant angular speed o) (relative to an 
inertial frame), there exists another pseudoforce known as the Coriolis force. It 
appears to act on an object in a rotating reference frame only if the object is 
moving relative to that rotating reference frame, and it acts to deflect the object 
sideways. It, too, is an effect of the rotating reference frame being noninertial and 
hence is referred to as an inertial force. It too affects the weather.

To see how the Coriolis force arises, consider two people, A and B, at rest on a 
platform rotating with angular speed to, as shown in Fig. 11-26a. They are situated 
at distances rA and rB from the axis of rotation (at O). The woman at A throws a 
ball with a horizontal velocity v (in her reference frame) radially outward toward 
the man at B on the outer edge of the platform. In Fig. 11-26a, we view the 
situation from an inertial reference frame. The ball initially has not only the 
velocity v radially outward, but also a tangential velocity vA due to the rotation of 
the platform. Now Eq. 10-4 tells us that vA = rAa), where rA is the woman’s 
radial distance from the axis of rotation at O. If the man at B had this same 
velocity vA , the ball would reach him perfectly. But his speed is vB = rB a), which 
is greater than vA because rB > rA. Thus, when the ball reaches the outer edge of 
the platform, it passes a point that the man at B has already gone by because his 
speed in that direction is greater than the ball’s. So the ball passes behind him.

Figure 11-26b shows the situation as seen from the rotating platform as frame 
of reference. Both A and B are at rest, and the ball is thrown with velocity v 
toward B, but the ball deflects to the right as shown and passes behind B as 
previously described. This is not a centrifugal-force effect, for the latter acts 
radially outward. Instead, this effect acts sideways, perpendicular to v, and is called 
a Coriolis acceleration; it is said to be due to the Coriolis force, which is a fictitious 
inertial force. Its explanation as seen from an inertial system was given above: it is 
an effect of being in a rotating system, wherein a point farther from the rotation 
axis has a higher linear speed. On the other hand, when viewed from the rotating 
system, we can describe the motion using Newton’s second law, DF = ma, if we 
add a “pseudoforce” term corresponding to this Coriolis effect.

Let us determine the magnitude of the Coriolis acceleration for the simple 
case described above. (We assume v is large and distances short, so we can ignore 
gravity.) We do the calculation from the inertial reference frame (Fig. ll-26a).The 
ball moves radially outward a distance rB — rA at speed v in a short time t given by 

rB ~ rA = vt.
During this time, the ball moves to the side a distance sA given by 

sA = vAt.
The man at B, in this time t, moves a distance 

sb = vBt.
The ball therefore passes behind him a distance s (Fig. 11-26a) given by 

s = sB -  sA = (vB -  vA)t.
We saw earlier that vA = rAw and vB = rB (o, so 

s = (rB ~ rA)(ot.
We substitute rB — rA = vt (see above) and get

.s = covt2. (11-14)

A '  Puih of 
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(a ) Jncnial rcfercncc frame

O*

(b) Routing reference frame

FIGURE 1 1 -2 6  The origin of the 
Coriolis effect. Looking down on a 
rotating platform, (a) as seen from a 
nonrotating inertial reference frame, 
and (b) as seen from the rotating 
platform as frame of reference.



FIGURE 11 -27 (a) Winds (moving air masses) would flow directly toward a low-pressure 
area if the Earth did not rotate, (b) and (c): Because of the Earth’s rotation, the winds are 
deflected to the right in the Northern Hemisphere (as in Fig. 11-26) as if a fictitious (Coriolis) 
force were acting.

Low
pressure

(a)

(b)

(c)

We see immediately that Eq. 11-14 corresponds to motion at constant 
acceleration. For as we saw in Chapter 2 (Eq. 2-12b), y = \a t2 for a constant 
acceleration (with zero initial velocity in the y direction). Thus, if we write Eq. 11-14 
in the form s = \a Coxt2, we see that the Coriolis acceleration aCor is

a  Cor =  2 o w . (11-15)

This relation is valid for any velocity in the plane of rotation perpendicular to the 
axis of rotation* (in Fig. 11-26, the axis through point O perpendicular to the page).

Because the Earth rotates, the Coriolis effect has some interesting manifestations 
on the Earth. It affects the movement of air masses and thus has an influence on 
weather. In the absence of the Coriolis effect, air would rush directly into a region 
of low pressure, as shown in Fig. 11-27a. But because of the Coriolis effect, the 
winds are deflected to the right in the Northern Hemisphere (Fig. 11-27b), since 
the Earth rotates from west to east. So there tends to be a counterclockwise wind 
pattern around a low-pressure area. The reverse is true in the Southern Hemisphere. 
Thus cyclones rotate counterclockwise in the Northern Hemisphere and clockwise 
in the Southern Hemisphere. The same effect explains the easterly trade winds 
near the equator: any winds heading south toward the equator will be deflected 
toward the west (that is, as if coming from the east).

The Coriolis effect also acts on a falling object. An object released from the 
top of a high tower will not hit the ground directly below the release point, but will 
be deflected slightly to the east. Viewed from an inertial frame, this happens 
because the top of the tower revolves with the Earth at a slightly higher speed 
than the bottom of the tower.

trThe Coriolis acceleration can be written in general in terms of the vector cross product as 
aCor =  - 2 m  X  v where m has direction along the rotation axis; its magnitude is aCor = 2wv± where 
v± is the component of velocity perpendicular to the rotation axis.

Summary
The angular momentum L of a rigid object rotating about a fixed 
axis is given by

L = I(o. (11-1)
Newton’s second law, in terms of angular momentum, is

dL
dt (11- 2)

If the net torque on an object is zero, dL/dt = 0, so L = 
constant. This is the law of conservation of angular momentum.

The vector product or cross product of two vectors A and B 
is another vector C = A X B whose magnitude is AB sin 6 and 
whose direction is perpendicular to both A and B in the sense 
of the right-hand rule.

The torque f  due to a force F is a vector quantity and is 
always calculated about some point O (the origin of a coordinate 
system) as follows:

f  = r X F, (11-5)
where r is the position vector of the point at which the force F acts.

Angular momentum is also a vector. For a particle having 
momentum p = my, the angular momentum L about some 
point O is

L = r X p, (11-6)

at any instant. The net torque 2 t on a particle is related to its 
angular momentum by

S f = £ •  dt (11-7)

For a system of particles, the total angular momentum L = 2L;. 
The total angular momentum of the system is related to the total 
net torque Ef on the system by

dL
2 f  = ~  dt (11-9)

This last relation is the vector rotational equivalent of Newton’s 
second law. It is valid when L and E? are calculated about an 
origin (1 ) fixed in an inertial reference system or (2) situated at 
the cm of the system. For a rigid object rotating about a fixed 
axis, the component of angular momentum about the rotation 
axis is given by LM = Id). If an object rotates about an axis of 
symmetry, then the vector relation L = Ia> holds, but this is 
not true in general.

If the total net torque on a system is zero, then the 
total vector angular momentum L remains constant. This is 
the important law of conservation of angular momentum. 
Tt a n n lie s  to the ve cto r I ,  anH th ere fo re  a lso  to ear.h o f its



Questions
1. If there were a great migration of people toward the Earth’s 

equator, would the length of the day (a) get longer because 
of conservation of angular momentum; (b) get shorter 
because of conservation of angular momentum; (c) get 
shorter because of conservation of energy; (d) get longer 
because of conservation of energy; or (e) remain unaffected?

2. Can the diver of Fig. 11-2 do a somersault without having 
any initial rotation when she leaves the board?

3. Suppose you are sitting on a rotating stool holding a 2-kg 
mass in each outstretched hand. If you suddenly drop the 
masses, will your angular velocity increase, decrease, or stay 
the same? Explain.

4. When a motorcyclist leaves the ground on a jump and 
leaves the throttle on (so the rear wheel spins), why does 
the front of the cycle rise up?

5. Suppose you are standing on the edge of a large freely rotating 
turntable. What happens if you walk toward the center?

6. A shortstop may leap into the air to catch a ball and throw 
it quickly. As he throws the ball, the upper part of his body 
rotates. If you look quickly you will notice that his hips and 
legs rotate in the 
opposite direction 
(Fig. 11-28). Explain.

FIGURE 11-28
Question 6. A 
shortstop in the air, 
throwing the ball.

7. If all the components of the vectors Vj and V2 were reversed 
in direction, how would this alter Vj X V2 ?

8. Name the four different conditions that could make 
Yl X V2 =  0.

9. A force F  = Fj  is applied to an object at a position r = 
x * + Xj + where the origin is at the c m . Does the 
torque about the cm  depend on x l  On y l  On z1

10. A particle moves with constant speed along a straight line. 
How does its angular momentum, calculated about any 
point not on its path, change in time?

11. If the net force on a system is zero, is the net torque also zero? 
If the net torque on a system is zero, is the net force zero? 
Give examples.

12. Explain how a child “pumps” on a swing to make it go higher.

Problems

13. Describe the torque needed if the person in Fig. 11-17 is to 
tilt the axle of the rotating wheel directly upward without it 
swerving to the side.

14. An astronaut floats freely in a weightless environment. 
Describe how the astronaut can move her limbs so as to
(a) turn her body upside down and (b) turn her body 
about-face.

15. On the basis of the law of conservation of angular 
momentum, discuss why a helicopter must have more 
than one rotor (or propeller). Discuss one or more ways 
the second propeller can operate in order to keep the 
helicopter stable.

16. A wheel is rotating freely about a vertical axis with constant 
angular velocity. Small parts of the wheel come loose and fly 
off. How does this affect the rotational speed of the wheel? 
Is angular momentum conserved? Is kinetic energy 
conserved? Explain.

17. Consider the following vector quantities: displacement, 
velocity, acceleration, momentum, angular momentum, 
torque, (a) Which of these are independent of the choice 
of origin of coordinates? (Consider different points as 
origin which are at rest with respect to each other.)
(b) Which are independent of the velocity of the coordi­
nate system?

18. How does a car make a right turn? Where does the torque 
come from that is needed to change the angular momentum?

*19. The axis of the Earth precesses with a period of about 
25,000 years. This is much like the precession of a top. 
Explain how the Earth’s equatorial bulge gives rise to 
a torque exerted by the Sun and Moon on the Earth; 
see Fig. 11-29, which is drawn for the winter solstice 
(December 21). About what axis would you expect the 
Earth’s rotation axis to precess as a result 
of the torque due to the Sun? Does 123^°/
the torque exist three months later? 
Explain. Equator j /

FIGURE 11-29
Question 19. 
(Not to scale.)

Orbit plane

Sun

\  | / /North 
Pole
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*20. Why is it that at most locations on the Earth, a plumb bob 
does not hang precisely in the direction of the Earth’s center?

*21. In a rotating frame of reference, Newton’s first and second 
laws remain useful if we assume that a pseudoforce equal to 
mo)2r is acting. What effect does this assumption have on the 
validity of Newton’s third law?

*22. In the battle of the Falkland Islands in 1914, the shots of 
British gunners initially fell wide of their marks because 
their calculations were based on naval battles fought in the 
Northern Hemisphere. The Falklands are in the Southern 
Hemisphere. Explain the origin of their problem.

1. (I) What is the angular momentum of a 0.210-kg ball 
rota tin a nn the end nf a thin string in a circle nf radius

11-1 Angular Momentum
2. (I) (a) What is the angular momentum of a 2.8-kg uniform

cylindrical arindina wheel of radius 18 cm when rntatina at



3. (II) A person stands, hands at his side, on a platform that is 
rotating at a rate of 0.90 rev/s. If 
he raises his arms to a horizontal 
position, Fig. 11-30, the speed of 
rotation decreases to 0.70 rev/s.
(a) Why? (b) By what factor has 
his moment of inertia changed?

FIGURE 11-30
Problem 3. —^

4. (II) A figure skater can increase her spin rotation rate from 
an initial rate of 1.0 rev every 1.5 s to a final rate of
2.5 rev/s. If her initial moment of inertia was 4.6 kg-m2, 
what is her final moment of inertia? How does she physi­
cally accomplish this change?

5. (II) A diver (such as the one shown in Fig. 11-2) can reduce 
her moment of inertia by a factor of about 3.5 when changing 
from the straight position to the tuck position. If she makes
2.0 rotations in 1.5 s when in the tuck position, what is her 
angular speed (rev/s) when in the straight position?

6. (II) A uniform horizontal rod of mass M  and length I rotates 
with angular velocity a) about a vertical axis through its 
center. Attached to each end of the rod is a small mass m. 
Determine the angular momentum of the system about 
the axis.

7. (II) Determine the angular momentum of the Earth
(a) about its rotation axis (assume the Earth is a uniform 
sphere), and (b) in its orbit around the Sun (treat the Earth 
as a particle orbiting the Sun). The Earth has 
mass = 6.0 X 1024kg and radius = 6.4 X 106m, and is
1.5 X 108km from the Sun.

8. (II) (a) What is the angular momentum of a figure skater 
spinning at 2.8 rev/s with arms in close to her body, 
assuming her to be a uniform cylinder with a height of
1.5 m, a radius of 15 cm, and a mass of 48 kg? (b) How much 
torque is required to slow her to a stop in 5.0 s, assuming she 
does not move her arms?

9. (II) A person stands on a platform, initially at rest, that can 
rotate freely without friction. The moment of inertia of the 
person plus the platform is /P. The person holds a spinning 
bicycle wheel with its axis horizontal. The wheel has 
moment of inertia /w and angular velocity % .  What will be 
the angular velocity wP of the platform if the person moves 
the axis of the wheel so that it points (a) vertically upward,
(b) at a 60° angle to the vertical, (c) vertically downward?
(d) What will wP be if the person reaches up and stops the 
wheel in part (a)?

10. (II) A uniform disk turns at 3.7 rev/s around a frictionless 
spindle. A nonrotating rod, of the 
same mass as the disk and length 
equal to the disk’s diameter, is 
dropped onto the freely spinning 
disk, Fig. 11-31. They then turn 
together around the spindle with 
their centers superposed. What is the 
angular frequency in rev/s of the \ 
combination?

FIGURE 11-31

&

11. (II) A person of mass 75 kg stands at the center of a rotating 
merry-go-round platform of radius 3.0 m and moment of inertia 
920 kg • m2. The platform rotates without friction with angular 
velocity 0.95 rad/s. The person walks radially to the edge of 
the platform, (a) Calculate the angular velocity when the 
person reaches the edge. (b) Calculate the rotational kinetic 
energy of the system of platform plus person before and after 
the person’s walk.

12. (II) A potter’s wheel is rotating around a vertical axis 
through its center at a frequency of 1.5 rev/s. The wheel can 
be considered a uniform disk of mass 5.0 kg and diameter
0.40 m. The potter then throws a 2.6-kg chunk of clay, 
approximately shaped as a flat disk of radius 8.0 cm, onto 
the center of the rotating wheel. What is the frequency of 
the wheel after the clay sticks to it?

13. (II) A 4.2-m-diameter merry-go-round is rotating freely with 
an angular velocity of 0.80 rad/s. Its total moment of inertia is 
1760 kg • m2. Four people standing on the ground, each of mass 
65 kg, suddenly step onto the edge of the merry-go-round. 
What is the angular velocity of the merry-go-round now? What 
if the people were on it initially and then jumped off in a radial 
direction (relative to the merry-go-round)?

14. (II) A woman of mass m  stands at the edge of a solid 
cylindrical platform of mass M  and radius R. At t = 0, the 
platform is rotating with negligible friction at angular 
velocity (Oq about a vertical axis through its center, and the 
woman begins walking with speed v (relative to the platform) 
toward the center of the platform, (a) Determine the 
angular velocity of the system as a function of time. 
(b) What will be the angular velocity when the woman 
reaches the center?

15. (II) A nonrotating cylindrical disk of moment of inertia I  is 
dropped onto an identical disk rotating at angular speed «. 
Assuming no external torques, what is the final common 
angular speed of the two disks?

16. (II) Suppose our Sun eventually collapses into a white 
dwarf, losing about half its mass in the process, and winding 
up with a radius 1.0% of its existing radius. Assuming the 
lost mass carries away no angular momentum, what would 
the Sun’s new rotation rate be? (Take the Sun’s current 
period to be about 30 days.) What would be its final kinetic 
energy in terms of its initial kinetic energy of today?

17. (Ill) Hurricanes can involve winds in excess of 120 km /h 
at the outer edge. Make a crude estimate of (a) the energy, 
and (b) the angular momentum, of such a hurricane, 
approximating it as a rigidly rotating uniform cylinder 
of air (density 1.3 kg/m3) of radius 85 km and height
4.5 km.

18. (Ill) An asteroid of mass 1.0 X 105kg, traveling at a speed 
of 35km /s relative to the Earth, hits the Earth at the 
equator tangentially, and in the direction of Earth’s 
rotation. Use angular momentum to estimate the percent 
change in the angular speed of the Earth as a result of 
the collision.

19. (Ill) Suppose a 65-kg person stands at the edge of a 6.5-m 
diameter merry-go-round turntable that is mounted on 
frictionless bearings and has a moment of inertia of 
1850 kg • m2. The turntable is at rest initially, but when the 
person begins running at a speed of 3.8 m/s (with respect to 
the turntable) around its edge, the turntable begins to rotate
in the nnnnsitp dirp.rtinn Calculate the ancnilar vp.lnritv o f



11 -2 Vector Cross Product and Torque
20. (I) If vector A points along the negative x  axis and vector B 

along the positive z axis, what is the direction of (a) A X B 
and (ib) B X A? (c) What is the magnitude of A X B and 
B X A?

21. (I) Show that (a) i X i = j X j = k X k = 0, ( b )  i X j = k, 
i X k = —j, and j X k = i.

22. (I) The directions of vectors A and B are given below for 
several cases. For each case, state the direction of A X B.
(a) A points east, B points south. (b) A points east, B points 
straight down, (c) A points straight up, B points north. 
(,d) A points straight up, B points straight down.

23. (II) What is the angle 6 between two vectors A and B, 
if |A X B| = A • B?

24. (II) A particle is located at r = (4.0i + 3.5j + 6.0k) m. 
A force F = (9.0j -  4.0k) N acts on it. What is the torque, 
calculated about the origin?

25. (II) Consider a particle of a rigid object rotating about a 
fixed axis. Show that the tangential and radial vector 
components of the linear acceleration are:

atan = a  X r and aR = w X v.

26. (II) (a) Show that the cross product of two vectors, 
A = A x i + A y j + A z k, and B = Bx i + By\ + Bz k is

A X B = (A y Bz -  A z By) i + (A ZBX -  A XBZ)j 

+ (A x By -  A y Bx)k.

(b) Then show that the cross product can be written

29. (II) Use the result of Problem 26 to determine (a) the 
vector product A X B and (b) the angle between A and B if 
A = 5.4i — 3.5j and B = — 8.5i + 5.6j + 2.0k.

30. (Ill) Show that the velocity v of any point in an object rotating 
with angular velocity dt about a fixed axis can be written

v =  w  X r

where r is the position vector of the point relative to an 
origin O located on the axis of rotation. Can O be anywhere 
on the rotation axis? Will v = a> X r if O is located at a 
point not on the axis of rotation?

31. (Ill) Let A, B, and C be three vectors, which for generality 
we assume do not all lie in the same plane. Show that 
A • (B X C) = B • (C X A) = C • (A X B).

11-3 Angular Momentum of a Particle
32. (I) What are the x, y, and z components of the angular 

momentum of a particle located at r = xi + yj + zk 
which has momentum p = px \ + p yj + pz k?

33. (I) Show that the kinetic energy K  of a particle of mass ra, 
moving in a circular path, is K  = L 2/2 I, where L  is its 
angular momentum and I  is its moment of inertia about the 
center of the circle.

34. (I) Calculate the angular momentum of a particle of mass ra 
moving with constant velocity v for two cases (see Fig. 11-33):
(a) about origin O,
and (b) about O '. y ---------- -----------------------

m y ]  o '

FIGURE 11-33 f
Problem 34. • O

35. (II) Two identical particles have equal but opposite

A X B =
i j k momenta, p and — p, but they are not traveling along the

A x A y , same line. Show that the total angular momentum of this
Bx By Bz system does not depend on the choice of origin.

where we use the rules for evaluating a determinant. (Note, 
however, that this is not really a determinant, but a 
memory aid.)

27. (II) An engineer estimates that under the most adverse 
expected weather condi­
tions, the total force 
on the highway sign 
in Fig. 11-32 will 
be F = (±  2.41 -  4.1j)kN, 
acting at the c m . What 
torque does this force exert 
about the base O?

FIGURE 11-32
Problem 27.

28. (II) The origin of a coordinate system is at the center of a 
wheel which rotates in the xy plane about its axle which is the 
z axis. A force F  = 215 N acts in the xy plane, at a +33.0° 
angle to the x  axis, at the point x  = 28.0 cm, y = 33.5 cm. 
D eterm ine the m agnitude and direction nf the torrme

36. (II) Determine the angular momentum of a 75-g particle about 
the origin of coordinates when the particle is at x = 4.4 m, 
y  = -6 .0  m, and it has velocity v = (3.2i -  8.0k) m/s.

37. (II) A particle is at the position (x, y, z) = (1.0,2.0, 3.0) m. 
It is traveling with a vector velocity (—5.0, +2.8, —3.1) m/s. 
Its mass is 3.8 kg. What is its vector angular momentum 
about the origin?

11 -4 and 11 -5 Angular Momentum and Torque: 
General Motion; Rigid Objects
38. (II) An Atwood machine (Fig. 11-16) consists of two 

masses, raA = 7.0 kg and raB = 8.2 kg, connected by a 
cord that passes over a pulley free to rotate about a fixed 
axis. The pulley is a solid cylinder of radius R0 = 0.40 m 
and mass 0.80 kg. (a) Determine the acceleration a of each 
mass, (b) What percentage of error in a would be made if 
the moment of inertia of the pulley were ignored? Ignore 
friction in the pulley bearings.

39. (II) Four identical particles of mass ra are mounted at equal 
intervals on a thin rod of length £ and mass M, with one 
mass at each end of the rod. If the system is rotated with 
angular velocity <w about an axis perpendicular to the rod 
thrnuah on e  o f the end m asses, determ ine (a \ the k inetic



40. (II) Two lightweight rods 24 cm in length are mounted 
perpendicular to an axle and at 180° to each other 
(Fig. 11-34). At the end of each rod is a 480-g mass. The 
rods are spaced 42 cm apart along the axle. The axle rotates 
at 4.5 rad/s. (a) What is the component of the total angular 
momentum along the axle? (b) What angle does the 
vector angular momentum make with the axle? [Hint: 
Remember that the vector 
angular momentum must be 
calculated about the same 480 £ 
point for both masses, which 
could be the c m .1

24 cm

FIGURE 11-34
Problem 40.

42 cm

24 cm

41. (II) Figure 11-35 shows two masses connected by a cord 
passing over a pulley of radius Rq and moment of inertia I. 
Mass Ma  slides on a frictionless surface, and MB hangs freely. 
Determine a formula for (a) the angular momentum of 
the system about the pulley axis, as a function of the speed v 
of mass Ma  or MB, 
and (b) the accelera­
tion of the masses. Ma

Mu

FIGURE 11-35
Problem 41.

42. (Ill) A thin rod of length I and mass M  rotates about a 
vertical axis through its center with angular velocity on. The 
rod makes an angle 4> with the rotation axis. Determine the 
magnitude and direction of L.

43. (Ill) Show that the total angular momentum L = 2r* X p2 
of a system of particles about the origin of an inertial refer­
ence frame can be written as the sum of the angular 
momentum about the c m , L* (spin angular momentum), plus 
the angular momentum of the cm  about the origin (orbital 
angular momentum): L = L* + rCM X Mvcm. [Hint: See 
the derivation of Eq. 11-9b.]

44. (Ill) What is the magnitude of the force F exerted by each 
bearing in Fig. 11-18 (Example 11-10)? The bearings are a 
distance d from point O. Ignore the effects of gravity.

45. (Ill) Suppose in Fig. 11-18 that raB = 0; that is, only one 
mass, raA, is actually present. If the bearings are each a 
distance d from O, determine the forces FA and FB at the 
upper and lower bearings respectively. [Hint: Choose an 
origin—different than O in Fig. 11-18—such that L is 
parallel to co. Ignore effects of gravity.]

25(1 m/s 140 m/s

11-6 Angular Momentum Conservation
47. (II) A thin rod of mass M  and length i  is suspended vertically 

from a frictionless pivot at its upper end. A mass m  of putty 
traveling horizontally with a speed v strikes the rod at its cm 
and sticks there. How high does the bottom of the rod swing?

48. (II) A uniform stick 1.0 m long with a total mass of 270 g is 
pivoted at its center. A 3.0-g bullet is
shot through the stick midway 
between the pivot and one 
end (Fig. 11-36). The bullet 
approaches at 250 m /s and ~~
leaves at 140 m/s. With what 
angular speed is the stick spin­
ning after the collision? pivoi

FIGURE 11-36
Problems 48 and 83.

49. (II) Suppose a 5.8 X 1010kg meteorite struck the Earth 
at the equator with a 
speed v = 2.2 X 104m/s, a 
as shown in Fig. 11-37 and —  
remained stuck. By what 
factor would this affect the 
rotational frequency of the 
Earth (1 rev/day)?

'W 4 5 ~

vNorih r  
'P ole I

Earth
FIGURE 11-37
Problem 49.

CM

50. (Ill) A 230-kg beam 2.7 m in length slides broadside down 
the ice with a speed of 18 m/s 
(Fig. 11-38). A 65-kg man at rest 
grabs one end as it goes past and 
hangs on as both he and the beam 
go spinning down the ice. Assume 
frictionless motion, (a) How fast does 
the center of mass of the system 
move after the collision? (b) With 
what angular velocity does the 
system rotate about its c m ?

FIGURE 11-38
Problem 50.

51. (Ill) A thin rod of mass M  and length I rests on a friction­
less table and is struck at a point £/A 
from its cm  by a clay ball of mass m  
moving at speed v (Fig. 11-39). The 
ball sticks to the rod. Determine the 
translational and rotational motion 
of the rod after the collision.

CM

46. (Ill) Suppose in Fig. 11-18 that raA = raB = 0.60 kg, 
rA  =  rB = 0.30 m, and the distance between the bearings is 
0.23 m. F.vahiate the force that each bearing m ust exert on FIGURE 11-39



52. (Ill) On a level billiards table a cue ball, initially at rest at 
point O on the table, is struck so that it leaves the cue stick with 
a center-of-mass speed v0 and a “reverse” spin of angular speed 
o)0 (see Fig. 11-40). A kinetic friction force acts on the ball as it 
initially skids across the table, (a) Explain why the ball’s 
angular momentum is conserved about point O. (b) Using 
conservation of angular momentum, find the critical angular 
speed o)C such that, if co0 = eoc , kinetic friction will bring the 
ball to a complete (as opposed to momentary) stop, (c) If <w0 is 
10% smaller than <wc , i.e., (o0 = 0.90 (oc , determine the 
ball’s cm  velocity vCM when it starts to roll without slipping.
(d) If o)q is 10% larger than o)C, i.e., a)0 = 1.10 eoc , determine 
the ball’s cm  velocity vCM when it starts to roll without slipping. 
[Hint: The ball possesses two types of angular momentum, the 
first due to the linear speed vCM of its c m  relative to point O, 
the second due to the spin at angular velocity co about its 
own c m . The ball’s total L  about O is the sum of these 
two angular 
momenta.l

/

FIGURE 11-40
Problem 52.

11-7 Spinning Top
53. (II) A 220-g top spinning at 15 rev/s makes an angle of 25° 

to the vertical and precesses at a rate of 1.00 rev per 6.5 s. If 
its cm  is 3.5 cm from its tip along its symmetry axis, what is 
the moment of inertia of the top?

54. (II) A toy gyroscope consists of a 170-g disk with a radius of
5.5 cm mounted at the center of a thin axle 21 cm long 
(Fig. 11-41). The gyroscope spins at 45 rev/s. One end of its 
axle rests on a stand and the other end precesses horizontally 
about the stand, (a) H ow  long does it take the gyro­
scope to precess once around? (b) If all the dimensions of the 
gyroscope were doubled (radius = 11cm, axle = 42 cm), 
how long would it take to
precess once?

FIGURE 11-41 Awheel, 
rotating about a horizontal 
axle supported at one end, 
precesses. Problems 54,55, 
and 56.

55. (II) Suppose the solid wheel of Fig. 11-41 has a mass of 
300 g and rotates at 85 rad/s; it has radius 6.0 cm and is 
mounted at the center of a horizontal thin axle 25 cm long. 
At what rate does the axle precess?

56. (II) If a mass equal to half the mass of the wheel in Problem 55 
is placed at the free end of the axle, what will be the precession 
rate now? Treat the extra mass as insignificant in size.

57. (II) A bicycle wheel of diameter 65 cm and mass m  rotates 
on its axle; two 20-cm-long wooden handles, one on each side of 
the wheel, act as the axle. You tie a rope to a small hook on the 
end of one of the handles, and then spin the bicycle wheel with 
a flick of the hand. When you release the spinning wheel, it 
precesses about the vertical axis defined by the rope, instead of 
falling to the ground (as it would if it were not spinning). Esti­
m ate the rate and direction nf nreeession if the wheel rotates

11-8 Rotating Reference Frames
*58. (II) If a plant is allowed to grow from seed on a rotating 

platform, it will grow at an angle, pointing inward. Calculate 
what this angle will be (put yourself in the rotating frame) 
in terms of g, r, and (o. Why does it grow inward rather than 
outward?

*59. (Ill) Let g' be the effective acceleration of gravity at a point 
on the rotating Earth, equal to the vector sum of the “true” 
value g plus the effect of the rotating reference frame (mo)2r 
term). See Fig. 11-42. Determine the magnitude and 
direction of g' relative to a radial line from the center of the 
Earth (a) at the North Pole, (b) at a 
latitude of 45.0° north, and (c) at n»a2r
the equator. Assume that 
g (if a) were zero) is a 
constant 9.80 m /s2.

FIGURE 11-42
Problem 59.

*11-9 Coriolis Effect
*60. (II) Suppose the man at B in Fig. 11-26 throws the ball 

toward the woman at A. (a) In what direction is the ball 
deflected as seen in the noninertial system? (b) Determine a 
formula for the amount of deflection and for the (Coriolis) 
acceleration in this case.

* 61. (II) For what directions of velocity would the Coriolis effect 
on an object moving at the Earth’s equator be zero?

*62. (Ill) We can alter Eqs. 11-14 and 11-15 for use on Earth by 
considering only the component of v perpendicular to the 
axis of rotation. From Fig. 11-43, we see that this is v cos A 
for a vertically falling object, where A is the latitude of the 
place on the Earth. If a lead ball is dropped vertically 
from a 110-m-high tower in Florence,
Italy (latitude = 44°), how far from 
the base of the tower 
it deflected by the Coriolis 
force?

FIGURE 11-43
Problem 62. Object of 
mass m  falling vertically 
to Earth at a latitude A. I South Pole

*63. (Ill) An ant crawls with constant speed outward along a 
radial spoke of a wheel rotating at constant angular velocity cd 

about a vertical axis. Write a vector equation for all the 
forces (including inertial forces) acting on the ant. Take the 
x  axis along the spoke, y  perpendicular to the spoke 
nointinp to  the ant’s left, and the 7 axis vertieallv nnward.



| General Problems
64. A thin string is wrapped around a cylindrical hoop of radius 

R  and mass M. One end of the string is fixed, and the hoop 
is allowed to fall vertically, starting from rest, as the string 
unwinds, (a) Determine the angular momentum of the hoop 
about its cm  as a function of time. (b) What is the tension in 
the string as function of time?

65. A particle of mass 1.00 kg is moving with velocity 
v = (7.0i + 6.0j) m/s. (a) Find the angular momentum 
L relative to the origin when the particle is at 
? = (2.0j + 4.0k) m. (b) At position r a force of F = 4.0 Ni 
is applied to the particle. Find the torque relative to the 
origin.

66. A merry-go-round with a moment of inertia equal to 
1260 kg-m2 and a radius of 2.5 m rotates with negligible 
friction at 1.70 rad/s. A child initially standing still next to 
the merry-go-round jumps onto the edge of the platform 
straight toward the axis of rotation causing the platform to 
slow to 1.25 rad/s. What is her mass?

67. Why might tall narrow SUVs and buses be prone to 
“rollover”? Consider a vehicle rounding a curve of radius R  
on a flat road. When just on the verge of rollover, its tires on 
the inside of the curve are about to leave the ground, so the 
friction and normal force on these two tires are zero. The 
total normal force on the outside tires is Fn and the total 
friction force is Ffr . Assume that the vehicle is not skidding. 
(a) Analysts define a static stability factor SSF = w/2h, 
where a vehicle’s “track width” w  is the distance between 
tires on the same axle, and h is the height of the c m  above 
the ground. Show that the critical rollover speed is

w
V c  =  'l R g \2 h )-

[Hint: Take torques about an axis through the center of 
mass of the SUV, parallel to its direction of motion.] 
(b) Determine the ratio of highway curve radii (minimum 
possible) for a typical passenger car with SSF = 1.40 and 
an SUV with SSF = 1.05 at a speed of 90 km/h.

68. A spherical asteroid with radius r = 123 m and mass 
M  = 2.25 X 1010 kg rotates about an axis at four revolutions 
per day. A “tug” spaceship attaches itself to the asteroid’s 
south pole (as defined by the axis of rotation) and fires its 
engine, applying a force F  tangentially to the asteroid’s 
surface as shown in Fig. 11-44. If 
F = 265 N, how long will it take the 
tug to rotate the asteroid’s axis of 
rotation through an angle of 
10 .0° by this method?

r -  123 m

V S

69. The time-dependent position of a point object which 
moves counterclockwise along the circumference of a circle 
(radius R) in the xy plane with constant speed v is given by

? = i R  cos (at + j R  sin a)t

where the constant (o = v/R . Determine the velocity v and 
angular velocity o) of this object and then show that these 
three vectors obey the relation v = a> X r.

70. The position of a particle with mass m  traveling on a helical 
path (see Fig. 11-45) is given by

? = R  cos I ttz \  1 _  . — j .  + Rsm
27T_z\?

d J
j + zk

where R  and d are the radius and pitch of the helix, respec­
tively, and z has time dependence z = vz t where vz is 
the (constant) component of velocity in the z direction. 
Determine the time-dependent angular momentum L of the 
particle about the origin.

FIGURE 11-dd

FIGURE 11-45 Problem 70.

71. A boy rolls a tire along a straight level street. The tire has 
mass 8.0 kg, radius 0.32 m and moment of inertia about its 
central axis of symmetry of 0.83 kg • m2. The boy pushes the 
tire forward away from him at a speed of 2.1 m /s and sees that 
the tire leans 12° to the right (Fig. 11-46). (a) How will the 
resultant torque affect the subsequent 
motion of the tire? (b) Compare the change 
in angular momentum caused by this torque 
in 0.20 s to the original magnitude of 
angular momentum.

FIGURE 11-46
Problem 71.

72. A 70-kg person stands on a tiny rotating platform with arms 
outstretched, (a) Estimate the moment of inertia of the 
person using the following approximations: the body 
(including head and legs) is a 60-kg cylinder, 12  cm in radius 
and 1.70 m high; and each arm is a 5.0-kg thin rod, 60 cm 
long, attached to the cylinder, (b) Using the same approxi­
mations, estimate the moment of inertia when the arms are 
at the person’s sides, (c) If one rotation takes 1.5 s when the 
person’s arms are outstretched, what is the time for each 
rotation with arms at the sides? Ignore the moment of 
inertia of the lightweight platform, (d) Determine the 
change in kinetic energy when the arms are lifted from the 
sides to the horizontal position. (e) From your answer to
nart (rf\ wonlH von exnent it to  be harder or easier to  lift



73. Water drives a waterwheel (or turbine) of radius R = 3.0 m 
as shown in Fig. 11-47. The water enters at a speed 
Vi = 7.0 m /s and exits from the waterwheel at a speed 
v2 = 3.8 m/s. (a) If 85 kg of water passes through per 
second, what is the rate at which the water delivers angular 
momentum to the waterwheel? (b) What is the torque the 
water applies to the waterwheel? (c) If the water causes the 
waterwheel to make one revolu-

Problem 73.

74. The Moon orbits the Earth such that the same side always 
faces the Earth. Determine the ratio of the Moon’s spin 
angular momentum (about its own axis) to its orbital 
angular momentum. (In the latter case, treat the Moon as a 
particle orbiting the Earth.)

75. A particle of mass m  uniformly accelerates as it moves 
counterclockwise along the circumference of a circle of 
radius R:

r = i R  cos 0 + j R  sin 0

with 6 = ft>01 + \  at2, where the constants w0 and a are the 
initial angular velocity and angular acceleration, respectively. 
Determine the object’s tangential acceleration atan and deter­
mine the torque acting on the object using (a) f  = r X F,
(b) f  = Id.

76. A projectile with mass m  is launched from the ground and 
follows a trajectory given by

? = (vxot)i + ^Vyot -  \ g t 2^ j

where vx0 and vy0 are the initial velocities in the x  and 
y  direction, respectively, and g is the acceleration due to 
gravity. The launch position is defined to be the origin. 
Determine the torque acting on the projectile about the 
origin using (a) f  = r X F, (b) t  = dL/dt.

77. Most of our Solar System’s mass is contained in the Sun, and 
the planets possess almost all of the Solar System’s angular 
momentum. This observation plays a key role in theories 
attempting to explain the formation of our Solar System. 
Estimate the fraction of the Solar System’s total angular 
momentum that is possessed by planets using a simplified 
model which includes only the large outer planets with the most 
angular momentum. The central Sun (mass 1.99 X 1030kg, 
radius 6.96 X 108 m) spins about its axis once every 25 days 
and the planets Jupiter, Saturn, Uranus, and Neptune move 
in nearly circular orbits around the Sun with orbital data 
given in the Table below. Ignore each planet’s spin about its 
own axis.

Mean Distance from Orbital Period Mass
Planet S u n (x l0 6km) (Earth Years) (x  1025kg)

Jupiter 778 11.9 190
Saturn 1427 29.5 56.8
Uranus 2870 84.0 8.68

78. A bicyclist traveling with speed v = 9.2 m/s on a flat road 
is making a turn with a radius r = 12 m. The forces acting 
on the cyclist and cycle are the normal force (Fn) and friction 
force (Ffr) exerted by the road on the tires and rag, the total 
weight of the cyclist and cycle. Ignore the small mass of the 
wheels, (a) Explain carefully why the angle 0 the bicycle 
makes with the vertical (Fig. 11-48) must be given 
by tan 0 = FfT/FN if the cyclist is to maintain balance.
(b) Calculate 0 for the values given. [Hint: Consider 
the “circular” translational motion of the bicycle and 
rider.] (c) If the coefficient of static friction between 
tires and road is = 0.65, what is the minimum turning 
radius?

(a)
FIGURE 11-48 Problem 78.

79. Competitive ice skaters commonly perform single, double, 
and triple axel jumps in which they rotate l | , 2 | ,  and
3 \  revolutions, respectively, about a vertical axis while airborne. 
For all these jumps, a typical skater remains airborne for 
about 0.70 s. Suppose a skater leaves the ground in an 
“open” position (e.g., arms outstretched) with moment of 
inertia 70 and rotational frequency /o = 1.2 rev/s, main­
taining this position for 0.10 s. The skater then assumes a 
“closed” position (arms brought closer) with moment of 
inertia I, acquiring a rotational frequency / ,  which is 
maintained for 0.50 s. Finally, the skater immediately returns 
to the “open” position for 0.10 s until landing (see Fig. 11 -  49).
(a) Why is angular momentum conserved during the skater’s 
jump? Neglect air resistance, (b) Determine the minimum 
rotational frequency /  during the flight’s middle section for 
the skater to successfully complete a single and a triple axel,
(c) Show that, according to this model, a skater must be able 
to reduce his or her moment of inertia in midflight by a 
factor of about 2 and 5 in order to complete a single and
triple axel, respectively.

/
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80. A radio transmission tower has a mass of 80 kg and is 12 m 
high. The tower is anchored to the ground by a flexible joint 
at its base, but it is secured by three cables 120° apart 
(Fig. 11-50). In an analysis of a potential failure, a mechanical 
engineer needs to determine the behavior of the tower if one 
of the cables broke. The tower would fall away from the 
broken cable, rotating about its base. Determine the speed of 
the top of the tower as a function of the rotation angle 6. 
Start your analysis with the rotational dynamics equation of 
motion dL/dt = f net. Approximate the tower as a tall 
thin rod.

82. A baseball bat has a “sweet spot” where a ball can be hit 
with almost effortless transmission of energy. A careful 
analysis of baseball dynamics shows that this special spot is 
located at the point where an applied force would result in 
pure rotation of the bat about the handle grip. Determine the 
location of the sweet spot of the bat shown in Fig. 11-51. 
The linear mass density of the bat is given roughly by 
(0.61 + 3.3jc2) kg/m, where x  is in meters measured from 
the end of the handle. The entire bat is 0.84 m long. The 
desired rotation point should be 5.0 cm from the end where 
the bat is held. [Hint: Where is the cm  of the bat?]

0
CM

.1 V iff
4 m

FIGURE 11-50 Problem 80.

81. Suppose a star the size of our Sun, but with mass 8.0 times 
as great, were rotating at a speed of 1.0 revolution every
9.0 days. If it were to undergo gravitational collapse to 
a neutron star of radius 12  km, losing f of its mass in 
the process, what would its rotation speed be? Assume 
the star is a uniform sphere at all times. Assume also 
that the thrown-off mass carries off either (a) no angular 
momentum, or (b) its proportional share (f) of the initial 
angular momentum.

FIGURE 11-51 Problem 82.

* Numerical/Computer
* 83. (II) A uniform stick 1.00 m long with a total mass of 330 g is

pivoted at its center. A 3.0-g bullet is shot through the stick 
a distance x  from the pivot. The bullet approaches at 
250 m/s and leaves at 140 m /s (Fig. 11-36). (a) Determine a 
formula for the angular speed of the spinning stick after the 
collision as a function of x. (b) Graph the angular speed as a 
function of x, from x = 0 to x = 0.50 m.

*84. (Ill) Figure 11-39 shows a thin rod of mass M  and length i  
resting on a frictionless table. The rod is struck at a distance x 
from its cm  by a clay ball of mass m  moving at speed v. The 
ball sticks to the rod. (a) Determine a formula for the 
rotational motion of the system after the collision, (b) Graph 
the rotational motion of the system as a function of x, from 
x = 0 to x  = i/2 , with values of M  = 450 g, m = 15 g, 
i  = 1.20 m, and v = 12 m/s. (c) Does the translational 
motion depend on x l  Explain.

Answers to Exercises

A: (6). D: (i) (d)\ (ii) (a); (iii) (/>)•
B: (a). E: (e).



Static Equilibrium; 
Elasticity and Fracture

CHAPTER-OPENING QUESTIOI —Guess Now!
The diving board shown here is held by two supports at A and B.
Which statement is true about the forces exerted on the diving board 
at A and B?

(a) Fa is down, Fb is up, and FB is larger than FA.
(b) Both forces are up and FB is larger than FA. A B________ _
(c) Fa is down, FB is up, and FA is larger than FB.
(d) Both forces are down and approximately equal.
(e) FB is down, FA is up, and they are equal.

W e now study a special case in mechanics— when the net force and 
the net torque on an object, or system of objects, are both zero. In this 
case both the linear acceleration and the angular acceleration of the 
object or system are zero. The object is either at rest, or its center of 

mass is moving at constant velocity. We will be concerned mainly with the first 
situation, in which the object or objects are at rest.

We will see how to determine the forces (and torques) that act within a 
structure. Just how and where these forces act can be very important for buildings, 
bridges, and other structures, and in the human body.

Statics is concerned with the calculation of the forces acting on and within 
structures that are in equilibrium. Determination of these forces, which occupies us 
in the first part of this Chapter, then allows a determination of whether the 
structures can sustain the forces without significant deformation or fracture, since

Our whole built environment, from 
modern bridges to skyscrapers, has 
required architects and engineers to 
determine the forces and stresses 
within these structures. The object is 
to keep these structures static— that 
is, not in motion, especially not 
falling down.

CONTENTS
12-1 The Conditions for Equilibrium 
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FIGURE 12-1  Elevated walkway 
collapse in a Kansas City hotel in 
1981. How a simple physics 
calculation could have prevented 
the traoio loss n f nver 100 lives is



12—1 The Conditions for Equilibrium
^N orn^l force 

|  Gravity

FIGURE 1 2 -2  The book is in 
equilibrium; the net force on it is zero.

FIGURE 1 2 -3  Example 12-1.

Objects in daily life have at least one force acting on them (gravity). If they are at 
rest, then there must be other forces acting on them as well so that the net force is 
zero. A book at rest on a table, for example, has two forces acting on it, the down­
ward force of gravity and the normal force the table exerts upward on it (Fig. 12-2). 
Because the book is at rest, Newton’s second law tells us the net force on it is zero. 
Thus the upward force exerted by the table on the book must be equal in magnitude 
to the force of gravity acting downward on the book. Such an object is said to be 
in equilibrium (Latin for “equal forces” or “balance”) under the action of these 
two forces.

Do not confuse the two forces in Fig. 12-2 with the equal and opposite forces 
of Newton’s third law, which act on different objects. Here, both forces act on the 
same object; and they add up to zero.

The First Condition_for Equilibrium
For an object to be at rest, Newton’s second law tells us that the sum of the forces 
acting on it must add up to zero. Since force is a vector, the components of the net 
force must each be zero. Hence, a condition for equilibrium is that

ZFX = 0, ZFy = 0, ZFz = 0. (12- 1)
We will mainly be dealing with forces that act in a plane, so we usually need only 
the x  and y components. We must remember that if a particular force component 
points along the negative x or y axis, it must have a negative sign. Equations 12-1 
are called the first condition for equilibrium.

EXAMPLE 12-1 Chandelier cord tension. Calculate the tensions FA and FB 
in the two cords that are connected to the vertical cord supporting the 200-kg 
chandelier in Fig. 12-3. Ignore the mass of the cords.
APPROACH We need a free-body diagram, but for which object? If we choose 
the chandelier, the cord supporting it must exert a force equal to the chandelier’s 
weight mg = (200kg)(9.8m/s2) = 1960 N. But the forces FA and FB don’t get 
involved. Instead, let us choose as our object the point where the three cords 
join (it could be a knot). The free-body diagram is then as shown in Fig. 12-3a. 
The three forces—FA , FB, and the tension in the vertical cord equal to the weight of 
the 200-kg chandelier—act at this point where the three cords join. For this junction 
point we write 2 F* = 0 and 'EFy = 0, since the problem is laid out in two 
dimensions. The directions of FA and FB are known, since tension in a cord can 
only be along the cord—any other direction would cause the cord to bend, as already 
pointed out in Chapter 4. Thus, our unknowns are the magnitudes FA and FB. 
SOLUTION We first resolve FA into its horizontal (x) and vertical (y) compo­
nents. Although we don’t know the value of FA, we can write (see Fig. 12-3b) 
FAx = —Fa cos 60° and FAy = FAsin60°. FB has only an x component. In the vertical 
direction, we have the downward force exerted by the vertical cord equal to the 
weight of the chandelier = (200 kg) (g), and the vertical component of FA upward:

ZFy = 0

SO

Fa sin 60° -  (200 kg) (g) = 0 

(200 kg)g
V = (231kg )g = 2260 N.

sin 60
In the horizontal direction, with 2 Fx = 0,

2F* = FB — Fa cos 60° = 0.
Thus

Fb = FAcos60° = (231 kg) (g) (0.500) = (115kg)g = 1130 N. 
The magnitudes of FA and FB determine the strength of cord or wire that must be



Although Eqs. 12-1 are a necessary condition for an object to be in equilibrium, 
they are not always a sufficient condition. Figure 12-4 shows an object on which 
the net force is zero. Although the two forces labeled F add up to give zero net 
force on the object, they do give rise to a net torque that will rotate the object. 
Referring to Eq. 10-14, 2 r  = l a , we see that if an object is to remain at rest, the 
net torque applied to it (calculated about any axis) must be zero. Thus we have the 
second condition for equilibrium: that the sum of the torques acting on an object, 
as calculated about any axis, must be zero:

2 r  = 0. (12 - 2)

This condition will ensure that the angular acceleration, a , about any axis will be 
zero. If the object is not rotating initially (co = 0), it will not start rotating. Equa­
tions 12 - 1  and 12-2  are the only requirements for an object to be in equilibrium.

We will mainly consider cases in which the forces all act in a plane (we call it the 
xy plane). In such cases the torque is calculated about an axis that is perpendicular to 
the xy plane. The choice o f this axis is arbitrary. If the object is at rest, then D t = 0 
about any axis whatever. Therefore we can choose any axis that makes our calculation 
easier. Once the axis is chosen, all torques must be calculated about that axis.

CONCEPTUAL EXAMPLE 12-2 I A lever. The bar in Fig. 12-5 is being used as a lever 
to pry up a large rock.The small rock acts as a fulcrum (pivot point).The force Fp required 
at the long end of the bar can be quite a bit smaller than the rock’s weight mg, since it is the 
torques that balance in the rotation about the fulcrum. If, however, the leverage isn’t 
sufficient, and the large rock isn’t budged, what are two ways to increase the leverage? 
RESPONSE One way is to increase the lever arm of the force FP by slipping a pipe 
over the end of the bar and thereby pushing with a longer lever arm. A second way 
is to move the fulcrum closer to the large rock. This may change the long lever arm 
R only a little, but it changes the short lever arm r by a substantial fraction and 
therefore changes the ratio of R /r  dramatically. In order to pry the rock, the torque 
due to Fp must at least balance the torque due to mg; that is, mgr = FpR and

L. = *L.
R mg

With r smaller, the weight mg can be balanced with less force Fp. The ratio of the 
load force to your applied force (= mg/Fp here) is the mechanical advantage of 
the system, and here equals R/r. A lever is a “simple machine.” We discussed 
another simple machine, the pulley, in Chapter 4, Example 4-14.

EXERCISE B For simplicity, we wrote the equation in Example 1 2 -2  as if the lever were 
perpendicular to the forces. Would the equation be valid even for a lever at an angle as 
shown in Fig. 12-5?

1 2 -2  Solving Statics Problems
The subject of statics is important because it allows us to calculate certain forces on (or 
within) a structure when some of the forces on it are already known. We will mainly 
consider situations in which all the forces act in a plane, so we can have two force 
equations (x and y components) and one torque equation, for a total of three 
equations. Of course, you do not have to use all three equations if they are not 
needed. When using a torque equation, a torque that tends to rotate the object 
counterclockwise is usually considered positive, whereas a torque that tends to rotate it 
clockwise is considered negative. (But the opposite convention would be okay too.)

One of the forces that acts on objects is the force of gravity. As we discussed in 
Section 9-8, we can consider the force of gravity on an object as acting at its center 
of gravity (c g) or center of mass (cm ), which for practical purposes are the same 
point. For uniform svmmetricallv shaped obiects. the cg  is at the geometric center.

The Second Condition for Equilibrium

FIGURE 1 2 -4  Although the net 
force on it is zero, the ruler will move 
(rotate). A  pair of equal forces acting 
in opposite directions but at different 
points on an object (as shown here) 
is referred to as a couple.

/j\ CAUTION____________
A xis choice fo r  =  0 is arbitrary. 
A ll torques m ust be calculated 
about the same axis.

( ^ P H Y S I C S  A P P L I E D
The lever

FIGURE 1 2 -5  Example 12-2 .
A  lever can “multiply” your force.

P P R O B L E M  S O L V I N G
t  >  0  counterclockwise 
t  <  0 clockwise
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1. Choose one object at a time for consideration. 
Make a careful free-body diagram by showing all 
the forces acting on that object, including gravity, 
and the points at which these forces act. If you 
aren’t sure of the direction of a force, choose a 
direction; if the actual direction is opposite, your 
eventual calculation will give a result with a minus 
sign.

2. Choose a convenient coordinate system, and resolve 
the forces into their components.

3. Using letters to represent unknowns, write down the 
equilibrium equations for the forces:

'EFx = 0 and 'S.Fy = 0, 

assuming all the forces act in a plane.

4. For the torque equation,
Dt = 0,

choose any axis perpendicular to the xy plane that 
might make the calculation easier. (For example, you 
can reduce the number of unknowns in the resulting 
equation by choosing the axis so that one of the 
unknown forces acts through that axis; then this force 
will have zero lever arm and produce zero torque, and 
so won’t appear in the torque equation.) Pay careful 
attention to determining the lever arm for each force 
correctly. Give each torque a + or -  sign to indicate 
torque direction. For example, if torques tending to 
rotate the object counterclockwise are positive, then 
those tending to rotate it clockwise are negative.

5. Solve these equations for the unknowns. Three equa­
tions allow a maximum of three unknowns to be solved 
for. They can be forces, distances, or even angles.

^ P H Y S I C S  A P P L I E D
Balancing a seesaw

mA = 30 kg mB = 25 kg 

2.5 m — »+»-------- -x-------- &
pT ~(a)

h— 2.5 m — JL— x — h

'f p\m  _  \
fa = ™a8 Ffi -  mB§

(b)

FIGURE 1 2 -6  (a) Two children on a 
seesaw, Example 12-3. (b) Free-body 
diagram of the board.

EXAMPLE 12-3 Balancing a seesaw. A board of mass M = 2.0 kg serves 
as a seesaw for two children, as shown in Fig. 12-6a. Child A has a mass of 30 kg 
and sits 2.5 m from the pivot point, P (his center of gravity is 2.5 m from the 
pivot). At what distance x from the pivot must child B, of mass 25 kg, place 
herself to balance the seesaw? Assume the board is uniform and centered over 
the pivot.
APPROACH We follow the steps of the Problem Solving Strategy above. 
SOLUTION
1. Free-body diagram. We choose the board as our object, and assume it is 

horizontal. Its free-body diagram is shown in Fig. 12-6b. The forces acting on 
the board are the forces exerted downward on it by each child, FA and FB, the 
upward force exerted by the pivot FN, and the force of gravity on the board 
(=Mg) which acts at the center of the uniform board.

2. Coordinate system. We choose y to be vertical, with positive upward, and x 
horizontal to the right, with origin at the pivot.

3. Force equation. All the forces are in the y (vertical) direction, so
= 0

“  mAg -  mBg -  Mg = 0,
where FA = mA g and FB = mBg because each child is in equilibrium when 
the seesaw is balanced.

4. Torque equation. Let us calculate the torque about an axis through the 
board at the pivot point, P. Then the lever arms for FN and for the weight 
of the board are zero, and they will contribute zero torque about point P. 
Thus the torque equation will involve only the forces FA and FB, which are 
equal to the weights of the children. The torque exerted by each child will be 
mg times the appropriate lever arm, which here is the distance of each child 
from the pivot point. Hence the torque equation is

2 t  = 0
raAg(2.5m) -  mBgx + Mg(0 m) + FN(0m) = 0

or
raAg(2.5m) -  mBgx =  0,



5. Solve. We solve the torque equation for x and find
30 kg

= — (2.5 m) = mB 25 kg
(2.5 m) 3.0 m.

To balance the seesaw, child B must sit so that her cm  is 3.0 m from the pivot 
point. This makes sense: since she is lighter, she must sit farther from the pivot 
than the heavier child in order to provide equal torque.

EXERCISE C We did not need to use the force equation to solve Example 12-3  because of 
our choice of the axis. U se the force equation to find the force exerted by the pivot.

Figure 12-7 shows a uniform beam that extends beyond its support like a 
diving board. Such a beam is called a cantilever. The forces acting on the beam in 
Fig. 12-7 are those due to the supports, FA and FB, and the force of gravity which 
acts at the c g , 5.0 m to the right of the right-hand support. If you follow the 
procedure of the last Example and calculate FA and FB, assuming they point 
upward as shown in Fig. 12-7, you will find that FA comes out negative. If the 
beam has a mass of 1200 kg and a weight mg = 12,000 N, then FB = 15,000 N 
and Fa = -3000 N (see Problem 9). Whenever an unknown force comes out 
negative, it merely means that the force actually points in the opposite direction 
from what you assumed. Thus in Fig. 12-7, FA actually points downward. With a 
little reflection it should become clear that the left-hand support must indeed pull 
downward on the beam (by means of bolts, screws, fasteners and/or glue) if the 
beam is to be in equilibrium; otherwise the sum of the torques about the cg  (or 
about the point where FB acts) could not be zero.

EXERCISE D Return to the Chapter-Opening Question, p. 311, and answer it again now. 
Try to explain why you may have answered differently the first time.

■ I U l t i m a  Force exerted by biceps muscle. How much force must the 
biceps muscle exert when a 5.0-kg ball is held in the hand (a) with the arm 
horizontal as in Fig. 12-8a, and (b) when the arm is at a 45° angle as in Fig. 12-8b? 
The biceps muscle is connected to the forearm by a tendon attached 5.0 cm from 
the elbow joint. Assume that the mass of forearm and hand together is 2.0 kg and 
their c g  is as shown.
APPROACH The free-body diagram for the forearm is shown in Fig. 12-8; the forces 
are the weights of the arm and ball, the upward force Fm exerted by the muscle, and 
a force Fj exerted at the joint by the bone in the upper arm (all assumed to act 
vertically). We wish to find the magnitude of Fm? which is done most easily by 
using the torque equation and by choosing our axis through the joint so that Fj 
contributes zero torque.
SOLUTION (a) We calculate torques about the point where Fj acts in Fig. 12-8a. 
The E r = 0 equation gives

(0.050 m)FM -  (0.15 m)(2.0 kg)g -  (0.35 m) (5.0 kg)g = 0.
We solve for

(0.15 m)(2.0kg)g + (0.35 m) (5.0 kg)g 
-  ---------  aosom -------= <41k^  -  400N-

(b) The lever arm, as calculated about the joint, is reduced by the factor cos 45° 
for all three forces. Our torque equation will look like the one just above, except 
that each term will have its lever arm reduced by the same factor, which will 
cancel out. The same result is obtained, Fu = 400 N.
NOTE The force required of the muscle (400 N) is quite large compared to the 
weight of the object lifted (= mg = 49 N). Indeed, the muscles and joints of the 
body are generally subjected to quite large forces.

P H Y S I C S  A P P L I E D
Cantilever

I P R Q B L E M  S O L V I N G
I f  a force comes out negative

—20.0 m— -30.0 m

r
FIGURE 1 2 -7  A  cantilever.The force 
vectors shown are hypothetical— one 
may even have a different direction.

Y S I C S  A P P L I E D
Forces in muscles and joints 

FIGURE 1 2 -8  Example 12-4 .

(b)

EXERCISE E How much mass could the nerson in Rxamnle 12—4 hold in the hand with a
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Our next Example involves a beam that is attached to a wall by a hinge and is 
supported by a cable or cord (Fig. 12-9). It is important to remember that a 
flexible cable can support a force only along its length. (If there were a component 
of force perpendicular to the cable, it would bend because it is flexible.) But for a 
rigid device, such as the hinge in Fig. 12-9, the force can be in any direction and we 
can know the direction only after solving the problem. The hinge is assumed small 
and smooth, so it can exert no internal torque (about its center) on the beam.

FIGURE 1 2 -9  Example 12-5.

EXAMPLE 12-5 Hinged beam and cable. A uniform beam, 2.20 m long with 
mass m = 25.0 kg, is mounted by a small hinge on a wall as shown in Fig. 12-9. 
The beam is held in a horizontal position by a cable that makes an angle
0 = 30.0°. The beam supports a sign of mass M = 28.0 kg suspended from 
its end. Determine the components of the force Fh that the (smooth) hinge 
exerts on the beam, and the tension FT in the supporting cable.
APPROACH Figure 12-9 is the free-body diagram for the beam, showing all the 
forces acting on the beam. It also shows the components of Fx and a guess for FH. 
We have three unknowns, Fnx > FUy, and Ft  (we are given 0), so we will need all 
three equations, 2 /^  = 0, = 0, D t = 0.
SOLUTION The sum of the forces in the vertical (y) direction is

ZFy = 0
Fny + FTy -  mg -  Mg = 0. (i)

In the horizontal (x) direction, the sum of the forces is 
2 F* = 0

Fax ~ FTx = 0. (ii)
For the torque equation, we choose the axis at the point where Fx and Mg act (so 
our equation then contains only one unknown, FHy). We choose torques that tend 
to rotate the beam counterclockwise as positive. The weight mg of the (uniform) 
beam acts at its center, so we have

E r = 0
~{Fuy) (2.20 m) + mg( 1.10 m) = 0.

We solve for KH J ’

Fny ~
1.10 m 
2.20 m

mg = (0.500) (25.0 kg)(9.80 m/s2) = 123 N. (iii)

Next, since the tension Fx in the cable acts along the cable (0 = 30.0°), we see 
from Fig. 12-9 that tan0 = FTy/FTx, or

FTy = FTxta.n0 = .FT;c( tan 30.0°) = 0.577 T X ' (iv)T;y

Equation (i) above gives
FTy = (m + M)g -  Fny = (53.0 kg)(9.80 m/s2) -  123 N = 396 N; 

Equations (iv) and (ii) give
FTx = FTy/0.577 = 687 N;
Fux = FTx = 687 N.

The components of FH are FHv = 123 N and FHx = 687 N. The tension in the 
wire is FT = \J F \
Alternate Solution Let us see the effect of choosing a different axis for calculating 
torques, such as an axis through the hinge. Then the lever arm for Fu is zero, and 
the torque equation (2 t  = 0) becomes

-rag(l.lO m ) -  Mg(2.20m) + Fx>,(2.20m) = 0.
We solve this for FTy and find

Fry = + Mg = (12.5 kg + 28.0 kg)(9.80 m/s2) = 397 N.

F\y = 793 N.

it fi mifpc



EXAMPLE 12-6 Ladder. A 5.0-m-long ladder leans against a smooth wall at a 
point 4.0 m above a cement floor as shown in Fig. 12-10. The ladder is uniform 
and has mass m = 12.0 kg. Assuming the wall is frictionless (but the floor is 
not), determine the forces exerted on the ladder by the floor and by the wall. 
APPROACH Figure 12-10  is the free-body diagram for the ladder, showing all the 
forces acting on the ladder. The wall, since it is frictionless, can exert a force only 
perpendicular to the wall, and we label that force Fw . The cement floor exerts a force 
Fc which has both horizontal and vertical force components: FCx is frictional and Fey 
is the normal force. Finally, gravity exerts a force mg = (12.0 kg)(9.80 m/s2) = 
118 N on the ladder at its midpoint, since the ladder is uniform.
SOLUTION Again we use the equilibrium conditions, 2 /^  = 0, 2 /^  = 0, 

= 0. We will need all three since there are three unknowns: Fw, Fcx, and 
Fey- The y component of the force equation is 

^Fy = FCy -  mg = 0, 
so immediately we have

FCy = mg = 118 N.
The x component of the force equation is 

^F x = FCx — Fw = 0.

torques about an axis through the point where the ladder touches the cement floor, 
then Fc , which acts at this point, will have a lever arm of zero and so won’t enter the 
equation. The ladder touches the floor a distance xQ = \ /(5 .0 m )2 -  (4.0 m)2 =
3.0 m from the wall (right triangle, c2 = a2 + b2). The lever arm for mg is half 
this, or 1.5 m, and the lever arm for Fw is 4.0 m, Fig. 12-10. We get 

S t  = (4.0m)Fw -  (1.5 m)mg = 0.

(1.5 m)(12.0 kg)(9.8 m/s2)
Fw = ~------- * ------ —  = 44 N.w 4.0 m

Then, from the x component of the force equation,
Fcx = Fv, = 44 N.

Since the components of Fc are FCx = 44 N and FCy = 118 N, then 
Fc = \ / (4 4 N )2 + (118N)2 = 126N «  130N 

(rounded off to two significant figures), and it acts at an angle to the floor of 
d = tan_1(118N/44N) = 70°.

NOTE The force Fc does not have to act along the ladder’s direction because the 
ladder is rigid and not flexible like a cord or cable.

I EXERCISE F Why is it reasonable to ignore friction along the wall, but not reasonable to 
| ignore it along the floor?

12—3 Stability and Balance
An object in static equilibrium, if left undisturbed, will undergo no translational or 
rotational acceleration since the sum of all the forces and the sum of all the 
torques acting on it are zero. However, if the object is displaced slightly, three 
outcomes are possible: (1 ) the object returns to its original position, in which case 
it is said to be in stable equilibrium; (2) the object moves even farther from its 
original position, and it is said to be in unstable equilibrium; or (3) the object 
remains in its new position, and it is said to be in neutral equilibrium.

Consider the following examples. A ball suspended freely from a string is in 
stable equilibrium, for if it is displaced to one side, it will return to its original 
position (Fig. 12-11 a) due to the net force and torque exerted on it. On the other 
hand, a pencil standing on its point is in unstable equilibrium. If its center of gravity 
is directly over its tip (Fig. 12-llb), the net force and net torque on it will be zero. 
But if it is displaced ever so slightly as shown—say, by a slight vibration or tiny air 
current—there will be a toraue on it, and this torque acts to make the pencil

FIGURE 12-10 A  ladder leaning 
against a wall. Example 12-6 .

FIGURE 12-11 (a) Stable 
equilibrium, and (b) unstable 
equilibrium.
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FIGURE 12-12 Equilibrium of a 
refrigerator resting on a flat floor.

FIGURE 12-13 Humans adjust 
their posture to achieve stability 
when carrying loads.

FIGURE 12-14 H ooke’s law: 
A£ oc applied force.

In most situations, such as in the design of structures and in working with the 
human body, we are interested in maintaining stable equilibrium, or balance, as we 
sometimes say. In general, an object whose center of gravity (c g ) is below its point 
of support, such as a ball on a string, will be in stable equilibrium. If the cg  is above 
the base of support, we have a more complicated situation. Consider a standing 
refrigerator (Fig. 12-12a). If it is tipped slightly, it will return to its original position 
due to the torque on it as shown in Fig. 12-12b. But if it is tipped too far, 
Fig. 12-12c, it will fall over. The critical point is reached when the CG shifts from 
one side of the pivot point to the other. When the CG is on one side, the torque pulls 
the object back onto its original base of support, Fig. 12-12b. If the object is tipped 
further, the cg  goes past the pivot point and the torque causes the object to topple, 
Fig. 12-12c. In general, an object whose center o f gravity is above its base o f support 
will be stable if  a vertical line projected downward from the cg falls within the base 
o f support. This is because the normal force upward on the object (which balances 
out gravity) can be exerted only within the area of contact, so if the force of gravity 
acts beyond this area, a net torque will act to topple the object.

Stability, then, can be relative. A brick lying on its widest face is more stable 
than a brick standing on its end, for it will take more of an effort to tip it over. In 
the extreme case of the pencil in Fig. 12-1 lb, the base is practically a point and the 
slightest disturbance will topple it. In general, the larger the base and the lower the 
c g , the more stable the object.

In this sense, humans are less stable than four-legged mammals, which have a 
larger base of support because of their four legs, and most also have a lower center 
of gravity. When walking and performing other kinds of movement, a person 
continually shifts the body so that its cg  is over the feet, although in the normal 
adult this requires no conscious thought. Even as simple a movement as bending 
over requires moving the hips backward so that the CG remains over the feet, and 
you do this repositioning without thinking about it. To see this, position yourself 
with your heels and back to a wall and try to touch your toes. You won’t be able to 
do it without falling. People carrying heavy loads automatically adjust their 
posture so that the cg  of the total mass is over their feet, Fig. 12-13.

12—4  Elasticity; Stress and Strain
In the first part of this Chapter we studied how to calculate the forces on objects in 
equilibrium. In this Section we study the effects of these forces: any object changes 
shape under the action of applied forces. If the forces are great enough, the object 
will break, or fracture, as we will discuss in Section 12-5.

Elasticity and Hooke's Law
If a force is exerted on an object, such as the vertically suspended metal rod shown 
in Fig. 12-14, the length of the object changes. If the amount of elongation, M, 
is small compared to the length of the object, experiment shows that M  is 
proportional to the force exerted on the object. This proportionality, as we saw in 
Section 7-3, can be written as an equation:

F = k A t  (12-3)
Here F represents the force pulling on the object, A£ is the change in length, and k 
is a proportionality constant. Equation 12-3, which is sometimes called Hooke’s 
law* after Robert Hooke (1635-1703), who first noted it, is found to be valid for 
almost any solid material from iron to bone—but it is valid only up to a point. For 
if the force is too great, the object stretches excessively and eventually breaks.

Figure 12-15 shows a typical graph of applied force versus elongation. Up to a 
point called the proportional limit, Eq. 12-3 is a good approximation for many

trrhe term “law” applied to this relation is not really appropriate, since first of all, it is only an approxi­
mation, and second, it refers only to a limited set of phenomena. Most physicists prefer to reserve the



common materials, and the curve is a straight line. Beyond this point, the graph 
deviates from a straight line, and no simple relationship exists between F and A t  
Nonetheless, up to a point farther along the curve called the elastic limit, the object 
will return to its original length if the applied force is removed. The region from the 
origin to the elastic limit is called the elastic region. If the object is stretched beyond 
the elastic limit, it enters the plastic region: it does not return to the original length 
upon removal of the external force, but remains permanently deformed (such as a 
bent paper clip). The maximum elongation is reached at the breaking point. The 
maximum force that can be applied without breaking is called the ultimate strength 
of the material (actually, force per unit area, as we discuss in Section 12-5).

Young's Modulus
The amount of elongation of an object, such as the rod shown in Fig. 12-14, depends 
not only on the force applied to it, but also on the material of which it is made and on its 
dimensions. That is, the constant k  in Eq. 12-3 can be written in terms of these factors.

If we compare rods made of the same material but of different lengths and 
cross-sectional areas, it is found that for the same applied force, the amount of 
stretch (again assumed small compared to the total length) is proportional to the 
original length and inversely proportional to the cross-sectional area. That is, 
the longer the object, the more it elongates for a given force; and the thicker it is, the 
less it elongates. These findings can be combined with Eq. 12-3 to yield

Af = (12-4)

where is the original length of the object, A  is the cross-sectional area, and M  is 
the change in length due to the applied force F .E  is a constant of proportionality* 
known as the elastic modulus, or Young’s modulus; its value depends only on the 
material. The value of Young’s modulus for various materials is given in Table 12-1 
(the shear modulus and bulk modulus in this Table are discussed later in this Section). 
Because E  is a property only of the material and is independent of the object’s size or 
shape, Eq. 12-4 is far more useful for practical calculation than Eq. 12-3.
trrhe fact that E is in the denominator, so 1/E  is the actual proportionality constant, is merely a 
convention. When we rewrite Eq. 12-4 to get Eq. 12-5, E is found in the numerator.

TABLE 12-1 Elastic Moduli

Young’s Modulus, Shear Modulus, Bulk Modulus,
Material E  (N /m 2) G  (N /m 2) B  (N /m 2)

Solids
Iron, cast 100 X 109 40 X 109 90 X 109
Steel 200 X 109 80 X 109 140 X 109
Brass 100 X 109 35 X 109 80 X 109
Aluminum 70 X 109 25 X 109 70 X 109
Concrete 20 X 109
Brick 14 X 109
Marble 50 X 109 70 X 109
Granite 45 X 109 45 X 109
Wood (pine) (parallel to grain) 10 X 109

(perpendicular to grain) 1 X 109
Nylon 5 X 109
B one (limb) 15 X 109 80 X 109

Liquids
Water 2.0 X 109
A lcohol (ethyl) 1.0 X 109
Mercury 2.5 X 109

Gases'

Ultimate strength

Elongation, A£

FIGURE 1 2 -1 5  Applied force vs. 
elongation for a typical metal under 
tension.
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EXAMPLE 12-7 Tension in piano wire. A 1.60-m-long steel piano wire has a 
diameter of 0.20 cm. How great is the tension in the wire if it stretches 0.25 cm 
when tightened?

APPROACH We assume Hooke’s law holds, and use it in the form of Eq. 12-4, 
finding E  for steel in Table 12-1.
SOLUTION We solve for F  in Eq. 12-4 and note that the area of the wire is 
A  = n r2 = (3.14) (0.0010 m )2 = 3.14 X  10 6m2. Then

F = E y A  = (2.0 x  i 0n N/m 2) ( ^ f ) ( 3 . 1 4  x  10“6m2) = 980N.

NOTE The large tension in all the wires in a piano must be supported by a 
strong frame.

EXERCISE G Two steel wires have the same length and are under the same tension. But wire A  
has twice the diameter o f wire B. Which of the following is true? (a) Wire B stretches twice as 
much as wire A . (b ) Wire B stretches four times as much as wire A . (c) Wire A  stretches 
twice as much as wire B. (d) Wire A  stretches four times as much as wire B. (e) B oth wires 
stretch the same amount.

Stress exists within

Stress and Strain
From Eq. 12-4, we see that the change in length of an object is directly proportional 
to the product of the object’s length £0 and the force per unit area F /A  applied to it. 
It is general practice to define the force per unit area as the stress:

force F
stress = ------- = — >area A

which has SI units of N /m 2. Also, the strain is defined to be the ratio of the change 
in length to the original length:

change in length M
= Ta ’

strain =
original length

and is dimensionless (no units). Strain is thus the fractional change in length of the 
object, and is a measure of how much the rod has been deformed. Stress is applied 
to the material by external agents, whereas strain is the material’s response to the 
stress. Equation 12-4 can be rewritten as

or
E f

F /A

(12-5)

stress
strain

Thus we see that the strain is directly proportional to the stress, in the linear 
(elastic) region of Fig. 12-15.

Tension, Compression, and Shear Stress
The rod shown in Fig. 12-16a is said to be under tension or tensile stress. Not only 
is there a force pulling down on the rod at its lower end, but since the rod is in 
equilibrium, we know that the support at the top is exerting an equal* upward 
force on the rod at its upper end, Fig. 12-16a. In fact, this tensile stress exists 
throughout the material. Consider, for example, the lower half of a suspended rod 
as shown in Fig. 12-16b. This lower half is in equilibrium, so there must be an 
upward force on it to balance the downward force at its lower end. What exerts 
this upward force? It must be the upper part of the rod. Thus we see that external 
forces applied to an object give rise to internal forces, or stress, within the material 
itself.



Strain or deformation due to tensile stress is but one type of stress to which 
materials can be subjected. There are two other common types of stress: compressive 
and shear. Compressive stress is the exact opposite of tensile stress. Instead of being 
stretched, the material is compressed: the forces act inwardly on the object. Columns 
that support a weight, such as the columns of a Greek temple (Fig. 12-17), are 
subjected to compressive stress. Equations 12-4 and 12-5 apply equally well to 
compression and tension, and the values for the modulus E  are usually the same.

Af

T
F

Tension

(a)
Compression

(hj

F -
Shear

<c)
FIGURE 12-18 The three types of stress for rigid objects.

Figure 12-18 compares tensile and compressive stresses as well as the third 
type, shear stress. An object under shear stress has equal and opposite forces applied 
across its opposite faces. A simple example is a book or brick firmly attached to a 
tabletop, on which a force is exerted parallel to the top surface. The table exerts an 
equal and opposite force along the bottom surface. Although the dimensions of the 
object do not change significantly, the shape of the object does change, Fig. 12-18c. 
An equation similar to Eq. 12-4 can be applied to calculate shear strain:

(12- 6)

but A£, £0, and A  must be reinterpreted as indicated in Fig. 12-18c. Note that A  is 
the area of the surface parallel to the applied force (and not perpendicular as 
for tension and compression), and is perpendicular to V  The constant of 
proportionality G is called the shear modulus and is generally one-half to one-third 
the value of Young’s modulus E (see Table 12-1). Figure 12-19 suggests why 
M  oc £0: the fatter book shifts more for the same shearing force.

Volume Change—Bulk Modulus
If an object is subjected to inward forces from all sides, its volume will decrease. A 
common situation is an object submerged in a fluid; in this case, the fluid exerts a 
pressure on the object in all directions, as we shall see in Chapter 13. Pressure is 
defined as force per unit area, and thus is the equivalent of stress. For this situation 
the change in volume, AV, is proportional to the original volume, and to the 
change in the pressure, A P. We thus obtain a relation of the same form as Eq. 12-4 
but with a proportionality constant called the bulk modulus B :

AV

B = AP
AV/F„

The minus sign means the volume decreases with an increase in pressure.

i AP (12-7)

FIGURE 12-17 This Greek temple, 
in Agrigento, Sicily, built 2500 years ago, 
shows the post-and-beam construction. 
The columns are under compression.

FIGURE 12-19 The fatter book (a) 
shifts more than the thinner book (b) 
with the same applied shear force.
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FIGURE 1 2 -2 0  Fracture as a result 
of the three types of stress.

12—5 Fracture
If the stress on a solid object is too great, the object fractures, or breaks (Fig. 12-20). 
Table 12-2 lists the ultimate strengths for tension, compression, and shear for a 
variety of materials. These values give the maximum force per unit area, or stress, 
that an object can withstand under each of these three types of stress for various 
types of material. They are, however, representative values only, and the actual value 
for a given specimen can differ considerably. It is therefore necessary to maintain a 
safety factor of from 3 to perhaps 10 or more—that is, the actual stresses on a 
structure should not exceed one-tenth to one-third of the values given in the Table. 
You may encounter tables of “allowable stresses” in which appropriate safety factors 
have already been included.

TABLE 12-2 Ultimate Strengths of Materials (force/area)

Material
Tensile Strength 

(N /m 2)

Compressive
Strength
(N /m 2)

Shear Strength 
(N /m 2)

Iron, cast 170 X 106 550 X 106 170 X 106
Steel 500 X 106 500 X 106 250 X 106
Brass 250 X 106 250 X 106 200 X 106
Aluminum 200 X 106 200 X 106 200 X 106
Concrete 2 X 106 20 X 106 2 X 106
Brick 35 X 106
Marble 80 X 106
Granite 170 X 106
Wood (pine) (parallel to grain)

(perpendicular to grain)
40 X 106 35 X 106 

10 X 106
5 X 106

Nylon 500 X 106
B one (limb) 130 X 106 170 X 106

ESTIMATE-!  Breaking the piano wire. The steel piano wire 
we discussed in Example 12-7 was 1.60 m long with a diameter of 0.20 cm. 
Approximately what tension force would break it?

APPROACH We set the tensile stress F /A  equal to the tensile strength of steel 
given in Table 12-2.
SOLUTION The area of the wire is A  = irr2, where r =  0.10 cm = 1.0 X 10_3m. 
Table 12-2 tells us

4  = 500 X 106N/m2,

so the wire would likely break if the force exceeded

F = (500 X  106N/m2)(7r)(l .0 X  l(T3m)2 = 1600 N.

As can be seen in Table 12-2, concrete (like stone and brick) is reasonably strong 
under compression but extremely weak under tension. Thus concrete can be used as 
vertical columns placed under compression, but is of little value as a beam because it 
cannot withstand the tensile forces that result from the inevitable sagging of the lower 
edge of a beam (see Fig. 12-21).

EXAMPLE 12-8

FIGURE 12-21 A  beam sags, at least a little (but is
exaggerated here), even under its own weight. The beam prcssioft
thus changes shape: the upper edge is compressed, and
the. lower pH o p . is under tension (elonaatern Shearina



Reinforced concrete, in which iron rods are embedded in the concrete 
(Fig. 12-22), is much stronger. Stronger still is prestressed concrete, which also 
contains iron rods or a wire mesh, but during the pouring of the concrete, the rods 
or wire are held under tension. After the concrete dries, the tension on the iron is 
released, putting the concrete under compression. The amount of compressive 
stress is carefully predetermined so that when loads are applied to the beam, they 
reduce the compression on the lower edge, but never put the concrete into tension.

CONCEPTUAL EXAMPLE 12-9 I A tragic substitution. Two walkways, one 
above the other, are suspended from vertical rods attached to the ceiling of 
a high hotel lobby, Fig. 12-23a. The original design called for single rods 14 m long, 
but when such long rods proved to be unwieldy to install, it was decided to replace 
each long rod with two shorter ones as shown schematically in Fig. 12-23b. 
Determine the net force exerted by the rods on the supporting pin A (assumed 
to be the same size) for each design. Assume each vertical rod supports a mass m of 
each bridge.

RESPONSE The single long vertical rod in Fig. 12-23a exerts an upward force 
equal to mg on pin A to support the mass m of the upper bridge. Why? 
Because the pin is in equilibrium, and the other force that balances this 
is the downward force mg exerted on it by the upper bridge (Fig. 12-23c). 
There is thus a shear stress on the pin because the rod pulls up on one side 
of the pin, and the bridge pulls down on the other side. The situation when 
two shorter rods support the bridges (Fig. 12-23b) is shown in Fig. 12-23d, 
in which only the connections at the upper bridge are shown. The lower rod 
exerts a force mg downward on the lower of the two pins because it supports the 
lower bridge. The upper rod exerts a force 2mg on the upper pin (labelled A) 
because the upper rod supports both bridges. Thus we see that when the builders 
substituted two shorter rods for each single long one, the stress in the supporting 
pin A was doubled. What perhaps seemed like a simple substitution did, in fact, 
lead to a tragic collapse in 1981 with a loss of life of over 100 people (see Fig. 12-1). 
Having a feel for physics, and being able to make simple calculations based on 
physics, can have a great effect, literally, on people’s lives.

EXAMPLE 12-10 Shear on a beam. A uniform pine beam, 3.6 m long and
9.5 cm X 14 cm in cross section, rests on two supports near its ends, as shown in 
Fig. 12-24. The beam’s mass is 25 kg and two vertical roof supports rest on it, 
each one-third of the way from the ends. What maximum load force FL can each 
of the roof supports exert without shearing the pine beam at its supports? Use a 
safety factor of 5.0.

APPROACH The symmetry present simplifies our calculation. We first find the 
shear strength of pine in Table 12-2 and use the safety factor of 5.0 to get F from 
F /A  < 5 (shear strength). Then we use 2 t  = 0 to find Fh.
SOLUTION Each support exerts an upward force F (there is symmetry) that can 
be at most (see Table 12-2)

F = | a ( 5  X  106N/m2) = |  (0.095 m) (0.14 m)(5 X  106N/m2) = 13,000 N.

To determine the maximum load force FL, we calculate the torque about the left 
end of the beam (counterclockwise positive):

2 t  =  —FL(1.2m) -  (25 kg)(9.8 m/s2)(1.8 m) -  FL(2.4m) +  F(3.6m) =  0

so each of the two roof supports can exert
(13,000 N) (3.6 m) -  (250 N) (1.8 m)

Fl = (1.2 + 2.4)
= 13,000 N.

FIGURE 12-22 Steel rods around 
which concrete is poured for strength.

@ P H Y S I C S  A P P L I E D
A  tragic collapse

FIGURE 12-23 Example 12-9 .

(a) (b)

2 mg

mg

(c) Force on pin A  (d) Forces on pins 
exerted by at A  exerted by
vertical rod vertical rods

FIGURE 12-24 Example 12-10. 
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FIGURE 12-25

FIGURE 12-26 A  roof truss.

FIGURE 12-27 (a) Each massless 
strut (or rod) of a truss is assumed to 
be under tension or compression.
(b) The two equal and opposite 
forces must be along the same 
line or a net torque would exist.
(c) Real struts have mass, so the 
forces Fx and F2 at the joints do not 
act precisely along the strut.
(d) Vector diagram of part (c).

Joints

A  truss bridge.

*12—6 Trusses and Bridges
A beam used to span a wide space, as for a bridge, is subject to strong stresses of 
all three types as we saw in Fig. 12-21: compression, tension and shear. A basic 
engineering device to support large spans is the truss, an example of which is 
shown in Fig. 12-25. Wooden truss bridges were first designed by the great archi­
tect Andrea Palladio (1518-1580), famous for his design of public buildings and 
villas. With the introduction of steel in the nineteenth century, much stronger steel 
trusses came into use, although wood trusses are still used to support the roofs of 
houses and mountain lodges (Fig. 12-26).

Basically, a truss is a framework of rods or struts joined together at their ends 
by pins or rivets, always arranged as triangles. (Triangles are relatively stable, as 
compared to a rectangle, which easily becomes a parallelogram under sideways 
forces and then collapses.) The place where the struts are joined by a pin is called 
a joint.

It is commonly assumed that the struts of a truss are under pure compression 
or pure tension—that is, the forces act along the length of each strut, Fig. 12-27a. 
This is an ideal, valid only if a strut has no mass and supports no weight along 
its length, in which case a strut has only two forces on it, at the ends, as shown 
in Fig. 12-27a. If the strut is in equilibrium, these two forces must be equal 
and opposite in direction (EF = 0). But couldn’t they be at an angle, as in 
Fig. 12-27b? No, because then D t would not be zero. The two forces must 
act along the strut if the strut is in equilibrium. But in a real case of a strut 
with mass, there are three forces on the strut, as shown in Fig. 12-27c, and Fx 
and F2 do not act along the strut; the vector diagram in Fig. 12-27d shows 
2F = Fx + F2 + rag = 0. Can you see why F̂  and F2 both point above the strut? 
(Do Dr about each end.)

-F

Consider again the simple beam in Example 12-5, Fig. 12-9. The force FH at 
the pin is not along the beam, but acts at an upward angle. If that beam were mass­
less, we see from Eq. (iii) in Example 12-5 with ra = 0, that FHy = 0, and FH 
would be alone the beam.



EXAMPLE 12-11 A truss bridge. Determine the tension or compression in each 
of the struts of the truss bridge shown in Fig. 12-28a. The bridge is 64 m long and 
supports a uniform level concrete roadway whose total mass is 1.40 X 106kg. Use 
the method of joints, which involves (1 ) drawing a free-body diagram of the truss as 
a whole, and (2) drawing a free-body diagram for each of the pins (joints), one by 
one, and setting 2F  = 0 for each pin. Ignore the mass of the struts. Assume all 
triangles are equilateral.
APPROACH Any bridge has two trusses, one on each side of the roadway. Consider 
only one truss, Fig. 12-28a, and it will support half the weight of the roadway. That 
is, our truss supports a total mass M = 7.0 X 105 kg. First we draw a free-body 
diagram for the entire truss as a single unit, which we assume rests on supports at 
either end that exert upward forces Fx and F2, Fig. 12-28b. We assume the mass of 
the roadway acts entirely at the center, on pin C, as shown. From symmetry we can 
see that each of the end supports carries half the weight [or do a torque equation 
about, say, point A: (F2)(£) -  M g(l/2) = 0],so

F, = F2 = \Mg.
SOLUTION We look at pin A and apply 2F  = 0 to it. We label the forces on 
pin A due to each strut with two subscripts: Fab means the force exerted by the 
strut AB and FAC is the force exerted by strut AC. Fab and FAc act along their 
respective struts; but not knowing whether each is compressive or tensile, we could 
draw four different free-body diagrams, as shown in Fig. 12-28c. Only the one on the 
left could provide 2 F  = 0, so we immediately know the directions of FAB and FAc • 
These forces act on the pin. The force that pin A exerts on strut AB is opposite in 
direction to Fab (Newton’s third law), so strut AB is under compression and strut 
AC is under tension. Now let’s calculate the magnitudes of Fab and FAc . At pin A:

AC -  Fa

Thus
ZFy =

Fab ~

F1 -  FAB sin 60' 

f i  \M g

cos 60° = 0 
0.

sin 60° I V 3

which equals (7.0 X 105 kg)(9.8 m/s2) /V 3  = 4.0 X 106N; and
1

AC =  F ar COS 60° =
2V 3

Mg.

Next we look at pin B, and Fig. 12-28d is the free-body diagram. [Convince yourself 
that if Fbd or FBC were in the opposite direction, 2F  could not be zero; note that 
FBa = -Fab (and b̂a — âb) because now we are at the opposite end of strut 
AB.] We see that BC is under tension and BD compression. (Recall that the forces 
on the struts are opposite to the forces shown which are on the pin.) We set 2F  =  0:

2 F *  =  Fb a c o s60° +  Fb c c o s60° -  FBD =  0

0.2 Fy =

BC = FtAB

and

we have

cos 60° +  Fb c c o s6 0 °  =  - ^ = M g ( \ )  +  - ^ = M g ( \ )= F a r  cos 60° + F R r  cos 60° = Mg(k) H----^M g (k ) = ~^=Mg.

The solution is complete. By symmetry, FDE = FAB, FCE = FAC, and FCD = FBC. 
NOTE As a check, calculate 2F* and 'ZFy for pin C and see if they equal zero. 
Figure 12-28e shows the free-body diagram.

0 P H Y S I C S  A P P L I E D
A  truss bridge

|1| P R O B L E M  S O L V I N G
M ethod o f  joints

’U  J  J t
jpl20° f

rAB

(c) Pin A (different guesses)

BD

*BA

(d) Pin B
BC

(e) Pin C 

FIGURE 12-28
Example 12-11. (a) A  truss bridge. 
Free-body diagrams:
(b) for the entire truss,
(c) for pin A  (different guesses),
(d) for pin B and (e) for pin C.
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FIGURE 12-29 (a) Truss with truck 
of mass m  at center of strut AC.
(b) Forces on strut AC.

@ P H Y S I C S  A P P L I E D
Suspension bridge

FIGURE 12-30 Suspension 
bridges (Brooklyn and Manhattan 
bridges, NY).

FIGURE 12-31 Example 12-12.

Example 12-11 put the roadway load at the center, C. Now consider a 
heavy load, such as a heavy truck, supported by strut AC at its middle, as shown 
in Fig. 12-29a. The strut AC sags under this load, telling us there is shear stress 
in strut AC. Figure 12-29b shows the forces exerted on strut AC: the weight of 
the truck rag, and the forces FA and Fc that pins A and C exert on the strut. 
[Note that does not appear because it is a force (exerted by external supports) 
that acts on pin A, not on strut AC.] The forces that pins A and C exert on strut 
AC will act not only along the strut, but will have vertical components too, 
perpendicular to the strut to balance the weight of the truck, rag, creating 
shear stress. The other struts, not bearing weight, remain under pure tension or 
compression. Problems 53 and 54 deal with this situation, and an early step in 
their solution is to calculate the forces FA and Fc by using torque equations for 
the strut.

For very large bridges, truss structures are too heavy. One solution is to build 
suspension bridges, with the load being carried by relatively light suspension cables 
under tension, supporting the roadway by means of closely spaced vertical wires, as 
shown in Fig. 12-30, and in the photo on the first page of this Chapter.

J 2 Q E Q H E H E 1  Suspension bridge. Determine the shape of the cable 
between the two towers of a suspension bridge (as in Fig. 12-30), assuming the 
weight of the roadway is supported uniformly along its length. Ignore the weight 
of the cable.

APPROACH We take x = 0, y = 0 at the center of the span, as shown in Fig. 12-31. 
Let Fxo be the tension in the cable at x = 0; it acts horizontally as shown. Let FT be 
the tension in the cable at some other place where the horizontal coordinate is x, as 
shown. This section of cable supports a portion of the roadway whose weight w is 
proportional to the distance x, since the roadway is assumed uniform; that is,

w = Xx

where A is the weight per unit length.
SOLUTION We set 2F  = 0:

2F* = Ft cos6 -  Ft0 = 0

'EFy = FTsind -  w = 0.

We divide these two equations,

w Xx 
tan0 = —- = ——

^T0 ^T0
The slope of our curve (the cable) at any point is 

dy
—  = tan 0 
dx

or
d l  = 
dx

We integrate this:

x.

\ dy = i o \ x
dx

TO

y = A x2 + B

where we set A  = X/FT0 and B is a constant of integration. This is just the equa­
tion of a parabola.
NOTE Real bridges have cables that do have mass, so the cables hang only. __



* 12—7 Arches and Domes
There are various ways that engineers and architects can span a space, such as 
beams, trusses, and suspension bridges. In this Section we discuss arches and domes.

FIGURE 12-32 Round arches in FIGURE 12-33 An arch is used here to
the Roman Forum. The one in the good effect in spanning a chasm on the
background is the Arch of Titus. California coast.

The semicircular arch (Figs. 12-32 and 12-33) was introduced by the ancient @  P H Y S I C S  A P P L I E D  
Romans 2000 years ago. Aside from its aesthetic appeal, it was a tremendous Architecture: Beams, arches 
technological innovation. The advantage of the “true” or semicircular arch is that, and domes 
if well designed, its wedge-shaped stones experience stress which is mainly 
compressive even when supporting a large load such as the wall and roof of a 
cathedral. Because the stones are forced to squeeze against one another, they are 
mainly under compression (see Fig. 12-34). Note, however, that the arch transfers 
horizontal as well as vertical forces to the supports. A round arch consisting of 
many well-shaped stones could span a very wide space. However, considerable 
buttressing on the sides is needed to support the horizontal components of 
the forces.

The pointed arch came into use about a .d . 1100 and became the hallmark of 
the great Gothic cathedrals. It too was an important technical innovation, and was 
first used to support heavy loads such as the tower and arch of a cathedral.
Apparently the builders realized that, because of the steepness of the pointed 
arch, the forces due to the weight above could be brought down more nearly 
vertically, so less horizontal buttressing would be needed. The pointed arch 
reduced the load on the walls, so there could be more openness and light. The FIGURE 12-35 Flying buttresses 
smaller buttressing needed was provided on the outside bv graceful flvine fon the cathedral nfNntre Dame.
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FIGURE 12-36 (a) Forces in a 
round arch, compared (b) with those 
in a pointed arch.

FIGURE 12-37 Interior of the 
Pantheon in Rome, built almost 
2000 years ago. This view, showing the 
great dome and its central opening 
for light, was painted about 1740 by 
Panini. Photographs do not capture 
its grandeur as well as this painting 
does.

To make an accurate analysis of a stone arch is quite difficult in practice. But 
if we make some simplifying assumptions, we can show why the horizontal 
component of the force at the base is less for a pointed arch than for a round 
one. Figure 12-36 shows a round arch and a pointed arch, each with an 8.0-m 
span. The height of the round arch is thus 4.0 m, whereas that of the pointed 
arch is larger and has been chosen to be 8.0 m. Each arch supports a weight 
of 12.0 X 104N (=12,000 kg X g) which, for simplicity, we have divided into 
two parts (each 6.0 X 104N) acting on the two halves of each arch as shown. 
To be in equilibrium, each of the supports must exert an upward force of
6.0 X 104N. For rotational equilibrium, each support also exerts a horizontal 
force, at the base of the arch, and it is this we want to calculate. We 
focus only on the right half of each arch. We set equal to zero the total torque 
calculated about the apex of the arch due to the forces exerted on that half arch. 
For the round arch, the torque equation (2 r  = 0) is (see Fig. 12-36a)

(4.0m)(6.0 X 104N) -  (2.0m)(6.0 X 104N) -  (4.0m)(fH) = 0.
Thus Fh = 3.0 X 104N for the round arch. For the pointed arch, the torque 
equation is (see Fig. 12-36b)

(4.0m)(6.0 X 104N) -  (2.0m)(6.0 X 104N) -  (8.0m)(fH) = 0.
Solving, we find that Fh = 1.5 X 104N—only half as much as for the round arch! 
From this calculation we can see that the horizontal buttressing force required for 
a pointed arch is less because the arch is higher, and there is therefore a longer 
lever arm for this force. Indeed, the steeper the arch, the less the horizontal 
component of the force needs to be, and hence the more nearly vertical is the force 
exerted at the base of the arch.

Whereas an arch spans a two-dimensional space, a dome—which is basically 
an arch rotated about a vertical axis—spans a three-dimensional space. The 
Romans built the first large domes. Their shape was hemispherical and some still 
stand, such as that of the Pantheon in Rome (Fig. 12-37), built 2000 years ago.

FIGURE 12-38 The skyline of Florence, 
showing Brunelleschi’s dome on the cathedral.

Fourteen centuries later, a new cathedral was being built in Florence. It was to 
have a dome 43 m in diameter to rival that of the Pantheon, whose construction 
has remained a mystery. The new dome was to rest on a “drum” with no external 
abutments. Filippo Brunelleschi (1377-1446) designed a pointed dome (Fig. 12-38), 
since a pointed dome, like a pointed arch, exerts a smaller side thrust against its 
base. A dome, like an arch, is not stable until all the stones are in place. To support 
smaller domes during construction, wooden frameworks were used. But no trees 
big enough or strong enough could be found to span the 43-m space required. 
Brunelleschi decided to try to build the dome in horizontal layers, each bonded to 
the previous one, holding it in place until the last stone of the circle was placed. 
Each closed rins was then strone enoueh to support the next laver. It was an



Summary
An object at rest is said to be in equilibrium. The subject 
concerned with the determination of the forces within a struc­
ture at rest is called statics.

The two necessary conditions for an object to be in equilib­
rium are that (1 ) the vector sum of all the forces on it must be 
zero, and (2) the sum of all the torques (calculated about any 
arbitrary axis) must also be zero. For a 2-dimensional problem 
we can write

2FX = 0, 'LFy = 0, = 0. (12 - 1 , 12 - 2)
It is important when doing statics problems to apply the equilib­
rium conditions to only one object at a time.

An object in static equilibrium is said to be in (a) stable,
(b) unstable, or (c) neutral equilibrium, depending on whether a 
slight displacement leads to (a) a return to the original position,
(b) further movement away from the original position, or
(c) rest in the new position. An object in stable equilibrium is 
also said to be in balance.

Hooke’s law applies to many elastic solids, and states that the 
change in length of an object is proportional to the applied force:

F = k A t  (12-3)
If the force is too great, the object will exceed its elastic limit, 
which means it will no longer return to its original shape when 
the distorting force is removed. If the force is even greater, the 
ultimate strength of the material can be exceeded, and the 
object will fracture. The force per unit area acting on an object 
is the stress, and the resulting fractional change in length 
is the strain. The stress on an object is present within the 
object and can be of three types: compression, tension, or shear. 
The ratio of stress to strain is called the elastic modulus of the 
material. Young’s modulus applies for compression and tension, 
and the shear modulus for shear. Bulk modulus applies to an 
object whose volume changes as a result of pressure on all sides. 
All three moduli are constants for a given material when 
distorted within the elastic region.

Questions
1. Describe several situations in which an object is not in equi­

librium, even though the net force on it is zero.
2. A bungee jumper momentarily comes to rest at the bottom 

of the dive before he springs back upward. At that moment, 
is the bungee jumper in equilibrium? Explain.

3. You can find the center of gravity of a meter stick by resting 
it horizontally on your two index fingers, and then slowly 
drawing your fingers together. First the meter stick will slip 
on one finger, and then on the other, but eventually the 
fingers meet at the c g . Why does this work?

4. Your doctor’s scale has arms on which weights slide to 
counter your weight, Fig. 12-39. These 
weights are much lighter than you are.
How does this work?

Weights

FIGURE 12-39
Question 4.

5. A ground retaining wall is shown in Fig. 12-40a. The ground, 
particularly when wet, can exert a significant force F on the 
wall, (a) What force produces the torque to keep the wall 
upright? (b) Explain why the retaining wall in Fig. 12-40b 
would be much less likely to overturn than that in Fig. 12-40a.

(a) (b)

6. Can the sum of the torques on an object be zero while the 
net force on the object is nonzero? Explain.

7. A ladder, leaning against a wall, makes a 60° angle with the 
ground. When is it more likely to slip: when a person stands 
on the ladder near the top or near the bottom? Explain.
A uniform meter stick supported at the 25-cm mark is in 
equilibrium when a 1 -kg rock is suspended at the 0-cm end 
(as shown in Fig. 12-41). Is the mass of the meter stick 
greater than, equal to, or less than the mass of the rock? 
Explain your reasoning.

8.

FIGURE 12-41 Question 8.

9. Why do you tend to lean backward when carrying a heavy 
load in your arms?

10. Figure 12-42 shows a cone. Explain how to lay it on a flat 
table so that it is in (a) stable equilibrium, (b) unstable equi­
librium, (c) neutral equilibrium.

O
FIGURE 12-42 Question 10.

11. Place yourself facing the edge of an open door. Position 
your feet astride the door with your nose and abdomen 
touching the door’s edge. Try to rise on your tiptoes. Why 
can’t this be done?

12. W hv is it not nnssihle to sit nnriaht in a r.hair anH rise to



13. Why is it more difficult to do sit-ups when your knees are 
bent than when your legs are stretched out?

14. Which of the configurations of brick, (a) or (b) of Fig. 12-43, 
is the more likely to be stable? Why?

15. Name the type of equilibrium for each position of the ball in 
Fig. 12-44.

A

(a) (b)

FIGURE 12-43 Question 14. The dots indicate 
the c g  of each brick. The fractions \  and \  indicate 
what portion of each brick is hanging beyond its 
support.

FIGURE 12-44
Question 15.

16. Is the Young’s modulus for a bungee cord smaller or larger 
than that for an ordinary rope?

17. Examine how a pair of scissors or shears cuts through a 
piece of cardboard. Is the name “shears” justified? Explain.

18. Materials such as ordinary concrete and stone are very 
weak under tension or shear. Would it be wise to use such a 
material for either of the supports of the cantilever shown 
in Fig. 12-7? If so, which one(s)? Explain.

| Problems
12-1 and 12-2 Equilibrium
1. (I) Three forces are applied to a tree sapling, as shown in 

Fig. 12-45, to stabilize it. If F A = 385 N and FB = 475 N, 
find F c in magnitude and direction.

Pb

FIGURE 12-46
Problem 2.

3. (I) Calculate the mass m  needed in order to suspend the leg 
shown in Fig. 12-47. Assume the leg (with cast) has a mass 
of 15.0 kg, and its c g  is 35.0 cm from the hip joint; the sling 
is 78.0 cm from the hip joint.

FIGURE 12-48
Problem 4.

m = 2800 Jcg [

(b)

5. (II) Calculate the forces FA and FB that the supports exert 
on the diving board of Fig. 12-49 when a 52-kg person 
stands at its tip. (a) Ignore the weight of the board, (b) Take 
into account the board’s mass of 28 kg. Assume 
the board’s c g  is at its center.

f

»CG
’ H ip ju iM

El how 
joinl

2. (I) Approximately what magnitude force, Fm, must the 
extensor muscle in the upper arm exert on the lower arm to 
hold a 7.3-kg shot put (Fig. 12-46)? Assume the lower arm 
has a mass of 2.3 kg and its cg  is 12.0 cm from the elbow-joint 
pivot.

2.5 cm L X i

(I) A tower crane (Fig. 12-48a) must always be carefully 
balanced so that there is no net torque tending to tip it. 
A particular crane at a building site is about to lift a 
2800-kg air-conditioning unit. The crane’s dimensions are 
shown in Fig. 12-48b.
(a) Where must 
the crane’s 9500-kg 
counterweight be *
placed when the 
load is lifted from

moved automatically 
via sensors and 
motors to precisely Counierweighi 
compensate for the M  = 9500 kg 
load.) (b) Determine 
the maximum load 
that can be lifted 
with this counter­
weight when it is 
placed at its full 
extent. Ignore the 
mass of the beam.

FIGURE 12—49 3.0 m — H



6. (II) Two cords support a chandelier in the manner shown in 
Fig 12-3 except that the upper cord makes an angle of 45° 
with the ceiling. If the cords can sustain a force of 1660 N 
without breaking, what is the maximum chandelier weight 
that can be supported?

7. (II) The two trees in Fig. 12-50 are 6.6 m apart. A 
back-packer is trying to lift his pack out of the reach of 
bears. Calculate the magnitude of the force F that he 
must exert down­
ward to hold a
19-kg backpack so 
that the rope sags 
at its midpoint by
(a) 1.5 m, (b) 0.15 m.

14. (II) The force required to pull the cork out of the top of a wine 
bottle is in the range of 200 to 400 N. A common 
bottle opener is shown 
in Fig. 12-54. What 
range of forces F  is 
required to open a 
wine bottle with this 
device?

mmj 70 mm fu,-—----i ------------------- —J

FIGURE 12-54
Problem 14.

FIGURE 12-50
Problems 7 and 83.

8. (II) A 110-kg horizontal beam is supported at each end. A 
320-kg piano rests a quarter of the way from one end. What 
is the vertical force on each of the supports?

9. (II) Calculate FA and FB for the uniform cantilever shown 
in Fig. 12-7 whose mass is 1200 kg.

10. (II) A 75-kg adult sits at one end of a 9.0-m-long board. His 
25-kg child sits on the other end. (a) Where should the pivot 
be placed so that the board is balanced, ignoring the board’s 
mass? (b) Find the pivot point if the board is uniform and 
has a mass of 15 kg.

11. (II) Find the tension in the two cords shown in Fig. 12-51. 
Neglect the mass of the cords,
and assume that the angle 0 i s ------ —/ —
33° and the mass m  is 190 kg.

FIGURE 12-51
Problem 11.

hi

12. (II) Find the tension in the two wires supporting the traffic 
light shown in Fig. 12-52.

FIGURE 12-52
Problem 12.

13. (II) How close to the edge of the 24.0-kg table shown in 
Fig. 12-53 can a
66.0-kg person n ^.20 m
without 
over?

sit
tipping it

FIGURE 12-53

15. (II) Calculate FA and FB for the beam shown in Fig. 12-55. 
The downward forces represent the weights of machinery 
on the beam. Assume
the beam is uniform 
and has a mass of 
280 kg.

FIGURE 12-55
Problem 15.

Fa 4.100 N 3100 N 2200 N F,

11 111 ,
4.0 m 3,0 m

2.0 m 1.0 m

16. (II) (a) Calculate the magnitude of the force, required of 
the “deltoid” muscle to hold up the outstretched arm shown in 
Fig. 12-56. The total mass of the arm is 3.3 kg. (b) Calculate the 
magnitude of the force Fj exerted by the shoulder joint on the 
upper arm and the angle (to the horizontal) at which it acts.

k— 12 cm —
24 cm

FIGURE 12-56 Problems 16 and 17.

17. (II) Suppose the hand in Problem 16 holds an 8.5-kg mass. 
What force, Fu , is required of the deltoid muscle, assuming 
the mass is 52 cm from the shoulder joint?

18. (II) Three children are trying to balance on a seesaw, which 
includes a fulcrum rock acting as a pivot at the center, 
and a very light board 3.2 m long (Fig. 12-57). Two play­
mates are already on either end. Boy A has a mass of 45 kg, 
and boy B a mass of 35 kg. Where should girl C, whose mass 
is 25 kg, place herself so as to balance the seesaw?

m o 45 kg m = 35 kg

m =  25 kg



19. (II) The Achilles tendon is attached to the rear of the foot as 
shown in Fig. 12-58. When a person elevates himself just barely 
off the floor on the “ball of one foot,” estimate the tension FT 
in the Achilles tendon (pulling upward), and the (downward) 
force Fb exerted by
the lower leg bone F
on the foot. Assume Achilles 
the person has a tendon 
mass of 72 kg and D 
is twice as long as d.

FIGURE 12-58
Problem 19.

Leu bone

k  d -

Hull of ItxrE 
(pivot poinl)

20. (II) A shop sign weighing 215 N is supported by a uniform 
155-N beam as shown 
in Fig. 12-59. Find the 
tension in the guy wire 
and the horizontal and 
vertical forces exerted by 
the hinge on the beam.

'j* 1.35 m— -I 
r I -70 m

FIGURE 12-59
Problem 20.

21. (II) A traffic light hangs from a pole as shown in Fig. 12-60. 
The uniform aluminum pole AB is 7.20 m long and has a 
mass of 12.0 kg. The mass of the traffic light is 21.5 kg. 
Determine (a) the

flC 11

3.K1I m

B

3 7 °^
tension in the 
horizontal massless 
cable CD, and (b) 
the vertical and hori­
zontal components 
of the force exerted 
by the pivot A on 
the aluminum pole.

FIGURE 12-60
Problem 21.

22. (II) A uniform steel beam has a mass of 940 kg. On it is 
resting half of an identical beam, as shown in Fig. 12-61. 
What is the vertical 
support force at 
each end?

FIGURE 12-61
Problem 22.

23. (II) Two wires run from the 
supports a volleyball net. The 
two wires are anchored to 
the ground 2.0 m apart, and 
each is 2.0 m from the pole 
(Fig. 12-62). The tension in 
each wire is 115 N. What is the 
tension in the net, assumed 
horizontal and attached at the 
top of the pole?

FIGURE 12-62
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24. (II) A large 62.0-kg board is propped at a 45° angle against 
the edge of a barn door that is 2.6 m wide. How great a hori­
zontal force must a person behind the door exert (at the 
edge) in order to open it? Assume that there is negligible 
friction between the door and the board but that the board 
is firmly set against the ground.

25. (II) Repeat Problem 24 assuming the coefficient of friction 
between the board and the door is 0.45.

26. (II) A 0.75-kg sheet hangs from a massless clothesline as 
shown in Fig. 12-63. The clothesline on either side of the 
sheet makes an angle of 3.5° with the horizontal. Calculate 
the tension in the clothesline on either side of the sheet. Why 
is the tension so
much greater than
the weight of the 3.5* 3 50
sheet?

FIGURE 12-63
Problem 26.

27. (II) A uniform rod AB of length 5.0 m and mass M  = 3.8 kg 
is hinged at A and held in equilibrium by a light cord, as 
shown in Fig. 12-64. A load W  = 22 N hangs
from the rod at a distance x  so that the tension
in the cord is 85 N. (a) Draw a free-body
diagram for the rod. (b) Determine
the vertical and horizontal
forces on the rod exerted by the 1—-5?° A
hinge, (c) Determine d from the
appropriate torque equation.

W - 2 2 N
FIGURE 12-64
Problem 27.

28. (Ill) A 56.0-kg person stands 2.0 m from the bottom of the 
stepladder shown in Fig. 12-65. Determine (a) the tension in 
the horizontal tie rod, which is halfway up the ladder, (b) the 
normal force the ground exerts on each side of the ladder, and 
(c) the force (magnitude and direction) 
that the left side of the ladder exerts on 
the right side at the hinge on the top.
Ignore the mass of the ladder and 
assume the ground is frictionless. [Hint.
Consider free-body diagrams for each 1 E-— m 
section of the ladder.]

FIGURE 12-65
Problem 28.

2.0 n\£T

29. (Ill) A door 2.30 m high and 1.30 m wide has a mass of 
13.0 kg. A hinge 0.40 m from the top and another hinge 
0.40 m from the bottom each support 
half the door’s weight (Fig. 12-66). 1 j 11"40cm 
Assume that the center of gravity is 
at the geometrical center of the 
door, and determine the horizontal 
and vertical force components | ||* 1.30 m 
exerted by each hinge on the door.

2.30 m

*40 cm
FIGURE 12-66
Problem 29.

30. (Ill) A cubic crate of side s = 2.0 m is top-heavy: its cg  is 18 cm 
above its true center. How steep an incline can the crate rest on 
without tipping over? What would your answer be if the crate 
were to slide at constant sneed down the nlane without tinning

top of a pole 2.6 m tall that



31. (Ill) A refrigerator is approximately a uniform rectangular 
solid 1.9 m tall, 1.0 m wide, and 0.75 m deep. If it sits upright 
on a truck with its 1 .0-m dimension in the direction of travel, 
and if the refrigerator cannot slide on the truck, how rapidly 
can the truck accelerate without tipping the refrigerator over? 
[Hint. The normal force would act at one comer.]

32. (Ill) A uniform ladder of mass m  and length £ leans at an 
angle 6 against a frictionless wall, Fig. 12-67. If the 
coefficient of static friction between the ladder 
and the ground is [jl s  , determine a formula for 
the minimum angle at which the ladder will 
not slip. ^

FIGURE 12-67
Problem 32.

12-3 Stability and Balance
33. (II) The Leaning Tower of Pisa is 55 m tall and about 7.0 m in 

diameter. The top is 4.5 m off center. Is the tower in stable equi­
librium? If so, how much farther can it lean before it becomes 
unstable? Assume the tower is of uniform composition.

12-4 Elasticity; Stress and Strain
34. (I) A nylon string on a tennis racket is under a tension of 

275 N. If its diameter is 1.00 mm, by how much is it length­
ened from its untensioned length of 30.0 cm?

35. (I) A marble column of cross-sectional area 1.4 m2 supports 
a mass of 25,000 kg. (a) What is the stress within the 
column? (b) What is the strain?

36. (I) By how much is the column in Problem 35 shortened if it 
is 8.6 m high?

37. (I) A sign (mass 1700 kg) hangs from the end of a vertical 
steel girder with a cross-sectional area of 0.012 m2. (a) What is 
the stress within the girder? (b) What is the strain on the 
girder? (c) If the girder is 9.50 m long, how much is it 
lengthened? (Ignore the mass of the girder itself.)

38. (II) How much pressure is needed to compress the volume 
of an iron block by 0.10%? Express your answer in N /m 2, 
and compare it to atmospheric pressure (l.O X 105N/m 2).

39. (II) A 15-cm-long tendon was found to stretch 3.7 mm by a 
force of 13.4 N. The tendon was approximately round with 
an average diameter of 8.5 mm. Calculate Young’s modulus 
of this tendon.

40. (II) At depths of 2000 m in the sea, the pressure is about 200 
times atmospheric pressure (l atm = 1.0 X 105N/m 2). By 
what percentage does the interior space of an iron bathy­
sphere’s volume change at this depth?

41. (Ill) A pole projects horizontally from the front wall of a shop. 
A 6.1-kg sign hangs from the pole at a point 2.2 m from the 
wall (Fig. 12-68). (a) What is the torque due to this sign calcu­
lated about the point where the pole meets the wall? (b) If the 
pole is not to fall off, there must be 
another torque exerted to balance 
it. What exerts this torque? Use a 
diagram to show how this torque 
must act. (c) Discuss whether 
compression, tension, and/or shear 
play a role in part (b).

FIGURE 12—68

-2.2 m-

43.

44.

12-5 Fracture
42. (I) The femur bone in the human leg has a minimum effec­

tive cross section of about 3.0 cm2 (= 3.0 X 10-4 m2). How 
much compressive force can it withstand before breaking? 
(II) (a) What is the maximum tension possible in a 
1.00-mm-diameter nylon tennis racket string? (b) If you 
want tighter strings, what do you do to prevent breakage: 
use thinner or thicker strings? Why? What causes strings to 
break when they are hit by the ball?
(II) If a compressive force of 3.3 X 104 N is exerted on the end 
of a 22-cm-long bone of cross-sectional area 3.6 cm2, (a) will 
the bone break, and (b) if not, by how much does it shorten?

45. (II) (a) What is the minimum cross-sectional area required 
of a vertical steel cable from which is suspended a 270-kg 
chandelier? Assume a safety factor of 7.0. (b) If the cable is
7.5 m long, how much does it elongate?

46. (II) Assume the supports of the uniform cantilever shown in 
Fig. 12-69 (ra = 2900 kg) are made of wood. Calculate the 
minimum cross-sectional area 
required of each, assuming a 
safety factor of 9.0.

Fa Fb

30.0 m—H
cG |

FIGURE 12-69
Problem 46.

47. (II) An iron bolt is used to connect two iron plates together. 
The bolt must withstand shear forces up to about 3300 N. 
Calculate the minimum diameter for the bolt, based on a 
safety factor of 7.0.

48. (Ill) A steel cable is to support an elevator whose total 
(loaded) mass is not to exceed 3100 kg. If the maximum 
acceleration of the elevator is 1.2 m /s2, calculate the diam­
eter of cable required. Assume a safety factor of 8.0.

* 12-6 Trusses and Bridges
* 49. (II) A heavy load Mg = 66.0 kN hangs at point E of the

single cantilever truss shown in Fig. 12-70. (a) Use a torque 
equation for the truss as a whole to determine the tension 
Ft  in the support cable, and then determine the force FA on 
the truss at pin A. (b) Determine 
the force in each member 
of the truss. Neglect the

3.0 m

The

weight of the trusses, 
which is small compared 
to the load.

FIGURE 12-70
Problem 49. Mg = 66.0 kN

*50. (II) Figure 12-71 shows a simple truss that carries a load 
at the center (C) of 1.35 X 104N. g
(a) Calculate the force on each strut at 
the pins, A, B, C, D, and (b) determine 
which struts (ignore their masses) 
are under tension and which 
under compression.

FIGURE 12-71 
Problem 50.

*51. (II) (a) What minimum cross-sectional area must the trusses 
have in Example 12-11 if they are of steel (and all the same 
size for looks), using a safety factor of 7.0? (b) If at any time 
the bridge may carry as many as 60 trucks with an average 
m a ss n f 1.3 X 104 ka. e s tim a te  aaain  th e  area n e e d e d  fnr th e

t yf

a / ^ o° 60̂ \D
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52. (II) Consider again Example 12-11 but this time assume the 
roadway is supported uniformly so that \  its mass M  
(= 7.0 X 105 kg) acts at the center and \  M  at each end support 
(think of the bridge as two spans, AC and CE, so the center 
pin supports two span ends). Calculate the magnitude of the 
force in each truss member and compare to Example 12-11.

53. (Ill) The truss shown in Fig. 12-72 supports a railway bridge. 
Determine the compressive or tension force in each strut if a 
53-ton (l ton = 103 kg) train locomotive is stopped at the 
midpoint between the center and one end. Ignore the masses 
of the rails and truss, and use only \  the mass of train 
because there are two trusses
(one on each side of 
the train). Assume all 
triangles are equilateral.
[Hint: See Fig. 12-29.]

A,

FIGURE 12-72
Problem 53.

*54. (Ill) Suppose in Example 12-11, a 23-ton truck 
(ra = 23 X 103 kg) has its cm located 22 m from the left end 
of the bridge (point A). Determine the magnitude of the 
force and type of stress in each strut. [Hint: See Fig. 12-29.] 

*55. (Ill) For the “Pratt truss” shown in Fig. 12-73, determine 
the force on each member and whether it is tensile or 
compressive. Assume the truss is loaded as shown, and give

B
T

results in terms of F. The 
vertical height is a and 
each of the four 
lower horizontal 
spans has length a.

FIGURE 12-73
Problem 55.

*12-7 Arches and Domes
* 56. (II) How high must a pointed arch be if it is to span a space

8.0 m wide and exert one-third the horizontal force at its 
base that a round arch would?

| General Problems
57. The mobile in Fig. 12-74 is in equilibrium. Object B has 

mass of 0.748 kg. Determine the masses of objects A, C, and 
D. (Neglect the weights of the crossbars.)

FIGURE 12-74 Problem 57.

58. A tightly stretched “high wire” is 36 m long. It sags 2.1 m 
when a 60.0-kg tightrope walker stands at its center. What is 
the tension in the wire? Is it possible to increase the tension 
in the wire so that there is no sag?

59. What minimum horizontal force F is needed to pull a wheel 
of radius R  and mass M  over a step of height h as shown 
in Fig. 12-75 (R > h)l (a) Assume the force is applied 
at the top edge as shown.
(b) Assume the force is 
applied instead at the
wheel’s center. , x

)(m b)

\ R
FIGURE 12-75
Problem 59.

60. A 28-kg round table is supported by three legs equal 
distances anart nn the edpe. W hat minimum mass, nlaeed nn

F (in a)

61. When a wood shelf of mass 6.6 kg is fastened inside a slot in 
a vertical support as shown in Fig. 12-76, the support exerts 
a torque on the shelf, (a) Draw a free-body diagram for the 
shelf, assuming three vertical forces (two exerted by the 
support slot—explain why). Then calculate (b) the magni­
tudes of the three forces and (c) the torque exerted by the 
support (about the left end of the shelf).

FIGURE 12-76
Problem 61.

32.0 cm
3.0 cm

62. A 50-story building is being planned. It is to be 180.0 m high 
with a base 46.0 m by 76.0 m. Its total mass will be about 
1.8 X 107kg, and its weight therefore about 1.8 X 108N. 
Suppose a 200-km/h wind exerts a force of 950 N/m2 over 
the 76.0-m-wide face (Fig. 12-77). Calculate the torque 
about the potential pivot point, the rear edge of the building 
(where FE acts in Fig. 12-77), and determine whether the 
building will topple. Assume the total force of the wind 
acts at the midpoint of 
the building’s face, and 
that the building is not 
anchored in bedrock.
[Hint: FE in Fig. 12-77 
represents the force that 
the Earth would exert 
on the building in the 
case where the building U' i~l~kcg

would just begin to tip.]

FIGURE 12-77 Forces 
on a building subjected to 
wind (Fa), gravity (rag), 
and the force FE on the 
building due to the Earth
if the hnildina were inst

mg

Fc



63. The center of gravity of a loaded truck depends on how the 
truck is packed. If it is 4.0 m . *-
high and 2.4 m  wide, and its 
c g  is 2 .2  m  above the 
ground, how steep a slope 
can the truck be parked 
on without tipping over 
(Fig. 12-78)?

CG

FIGURE 12-78
Problem 63.

64. In Fig. 12-79, consider the right-hand (northernmost) 
section of the Golden Gate Bridge, which has a length 
di = 343 m. Assume the c g  of this span is halfway between 
the tower and anchor. Determine FX1 and FT2 (which act on 
the northernmost cable) in terms of mg, the weight of the 
northernmost span, and calculate the tower height h needed 
for equilibrium. Assume the roadway is supported only by 
the suspension cables, and neglect the mass of the cables and 
vertical wires. [Hint: FX3 does not act on this section.]

FIGURE 12-79 Problems 64 and 65.
65. Assume that a single-span suspension bridge such as the 

Golden Gate Bridge has the symmetrical configuration indi­
cated in Fig. 12-79. Assume that the roadway is uniform over 
the length of the bridge and that each segment of the suspension 
cable provides the sole support for the roadway directly 
below it. The ends of the cable are anchored to the ground 
only, not to the roadway. What must the ratio of d2 to di be 
so that the suspension cable exerts no net horizontal force 
on the towers? Neglect the mass of the cables and the fact 
that the roadway isn’t precisely horizontal.

66. When a mass of 25 kg is hung from the middle of a fixed straight 
aluminum wire, the wire sags to make an angle of 12° with 
the horizontal as shown in Fig. 12-80. Determine the radius 
of the wire.

68. A uniform flexible steel cable of weight mg is suspended 
between two points at the same elevation as shown in 
Fig. 12-82, where 0 = 56°. Determine the tension in the 
cable (a) at its lowest point, and (b) at the points of attachment, 
(c) What is the direction of
the tension force in each 
case?

FIGURE 12-82
Problem 68.

69. A 20.0-m-long uniform beam weighing 650 N rests on walls A 
and B, as shown in Fig. 12-83. (a) Find the maximum weight 
of a person who can walk to the extreme end D without 
tipping the beam. Find the forces that the walls A and B exert 
on the beam when the person is standing: (b) at D; (c) at a 
point 2.0 m to the right of B; (d) 2.0 m to the right of A.

C A
20. r> iti

II I)

- 3.0 m -  - 12.0 m

FIGURE 12-83
Problem 69.

70. A cube of side I rests on a rough floor. It is subjected to a 
steady horizontal pull F, exerted a distance h above the 
floor as shown in Fig. 12-84. As F  is increased, the block 
will either begin to slide, or begin to tip over. Determine the 
coefficient of static friction /j l s  so  that (a) the block begins to 
slide rather than tip; (b) the block 
begins to tip. [Hint: Where will the 
normal force on the block act if it tips?]

FIGURE 12-84
Problem 70.

71. A 65.0-kg painter is on a uniform 25-kg scaffold supported 
from above by ropes (Fig. 12-85). There is a 4.0-kg pail of 
paint to one side, as shown. Can 
the painter walk safely to both 
ends of the scaffold? If not, which 
end(s) is dangerous, and how 
close to the end can he approach 
safely?

FIGURE 12-85
Problem 71.

1.0m

U> m 4(hn to rn

72.

FIGURE 12-80
Problem 66.

67. The forces acting on a 77,000-kg aircraft flying at constant 
velocity are shown in Fig. 12-81. The engine thrust, 
Ft  = 5.0 X 105 N, acts on a line 1.6 m below the c m . Deter­
mine the drag force FD and the distance above the cm  that it 
acts. Assume Fd and Fx
are horizontal. (FL is 
the “lift” force on the 
wing.)

FIGURE 12—81

eacn nana; (b) on 
each foot.

FIGURE 12-86
Problem 72.

73. A 23-kg sphere rests between two smooth planes as shown in 
Fig. 12-87. Determine the 
magnitude of the force 
acting on the sphere 
exerted by each plane.

FIGURE 12—87

A man doing push-ups pauses in the position shown in 
Fig. 12-86. His mass m  = 68 kg. Determine the normal 
force exerted by 
the floor (a) on 
each hand; (b) 
each foot.

42 cm 95 cm



74. A 15.0-kg ball is supported from the ceiling by rope A. 
Rope B pulls downward and to
the side on the ball. If the 
angle of A to the vertical is 22° 
and if B makes an angle of 53° 
to the vertical (Fig. 12-88), 
find the tensions in ropes 
A and B.

FIGURE 12-88
Problem 74.

75. Parachutists whose chutes have failed to open have been 
known to survive if they land in deep snow. Assume that a 
75-kg parachutist hits the ground with an area of impact of
0.30 m2 at a velocity of 55 m/s, and that the ultimate 
strength of body tissue is 5 X 105N/m 2. Assume that the 
person is brought to rest in 1.0 m of snow. Show that the 
person may escape serious injury.

76. A steel wire 2.3 mm in diameter stretches by 0.030% when a 
mass is suspended from it. How large is the mass?

77. A 2500-kg trailer is attached to a stationary truck at point B, 
Fig. 12-89. Determine the normal force exerted by the road 
on the rear tires at A, and the vertical force exerted on the 
trailer by the support B.

81. There is a maximum height of a uniform vertical column 
made of any material that can support itself without buckling, 
and it is independent of the cross-sectional area (why?). 
Calculate this height for (a) steel (density 7.8 X 103 kg/m3), 
and (b) granite (density 2.7 X 103 kg/m3).

82. A 95,000-kg train locomotive starts across a 280-m-long 
bridge at time t = 0. The bridge is a uniform beam of mass
23,000 kg and the train travels at a constant 80.0 km/h. 
What are the magnitudes of the vertical forces, FA(t) and 
FB(t), on the two end supports, written as a function of time 
during the train’s passage?

83. A 23.0-kg backpack is suspended midway between two trees 
by a light cord as in Fig. 12-50. A bear grabs the backpack 
and pulls vertically downward with a constant force, so that 
each section of cord makes an angle of 27° below the hori­
zontal. Initially, without the bear pulling, the angle was 15°; 
the tension in the cord with the bear pulling is double what 
it was when he was not. Calculate the force the bear is 
exerting on the backpack.

84. A uniform beam of mass M  and length I is mounted on a 
hinge at a wall as shown in Fig. 12-91. It is held in a hori­
zontal position by a wire making an angle 0 as shown. A 
mass m  is placed on the beam a distance x  from the wall, 
and this distance can be
varied. Determine, as a func­
tion of x, (a) the tension in 
the wire and (b) the compo­
nents of the force exerted by 
the beam on the hinge.

«>

FIGURE 12-91
Problem 84. f

FIGURE 12-89 Problem 77.

78. The roof over a 9.0-m X 10.0-m room in a school has a total 
mass of 13,600 kg. The roof is to be supported by vertical 
“2 X 4s” (actually about 4.0 cm X 9.0 cm) equally spaced 
along the 10.0-m sides. How many supports are required on 
each side, and how far apart must they be? Consider only 
compression, and assume a safety factor of 12 .

79. A 25-kg object is being lifted by pulling on the ends of a 
1.15-mm-diameter nylon cord that goes over two 3.00-m-high 
poles that are 4.0 m apart, as shown in Fig. 12-90. How high 
above the floor will the object be when the cord breaks?

FIGURE 12-90 Problem 79.

80. A uniform 6.0-m-long ladder of mass 16.0 kg leans against a 
smooth wall (so the force exerted by the wall, Fw, is 
perpendicular to the wall). The ladder makes an angle of 
20.0° with the vertical wall, and the ground is rough. Deter­
mine the coefficient of static friction at the base of the
ladder if  the ladder is not to  slin w hen a 7fv0-ka nersnn

85. Two identical, uniform beams are symmetrically set up 
against each other (Fig. 12-92) on a floor 
with which they have a coefficient of fric­
tion = 0.50. What is the minimum 
angle the beams can make with the 
floor and still not fall?

FIGURE 12-92
Problem 85.

86. If 35 kg is the maximum mass m  that a person can hold in a 
hand when the arm is positioned with a 105° angle at the 
elbow as shown in Fig. 12-93, what is the maximum force 
Fmax that the biceps muscle exerts on the forearm? Assume 
the forearm and hand have a total mass of 2.0 kg with 

a c g  that is 15 cm from the elbow, and that 
the biceps muscle attaches 5.0 cm 

from the elbow.

.15 ky

5.0 cm f(2.0kg)g
h*—-------N

15 cm FIGURE 12-93



87. (a) Estimate the magnitude of the force f m the muscles 
exert on the back to support the upper body when a person 
bends forward. Use the model shown in Fig. 12-94b. 
(b) Estimate the magnitude and 
direction of the force Fv 
acting on the fifth lumbar 
vertebra (exerted by 
the spine below).

Fifth
lumbar
vuriebfii

Erector spinao 
musclcs

■= 0.07h ' 
(head)

WA -  0J 2 w  
(arms)
0,46 u' 
(inmk)

h*t

{a)

iv =Toial wctghi 
of person

(b)

FIGURE 12-94 Problem 87.

n

88. One rod of the square frame shown in Fig. 12-95 contains a 
turnbuckle which, when turned, can put the rod under 
tension or compression. If the turnbuckle puts rod AB 
under a compressive force F, deter­
mine the forces produced in the other 
rods. Ignore the mass of the rods and 
assume the diagonal rods cross each 
other freely at the center without fric­
tion. [Hint: Use the symmetry of the 
situation.]

FIGURE 12-95
Problem 88. C D

89. A steel rod of radius R = 15 cm and length £0 stands 
upright on a firm surface. A 65-kg man climbs atop the rod.
(a) Determine the percent decrease in the rod’s length.
(b) When a metal is compressed, each atom throughout 
its bulk moves closer to its neighboring atom by exactly 
the same fractional amount. If iron atoms in steel are 
normally 2.0 X 10-10m apart, by what distance did this 
interatomic spacing have to change in order to produce 
the normal force required to support the man? [Note: 
Neighboring atoms repel each other, and this repulsion 
accounts for the observed normal force.]

90. A home mechanic wants to raise the 280-kg engine out of a 
car. The plan is to stretch a rope vertically from the engine 
to a branch of a tree 6.0 m above, and back to the bumper 
(Fig. 12-96). When the mechanic climbs up a stepladder 
and pulls horizontally on the rope at its midpoint, the 
engine rises out of the car.
(a) How much force must 
the mechanic exert to hold 
the engine 0.50 m above its 
normal position? (b) What 
is the system’s mechanical 
advantage?

FIGURE 12-96

91. A 2.0-m-high box with a 1.0-m-square base is moved across 
a rough floor as in Fig. 12-97. The uniform box weighs 
250 N and has a coefficient of static friction with the floor of 
0.60. What minimum force must be exerted on the box 
to make it slide? What is the 
maximum height h above the floor 1,0 m
that this force can be applied — s
without tipping the box over? Note f  
that as the box tips, the normal
force and the friction force will act | | c g  I 2 ,0  m 
at the lowest corner. h

FIGURE 12-97
Problem 91.

J
92. You are on a pirate ship and being forced to walk the plank 

(Fig. 12-98). You are standing at the point marked C. The 
plank is nailed onto the deck at point A, and rests on the 
support 0.75 m away from A. The center of mass of the uniform 
plank is located at 
point B. Your mass is 
65 kg and the mass of 
the plank is 45 kg.
What is the minimum 
downward force the 
nails must exert on 
the plank to hold it in 
place?

FIGURE 12-98
Problem 92.

93. A uniform sphere of weight mg and radius rQ is tethered to a 
wall by a rope of length t  The rope is tied to the wall a 
distance h above the contact point of the sphere, as shown in 
Fig. 12-99. The rope makes an angle 6 
with respect to the wall and is not in 
line with the ball’s center. The coefficient t*  
of static friction between the wall and 
sphere is /j l . ( a )  Determine the value of 
the frictional force on the sphere due to 
the wall. [Hint A wise choice of axis will 
make this calculation easy.] (b) Suppose 
the sphere is just on the verge of 
slipping. Derive an expression for /j l  in 
terms of h and 0.

\\ 
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FIGURE 12-99
Problem 93.

"94.

FIGURE 12-100

Use the method of joints to determine the force in each 
member of the truss 
shown in Fig. 12-100. H
State whether each 
member is in tension 
or compression.



95. A uniform ladder of mass m and length £ leans at an angle
0 against a wall, Fig. 12-101. The coefficients of static fric­
tion between ladder-ground and ladder-wall are fxG and 
/itw, respectively. The ladder will be on the verge of slipping 
when both the static friction forces due to the ground and 
due to the wall take on their maximum values, (a) Show that 
the ladder will be stable if 0 > 0mjn, where the minimum

0min is given by 

tan dmm = ^ ( 1  -M GM w).

(b) “Leaning ladder problems” are often analyzed under the 
seemingly unrealistic assumption that the wall is frictionless 
(see Example 12-6). You wish to investigate the magnitude 
of error introduced by modeling the wall as frictionless, if in 
reality it is frictional. Using the relation found in part (a), 
calculate the true value of 0̂  for a frictional wall, 
taking /jlq = piw = 0.40. Then, determine the 
approximate value of 0min for the “friction­
less wall” model by taking /jl g  =  0.40 
and /aw = 0. Finally, determine the 
percent deviation of the approxi- t  / j f f

value. "'g

FIGURE 12-101
Problem 95.

At;

96. In a mountain-climbing technique called the “Tyrolean 
traverse,” a rope is anchored on both ends (to rocks or strong 
trees) across a deep chasm, and then a climber traverses the 
rope while attached by a sling as in Fig. 12-102. This tech­
nique generates tremendous forces in the rope and anchors, 
so a basic understanding of physics is crucial for safety. A 
typical climbing rope can undergo a tension force of perhaps 
29 kN before breaking, and a “safety factor” of 10 is usually 
recommended. The length of rope used in the Tyrolean 
traverse must allow for some “sag” to remain in the recom­
mended safety range. Consider a 75-kg climber at the center 
of a Tyrolean traverse, spanning a 25-m chasm, (a) To be 
within its recommended safety range, what minimum 
distance x must the rope sag? (b) If the Tyrolean traverse is 
set up incorrectly so that the rope sags by only one-fourth 
the distance

I l f /  T r T
25 m

found in (a), 
determine the 
tension in the 
rope. Will the 
rope break?

FIGURE 12-102
Problem 96.

7? kg

* Numerical/Computer
*97. (Ill) A metal cylinder has an original diameter of 1.00 cm 

and a length of 5.00 cm. A tension test was performed on 
the specimen and the data are listed in the Table, (a) Graph 
the stress on the specimen vs. the strain. (b) Considering 
only the elastic region, find the slope of the best-fit straight 
line and determine the elastic modulus of the metal.

Load (kN) Elongation (cm)

0 0
1.50 0.0005
4.60 0.0015
8.00 0.0025

11.00 0.0035
11.70 0.0050
11.80 0.0080
12.00 0.0200
16.60 0.0400
20.00 0.1000
21.50 0.2800
19.50 0.4000
18.50 0.4600

*98. (Ill) Two springs, attached by a rope, are connected as shown 
in Fig. 12-103. The length AB is 4.0 m and AC = BC. 
The spring constant of each spring is k  = 20.0 N/m. A 
force F acts downward at C on the rope. Graph 0 as a func­
tion of F from 0 = 0 to 75°, assuming the springs are 
unstretched at 0 = 0.

FIGURE 12-103 Problem 98.

Answers to Exercises
A: Fa also has a component to balance the sideways force FB. 
B: Yes: cos 0 (angle of bar with ground) appears on both sides 

and cancels out.
C: Fn = mAg + mBg + Mg = 560N.

E: 7.0 kg.
F: Static friction at the cement floor (= FCx) is crucial, or else the 

ladder would slip. At the top, the ladder can move and adjust, so 
we wouldn’t need or expect a strong static friction force there.
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Fluids

Underwater divers and sea creatures 
experience a buoyant force (Fb) that 
closely balances their weight rag. 
The buoyant force is equal to the 
weight of the volume of fluid 
displaced (Archimedes’ principle) and 
arises because the pressure increases 
with depth in the fluid. Sea creatures 
have a density very close to that of 
water, so their weight very nearly 
equals the buoyant force. Humans 
have a density slightly less than 
water, so they can float.

When fluids flow, interesting effects 
occur because the pressure in the fluid 
is lower where the fluid velocity is 
higher (Bernoulli’s principle).

T £

CHAPTER-OPENING QUESTIONS—Guess now!
1. Which container has the largest pressure at the bottom? Assume each container 

holds the same volume of water.

(u) <h> (c) (d) (e)

The
c— — a —o g— —j  pressures

V are
equal.

2. Two balloons are tied and hang with their nearest edges about 3 cm apart. If you 
blow between the balloons (not at the balloons, but at the opening between 
them), what will happen?
(a) Nothing.
(b) The balloons will move closer together.
(c) The balloons will move farther apart.

HA
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TABLE 13-1
Densities of Substances1

Substance
Density, 

p (kg/m3)

Solids
Aluminum 2.70 X 103
Iron and steel

COOrHX00

Copper 8.9 X 103
Lead 11.3 X 103
Gold 19.3 X 103
Concrete 2.3 X 103
Granite 2.7 X 103
Wood (typical) 0.3-0.9 X 103
Glass, common 2.4-2.8 X 103
Ice (H20) 0.917 X 103
Bone 1.7-2.0 X 103

Liquids
Water (4°C)

COOX8t-H

Blood, plasma 1.03 X 103
Blood, whole 1.05 X 103
Sea water 1.025 X 103
Mercury 13.6 X 103
Alcohol, ethyl 0.79 X 103
Gasoline 0.68 X 103

Gases
Air 1.29
Helium 0.179
Carbon dioxide 1.98
Steam
(water, 100°C) 0.598

densities are given at 0°C and 1 atm

I n previous Chapters we considered objects that were solid and assumed to 
maintain their shape except for a small amount of elastic deformation. We 
sometimes treated objects as point particles. Now we are going to shift our 
attention to materials that are very deformable and can flow. Such “fluids” 

include liquids and gases. We will examine fluids both at rest (fluid statics) and in 
motion (fluid dynamics).

13—1 Phases of Matter
The three common phases, or states, of matter are solid, liquid, and gas. We can 
distinguish these three phases as follows. A solid maintains a fixed shape and a 
fixed size; even if a large force is applied to a solid, it does not readily change in 
shape or volume. A liquid does not maintain a fixed shape—it takes on the 
shape of its container—but like a solid it is not readily compressible, and its 
volume can be changed significantly only by a very large force. A gas has 
neither a fixed shape nor a fixed volume—it will expand to fill its container. 
For example, when air is pumped into an automobile tire, the air does not all 
run to the bottom of the tire as a liquid would; it spreads out to fill the whole 
volume of the tire. Since liquids and gases do not maintain a fixed shape, they 
both have ability to flow; they are thus often referred to collectively as fluids.

The division of matter into three phases is not always simple. How, for 
example, should butter be classified? Furthermore, a fourth phase of matter can 
be distinguished, the plasma phase, which occurs only at very high temperatures 
and consists of ionized atoms (electrons separated from the nuclei). Some scien­
tists believe that so-called colloids (suspensions of tiny particles in a liquid) 
should also be considered a separate phase of matter. Liquid crystals, which are 
used in TV and computer screens, calculators, digital watches, and so on, can be 
considered a phase of matter intermediate between solids and liquids. However, 
for our present purposes we will mainly be interested in the three ordinary 
phases of matter.

1 3 -2  Density and Specific Gravity
It is sometimes said that iron is “heavier” than wood. This cannot really be true 
since a large log clearly weighs more than an iron nail. What we should say is that 
iron is more dense than wood.

The density, p, of a substance (p is the lowercase Greek letter rho) is defined 
as its mass per unit volume:

where m  is the mass of a sample of the substance and V  is its volume. Density is a 
characteristic property of any pure substance. Objects made of a particular pure 
substance, such as pure gold, can have any size or mass, but the density will be 
the same for each.

We will sometimes use the concept of density, Eq. 13-1, to write the mass of 
an object as

m = pV, 

and the weight of an object as 

mg = pVg.
The SI unit for density is kg/m3. Sometimes densities are given in g/cm3. Note 

that since 1  kg/m 3 = 1000 g/( 100 cm)3 = 103g /106 cm3 = 10-3 g/cm3, then a 
density given in g/cm3 must be multiplied by 1000 to give the result in kg/m3. Thus 
the density of aluminum is p = 2.70 g/cm3, which is equal to 2700 kg/m3. The 
densities of a varietv of substances are eiven in Table 13-1. The Table specifies



EXAMPLE 13-1 Mass, given volume and density. What is the mass of a 
solid iron wrecking ball of radius 18 cm?
APPROACH First we use the standard formula V  = f 7tt3 (see inside rear cover) to 
obtain the volume of the sphere. Then Eq. 13-1 and Table 13-1 give us the mass ra. 
SOLUTION The volume of the sphere is

3-«, -  |  (3.14) (0.18 m)3 = 0.024 m3.
From Table 13-1, the density of iron is p = 7800 kg/m3, so Eq. 13-1 gives 

m = pV = (7800 kg/m3)(0.024 m3) = 190 kg.

The specific gravity of a substance is defined as the ratio of the density of that 
substance to the density of water at 4.0°C. Because specific gravity (abbreviated SG) 
is a ratio, it is a simple number without dimensions or units. The density of water is
1.00 g/cm3 = 1.00 X 103kg/m3, so the specific gravity of any substance will be 
equal numerically to its density specified in g/cm3, or 10“3 times its density specified 
in kg/m3. For example (see Table 13-1), the specific gravity of lead is 11.3, and that 
of alcohol is 0.79.

The concepts of density and specific gravity are especially helpful in the study 
of fluids because we are not always dealing with a fixed volume or mass.

13-3  Pressure in Fluids
Pressure and force are related, but they are not the same thing. Pressure is defined 
as force per unit area, where the force F is understood to be the magnitude of the 
force acting perpendicular to the surface area A:

F
pressure = P = — • (13-2)

J\.
Although force is a vector, pressure is a scalar. Pressure has magnitude only. The
SI unit of pressure is N/m2. This unit has the official name pascal (Pa), in honor 
of Blaise Pascal (see Section 13-5); that is, lP a  = lN /m 2. However, for 
simplicity, we will often use N/m2. Other units sometimes used are dynes/cm2, 
and lb/in.2 (abbreviated “psi”). Several other units for pressure are discussed, 
along with conversions between them, in Section 13-6 (see also the Table inside 
the front cover).

EXAMPLE 13-2 Calculating pressure. The two feet of a 60-kg person cover an 
area of 500 cm2, (a) Determine the pressure exerted by the two feet on the ground.
(b) If the person stands on one foot, what will the pressure be under that foot? 
APPROACH Assume the person is at rest. Then the ground pushes up on her 
with a force equal to her weight mg, and she exerts a force mg on the ground 
where her feet (or foot) contact it. Because 1 cm2 = (lO-2 m)2 = 10-4 m2, then 
500 cm2 = 0.050 m2.
SOLUTION (a) The pressure on the ground exerted by the two feet is

F mg (60kg)(9.8m/s2)
P = 4  = V ^  = 12 X 10 N/m .

A  A  (0.050 m2)
(b) If the person stands on one foot, the force is still equal to the person’s 
weight, but the area will be half as much, so the pressure will be twice as much: 
24 X 103 N/m2.

Pressure is particularly useful for dealing with fluids. It is an experimental 
observation that a fluid exerts pressure in any direction. This is well known to 
swimmers and divers who feel the water pressure on all parts of their bodies. At 
any depth in a fluid at rest, the pressure is the same in all directions at a given 
depth. To see why, consider a tiny cube of the fluid (Fig. 13-1) which is so small 
that we can consider it a point and can ienore the force of eravitv on it. The

/j\  CAUTION________
Pressure is a scalar, not a vector

FIGURE 13-1 Pressure is the same 
in every direction in a nonmoving 
fluid at a given depth. If this weren’t 
true, the fluid would be in motion.

J/7i
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FIGURE 13-2 If there were a 
component of force parallel to the 
solid surface of the container, the 
liquid would move in response to it. 
For a liquid at rest, Fj =  0.

FIGURE 13-3 Calculating the 
pressure at a depth h in a liquid.

FIGURE 13-4 Forces on a flat, 
slablike volume of fluid for 
determining the pressure P  at a 
height y  in the fluid.

C j y '  + dP)A
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For a fluid at rest, the force due to fluid pressure always acts perpendicular to 
any solid surface it touches. If there were a component of the force parallel to the 
surface, as shown in Fig. 13-2, then according to Newton’s third law the solid surface 
would exert a force back on the fluid that also would have a component parallel to 
the surface. Such a component would cause the fluid to flow, in contradiction to our 
assumption that the fluid is at rest. Thus the force due to the pressure in a fluid at 
rest is always perpendicular to the surface.

Let us now calculate quantitatively how the pressure in a liquid of uniform 
density varies with depth. Consider a point at a depth h below the surface of the 
liquid, as shown in Fig. 13-3 (that is, the surface is a height h above this point). The 
pressure due to the liquid at this depth h is due to the weight of the column of 
liquid above it. Thus the force due to the weight of liquid acting on the area A  is 
F = mg = (pV)g = pAhg, where Ah  is the volume of the column of liquid, p is 
the density of the liquid (assumed to be constant), and g is the acceleration of 
gravity. The pressure P due to the weight of liquid is then

P = pgh. [liquid] (13-3)

Note that the area A  doesn’t affect the pressure at a given depth. The fluid 
pressure is directly proportional to the density of the liquid and to the depth 
within the liquid. In general, the pressure at equal depths within a uniform liquid 
is the same.

EXERCISE A Return to Chapter-Opening Question 1, page 339, and answer it again now.
Try to explain why you may have answered differently the first time.

Equation 13-3 tells us what the pressure is at a depth h in the liquid, due to the 
liquid itself. But what if there is additional pressure exerted at the surface of the 
liquid, such as the pressure of the atmosphere or a piston pushing down? And what 
if the density of the fluid is not constant? Gases are quite compressible and hence 
their density can vary significantly with depth. Liquids, too, can be compressed, 
although we can often ignore the variation in density. (One exception is in the 
depths of the ocean where the great weight of water above significantly compresses 
the water and increases its density.) To cover these, and other cases, we now treat 
the general case of determining how the pressure in a fluid varies with depth.

As shown in Fig. 13-4, let us determine the pressure at any height y above 
some reference pointf (such as the ocean floor or the bottom of a tank or swimming 
pool). Within this fluid, at the height y, we consider a tiny, flat, slablike volume of the 
fluid whose area is A  and whose (infinitesimal) thickness is dy, as shown. Let the 
pressure acting upward on its lower surface (at height y) be P. The pressure acting 
downward on the top surface of our tiny slab (at height y + dy) is designated 
P + dP. The fluid pressure acting on our slab thus exerts a force equal to PA 
upward on our slab and a force equal to (P + dP)A  downward on it. The only 
other force acting vertically on the slab is the (infinitesimal) force of gravity dFG, 
which on our slab of mass dm is

dFG = (dm)g = pgdV  = pgAdy, 
where p is the density of the fluid at the height y. Since the fluid is assumed to be at 
rest, our slab is in equilibrium so the net force on it must be zero. Therefore we have 

PA -  (P + dP)A -  pgAdy = 0, 
which when simplified becomes

%  = " « •  (13- 4) 
This relation tells us how the pressure within the fluid varies with height above any 
reference point. The minus sign indicates that the pressure decreases with an



If the pressure at a height y1 in the fluid is Px, and at height y2 it is P2, then we 
can integrate Eq. 13-4 to obtain

[Pi ry2
dP = -  pgdy 

JPi Jy1
■y2

Pi = -  Pg dy, (13-5)

where we assume p is a function of height y: p = p(y). This is a general relation, 
and we apply it now to two special cases: (1) pressure in liquids of uniform density 
and (2) pressure variations in the Earth’s atmosphere.

For liquids in which any variation in density can be ignored, p = constant 
and Eq. 13-5 is readily integrated:

Pi -  Pi = -pg{yi -  yO- (13-6a)
For the everyday situation of a liquid in an open container—such as water in a glass, a 
swimming pool, a lake, or the ocean—there is a free surface at the top exposed to the 
atmosphere. It is convenient to measure distances from this top surface. That is, we 
let h be the depth in the liquid where h = y2 — yx as shown in Fig. 13-5. If we let y2 
be the position of the top surface, then P2 represents the atmospheric pressure, P0, at 
the top surface. Then, from Eq. 13-6a, the pressure P (= P j  at a depth h in the fluid is

Po +  P g h . [h is depth in liquid] (13-6b)
Note that Eq. 13-6b is simply the liquid pressure (Eq. 13-3) plus the pressure PQ 
due to the atmosphere above.

Pressure at a faucet The surface of the water in a storage tank 
is 30 m above a water faucet in the kitchen of a house, Fig. 13-6. Calculate the differ­
ence in water pressure between the faucet and the surface of the water in the tank. 
APPROACH Water is practically incompressible, so p is constant even for 
h = 30 m when used in Eq. 13-6b. Only h matters; we can ignore the “route” of 
the pipe and its bends.
SOLUTION We assume the atmospheric pressure at the surface of the water 
in the storage tank is the same as at the faucet. So, the water pressure 
difference between the faucet and the surface of the water in the tank is

AP = pgh = (1.0 X 103kg/m3)(9.8m/s2)(30m) = 2.9 X lO’ N/m2.
NOTE The height h is sometimes called the pressure head. In this Example, the 
head of water is 30 m at the faucet. The very different diameters of the tank and 
faucet don’t affect the result—only pressure does.

EXAMPLE 13-4 Force on aquarium window. Calculate the force due to 
water pressure exerted on a 1.0 m X 3.0 m aquarium viewing window whose top 
edge is 1.0 m below the water surface, Fig. 13-7.
APPROACH At a depth h, the pressure due to the water is given by Eq. 13-6b. 
Divide the window up into thin horizontal strips of length £ = 3.0 m and thick­
ness dy, as shown in Fig. 13-7. We choose a coordinate system with y = 0 at the 
surface of the water and y is positive downward. (With this choice, the minus sign 
in Eq. 13-6a becomes plus, or we use Eq. 13-6b with y = h.) The force due to 
water pressure on each strip is dF = PdA = pgyi dy.
SOLUTION The total force on the window is given by the integral:

r y 2 =2.0 m
pgyl dy = ipgt(yl ~ y?)

J_y1 = 1.0 m

= \ (1000kg/m3)(9.8m/s2)(3.0m)[(2.0m)2 -  (1.0m)2] = 44.000N. 
NOTE To check our answer, we can do an estimate: multiply the area of the 
window (3.0 m2) times the pressure at the middle of the window (h = 1.5 m) 
using Eq. 13-3, P = pgh = (1000 kg/m3)(9.8 m/s2)(1.5 m) «  1.5 X 104N/m2. So

h -y 2- y  | 

/■, = />{
V-I

FIGURE 13-5 Pressure at a depth 
h =  (y2 ~  yi) in a liquid of density p  
is P  =  P0 + pgh, where P0 is the 
external pressure at the liquid’s top 
surface.

FIGURE 13-6 Example 13-3 .
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FIGURE 13-7 Example 13-4 .
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Now let us apply Eq. 13-4 or 13-5 to gases. The density of gases is normally 
quite small, so the difference in pressure at different heights can usually be ignored 
if y2 — yi is not large (which is why, in Example 13-3, we could ignore the 
difference in air pressure between the faucet and the top of the storage tank). 
Indeed, for most ordinary containers of gas, we can assume that the pressure is 
the same throughout. However, if y2 -  y± is very large, we cannot make this 
assumption. An interesting example is the air of Earth’s atmosphere, whose pressure at 
sea level is about 1.013 X 105N/m2 and decreases slowly with altitude.

Elevation effect on atmospheric pressure, (a) Determine 
the variation in pressure in the Earth’s atmosphere as a function of height y 
above sea level, assuming g is constant and that the density of the air is 
proportional to the pressure. (This last assumption is not terribly accurate, in part 
because temperature and other weather effects are important.) (b) At what 
elevation is the air pressure equal to half the pressure at sea level?
APPROACH We start with Eq. 13-4 and integrate it from the surface of the Earth 
where y = 0 and P = P0, up to height y at pressure P. In (b) we choose P = \P$. 
SOLUTION (a) We are assuming that p is proportional to P, so we can write

p_ = L ,
Po Pq

where PQ = 1.013 X 105N/m2 is atmospheric pressure at sea level and 
Po = 1.29 kg/m3 is the density of air at sea level at 0°C (Table 13-1). From the 
differential change in pressure with height, Eq. 13-4, we have

^  _ _ _ o / V i
dy ps U J * ’

so
dP Po

T  = ~ T 0 g d y '
We integrate this from y = 0 (Earth’s surface) and P = P0, to the height y 
where the pressure is P:

fIP0
dp  po \ y ,
T  =  - p A *

. P Po
ln v  = ~ - ^ s y ,-M) “0

since \nP  — lnP0 = ln(P/P0)- Then
P  =  P0e~(pog/p^y.

So, based on our assumptions, we find that the air pressure in our atmosphere 
decreases approximately exponentially with height.
NOTE The atmosphere does not have a distinct top surface, so there is no natural 
point from which to measure depth in the atmosphere, as we can do for a liquid.
(b) The constant (pog/Po) has the value

Pog = (1.29 kg/m3)(9.80 m/s2)
P0 ~ (1.013 X 105 N/m2)

Then, when we set P = jP0 in our expression derived in (a), we obtain
1 _  (l.25Xl(T4
2 c

or, taking natural logarithms of both sides, 
ln | = (-1.25 X 10-4 m-1)}> 

so (recall ln^ = -In  2, Appendix A -1 , Eq. ii)
y = (ln2.00)/(l.25 X 10_4m_1) = 5550 m.

Thus, at an elevation of about 5500 m (about 18,000 ft), atmospheric pressure 
drops to half what it is at sea level. It is not surprising that mountain climbers



1 3 -4  Atmospheric Pressure and 
Gauge Pressure

Atmospheric Pressure
The pressure of the air at a given place on Earth varies slightly according to the 
weather. At sea level, the pressure of the atmosphere on average is 1.013 X 105 N/m2 
(or 14.71b/in.2). This value lets us define a commonly used unit of pressure, the 
atmosphere (abbreviated atm):

la tm  = 1.013 X 105 N/m2 = 101.3 kPa.

Another unit of pressure sometimes used (in meteorology and on weather maps) 
is the bar, which is defined as

1 bar = 1.000 X 105 N/m2.

Thus standard atmospheric pressure is slightly more than 1 bar.
The pressure due to the weight of the atmosphere is exerted on all objects 

immersed in this great sea of air, including our bodies. How does a human body @  P H Y S I C S  A P P L I E D  
withstand the enormous pressure on its surface? The answer is that living cells Pressure on living cells 
maintain an internal pressure that closely equals the external pressure, just as the 
pressure inside a balloon closely matches the outside pressure of the atmosphere.
An automobile tire, because of its rigidity, can maintain internal pressures much 
greater than the external pressure.

CONCEPTUAL EXAMPLE 15-6 I Finger holds water in a straw. You insert 
a straw of length I into a tall glass of water. You place your finger over the 
top of the straw, capturing some air above the water but preventing any additional 
air from getting in or out, and then you lift the straw from the water. You 
find that the straw retains most of the water (see Fig. 13-8a). Does the air 
in the space between your finger and the top of the water have a pressure P 
that is greater than, equal to, or less than the atmospheric pressure P0 outside 
the straw?

RESPONSE Consider the forces on the column of water (Fig. 13-8b). Atmos­
pheric pressure outside the straw pushes upward on the water at the bottom 
of the straw, gravity pulls the water downward, and the air pressure inside 
the top of the straw pushes downward on the water. Since the water is in 
equilibrium, the upward force due to atmospheric pressure P0 must balance the 
two downward forces. The only way this is possible is for the air pressure 
inside the straw to be less than the atmosphere pressure outside the straw. 
(When you initially remove the straw from the glass of water, a little water may 
leave the bottom of the straw, thus increasing the volume of trapped air and 
reducing its density and pressure.)

(a)

PA

f mg = 
T . pgAti

<b)

FIGURE 13-8 Example 13-6.

Gauge Pressure
It is important to note that tire gauges, and most other pressure gauges, register the 
pressure above and beyond atmospheric pressure. This is called gauge pressure. 
Thus, to get the absolute pressure, P, we must add the atmospheric pressure, P0, to 
the gauge pressure, PG:

P = P0 + PG-

If a tire gauge registers 220 kPa, the absolute pressure within the tire is 
220 kPa + 101 kPa = 321 kPa. equivalent to about 3.2 atm (2.2 atm eauee
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(b) attached to wheel

FIGURE 1 3 -9  Applications of
Pascal’s principle: (a) hydraulic lift;
(b) hydraulic brakes in a car.

(^ P H Y S I C S  A P P L I E D
Hydraulic lift

^ P H Y S I C S  A P P L I E D
Hydraulic brakes

13—5 Pascal's Principle
The Earth’s atmosphere exerts a pressure on all objects with which it is in contact,
including other fluids. External pressure acting on a fluid is transmitted throughout that
fluid. For instance, according to Eq. 13-3, the pressure due to the water at a depth of
100m below the surface of a lake is P = pgh = (l000kg/m3)(9.8m/s2)(100m) =
9.8 X 105N/m2, or 9.7 atm. However, the total pressure at this point is due to the
pressure of water plus the pressure of the air above it. Hence the total pressure (if the
lake is near sea level) is 9.7 atm + 1.0 atm = 10.7 atm. This is just one example of a
general principle attributed to the French philosopher and scientist Blaise Pascal
(1623-1662). Pascal’s principle states that if an external pressure is applied to a
confined fluid, the pressure at every point within the fluid increases by that amount.

A number of practical devices make use of Pascal’s principle. One example
is the hydraulic lift, illustrated in Fig. 13-9a, in which a small input force is used
to exert a large output force by making the area of the output piston larger than
the area of the input piston. To see how this works, we assume the input and
output pistons are at the same height (at least approximately). Then the external
input force F-m, by Pascal’s principle, increases the pressure equally throughout.
Therefore, at the same level (see Fig. 13-9a),

p = P 1 out 1 in

where the input quantities are represented by the subscript “in” and the output by 
“out.” Since P = F /A , we write the above equality as

^out _  -fin 

^out ^ in

F  A1 out _  ^ o u t

F ~ A-1 in

The quantity Fout/Fin is called the mechanical advantage of the hydraulic lift, and it 
is equal to the ratio of the areas. For example, if the area of the output piston is 
20 times that of the input cylinder, the force is multiplied by a factor of 20. Thus a 
force of 200 lb could lift a 4000-lb car.

Figure 13-9b illustrates the brake system of a car. When the driver presses the 
brake pedal, the pressure in the master cylinder increases. This pressure increase 
occurs throughout the brake fluid, thus pushing the brake pads against the disk 
attached to the car’s wheel.

13-6  Measurement of Pressure; 
Gauges and the Barometer

Many devices have been invented to measure pressure, some of which are shown 
in Fig. 13-10. The simplest is the open-tube manometer (Fig 13-10a) which is 
a U-shaped tube partially filled with a liquid, usually mercury or water. The 
pressure P being measured is related to the difference in height Ah of the two 
levels of the liquid by the relation 

P = P0 + pg Ah,
where P0 is atmospheric pressure (acting on the top of the liquid in the left-hand 
tube), and p is the density of the liquid. Note that the quantity pg Ah is the gauge 
pressure—the amount by which P exceeds atmospheric pressure P0. If the liquid 
in the left-hand column were lower than that in the right-hand column, P would 
have to be less than atmospheric pressure (and Ah would be negative).

Instead of calculating the product pg Ah, sometimes only the change in height 
Ah is specified. In fact, pressures are sometimes specified as so many “millimeters 
of mercury” (mm-Hg) or “mm of water” (mm-H20). The unit mm-Hg is equivalent 
to a pressure of 133 N/m2, since pg Ah for 1 mm = 1.0 X 10-3 m of mercury gives



Air pressure

Flexible
chamber̂ i i l ' \ ^ \

(b) Aneroid eaucc (used mainly 
for air pressure and then 
called an android barometer)

FIGURE 13-10 Pressure gauges: (a) open-tube manometer, (b) aneroid gauge, and
(c) common tire-pressure gauge.

Conversion factors among the various units of pressure (an incredible nuisance!) 
are given in Table 13-2. It is important that only N/m2 = Pa, the proper SI unit, 
be used in calculations involving other quantities specified in SI units.

I P R O B L E M  S O L V I N G
In calculations, use SI units:
1 Pa =  1 N /m 2

TABLE 13-2 Conversion Factors Between Different Units of Pressure

In Terms of 1 Pa =  1 N/m2 1 atm in Different Units
1 atm = 1.013 X 105 N /m 2 1 atm =  1.013 X 105 N /m 2

= 1.013 X 105 Pa =  101.3 kPa
1 bar =  1.000 X 105N /m 2 1 atm =  1.013 bar

1 dyne/cm 2 = 0.1 N /m 2 1 atm =  1.013 X 106 dyne/cm 2
1 lb /in .2 =  6.90 X 103 N /m 2 1 atm =  14.7 lb /in .2
1 lb /ft2 =  47.9 N /m 2 1 atm =  2.12 X 103 lb /ft2

1 cm-Hg = 1.33 X 103 N /m 2 1 atm =  76.0 cm-Hg
lm m -H g = 133 N /m 2 1 atm =  760 mm-Hg

1 torr =  133 N /m 2 1 atm =  760 torr
1 mm-H20  (4°C) =  9.80 N /m 2 1 atm =  1.03 X 104 mm-H20  (4°C)

Another type of pressure gauge is the aneroid gauge (Fig. 13-10b) in which 
the pointer is linked to the flexible ends of an evacuated thin metal chamber. In an 
electronic gauge, the pressure may be applied to a thin metal diaphragm whose 
resulting distortion is translated into an electrical signal by a transducer. A 
common tire gauge is shown in Fig. 13-10c.

Atmospheric pressure can be measured by a modified kind of mercury 
manometer with one end closed, called a mercury barometer (Fig. 13-11). The 
glass tube is completely filled with mercury and then inverted into the bowl of 
mercury. If the tube is long enough, the level of the mercury will drop, leaving a 
vacuum at the top of the tube, since atmospheric pressure can support a column of 
mercury only about 76 cm high (exactly 76.0 cm at standard atmospheric pressure). 
That is, a column of mercury 76 cm high exerts the same pressure as the atmosphere*:

P = pg Ah
= (13.6 X 103kg/m3)(9.80m/s2)(0.760m) = 1.013 X 105N/m2 = 1.00atm.

FIGURE 13-11 A  mercury 
barometer, invented by Torricelli, is 
shown here when the air pressure is 
standard atmospheric, 76.0 cm-Hg.

P =

76.0 cm

I Mm

f i



FIGURE 1 3 -1 2  A  water 
barometer: a full tube of water is 
inserted into a tub of water, keeping 
the tube’s spigot at the top closed. 
When the bottom end of the tube is 
unplugged, some water flows out of 
the tube into the tub, leaving a 
vacuum between the water’s upper 
surface and the spigot. Why? Because 
air pressure can not support a column 
of water more than 10 m high.

FIGURE 1 3 -1 3  Determination of 
the buoyant force.

1 -&

J ,

Alt -  h2 -  ft |

A calculation similar to what we just did will show that atmospheric pressure 
can maintain a column of water 10.3 m high in a tube whose top is under vacuum 
(Fig. 13-12). No matter how good a vacuum pump is, water cannot be made to rise 
more than about 10 m using normal atmospheric pressure. To pump water out of deep 
mine shafts with a vacuum pump requires multiple stages for depths greater than 10 m. 
Galileo studied this problem, and his student Torricelli was the first to explain it. The 
point is that a pump does not really suck water up a tube—it merely reduces the pres­
sure at the top of the tube. Atmospheric air pressure pushes the water up the tube if 
the top end is at low pressure (under a vacuum), just as it is air pressure that pushes (or 
maintains) the mercury 76 cm high in a barometer. [Force pumps (Section 13-14) that 
push up from the bottom can exert higher pressure to push water more than 10 m high.]

CONCEPTUAL EXAMPLE 13-7 I Suction. A student suggests suction-cup shoes
for Space Shuttle astronauts working on the exterior of a spacecraft. Having just 
studied this Chapter, you gently remind him of the fallacy of this plan. What is it? 
RESPONSE Suction cups work by pushing out the air underneath the cup. What holds 
the suction cup in place is the air pressure outside it. (This can be a substantial 
force when on Earth. For example, a 10-cm-diameter suction cup has an area of
7.9 X 10_3m2. The force of the atmosphere on it is (7.9 X 10“3m2)(l.0 X 105 N/m2) « 
800 N, about 180 lbs!) But in outer space, there is no air pressure to push the suction 
cup onto the spacecraft.

We sometimes mistakenly think of suction as something we actively do. For 
example, we intuitively think that we pull the soda up through a straw. Instead, 
what we do is lower the pressure at the top of the straw, and the atmosphere 
pushes the soda up the straw.

13—7 Buoyancy and Archimedes' Principle
Objects submerged in a fluid appear to weigh less than they do when outside the 
fluid. For example, a large rock that you would have difficulty lifting off the 
ground can often be easily lifted from the bottom of a stream. When the rock 
breaks through the surface of the water, it suddenly seems to be much heavier. 
Many objects, such as wood, float on the surface of water. These are two examples 
of buoyancy. In each example, the force of gravity is acting downward. But in addi­
tion, an upward buoyant force is exerted by the liquid. The buoyant force on fish 
and underwater divers (as in the Chapter-Opening photo) almost exactly balances 
the force of gravity downward, and allows them to “hover” in equilibrium.

The buoyant force occurs because the pressure in a fluid increases with depth. 
Thus the upward pressure on the bottom surface of a submerged object is greater 
than the downward pressure on its top surface. To see this effect, consider a 
cylinder of height Ah whose top and bottom ends have an area A  and which is 
completely submerged in a fluid of density pF, as shown in Fig. 13-13. The fluid 
exerts a pressure Px = p¥ghr at the top surface of the cylinder (Eq. 13-3). The force 
due to this pressure on top of the cylinder is Fx = PXA  = pF ghx A, and it is directed 
downward. Similarly, the fluid exerts an upward force on the bottom of the cylinder 
equal to F2 = P2A  = pFgh2A. The net force on the cylinder exerted by the fluid 
pressure, which is the buoyant force, FB, acts upward and has the magnitude

Fb = F2 — Fi = pFgA(h2 — h^
= pF gA Ah 
= PFVg 
= ™Fg,

where V = A  Ah is the volume of the cylinder, the product pF V  is the mass of 
the fluid displaced, and pFVg = mFg is the weight of fluid which takes up a 
volume eaual to the volume of the cvlinder. Thus the buovant force on the cvlinder



This result is valid no matter what the shape of the object. Its discovery is 
credited to Archimedes (2877-212 B.C.), and it is called Archimedes’ principle: the 
buoyant force on an object immersed in a fluid is equal to the weight o f the fluid 
displaced by that object.

By “fluid displaced,” we mean a volume of fluid equal to the submerged 
volume of the object (or that part of the object that is submerged). If the object is 
placed in a glass or tub initially filled to the brim with water, the water that flows 
over the top represents the water displaced by the object.

We can derive Archimedes’ principle in general by the following simple but 
elegant argument. The irregularly shaped object D shown in Fig. 13-14a is acted on 
by the force of gravity (its weight, rag, downward) and the buoyant force, FB, 
upward. We wish to determine FB. To do so, we next consider a body (D' in 
Fig. 13-14b), this time made of the fluid itself, with the same shape and size 
as the original object, and located at the same depth. You might think of this 
body of fluid as being separated from the rest of the fluid by an imaginary 
membrane. The buoyant force FB on this body of fluid will be exactly the same 
as that on the original object since the surrounding fluid, which exerts FB, is 
in exactly the same configuration. This body of fluid D' is in equilibrium (the fluid 
as a whole is at rest). Therefore, FB = m'g, where m'g is the weight of the 
body of fluid. Hence the buoyant force FB is equal to the weight of the body of 
fluid whose volume equals the volume of the original submerged object, which is 
Archimedes’ principle.

Archimedes’ discovery was made by experiment. What we have done in the FIGURE 13-14 
last two paragraphs is to show that Archimedes’ principle can be derived from Archimedes’ principle. 
Newton’s laws.

CONCEPTUAL EXAMPLE 13-8 I Two pails of water. Consider two identical 
pails of water filled to the brim. One pail contains only water, the other has a piece 
of wood floating in it. Which pail has the greater weight?
RESPONSE Both pails weigh the same. Recall Archimedes’ principle: the wood 
displaces a volume of water with weight equal to the weight of the wood. 
Some water will overflow the pail, but Archimedes’ principle tells us the 
spilled water has weight equal to the weight of the wood object; so the pails have 
the same weight.

EXAMPLE 13-9 Recovering a submerged statue. A 70-kg ancient statue 
lies at the bottom of the sea. Its volume is 3.0 X 104cm3. How much force is 
needed to lift it?

APPROACH The force F needed to lift the statue is equal to the statue’s weight rag 
minus the buoyant force FB. Figure 13-15 is the free-body diagram.
SOLUTION The buoyant force on the statue due to the water is equal to the weight of
3.0 X 104 cm3 = 3.0 X 10-2 m3 of water (for seawater, p = 1.025 X 103kg/m3):

F b =  mn2o 8 =  Ph2oV 8

= (1.025 X 103 kg/m3)(3.0 X 10“2 m3)(9.8 m/s2)

= 3.0 X 102N.

The weight of the statue is mg = (70kg)(9.8m/s2) = 6.9 X 102N. Hence the 
force F needed to lift it is 690 N -  300 N = 390 N. It is as if the statue had a 
mass of only (390N)/(9.8m/s2) = 40 kg.
NOTE Here F = 390 N is the force needed to lift the statue without accelera­
tion when it is under water. As the statue comes out of the water, the force F

FIGURE 13-15 Example 13-9/The 
force needed to lift the statue is F.



Archimedes, is said to have discovered his principle in his bath while thinking 
how he might determine whether the king’s new crown was pure gold or a fake. 
Gold has a specific gravity of 19.3, somewhat higher than that of most metals, but 
a determination of specific gravity or density is not readily done directly because, 
even if the mass is known, the volume of an irregularly shaped object is not easily 
calculated. However, if the object is weighed in air (= w) and also “weighed” while 
it is under water (= w ' ), the density can be determined using Archimedes’ prin­
ciple, as the following Example shows. The quantity w' is called the apparent 
weight in water, and is what a scale reads when the object is submerged in water 
(see Fig. 13-16); w' equals the true weight (w = mg) minus the buoyant force.

Archimedes: Is the crown gold? When a crown of mass 14.7 kg 
is submerged in water, an accurate scale reads only 13.4 kg. Is the crown made of gold? 
APPROACH If the crown is gold, its density and specific gravity must be very high, 
SG = 19.3 (see Section 13-2 and Table 13-1). We determine the specific gravity 
using Archimedes’ principle and the two free-body diagrams shown in Fig. 13-16. 
SOLUTION The apparent weight of the submerged object (the crown) is w' 
(what the scale reads), and is the force pulling down on the scale hook. By 
Newton’s third law, w' equals the force F j  that the scale exerts on the crown in 
Fig. 13-16b. The sum of the forces on the crown is zero, so w' equals the actual 
weight w  (= mg) minus the buoyant force FB: 

w' = F't = w — Fb

w -  w' = Fb .
Let V  be the volume of the completely submerged object and pQ its density (so 
Po V  is its mass), and let pF be the density of the fluid (water). Then (pFV)g is the 
weight of fluid displaced (= FB). Now we can write 

w = mg = po Vg 
w -  w' = Fb = pF Vg.

We divide these two equations and obtain 
w = p0 Vg = Po 

w -  w' pFVg Pf 

We see that w /(w  — w') is equal to the specific gravity of the object if the fluid 
in which it is submerged is water (pF =  1.00 X 103 kg/m3). Thus

Po = w = (14.7 k g )g = 14.7 kg =  n  3 

Ph2o w  -  w ' (14.7 kg -  13.4 k g )g  1.3 kg

This corresponds to a density of 11,300 kg/m3. The crown is not gold, but seems 
to be made of lead (see Table 13-1).

FIGURE 13-16 (a) A  scale reads the mass of an object 
in air— in this case the crown of Example 13-10.
A ll objects are at rest, so the tension F j in the (I V4
connecting cord equals the weight w  o f the object:
F j =  mg. We show the free-body diagram of the 
crown, and F j is what causes the scale reading (it is 
equal to the net downward force on the scale, by 
New ton’s third law), (b) Submerged, the crown has 
an additional force on it, the buoyant force FB .
The net force is zero, so F j  +  FB =  m g ( = w ) .  -/«g) f
The scale now reads m' =  13.4 kg, where m' is 
related to the effective weight by w ' =  m'g.
Thus F j  =  w ' =  w  -  Fb .
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Archim edes’ principle applies equally well to objects that float, such as 
wood. In general, an object floats on a flu id  i f  its density (pQ) is less than that o f  
the flu id  (pF). This is readily seen from Fig. 13-17a, where a submerged log will 
experience a net upward force and float to the surface if FB >  mg; that is, if 
Pf Vg >  Po Vg o r  P f  >  P o  • A t equilibrium— that is, when floating— the buoyant 
force on an object has magnitude equal to the weight of the object. For example, a 
log whose specific gravity is 0.60 and whose volume is 2.0 m3 has a mass m  =  pQV  =  
(0.60 X 103kg/m 3)(2.0m 3) =  1200 kg. If the log is fully submerged, it will displace 
a mass of water m F = pFV  =  (l0 0 0 k g /m 3)(2.0m 3) =  2000 kg. Hence the buoyant 
force on the log will be greater than its weight, and it will float upward to the surface 
(Fig. 13-17). The log will come to equilibrium when it displaces 1200 kg of water, which 
means that 1.2 m3 of its volume will be submerged. This 1.2 m3 corresponds to 60% 
of the volume of the log (1.2/2.0 =  0.60), so 60% of the log is submerged.

In general when an object floats, we have FB =  m g, which we can write as (see 
Fig. 13-18)

Fq =  m g  

P f  ̂ dispi 8  =  P oV o8>  

where VQ is the full volume of the object and 
displaces (=  volume submerged). Thus

^displ is the volume of fluid it

’'displ

"vT
Po
P f

That is, the fraction of the object submerged is given by the ratio of the object’s 
density to that of the fluid. If the fluid is water, this fraction equals the specific 
gravity of the object.

Hydrometer calibration. A  hydrometer is a simple instrument 
used to measure the specific gravity of a liquid by indicating how deeply the 
instrument sinks in the liquid. A  particular hydrometer (Fig. 13-19) consists of a glass 
tube, weighted at the bottom, which is 25.0 cm long and 2.00 cm2 in cross-sectional 
area, and has a mass of 45.0 g. How far from the end should the 1.000 mark be placed?

APPROACH The hydrometer will float in water if its density p is less than 
pw = 1.000 g /cm 3, the density of water. The fraction of the hydrometer 
submerged (Vdkpiaced/Vtotai) is equal to the density ratio p /p w.
SOLUTION The hydrometer has an overall density

p =  £  =  -------- ^ --------  =  0.900 g /cm 3.
V  (2.00 cm2) (25.0 cm)

Thus, when placed in water, it will come to equilibrium when 0.900 of its volume 
is submerged. Since it is of uniform cross section, (0.900) (25.0 cm) =  22.5 cm of 
its length will be submerged. The specific gravity of water is defined to be 1.000, 
so the mark should be placed 22.5 cm from the weighted end.

I EXERCISE C On the hydrometer of Example 13-11, will the marks above the 1.000 mark 
| represent higher or lower values of density of the liquid in which it is submerged?

Archim edes’ principle is also useful in geology. According to the theories of 
plate tectonics and continental drift, the continents float on a fluid “sea” of slightly 
deformable rock (mantle rock). Some interesting calculations can be done using 
very simple models, which we consider in the Problems at the end of the Chapter.

Air is a fluid, and it too exerts a buoyant force. Ordinary objects weigh less in air 
than they do if weighed in a vacuum. Because the density of air is so small, the effect 
for ordinary solids is slight. There are objects, however, that float in air— helium-filled 
balloons, for example, because the density of helium is less than the density of air.

fli0 = I200kg( 
V«iGm3

f B =*(2000kg)s

(a) mg = ( 121X)

I Fu = < 1200

(b)

FIGURE 13-17 (a) The fully 
submerged log accelerates upward 
because FB >  mg. It comes to 
equilibrium (b) when 'EF = 0, so 
FB = mg = (1200 kg)g. Thus 1200kg, 
or 1.2 m3, of water is displaced.

FIGURE 13-18 An object floating 
in equilibrium: FB = mg.

= PpKlispI £
w m

FIGURE 13-19 A hydrometer. 
Example 13-11.

@  P H Y S I C S A P P L I E D
Continental drift—plate tectonics

EXERCISE D Which of the following objects, submerged in water, experiences the largest 
magnitude of the buoyant force? (a) A 1-kg helium balloon; (b) 1 kg of wood; (c) 1 kg of



EXERCISE E Which of the following objects, submerged in water, experiences the largest 
magnitude of the buoyant force? (a) A  1-m3 helium balloon; (b) 1 m3 of wood; (c) 1 m3 of 
ice; ((d) 1 m3 of iron; (e) all the same.

mload 8

FIGURE 13-20 Example 13-12.

EXAMPLE 13-12 Helium balloon. What volume V  of helium is needed if a 
balloon is to lift a load of 180 kg (including the weight of the empty balloon)?
APPROACH The buoyant force on the helium balloon, FB, which is equal to the 
weight of displaced air, must be at least equal to the weight of the helium plus 
the weight of the balloon and load (Fig. 13-20). Table 13-1 gives the density of 
helium as 0.179 kg/m3.
SOLUTION The buoyant force must have a minimum value of 

= («iHe + 180kg)g.
This equation can be written in terms of density using Archimedes’ principle:

Pair Vg = (pHe^ + 180kg)g.
Solving now for V, we find 

180 kg
V =

180 kg
=  160 n r

Pair -  PHe (l.29kg/m3 -  0.179 kg/m3)
NOTE This is the minimum volume needed near the Earth’s surface, where 
p air =  1.29 kg/m3. To reach a high altitude, a greater volume would be needed 
since the density of air decreases with altitude.

13—8 Fluids in Motion; Flow Rate 
and the Equation of Continuity

We now turn to the subject of fluids in motion, which is called fluid dynamics, or 
(especially if the fluid is water) hydrodynamics.

We can distinguish two main types of fluid flow. If the flow is smooth, such 
that neighboring layers of the fluid slide by each other smoothly, the flow is said to 
be streamline or laminar flow.f In streamline flow, each particle of the fluid follows 
a smooth path, called a streamline, and these paths do not cross one another 
(Fig. 13-21a). Above a certain speed, the flow becomes turbulent. Turbulent flow 
is characterized by erratic, small, whirlpool-like circles called eddy currents or 
eddies (Fig. 13-21b). Eddies absorb a great deal of energy, and although a certain 
amount of internal friction called viscosity is present even during streamline flow, 
it is much greater when the flow is turbulent. A few tiny drops of ink or food 
coloring dropped into a moving liquid can quickly reveal whether the flow is 
streamline or turbulent.

trThe word laminar means “in layers.”

FIGURE 13-21 (a) Streamline, or 
laminar, flow; (b) turbulent flow.
The photos show airflow around an 
airfoil or airplane wing (more in 
Section 13-10).



Let us consider the steady laminar flow of a fluid through an enclosed tube or 
pipe as shown in Fig. 13-22. First we determine how the speed of the fluid changes 
when the size of the tube changes. The mass flow rate is defined as the mass Am of 
fluid that passes a given point per unit time At:

Am
mass flow rate = ——

At
In Fig. 13-22, the volume of fluid passing point 1 (that is, through area A x) in a 
time At is A x A£x, where A£x is the distance the fluid moves in time At. Since the 
velocity* of fluid passing point 1 is vx = A£JAt, the mass flow rate through area A x is

Amx _  Pi AVi _  pxA x All _ A 
At At At Pl lV l’

where AT̂  = A x A£x is the volume of mass Amx, and px is the fluid density. 
Similarly, at point 2 (through area A 2), the flow rate is p2A 2v2. Since no fluid flows 
in or out the sides, the flow rates through A x and A 2 must be equal. Thus, since 

A mx A m2
At At

then
(13-7a)pxA xvx -  p2A 2v2.

This is called the equation of continuity.
If the fluid is incompressible (p doesn’t change with pressure), which is an 

excellent approximation for liquids under most circumstances (and sometimes for 
gases as well), then px = p2, and the equation of continuity becomes

A xvx = A 2v2. [p = constant] (13-7b)
The product A v  represents the volume rate o f flow  (volume of fluid passing a 
given point per second), since A V /A t = A  A£/At = Av, which in SI units is m3/s. 
Equation 13-7b tells us that where the cross-sectional area is large, the velocity is 
small, and where the area is small, the velocity is large. That this is reasonable can 
be seen by looking at a river. A river flows slowly through a meadow where it is 
broad, but speeds up to torrential speed when passing through a narrow gorge.

EXAMPLE 13-13 ESTIMATE"! Blood flow. In humans, blood flows from the 
heart into the aorta, from which it passes into the major arteries. These branch into 
the small arteries (arterioles), which in turn branch into myriads of tiny capillaries, 
Fig. 13-23. The blood returns to the heart via the veins. The radius of the aorta is 
about 1.2 cm, and the blood passing through it has a speed of about 40 cm/s. A 
typical capillary has a radius of about 4 X 10“4 cm, and blood flows through it at a 
speed of about 5 X 10 4 m/s. Estimate the number of capillaries that are in the body. 
APPROACH We assume the density of blood doesn’t vary significantly from the 
aorta to the capillaries. By the equation of continuity, the volume flow rate in 
the aorta must equal the volume flow rate through all the capillaries. The total 
area of all the capillaries is given by the area of one capillary multiplied by the 
total number N  of capillaries.
SOLUTION Let A x be the area of the aorta and A 2 be the area of all the capil­
laries through which blood flows. Then A 2 = N7rr2cav, where rcap ~ 4 X  10-4 cm
is the estimated average radius of one capillary. From the equation of continuity 
(Eq. 13-7b), we have

v2A 2 = vxA x
v2Nirr2 = vxirri ortacap

SO

N  =
0.40 m/s

5 X 10 4m/s 
or on the order of 10 billion capillaries.

1.2 X 10~2m 
4 X 10_6m

7 X 109,

FIGURE 1 3 -2 2  Fluid flow through 
a pipe of varying diameter.

0 P H Y S I C S  A P P L I E D
Blood flow

FIGURE 1 3 -2 3
Human circulatory system.
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Heating duct

FIGURE 13-25 Fluid flow: for 
derivation of Bernoulli’s equation.

Heating duct to a room. What area must a heating duct 
have if air moving 3.0 m/s along it can replenish the air every 15 minutes in a 
room of volume 300 m3? Assume the air’s density remains constant.
APPROACH We apply the equation of continuity at constant density, Eq. 13-7b, 
to the air that flows through the duct (point 1 in Fig. 13-24) and then into the 
room (point 2). The volume flow rate in the room equals the volume of the room 
divided by the 15-min replenishing time.
SOLUTION Consider the room as a large section of the duct, Fig. 13-24, and 
think of air equal to the volume of the room as passing by point 2 in 
t = 15 min = 900 s. Reasoning in the same way we did to obtain Eq. 13-7a 
(changing At to t), we write v2 = i2t t  so A 2v2 = A 2i2/ t  = V2/t, where V2 
is the volume of the room. Then the equation of continuity becomes 
A 1v1 = A 2v2 = V2/ t  and

A = —  = 300 ̂  = 011 2
1 vxt (3.0 m/s)(900 s) ' m '

If the duct is square, then each side has length i  = \/~A = 0.33 m, or 33 cm. 
A rectangular duct 20 cm X 55 cm will also do.

1 3 -9  Bernoulli's Equation
Have you ever wondered why an airplane can fly, or how a sailboat can move 
against the wind? These are examples of a principle worked out by Daniel 
Bernoulli (1700-1782) concerning fluids in motion. In essence, Bernoulli’s principle 
states that where the velocity o f a fluid is high, the pressure is low, and where the 
velocity is low, the pressure is high. For example, if the pressures in the fluid at 
points 1 and 2 of Fig. 13-22 are measured, it will be found that the pressure is lower 
at point 2, where the velocity is greater, than it is at point 1, where the velocity is 
smaller. At first glance, this might seem strange; you might expect that the greater 
speed at point 2 would imply a higher pressure. But this cannot be the case. For if 
the pressure in the fluid at point 2 were higher than at point 1, this higher pressure 
would slow the fluid down, whereas in fact it has sped up in going from point 1 to 
point 2. Thus the pressure at point 2 must be less than at point 1, to be consistent 
with the fact that the fluid accelerates.

To help clarify any misconceptions, a faster fluid would exert a greater force on 
an obstacle placed in its path. But that is not what we mean by the pressure in a 
fluid, and besides we are not considering obstacles that interrupt the flow. We are 
examining smooth streamline flow. The fluid pressure is exerted on the walls of a 
tube or pipe, or on the surface of any material the fluid passes over.

Bernoulli developed an equation that expresses this principle quantitatively. To 
derive Bernoulli’s equation, we assume the flow is steady and laminar, the fluid is 
incompressible, and the viscosity is small enough to be ignored. To be general, we 
assume the fluid is flowing in a tube of nonuniform cross section that varies in height 
above some reference level, Fig. 13-25. We will consider the volume of fluid shown in 
color and calculate the work done to move it from the position shown in Fig. 13-25a 
to that shown in Fig. 13-25b. In this process, fluid entering area A x flows a distance 
Ali and forces the fluid at area A 2 to move a distance M 2. The fluid to the left of 
area A 1 exerts a pressure P1 on our section of fluid and does an amount of work

Wi = F1A£1 = P1A 1Al1.
At area A 2, the work done on our cross section of fluid is

W2 = - p2a 2 m 2.
The negative sign is present because the force exerted on the fluid is opposite to the 
motion (thus the fluid shown in color does work on the fluid to the right of point 2). 
Work is also done on the fluid bv the force of eravitv. The net effect of the Drocess

EXAMPLE 13-14



fluid is incompressible) from point 1 to point 2, so the work done by gravity is
W3 = -m g(y2 -  ft),

where yx and y2 are heights of the center of the tube above some (arbitrary) refer­
ence level. In the case shown in Fig. 13-25, this term is negative since the motion is 
uphill against the force of gravity. The net work W  done on the fluid is thus

W = Wi + W2 + W3
W = PxAxMx -  P2A 2Ai2 -  mgy2 + rag^.

According to the work-energy principle (Section 7-4), the net work done on a 
system is equal to its change in kinetic energy. Hence

\m v2 -  \m v2 = P1A 1M 1 — P2A 2A£2 -  mgy2 +
The mass m has volume A x A^ = A 2 Ai2 for an incompressible fluid. Thus we can 
substitute m = pA x A^ = pA2 M 2, and then divide through by A x A = A 2 A£2, 
to obtain

\pv\ ~ \pv\ = P1 -  P2 -  pgy2 + pgyu  
which we rearrange to get

Pi + zp«i + pgyi = P2 + IPVI + pgy2. (13-8)

This is Bernoulli’s equation. Since points 1 and 2 can be any two points along a 
tube of flow, Bernoulli’s equation can be written as

P + \p v2 + pgy = constant
at every point in the fluid, where y is the height of the center of the tube above a 
fixed reference level. [Note that if there is no flow = v2 = 0), then Eq. 13-8 
reduces to the hydrostatic equation, Eq. 13-6a: P2 -  Px = ~pg(y2 —

Bernoulli’s equation is an expression of the law of energy conservation, since 
we derived it from the work-energy principle.

EXERCISE F A s water in a level pipe passes from a narrow cross section of pipe to a wider 
cross section, how does the pressure against the walls change?

■ Vi IJI :■ t a  n  Flow and pressure in a hot-water heating system. Water 
circulates throughout a house in a hot-water heating system. If the water is 
pumped at a speed of 0.50 m/s through a 4.0-cm-diameter pipe in the basement 
under a pressure of 3.0 atm, what will be the flow speed and pressure in a 
2.6-cm-diameter pipe on the second floor 5.0 m above? Assume the pipes do not 
divide into branches.
APPROACH We use the equation of continuity at constant density to determine the 
flow speed on the second floor, and then Bernoulli’s equation to find the pressure. 
SOLUTION We take v2 in the equation of continuity, Eq. 13-7, as the flow speed 
on the second floor, and vx as the flow speed in the basement. Noting that the 
areas are proportional to the radii squared (A = irr2), we obtain

v1A 1 Vi-irrl (0.020 m)2
v2 = —7— = ---- r  = (0.50 m/s) 2 = 1.2 m/s.A 2 irr2 (0.013 m)z

To find the pressure on the second floor, we use Bernoulli’s equation (Eq. 13-8):

P2 = P1 + pg(y1 -  y2) + \p(v{ -  v%)

= (3.0 x 105N/m2) + (1.0 x  103 kg/m3)(9.8 m/s2)( -5 .0  m)

+ |(1.0 X 103kg/m3)[(0.50m/s)2 -  (1.2m/s)2]

= (3.0 X 105N/m2) -  (4.9 X 104N/m2) -  (6.0 X 102N/m2)

= 2.5 X 105 N/m2 = 2.5 atm.

Bernoulli’s equation



13—10 Applications of Bernoulli's Principle: 
Torricelli, Airplanes, Baseballs, HA

FIGURE 13-26 Torricelli’s 
theorem: v x =  \ / 2g(y1 -  y i) .

FIGURE 13-27 Examples of 
Bernoulli’s principle: (a) atomizer, 
(b) Ping-Pong ball in jet of air.

<a)

FIGURE 13-28 Lift on an airplane 
wing. We are in the reference frame 
of the wing, seeing the air flow by.

Lower pressure

@ P H Y S I C S  A P P L I E D
Airplanes and dynamic lift

Bernoulli’s equation can be applied to many situations. One example is to calculate 
the velocity, v1, of a liquid flowing out of a spigot at the bottom of a reservoir, 
Fig. 13-26. We choose point 2 in Eq. 13-8 to be the top surface of the liquid. 
Assuming the diameter of the reservoir is large compared to that of the spigot, v2 
will be almost zero. Points 1 (the spigot) and 2 (top surface) are open to the 
atmosphere, so the pressure at both points is equal to atmospheric pressure: 
Px = P2. Then Bernoulli’s equation becomes

\pv  \ + pgyx = pgy2
or

= V 2 d y i  -  * ) . <13- 9)
This result is called Torricelli’s theorem. Although it is seen to be a special case of 
Bernoulli’s equation, it was discovered a century earlier by Evangelista Torricelli. 
Equation 13-9 tells us that the liquid leaves the spigot with the same speed that a 
freely falling object would attain if falling from the same height. This should not be 
too surprising since Bernoulli’s equation relies on the conservation of energy.

Another special case of Bernoulli’s equation arises when a fluid is flowing hori­
zontally with no significant change in height; that is, yx = y2. Then Eq. 13-8 becomes

Pi + \pv\ = P2 + \p v l, (13-10)
which tells us quantitatively that the speed is high where the pressure is low, and 
vice versa. It explains many common phenomena, some of which are illustrated in 
Figs. 13-27 to 13-32. The pressure in the air blown at high speed across the top of 
the vertical tube of a perfume atomizer (Fig. 13-27a) is less than the normal air 
pressure acting on the surface of the liquid in the bowl. Thus atmospheric pressure 
in the bowl pushes the perfume up the tube because of the lower pressure at the 
top. A Ping-Pong ball can be made to float above a blowing jet of air (some 
vacuum cleaners can blow air), Fig. 13-27b; if the ball begins to leave the jet of air, 
the higher pressure in the still air outside the jet pushes the ball back in.

EXERCISE G Return to Chapter-Opening Question 2, page 339, and answer it again now.
Try to explain why you may have answered differently the first time. Try it and see.

Airplane Wings and Dynamic Lift
Airplanes experience a “lift” force on their wings, keeping them up in the air, if they 
are moving at a sufficiently high speed relative to the air and the wing is tilted 
upward at a small angle (the “attack angle”), as in Fig. 13-28, where streamlines of 
air are shown rushing by the wing. (We are in the reference frame of the wing, as if 
sitting on the wing.) The upward tilt, as well as the rounded upper surface of the 
wing, causes the streamlines to be forced upward and to be crowded together above 
the wing. The area for air flow between any two streamlines is reduced as the 
streamlines get closer together, so from the equation of continuity {A^v^ = A 2v2), 
the air speed increases above the wing where the streamlines are squished together. 
(Recall also how the crowded streamlines in a pipe constriction, Fig. 13-22, indicate 
the velocity is higher in the constriction.) Because the air speed is greater above the 
wing than below it, the pressure above the wing is less than the pressure below the 
wing (Bernoulli’s principle). Hence there is a net upward force on the wing called 
dynamic lift. Experiments show that the speed of air above the wing can even be 
double the speed of the air below it. (Friction between the air and wing exerts a drag 
force, toward the rear, which must be overcome by the plane’s engines.)

A flat wing, or one with symmetric cross section, will experience lift as long as 
the front of the wing is tilted upward (attack angle). The wing shown in Fig. 13-28 
can experience lift even if the attack angle is zero, because the rounded upper



Our picture considers streamlines; but if the attack angle is larger than about 
15°, turbulence sets in (Fig. 13-21b) leading to greater drag and less lift, causing 
the wing to “stall” and the plane to drop.

From another point of view, the upward tilt of a wing means the air moving 
horizontally in front of the wing is deflected downward; the change in momentum 
of the rebounding air molecules results in an upward force on the wing (Newton’s 
third law).

Sailboats
A sailboat can move against the wind, with the aid of the Bernoulli effect, by setting 
the sails at an angle, as shown in Fig. 13-29. The air travels rapidly over the bulging 
front surface of the sail, and the relatively still air filling the sail exerts a greater 
pressure behind the sail, resulting in a net force on the sail, Fwind. This force would tend 
to make the boat move sideways if it weren’t for the keel that extends vertically down­
ward beneath the water: the water exerts a force (Fwater) on the keel nearly perpendicular 
to the keel. The resultant of these two forces (Fr ) is almost directly forward as shown.

Baseball Curve
Why a spinning pitched baseball (or tennis ball) curves can also be explained using 
Bernoulli’s principle. It is simplest if we put ourselves in the reference frame of the 
ball, with the air rushing by, just as we did for the airplane wing. Suppose the ball 
is rotating counterclockwise as seen from above, Fig. 13-30. A thin layer of air 
(“boundary layer”) is being dragged around by the ball. We are looking down on 
the ball, and at point A in Fig. 13-30, this boundary layer tends to slow down the 
oncoming air. At point B, the air rotating with the ball adds its speed to that 
of the oncoming air, so the air speed is higher at B than at A. The higher speed 
at B means the pressure is lower at B than at A, resulting in a net force toward B. 
The ball’s path curves toward the left (as seen by the pitcher).

Lack of Blood to the Brain—TLA
In medicine, one of many applications of Bernoulli’s principle is to explain a TIA, a 
transient ischemic attack (meaning a temporary lack of blood supply to the brain). A 
person suffering a TIA may experience symptoms such as dizziness, double vision, 
headache, and weakness of the limbs. A TIA can occur as follows. Blood normally 
flows up to the brain at the back of the head via the two vertebral arteries—one 
going up each side of the neck—which meet to form the basilar artery just below the 
brain, as shown in Fig. 13-31. The vertebral arteries issue from the subclavian arteries, 
as shown, before the latter pass to the arms. When an arm is exercised vigorously, 
blood flow increases to meet the needs of the arm’s muscles. If the subclavian artery 
on one side of the body is partially blocked, however, as in arteriosclerosis (hardening 
of the arteries), the blood velocity will have to be higher on that side to supply the 
needed blood. (Recall the equation of continuity: smaller area means larger velocity 
for the same flow rate, Eqs. 13-7.) The increased blood velocity past the opening to 
the vertebral artery results in lower pressure (Bernoulli’s principle). Thus blood rising 
in the vertebral artery on the “good” side at normal pressure can be diverted down 
into the other vertebral artery because of the low pressure on that side, instead of 
passing upward to the brain. Hence the blood supply to the brain is reduced.

Other Applications
A venturi tube is essentially a pipe with a narrow constriction (the throat). The 
flowing fluid speeds up as it passes through this constriction, so the pressure is lower 
in the throat. A venturi meter, Fig. 13-32, is used to measure the flow speed of 
gases and liquids, including blood velocity in arteries.

Why does smoke go up a chimney? It’s partly because hot air rises (it’s less 
dense and therefore buoyant). But Bernoulli’s principle also plays a role. When 
wind blows across the top of a chimnev, the pressure is less there than inside the

FIGURE 1 3 -2 9  Sailboat sailing 
against the wind.

Hmiii.' plait;

FIGURE 1 3 -3 0  Looking down on a 
pitched baseball heading toward home 
plate. We are in the reference frame of 
the baseball, with the air flowing by.

FIGURE 13-31 Rear of the head 
and shoulders showing arteries leading 
to the brain and to the arms. High 
blood velocity past the constriction in 
the left subclavian artery causes low 
pressure in the left vertebral artery, in 
which a reverse (downward) blood 
flow can then occur, resulting in a TIA, 
a loss of blood to the brain.

FIGURE 1 3 -3 2  Venturi meter.
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FIGURE 13-33
Determination of viscosity.

TABLE 13-3
Coefficients of Viscosity

Fluid
(temperature

in °C)

Coefficient 
of Viscosity, 

i / ( P a s ) t

Water (0°) 1.8 X 1 0 - 3

(20°) 1.0 X 10“3
(100°) 0.3 X 10“3

Whole blood (37°) « 4 X 10“3
Blood plasma (37°) -1 .5 X 10“3
Ethyl alcohol (20°) 1.2 X 10“3
Engine oil (30°)

(SAE 10) 200 X 10“3
Glycerine (20°) 1500 X 10“3
Air (20°) 0.018 X 10“3
Hydrogen (0°) 
Water vapor (100°)

0.009 X 10“3 
0.013 X 10“3

HPa-s = 10P = lOOOcP.

Bernoulli’s equation ignores the effects of friction (viscosity) and the 
compressibility of the fluid. The energy that is transformed to internal (or potential) 
energy due to compression and to thermal energy by friction can be taken into 
account by adding terms to Eq. 13-8. These terms are difficult to calculate 
theoretically and are normally determined empirically. They do not significantly 
alter the explanations for the phenomena described above.

13—11 Viscosity
Real fluids have a certain amount of internal friction called viscosity, as mentioned 
in Section 13-8. Viscosity exists in both liquids and gases, and is essentially a 
frictional force between adjacent layers of fluid as the layers move past one 
another. In liquids, viscosity is due to the electrical cohesive forces between the 
molecules. In gases, it arises from collisions between the molecules.

The viscosity of different fluids can be expressed quantitatively by a coefficient o f 
viscosity, rj (the Greek lowercase letter eta), which is defined in the following way. A 
thin layer of fluid is placed between two flat plates. One plate is stationary and the 
other is made to move, Fig. 13-33. The fluid directly in contact with each plate is held 
to the surface by the adhesive force between the molecules of the liquid and those of 
the plate. Thus the upper surface of the fluid moves with the same speed v as the 
upper plate, whereas the fluid in contact with the stationary plate remains stationary. 
The stationary layer of fluid retards the flow of the layer just above it, which in turn 
retards the flow of the next layer, and so on. Thus the velocity varies continuously 
from 0 to v, as shown. The increase in velocity divided by the distance over which this 
change is made—equal to v / t—is called the velocity gradient. To move the upper 
plate requires a force, which you can verify by moving a flat plate across a puddle of 
syrup on a table. For a given fluid, it is found that the force required, F, is propor­
tional to the area of fluid in contact with each plate, A, and to the speed, v, and is 
inversely proportional to the separation, I, of the plates: F oc vA/£. For different 
fluids, the more viscous the fluid, the greater is the required force. Hence the propor­
tionality constant for this equation is defined as the coefficient of viscosity, 17:

F = ■ q A j (13-11)

is N-s/m2 =Solving for 77, we find 77 = F i/vA . The SI unit for 77 
Pa-s (pascal-second). In the cgs system, the unit is dyne-s/cm2, which is called a 
poise (P). Viscosities are often given in centipoise (l cP = 10-2 P). Table 13-3 lists 
the coefficient of viscosity for various fluids. The temperature is also specified, 
since it has a strong effect; the viscosity of liquids such as motor oil, for example, 
decreases rapidly as temperature increases.f

*13—12 Flow in Tubes: Poiseuille's 
Equation, Blood_Flow

If a fluid had no viscosity, it could flow through a level tube or pipe without a force 
being applied. Viscosity acts like a sort of friction (between fluid layers moving at 
slightly different speeds), so a pressure difference between the ends of a level tube 
is necessary for the steady flow of any real fluid, be it water or oil in a pipe, or 
blood in the circulatory system of a human.

The French scientist J. L. Poiseuille (1799-1869), who was interested in the 
physics of blood circulation (and after whom the poise is named), determined how 
the variables affect the flow rate of an incompressible fluid undergoing laminar 
flow in a cylindrical tube. His result, known as Poiseuille’s equation, is:

-  P2)
Q = ^  (13-12)

where R is the inside radius of the tube, t  is the tube length, Px — P2 is the pressure



difference between the ends, 17 is the coefficient of viscosity, and Q is the volume 
rate of flow (volume of fluid flowing past a given point per unit time which in SI 
has units of m3/s). Equation 13-12 applies only to laminar flow.

Poiseuille’s equation tells us that the flow rate Q is directly proportional to the 
“pressure gradient,” (P-̂  — P2)/t, and it is inversely proportional to the viscosity 
of the fluid. This is just what we might expect. It may be surprising, however, 
that Q also depends on the fourth power of the tube’s radius. This means that for 
the same pressure gradient, if the tube radius is halved, the flow rate is decreased 
by a factor of 16! Thus the rate of flow, or alternately the pressure required to 
maintain a given flow rate, is greatly affected by only a small change in tube radius.

An interesting example of this R4 dependence is blood flow  in the human body. 
Poiseuille’s equation is valid only for the streamline flow of an incompressible fluid. 
So it cannot be precisely accurate for blood whose flow is not without turbulence 
and that contains blood cells (whose diameter is almost equal to that of a capillary). 
Nonetheless, Poiseuille’s equation does give a reasonable first approximation. Because 
the radius of arteries is reduced as a result of arteriosclerosis (thickening and 
hardening of artery walls) and by cholesterol buildup, the pressure gradient must be 
increased to maintain the same flow rate. If the radius is reduced by half, the heart 
would have to increase the pressure by a factor of about 24 = 16 in order to maintain 
the same blood-flow rate. The heart must work much harder under these conditions, 
but usually cannot maintain the original flow rate. Thus, high blood pressure is an indi­
cation both that the heart is working harder and that the blood-flow rate is reduced.

0 P H Y S I C S  A P P L I E D
Blood flow

13-13  Surface Tension and Capillarity
The surface of a liquid at rest behaves in an interesting way, almost as if it were a 
stretched membrane under tension. For example, a drop of water on the end of 
a dripping faucet, or hanging from a thin branch in the early morning dew 
(Fig. 13-34), forms into a nearly spherical shape as if it were a tiny balloon filled 
with water. A steel needle can be made to float on the surface of water even 
though it is denser than the water. The surface of a liquid acts like it is under 
tension, and this tension, acting along the surface, arises from the attractive forces 
between the molecules. This effect is called surface tension. More specifically, a 
quantity called the surface tension, If (the Greek letter gamma), is defined as the 
force F per unit length I that acts perpendicular to any line or cut in a liquid 
surface, tending to pull the surface closed:

(13-13)

To understand this, consider the U-shaped apparatus shown in Fig. 13-35 
which encloses a thin film of liquid. Because of surface tension, a force F is 
required to pull the movable wire and thus increase the surface area of the liquid. 
The liquid contained by the wire apparatus is a thin film having both a top and a 
bottom surface. Hence the total length of the surface being increased is 21, and 
the surface tension is 7 = F/2L A delicate apparatus of this type can be used to 
measure the surface tension of various liquids. The surface tension of water is 
0.072 N/m at 20°C. Table 13-4 gives the values for several substances. Note that 
temperature has a considerable effect on the surface tension.

G
£

y

--------- d

FIGURE 1 3 -3 5  U-shaped wire 
apparatus holding a film of liquid to 
measure surface tension (7 =  F /21).

FIGURE 1 3 -3 4  Spherical water 
droplets, dew on a blade o f grass.

TABLE 13-4
Surface Tension of Some 
Substances

Liquid Wire

Substance 
(temperature in °C)

Surface
Tension
(N/m)

Mercury (20°) 0.44
Blood, whole (37°) 0.058
Blood, plasma (37°) 0.073
Alcohol, ethyl (20°) 0.023
Water (0°) 0.076

(20°) 0.072
(100°) 0.059

Benzene (20°) 0.029
Soap solution (20°) «  0.025



Because of surface tension, some insects (Fig. 13-36) can walk on water, and 
objects more dense than water, such as a steel needle, can float on the surface. 
Figure 13-37a shows how the surface tension can support the weight w  of an 
object. Actually, the object sinks slightly into the fluid, so w  is the “effective 
weight” of that object—its true weight less the buoyant force.

FIGURE 13-36 A  water strider. FIGURE 13-37 Surface tension  
acting on (a) a sphere, and (b) an 
insect leg. Example 13-16.

r = F /t  j ! y = F / i

EXAMPLE 13-16

Water

1
/

/
-

—1
Mercury

/ J

(a) (b)

FIGURE 13-38 (a) Water “wets” 
the surface of glass, whereas (b) 
mercury does not “wet” the glass.

FIGURE 13-39 Capillarity.

cos 9 = 0.54.

(a)
G lass  tiihe.

(b) 
G lass  tiihe.

ESTIMATE~1 Insect walks on water. The base of an 
insect’s leg is approximately spherical in shape, with a radius of about
2.0 X 10-5 m. The 0.0030-g mass of the insect is supported equally by its six legs. 
Estimate the angle 6 (see Fig. 13-37) for an insect on the surface of water. 
Assume the water temperature is 20°C.
APPROACH Since the insect is in equilibrium, the upward surface tension force 
is equal to the pull of gravity downward on each leg. We ignore the buoyant 
force for this estimate.
SOLUTION For each leg, we assume the surface tension force acts all around a 
circle of radius r, at an angle 0, as shown in Fig. 13-37a. Only the vertical compo­
nent, y cos 0, acts to balance the weight mg. So we set the length £ in Eq. 13-13 
equal to the circumference of the circle, H «  2irr. Then the net upward force due 
to surface tension is Fy ~ (y cos 0)£ ~ 2irry cos 6. We set this surface tension 
force equal to one-sixth the weight of the insect since it has six legs:

lirrycosd ~ \m g  
(6.28)(2.0 X 10_5m)(0.072N/m) cos0 «  £(3.0 X 10“6 kg)(9.8 m/s2)

0.49
0.90

So 6 ~ 57°. If cos0 had come out greater than 1, the surface tension would not 
be great enough to support the insect’s weight.
NOTE Our estimate ignored the buoyant force and ignored any difference 
between the radius of the insect’s “foot” and the radius of the surface depression.

Soaps and detergents lower the surface tension of water. This is desirable for 
washing and cleaning since the high surface tension of pure water prevents it from 
penetrating easily between the fibers of material and into tiny crevices. Substances 
that reduce the surface tension of a liquid are called surfactants.

Surface tension plays a role in another interesting phenomenon, capillarity. It is a 
common observation that water in a glass container rises up slightly where it touches 
the glass, Fig. 13-38a. The water is said to “wet” the glass. Mercury, on the other hand, 
is depressed when it touches the glass, Fig. 13—38b; the mercury does not wet the glass. 
Whether a liquid wets a solid surface is determined by the relative strength of the 
cohesive forces between the molecules of the liquid compared to the adhesive forces 
between the molecules of the liquid and those of the container. Cohesion refers to the 
force between molecules of the same type, whereas adhesion refers to the force between 
molecules of different types. Water wets glass because the water molecules are more 
strongly attracted to the glass molecules than they are to other water molecules. The 
opposite is true for mercury: the cohesive forces are stronger than the adhesive forces.

In tubes having very small diameters, liquids are observed to rise or fall relative 
to the level of the surrounding liquid. This phenomenon is called capillarity, and such 
thin tubes are called capillaries. Whether the liauid rises or falls (Tie. 13-39) depends



*1 3 -1 4  Pumps, and the Heart
We conclude this Chapter with a brief discussion of pumps, including the heart. 
Pumps can be classified into categories according to their function. A vacuum 
pump is designed to reduce the pressure (usually of air) in a given vessel. A force 
pump, on the other hand, is a pump that is intended to increase the pressure—for 
example, to lift a liquid (such as water from a well) or to push a fluid through a 
pipe. Figure 13-40 illustrates the principle behind a simple reciprocating pump. It 
could be a vacuum pump, in which case the intake is connected to the vessel to be 
evacuated. A similar mechanism is used in some force pumps, and in this case the 
fluid is forced under increased pressure through the outlet.

A centrifugal pump (Fig. 13-41), or any force pump, can be used as a 
circulating pum p—that is, to circulate a fluid around a closed path, such as the 
cooling water or lubricating oil in an automobile.

The heart of a human (and of other animals as well) is essentially a circulating 
pump. The action of a human heart is shown in Fig. 13-42. There are actually two 
separate paths for blood flow. The longer path takes blood to the parts of the body, via 
the arteries, bringing oxygen to body tissues and picking up carbon dioxide, which it 
carries back to the heart via veins. This blood is then pumped to the lungs (the second 
path), where the carbon dioxide is released and oxygen is taken up. The oxygen-laden 
blood is returned to the heart, where it is again pumped to the tissues of the body.

FIGURE 13-42 (a) In the diastole phase, the heart relaxes between beats. Blood 
moves into the heart; both atria fill rapidly, (b) When the atria contract, the systole 
or pumping phase begins. The contraction pushes the blood through the mitral and 
tricuspid valves into the ventricles, (c) The contraction of the ventricles forces the 
blood through the semilunar valves into the pulmonary artery, which leads to the 
lungs, and to the aorta (the body’s largest artery), which leads to the arteries serving 
all the body, (d) When the heart relaxes, the semilunar valves close; blood fills the 
atria, beginning the cycle again.

Piston

FIGURE 13-40 One kind of pump: 
the intake valve opens and air (or 
fluid that is being pumped) fills the 
empty space when the piston moves 
to the left. When the piston moves to 
the right (not shown), the outlet 
valve opens and fluid is forced out.

FIGURE 13-41 Centrifugal pump: 
the rotating blades force fluid 
through the outlet pipe; this kind of 
pump is used in vacuum cleaners 
and as a water pump in automobiles.
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Summary
The three common phases of matter are solid, liquid, and gas. 
Liquids and gases are collectively called fluids, meaning they 
have the ability to flow. The density of a material is defined as 
its mass per unit volume:

Specific gravity is the ratio of the density of the material to 
the density of water (at 4°C).

Pressure is defined as force per unit area:

P  = ~  (13-2)

The pressure P at a depth h in a liquid is given by
P = P g h ,  (13-3)

to gravity. If the density of a fluid is not uniform, the pressure P 
varies with height y as

%  = -PS- »3-4)

Pascal’s principle says that an external pressure applied to a 
confined fluid is transmitted throughout the fluid.

Pressure is measured using a manometer or other type 
of gauge. A barometer is used to measure atmospheric pres­
sure. Standard atmospheric pressure (average at sea level) is 
1.013 X 105N/m2. Gauge pressure is the total (absolute) 
pressure less atmospheric pressure.

Archimedes’ principle states that an object submerged
w h n llv  r»r n n rtin llv  in a flniH is hnn vpH  n n  h v  n fn r r p  pnnnl to  thp.



Fluid flow can be characterized either as streamline (some­
times called laminar), in which the layers of fluid move 
smoothly and regularly along paths called streamlines, or as 
turbulent, in which case the flow is not smooth and regular but 
is characterized by irregularly shaped whirlpools.

Fluid flow rate is the mass or volume of fluid that passes a 
given point per unit time. The equation of continuity states that 
for an incompressible fluid flowing in an enclosed tube, the 
product of the velocity of flow and the cross-sectional area of 
the tube remains constant:

A v  = constant. (13-7b)
Bernoulli’s principle tells us that where the velocity of a

fluid is high, the pressure in it is low, and where the velocity is 
low, the pressure is high. For steady laminar flow of an incom­
pressible and nonviscous fluid, Bernoulli’s equation, which is 
based on the law of conservation of energy, is

Pi + I pvI + pgyi = P2 + \p vI + pgy2, (13-8) 
for two points along the flow.

[*Viscosity refers to friction within a fluid and is essentially 
a frictional force between adjacent layers of fluid as they move 
past one another.]

[*Liquid surfaces hold together as if under tension (surface 
tension), allowing drops to form and objects like needles and 
insects to stay on the surface.]

Questions
1. If one material has a higher density than another, must the mole­

cules of the first be heavier than those of the second? Explain.
2. Airplane travelers sometimes note that their cosmetics 

bottles and other containers have leaked during a flight. 
What might cause this?

3. The three containers in Fig. 13-43 are filled with water to the 
same height and have the same surface area at the base; hence 
the water pressure, and the total force on the base of each, is the 
same. Yet the total weight of water is different for each. Explain 
this “hydrostatic paradox.”

FIGURE 13-43
Question 3.

4. Consider what happens when you push both a pin and the 
blunt end of a pen against your skin with the same force. 
Decide what determines whether your skin is cut—the net 
force applied to it or the pressure.

5. A small amount of water is boiled in a 1-gallon metal can. 
The can is removed from the heat and the lid put on. As the 
can cools, it collapses. Explain.

6. When blood pressure is measured, why must the cuff be 
held at the level of the heart?

7. An ice cube floats in a glass of water filled to the brim. 
What can you say about the density of ice? As the ice melts, 
will the water overflow? Explain.

8. Will an ice cube float in a glass of alcohol? Why or why not?
9. A submerged can of Coke® will sink, but a can of Diet 

Coke® will float. (Try it!) Explain.
10. Why don’t ships made of iron sink?
11. Explain how the tube in Fig. 13-44, known as a siphon, 

can transfer liquid from one
container to a lower one even crzftT  “— *r
though the liquid must flow 
uphill for part of its journey.
(Note that the tube must be 
filled with liquid to start with.)

FIGURE 13-44
Question 11. A siphon.

12. A barge filled high with sand approaches a low bridge over 
the river and cannot quite pass under it. Should sand be 
added to, or removed from, the barge? [Hint: Consider 
Archimedes’ principle.]

13. Explain why helium weather balloons, which are used to 
m easu re atm osn herie  con d ition s at hi ah altitudes, are nnrm allv

14. A row boat floats in a swimming pool, and the level 
of the water at the edge of the pool is marked. Consider the 
following situations and explain whether the level of the water 
will rise, fall, or stay the same, (a) The boat is removed from 
the water, (b) The boat in the water holds an iron anchor which 
is removed from the boat and placed on the shore, (c) The iron 
anchor is removed from the boat and dropped in the pool.

15. Will an empty balloon have precisely the same apparent 
weight on a scale as a balloon filled with air? Explain.

16. Why do you float higher in salt water than in fresh water?
17. If you dangle two pieces of paper vertically, a few inches 

apart (Fig. 13-45), and blow between them, how do you 
think the papers will move? Try it and see. Explain.

J
FIGURE 13-45
Question 17.

FIGURE 13-46
Question 18. Water 
coming from a faucet.

18. Why does the stream of water from a faucet become 
narrower as it falls (Fig. 13-46)?

19. Children are told to avoid standing too close to a rapidly 
moving train because they might get sucked under it. Is this 
possible? Explain.

20. A tall Styrofoam cup is filled with water. Two holes are 
punched in the cup near the bottom, and water begins 
rushing out. If the cup is dropped so it falls freely, will the 
water continue to flow from the holes? Explain.

21. Why do airplanes normally take off into the wind?
22. Two ships moving in parallel paths close to one another risk 

colliding. Why?
23. Why does the canvas top of a convertible bulge out when 

the car is traveling at high speed? [Hint: The windshield 
deflects air upward, pushing streamlines closer together.]

24. Roofs of houses are sometimes “blown” off (or are they 
nushed off?'! during a tornado or hurricane. F/xnlain usina



| Problems
13-2 Density and Specific Gravity
1. (I) The approximate volume of the granite monolith known 

as El Capitan in Yosemite National Park (Fig. 13-47) is 
about 108 m3. What is its approximate mass?

FIGURE 13-47 Problem 1.

2. (I) What is the approximate mass of air in a living room 
5.6 m X 3.8 m X 2.8 m?

3. (I) If you tried to smuggle gold bricks by filling your back­
pack, whose dimensions are 56 cm X 28 cm X 22 cm, what 
would its mass be?

4. (I) State your mass and then estimate your volume. [Hint: 
Because you can swim on or just under the surface of the 
water in a swimming pool, you have a pretty good idea of 
your density.]

5. (II) A bottle has a mass of 35.00 g when empty and 98.44 g 
when filled with water. When filled with another fluid, the 
mass is 89.22 g. What is the specific gravity of this other fluid?

6. (II) If 5.0 L of antifreeze solution (specific gravity = 0.80) 
is added to 4.0 L of water to make a 9.0-L mixture, what is 
the specific gravity of the mixture?

7. (Ill) The Earth is not a uniform sphere, but has regions of 
varying density. Consider a simple model of the Earth 
divided into three regions—inner core, outer core, and 
mantle. Each region is taken to have a unique constant 
density (the average density of that region in the real Earth):

Region
Radius
(km)

Density
(kg/m3)

Inner Core 0-1220 13,000
Outer Core 1220-3480 11,100
Mantle 3480-6371 4,400

(a) Use this model to predict the average density of the entire 
Earth. (b) The measured radius of the Earth is 6371 km and 
its mass is 5.98 X 1024kg. Use these data to determine the 
actual average density of the Earth and compare it (as a 
percent difference) with the one you determined in (a).

13-3 to 13-6 Pressure; Pascal's Principle
8. (I) Estimate the pressure needed to raise a column of water 

to the same height as a 35-m-tall oak tree.
9. (I) Estimate the pressure exerted on a floor by (a) one pointed

rhair lea (66 ka on all four leas'! o f  area =  0 090 rm 2 anH

10. (I) What is the difference in blood pressure (mm-Hg) 
between the top of the head and bottom of the feet of a 
1.70-m-tall person standing vertically?

11. (II) How high would the level be in an alcohol barometer at 
normal atmospheric pressure?

12. (II) In a movie, Tarzan evades his captors by hiding under­
water for many minutes while breathing through a long, thin 
reed. Assuming the maximum pressure difference his lungs 
can manage and still breathe is -8 5  mm-Hg, calculate the 
deepest he could have been.

13. (II) The maximum gauge pressure in a hydraulic lift is
17.0 atm. What is the largest-size vehicle (kg) it can lift if the 
diameter of the output line is 22.5 cm?

14. (II) The gauge pressure in each of the four tires of an auto­
mobile is 240 kPa. If each tire has a “footprint” of 220 cm2, 
estimate the mass of the car.

15. (II) (a) Determine the total force and the absolute pressure 
on the bottom of a swimming pool 28.0 m by 8.5 m whose 
uniform depth is 1.8 m. (b) What will be the pressure against 
the side of the pool near the bottom?

16. (II) A house at the bottom of a hill is fed by a full tank of 
water 5.0 m deep and connected to the house by a pipe 
that is 110 m long at an angle of 58° from the horizontal 
(Fig. 13-48). (a) Determine the water gauge pressure at the 
house, (b) How
high could the 
water shoot if it 
came vertically 
out of a broken 
pipe in front of 
the house?

FIGURE 13-48
Problem 16.

5,0 m
1

J 10 m

s * y \
/ t m

17. (II) Water and then oil (which don’t mix) are poured into a 
U-shaped tube, open at both ends.
They come to equilibrium as shown 
in Fig. 13-49. What is the density of I * cm
the oil? [Hint: Pressures at points a 
and b are equal. Why?]

Oil

FIGURE 13-49
Problem 17.

27,2
cm

Wuicr

r  = 0,30 cm

18. (II) In working out his principle, Pascal showed dramatically 
how force can be multiplied with fluid pressure. He placed a 
long, thin tube of radius r = 0.30 cm 
vertically into a wine barrel of radius 
R = 21 cm, Fig. 13-50. He found 
that when the barrel was filled with 
water and the tube filled to a height 
of 12 m, the barrel burst. Calculate (a) 
the mass of water in the tube, and (b) 
the net force exerted by the water in 
the barrel on the lid just before 
rupture.

FIGURE 1 3 -5 0

12 m

R - 2 \  cm



19. (II) What is the normal pressure of the atmosphere at the 
summit of Mt. Everest, 8850 m above sea level?

20. (II) A hydraulic press for compacting powdered samples has 
a large cylinder which is 10.0 cm in diameter, and a small 
cylinder with a diameter of 2.0 cm (Fig. 13-51). A lever is 
attached to the small cylinder as shown. The sample, which 
is placed on the large cylinder, has an area of 4.0 cm2. 
What is the pressure on the sample if 350 N is applied to 
the lever?

Sample
*50 N

Hydraulic
fluid

Smalt cylinder 

2.0 cm

FIGURE 13-51 Problem 20.

21. (II) An open-tube mercury manometer is used to measure 
the pressure in an oxygen tank. When the atmospheric 
pressure is 1040 mbar, what is the absolute pressure (in Pa) 
in the tank if the height of the mercury in the open tube is
(a) 21.0 cm higher, (b) 5.2 cm lower, than the mercury in the 
tube connected to the tank?

22. (Ill) A beaker of liquid accelerates from rest, on a horizontal 
surface, with acceleration a to the right, (a) Show that the 
surface of the liquid makes an angle 6 = tan-1 (a/g) with 
the horizontal. (b) Which edge of the water surface is higher?
(c) How does the pressure vary with depth below the surface?

23. (Ill) Water stands at a height h behind a vertical dam of 
uniform width b. (a) Use integration to show that the total 
force of the water on the dam is F = jpgh2b. (b) Show 
that the torque about the base of the dam due to this force 
can be considered to act with a lever arm equal to h/3.
(c) For a freestanding concrete dam of uniform thickness t and 
height h, what minimum thickness is needed to prevent 
overturning? Do you need to add in atmospheric pressure 
for this last part? Explain.

24. (Ill) Estimate the density of the water 5.4 km deep in the 
sea. (See Table 12-1 and Section 12-4 regarding bulk 
modulus.) By what fraction does it differ from the density at 
the surface?

25. (Ill) A cylindrical bucket of liquid (density p) is rotated 
about its symmetry axis, which is vertical. If the angular 
velocity is (o, show that the pressure at a distance r from the 
rotation axis is

P = P0 + \  p(o2r2, 

where P0 is the pressure at r = 0.

13-7 Buoyancy and Archimedes' Principle
26. (I) What fraction of a piece of iron will be submerged 

when it floats in mercury?
27. (I) A geologist finds that a Moon rock whose mass is 9.28 kg

has an annarent mass o f 6.18 ka when snhmeraed in water.

28. (II) A crane lifts the 16,000-kg steel hull of a sunken ship 
out of the water. Determine {a) the tension in the crane’s 
cable when the hull is fully submerged in the water, and
(b) the tension when the hull is completely out of the water.

29. (II) A spherical balloon has a radius of 7.35 m and is filled 
with helium. How large a cargo can it lift, assuming that the 
skin and structure of the balloon have a mass of 930 kg? 
Neglect the buoyant force on the cargo volume itself.

30. (II) A 74-kg person has an apparent mass of 54 kg (because 
of buoyancy) when standing in water that comes up to the 
hips. Estimate the mass of each leg. Assume the body has 
SG = 1.00.

31. (II) What is the likely identity of a metal (see Table 13-1) if 
a sample has a mass of 63.5 g when measured in air and an 
apparent mass of 55.4 g when submerged in water?

32. (II) Calculate the true mass (in vacuum) of a piece of 
aluminum whose apparent mass is 3.0000 kg when weighed 
in air.

33. (II) Because gasoline is less dense than water, drums 
containing gasoline will float in water. Suppose a 230-L steel 
drum is completely full of gasoline. What total volume of 
steel can be used in making the drum if the gasoline-filled 
drum is to float in fresh water?

34. (II) A scuba diver and her gear displace a volume of 65.0 L 
and have a total mass of 68.0 kg. (a) What is the buoyant force 
on the diver in seawater? (b) Will the diver sink or float?

35. (II) The specific gravity of ice is 0.917, whereas that of 
seawater is 1.025. What percent of an iceberg is above the 
surface of the water?

36. (II) Archimedes’ principle can be used not only to deter­
mine the specific gravity of a solid using a known liquid 
(Example 13-10); the reverse can be done as well, (a) As an 
example, a 3.80-kg aluminum ball has an apparent mass of
2.10 kg when submerged in a particular liquid: calculate the 
density of the liquid, (b) Derive a formula for determining 
the density of a liquid using this procedure.

37. (II) (a) Show that the buoyant force FB on a partially 
submerged object such as a ship acts at the center of gravity 
of the fluid before it is displaced. This point is called the 
center of buoyancy. (b) To ensure that a ship is in stable 
equilibrium, would it be better if its center of buoyancy was 
above, below, or at the same point
as, its center of gravity? Explain. Fh 
(See Fig. 13-52.)

FIGURE 13-52
Problem 37.

"’fi

38. (II) A cube of side length 10.0 cm and made of unknown 
material floats at the surface between water and oil. The oil 
has a density of 810 kg/m3. If the cube floats so that it is 
72% in the water and 28% in the oil, what is the mass of the 
cube and what is the buoyant force on the cube?

39. (II) How many helium-filled balloons would it take to lift a 
person? Assume the person has a mass of 75 kg and that
ear.h helium-filled balloon is snherinal with a diameter of



40. (II) A scuba tank, when fully submerged, displaces 15.7 L of 
seawater. The tank itself has a mass of 14.0 kg and, when 
“full,” contains 3.00 kg of air. Assuming only a weight and 
buoyant force act, determine the net force (magnitude and 
direction) on the fully submerged tank at the beginning of a 
dive (when it is full of air) and at the end of a dive (when it 
no longer contains any air).

41. (Ill) If an object floats in water, its density can be deter­
mined by tying a sinker to it so that both the object and the 
sinker are submerged. Show that the specific gravity is given 
by w/{wi — w2), where w  is the weight of the object alone 
in air, w\ is the apparent weight when a sinker is tied to it 
and the sinker only is submerged, and w2 is the apparent 
weight when both the object and the sinker are submerged.

42. (Ill) A 3.25-kg piece of wood (SG = 0.50) floats on water. 
What minimum mass of lead, hung from the wood by a 
string, will cause it to sink?

13-8 to 13-10 Fluid Flow, Bernoulli's Equation
43. (I) A 15-cm-radius air duct is used to replenish the air of a 

room 8.2 m X 5.0 m X 3.5 m every 12 min. How fast does 
the air flow in the duct?

44. (I) Using the data of Example 13-13, calculate the average 
speed of blood flow in the major arteries of the body which 
have a total cross-sectional area of about 2.0 cm2.

45. (I) How fast does water flow from a hole at the bottom of a 
very wide, 5.3-m-deep storage tank filled with water? Ignore 
viscosity.

46. (II) A fish tank has dimensions 36 cm wide by 1.0 m long by 
0.60 m high. If the filter should process all the water in the 
tank once every 4.0 h, what should the flow speed be in the
3.0-cm-diameter input tube for the filter?

47. (II) What gauge pressure in the water mains is necessary if a 
firehose is to spray water to a height of 18 m?

48. (II) A §-in. (inside) diameter garden hose is used to fill a 
round swimming pool 6.1 m in diameter. How long will it 
take to fill the pool to a depth of 1.2 m if water flows from 
the hose at a speed of 0.40 m/s?

49. (II) A 180-km/h wind blowing over the flat roof of a house 
causes the roof to lift off the house. If the house is 
6.2 m X 12.4 m in size, estimate the weight of the roof. 
Assume the roof is not nailed down.

50. (II) A 6.0-cm-diameter horizontal pipe gradually narrows to
4.5 cm. When water flows through this pipe at a certain rate, 
the gauge pressure in these two sections is 32.0 kPa and
24.0 kPa, respectively. What is the volume rate of flow?

51. (II) Estimate the air pressure inside a category 5 hurricane, 
where the wind speed is 300 km /h (Fig. 13-53).

52. (II) What is the lift (in newtons) due to Bernoulli’s principle on 
a wing of area 88 m2 if the air passes over the top and bottom 
surfaces at speeds of 280 m/s and 150 m/s, respectively?

53. (II) Show that the power needed to drive a fluid through a 
pipe with uniform cross-section is equal to the volume rate 
of flow, Q, times the pressure difference, P\ -  P2.

54. (II) Water at a gauge pressure of 3.8 atm at street level flows 
into an office building 
at a speed of 0.68 m/s 
through a pipe 5.0 cm 
in diameter. The pipe 
tapers down to 2.8 cm 
in diameter by the 
top floor, 18 m above 
(Fig. 13-54), where the 
faucet has been left 
open. Calculate the 
flow velocity and the 
gauge pressure in the 
pipe on the top floor.
Assume no branch pipes 
and ignore viscosity.

Faucet
T 3 u

IK m

FIGURE 13-54
Problem 54.

P=V8atm

= •

55. (II) In Fig. 13-55, take into account the speed of the top 
surface of the tank and show that the speed of fluid leaving 
the opening at the bottom is

Vi =
2 gh

(1 -  A \/A l)

where h = y2 — yi, and A \  and A 2 are the areas of the 
opening and of the top surface, respectively. Assume A i  <5< A 2 
so that the flow remains 
nearly steady and laminar.

FIGURE 13-55
Problems 55,56,58, 
and 59.

Vi — v I

56. (II) Suppose the top surface of the vessel in Fig. 13-55 is 
subjected to an external gauge pressure P2. (a) Derive a 
formula for the speed, V\ , at which the liquid flows from the 
opening at the bottom into atmospheric pressure, P0. 
Assume the velocity of the liquid surface, v2, is approxi­
mately zero. (b) If P2 = 0.85 atm and y2 ~ y\ = 2.4 m, 
determine V\ for water.

57. (II) You are watering your lawn with a hose when you put 
your finger over the hose opening to increase the distance 
the water reaches. If you are pointing the hose at the same
anale and the distance the w ater reaches increases hv a



58. (Ill) Suppose the opening in the tank of Fig. 13-55 is a height hi 
above the base and the liquid surface is a height h2 above the 
base. The tank rests on level ground, (a) At what horizontal 
distance from the base of the
tank will the fluid strike the 
ground? (b) At what other
height, h[, can a hole be fy-, -  yj
placed so that the emerging
liquid will have the same T —
“range”? Assume v2 ~ 0.
FIGURE 13-55 (repeated)
Problems 55,56,58, and 59.

59. (Ill) (a) In Fig. 13-55, show that Bernoulli’s principle predicts 
that the level of the liquid, h = y2 -  y \ , drops at a rate

dh _ I 2ghA\
dt V A 2 -  A 2

where A 1 and A 2 are the areas of the opening and the top 
surface, respectively, assuming A t « A 2, and viscosity is 
ignored. (b) Determine h as a function of time by integrating. 
Let h = ho at t = 0. (c) How long would it take to empty 
a 10.6-cm-tall cylinder filled with 1.3 L of water if the 
opening is at the bottom and has a 0.50-cm diameter?

60. (Ill) (a) Show that the flow speed measured by a venturi 
meter (see Fig. 13-32) is given by the relation

vi = A 2-
2(fi ~ f 2) 

p(a 2 — a \)
(b) A venturi meter is measuring the flow of water; it has a 
main diameter of 3.0 cm tapering down to a throat diameter of
1.0 cm. If the pressure difference is measured to be 18 mm-Hg, 
what is the speed of the water entering the venturi throat?

61. (Ill) Thrust o f a rocket, (a) Use Bernoulli’s equation and 
the equation of continuity to show that the emission speed 
of the propelling gases of a rocket is

v = V t i P  -  -Po)/p, 
where p is the density of the gas, P is the pressure of the gas 
inside the rocket, and Zq is atmospheric pressure just outside 
the exit orifice. Assume that the gas density stays approxi­
mately constant, and that the area of the exit orifice, A 0, is 
much smaller than the cross-sectional area, A, of the inside 
of the rocket (take it to be a large cylinder). Assume also 
that the gas speed is not so high that significant turbulence 
or nonsteady flow sets in. (b) Show that the thrust force on 
the rocket due to the emitted gases is 

F = 2A0{P -  P0).
62. (Ill) A fire hose exerts a force on the person holding it. This 

is because the water accelerates as it goes from the hose 
through the nozzle. How much force is required to hold 
a 7.0-cm-diameter hose delivering 450L/min through a 
0.75-cm-diameter nozzle?

13-11 Viscosity
63. (II) A viscometer consists of two concentric cylinders, 10.20 cm 

and 10.60 cm in diameter. A liquid fills the space between them 
to a depth of 12.0 cm. The outer cylinder is fixed, and a torque 
of 0.024 m • N keeps the inner cylinder turning at a steady rota­
tional speed of 57 rev/min. What is the viscosity of the liquid?

64. (Ill) A long vertical hollow tube with an inner diameter of
1.00 cm is filled with SAE 10 motor oil. A 0.900-cm-diameter,
30.0-cm-long 150-g rod is dropped vertically through the oil 
in the tiihe. What is the maximum sneed attained hv the rod

* 13-12 Flow in Tubes; Poiseuille's Equation
*65. (I) Engine oil (assume SAE 10, Table 13-3) passes through 

a fine 1.80-mm-diameter tube that is 8.6 cm long. What pressure 
difference is needed to maintain a flow rate of 6.2 mL/min?

* 66. (I) A gardener feels it is taking too long to water a garden with
a |-in.-diameter hose. By what factor will the time be cut using a 
|-in.-diameter hose instead? Assume nothing else is changed. 

*67. (II) What diameter must a 15.5-m-long air duct have if the 
ventilation and heating system is to replenish the air in a 
room 8.0 m X 14.0 m X 4.0 m every 12.0 min? Assume the 
pump can exert a gauge pressure of 0.710 X 10-3 atm.

* 68. (II) What must be the pressure difference between the two ends
of a 1.9-km section of pipe, 29 cm in diameter, if it is to transport 
oil (p = 950 kg/m3, 17 = 0.20 Pa • s) at a rate of 650 cm3/s?

* 69. (II) Poiseuille’s equation does not hold if the flow velocity is
high enough that turbulence sets in. The onset of turbulence 
occurs when the Reynolds number, Re, exceeds approxi­
mately 2000. Re is defined as

2 vrp 
Re = —

V
where v is the average speed of the fluid, p is its density, rj is its 
viscosity, and r is the radius of the tube in which the fluid is 
flowing, (a) Determine if blood flow through the aorta is 
laminar or turbulent when the average speed of blood in the 
aorta (r = 0.80 cm) during the resting part of the heart’s 
cycle is about 35 cm/s. (b) During exercise, the blood-flow 
speed approximately doubles. Calculate the Reynolds number 
in this case, and determine if the flow is laminar or turbulent.

* 70. (II) Assuming a constant pressure gradient, if blood flow is
reduced by 85%, by what factor is the radius of a blood 
vessel decreased?

* 71. (Ill) A patient is to be given a blood transfusion. The blood
is to flow through a tube from a raised bottle to a needle 
inserted in the vein (Fig. 13-56). The inside diameter of the 
25-mm-long needle is 0.80 mm, and the 
required flow rate is 2.0 cm3 of blood per 
minute. How high h should the bottle be 
placed above the needle? Obtain p 
and 7) from the Tables. Assume the 
blood pressure is 78 torr above 
atmospheric pressure.

FIGURE 13-56
Problems 71 and 79.

* 13—13 Surface Tension and Capillarity
*72. (I) If the force F needed to move the wire in Fig. 13-35 is

3.4 X 10_3N, calculate the surface tension y of the 
enclosed fluid. Assume I = 0.070 m.

* 73. (I) Calculate the force needed to move the wire in Fig. 13-35 if
it is immersed in a soapy solution and the wire is 24.5 cm long.

*74. (II) The surface tension of a liquid can be determined by 
measuring the force F needed to just lift a circular platinum 
ring of radius r from the surface of the liquid, (a) Find a 
formula for y in terms of F and r. (b) At 30° C, if 
F  = 5.80 X 10-3 N and r = 2.8 cm, calculate y for the 
tested liquid.

*75. fnTl Rstimate the diameter o f a steel needle that can iust



* 76. (Ill) Show that inside a soap bubble, there must be a pressure 
AP  in excess of that outside equal to AP  = 4y/r, where r is 
the radius of the bubble and y  is the surface tension. [Hint. 
Think of the bubble as two hemispheres in contact with each 
other; and remember that there are two surfaces to the 
bubble. Note that this result applies to any kind of membrane, 
where 2y is the tension per unit length in that membrane.]

*77. (Ill) A common effect of surface tension is the ability of a 
liquid to rise up a narrow tube due to what is called capillary 
action. Show that for a narrow tube of radius r placed in a 
liquid of density p and surface tension y, the liquid in the tube 
will reach a height h = 2y/pgr  above the level of the liquid 
outside the tube, where g is the gravitational acceleration. 
Assume that the liquid “wets” the capillary (the liquid surface 
is vertical at the contact with the inside of the tube).

| General Problems
78. A 2.8-N force is applied to the plunger of a hypodermic 

needle. If the diameter of the plunger is 1.3 cm and that 
of the needle 0.20 mm, (a) with what force does the fluid leave 
the needle? (b) What force on the plunger would be needed to 
push fluid into a vein where the gauge pressure is 75 mm-Hg? 
Answer for the instant just before the fluid starts to move.

79. Intravenous infusions are often made under gravity, as 
shown in Fig. 13-56. Assuming the fluid has a density of
1.00 g/cm3, at what height h should the bottle be placed so 
the liquid pressure is (a) 55 mm-Hg, and (b) 650 mm-H20 ?
(c) If the blood pressure is 78 mm-Hg above atmospheric 
pressure, how high should the bottle be placed so that the 
fluid just barely enters the vein?

80. A beaker of water rests on an electronic balance that reads
998.0 g. A 2.6-cm-diameter solid copper ball attached to a 
string is submerged in the water, but does not touch the 
bottom. What are the tension in the string and the new 
balance reading?

81. Estimate the difference in air pressure between the top and 
the bottom of the Empire State building in New York City? 
It is 380 m tall and is located at sea level. Express as a 
fraction of atmospheric pressure at sea level.

82. A hydraulic lift is used to jack a 920-kg car 42 cm off the floor. 
The diameter of the output piston is 18 cm, and the input force 
is 350 N. (a) What is the area of the input piston? (b) What is 
the work done in lifting the car 42 cm? (c) If the input piston 
moves 13 cm in each stroke, how high does the car move up 
for each stroke? (d) How many strokes are required to jack 
the car up 42 cm? (e) Show that energy is conserved.

83. When you ascend or descend a great deal when driving in a 
car, your ears “pop,” which means that the pressure behind the 
eardrum is being equalized to that outside. If this did not 
happen, what would be the approximate force on an eardrum 
of area 0.20 cm2 if a change in altitude of 950 m takes place?

84. Giraffes are a wonder of cardiovascular engineering. Calcu­
late the difference in pressure (in atmospheres) that the 
blood vessels in a giraffe’s head must accommodate as the 
head is lowered from a full upright position to ground level 
for a drink. The height of an average giraffe is about 6 m.

85. Suppose a person can reduce the pressure in his lungs to 
-7 5  mm-Hg gauge pressure. How high can water then be 
“sucked” up a straw?

86. Airlines are allowed to maintain a minimum air pressure 
within the passenger cabin equivalent to that at an altitude 
of 8000 ft (2400 m) to avoid adverse health effects among 
nassenpers due to  oxvaen denrivation. E stim ate this

87. A simple model (Fig. 13-57) considers a continent as a 
block (density «  2800 kg/m3) floating in the mantle rock 
around it (density ~ 3300 kg/m3). Assuming the continent 
is 35 km thick (the average thickness of the Earth’s conti­
nental crust), esti­
mate the height of 
the continent above 
the surrounding rock.

FIGURE 13-57
Problem 87.

Continent 
(density » 2800 kg/m3)

fmg
Mantle rock (density ~ 3300 kg/m3)

88. A ship, carrying fresh water to a desert island in the 
Caribbean, has a horizontal cross-sectional area of 2240 m2 
at the waterline. When unloaded, the ship rises 8.50 m 
higher in the sea. How many cubic meters of water was 
delivered?

89. During ascent, and especially during descent, volume changes 
of trapped air in the middle ear can cause ear discomfort 
until the middle-ear pressure and exterior pressure are 
equalized, (a) If a rapid descent at a rate of 7.0 m /s or 
faster commonly causes ear discomfort, what is the 
maximum rate of increase in atmospheric pressure (that is, 
dP/dt) tolerable to most people? (b) In a 350-m-tall 
building, what will be the fastest possible descent time for 
an elevator traveling from the top to ground floor, assuming 
the elevator is properly designed to account for human 
physiology?

90. A raft is made of 12 logs lashed together. Each is 45 cm in 
diameter and has a length of 6.1 m. How many people can the 
raft hold before they start getting their feet wet, assuming the 
average person has a mass of 68 kg? Do not neglect the weight 
of the logs. Assume the specific gravity of wood is 0.60.

91. Estimate the total mass of the Earth’s atmosphere, using 
the known value of atmospheric pressure at sea level.

92. During each heartbeat, approximately 70 cm3 of blood is 
pushed from the heart at an average pressure of 105 mm-Hg. 
Calculate the power output of the heart, in watts, assuming 
70 beats per minute.

93. Four lawn sprinkler heads are fed by a 1.9-cm-diameter 
pipe. The water comes out of the heads at an angle of 35° 
to the horizontal and covers a radius of 7.0 m. (a) What is 
the velocity of the water coming out of each sprinkler 
head? (Assume zero air resistance.) (b) If the output diam­
eter of each head is 3.0 mm, how many liters of water do 
the four heads deliver ner second? ( r \  H ow  fast is the



94. A bucket of water is accelerated upward at 1.8 g. What is 
the buoyant force on a 3.0-kg granite rock (SG = 2.7) 
submerged in the water? Will the rock float? Why or why not?

95. The stream of water from a faucet decreases in diameter as it 
falls (Fig. 13-58). Derive an equation for the diameter of the 
stream as a function of the distance y 
below the faucet, given that the water 
has speed v0 when it leaves the 
faucet, whose diameter is d. i

45 cm

: I
* 4.0 cm KScm

FIGURE 13-58 Problem 95.
Water coming from a faucet.

96. You need to siphon water from a clogged sink. The sink has 
an area of 0.38 m2 and is filled to a height of 4.0 cm. Your 
siphon tube rises 45 cm above 
the bottom of the sink and then 
descends 85 cm to a pail as 
shown in Fig. 13-59. The siphon 
tube has a diameter of 2.0 cm.
(a) Assuming that the water 
level in the sink has almost 
zero velocity, estimate the water 
velocity when it enters the pail.
(b) Estimate how long it will 
take to empty the sink.

FIGURE 13-59
Problem 96.

97. An airplane has a mass of 1.7 X 106kg, and the air flows 
past the lower surface of the wings at 95 m/s. If the wings 
have a surface area of 1200 m2, how fast must the air flow 
over the upper surface of the wing if the plane is to stay in 
the air?

98. A drinking fountain shoots water about 14 cm up in the air 
from a nozzle of diameter 0.60 cm. The pump at the base of 
the unit (1.1 m below the nozzle) pushes water into a 1.2- 
cm-diameter supply pipe that goes up to the nozzle. What 
gauge pressure does the pump have to provide? Ignore the 
viscosity; your answer will therefore be an underestimate.

99. A hurricane-force wind of 200 km /h blows across the face 
of a storefront window. Estimate the force on the
2.0 m X 3.0 m window due to the difference in air pressure 
inside and outside the window. Assume the store is airtight so 
the inside pressure remains at 1.0 atm. (This is why you should 
not tightly seal a building in preparation for a hurricane).

100. Blood from an animal is placed in a bottle 1.30 m above a 
3.8-cm-long needle, of inside diameter 0.40 mm, from 
which it flows at a rate of 4.1 cm3/min. What is the 
viscosity of this blood?

101. Three forces act significantly on a freely floating helium- 
filled balloon: gravity, air resistance (or drag force), and a 
buoyant force. Consider a spherical helium-filled balloon 
of radius r = 15 cm rising upward through 0°C air, 
and m = 2.8 g is the mass of the (deflated) balloon itself. 
For all speeds v, except the very slowest ones, the flow of 
air past a rising balloon is turbulent, and the drag force FD 
is given by the relation

Fd = \ C v Pairirr2v2
where the constant CD = 0.47 is the “drag coefficient” for 
a smooth sphere of radius r. If this balloon is released from 
rest, it will accelerate very quickly (in a few tenths of a second) 
to its terminal velocity Vj, where the buoyant force is 
cancelled by the drag force and the balloon’s total weight. 
Assuming the balloon’s acceleration takes place over a 
negligible time and distance, how long does it take the 
released balloon to rise a distance h = 12 m?

* 102. If cholesterol buildup reduces the diameter of an artery by
15%, by what % will the blood flow rate be reduced, 
assuming the same pressure difference?

103. A two-component model used to determine percent body 
fat in a human body assumes that a fraction / ( <  1) of the 
body’s total mass m  is composed of fat with a density of
0.90 g/cm3, and that the remaining mass of the body is 
composed of fat-free tissue with a density of 1.10 g/cm3. If 
the specific gravity of the entire body’s density is X, show 
that the percent body fat ( = /  X 100) is given by 

495
% Body fat = — —  450.

Jl

* Numerical/Computer
* 104. (Ill) Air pressure decreases with altitude. The following data

show the air pressure at different altitudes.

Altitude (m) Pressure (kPa)

0 101.3
1000 89.88
2000 79.50
3000 70.12
4000 61.66
5000 54.05
6000 47.22
7000 41.11
8000 35.65
9000 30.80

10,000 26.50

(a) Determine the best-fit quadratic equation that shows 
how the air pressure changes with altitude. (b) Determine 
the best-fit exponential equation that describes the change 
of air pressure with altitude. (c) Use each fit to find the air 
pressure at the summit of the mountain K2 at 8611 m, and 
give the % difference.

Answers to Exercises

A: (d ).
B: The same. Pressure depends on depth, not on length. 
C: Lower.

E: (e).
F: Increases. 
G: (b).
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An object attached to a coil spring 
can exhibit oscillatory motion. Many 
kinds of oscillatory motion are 
sinusoidal in time, or nearly so, and 
are referred to as being simple 
harmonic motion. Real systems 
generally have at least some friction, 
causing the motion to be damped. 
The automobile spring shown here 
has a shock absorber (yellow) that 
purposefully dampens the oscillation 
to make for a smooth ride. When an 
external sinusoidal force is exerted 
on a system able to oscillate, 
resonance occurs if the driving force 
is at or near the natural frequency of 
oscillation.

T £

Oscillations
CHAPTER-OPENING QUESTION—Guess now!
A simple pendulum consists of a mass m  (the “bob”) hanging on the end of a thin 
string of length £ and negligible mass. The bob is pulled sideways so the string makes a 
5.0° angle to the vertical; when released, it oscillates back 
and forth at a frequency / .  If the pendulum was raised to a 
10.0° angle instead, its frequency would be

(a) twice as great.
(b) half as great.
(c) the same, or very close to it.
(d) not quite twice as great.
(e) a bit more than half as great.

M any objects vibrate or oscillate—an object on the end of a spring, a 
tuning fork, the balance wheel of an old watch, a pendulum, a plastic 
ruler held firmly over the edge of a table and gently struck, the strings 
of a guitar or piano. Spiders detect prey by the vibrations of their 

webs; cars oscillate up and down when they hit a bump; buildings and bridges 
vibrate when heavy trucks pass or the wind is fierce. Indeed, because most solids 
are elastic (see Chapter 12), they vibrate (at least briefly) when given an impulse. 
Electrical oscillations are necessary in radio and television sets. At the atomic level, 
atoms vibrate within a molecule, and the atoms of a solid vibrate about their relatively 
fixed positions. Because it is so common in everyday life and occurs in so many 
areas of ohvsics. oscillatory motion is of ereat importance. Mechanical oscillations
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14—1 Oscillations of a Spring

(a) x = 0

(> 0)

(c) —x — 
(< 0)

FIGURE 14-1 A  mass oscillating at 
the end of a uniform spring.

FIGURE 14-2 Force on, and 
velocity of, a mass at different 
positions of its oscillation cycle on ; 
frictionless surface.

v = 0

(a) x = -A  x = 0

F = 0
"*"̂max 

(max. in positive 
| direction)

(b) x = 0 

F-«
v = 0

(c) x = 0 x = A

F = 0
~v}= —̂max 
1 (max. in negative 

| direction)

(d)

v = 0

x = 0 

► F

l l

When an object vibrates or oscillates back and forth, over the same path, each 
oscillation taking the same amount of time, the motion is periodic. The simplest form 
of periodic motion is represented by an object oscillating on the end of a uniform 
coil spring. Because many other types of oscillatory motion closely resemble this 
system, we will look at it in detail. We assume that the mass of the spring can be 
ignored, and that the spring is mounted horizontally, as shown in Fig. 14-la, so 
that the object of mass m slides without friction on the horizontal surface. Any 
spring has a natural length at which it exerts no force on the mass m. The position 
of the mass at this point is called the equilibrium position. If the mass is moved 
either to the left, which compresses the spring, or to the right, which stretches it, 
the spring exerts a force on the mass that acts in the direction of returning the 
mass to the equilibrium position; hence it is called a restoring force. We consider 
the common situation where we can assume the restoring force F is directly 
proportional to the displacement x the spring has been stretched (Fig. 14-lb) or 
compressed (Fig. 14-lc) from the equilibrium position:

F = -k x .  [force exerted by spring] (14-1)
Note that the equilibrium position has been chosen at x = 0 and the minus sign 
in Eq. 14-1 indicates that the restoring force is always in the direction opposite to 
the displacement x. For example, if we choose the positive direction to the right in 
Fig. 14-1, x is positive when the spring is stretched (Fig. 14-lb), but the direction 
of the restoring force is to the left (negative direction). If the spring is compressed, 
x is negative (to the left) but the force F acts toward the right (Fig. 14-lc).

Equation 14-1 is often referred to as Hooke’s law (Sections 7-3,8-2 and 12-4), 
and is accurate only if the spring is not compressed to where the coils are close 
to touching, or stretched beyond the elastic region (see Fig. 12-15). Hooke’s law 
works not only for springs but for other oscillating solids as well; it thus has wide 
applicability, even though it is valid only over a certain range of F and x values.

The proportionality constant k  in Eq. 14-1 is called the spring constant for that 
particular spring, or its spring stiffness constant. To stretch the spring a distance x, one 
has to exert an (external) force on the free end of the spring with a magnitude at least 
equal to

-Fext = +kx. [external force on spring]
The greater the value of k, the greater the force needed to stretch a spring a given 
distance. That is, the stiffer the spring, the greater the spring constant k.

Note that the force F in Eq. 14-1 is not a constant, but varies with position. 
Therefore the acceleration of the mass m is not constant, so we cannot use the 
equations for constant acceleration developed in Chapter 2.

Let us examine what happens when our uniform spring is initially compressed a 
distance x = - A ,  as shown in Fig. 14-2a, and then released on the frictionless surface. 
The spring exerts a force on the mass that pushes it toward the equilibrium position. 
But because the mass has inertia, it passes the equilibrium position with considerable 
speed. Indeed, as the mass reaches the equilibrium position, the force on it decreases 
to zero, but its speed at this point is a maximum, vmax (Fig. 14-2b). As the mass moves 
farther to the right, the force on it acts to slow it down, and it stops for an instant at 
x = A  (Fig. 14-2c). It then begins moving back in the opposite direction, accelerating 
until it passes the equilibrium point (Fig. 14-2d), and then slows down until it reaches 
zero speed at the original starting point, x = —A  (Fig. 14-2e). It then repeats the 
motion, moving back and forth symmetrically between x = A  and x = — A.

EXERCISE A A n object is oscillating back and forth. Which of the following statements are 
true at some time during the course of the motion? (a) The object can have zero velocity and, 
simultaneously, nonzero acceleration, (b) The object can have zero velocity and, simultane­
ously, zero acceleration, (c) The object can have zero acceleration and, simultaneously, nonzero 
velocity. (d ) The object can have nonzero velocity and nonzero acceleration simultaneously.



To discuss oscillatory motion, we need to define a few terms. The distance x of 
the mass from the equilibrium point at any moment is called the displacement. The 
maximum displacement—the greatest distance from the equilibrium point—is 
called the amplitude, A. One cycle refers to the complete to-and-fro motion from 
some initial point back to that same point—say, from x = —A  to x = A  and back 
to x = —A. The period, T, is defined as the time required to complete one cycle. 
Finally, the frequency, / ,  is the number of complete cycles per second. Frequency is 
generally specified in hertz (Hz), where 1 Hz = 1 cycle per second (s-1). It is easy 
to see, from their definitions, that frequency and period are inversely related, as we 
saw earlier (Eqs. 5-2 and 10-8):

/  = j and (14-2)

for example, if the frequency is 5 cycles per second, then each cycle takes 5 s.
The oscillation of a spring hung vertically is essentially the same as that of a hori­

zontal spring. Because of gravity, the length of a vertical spring with a mass m on the 
end will be longer at equilibrium than when that same spring is horizontal, as shown 
in Fig. 14-3. The spring is in equilibrium when 2 F  = 0 = mg — kx0, so the spring 
stretches an extra amount xQ = m g/k  to be in equilibrium. If x  is measured from 
this new equilibrium position, Eq. 14-1 can be used directly with the same value of k.

EXERCISE C If an oscillating mass has a frequency of 1.25 Hz, it makes 100 oscillations in
(a) 12.5 s, (b) 125 s, (c) 80 s, (d ) 8.0 s.

A  CAUTI ON
For vertical spring, measure 
displacement (x or y) from  the 
vertical equilibrium position

F = -kx,0

in o w  
measured 

x from here

FIGURE 1 4 -3
(a) Free spring, hung vertically.
(b) Mass m  attached to spring in new  
equilibrium position, which occurs when 
2 F  =  0 =  m g — kx  0 .

mg

(a) (b)

EXAMPLE 14-1 Car springs. When a family of four with a total mass of 
200 kg step into their 1200-kg car, the car’s springs compress 3.0 cm. (a) What is 
the spring constant of the car’s springs (Fig. 14-4), assuming they act as a single 
spring? (b) How far will the car lower if loaded with 300 kg rather than 200 kg? 
APPROACH We use Hooke’s law: the weight of the people, mg, causes a 3.0-cm 
displacement.
SOLUTION (a) The added force of (200 kg)(9.8 m/s2) = 1960 N causes the 
springs to compress 3.0 X 10_2m. Therefore (Eq. 14-1), the spring constant is

k = — = x
1960 N

3.0 X 10 m
= 6.5 X 104 N/m.

= 4.5 X 10-2 m,

(b) If the car is loaded with 300 kg, Hooke’s law gives
F (300 kg)(9.8 m/s2)

X ~ k ~ (6.5 X 104N/m) 
or 4.5 cm.
NOTE In (b), we could have obtained x without solving for k: since x is proportional 
to F, if 200 kg compresses the spring 3.0 cm, then 1.5 times the force will compress

FIGURE 1 4 -4  Photo of a car’s 
spring. (A lso visible is the shock 
absorber, in blue— see Section 14-7.)



14—2 Simple Harmonic Motion

FIGURE 14-5 Sinusoidal nature of 
SHM as a function of time. In this 
case, x =  A c o s(2 ir t/T ) .

Any oscillating system for which the net restoring force is directly proportional to 
the negative of the displacement (as in Eq. 14-1, F = —kx) is said to exhibit 
simple harmonic motion (SHM). Such a system is often called a simple harmonic 
oscillator (SHO). We saw in Chapter 12 (Section 12-4) that most solid materials 
stretch or compress according to Eq. 14-1 as long as the displacement is not too 
great. Because of this, many natural oscillations are simple harmonic or close to it.

I EXERCISED Which of the following represents a simple harmonic oscillator: (a) F = —0.5x2, 
0b) F = -2.3y, (c) F = 8.6*, (d) F = -40?

Let us now determine the position x as a function of time for a mass attached 
to the end of a simple spring with spring constant k. To do so, we make use of 
Newton’s second law, F = ma. Since the acceleration a = d2x/d t2, we have

ma
d2x

m —-z- = -k x ,  
dt2

where m is the mass* which is oscillating. We rearrange this to obtain

d2x 
dt2
„ ~ k
— r  H------ X  = 0,m [SHM] (14-3)

which is known as the equation of motion for the simple harmonic oscillator. 
Mathematically it is called a differential equation, since it involves derivatives. We 
want to determine what function of time, x(t), satisfies this equation. We might guess 
the form of the solution by noting that if a pen were attached to an oscillating mass 
(Fig. 14-5) and a sheet of paper moved at a steady rate beneath it, the pen would 
trace the curve shown. The shape of this curve looks a lot like it might be sinusoidal 
(such as cosine or sine) as a function of time, and its height is the amplitude A. Let 
us then guess that the general solution to Eq. 14-3 can be written in a form such as

x = Acos(a>t + <f>), (14-4)
where we include the constant (f> in the argument to be general.* Let us now put 
this trial solution into Eq. 14-3 and see if it really works. We need to differentiate 
the x = x(t) twice:

dx d r A . fX_-  = — [Acos(<ot + *)] = ct)Asm(ci)t + (j>)

d2x 
dt2
—y  = ~(o2A  cos (cot + 4>).

We now put the latter into Eq. 14-3, along with Eq. 14-4 for x:

d2x k
- y  H-----x = 0
dt2 m

k—(f)2 A cos (cot + <f>) + — A cos (cot + 0) = 0 

k  \
— -  on2 jAcos(cot + (f>) = 0 .

Our solution, Eq. 14-4, does indeed satisfy the equation of motion (Eq. 14-3) for

tin the case of a mass, m', on the end of a spring, the spring itself also oscillates and at least a part of its mass 
must be included. It can be shown—see the Problems—that approximately one-third the mass of the spring, 
ras, must be included, so then m = m' + in our equation. Often ms is small enough to be ignored.
* Another possible way to write the solution is the combination x = a cos a t + b sin (ot, where a and b
q t p  m n c t a n f c  I 'h ic  ic  A m iiu Q  1 t  +r* Th n  1 A_A qg  r*an H/a c p p n  lic in r r  +ri<Tr>nr*m<=*+'rir'



any time t, but only if (k /m  — co2) = 0. Hence

w2 = — ■ (14-5)m
Equation 14-4 is the general solution to Eq. 14-3, and it contains two arbitrary 

constants A  and (f), which we should expect because the second derivative in 
Eq. 14-3 implies that two integrations are needed, each yielding a constant. They 
are “arbitrary” only in a calculus sense, in that they can be anything and still satisfy 
the differential equation, Eq. 14-3. In real physical situations, however, A  and <f> 
are determined by the initial conditions. Suppose, for example, that the mass is 
started at its maximum displacement and is released from rest. This is, in fact, what 
is shown in Fig. 14-5, and for this case x = A  cos cot. Let us confirm it: we are 
given v = 0 at t = 0, where

V = ^  = ~dt cos((ot + <M] = ~coAsin(cot + (f>) = 0. [at t = 0]

For v to be zero at t = 0, then sin (cot + (f>) = sin(0 + (f>) is zero if cf) = 0 
((f) could also be 77, 2tt, etc.), and when cf> = 0, then

x = A  cos cot,
as we expected. We see immediately that A  is the amplitude of the motion, and it 
is determined initially by how far you pulled the mass m from equilibrium before 
releasing it.

Consider another interesting case: at t = 0, the mass m is at x = 0 and is 
struck, giving it an initial velocity toward increasing values of x. Then at t = 0, x = 0, 
so we can write x = A  cos (cot + 0) = A  cos cf) = 0, which can happen only if 
(j) = ± 77/2 (or + 90°). Whether (f> = + 77/2 or - t t /2  depends on d  = dx/dt = 
—coAsm(cot + (f>) = — coA sin </> at t = 0, which we are given as positive (v > 0 at 
t = 0); hence cf) = —ir/2 because sin (-90°) = -1 . Thus our solution for this case is

A ( 77x = A  cosl otf -  —

= A  sin cot,
where we used cos(0 — tt/2) = sin0. The solution in this case is a pure sine 
wave, Fig. 14-6, where A  is still the amplitude.

Many other situations are possible, such as that shown in Fig. 14-7. The 
constant (f> is called the phase angle, and it tells us how long after (or before) 
t = 0 the peak at x = A  is reached. Notice that the value of (f> does not affect the 
shape of the x(t) curve, but only affects the displacement at some arbitrary time, 
t = 0. Simple harmonic motion is thus always sinusoidal. Indeed, simple harmonic 
motion is defined as motion that is purely sinusoidal.

Since our oscillating mass repeats its motion after a time equal to its period T, 
it must be at the same position and moving in the same direction at t = T as it 
was at t = 0. Since a sine or cosine function repeats itself after every 2tt radians, 
then from Eq. 14-4, we must have

COT =  277.
Hence

277 i f  (O = —  =  2 7 7 /,

where /  is the frequency of the motion. Strictly speaking, we call co the angular 
frequency (units are rad/s) to distinguish it from the frequency /  (units are s-1 = Hz); 
sometimes the word “angular” is dropped, so the symbol co or /  needs to be specified. 
Because co = 2irf = 2tt/T, we can write Eq. 14-4 as

x =  A cos{^ y ~ +  (14-6a)

x(t)

FIGURE 1 4 -6  Special case of SHM  
where the mass m  starts, at t =  0, at 
the equilibrium position x =  0 and 
has initial velocity toward positive 
values of x (v  >  0 at t =  0).

FIGURE 1 4 -7  A  plot of 
x  =  AQOs(a)t + (f>) when</> <  0.



Because co = 2-77/ = V k /m  (Eq. 14-5), then

f  =  JL /A ,
J 2tt Vm 
_  „ [m
T = W r

(14-7a)

(14-7b)

Note that the frequency and period do not depend on the amplitude. Changing the 
amplitude of a simple harmonic oscillator does not affect its frequency. Equation 14-7a 
tells us that the greater the mass, the lower the frequency; and the stiffer the spring, 
the higher the frequency. This makes sense since a greater mass means more inertia 
and therefore a slower response (or acceleration); and larger k  means greater 
force and therefore quicker response. The frequency /  (Eq. 14-7a) at which a SHO 
oscillates naturally is called its natural frequency (to distinguish it from a frequency at 
which it might be forced to oscillate by an outside force, as discussed in Section 14-8).

The simple harmonic oscillator is important in physics because whenever we 
have a net restoring force proportional to the displacement (F = -k x ) ,  which is 
at least a good approximation for a variety of systems, then the motion is simple 
harmonic—that is, sinusoidal.

P H Y S I C S  A P P L I E D
Car springs

EXAMPLE 14-2 Car springs again. Determine the period and frequency of 
the car in Example 14-la  after hitting a bump. Assume the shock absorbers are 
poor, so the car really oscillates up and down.
APPROACH We put m = 1400 kg and k = 6.5 X 104N/m from Example 14-la 
into Eqs. 14-7.
SOLUTION From Eq. 14-7b,

T = 2tt AI — = 2tt
1400 kg

6.5 X 104 N/m 
or slightly less than a second. The frequency f  = 1/T

= 0.92 s, 

1.09 Hz.

FIGURE 14-8 D isplacem ent,*, 
velocity, d x /d t, and acceleration, 
d 2x /d t2, of a simple harmonic 
oscillator when <f> =  0.
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EXERCISE E By how much should the mass on the end of a spring be changed to halve the 
frequency of its oscillations? (a) N o change; (b) doubled; (c) quadrupled; (d) halved; 
(e) quartered.

EXERCISE F The position of a SHO is given by x  =  (0.80 m) cos(3.14£ — 0.25). The 
frequency is (a) 3.14 Hz, (b) 1.0 Hz, (c) 0.50 Hz, (d) 9.88 Hz, (e) 19.8 Hz.

Let us continue our analysis of a simple harmonic oscillator. The velocity and 
acceleration of the oscillating mass can be obtained by differentiation of Eq. 14-4, 
x = Acos(wt + <f>):

dxv = —  = -co A  sm(o)t + <j>) (14-8a)
dt

d2x dv ? „ /
a =  — — =  —  =  —a)Acos((x)t +  <b).

dt2 dt v
(14-8b)

The velocity and acceleration of a SHO also vary sinusoidally. In Fig. 14-8 we plot 
the displacement, velocity, and acceleration of a SHO as a function of time for the 
case when <f> = 0. As can be seen, the speed reaches its maximum

= coA — A  m (14-9a)

when the oscillating object is passing through its equilibrium point, x = 0. And 
the speed is zero at points of maximum displacement, x = ± A. This is in accord 
with our discussion of Fig. 14-2. Similarly, the acceleration has its maximum value

= co2 A  = — A  m
which occurs where x = ± A:

(14-9b)

and a is zero at x = 0. as we expect, since



For the general case when <f> #  0, we can relate the constants A  and <f) to the 
initial values of x, v, and a by setting t = 0 in Eqs. 14-4,14-8, and 14-9:

x0 = x(0) = Acoscf)

v0 =  v(0) =  ~o)A sin cf) =  - v maxsin(f)

a0 = a(0) = —a)2 Acoscf) = —amaxcos(f).

ESTIMATE"! A vibrating floor. A large motor in a factory 
causes the floor to vibrate at a frequency of 10 Hz. The amplitude of the floor’s 
motion near the motor is about 3.0 mm. Estimate the maximum acceleration of the 
floor near the motor.

APPROACH Assuming the motion of the floor is roughly SHM we can make an 
estimate for the maximum acceleration using Eq. 14-9b.
SOLUTION Given co = 2irf = (27r)(l0 s_1) = 62.8 rad/s, then Eq. 14-9b gives

«max = <*>2A  = (62.8 rad/s)2(0.0030m) = 12 m /s2.

NOTE The maximum acceleration is a little over g, so when the floor accelerates P H Y S I C S  A P P L I E D
down, objects sitting on the floor will actually lose contact momentarily, which Unwanted floor vibrations 
will cause noise and serious wear.

EXAMPLE 14-3

EXAMPLE 14-4 Loudspeaker. The cone of a loudspeaker (Fig. 14-9) oscillates 
in SHM at a frequency of 262 Hz (“middle C”). The amplitude at the center of 
the cone is A  = 1.5 X 10_4m, and at t = 0, x  = A. (a) What equation 
describes the motion of the center of the cone? (b) What are the velocity and 
acceleration as a function of time? (c) What is the position of the cone at 
t = 1.00 ms (= 1.00 X 10-3 s)?

APPROACH The motion begins (t = 0) with the cone at its maximum displacement 
(jc = A  at t = 0). So we use the cosine function, x  = A  cos a)t, with <j> = 0. 
SOLUTION (a) The amplitude A  = 1.5 X 10“4m and

(o = 2irf = (6.28 rad)(262 s-1) = 1650 rad/s.

The motion is described as

x = A  coscot = (1.5 X 10_4m) cos(1650£),

where t is in seconds.
(b) The maximum velocity, from Eq. 14-9a, is

Umax = wA = (1650rad/s)(l.5 X 10_4m) = 0.25 m/s,
so

v = -(0.25 m/s) sin(1650£).

From Eq. 14-9b the maximum acceleration is amax = (o2A  = 
(1650 rad/s)2(l.5 X 10_4m) = 410 m /s2, which is more than 40 g’s. Then

a = -(410 m /s2) cos(1650£).

(c) At t = 1.00 X 10“3 s,

x = A  coscot = (1.5 X 10“4 m) cos [(1650 rad/s )(l.00 X 10“3s)]

= (1.5 X 10_4m) cos(1.65 rad) = —1.2 X 10_5m.

NOTE Be sure your calculator is set in RAD mode, not DEG mode, for these

FIGURE 14-9 Example 14-4. 
A loudspeaker cone.

A  CAUT I ON
Always be sure your calculator is in



k  /19.6 N/m
' = 8.08 s

EXAMPLE 14-5 Spring calculations. A spring stretches 0.150 m when a
0.300-kg mass is gently attached to it as in Fig. 14-3b. The spring is then set up 
horizontally with the 0.300-kg mass resting on a frictionless table as in Fig. 14-2. 
The mass is pushed so that the spring is compressed 0.100 m from the equilibrium 
point, and released from rest. Determine: (a) the spring stiffness constant k 
and angular frequency w; (b) the amplitude of the horizontal oscillation A;
(c) the magnitude of the maximum velocity vmax; (d) the magnitude of the 
maximum acceleration amax of the mass; (e) the period T  and frequency / ;  
( /)  the displacement x as a function of time; and (g) the velocity at t = 0.150 s.
APPROACH When the 0.300-kg mass hangs at rest from the spring as in Fig. 14-3b, 
we apply Newton’s second law for the vertical forces: 2 F  = 0 = mg — kxQ, so 
k = m g/x0. For the horizontal oscillations, the amplitude is given, and the other 
quantities can be found from Eqs. 14-4,14-5,14-7, and 14-9. We choose x positive 
to the right.
SOLUTION (a) The spring stretches 0.150 m due to the 0.300-kg load, so

, F mg (0.300 kg)(9.80 m/s2) ..........,
k  = *  = ^  = -------- 0150m--------  = 19'6N /m -

From Eq. 14-5,

^  m V 0.300 kg
(b) The spring is now horizontal (on a table). It is compressed 0.100 m from 
equilibrium and is given no initial speed, so A  = 0.100 m.
(c) From Eq. 14-9a, the maximum velocity has magnitude

vmax = = (8.08 s_1)(0.100m) = 0.808 m/s.
(d) Since F = ma, the maximum acceleration occurs where the force is 
greatest—that is, when x = ± A  = + 0.100 m. Thus its magnitude is

F kA  (19.6 N/m) (0.100 m)
amax = — = ----  = --------  ̂ ,----------  = 6.53 m/s .max m m 0.300 kg

[This result could also have been obtained directly from Eq. 14-9b, but it is often 
useful to go back to basics as we did here.]
(e) Equations 14-7b and 14-2 give

T = 2ir = 2 tt = 0.777s
V k V 19.6 N/m

/  = j  = 1.29 Hz.

(/) The motion begins at a point of maximum compression. If we take x positive 
to the right in Fig. 14-2, then at t = 0, x = - A  = -0.100 m. So we need a 
sinusoidal curve that has its maximum negative value at t = 0; this is just 
a negative cosine:

x = —A  cos (ot.
To write this in the form of Eq. 14-4 (no minus sign), recall that 
cos 6 = —cos(6 — 77). Then, putting in numbers, and recalling -cos 6 = 
cos(77 — 6) = cos(6 — 77), we have

x = -(0.100 m) cos 8.08^
= (0.100 m) cos(8.08£ -  77), 

where t is in seconds and x is in meters. Note that the phase angle (Eq. 14-4) is 
cf) = —77 or —180°.
(g) The velocity at any time t is dx/dt (see also part c):

v = dx = = (0.808 m/s) sin 8.08 .̂
dt

A 't f'A



EXAMPLE 14-6 Spring is started with a push. Suppose the spring of
Example 14-5 is compressed 0.100 m from equilibrium (x0 = -0.100 m) but is given
a shove to create a velocity in the +x direction of v0 = 0.400 m/s. Determine (a) the
phase angle <£, (b) the amplitude A, and (c) the displacement x as a function of time, x(t).
APPROACH We use Eq. 14-8a, at t = 0, to write v0 = -coA sin <£, and Eq. 14-4
to write xQ = A  cos <f>. Combining these, we can obtain <p. We obtain A  by using
Eq. 14-4 again at t = 0. From Example 14-5, co = 8.08 s_1.
SOLUTION (a) We combine Eqs. 14-8a and 14-4 at t = 0 and solve for the tangent:

sin (f> (v0/-coA) Vq 0.400 m/s
tan <f> = ----- - = . = ------- = -  t--------- 7T------------- - = 0.495.

cos <f> (xJA ) (OXo (8.08 s ) (  —0.100 m)
A calculator gives the angle as 26.3°, but we note from this equation that both the
sine and cosine are negative, so our angle is in the third quadrant. Hence

<fy = 26.3° + 180° = 206.3° = 3.60 rad.
(b) Again using Eq. 14-4 at t = 0, as given in the Approach above,

x0 (-0.100 m)
A  =

(c) x = Acos(cot

1N = 0.112 m. 
cos cp cos (3.60 rad)
+ <j>) = (0.112 m) cos(8.08£ + 3.60).

14—3 Energy in the Simple 
Harmonic Oscillator

When forces are not constant, as is the case here with simple harmonic motion, it is 
often convenient and useful to use the energy approach, as we saw in Chapters 7 and 8.

For a simple harmonic oscillator, such as a mass m oscillating on the end of a 
massless spring, the restoring force is given by 

F = -k x .
The potential energy function, as we saw in Chapter 8, is given by

U = | f  dx = \k x 7

where we set the constant of integration equal to zero so (7 = 0 at x = 0 (the 
equilibrium position).

The total mechanical energy is the sum of the kinetic and potential energies,
E = \m v2 + \ k x 2,

where v is the velocity of the mass m when it is a distance x from the equilibrium 
position. SHM can occur only if there is no friction, so the total mechanical energy E  
remains constant. As the mass oscillates back and forth, the energy continuously changes 
from potential energy to kinetic energy, and back again (Fig. 14-10). At the extreme 
points, x = A  and x = —A, all the energy is stored in the spring as potential energy 
(and is the same whether the spring is compressed or stretched to the full amplitude). At 
these extreme points, the mass stops for an instant as it changes direction, so v = 0 and: 

E = \m (  0)2 + \k j¥  = \kJ&. (14-10a)
Thus, the total mechanical energy o f a simple harmonic oscillator is proportional to the 
square o f the amplitude. At the equilibrium point, x = 0, all the energy is kinetic:

E = \m v2 + \k (  0)2 _ \m v  Lx: (14-10b)
where vmax is the maximum velocity during the motion. At intermediate points the 
energy is part kinetic and part potential, and because energy is conserved

E = \m v2 + \ k x 2. (14-10c)
We can confirm Eqs. 14-10a and b explicitly by inserting Eqs. 14-4 and 14-8a into 
this last relation:

E = lmco2j¥  sin2(cot + (f>) + IkA? cos2(cot + 0).
Substituting with co2 = k/m , or kJ& = mo2AL2 = mv 
trigonometric identity sin2 (cot + (f>) + cos2 (cot + $>) = 1

and recalling the important 
we obtain Eqs. 14-10a and b:

E  = \ k A 2

I I I
(a) x = -A  x = 0 x = A  

(v = 0)

E~- 2
max
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E  = \ k A 2

(c) x = -A  x = 0 x = A 
(v  = 0)

m

(d) x = -A  x = 0 | x = A 
x

U K

L
U K

A
m

E = 7;mv2 + 7jkx2
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FIGURE 14-10 Energy changes 
from potential energy to kinetic 
energy and back again as the spring 
oscillates. Energy bar graphs (on the 
right) are described in Section 8 -4 .



FIGURE 14-11 Graph of 
potential energy, U  =  \k x 2.
K  +  U  =  E  =  constant for any 
point a; where - A  <  x <  A . Values 
of K  and U  are indicated for an 
arbitrary position x.

We can now obtain an equation for the velocity v as a function of x by solving 
for v in Eq. 14-10c:

= + — (a2m v *2)

or, since t>max = A \ /k /m ,

v = ±v„ 1 ----- o-

(14-lla)

(14-lib )

Again we see that v is a maximum at x = 0, and is zero at x = + A.
The potential energy, U = \k x 2, is plotted in Fig. 14-11 (see also Section 8-9). 

The upper horizontal line represents a particular value of the total energy E = \kJ&. 
The distance between the E  line and the U curve represents the kinetic energy, K, 
and the motion is restricted to x values between - A  and +A. These results are, of 
course, consistent with our full solution of the previous Section.

Energy conservation is a convenient way to obtain v, for example, if x is given 
(or vice versa), without having to deal with time *.

EXAMPLE 14-7 Energy calculations. For the simple harmonic oscillation of 
Example 14-5, determine (a) the total energy, (b) the kinetic and potential 
energies as a function of time, (c) the velocity when the mass is 0.050 m from 
equilibrium, (d) the kinetic and potential energies at half amplitude (x = + A/2). 
APPROACH We use conservation of energy for a spring-mass system, Eqs. 14-10 
and 14-11.
SOLUTION (a) From Example 14-5, k = 19.6 N/m and A  = 0.100 m, so the 
total energy E  from Eq. 14-10a is

E = \ k £  = \ (19.6N/m)(0.100m)2 = 9.80 X 10“2J.
(b) We have, from parts ( /)  and (g) of Example 14-5, x = -(0.100 m) cos 8.08* 
and v = (0.808 m/s) sin 8.08 ,̂ so

U = \k x 2 = \ (19.6N/m)(0.100m)2cos28.08* = (9.80 X 10“2j)cos28.08*
K  = \m v2 = \  (0.300 kg)(0.808 m /s)2 sin2 8.08* = (9.80 X 10“2 j) sin2 8.08*.

(c) We use Eq. 14-llb  and find
v = ^maA/l “  x2/A l = (0.808 m /s ) \ / l  -  (§)2 = 0.70 m/s.

(d) At x = A /2  = 0.050 m, we have
U = \k x 2 = \ (19.6N/m)(0.050m)2 = 2.5 X 10“2J 
K  = E -  U = 7.3 X 10“2J.

CONCEPTUAL EXAMPLE 14-8 I Doubling the amplitude. Suppose the spring 
in Fig. 14-10 is stretched twice as far (to x = 2A). What happens to (a) the energy 
of the system, (b) the maximum velocity of the oscillating mass, (c) the maximum 
acceleration of the mass?
RESPONSE (a) From Eq. 14-10a, the total energy is proportional to the square of 
the amplitude A, so stretching it twice as far quadruples the energy (22 = 4). You 
may protest, “I did work stretching the spring from x = 0 to x = A. Don’t I do 
the same work stretching it from A  to 2^4?” No. The force you exert is proportional 
to the displacement x, so for the second displacement, from x = A  to 2A, you do 
more work than for the first displacement (x = 0 to A). (b) From Eq. 14-10b, we 
can see that when the energy is quadrupled, the maximum velocity must be 
doubled. [vmax oc oc A.] (c) Since the force is twice as great when we stretch 
the spring twice as far, the acceleration is also twice as great: a oc F  oc x.

EXERCISE G Suppose the spring in Fig. 14-10 is compressed to x =  —A , but is given a 
push to the right so that the initial speed of the mass m  is Vn. What effect does this push have



14—4 Simple Harmonic Motion Related 
to Uniform Circular Motion

Simple harmonic motion has a simple relationship to a particle rotating in a circle 
with uniform speed. Consider a mass m rotating in a circle of radius A  with speed 

on top of a table as shown in Fig. 14-12. As viewed from above, the motion is a 
circle. But a person who looks at the motion from the edge of the table sees an 
oscillatory motion back and forth, and this corresponds precisely to SHM as 
we shall now see. What the person sees, and what we are interested in, is the 
projection of the circular motion onto the x axis, Fig. 14-12. To see that this motion 
is analogous to SHM, let us calculate the x component of the velocity vM which 
is labeled v in Fig. 14-12. The two right triangles indicated in Fig. 14-12 are 
similar, so

v
Vm

V ^ 2 -

or

V =  V u y j l  -  - 2-

This is exactly the equation for the speed of a mass oscillating with SHM, 
Eq. 14-llb , where vM = vmax. Furthermore, we can see from Fig. 14-12 that if 
the angular displacement at t = 0 is <f>, then after a time t the particle will have 
rotated through an angle 6 = cot, and so

x = Acos(6 + </>)= Acos(cot + (f>).

But what is co here? The linear velocity vM of our particle undergoing rotational 
motion is related to co by = where A  is the radius of the circle (see Eq. 10-4, 
v = Rco). To make one revolution requires a time T, so we also have i>M = 2itA /T  
where I ttA  is the circle’s circumference. Hence

(b)

FIGURE 1 4 -1 2  Analysis of simple 
harmonic motion as a side view (b) of 
circular motion (a).

co = Vm
A

I ttA /T
= 2it/T  = 2iTf

where T  is the time required for one rotation and /  is the frequency. This 
corresponds precisely to the back-and-forth motion of a simple harmonic oscillator. 
Thus, the projection on the x axis of a particle rotating in a circle has the same 
motion as a mass undergoing SHM. Indeed, we can say that the projection of 
circular motion onto a straight line is simple harmonic motion.

The projection of uniform circular motion onto the y axis is also simple 
harmonic. Thus uniform circular motion can be thought of as two simple harmonic 
motions operating at right angles.

FIGURE 1 4 -1 3  Strobe-light photo 
of an oscillating pendulum  
photographed at equal time intervals.

14—5 The Simple Pendulum
A simple pendulum consists of a small object (the pendulum bob) suspended from 
the end of a lightweight cord, Fig. 14-13. We assume that the cord does not stretch 
and that its mass can be ignored relative to that of the bob. The motion of a simple 
pendulum moving back and forth with negligible friction resembles simple 
harmonic motion: the pendulum oscillates along the arc of a circle with equal 
amplitude on either side of its equilibrium point and as it passes through the 
equilibrium point (where it would hang vertically) it has its maximum speed. But is 
it reallv undergoing SHM? That is. is the restoring force proportional to its
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FIGURE 14-14 Simple pendulum.

FIGURE 14-15 The swinging 
m otion of this lamp, hanging by a 
very long cord from the ceiling of 
the cathedral at Pisa, is said to have 
been observed by Galileo and to 
have inspired him to the conclusion 
that the period of a pendulum does 
not depend on amplitude.

@ P H Y S I C S  A P P L I E D
Pendulum clock

The displacement of the pendulum along the arc is given by x = HO, where 6 
is the angle (in radians) that the cord makes with the vertical and £ is the length of 
the cord (Fig. 14-14). If the restoring force is proportional to x  or to 0, the motion 
will be simple harmonic. The restoring force is the net force on the bob, equal to 
the component of the weight, mg, tangent to the arc:

F = -m g  sin 0,
where g is the acceleration of gravity. The minus sign here, as in Eq. 14-1, means that 
the force is in the direction opposite to the angular displacement 0. Since F is 
proportional to the sine of 0 and not to 0 itself, the motion is not SHM. However, if 0 
is small, then sin 0 is very nearly equal to 0 when the latter is specified in radians. This 
can be seen by looking at the series expansion1 of sin0 (or by looking at the 
trigonometry Table in Appendix A), or simply by noting in Fig. 14-14 that the arc 
length x(= ld )  is nearly the same length as the chord (=£sin 0) indicated by the 
straight dashed line, if 6 is small. For angles less than 15°, the difference between 0 (in 
radians) and sin 0 is less than 1%. Thus, to a very good approximation for small angles, 

F = —mg sin 0 ~ —mgd.
Substituting x = W or 0 = x/£, we have 

j-i m8

Thus, for small displacements, the motion is essentially simple harmonic, since this 
equation fits Hooke’s law, F = —kx. The effective force constant is k = mg/£. 
Thus we can write

0 = 0maxcos (at + 0) 
where 0max is the maximum angular displacement and a  = l ir f  = 2tt/T. To obtain a  
we use Eq. 14-5, where for k  we substitute m g /t  that is,* a  = V k /m  = 
V (m g/£)/m , or

8

Then the frequency /  is

and the period T  is
1

r  = 7 = 2tt a I *

[6 small] (14-12a)

[d small] (14-12b)

[6 small] (14-12c)

The mass m of the pendulum bob does not appear in these formulas for T  and / .  
Thus we have the surprising result that the period and frequency of a simple 
pendulum do not depend on the mass of the pendulum bob. You may have noticed 
this if you pushed a small child and then a large one on the same swing.

We also see from Eq. 14-12c that the period of a pendulum does not depend 
on the amplitude (like any SHM, Section 14-2), as long as the amplitude 6 is 
small. Galileo is said to have first noted this fact while watching a swinging lamp in 
the cathedral at Pisa (Fig. 14-15). This discovery led to the invention of the 
pendulum clock, the first really precise timepiece, which became the standard 
for centuries.

Because a pendulum does not undergo precisely SHM, the period does depend 
slightly on the amplitude, the more so for large amplitudes. The accuracy of a 
pendulum clock would be affected, after many swings, by the decrease in 
amplitude due to friction. But the mainspring in a pendulum clock (or the falling 
weight in a grandfather clock) supplies energy to compensate for the friction and 
to maintain the amplitude constant, so that the timing remains precise.



EXERCISE H If a simple pendulum is taken from sea level to the top of a high mountain 
and started at the same angle of 5°, it would oscillate at the top of the mountain
(a) slightly slower, (b) slightly faster, (c) at exactly the same frequency, (d ) not at all— it 
would stop, (e) none of these.

EXERCISE I Return to the Chapter-Opening Question, p. 369, and answer it again now. 
Try to explain why you may have answered differently the first time.

Measuring g. A geologist uses a simple pendulum that has a 
length of 37.10 cm and a frequency of 0.8190 Hz at a particular location on the 
Earth. What is the acceleration of gravity at this location?
APPROACH We can use the length £ and frequency /  of the pendulum in Eq. 14-12b, 
which contains our unknown, g.
SOLUTION We solve Eq. 14-12b for g and obtain

g = (2itf)H  = (6.283 x 0.8190 s-1)2(0.3710m) = 9.824 m/s2.

EXERCISE J (a) Estimate the length of a simple pendulum that makes one swing back and 
forth per second, (b) What would be the period of a 1.0-m-long pendulum?

EXAMPLE 14-9

14—6 The Physical Pendulum and 
the Torsion Pendulum

Physical Pendulum
The term physical pendulum refers to any real extended object which oscillates back 
and forth, in contrast to the rather idealized simple pendulum where all the mass is 
assumed concentrated in the tiny pendulum bob. An example of a physical pendulum 
is a baseball bat suspended from the point O, as shown in Fig. 14-16. The force of 
gravity acts at the center of gravity (c g )  of the object located a distance h  from the 
pivot point O. The physical pendulum is best analyzed using the equations of 
rotational motion. The torque on a physical pendulum, calculated about point O, is 

r  = —m g h  sin 6.
Newton’s second law for rotational motion, Eq. 10-14, states that

y , . d2e2jT — la  — 1 , 0 ’ 
dt2

where/is the moment of inertia of the object about the pivot point and a = d2d/dt2 is 
the angular acceleration. Thus we have 

d2d 
dt2

or
d20 m g h  .

~df + T
where I  is calculated about an axis through point O. For small angular amplitude, 
sin 0 ~ 0, so we have

d2d ( m g h  \
0 = 0. [small angular displacement] (14-13)

I —y  = —mgh sin0

- H--------sin0 = 0,

dt2 \  I
This is just the equation for SHM, Eq. 14-3, except that 0 replaces x and mgh/1 
replaces k/m. Thus, for small angular displacements, a physical pendulum undergoes 
SHM, given by

0 = 0maxCOS (at + 0),
where 0max is the maximum angular displacement and a = 2ir/T. The period, T, 
is (see Eq. 14-7b, replacing m /k  with I/mgh):

„  „ n r  ............................................................

</_!_(= h sin 0)

FIGURE 14-16 A  physical 
pendulum suspended from point O.



FIGURE 14-17 Example 14-10.

EXAMPLE 14-10 Moment of inertia measurement. An easy way to measure 
the moment of inertia of an object about any axis is to measure the period of 
oscillation about that axis, (a) Suppose a nonuniform 1.0-kg stick can be balanced at 
a point 42 cm from one end. If it is pivoted about that end (Fig. 14-17), it oscillates 
with a period of 1.6 s. What is its moment of inertia about this end? (b) What is its 
moment of inertia about an axis perpendicular to the stick through its center of mass? 
APPROACH We put the given values into Eq. 14-14 and solve for I. For (b) we use 
the parallel-axis theorem (Section 10-7).
SOLUTION (a) Given T = 1.6 s, and h = 0.42 m, Eq. 14-14 gives 

I  = mghT2/4 tt2 = 0.27 kg-m2.
(b) We use the parallel-axis theorem, Eq. 10-17. The cm  is where the stick 
balanced, 42 cm from the end, so

/CM = I ~ mh2 = 0.27 kg -m2 -  (1.0 kg) (0.42 m)2 = 0.09 kg-m2.
NOTE Since an object does not oscillate about its cm , we cannot measure ICM directly, 
but the parallel-axis theorem provides a convenient method to determine ICM.

Wire

+ 0„

El— fyiUt
FIGURE 14-18 A  torsion 
pendulum. The disc oscillates in

FIGURE 14-19 Damped harmonic 
motion. The solid red curve represents 
a cosine times a decreasing exponential 
(the dashed curves).

Torsion Pendulum
Another type of oscillatory motion is a torsion pendulum, in which a disc (Fig. 14-18) 
or a bar (as in Cavendish’s apparatus, Fig. 6-3) is suspended from a wire. The 
twisting (torsion) of the wire serves as the elastic force. The motion here will be 
SHM since the restoring torque is very closely proportional to the negative of the 
angular displacement,

r  = -K d ,
where K  is a constant that depends on the wire stiffness. Then

(o = V k / i .
There is no small angle restriction here, as there is for the physical pendulum (where 
gravity acts), as long as the wire responds linearly in accordance with Hooke’s law.

14—7 Damped Harmonic Motion
The amplitude of any real oscillating spring or swinging pendulum slowly decreases 
in time until the oscillations stop altogether. Figure 14-19 shows a typical graph of 
the displacement as a function of time. This is called damped harmonic motion. The 
damping* is generally due to the resistance of air and to internal friction within 
the oscillating system. The energy that is dissipated to thermal energy is reflected in 
a decreased amplitude of oscillation.

Since natural oscillating systems are damped in general, why do we even talk 
about (undamped) simple harmonic motion? The answer is that SHM is much 
easier to deal with mathematically. And if the damping is not large, the oscillations 
can be thought of as simple harmonic motion on which the damping is superposed, 
as represented by the dashed curves in Fig. 14-19. Although damping does alter 
the frequency of vibration, the effect is usually small if the damping is small. Let us 
look at this in more detail.

The damping force depends on the speed of the oscillating object, and opposes 
the motion. In some simple cases the damping force can be approximated as being 
directly proportional to the speed:

-^damping

where b is a constant.* For a mass oscillating on the end of a spring, the restoring 
force of the spring is F = —kx; so Newton’s second law (ma = DF) becomes 

ma = —kx — bv.
We bring all terms to the left side of the equation and substitute v = dx/dt and



a = d2x/d t2 to obtain 
d2x

m
dt2

dx
b dF

kx =  0, (14-15)

which is the equation of motion. To solve this equation, we guess at a solution and 
then check to see if it works. If the damping constant b is small, x as a function 
of t is as plotted in Fig. 14-19, which looks like a cosine function times a factor 
(represented by the dashed lines) that decreases in time. A simple function that 
does this is the exponential, e~yt, and the solution that satisfies Eq. 14-15 is

x = Ae~yt cos (o't, (14-16)
where A, 7, and co' are assumed to be constants, and x = A  at t = 0. We have 
called the angular frequency co' (and not co) because it is not the same as the co for 
SHM without damping (co = V k/m ).

If we substitute Eq. 14-16 into Eq. 14-15 (we do this in the optional subsection 
below), we find that Eq. 14-16 is indeed a solution if 7 and co' have the values

b (14-17)y = 2m

(14-18)k b2 
m 4m2

Thus x as a function of time t for a (lightly) damped harmonic oscillator is
x = Ae(-b/2m*cosco’t. (14-19)

Of course a phase constant, 0, can be added to the argument of the cosine in 
Eq. 14-19. As it stands with <f> = 0, it is clear that the constant A  in Eq. 14-19 is 
simply the initial displacement, x = A  at t = 0. The frequency /  is

(o' = 1 k b2 
2tt 2tt V m Am2

(14-20)

The frequency is lower, and the period longer, than for undamped SHM. (In 
many practical cases of light damping, however, co' differs only slightly from 
co = V k / m . ) This makes sense since we expect damping to slow down the motion. 
Equation 14-20 reduces to Eq. 14-7a, as it should, when there is no damping 
(b = 0). The constant 7 = b/2m  is a measure of how quickly the oscillations 
decrease toward zero (Fig. 14-19). The time tL = 2m/b  is the time taken for the 
oscillations to drop to 1/e of the original amplitude; tL is called the “mean lifetime” of 
the oscillations. Note that the larger b is, the more quickly the oscillations die away.

The solution, Eq. 14-19, is not valid if b is so large that
b2 > Amk

since then co' (Eq. 14-18) would become imaginary. In this case the system does not 
oscillate at all but returns directly to its equilibrium position, as we now discuss.

Three common cases of heavily damped systems are shown in Fig. 14-20. 
Curve C represents the situation when the damping is so large (b2 »  Amk) that it 
takes a long time to reach equilibrium; the system is overdamped. Curve A 
represents an underdamped situation in which the system makes several swings 
before coming to rest (b2 < Amk) and corresponds to a more heavily damped 
version of Eq. 14-19. Curve B represents critical damping: b2 = Amk; in this case 
equilibrium is reached in the shortest time. These terms all derive from the use of 
practical damped systems such as door-closing mechanisms and shock absorbers in 
a car (Fig. 14-21), which are usually designed to give critical damping. But as they 
wear out, underdamping occurs: a door slams and a car bounces up and down 
several times whenever it hits a bump.

In many systems, the oscillatory motion is what counts, as in clocks and 
watches, and damping needs to be minimized. In other systems, oscillations are the 
problem, such as a car’s springs, so a proper amount of damping (i.e., critical)

FIGURE 14-20 Underdamped (A ), 
critically damped (B), and 
overdamped (C) motion.

FIGURE 14-21 Automobile spring 
and shock absorber provide damping 
so that a car won’t bounce up and 
down endlessly.

Viscous
fluid

Attached to



FIGURE 14-22 Example 14-11.

EXAMPLE 14-11 Simple pendulum with damping. A simple pendulum has 
a length of 1.0 m (Fig. 14-22). It is set swinging with small-amplitude oscillations. 
After 5.0 minutes, the amplitude is only 50% of what it was initially, (a) What is 
the value of J for the motion? (b) By what factor does the frequency, / ' ,  differ 
from / ,  the undamped frequency?
APPROACH We assume the damping force is proportional to angular speed, dd/dt. 
The equation of motion for damped harmonic motion is

k b2 
m 4m2’

for motion of a mass on the end of a spring. For the simple pendulum without 
damping, we saw in Section 14-5 that 

F = -mgO
for small 0. Since F = ma, where a can be written in terms of the angular 
acceleration a = d20/dt2 as a = £a = £d20/dt2, then F = m£d20/dt2, and

„ d2d

x = Ae yt cosw't, where 7 = - — and 2m

dt2
+ = 0.

Introducing a damping term, b(dd/dt), we have
d2d
dt2

, dd b —  + 
dt 0,

= 2« and

which is the same as Eq. 14-15 with 0 replacing x, and £ and g replacing m and k. 
SOLUTION (a) We compare Eq. 14-15 with our equation just above and see that 
our equation x = Ae~yt cos w't becomes an equation for 0 with

TTY.
I  4£2'

At t = 0, we rewrite Eq. 14-16 with 0 replacing x as
0O = Ae~y '° cosg/-0 = A.

Then at t = 5.0 min = 300 s, the amplitude given by Eq. 14-16 has fallen to 
0.50 A, so

0.50A = Ae-y(300s).
We solve this for 7 and obtain 7 = In 2.0/(300 s) = 2.3 X 10-3s-1.
(b) We have £ = 1.0m, so b = 27£ = 2(2.3 X 10“3s_1)(1.0m) = 4.6 X 10“3m/s.
Thus (b2/4£2) is very much less than g/£ (= 9.8 s-2), and the angular frequency of 
the motion remains almost the same as that of the undamped motion. Specifically 
(see Eq. 14-20),

__ / „ X 11 _
1 fg

r  = -  17 2wV I g W 2tt \ £
i _ i  L ( ! L  

2 g U f2

where we used the binomial expansion. Then, with / =  (1/2 ir)Vg/f (Eq.l4-12b),

f  -  r
f IK S1 = 2-7 x i ° '7

So f  differs from /  by less than one part in a million.

Showing x = Ae r̂ cos <o't is a Solution
We start with Eq. 14-16, to see if it is a solution to Eq. 14-15. First we take the 
first and second derivatives 

dx
—  = -7Ae~yt cos (o't -  co'Ae~yt sin (o’t dt

d2x
—7  = J2Ae~yt cos (o't + 7A(o'e~yt sin (o't + o)"YAe~yt sin (o't -  (o,2Ae~yt cos w't. 
dt2



obtain

Ae yt[(my2 — ma)'2 — by + A:) cos a)'t + (2o/7m -  W )  sina'f] = 0. (i)

The left side of this equation must equal zero for all times t, but this can only be so 
for certain values of 7 and To determine 7 and o)r, we choose two values of t that 
will make their evaluation easy. At t = 0, sin a)'t = 0, so the above relation reduces 
to A(mJ2 -  ma)’2 -  by + k) = 0, which means1- that

my2 — mo)'2 -  by + k = 0. (ii)

Then at t = 7t/2o/, cos w't = 0 so Eq. (i) can be valid only if

27m — b = 0. (iii)

From Eq. (iii) we have
b

7  =
2m

and from Eq. (ii)

+ , / *  *  m m V m 4m

Thus we see that Eq. 14-16 is a solution to the equation of motion for the damped 
harmonic oscillator as long as 7 and o)' have these specific values, as already given 
in Eqs. 14-17 and 14-18.

14—8 Forced Oscillations; Resonance
When an oscillating system is set into motion, it oscillates at its natural frequency 
(Eqs. 14-7a and 14-12b). However, a system may have an external force applied 
to it that has its own particular frequency and then we have a forced oscillation.

For example, we might pull the mass on the spring of Fig. 14-1 back and forth 
at a frequency / .  The mass then oscillates at the frequency /  of the external force, 
even if this frequency is different from the natural frequency of the spring, which 
we will now denote by f 0 where (see Eqs. 14-5 and 14-7a)

"o = 2tt/o = \ l  — '

In a forced oscillation the amplitude of oscillation, and hence the energy transferred 
to the oscillating system, is found to depend on the difference between /  and / 0 as 
well as on the amount of damping, reaching a maximum when the frequency of the 
external force equals the natural frequency of the system—that is, when 
/  = / 0. The amplitude is plotted in Fig. 14-23 as a function of the external 
frequency / .  Curve A represents light damping and curve B heavy damping. The 
amplitude can become large when the driving frequency /  is near the natural 
frequency, /  «  / 0, as long as the damping is not too large. When the damping is 
small, the increase in amplitude near /  = f 0 is very large (and often dramatic). 
This effect is known as resonance. The natural frequency f Q of a system is called its 
resonant frequency.

A simple illustration of resonance is pushing a child on a swing. A swing, like 
any pendulum, has a natural frequency of oscillation that depends on its length I. 
If you push on the swing at a random frequency, the swing bounces around and 
reaches no great amplitude. But if you push with a frequency equal to the natural 
frequency of the swing, the amplitude increases greatly. At resonance, relatively 
little effort is required to obtain a large amplitude.

/o
External frequency/

FIGURE 14-23 Resonance for 
lightly damped (A ) and heavily 
damped (B) systems. (See Fig. 14-26  
for a more detailed graph.)



FIGURE 14-24 This goblet breaks 
as it vibrates in resonance to a 
trumpet call.

FIGURE 14-25 (a) Large-amplitude 
oscillations of the Tacoma Narrows 
Bridge, due to gusty winds, led to its 
collapse (1940). (b) Collapse of a 
freeway in California, due to the 1989 
earthquake.

The great tenor Enrico Caruso was said to be able to shatter a crystal goblet 
by singing a note of just the right frequency at full voice. This is an example of 
resonance, for the sound waves emitted by the voice act as a forced oscillation on 
the glass. At resonance, the resulting oscillation of the goblet may be large enough 
in amplitude that the glass exceeds its elastic limit and breaks (Fig. 14-24).

Since material objects are, in general, elastic, resonance is an important 
phenomenon in a variety of situations. It is particularly important in structural 
engineering, although the effects are not always foreseen. For example, it has been 
reported that a railway bridge collapsed because a nick in one of the wheels of a 
crossing train set up a resonant oscillation in the bridge. Indeed, marching soldiers 
break step when crossing a bridge to avoid the possibility that their normal 
rhythmic march might match a resonant frequency of the bridge. The famous 
collapse of the Tacoma Narrows Bridge (Fig. 14-25a) in 1940 occurred as a result 
of strong gusting winds driving the span into large-amplitude oscillatory motion. 
The Oakland freeway collapse in the 1989 California earthquake (Fig. 14-25b) 
involved resonant oscillation of a section built on mudfill that readily transmitted 
that frequency.

We will meet important examples of resonance later. We will also see that 
vibrating objects often have not one, but many resonant frequencies.

*Equation_ of Motion and Us Solution
We now look at the equation of motion for a forced oscillation and its solution. 
Suppose the external force is sinusoidal and can be represented by

-̂ ext 0̂ COS cot,
where co = 2irf is the angular frequency applied externally to the oscillator. Then 
the equation of motion (with damping) is

ma = —kx — bv + F0 cos cot.

This can be written as

d2x dx m —z- + b —— h kx = F()cosa>t. 
dt2 dt 0

(14-21)

The external force, on the right of the equation, is the only term that does not 
involve x or one of its derivatives. Problem 68 asks you to show that

x = A 0sm(cot + (f> 0) 

is a solution to Eq. 14-21, by direct substitution, where

(14-22)

(b)

Ao —
m \J(o? -  (Oq)2 + b2o)2/m 2

and

<f> o = tan
2 2 _1 (Op ~ 0)Z

o)(b/m)

(14-23)

(14-24)

Actually, the general solution to Eq. 14-21 is Eq. 14-22 plus another term of the 
form of Eq. 14-19 for the natural damped motion of the oscillator; this second 
term approaches zero in time, so in many cases we need to be concerned only with 
Eq. 14-22.

The amplitude of forced harmonic motion, A 0, depends strongly on the 
difference between the applied and the natural frequency. A plot of A 0 (Eq. 14-23) 
as a function of the applied frequency, co, is shown in Fig. 14-26 (a more 
detailed version of Fig. 14-23) for three specific values of the damping constant b. 
Curve A (b = represents light damping, curve B (b = |/nw0) fairly heavy
damping, and curve C (b = V2mco0) overdamped motion. The amplitude can 
become large when the driving frequency is near the natural frequency, co ~ co0, 
as lone as the damning is not too larse. When the damping is small, the increase



The natural oscillating frequency / 0 ( = coq/ I tt) of a system is its resonant frequency? 
If b = 0, resonance occurs at co = co0 and the resonant peak (of A 0) becomes 
infinite; in such a case, energy is being continuously transferred into the system and 
none is dissipated. For real systems, b is never precisely zero, and the resonant peak 
is finite. The peak does not occur precisely at co = co0 (because of the term b2co2/m 2 
in the denominator of Eq. 14-23), although it is quite close to co0 unless the damping 
is very large. If the damping is large, there is little or no peak (curve C in Fig. 14-26).

* Q value
The height and narrowness of a resonant peak is often specified by its quality 
factor or Q value, defined as

Q  =  ~  (14-25)

In Fig. 14-26, curve A  has <2 = 6, curve B has Q = 2, and curve C has Q = 1 /V 2 . 
The smaller the damping constant b, the larger the Q value becomes, and the higher 
the resonance peak. The Q value is also a measure of the width of the peak. To see 
why, let and co2 be the frequencies where the square of the amplitude A 0 has half its 
maximum value (we use the square because the power transferred to the system is 
proportional to A q); then A co = co1 — co2, which is called the width of the resonance 
peak, is related to Q by

A co 1
----- = -  (14-26)
" o  Q

This relation is accurate only for weak damping. The larger the Q value, the 
narrower will be the resonance peak relative to its height. Thus a large Q value, 
representing a system of high quality, has a high, narrow resonance peak.

FIGURE 14-26 Amplitude of a 
forced harmonic oscillator as a 
function of o). Curves A, B, and C 
correspond to light, heavy, and 
overdamped systems, respectively 
(2  = maio/b = 6,2,0.71).

f Sometimes the resonant frequency is defined as the actual value of <o at which the amplitude has its 
maximum value, and this depends somewhat on the damping constant. Except for very heavy damping, 
this value is quite close to o)Q.

Summary
An oscillating object undergoes simple harmonic motion (SHM) 
if the restoring force is proportional to the displacement,

F = -k x .  (14-1)
The maximum displacement from equilibrium is called the 
amplitude.

The period, T, is the time required for one complete cycle 
(back and forth), and the frequency, / ,  is the number of cycles 
per second; they are related by

f  = ~  (14-2)

The period of oscillation for a mass m on the end of an 
ideal massless spring is given by

2 (14-7b)

SHM is sinusoidal, which means that the displacement as a 
function of time follows a sine or cosine curve. The general solu­
tion can be written

x = Acos(o)t + 4>) (14-4)
where A  is the amplitude, 4> is the phase angle, and

co = 2ttf  = -v /—  (14-5)
V m

The values o f A and eh denend on the initial conditions (x and v

During SHM, the total energy E  = \m v2 + \k x 2 is 
continually changing from potential to kinetic and back again.

A simple pendulum of length i  approximates SHM if 
its amplitude is small and friction can be ignored. For small 
amplitudes, its period is given by

(14-12c)

where g is the acceleration of gravity.
When friction is present (for all real springs and pendulums), 

the motion is said to be damped. The maximum displacement 
decreases in time, and the mechanical energy is eventually all 
transformed to thermal energy. If the friction is very large, so no 
oscillations occur, the system is said to be overdamped. If the 
friction is small enough that oscillations occur, the system is 
underdamped, and the displacement is given by

x = Ae yt cos (o't, (14-16)

where 7 and to' are constants. For a critically damped system, no 
oscillations occur and equilibrium is reached in the shortest time.

If an oscillating force is applied to a system capable of 
vibrating, the amplitude of vibration can be very large if the
f re rm e n rv  o f  th e  a rm lied  fo rc e  is  n e a r  th e  n a tn ra l ( o r resonsmt't



Questions
1. Give some examples of everyday vibrating objects. Which 

exhibit SHM, at least approximately?
2. Is the acceleration of a simple harmonic oscillator ever 

zero? If so, where?
3. Explain why the motion of a piston in an automobile engine 

is approximately simple harmonic.
4. Real springs have mass. Will the true period and frequency be 

larger or smaller than given by the equations for a mass 
oscillating on the end of an idealized massless spring? Explain.

5. How could you double the maximum speed of a simple 
harmonic oscillator (SHO)?

6. A 5.0-kg trout is attached to the hook of a vertical spring 
scale, and then is released. Describe the scale reading as a 
function of time.

7. If a pendulum clock is accurate at sea level, will it gain or 
lose time when taken to high altitude? Why?

8. A tire swing hanging from a branch reaches nearly to the 
ground (Fig. 14-27). How could you estimate the height of 
the branch using only a stopwatch?

FIGURE 14-27 Question 8.

Problems__________________
14-1 and 14-2 Simple Harmonic Motion
1. (I) If a particle undergoes SHM with amplitude 0.18 m, 

what is the total distance it travels in one period?

2. (I) An elastic cord is 65 cm long when a weight of 75 N 
hangs from it but is 85 cm long when a weight of 180 N 
hangs from it. What is the “spring” constant k  of this 
elastic cord?

3. (I) The springs of a 1500-kg car compress 5.0 mm when its 
68-kg driver gets into the driver’s seat. If the car goes over a 
hum n. w hat will be  the frecm encv o f  oscillations? Tpnore

9. For a simple harmonic oscillator, when (if ever) are the 
displacement and velocity vectors in the same direction? 
When are the displacement and acceleration vectors in the 
same direction?

10. A 100-g mass hangs from a long cord forming a pendulum. 
The mass is pulled a short distance to one side and released 
from rest. The time to swing over and back is carefully 
measured to be 2.0 s. If the 100-g mass is replaced by a 
200-g mass, which is then pulled over the same distance 
and released from rest, the time will be (a) 1.0 s, (b) 1.41 s,
(c) 2.0 s, (d) 2.82 s, (e) 4.0 s.

11. Two equal masses are attached to separate identical springs 
next to one another. One mass is pulled so its spring 
stretches 20 cm and the other is pulled so its spring stretches 
only 10 cm. The masses are released simultaneously. Which 
mass reaches the equilibrium point first?

12. Does a car bounce on its springs faster when it is empty or 
when it is fully loaded?

13. What is the approximate period of your walking step?
14. What happens to the period of a playground swing if you 

rise up from sitting to a standing position?
*15. A thin uniform rod of mass m  is suspended from one end 

and oscillates with a frequency / .  If a small sphere of mass 
2m is attached to the other end, does the frequency increase 
or decrease? Explain.

16. A tuning fork of natural frequency 264 Hz sits on a table at 
the front of a room. At the back of the room, two tuning 
forks, one of natural frequency 260 Hz and one of 420 Hz 
are initially silent, but when the tuning fork at the front of 
the room is set into vibration, the 260-Hz fork sponta­
neously begins to vibrate but the 420-Hz fork does not. 
Explain.

17. Why can you make water slosh back and forth in a pan only 
if you shake the pan at a certain frequency?

18. Give several everyday examples of resonance.
19. Is a rattle in a car ever a resonance phenomenon? Explain.
20. Over the years, buildings have been able to be built out of 

lighter and lighter materials. How has this affected the 
natural oscillation frequencies of buildings and the prob­
lems of resonance due to passing trucks, airplanes, or by 
wind and other natural sources of vibration?

4. (I) (a) What is the equation describing the motion of a mass 
on the end of a spring which is stretched 8.8 cm from equi­
librium and then released from rest, and whose period is 
0.66 s? (b) What will be its displacement after 1.8 s?

5. (II) Estimate the stiffness of the spring in a child’s pogo 
stick if the child has a mass of 35 kg and bounces once 
every 2.0 seconds.

6. (II) A fisherman’s scale stretches 3.6 cm when a 2.4-kg fish 
hangs from it. (a) What is the spring stiffness constant and
(b) what will be the amplitude and frequency of oscillation

if the fish is nulled down 5 cm m ore and released so  that it



7. (II) Tall buildings are designed to sway in the wind. In a 
100-km/h wind, for example, the top of the 110-story Sears 
Tower oscillates horizontally with an amplitude of 15 cm. 
The building oscillates at its natural frequency, which has a 
period of 7.0 s. Assuming SHM, find the maximum hori­
zontal velocity and acceleration experienced by a Sears 
employee as she sits working at her desk located on the top 
floor. Compare the maximum acceleration (as a percentage) 
with the acceleration due to gravity.

8. (II) Construct a Table indicating the position x of the mass 
in Fig. 14-2 at times t = Q ,\T ,\T ,\T ,T ,  and § T, where T 
is the period of oscillation. On a graph of x vs. t, plot these 
six points. Now connect these points with a smooth curve. 
Based on these simple considerations, does your curve 
resemble that of a cosine or sine wave?

9. (II) A small fly of mass 0.25 g is caught in a spider’s web. The 
web oscillates predominately with a frequency of 4.0 Hz.
(a) What is the value of the effective spring stiffness constant k 
for the web? (b) At what frequency would you expect the web 
to oscillate if an insect of mass 0.50 g were trapped?

10. (II) A mass m at the end of a spring oscillates with a 
frequency of 0.83 Hz. When an additional 680-g mass is 
added to m, the frequency is 0.60 Hz. What is the value 
of m l

11. (II) A uniform meter stick of mass M  is pivoted on a hinge 
at one end and held horizontal by a spring with spring 
constant k  attached at the other end (Fig. 14-28). 
If the stick oscillates up and down slightly,
what is its frequency? [Hint. Write a torque 
equation about the hinge.]

i:.

FIGURE 14-28
Problem 11.

12. (II) A balsa wood block of mass 55 g floats on a lake, 
bobbing up and down at a frequency of 3.0 Hz. (a) What is 
the value of the effective spring constant of the water?
(b) A partially filled water bottle of mass 0.25 kg and almost 
the same size and shape of the balsa block is tossed into the 
water. At what frequency would you expect the bottle to 
bob up and down? Assume SHM.

13. (II) Figure 14-29 shows two examples of SHM, labeled A 
and B. For each, what is (a) the amplitude, (b) the 
frequency, and (c) the period? (d) Write the equations for 
both A and B in the form of a sine or cosine.

*(m)

14. (II) Determine the phase constant 0  in Eq. 14-4 if, at 
t = 0, the oscillating mass is at (a) x = —A, (b) x = 0,
(c) x = A, (d) x = \A , (e) x = -  \A , ( f ) x  = A / V l .

15. (II) A vertical spring with spring stiffness constant 305 N/m 
oscillates with an amplitude of 28.0 cm when 0.260 kg hangs 
from it. The mass passes through the equilibrium point 
(y = 0) with positive velocity at t = 0. (a) What equation 
describes this motion as a function of time? (b) At what 
times will the spring be longest and shortest?

16. (II) The graph of displacement vs. time for a small 
mass m at the end of a spring is shown in Fig. 14-30. At 
t = 0, x = 0.43 cm. (a) If m = 9.5 g, find the spring 
constant, k. (b) Write the equation for displacement x as a 
function of time.

FIGURE 14-30 Problem 16.

17. (II) The position of a SHO as a function of time is given by 
x = 3.8 cos(5-7r£/4 + tt/6) where t is in seconds and x in 
meters. Find (a) the period and frequency, (b) the position 
and velocity at t = 0, and (c) the velocity and acceleration 
at t = 2.0 s.

18. (II) A tuning fork oscillates at a frequency of 441 Hz and 
the tip of each prong moves 1.5 mm to either side of center. 
Calculate (a) the maximum speed and (b) the maximum 
acceleration of the tip of a prong.

19. (II) An object of unknown mass m is hung from a vertical 
spring of unknown spring constant k, and the object is 
observed to be at rest when the spring has extended by 
14 cm. The object is then given a slight push and executes 
SHM. Determine the period T  of this oscillation.

20. (II) A 1.25-kg mass stretches a vertical spring 0.215 m. 
If the spring is stretched an additional 0.130 m and 
released, how long does it take to reach the (new) equilib­
rium position again?

21. (II) Consider two objects, A and B, both undergoing SHM, 
but with different frequencies, as described by the equations 
xA = (2.0m)sin(2.01) and xB = (5.0m) sin(3.01), where t 
is in seconds. After t = 0, find the next three times t 
at which both objects simultaneously pass through the 
origin.

22. (II) A 1.60-kg object oscillates from a vertically hanging 
light spring once every 0.55 s. (a) Write down the equation 
giving its position y (+ upward) as a function of time t, 
assuming it started by being compressed 16 cm from the 
equilibrium position (where y = 0), and released, (b) How 
long will it take to get to the equilibrium position for the 
first time? (c) What will be its maximum speed? (d) What
will he its maximum arrp.lp.ratinn and where will it first he



23. (II) A bungee jumper with mass 65.0 kg jumps from a high 
bridge. After reaching his lowest point, he oscillates up and 
down, hitting a low point eight more times in 43.0 s. He 
finally comes to rest 25.0 m below the level of the bridge. 
Estimate the spring stiffness constant and the unstretched 
length of the bungee cord assuming SHM.

24. (II) A block of mass ra is supported by two identical 
parallel vertical springs, each with spring 
stiffness constant k  (Fig. 14-31). What will be 
the frequency of vertical oscillation?

FIGURE 14-31
Problem 24.

25. (Ill) A mass m  is connected to two springs, with spring 
constants /q and k2, in two different ways as shown in 
Fig. 14-32a and b. Show that the period for the configura­
tion shown in part (a) is given by

r = + h) 
and for that in part (b) is given by

T = 277 J  m  •
V k\ + k2

Ignore friction.

m

U)

*1 *3 rTT
j m AMvV^SI

FIGURE 14-32
Problem 25. (h)

26. (Ill) A mass ra is at rest on the end of a spring of spring 
constant k .A t  t = 0 it is given an impulse /  by a hammer. 
Write the formula for the subsequent motion in terms 
of ra, k, J, and t.

14-3 Energy in SHM
27. (I) A 1.15-kg mass oscillates according to the equation 

x = 0.650 cos 7.40* where x  is in meters and t in seconds. 
Determine (a) the amplitude, (b) the frequency, (c) the total 
energy, and (d) the kinetic energy and potential energy 
when x  = 0.260 m.

28. (I) (a) At what displacement of a SHO is the energy half 
kinetic and half potential? (b) What fraction of the total 
energy of a SHO is kinetic and what fraction potential when 
the displacement is one third the amplitude?

29. (II) Draw a graph like Fig. 14-11 for a horizontal spring 
whose spring constant is 95 N/m  and which has a mass of 
55 g on the end of it. Assume the spring was started with an 
initial amplitude of 2.0 cm. Neglect the mass of the spring 
and any friction with the horizontal surface. Use your graph 
to  estim ate (a\  the notential enerov. (h\  the k inetic enerov.

30. (II) A 0.35-kg mass at the end of a spring oscillates 2.5 times 
per second with an amplitude of 0.15 m. Determine (a) the 
velocity when it passes the equilibrium point, (b) the velocity 
when it is 0.10 m from equilibrium, (c) the total energy of the 
system, and (d) the equation describing the motion of the 
mass, assuming that at * = 0, x  was a maximum.

31. (II) It takes a force of 95.0 N to compress the spring of a toy 
popgun 0.175 m to “load” a 0.160-kg ball. With what speed 
will the ball leave the gun if fired horizontally?

32. (II) A 0.0125-kg bullet strikes a 0.240-kg block attached 
to a fixed horizontal spring whose spring constant is 
2.25 X 103N/m  and sets it into oscillation with an ampli­
tude of 12.4 cm. What was the initial speed of the bullet if 
the two objects move together after impact?

33. (II) If one oscillation has 5.0 times the energy of a second 
one of equal frequency and mass, what is the ratio of their 
amplitudes?

34. (II) A mass of 240 g oscillates on a horizontal frictionless 
surface at a frequency of 3.0 Hz and with amplitude 
of 4.5 cm. (a) What is the effective spring constant 
for this motion? (b) How much energy is involved in 
this motion?

35. (II) A mass resting on a horizontal, frictionless surface is 
attached to one end of a spring; the other end is fixed to a 
wall. It takes 3.6 J of work to compress the spring by 0.13 m. 
If the spring is compressed, and the mass is released from 
rest, it experiences a maximum acceleration of 15 m /s2. Find 
the value of (a) the spring constant and (b) the mass.

36. (II) An object with mass 2.7 kg is executing simple harmonic 
motion, attached to a spring with spring constant 
k  = 280 N/m. When the object is 0.020 m from its equilib­
rium position, it is moving with a speed of 0.55 m/s.
(a) Calculate the amplitude of the motion, (b) Calculate the 
maximum speed attained by the object.

37. (II) Agent Arlene devised the following method of 
measuring the muzzle velocity of a rifle (Fig. 14-33). She 
fires a bullet into a 4.648-kg wooden block resting on a 
smooth surface, and attached to a spring of spring constant 
k  = 142.7 N/m. The bullet, whose mass is 7.870 g, remains 
embedded in the wooden block. She measures the 
maximum distance that the block compresses the spring to 
be 9.460 cm. What is the speed v of the bullet?

V

rtt
M

k

cm

Xf  ̂ fn

FIGURE 14-33 Problem 37.

38. (II) Obtain the displacement x  as a function of time 
for the simple harmonic oscillator using the conservation 
o f enerav F n s 14—10. \ H i n t  Tntearate F.n. 14—11a with



39. (II) At t = 0, a 785-g mass at rest on the end of a hori­
zontal spring (k  = 184 N/m ) is struck by a hammer which 
gives it an initial speed of 2.26 m/s. Determine (a) the 
period and frequency of the motion, (b) the amplitude,
(c) the maximum acceleration, (d) the position as a function 
of time, (e) the total energy, and ( /)  the kinetic energy when 
x  = 0.40A  where A  is the amplitude.

40. (II) A pinball machine uses a spring launcher that is 
compressed 6.0 cm to launch a ball up a 15° ramp. Assume 
that the pinball is a solid uniform sphere of radius 
r = 1.0 cm and mass m  = 25 g. If it is rolling without slip­

ping at a speed of 3.0 m/s when it leaves the launcher, what 
is the spring constant of the spring launcher?

14-5 Simple Pendulum
41. (I) A pendulum has a period of 1.35 s on Earth. What is its 

period on Mars, where the acceleration of gravity is about 
0.37 that on Earth?

42. (I) A pendulum makes 32 oscillations in exactly 50 s. What is 
its (a) period and (b) frequency?

43. (II) A simple pendulum is 0.30 m long. At t = 0 it is 
released from rest starting at an angle of 13°. Ignoring fric­
tion, what will be the angular position of the pendulum at
(a) t = 0.35 s, (b) t = 3.45 s, and (c) t = 6.00 s?

44. (II) What is the period of a simple pendulum 53 cm long
(a) on the Earth, and (b) when it is in a freely falling elevator?

45. (II) A simple pendulum oscillates with an amplitude of 
10.0°. What fraction of the time does it spend between +5.0° 
and -5.0°? Assume SHM.

46. (II) Your grandfather clock’s pendulum has a length of 
0.9930 m. If the clock loses 26 s per day, how should you 
adjust the length of the pendulum?

47. (II) Derive a formula for the maximum speed vmax of a 
simple pendulum bob in terms of g, the length £, and the 
maximum angle of swing 0max.

* 14-6 Physical Pendulum and Torsion Pendulum
*48. (II) A pendulum consists of a tiny bob of mass M  and a 

uniform cord of mass m  and length L (a) Determine a 
formula for the period using the small angle approximation.
(b) What would be the fractional error if you use the 
formula for a simple pendulum, Eq. 14-12c?

*49. (II) The balance wheel of a watch is a thin ring of radius 
0.95 cm and oscillates with a frequency of 3.10 Hz. If a 
torque of 1.1 X 10_5m-N causes the wheel to rotate 45°, 
calculate the mass of the balance wheel.

*50. (II) The human leg can be compared to a physical 
pendulum, with a “natural” swinging period at which 
walking is easiest. Consider the leg as two rods joined 
rigidly together at the knee; the axis for the leg is the hip 
joint. The length of each rod is about the same, 55 cm. The 
upper rod has a mass of 7.0 kg and the lower rod has a mass 
of 4.0 kg. (a) Calculate the natural swinging period of the 
system, (b) Check your answer by standing on a chair and 
measuring the time for one or more complete back-and- 
forth swings. The effect of a shorter leg is a shorter swinging 
period, enabling a faster “natural” stride.

*51. (II) (a) Determine the equation of motion (for 0 as a 
function of time) for a torsion pendulum, Fig. 14-18, 
and show that the motion is simple harmonic. (b) Show 
that the period T  is T = 2 ir V l/K .  [The balance wheel
of a mp.nhaninal watr.h is an p.Yamnlfi of a torsion nenrhihim

Pin V
k
\

*52. (II) A student wants to use a meter stick as a pendulum. 
She plans to drill a small hole through the meter stick 
and suspend it from a smooth pin 
attached to the wall (Fig. 14-34).
Where in the meter stick should 
she drill the hole to obtain the 
shortest possible period? How 
short an oscillation period can she j \ \  1.00 m
obtain with a meter stick in this 
way?

FIGURE 14-34
Problem 52.

*53. (II) A meter stick is hung at its center from a thin wire 
(Fig. 14-35a). It is twisted and oscillates with a period of
5.0 s. The meter stick is sawed off to a length of 70.0 cm. This 
piece is again balanced at its center and set in oscillation 
(Fig. 14-35b). With what period does it oscillate?

<a) (*)

FIGURE 14-35 Problem 53.

* 54. (II) An aluminum disk, 12.5 cm in diameter and 375 g in 
mass, is mounted on a vertical shaft with very low friction 
(Fig. 14-36). One end of a flat coil spring is attached to the 
disk, the other end to the base of the apparatus. The disk is 
set into rotational oscillation and the frequency is 0.331 Hz. 
What is the torsional spring constant K ( t  =  —K 6 ) l

2.00 cm

R -  20.0 cm

Pin

FIGURE 14-36 Problem 54.

*55. (II) A plywood disk of radius 20.0 cm and mass 2.20 kg 
has a small hole drilled through 
it, 2.00 cm from its edge 
(Fig. 14-37). The disk is hung 
from the wall by means of a 
metal pin through the hole, and 
is used as a pendulum. What is 
the period of this pendulum for 
small oscillations?

FIGURE 14-37

M = 220 k|>



14-7 Damping
56. (II) A 0.835-kg block oscillates on the end of a spring whose 

spring constant is k  = 41.0 N/m. The mass moves in a 
fluid which offers a resistive force F  = —bv, where 
b = 0.662 N* s/m. (a) What is the period of the motion?
(b) What is the fractional decrease in amplitude per cycle?
(c) Write the displacement as a function of time if at 
t = 0, x = 0, and at t = 1.00 s, x = 0.120 m.

57. (II) Estimate how the damping constant changes when a 
car’s shock absorbers get old and the car bounces three 
times after going over a speed bump.

58. (II) A physical pendulum consists of an 85-cm-long, 240-g-mass, 
uniform wooden rod hung from a nail near one end (Fig. 14-38). 
The motion is damped because of friction in
the pivot; the damping force is approximately t 
proportional to d6/dt. The rod is set in 
oscillation by displacing it 15° from its equi­
librium position and releasing it. After 8.0 s, 
the amplitude of the oscillation has been
reduced to 5.5°. If the angular displacement 
can be written as 6 = Ae~yt costo't, find
(a) 7, (b) the approximate period of the 
motion, and (c) how long it takes for the 
amplitude to be reduced to \  of its original ■ fyi

fctS cm

value. FIGURE 14-38
Problem 58.

59. (II) A damped harmonic oscillator loses 6.0% of its mechanical 
energy per cycle, (a) By what percentage does its frequency 
differ from the natural frequency f 0 = ( l/27r) Vfc/m?
(b) After how many periods will the amplitude have 
decreased to 1/e of its original value?

60. (II) A vertical spring of spring constant 115 N/m supports a 
mass of 75 g. The mass oscillates in a tube of liquid. If the 
mass is initially given an amplitude of 5.0 cm, the mass is 
observed to have an amplitude of 2.0 cm after 3.5 s. Esti­
mate the damping constant b. Neglect buoyant forces.

61. (Ill) (a) Show that the total mechanical energy, 
E  = \m v2 + \k x 2, as a function of time for a lightly 
damped harmonic oscillator is

E = IkJpe-W™^ = E0<T(6/m)*, 
where Eq is the total mechanical energy at t = 0. (Assume 
c1)' »  b/2m.) (b) Show that the fractional energy lost per 
period is

A E _ 2irb _ 2tt 
E mo)Q Q 

where <w0 = V/c/m and Q = mwo/6 is called the quality 
factor or Q value of the system. A larger Q value means the 
system can undergo oscillations for a longer time.

62. (Ill) A glider on an air track is connected by springs to 
either end of the track (Fig. 14-39). Both springs have the 
same spring constant, k, and the glider has mass M. 
{a) Determine the frequency of the oscillation, assuming no 
damping, if k = 125 N/m and M = 215 g. (b) It is 
observed that after 55 oscillations, the amplitude of the 
oscillation has dropped to one-half of its initial value. Esti­
mate the value of y, using Eq. 14-16. (c) How long does it 
take the amplitude to decrease to one-quarter of its initial 
value?

k ,_____ k

FIGURE 14-39 jW
Problem 62.

14-8 Forced Oscillations; Resonance
63. (II) (a) For a forced oscillation at resonance (&> = &>0), what 

is the value of the phase angle <j>0 in Eq. 14-22? (b) What, 
then, is the displacement at a time when the driving force 
Fext is a maximum, and at a time when Fext = 0? (c) What is 
the phase difference (in degrees) between the driving force 
and the displacement in this case?

64. (II) Differentiate Eq. 14-23 to show that the resonant 
amplitude peaks at

b2 
2m2

65. (II) An 1150 kg automobile has springs with k  = 16,000 N/m. 
One of the tires is not properly balanced; it has a little extra 
mass on one side compared to the other, causing the car to 
shake at certain speeds. If the tire radius is 42 cm, at 
what speed will the wheel shake most?

* 66. (II) Construct an accurate resonance curve, from to = 0 to
w = 2o)0, for Q = 6.0.

* 67. (II) The amplitude of a driven harmonic oscillator reaches a
value of 23.7F0/k  at a resonant frequency of 382 Hz. What is 
the Q value of this system?

68. (Ill) By direct substitution, show that Eq. 14-22, with 
Eqs. 14-23 and 14-24, is a solution of the equation of 
motion (Eq. 14-21) for the forced oscillator. [Hint. To find 
sin <f)0 and cos </>0 from tan <f>0 , draw a right triangle.]

* 69. (Ill) Consider a simple pendulum (point mass bob) 0.50 m
long with a Q of 350. (a) How long does it take for the 
amplitude (assumed small) to decrease by two-thirds? (b) If 
the amplitude is 2.0 cm and the bob has mass 0.27 kg, what 
is the initial energy loss rate of the pendulum in watts? (c) If 
we are to stimulate resonance with a sinusoidal driving 
force, how close must the driving frequency be to the 
natural frequency of the pendulum (give A / = /  -  / 0)?

| General Problems
70. A 62-kg person jumps from a window to a fire net 20.0 m 

below, which stretches the net 1.1 m. Assume that the net 
behaves like a simple spring, (a) Calculate how much it 
would stretch if the same person were lying in it. (b) How 
much would it stretch if the person jumped from 38 m?

71. An energy-absorbing car bumper has a spring constant of 
430 kN/m. Find the maximum compression of the bumper if
the car with mass 1300ko collides with a wall at a sneed of

72. The length of a simple pendulum is 0.63 m, the pendulum bob 
has a mass of 295 g, and it is released at an angle of 15° to the 
vertical, (a) With what frequency does it oscillate? (b) What is 
the pendulum bob’s speed when it passes through the lowest 
point of the swing? Assume SHM. (c) What is the total 
energy stored in this oscillation assuming no losses?

73. A simple pendulum oscillates with frequency / .  What is its
frennencv if the entire nendnhim accelerates at 0.50 p



74. A 0.650-kg mass oscillates according to the equation 
x  = 0.25 sin(5.50?) where x  is in meters and t is in seconds. 
Determine (a) the amplitude, (b) the frequency, (c) the 
period, (d) the total energy, and (e) the kinetic energy and 
potential energy when x  is 15 cm.

75. (a) A crane has hoisted a 1350-kg car at the junkyard. The 
crane’s steel cable is 20.0 m long and has a diameter of
6.4 mm. If the car starts bouncing at the end of the cable, what 
is the period of the bouncing? [Hint: Refer to Table 12-1].
(b) What amplitude of bouncing will likely cause the cable 
to snap? (See Table 12-2, and assume Hooke’s law holds all 
the way up to the breaking point.)

76. An oxygen atom at a particular site within a DNA molecule 
can be made to execute simple harmonic motion when illu­
minated by infrared light. The oxygen atom is bound with a 
spring-like chemical bond to a phosphorus atom, which is 
rigidly attached to the DNA backbone. The oscillation of 
the oxygen atom occurs with frequency /  =  3.7 X 1013 Hz. 
If the oxygen atom at this site is chemically replaced 
with a sulfur atom, the spring constant of the bond is 
unchanged (sulfur is just below oxygen in the Periodic Table). 
Predict the frequency for a DNA molecule after the sulfur 
substitution.

77. A “seconds” pendulum has a period of exactly 2.000 s. That 
is, each one-way swing takes 1.000 s. What is the length of a 
seconds pendulum in Austin, Texas, where g = 9.793 m /s2? 
If the pendulum is moved to Paris, where g = 9.809 m /s2, 
by how many millimeters must we lengthen the pendulum? 
What is the length of a seconds pendulum on the Moon, 
where g = 1.62m /s2?

78. A 320-kg wooden raft floats on a lake. When a 75-kg man 
stands on the raft, it sinks 3.5 cm deeper into the water. 
When he steps off, the raft oscillates for a while, (a) What is 
the frequency of oscillation? (b) What is the total energy of 
oscillation (ignoring damping)?

79. At what displacement from equilibrium is the speed of 
a SHO half the maximum value?

80. A diving board oscillates with simple harmonic motion of 
frequency 2.5 cycles per second. What is the maximum 
amplitude with which the end of the board can oscillate in 
order that a pebble placed there (Fig. 14-40) does not lose 
contact with the board during the oscillation?

83. A 1.60-kg table is supported on four springs. A 0.80-kg 
chunk of modeling clay is held above the table and dropped 
so that it hits the table with a speed of 1.65 m /s (Fig. 14-42). 
The clay makes an inelastic collision with the table, and the 
table and clay oscillate up and down. After 
a long time the table comes to rest 
6.0
(a) What is the effective 
spring constant of all four 
springs taken together?
(b) With what maximum 
amplitude does the plat­
form oscillate?

FIGURE 14-42
Problem 83. h

84. In some diatomic molecules, the force each atom exerts on 
the other can be approximated by F = —C /r2 + D /r3, 
where r is the atomic separation and C and D are positive 
constants, (a) Graph F  vs. r from r = 0.8D /C  to r = 4D/C.
(b) Show that equilibrium occurs at r — r0 — D/C. (c) Let 
Ar = r — r0 be a small displacement from equilibrium, 
where A r «  r0. Show that for such small displacements, 
the motion is approximately simple harmonic, and (d) deter­
mine the force constant. (e) What is the period of such 
motion? [Hint: Assume one atom is kept at rest.]

85. A mass attached to the end of a spring is stretched a 
distance x0 from equilibrium and released. At what distance 
from equilibrium will it have (a) velocity equal to half 
its maximum velocity, and (b) acceleration equal to half its 
maximum acceleration?

86. Carbon dioxide is a linear molecule. The carbon-oxygen bonds 
in this molecule act very much like springs. Figure 14-43 shows 
one possible way the oxygen atoms in this molecule can oscil­
late: the oxygen atoms oscillate symmetrically in and out, while 
the central carbon atom remains at rest. Hence each oxygen 
atom acts like a simple harmonic oscillator with a mass equal 
to the mass of an oxygen atom. It is observed that this oscilla­
tion occurs with a frequency of /  = 2.83 X 1013 Hz. What is 
the spring constant of the C — O bond?

Q O

FIGURE 14-40
Problem 80.

81. A rectangular block of wood floats in a calm lake. Show 
that, if friction is ignored, when the block is pushed gently 
down into the water and then released, it will then oscillate 
with SHM. Also, determine an equation for the force constant.

82. A 950-kg car strikes a huge spring at a speed of 25 m/s 
(Fig. 14-41), compressing the spring 5.0 m. (a) What is the 
spring stiffness constant of the spring? (b) How long is 
the car in contact with the spring before it bounces off 
in the opposite direction?

950 ks

FIGURE 14-41

FIGURE 14-43
Problem 86, the 
C 0 2 molecule.

O m c o

87. Imagine that a 10-cm-diameter circular hole was drilled all 
the way through the center of the Earth (Fig. 14-44). At 
one end of the hole, you drop an apple into the hole. Show 
that, if you assume that the Earth 
has a constant density, the 
subsequent motion of the 
apple is simple harmonic.
How long will the apple 
take to return? Assume 
that we can ignore all fric­
tional effects. [Hint: See 
Appendix D.]

FIGURE 14-44

&
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88. A thin, straight, uniform rod of length £ = 1.00 m and mass 
m = 215 g hangs from a pivot at one end. (a) What is its 
period for small-amplitude oscillations? (b) What is the 
length of a simple pendulum that will have the same period?

89. A mass m is gently placed on the end of a freely hanging 
spring. The mass then falls 32.0 cm before it stops and begins 
to rise. What is the frequency of the oscillation?

90. A child of mass m sits on top of a rectangular slab of mass 
M = 35 kg, which in turn rests on the frictionless horizontal 
floor at a pizza shop. The slab is attached to a horizontal 
spring with spring constant k  = 430 N/m (the other end is 
attached to an immovable wall, Fig. 14-45). The coefficient 
of static friction between the child and the top of the slab is 
fx = 0.40. The shop owner’s intention is that, when displaced 
from the equilibrium position and released, the slab and 
child (with no slippage between the two) execute SHM with 
amplitude A  = 0.50 m. Should there be 
a weight restriction 
for this ride? If so, 
what is it? A —A

—b-

m z
m M

_ J k  =

0.40

M
450 N/m

FIGURE 14-45
Problem 90.

91. Estimate the effective spring constant of a trampoline.
92. In Section 14-5, the oscillation of a simple pendulum 

(Fig. 14-46) is viewed as linear motion along the arc 
length x  and analyzed via F = ma. Alternatively, the 
pendulum’s movement can be regarded as rotational motion 
about its point of support and analyzed using r  = la. 
Carry out this alternative analysis and show that

0(0 0r

where 6(t) is the 
angular displacement 
of the pendulum 
from the vertical at 
time t, as long as 
its maximum value is 
less than about 15°.

FIGURE 14-46
Problem 92.

* Numerical/Computer
*93. (II) A mass m on a frictionless surface is attached to a 

spring with spring constant k  as shown in Fig. 14-47. This 
mass-spring system is then observed to execute simple 
harmonic motion with a period T. The mass m is changed 
several times and the associated period T  is measured in 
each case, generating the following data Table:

Mass m (kg) Period T  (s)

0.5 0.445
1.0 0.520
2.0 0.630
3.0 0.723
4.5 0.844

(a) Starting with Eq. 14-7b, show why a graph of T2 vs. m is 
expected to yield a straight line. How can k  be determined 
from the straight line’s slope? What is the line’s ^-intercept 
expected to be? (b) Using the data in the Table, plot T2 vs. m 
and show that this graph yields a straight line. Determine 
the slope and (nonzero) ^-intercept, (c) Show that a 
nonzero ^-intercept can be expected in our plot theoretically 
if, rather than simply using m for the mass in Eq. 14-7b, we 
use m + m0, where m0 is a constant. That is, repeat part (a) 
using m + ra0 for the mass in Eq. 14-7b. Then use the result 
of this analysis to determine k  and m0 from your graph’s 
slope and ^-intercept. (d) Offer a physical interpretation for 
m0, a mass that appears to be oscillating in addition to the 
attached mass m.

----------- " k
m mWWWWV"

—
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FIGURE 14-47 Problem 93.

*94. (Ill) Damping proportional to v2. Suppose the oscillator 
of Example 14-5 is damped by a force proportional to 
the square of the velocity, damping = ~cv2, where 
c = 0.275 kg/m is a constant. Numerically integrate* the 
differential equation from t = 0 to t = 2.00 s to an 
accuracy of 2%, and plot your results.

fSee Section 2 -9 .

Answers to Exercises

A: (a), (c), (d). G: All are larger.

B: <*>• H: («).
C: <c)- .  r
D :(6),(d). L (C)'
E. J: (a) 25 cm; (b) 2.0 \



W aves— such as th ese  w ater w a v es— spread outw ard from  a source. T he source in  
this case is a sm all sp ot o f  w ater osc illa tin g  up and d ow n  b riefly  w h ere  a rock  
w as throw n in (le ft p h o to ). O ther k inds o f  w aves in clu d e w aves o n  a cord  or 
string, w h ich  a lso  are p rod u ced  by a v ibration . W aves m o v e  aw ay from  their  
source, but w e  a lso  study w aves that seem  to  stand  still ( “standing w a v es”).
W aves reflect, and they  can  in terfere w ith  each  o th er  w h en  th ey  pass through  
any p o in t at th e  sam e tim e.

Wave Motion
CHAPTER-OPENING QUESTIOI —Guess now!
You drop a rock into a pond, and water waves spread out in circles. 

(a) The waves carry water outward, away from where the rock hit. That moving 
water carries energy outward.

(b) The waves only make the water move up and down. No energy is carried 
outward from where the rock hit.

(c) The waves only make the water move up and down, but the waves do carry 
energy outward, away from where the rock hit.

W hen you throw a stone into a lake or pool of water, circular waves 
form and move outward, as shown in the photos above. Waves will 
also travel along a cord that is stretched out flat on a table if you 
vibrate one end back and forth as shown in Fig. 15-1. W ater waves 

and waves on a cord are two common examples of mechanical waves, which 
propagate as oscillations of matter. We will discuss other kinds of waves in later 
Chapters, including electromagnetic waves and light.

FIGURE 1 5 -1  W ave traveling on  a cord. T he w ave travels 
to  th e  right a long th e  cord. P articles o f  th e  cord  osc illa te  
back  and forth  on  th e  tab letop .
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If you have ever watched ocean waves moving toward shore before they break, 
you may have wondered if the waves were carrying water from far out at sea onto 
the beach. They don’t.* Water waves move with a recognizable velocity. But each 
particle (or molecule) of the water itself merely oscillates about an equilibrium 
point. This is clearly demonstrated by observing leaves on a pond as waves move by. 
The leaves (or a cork) are not carried forward by the waves, but simply oscillate 
about an equilibrium point because this is the motion of the water itself.

CONCEPTUAL EXAMPLE 1 5 -f l Wave vs. particle velocity. Is the velocity of a 
wave moving along a cord the same as the velocity of a particle of the cord? See 
Fig. 15-1.
RESPONSE No. The two velocities are different, both in magnitude and direction. 
The wave on the cord of Fig. 15-1 moves to the right along the tabletop, but each 
piece of the cord only vibrates to and fro. (The cord clearly does not travel in the 
direction that the wave on it does.)

FIGURE 15-1 (repeated)
Wave traveling on a cord. The wave 
travels to the right along the cord. 
Particles of the cord oscillate back 
and forth on the tabletop.

Waves can move over large distances, but the medium (the water or the cord) 
itself has only a limited movement, oscillating about an equilibrium point as in 
simple harmonic motion. Thus, although a wave is not matter, the wave pattern can 
travel in matter. A wave consists of oscillations that move without carrying matter 
with them.

Waves carry energy from one place to another. Energy is given to a water wave, 
for example, by a rock thrown into the water, or by wind far out at sea. The energy is 
transported by waves to the shore. The oscillating hand in Fig. 15-1 transfers energy 
to the cord, and that energy is transported down the cord and can be transferred to 
an object at the other end. All forms of traveling waves transport energy.

I EXERCISE A  Return to the Chapter-Opening Question, page 395, and answer it again now. 
Try to explain why you may have answered differently the first time.

15—1 Characteristics of Wave Motion
Let us look a little more closely at how a wave is formed and how it comes to 
“travel.” We first look at a single wave bump, or pulse. A single pulse can be formed 
on a cord by a quick up-and-down motion of the hand, Fig. 15-2. The hand pulls up 
on one end of the cord. Because the end section is attached to adjacent sections, 
these also feel an upward force and they too begin to move upward. As each 
succeeding section of cord moves upward, the wave crest moves outward along the 
cord. Meanwhile, the end section of cord has been returned to its original position by 
the hand. As each succeeding section of cord reaches its peak position, it too is 
pulled back down again by tension from the adjacent section of cord. Thus the 
source of a traveling wave pulse is a disturbance, and cohesive forces between 
adjacent sections of cord cause the pulse to travel. Waves in other media are created

FIGURE 15-2 M otion of a wave 
pulse to the right. Arrows indicate 
velocity of cord particles.



and propagate outward in a similar fashion. A dramatic example of a wave pulse is a 
tsunami or tidal wave that is created by an earthquake in the Earth’s crust under the 
ocean. The bang you hear when a door slams is a sound wave pulse.

A continuous or periodic wave, such as that shown in Fig. 15-1, has as its 
source a disturbance that is continuous and oscillating; that is, the source is a 
vibration or oscillation. In Fig. 15-1, a hand oscillates one end of the cord. Water 
waves may be produced by any vibrating object at the surface, such as your hand; 
or the water itself is made to vibrate when wind blows across it or a rock is thrown 
into it. A vibrating tuning fork or drum membrane gives rise to sound waves in air. 
And we will see later that oscillating electric charges give rise to light waves. 
Indeed, almost any vibrating object sends out waves.

The source of any wave, then, is a vibration. And it is a vibration that propagates 
outward and thus constitutes the wave. If the source vibrates sinusoidally in SHM, 
then the wave itself—if the medium is perfectly elastic—will have a sinusoidal shape 
both in space and in time. (1) In space: if you take a picture of the wave in space at 
a given instant of time, the wave will have the shape of a sine or cosine as a function 
of position. (2) In time: if you look at the motion of the medium at one place over a 
long period of time—for example, if you look between two closely spaced posts of a 
pier or out of a ship’s porthole as water waves pass by—the up-and-down motion of 
that small segment of water will be simple harmonic motion. The water moves up 
and down sinusoidally in time.

Some of the important quantities used to describe a periodic sinusoidal wave 
are shown in Fig. 15-3. The high points on a wave are called crests; the low points, 
troughs. The amplitude, A, is the maximum height of a crest, or depth of a trough, 
relative to the normal (or equilibrium) level. The total swing from a crest to a 
trough is twice the amplitude. The distance between two successive crests is called 
the wavelength, A (the Greek letter lambda). The wavelength is also equal to the 
distance between any two successive identical points on the wave. The frequency, / ,  
is the number of crests—or complete cycles—that pass a given point per unit time. 
The period, T, equals 1 / /  and is the time elapsed between two successive crests 
passing by the same point in space.

FIGURE 15-3 Characteristics of a 
single-frequency continuous wave 
moving through space.

The wave velocity, v, is the velocity at which wave crests (or any other part of 
the waveform) move forward. The wave velocity must be distinguished from the 
velocity of a particle of the medium itself as we saw in Example 15-1.

A wave crest travels a distance of one wavelength, A, in a time equal to one 
period, T. Thus the wave velocity is v = A/7\ Then, since 1/7" = / ,

v = A/. (15-1)

For example, suppose a wave has a wavelength of 5 m and a frequency of 3 Hz. 
Since three crests pass a given point per second, and the crests are 5 m apart, the first 
crest (or any other part of the wave) must travel a distance of 15 m during the 1 s. 
So the wave velocity is 15 m/s.

I EXERCISE B You notice a water wave pass by the end of a pier with about 0.5 s between  
crests. Therefore (a) the frequency is 0.5 Hz; (b) the velocity is 0.5 m /s; (c) the wavelength is



15—2 Types of Waves: 
Transverse and Longitudinal

When a wave travels down a cord—say, from left to right as in Fig. 15-1—the 
particles of the cord vibrate up and down in a direction transverse (that is, perpen­
dicular) to the motion of the wave itself. Such a wave is called a transverse wave 
(Fig. 15-4a). There exists another type of wave known as a longitudinal wave. In a 
longitudinal wave, the vibration of the particles of the medium is along the direc­
tion of the wave’s motion. Longitudinal waves are readily formed on a stretched 
spring or Slinky by alternately compressing and expanding one end. This is 
shown in Fig. 15-4b, and can be compared to the transverse wave in Fig. 15-4a.

FIGURE 15-4  (a) Transverse wave;
(b) longitudinal wave.

Compression Expansion

(b)
H—  Wavelength— H

FIGURE 15-5 Production of a 
sound wave, which is longitudinal, 
shown at two moments in time about 
a half period ( \T )  apart.

A series of compressions and expansions propagate along the spring. The compressions 
are those areas where the coils are momentarily close together. Expansions (some­
times called rarefactions) are regions where the coils are momentarily far apart. 
Compressions and expansions correspond to the crests and troughs of a transverse 
wave.

An important example of a longitudinal wave is a sound wave in air. A vibrating 
drumhead, for instance, alternately compresses and rarefies the air in contact with it, 
producing a longitudinal wave that travels outward in the air, as shown in Fig. 15-5.

As in the case of transverse waves, each section of the medium in which a 
longitudinal wave passes oscillates over a very small distance, whereas the wave 
itself can travel large distances. Wavelength, frequency, and wave velocity all 
have meaning for a longitudinal wave. The wavelength is the distance between 
successive compressions (or between successive expansions), and frequency is the 
number of compressions that pass a given point per second. The wave velocity is 
the velocity with which each compression appears to move; it is equal to the 
product of wavelength and frequency, v = Xf (Eq. 15-1).

A longitudinal wave can be represented graphically by plotting the density of 
air molecules (or coils of a Slinky) versus position at a given instant, as shown in 
Fig. 15-6. Such a graphical representation makes it easy to illustrate what is 
happening. Note that the graph looks much like a transverse wave.

FIGURE 15-6  (a) A  longitudinal wave with 
(b) its graphical representation at a particular 
instant in time.
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Velocity o f Transverse Waves
The velocity of a wave depends on the properties of the medium in which it travels. 
The velocity of a transverse wave on a stretched string or cord, for example, depends 
on the tension in the cord, FT, and on the mass per unit length of the cord, /jl  

(the Greek letter mu, where here /x = m /l). For waves of small amplitude, the 
relationship is

[Ft [transverse 1
v V [ w a v e  on a cord J * *

Before giving a derivation of this formula, it is worth noting that at least qualitatively 
it makes sense on the basis of Newtonian mechanics. That is, we do expect the 
tension to be in the numerator and the mass per unit length in the denominator. 
Why? Because when the tension is greater, we expect the velocity to be greater since 
each segment of cord is in tighter contact with its neighbor. And, the greater the 
mass per unit length, the more inertia the cord has and the more slowly the wave 
would be expected to propagate.

EXERCISE C A wave starts at the left end of a long cord (see Fig. 15-1) when someone 
shakes the cord back and forth at the rate of 2.0 Hz. The wave is observed to move to the 
right at 4.0 m/s. If the frequency is increased from 2.0 to 3.0 Hz, the new speed of the wave 
is (a) 1.0 m/s, (b) 2.0 m/s, (c) 4.0 m/s, (d) 8.0 m/s, (e) 16.0 m/s.

FIGURE 15-7 Diagram of simple wave pulse on a 
cord for derivation of Eq. 15-2. The vector shown in 
(b) as the resultant of Fx + ¥y has to be directed 
along the cord because the cord is flexible. (Diagram 
is not to scale: we assume v' «  v; the upward angle 
of the cord is exaggerated for visibility.)

vt (b)

We can make a simple derivation of Eq. 15-2 using a simple model of a cord 
under a tension FT as shown in Fig. 15-7a. The cord is pulled upward at a speed v' 
by the force Fy . As shown in Fig. 15-7b all points of the cord to the left of point C 
move upward at the speed v', and those to the right are still at rest. The speed 
of propagation, v, of this wave pulse is the speed of point C, the leading edge of 
the pulse. Point C moves to the right a distance vt in a time t, whereas the 
end of the cord moves upward a distance v't. By similar triangles we have the 
approximate relation

FT _  vt _  v
Fy ~ V't ~ V'’

which is accurate for small displacements (v't «  vt) so that FT does not change 
appreciably. As we saw in Chapter 9, the impulse given to an object is equal to its 
change in momentum. During the time t the total upward impulse is 
Fy t = (v '/v)F Tt. The change in momentum of the cord, Ap, is the mass of cord 
moving upward times its velocity. Since the upward moving segment of cord has 
mass equal to the mass per unit length /jl times its length vt we have

Fyt =  Ap

v ’
—  FTt = (/Lvt)v' .

Solving for v we find v = V F t / / jl which is Eq. 15-2. Although it was derived for a 
special case, it is valid for anv wave shape since other shapes can be considered to



@  P H Y S I C S A P P L I E D
Space perception  

by animals, using sound waves

EXAMPLE 15-2 Pulse on a wire. An 80.0-m-long, 2.10-mm-diameter copper wire 
is stretched between two poles. A bird lands at the center point of the wire, sending a 
small wave pulse out in both directions. The pulses reflect at the ends and arrive back 
at the bird’s location 0.750 seconds after it landed. Determine the tension in the wire. 
APPROACH From Eq. 15-2, the tension is given by FT = fiv2. The speed v is 
distance divided by the time. The mass per unit length /jl is calculated from the 
density of copper and the dimensions of the wire.
SOLUTION Each wave pulse travels 40.0 m to the pole and back again (= 80.0 m) in 
0.750 s. Thus their speed is v = (80.0m)/(0.750s) = 107 m/s. We take (Table 13-1) 
the density of copper as 8.90 X 103 kg/m3. The volume of copper in the wire is the 
cross-sectional area ( 7 7 T 2 )  times the length £, and the mass of the wire is the volume 
times the density: m = p(7rr2)£ for a wire of radius r and length £. Then /jl = m/£ is

/jl = pirr2£/£ = pirr2 = (8.90 X 103 kg/m3)7r(l.05 X 10“3m)2 = 0.0308 kg/m.
Thus, the tension is FT = puv2 = (0.0308 kg/m)(107 m /s)2 = 353 N.

Velocity of Longitudinal Waves
The velocity of a longitudinal wave has a form similar to that for a transverse wave 
on a cord (Eq. 15-2); that is,

v =
elastic force factor

inertia factor
In particular, for a longitudinal wave traveling down a long solid rod,

'E
V =  a / —  5

[longitudinal wave] n - 
in a fluid J

P

where E  is the elastic modulus (Section 12-4) of the material and p  is its density. 
For a longitudinal wave traveling in a liquid or gas,

~B_

P ’
where B  is the bulk modulus (Section 12-4) and p  again is the density.

Echolocation. Echolocation is a form of sensory perception 
used by animals such as bats, toothed whales, and dolphins. The animal emits a 
pulse of sound (a longitudinal wave) which, after reflection from objects, returns 
and is detected by the animal. Echolocation waves can have frequencies of about
100,000 Hz. (a) Estimate the wavelength of a sea animal’s echolocation wave, (b) If 
an obstacle is 100 m from the animal, how long after the animal emits a wave is 
its reflection detected?
APPROACH We first compute the speed of longitudinal (sound) waves in sea 
water, using Eq. 15-4 and Tables 12-1 and 13-1. The wavelength is A = v/ f .  
SOLUTION (a) The speed of longitudinal waves in sea water, which is slightly 
more dense than pure water, is

[B  I 2.0 X 109 N/m2  ̂ „ - .
V = -V / = -V / ---- —r-——r = 1.4 X 103 m/s.

VP V 1.025 X 103 kg/m3
Then, using Eq. 15-1, we find

V (1.4 x  103 m/s)
A = — = -----------;— 7- = 14 mm.

/  (1 .0 x 105Hz)
(b) The time required for the round-trip between the animal and the object is

distance 2(100 m)
t = ------- — = — ---- —=— — = 0.14 s.

speed 1.4 X 103m/s
NOTE We shall see later that waves can be used to “resolve” (or detect) objects 
onlv if the wavelength is comparable to or smaller than the obiect. Thus, a



* Deriving Velocity of Wave in a Fluid
We now derive Eq. 15-4. Consider a wave pulse traveling in a fluid in a long tube, 
so that the wave motion is one dimensional. The tube is fitted with a piston at the 
end and is filled with a fluid which, at t = 0, is of uniform density p and at 
uniform pressure P0, Fig. 15-8a. At this moment the piston is abruptly made to 
start moving to the right with speed v', compressing the fluid in front of it. In the 
(short) time t the piston moves a distance v't. The compressed fluid itself also 
moves with speed v', but the leading edge of the compressed region moves to the 
right at the characteristic speed v of compression waves in that fluid; we assume 
the wave speed v is much larger than the piston speed v '. The leading edge of the 
compression (which at t = 0 was at the piston face) thus moves a distance vt in 
time t as shown in Fig. 15-8b. Let the pressure in the compression be P0 + AP, 
which is AP higher than in the uncompressed fluid. To move the piston to the 
right requires an external force (P0 + AP)S acting to the right, where S is 
the cross-sectional area of the tube. (S for “surface area”; we save A  for amplitude.) 
The net force on the compressed region of the fluid is

Fna = (P0 + AP)S -  PoS = S AP
since the uncompressed fluid exerts a force P0S to the left at the leading edge. 
Hence the impulse given to the compressed fluid, which equals its change in 
momentum, is

Fnett = Amv'
S AP t = (pSvt)v',

where (pSvt) represents the mass of fluid which is given the speed v' (the compressed 
fluid of area S moves a distance vt, Fig. 15-8, so the volume moved is Svt). Hence 
we have

AP = pvv'.
From the definition of the bulk modulus, B (Eq. 12-7):

AP pvv'
B = ~  AF/Fo = ~ AF/V0’ 

where AV/Vq is the fractional change in volume due to compression. The original
volume of the compressed fluid is Svt (see Fig. 15-8), and it has been
compressed by an amount AV = —Sv't (Fig. 15-8b).Thus 

pvv  . ( Svt

and so

v = a — >

AF/K,

B

= —pvv
-S v 't

= pv2,

which is what we set out to show, Eq. 15-4.
The derivation of Eq. 15-3 follows similar lines, but takes into account the 

expansion of the sides of a rod when the end of the rod is compressed.

Other Waves
Both transverse and longitudinal waves are produced when an earthquake occurs. 
The transverse waves that travel through the body of the Earth are called S waves 
(S for shear), and the longitudinal waves are called P waves (P for pressure) or 
compression waves. Both longitudinal and transverse waves can travel through a 
solid since the atoms or molecules can vibrate about their relatively fixed positions 
in any direction. But only longitudinal waves can propagate through a fluid, because 
any transverse motion would not experience any restoring force since a fluid is readily 
deformable. This fact was used by geophysicists to infer that a portion of the 
Earth’s core must be liauid: after an earthauake. longitudinal waves are detected

(bj after time r

FIGURE 1 5 -8  Determining the 
speed of a one-dimensional 
longitudinal wave in a fluid 
contained in a long narrow tube.

0 P H Y S I C S  A P P L I E D
Earthquake waves



FIGURE 1 5 -9  A  water wave is an 
example of a surface wave, which is 
a combination of transverse and 
longitudinal wave motions.

FIGURE 1 5 -1 0  How a wave 
breaks. The green arrows represent 
the local velocity of water molecules.

Besides these two types of waves that can pass through the body of the Earth 
(or other substance), there can also be surface waves that travel along the 
boundary between two materials. A wave on water is actually a surface wave that 
moves on the boundary between water and air. The motion of each particle of 
water at the surface is circular or elliptical (Fig. 15-9), so it is a combination of 
transverse and longitudinal motions. Below the surface, there is also transverse 
plus longitudinal wave motion, as shown. At the bottom, the motion is only 
longitudinal. (When a wave approaches shore, the water drags at the bottom and is 
slowed down, while the crests move ahead at higher speed (Fig. 15-10) and “spill” 
over the top.)

Surface waves are also set up on the Earth when an earthquake occurs. The 
waves that travel along the surface are mainly responsible for the damage caused 
by earthquakes.

Waves which travel along a line in one dimension, such as transverse waves on 
a stretched string, or longitudinal waves in a rod or fluid-filled tube, are linear or 
one-dimensional waves. Surface waves, such as the water waves pictured at the 
start of this Chapter, are two-dimensional waves. Finally, waves that move out 
from a source in all directions, such as sound from a loudspeaker or earthquake waves 
through the Earth, are three-dimensional waves.

1 5 -3  Energy Transported by Waves
Waves transport energy from one place to another. As waves travel through a 
medium, the energy is transferred as vibrational energy from particle to particle 
of the medium. For a sinusoidal wave of frequency / ,  the particles move in 
simple harmonic motion (Chapter 14) as a wave passes, and each particle has 
energy E = where A  is the maximum displacement (amplitude) of its
motion, either transversely or longitudinally (Eq. 14-10a). Using Eq. 14-7a we can 
write k = AiT2m f2, where m is the mass of a particle (or small volume) of the 
medium. Then in terms of the frequency /  and amplitude A,

E  = IkA 2 = 27T2m f2A2.

FIGURE 15-11 Calculating the 
energy carried by a wave moving 
with velocity v.

For three-dimensional waves traveling in an elastic medium, the mass m = pV, 
where p is the density of the medium and V  is the volume of a small slice 
of the medium. The volume V = S£ where S is the cross-sectional area through 
which the wave travels (Fig. 15-11), and we can write £ as the distance the 
wave travels in a time t as £ = vt, where v is the speed of the wave. Thus 
m = pV = pSl = pSvt and

/ v m / v
K£ = v t

E = 2ir2pSvtf2J¥. (15-5)

From this equation we have the important result that the energy transported by a 
wave is proportional to the square o f the amplitude, and to the square o f the 
frequency. The average rate of energy transferred is the average power P:

P = j  = 2w 2pSvf2A2. (15-6)

Finally, the intensity, I, of a wave is defined as the average power transferred 
across unit area perpendicular to the direction of energy flow:

/  = — = 27T2vp f2A2. (15-7)

If a wave flows out from the source in all directions, it is a three-dimensional wave.



If the medium is isotropic (same in all directions), the wave from a point source is 
a spherical wave (Fig. 15-12). As the wave moves outward, the energy it carries 
is spread over a larger and larger area since the surface area of a sphere of 
radius r is Airr2. Thus the intensity of a wave is

i  = l =  ~p
S 47T7-2

If the power output P is constant, then the intensity decreases as the inverse 
square of the distance from the source:

I  on—  [spherical wave] (15-8a)

If we consider two points at distances and r2 from the source, as in Fig. 15-12, 
then Ix = P/Airrl and I2 = P/4irrl, so

' i  -  -  4 -  Mh  P/Airr2 r2

Thus, for example, when the distance doubles (r2frx = 2), then the intensity is 
reduced to \  of its earlier value: I2/I\ = i f f  = \-

The amplitude of a wave also decreases with distance. Since the intensity is 
proportional to the square of the amplitude (Eq. 15-7), I  oc A2, the amplitude A  must 
decrease as 1/r, so that I  can be proportional to 1 /r2 (Eq. 15-8a). Hence

A  oc —• r

To see this directly from Eq. 15-6, consider again two different distances from the 
source, rx and r2. For constant power output, Si A \ = S2 A 2 where A x and A 2 are 
the amplitudes of the wave at rx and r2, respectively. Since Si = Airr\ and 
S2 = 4-7772, we have (A2r2) = (Ajr^), or

=  H.
A i r2

When the wave is twice as far from the source, the amplitude is half as large, and 
so on (ignoring damping due to friction).

Earthquake intensity. The intensity of an earthquake P wave 
traveling through the Earth and detected 100 km from the source is 1.0 X 106 W/m2. 
What is the intensity of that wave if detected 400 km from the source?
APPROACH We assume the wave is spherical, so the intensity decreases as the 
square of the distance from the source.
SOLUTION At 400 km the distance is 4 times greater than at 100 km, so the 
intensity will be (|)2 = ^  of its value at 100 km, or (l.O X 106W/m2)/16 =
6.3 X 104 W/m2.
NOTE Using Eq. 15-8b directly gives

I2 = h A /r l  = (1.0 X 106W/m2)(100km)2/ (400km)2 = 6.3 X 104W/m2.

The situation is different for a one-dimensional wave, such as a transverse wave 
on a string or a longitudinal wave pulse traveling down a thin uniform metal rod. 
The area remains constant, so the amplitude A  also remains constant (ignoring 
friction). Thus the amplitude and the intensity do not decrease with distance.

In practice, frictional damping is generally present, and some of the energy is 
transformed into thermal energy. Thus the amplitude and intensity of a one­
dimensional wave decrease with distance from the source. For a three-dimensional 
wave, the decrease will be greater than that discussed above, although the effect

FIGURE 1 5 -1 2  Wave traveling 
outward from a point source has 
spherical shape. Two different crests 
(or compressions) are shown, 
of radius rx and r2.
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FIGURE 15-13 A  traveling wave. In 
time t, the wave moves a distance vt.
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1 5 -4  Mathematical Representation of a 
Traveling Wave

Let us now consider a one-dimensional wave traveling along the x  axis. It could be, 
for example, a transverse wave on a cord or a longitudinal wave traveling in a rod or 
in a fluid-filled tube. Let us assume the wave shape is sinusoidal and has a particular 
wavelength A and frequency / .A t  t = 0, suppose the wave shape is given by

D (x) A ■ 217A  sin —  x , 
A

(15-9)

as shown by the solid curve in Fig. 15-13: D (x) is the displacement1 of the wave 
(be it a longitudinal or transverse wave) at position x, and A  is the amplitude 
(maximum displacement) of the wave. This relation gives a shape that repeats 
itself every wavelength, which is needed so that the displacement is the same at 
x = 0, x = A, x  = 2 A, and so on (since sin47r = sin27r = sinO).

Now suppose the wave is moving to the right with velocity v. Then, after a 
time t, each part of the wave (indeed, the whole wave “shape”) has moved to the 
right a distance vt; see the dashed curve in Fig. 15-13. Consider any point on the 
wave at t = 0: say, a crest which is at some position x. After a time t, that crest 
will have traveled a distance vt so its new position is a distance vt greater than its 
old position. To describe this same point on the wave shape, the argument of the 
sine function must be the same, so we replace x  in Eq. 15-9 by (x — vt):

D (x ,t)  = A sin j^ ^ -(x  -  uf)J- (15-10a)

Said another way, if you are riding on a crest, the argument of the sine function, 
( 2 tt/ X ) ( x  -  vt), remains the same ( = 7t/2, Stt/2, and so on); as t increases, x must 
increase at the same rate so that (x — vt) remains constant.

Equation 15-10a is the mathematical representation of a sinusoidal wave 
traveling along the x axis to the right (increasing x). It gives the displacement D (x ,t)  
of the wave at any chosen point x  at any time t. The function D (x ,t)  describes a 
curve that represents the actual shape of the wave in space at time t. Since v = A/ 
(Eq. 15-1) we can write Eq. 15-10a in other ways that are often convenient:

. . . /  27t x  2irt 
D (x ,t)  = A  sin^— -------- —

where T = 1 / f  = X/v is the period; and 

D (x ,t)  = A sin (kx  — cot), 

where co = 2irf = 2ir/T  is the angular frequency and

(15-10b)

(15-10c)

(15-11)

is called the wave number. (Do not confuse the wave number k  with the spring 
constant k; they are very different quantities.) All three forms, Eqs. 15-10a, b, and c, 
are equivalent; Eq. 15-10c is the simplest to write and is perhaps the most 
common. The quantity (kx  -  cot), and its equivalent in the other two equations, is 
called the phase of the wave. The velocity v of the wave is often called the phase 
velocity, since it describes the velocity of the phase (or shape) of the wave and it 
can be written in terms of co and k:

co
(15-12)

^om e books use y(jc) in place of D(x). To avoid confusion, we reserve y  (and z) for the coordinate 
positions of waves in two or three dimensions. Our D (x) can stand for pressure (in longitudinal waves),



For a wave traveling along the x  axis to the left (decreasing values of x), we 
start again with Eq. 15-9 and note that the velocity is now —v. A  particular point 
on the wave changes position by —vt in a time t, so x  in Eq. 15-9 must be replaced 
by (jc + vt). Thus, for a wave traveling to the left with velocity v,

D (x ,t)  = A sin |^^-(jc  + vf)J (15-13a)

= A s in ^ ^ p  + (15-13b)

= A sm (k x  + cot). (15-13c)

In other words, we simply replace v in Eqs. 15-10 by —v.
Let us look at Eq. 15-13c (or, just as well, at Eq. 15-10c). At t = 0 we have

D(x, 0) = A  sin kx,

which is what we started with, a sinusoidal wave shape. If we look at the wave 
shape in space at a particular later time tx, then we have

D{x, ti) = A  sin(A;x + cot̂ j.

That is, if we took a picture of the wave at t = tx, we would see a sine wave with 
a phase constant co^. Thus, for fixed t = tx, the wave has a sinusoidal shape in 
space. On the other hand, if we consider a fixed point in space, say x = 0, we can 
see how the wave varies in time:

D(0, t) = A  sin cot

where we used Eq. 15-13c. This is just the equation for simple harmonic motion 
(Section 14-2). For any other fixed value of x, say x = x lf D = A  sin(cot + kx t) 
which differs only by a phase constant kx 1. Thus, at any fixed point in space, 
the displacement undergoes the oscillations of simple harmonic motion in time. 
Equations 15-10 and 15-13 combine both these aspects to give us the representation 
for a traveling sinusoidal wave (also called a harmonic wave).

The argument of the sine in Eqs. 15-10 and 15-13 can in general contain a 
phase angle (f>, which for Eq. 15-10c is

D (x ,t)  = A sin (kx  — cot + 0),

to adjust for the position of the wave at t = 0, x = 0, just as in Section 14-2 (see 
Fig. 14-7). If the displacement is zero at t = 0, x = 0, as in Fig. 14-6 (or Fig. 15-13), 
then (f) = 0.

Now let us consider a general wave (or wave pulse) of any shape. If frictional 
losses are small, experiment shows that the wave maintains its shape as it travels. 
Thus we can make the same arguments as we did right after Eq. 15-9. Suppose our 
wave has some shape at t = 0, given by

D (x,0) = D(x)

where D(x) is the displacement of the wave at x  and is not necessarily sinusoidal. 
At some later time, if the wave is traveling to the right along the x  axis, the wave 
will have the same shape but all parts will have moved a distance vt where v is the 
phase velocity of the wave. Hence we must replace x  by x — vt to obtain the 
amplitude at time t:

D (x ,t)  = D (x -  vt). (15-14)

Similarly, if the wave moves to the left, we must replace x  by x + vt, so

D (x ,t)  = D( x + vt). (15-15)

Thus, any wave traveling along the x  axis must have the form of Eq. 15-14 or 15-15.

1-D wave 
moving in 
negative x 
direction

I EXERCISE D A wave is given by D(x,t) = (5.0 mm) sin(2.0* -  20.0£) where x is in
m eters arifl t is in sernnds. W h at is the sneeH n f the w ave? (ri\ 1 0 m /s  (K\ O /IO m /s



Hand

FIGURE 15-14 Example 15-5. The 
wave at t  = 0 (the hand is falling). 
Not to scale.

EXAMPLE 15-5 A traveling wave. The left-hand end of a long horizontal 
stretched cord oscillates transversely in SHM with frequency /  = 250 Hz and 
amplitude 2.6 cm. The cord is under a tension of 140 N and has a linear density 
/jl = 0.12 kg/m. At t  = 0, the end of the cord has an upward displacement of 
1.6 cm and is falling (Fig. 15-14). Determine (a) the wavelength of waves 
produced and (b) the equation for the traveling wave.

APPROACH We first find the phase velocity of the transverse wave from Eq. 15-2; 
then A = v /f .  In (b), we need to find the phase (f> using the initial conditions. 
SOLUTION (a) The wave velocity is

%  I MON

Then

A = 7 =

0.12 kg/m 

34 m/s

= 34 m/s.

250 Hz
0.14 m or 14 cm.

(b) Let x = 0 at the left-hand end of the cord. The phase of the wave at t = 0 
is not zero in general as was assumed in Eqs. 15-9,10, and 13. The general form 
for a wave traveling to the right is

D (x ,t) = A sm (kx  — cot + 0),

where (f> is the phase angle. In our case, the amplitude A  = 2.6 cm; and at 
t = 0, x = 0, we are given D = 1.6 cm. Thus

1.6 = 2.6 sin

so <f> = sin-1 (1.6/2.6) = 38° = 0.66 rad. We also have a> = 2irf = 1570 s-1 
and k  = 2tt/X = 2'7r/0.14m = 45m_1. Hence

D = (0.026 m) sin[(45 m_1)x -  (1570 s)f + 0.66]

which we can write more simply as

D = 0.026 sin(45x -  1570* + 0.66),

and we specify clearly that D and x  are in meters and t in seconds.

FIGURE 15-15 Deriving the wave 
equation from Newton’s second law: 
a segment of string under tension FT.

15—5 The Wave Equation
Many types of waves satisfy an important general equation that is the equivalent 
of Newton’s second law of motion for particles. This “equation of motion for a 
wave” is called the wave equation, and we derive it now for waves traveling on a 
stretched horizontal string.

We assume the amplitude of the wave is small compared to the wavelength so 
that each point on the string can be assumed to move only vertically and the 
tension in the string, FT, does not vary during a vibration. We apply Newton’s 
second law, 2 F  = ma, to the vertical motion of a tiny section of the string as 
shown in Fig. 15-15. The amplitude of the wave is small, so the angles and 02 
that the string makes with the horizontal are small. The length of this section is 
then approximately Ax, and its mass is /jl Ax, where /jl is the mass per unit length 
of the string. The net vertical force on this section of string is FT sin 02 — FT sin . 
So Newton’s second law applied to the vertical (y) direction gives

Fx sin02 — Ft sin 0i (i)

We have written the acceleration as = d2D/dt2 since the motion is onlv vertical, and we



Because the angles 61 and 02 are assumed small, sin 0 «  tan 0 and tan 0 is equal to 
the slope s of the string at each point:

sin 0 ~ tan 0 = ---- = s.
dx

Thus our equation (i) at the bottom of the previous page becomes

W  \  A &D
f t (s2 = ^ A x ~ ^r

or
As _ d2D 
Ax ~ M dt2FT—  = (“)

where As = s2 — sx is the difference in the slope between the two ends of our 
tiny section. Now we take the limit of Ax —>• 0, so that

_ As _ ds Fr lim “  — Fr
Ax^o Ajc dx

= w  = F t ^
dx \dx J  dx

since the slope s = dD/dx, as we wrote above. Substituting this into the equation 
labeled (ii) above gives

^ d2D d2D
Ft ---= LL------ -z-

T dx2 *  dt2

d2D _ fl d2D 
dx2 ~ Ft dt2

We saw earlier in this Chapter (Eq. 15-2) that the velocity of waves on a string is 
given by v = VFt / [jl , so we can write this last equation as

= h ^ r m (15-16)dx2 v2 dt2

This is the one-dimensional wave equation, and it can describe not only small 
amplitude waves on a stretched string, but also small amplitude longitudinal waves 
(such as sound waves) in gases, liquids, and elastic solids, in which case D can refer 
to the pressure variations. In this case, the wave equation is a direct consequence 
of Newton’s second law applied to a continuous elastic medium. The wave 
equation also describes electromagnetic waves for which D refers to the electric or 
magnetic field, as we shall see in Chapter 31. Equation 15-16 applies to waves 
traveling in one dimension only. For waves spreading out in three dimensions, the 
wave equation is the same, with the addition of d2D/dy2 and d2D/dz2 to the left 
side of Eq. 15-16.

The wave equation is a linear equation: the displacement D appears singly 
in each term. There are no terms that contain D2, or D(dD/dx), or the like in 
which D appears more than once. Thus, if Dx(x, t) and D2(x, t) are two different 
solutions of the wave equation, then the linear combination

D3(x,t) = a D ^xJ) + bD2(x, t),

where a and b are constants, is also a solution. This is readily seen by direct 
substitution into the wave equation. This is the essence of the superposition 
principle, which we discuss in the next Section. Basically it says that if two waves 
pass through the same region of space at the same time, the actual displacement 
is the sum of the separate displacements. For waves on a string, or for sound 
waves, this is valid only for small-amplitude waves. If the amplitude is not small 
enoush. the equations for wave Drooasation mav become nonlinear and the



FIGURE 1 5 -1 6  The superposition 
principle for one-dimensional waves. 
Composite wave formed from three 
sinusoidal waves of different 
amplitudes and frequencies 
(/o j 2 /o , 3/o) at a certain instant in 
time. The amplitude of the composite 
wave at each point in space, at any 
time, is the algebraic sum of the 
amplitudes of the component waves. 
Amplitudes are shown exaggerated; 
for the superposition principle to 
hold, they must be small compared 
to the wavelengths.

D(x, t) =D](x, t) + D 2&, t) + D$(x, t)

EXAMPLE 15-6 Wave equation solution. Verify that the sinusoidal wave of 
Eq. 15-10c, D(x, t ) = A sin(kx -  cot), satisfies the wave equation.
APPROACH We substitute Eq. 15-10c into the wave equation, Eq. 15-16. 
SOLUTION We take the derivative of Eq. 15-10c twice with respect to t:

dD ,—  = —0)A cosf/cx -  cot) 
dt

d2D
—Y~ = ~o)2A sm (kx  — (ot). 
dt

With respect to x, the derivatives are 
dD
---- = kA  cos(kx — ojt)
dx v ’

d2D
— Y  = ~ k2A  sin(/cx -  cot), 
dx

If we now divide the second derivatives we get
d2D/dt2 -w 2A sm (kx  — cot) co2
d2D/dx2 - k 2A sin(kx -  cot) k2

From Eq. 15-12 we have a^/k2 = v2, so we see that Eq. 15-10 does satisfy the 
wave equation (Eq. 15-16).

15—6 The Principle of Superposition
When two or more waves pass through the same region of space at the same time, 
it is found that for many waves the actual displacement is the vector (or algebraic) 
sum o f the separate displacements. This is called the principle of superposition. It is 
valid for mechanical waves as long as the displacements are not too large and there 
is a linear relationship between the displacement and the restoring force of the 
oscillating medium.* If the amplitude of a mechanical wave, for example, is so large 
that it goes beyond the elastic region of the medium, and Hooke’s law is no longer 
operative, the superposition principle is no longer accurate.* For the most part, we 
will consider systems for which the superposition principle can be assumed to hold.

One result of the superposition principle is that if two waves pass through 
the same region of space, they continue to move independently of one another. 
You may have noticed, for example, that the ripples on the surface of water 
(two-dimensional waves) that form from two rocks striking the water at different 
places will pass through each other.

Figure 15-16 shows an example of the superposition principle. In this case 
there are three waves present, on a stretched string, each of different amplitude 
and frequency. At any time, such as at the instant shown, the actual amplitude at 
any position x is the algebraic sum of the amplitude of the three waves at that 
position. The actual wave is not a simple sinusoidal wave and is called a composite 
(or complex) wave. (Amplitudes are exaggerated in Fig. 15-16.)

It can be shown that any complex wave can be considered as being composed of 
many simple sinusoidal waves of different amplitudes, wavelengths, and frequencies. 
This is known as Fourier’s theorem. A complex periodic wave of period T  can be 
represented as a sum of pure sinusoidal terms whose frequencies are integral 
multiples of /  = 1/T. If the wave is not periodic, the sum becomes an integral 
(called a Fourier integral). Although we will not go into the details here, we see the 
importance of considering sinusoidal waves (and simple harmonic motion): because 
any other wave shape can be considered a sum of such pure sinusoidal waves.

fFor electromagnetic waves in vacuum, Chapter 31, the superposition principle always holds.
$Tr»t<=*rmr>rln1 a+ir>r» H ic tn r t in n  in  p n n m m p n t  ic  a n  p v a m n lp  n f  f l i p  c n n p m n c i t in n  n r in o in lp  n n t



CONCEPTUAL EXAMPLE 15-7 I Making a square wave. At t = 0, three waves P H Y S I C S  A P P L I E D
are given by Dx = A coskx, D2 = —\A  cos3A:jc, and D3 = \A  cos5A:jc, where Square wave 
A = 1.0 m and k  = 10m_1. Plot the sum of the three waves from x = -0.4 m to 
+0.4 m. (These three waves are the first three Fourier components of a “square wave.”)
RESPONSE The first wave, Dx, has amplitude of 1.0 m and wavelength 
A = 2ir/k = (27r/10) m = 0.628 m. The second wave, D2, has amplitude of
0.33 m and wavelength A = 277/3k = (277/30) m = 0.209 m. The third wave, D3, 
has amplitude of 0.20 m and wavelength A = 2ir/5k = (277/50) m = 0.126 m.
Each wave is plotted in Fig. 15-17a. The sum of the three waves is shown in 
Fig. 15-17b.The sum begins to resemble a “square wave,” shown in blue in Fig. 15-17b.

When the restoring force is not precisely proportional to the displacement for 
mechanical waves in some continuous medium, the speed of sinusoidal waves 
depends on the frequency. The variation of speed with frequency is called dispersion.
The different sinusoidal waves that compose a complex wave will travel with slightly 
different speeds in such a case. Consequently, a complex wave will change shape as it 
travels if the medium is “dispersive.” A pure sine wave will not change shape under 
these conditions, however, except by the influence of friction or dissipative forces. If 
there is no dispersion (or friction), even a complex linear wave does not change shape.

15—7 Reflection and Transmission
When a wave strikes an obstacle, or comes to the end of the medium in which it is 
traveling, at least a part of the wave is reflected. You have probably seen water 
waves reflect off a rock or the side of a swimming pool. And you may have heard 
a shout reflected from a distant cliff—which we call an “echo.”

A wave pulse traveling down a cord is reflected as shown in Fig. 15-18. The 
reflected pulse returns inverted as in Fig. 15-18a if the end of the cord is fixed; it 
returns right side up if the end is free as in Fig. 15-18b. When the end is fixed to a 
support, as in Fig. 15-18a, the pulse reaching that fixed end exerts a force (upward) 
on the support. The support exerts an equal but opposite force downward on the 
cord (Newton’s third law). This downward force on the cord is what “generates” 
the inverted reflected pulse.

FIGU RE 15-18 Reflection of a wave pulse on 
a cord lying on a table, (a) The end of the cord 
is fixed to a peg. (b) The end of the cord is free 
to move.

./TG . / * ■

(a) (b)

FIGURE 15-19 When a wave pulse 
traveling to the right along a thin 
cord (a) reaches a discontinuity 
where the cord becom es thicker and 
heavier, then part is reflected and 
part is transmitted (b).

Heavy 
section

Consider next a pulse that travels down a cord which consists of a light section 
and a heavy section, as shown in Fig. 15-19. When the wave pulse reaches the 
boundary between the two sections, part of the pulse is reflected and part is 
transmitted, as shown. The heavier the second section of the cord, the less the 
energy that is transmitted. (When the second section is a wall or rigid support, very 
little is transmitted and most is reflected, as in Fie. 15-lSa.) For a periodic wave.

(a)
Transmitted 
pulse

c(m)
-0.4 -0.2 0.0 0.2 0.4

(b)

FIGURE 15-17 Example 15-7 . 
Making a square wave.

A (m )
-0.4 -0.2 0.0 0.2 0.4 

{»)
v (m)



(a) (b)

FIGURE 15-20 Rays, signifying the 
direction of motion, are always 
perpendicular to the wave fronts 
(wave crests), (a) Circular or 
spherical waves near the source.
(b) Far from the source, the wave 
fronts are nearly straight or flat, and 
are called plane waves.

For a two- or three-dimensional wave, such as a water wave, we are concerned 
with wave fronts, by which we mean all the points along the wave forming the 
wave crest (what we usually refer to simply as a “wave” at the seashore). A line 
drawn in the direction of motion, perpendicular to the wave front, is called a ray, 
as shown in Fig. 15-20. Wave fronts far from the source have lost almost all their 
curvature (Fig. 15-20b) and are nearly straight, as ocean waves often are; they are 
then called plane waves.

For reflection of a two- or three-dimensional plane wave, as shown in Fig. 15-21, 
the angle that the incoming or incident wave makes with the reflecting surface is 
equal to the angle made by the reflected wave. This is the law of reflection;

the angle of reflection equals the angle of incidence.

The “angle of incidence” is defined as the angle (0̂ ) the incident ray makes with 
the perpendicular to the reflecting surface (or the wave front makes with a tangent 
to the surface), and the “angle of reflection” is the corresponding angle (0r) for the 
reflected wave.

Incident 
ray

Reflected
ray

FIGURE 15-21
Law of reflection: 0r =  0̂ .

15—8 Interference
Interference refers to what happens when two waves pass through the same region 
of space at the same time. Consider, for example, the two wave pulses on a cord 
traveling toward each other as shown in Fig. 15-22. In Fig. 15-22a the two pulses have 
the same amplitude, but one is a crest and the other a trough; in Fig. 15-22b they are 
both crests. In both cases, the waves meet and pass right by each other. However, in 
the region where they overlap, the resultant displacement is the algebraic sum o f 
their separate displacements (a crest is considered positive and a trough negative). 
This is another example of the principle of superposition. In Fig. 15-22a, the two 
waves have opposite displacements at the instant they pass one another, and they 
add to zero. The result is called destructive interference. In Fig. 15-22b, at the instant 
the two pulses overlap, they produce a resultant displacement that is greater than the 
displacement of either separate pulse, and the result is constructive interference.

FIGURE 15-22 Two wave pulses 
pass each other. Where they overlap, 
interference occurs: (a) destructive, 
and (b) constructive.

(a)

Pulses far apart, 
approaching

Pulses overlap 
precisely 

(for an instant)

(b)

Time A
Pulses far apart,

receding r v / -



Constructive
interference

Destructive 
interference

(a) (b)

FIGURE 15-23 (a) Interference of water waves, (b) Constructive interference occurs where one wave’s maximum (a crest) 
m eets the other’s maximum. Destructive interference (“flat water”) occurs where one w ave’s maximum (a crest) 
m eets the other’s miminum (a trough).

When two rocks are thrown into a pond simultaneously, the two sets of 
circular waves interfere with one another as shown in Fig. 15-23a. In some areas 
of overlap, crests of one wave repeatedly meet crests of the other (and troughs 
meet troughs), Fig. 15-23b. Constructive interference is occuring at these points, 
and the water continuously oscillates up and down with greater amplitude than 
either wave separately. In other areas, destructive interference occurs where the 
water does not move up and down at all over time. This is where crests of one wave 
meet troughs of the other, and vice versa. Figure 15-24a shows the displacement 
of two identical waves graphically as a function of time, as well as their sum, for 
the case of constructive interference. For constructive interference (Fig. 15-24a), 
the two waves are in phase. At points where destructive interference occurs 
(Fig. 15-24b) crests of one wave repeatedly meet troughs of the other wave and 
the two waves are out of phase by one-half wavelength or 180°. The crests of one 
wave occur a half wavelength behind the crests of the other wave. The relative 
phase of the two water waves in Fig. 15-23 in most areas is intermediate between 
these two extremes, resulting in partially destructive interference, as illustrated 
in Fig. 15-24c. If the amplitudes of two interfering waves are not equal, fully 
destructive interference (as in Fig. 15-24b) does not occur.

FIGURE 15-24 Graphs showing two identical waves, and their sum, as a function o f tim e at three locations. 
In (a) the two waves interfere constructively, in (b) destructively, and in (c) partially destructively.
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15—9 Standing Waves; Resonance

(C)

FIGURE 15-25 Standing waves 
corresponding to three resonant 
frequencies.

If you shake one end of a cord and the other end is kept fixed, a continuous wave will 
travel down to the fixed end and be reflected back, inverted, as we saw in 
Fig. 15-18a. As you continue to vibrate the cord, waves will travel in both directions, 
and the wave traveling along the cord, away from your hand, will interfere with the 
reflected wave coming back. Usually there will be quite a jumble. But if you vibrate the 
cord at just the right frequency, the two traveling waves will interfere in such a way that 
a large-amplitude standing wave will be produced, Fig. 15-25. It is called a “standing 
wave” because it does not appear to be traveling. The cord simply appears to have 
segments that oscillate up and down in a fixed pattern. The points of destructive 
interference, where the cord remains still at all times, are called nodes. Points of 
constructive interference, where the cord oscillates with maximum amplitude, are called 
antinodes. The nodes and antinodes remain in fixed positions for a particular frequency.

Standing waves can occur at more than one frequency. The lowest frequency of 
vibration that produces a standing wave gives rise to the pattern shown in 
Fig. 15-25a.The standing waves shown in Figs. 15-25b and 15-25c are produced at 
precisely twice and three times the lowest frequency, respectively, assuming the 
tension in the cord is the same. The cord can also vibrate with four loops (four 
antinodes) at four times the lowest frequency, and so on.

The frequencies at which standing waves are produced are the natural frequencies 
or resonant frequencies of the cord, and the different standing wave patterns shown 
in Fig. 15-25 are different “resonant modes of vibration.” A standing wave on a cord 
is the result of the interference of two waves traveling in opposite directions. 
A standing wave can also be considered a vibrating object at resonance. Standing waves 
represent the same phenomenon as the resonance of a vibrating spring or pendulum, 
which we discussed in Chapter 14. However, a spring or pendulum has only one 
resonant frequency, whereas the cord has an infinite number of resonant frequencies, 
each of which is a whole-number multiple of the lowest resonant frequency.

Consider a string stretched between two supports that is plucked like a guitar or 
violin string, Fig. 15-26a. Waves of a great variety of frequencies will travel in both 
directions along the string, will be reflected at the ends, and will travel back in the 
opposite direction. Most of these waves interfere with each other and quickly die 
out. However, those waves that correspond to the resonant frequencies of the string 
will persist. The ends of the string, since they are fixed, will be nodes. There may be 
other nodes as well. Some of the possible resonant modes of vibration (standing 
waves) are shown in Fig. 15-26b. Generally, the motion will be a combination of 
these different resonant modes, but only those frequencies that correspond to a 
resonant frequency will be present.

ring is plucked, (b) Only standing waves corresponding to resonant frequencies persist for long.FIGURE 15-26 (a) A  string 

(a) (b)

I Fundamental or first harmonic,/^

First overtone or second harmonic,/2 = 2f\



To determine the resonant frequencies, we first note that the wavelengths of the 
standing waves bear a simple relationship to the length £ of the string. The lowest 
frequency, called the fundamental frequency, corresponds to one antinode (or loop). 
And as can be seen in Fig. 15-26b, the whole length corresponds to one-half 
wavelength. Thus £ = \X x, where Ax stands for the wavelength of the fundamental 
frequency. The other natural frequencies are called overtones; for a vibrating string 
they are whole-number (integral) multiples of the fundamental, and then are also 
called harmonics, with the fundamental being referred to as the first harmonic.1̂ The 
next mode of vibration after the fundamental has two loops and is called the second 
harmonic (or first overtone), Fig. 15-26b. The length of the string £ at the second 
harmonic corresponds to one complete wavelength: £ = A2. For the third and fourth 
harmonics, £ = §A3, and £ = 2A4, respectively, and so on. In general, we can write

£ = where n = 1,2,3, •••.

The integer n labels the number of the harmonic: n = 1 for the fundamental, 
n = 2 for the second harmonic, and so on. We solve for Xn and find

2£
Xn = — ’ n = 1,2,3," n

To find the frequency /  of each vibration we use Eq. 15-1, /  = v/X, and we see that

/„ = y  = n Yl = n fu  "  = 1’2 , 3 , (15-17b)

where = v/Xx = v/2£ is the fundamental frequency. We see that each resonant 
frequency is an integer multiple of the fundamental frequency.

Because a standing wave is equivalent to two traveling waves moving in opposite 
directions, the concept of wave velocity still makes sense and is given by Eq. 15-2 
in terms of the tension Fx in the string and its mass per unit length (/ j l  =  m / £ ) .  

That is, v = VFT/fi  for waves traveling in both directions.

EXAMPLE 15-8 Piano string. A piano string is 1.10 m long and has a mass of
9.00 g. (a) How much tension must the string be under if it is to vibrate at a funda­
mental frequency of 131 Hz? (b) What are the frequencies of the first four harmonics?
APPROACH To determine the tension, we need to find the wave speed using 
Eq. 15-1 (v = A/), and then use Eq. 15-2, solving it for FT.
SOLUTION (a) The wavelength of the fundamental is A = 2£ = 2.20 m 
(Eq. 15-17a with n = 1). The speed of the wave on the string is v = Xf = 
(2.20m)(l31 s-1) = 288 m/s. Then we have (Eq. 15-2)

Ft = tx.v2 = ^ v 2 = f 9-° ° * ,! °  kgW m / s ) 2 = 679 N.I \  1.10m
(b) The frequencies of the second, third, and fourth harmonics are two, three, and 
four times the fundamental frequency: 262,393, and 524 Hz, respectively.
NOTE The speed of the wave on the string is not the same as the speed of the 
sound wave that the piano string produces in the air (as we shall see in Chapter 16).

A standing wave does appear to be standing in place (and a traveling wave 
appears to move). The term “standing” wave is also meaningful from the point of view 
of energy. Since the string is at rest at the nodes, no energy flows past these points. 
Hence the energy is not transmitted down the string but “stands” in place in the string.

Standing waves are produced not only on strings, but on any object that is 
struck, such as a drum membrane or an object made of metal or wood. The resonant 
frequencies depend on the dimensions of the object, just as for a string they 
depend on its length. Large objects have lower resonant frequencies than small 
objects. All musical instruments, from stringed instruments to wind instruments (in 
which a column of air vibrates as a standing wave) to drums and other percussion



FIGURE 15-27 Example 15-9: 
possible lengths for the string.

£ = 1.57 m

£ = 3.14 m

Mathematical Representation of a Standing Wave
As we saw, a standing wave can be considered to consist of two traveling waves that 
move in opposite directions. These can be written (see Eqs. 15-10c and 15-13c)

I \ ( x , t )  = A sm (kx  — cot) and D2(x ,t) = A sin(kx + cot)
since, assuming no damping, the amplitudes are equal as are the frequencies and 
wavelengths. The sum of these two traveling waves produces a standing wave 
which can be written mathematically as

D = Di + D2 = A[sin(kx — cot) + sin(A:x + cot)].
From the trigonometric identity s in ^  + sin02 = 2sinl(d1 + 62)cos^(d1 — we
can rewrite this as 

D = 2A  sin kx  cos cot. (15-18)
If we let x = 0 at the left-hand end of the string, then the right-hand end is at 
x = £ where £ is the length of the string. Since the string is fixed at its two ends 
(Fig. 15-26), D(x, t) must be zero at x = 0 and at x = £. Equation 15-18 
already satisfies the first condition (D = 0 at x = 0) and satisfies the second 
condition if sin k£ = 0 which means

k£ = 7r, 277, 37t, • ■ •, mr, • ■ •
where n = an integer. Since k = 2tt/X , then A = 2£/n, which is just Eq. 15-17a.

Equation 15-18, with the condition A = 2£/n, is the mathematical representation 
of a standing wave. We see that a particle at any position x vibrates in simple 
harmonic motion (because of the factor cos cot). All particles of the string vibrate with 
the same frequency /  = co/2tt, but the amplitude depends on x and equals 
2Asinkx. (Compare this to a traveling wave for which all particles vibrate 
with the same amplitude.) The amplitude has a maximum, equal to 2A, when 
kx = 77/ 2, 377/2, 57r/2, and so on—that is, at

A 3A 5A x — —’— ’— ,••••
4 4 4

These are, of course, the positions of the antinodes (see Fig. 15-26).

EXAMPLE 15-9 Wave forms. Two waves traveling in opposite directions on 
a string fixed at x = 0 are described by the functions

D1 = (0.20 m) sin(2.0x -  4.0t) and D2 = (0.20 m) sin (2.0x + 4.0t) 
(where x is in m, t is in s), and they produce a standing wave pattern. Determine (a) 
the function for the standing wave, (b) the maximum amplitude at x = 0.45 m, 
(c) where the other end is fixed (x > 0), (d) the maximum amplitude, and where 
it occurs.
APPROACH We use the principle of superposition to add the two waves. The 
given waves have the form we used to obtain Eq. 15-18, which we thus can use. 
SOLUTION (a) The two waves are of the form D = A sin(kx ± cot), so 

k  = 2.0m_1 and co = 4.0 s-1.
These combine to form a standing wave of the form of Eq. 15-18:

D = 2A  sin kx  cos cot = (0.40 m) sin(2.0x) cos(4.0£), 
where x is in meters and t in seconds.
(b) At jc = 0.45 m,

D = (0.40 m) sin(0.90) cos(4.0£) = (0.31 m) cos(4.0£).
The maximum amplitude at this point is D = 0.31 m and occurs when cos(4.01) = 1.
(c) These waves make a standing wave pattern, so both ends of the string must be 
nodes. Nodes occur every half wavelength, which for our string is

A 1 277 77 ^
-  = = 7 7 m = 1.57m.2 k 2.0



(d) The nodes occur at x = 0, x = 1.57 m, and, if the string is longer than 
£ = 1.57 m, at x = 3.14 m, 4.71m, and so on. The maximum amplitude 
(antinode) is 0.40 m [from part (b) above] and occurs midway between the nodes. 
For £ = 1.57 m, there is only one antinode, at x = 0.79 m.

15—10 Refraction
When any wave strikes a boundary, some of the energy is reflected and some is 
transmitted or absorbed. When a two- or three-dimensional wave traveling in one 
medium crosses a boundary into a medium where its speed is different, the trans­
mitted wave may move in a different direction than the incident wave, as shown in 
Fig. 15-28. This phenomenon is known as refraction. One example is a water wave; 
the velocity decreases in shallow water and the waves refract, as shown in 
Fig. 15-29 below. [When the wave velocity changes gradually, as in Fig. 15-29, 
without a sharp boundary, the waves change direction (refract) gradually.]

In Fig. 15-28, the velocity of the wave in medium 2 is less than in medium 1. In 
this case, the wave front bends so that it travels more nearly parallel to the 
boundary. That is, the angle o f refraction, 0r , is less than the angle o f incidence, 0X. 
To see why this is so, and to help us get a quantitative relation between 0r and 0t , 
let us think of each wave front as a row of soldiers. The soldiers are marching from 
firm ground (medium 1) into mud (medium 2) and hence are slowed down after 
the boundary. The soldiers that reach the mud first are slowed down first, and the 
row bends as shown in Fig. 15-30a. Let us consider the wave front (or row of 
soldiers) labeled A in Fig. 15-30b. In the same time t that moves a distance 
£x = vxt, we see that A2 moves a distance £2 = v2t. The two right triangles in 
Fig. 15-30b, shaded yellow and green, have the side labeled a in common. Thus

sin 0i = — = ----a a
since a is the hypotenuse, and

V21sin 02 = — --------a a
Dividing these two equations, we obtain the law of refraction:

sin 02 _ v2
sin 0X V\

Since 61 is the angle of incidence (0j), and 02 is the angle of refraction (0r), Eq. 15-19 
gives the quantitative relation between the two. If the wave were going in the opposite 
direction, the geometry would not change; only 61 and 02 would change roles: 0X would 
be the angle of refraction and 02 the angle of incidence. Clearly then, if the wave 
travels into a medium where it can move faster, it will bend the opposite way, 0r > 0j. 
We see from Eq. 15-19 that if the velocity increases, the angle increases, and vice versa.

Earthquake waves refract within the Earth as they travel through rock layers of 
different densities (and therefore the velocity is different) just as water waves do. Light 
waves refract as well, and when we discuss light, we shall find Eq. 15-19 very useful.

(15-19)

FIGURE 15-28 Refraction of 
waves passing a boundary.

FIGURE 15-29 Water waves 
refract gradually as they approach 
the shore, as their velocity decreases. 
There is no distinct boundary, as in 
Fig. 15-28, because the wave 
velocity changes gradually.

trThis Section and the next are covered in more detail in Chapters 32 to 35 on optics.

FIGURE 15-30 (a) Soldier analogy 
to derive (b) law of refraction for 
waves.



@  P H Y S I C S A P P L I E D
Earthquake w ave refraction

EXAMPLE 15-10 Refraction of an earthquake wave. An earthquake P wave 
passes across a boundary in rock where its velocity increases from 6.5km/s to
8.0 km/s. If it strikes this boundary at 30°, what is the angle of refraction? 
APPROACH We apply the law of refraction, Eq. 15-19, smd2/sm d1 = v2/v 1# 
SOLUTION Since sin 30° = 0.50, Eq. 15-19 yields 

(8.0 m/s)
sin 6? = (0.50) = 0.62.

(6.5 m/s)
So 02 = sin-1 (0.62) = 38°.
NOTE Be careful with angles of incidence and refraction. As we discussed in 
Section 15-7 (Fig. 15-21), these angles are between the wave front and the 
boundary line, or—equivalently—between the ray (direction of wave motion) 
and the line perpendicular to the boundary. Inspect Fig. 15-30b carefully.

15—11 Diffraction

FIGURE 15-31  Wave diffraction. 
The waves are coming from the 
upper left. N ote how the waves, as 
they pass the obstacle, bend around 
it, into the “shadow region” behind 
the obstacle.

Waves spread as they travel. When they encounter an obstacle, they bend around it 
somewhat and pass into the region behind it, as shown in Fig. 15-31 for water 
waves. This phenomenon is called diffraction.

The amount of diffraction depends on the wavelength of the wave and on 
the size of the obstacle, as shown in Fig. 15-32. If the wavelength is much 
larger than the object, as with the grass blades of Fig. 15-32a, the wave bends 
around them almost as if they are not there. For larger objects, parts (b) and (c), 
there is more of a “shadow” region behind the obstacle where we might not 
expect the waves to penetrate—but they do, at least a little. Then notice in 
part (d), where the obstacle is the same as in part (c) but the wavelength is 
longer, that there is more diffraction into the shadow region. As a rule of thumb, 
only if  the wavelength is smaller than the size o f the object will there be a 
significant shadow region. This rule applies to reflection from an obstacle as well. 
Very little of a wave is reflected unless the wavelength is smaller than the size of 
the obstacle.

A rough guide to the amount of diffraction is

0(radians) «

where 6 is roughly the angular spread of waves after they have passed through an 
opening of width £ or around an obstacle of width t

FIGURE 1 5 -3 2  Water waves passing objects of various sizes. Note that the longer the wavelength 
compared to the size of the object, the more diffraction there is into the “shadow region.”

(a )  W ater w aves passing (b ) Stick in w ater (c )  Short-wave length (d ) Long-wavclcngth
blades o f grass waves passing log waves passing log

That waves can bend around obstacles, and thus can carry energy to areas 
behind obstacles, is very different from energy carried by material particles. 
A clear example is the following: if you are standing around a corner on one side 
of a building, you cannot be hit by a baseball thrown from the other side, but you 
can hear a shout or other sound because the sound waves diffract around the



Summary
Vibrating objects act as sources of waves that travel outward 
from the source. Waves on water and on a string are examples. 
The wave may be a pulse (a single crest) or it may be continuous 
(many crests and troughs).

The wavelength of a continuous wave is the distance 
between two successive crests (or any two identical points on 
the wave shape).

The frequency is the number of full wavelengths (or crests) 
that pass a given point per unit time.

The wave velocity (how fast a crest moves) is equal to the 
product of wavelength and frequency,

v = A/. (15-1)

The amplitude of a wave is the maximum height of a crest, or 
depth of a trough, relative to the normal (or equilibrium) level.

In a transverse wave, the oscillations are perpendicular to 
the direction in which the wave travels. An example is a wave on 
a string.

In a longitudinal wave, the oscillations are along (parallel 
to) the line of travel; sound is an example.

The velocity of both longitudinal and transverse waves in 
matter is proportional to the square root of an elastic force 
factor divided by an inertia factor (or density).

Waves carry energy from place to place without matter 
being carried. The intensity of a wave (energy transported 
across unit area per unit time) is proportional to the square of 
the amplitude of the wave.

For a wave traveling outward in three dimensions from a 
point source, the intensity (ignoring damping) decreases with 
the square of the distance from the source,

/ o c i .rl
(15-8a)

The amplitude decreases linearly with distance from the source.
A one-dimensional transverse wave traveling in a medium 

to the right along the x axis (% increasing) can be represented by 
a formula for the displacement of the medium from equilibrium 
at any point x as a function of time as

where

D (x,t) = A  sin J (jc ■ 

= A sin (A:* -  cot)

k = —  
A

(15-10a)

(15-10c)

(15-11)

and
ft) = 277/.

If a wave is traveling toward decreasing values of x,
D (x,t) = Asin(kx + cot). (15-13c)

[*Waves can be described by the wave equation, which in 
one dimension is d2D/dx2 = (1/v2) d2D/dt2, Eq. 15-16.]

When two or more waves pass through the same region of 
space at the same time, the displacement at any given point will 
be the vector sum of the displacements of the separate waves. 
This is the principle of superposition. It is valid for mechanical 
waves if the amplitudes are small enough that the restoring 
force of the medium is proportional to displacement.

Waves reflect off objects in their path. When the wave front 
of a two- or three-dimensional wave strikes an object, the angle of 
reflection equals the angle of incidence, which is the law of reflection. 
When a wave strikes a boundary between two materials in which 
it can travel, part of the wave is reflected and part is transmitted.

When two waves pass through the same region of space 
at the same time, they interfere. From the superposition 
principle, the resultant displacement at any point and time is 
the sum of their separate displacements. This can result in 
constructive interference, destructive interference, or something 
in between depending on the amplitudes and relative phases of 
the waves.

Waves traveling on a cord of fixed length interfere with 
waves that have reflected off the end and are traveling back in 
the opposite direction. At certain frequencies, standing waves 
can be produced in which the waves seem to be standing still 
rather than traveling. The cord (or other medium) is vibrating as 
a whole. This is a resonance phenomenon, and the frequencies at 
which standing waves occur are called resonant frequencies. The 
points of destructive interference (no vibration) are called 
nodes. Points of constructive interference (maximum amplitude 
of vibration) are called antinodes. On a cord of length £ fixed at 
both ends, the wavelengths of standing waves are given by

Xn = M/n (15-17a)
where n is an integer.

[*Waves change direction, or refract, when traveling from 
one medium into a second medium where their speed is 
different. Waves spread, or diffract, as they travel and encounter 
obstacles. A rough guide to the amount of diffraction is
6 ~ A/£, where A is the wavelength and £ the width of an 
opening or obstacle. There is a significant “shadow region” only 
if the wavelength A is smaller than the size of the obstacle.]

Questions
1. Is the frequency of a simple periodic wave equal to the 

frequency of its source? Why or why not?
2. Explain the difference between the speed of a transverse wave 

traveling down a cord and the speed of a tiny piece of the cord.
3. You are finding it a challenge to climb from one boat up 

onto a higher boat in heavy waves. If the climb varies from
2.5 m to 4.3 m, what is the amplitude of the wave? Assume 
the centers of the two boats are a half wavelength apart.

4. What kind of waves do you think will travel down a hori­
zontal metal rod if von strike its end (ti\ verticallv from

5. Since the density of air decreases with an increase in 
temperature, but the bulk modulus B is nearly independent 
of temperature, how would you expect the speed of sound 
waves in air to vary with temperature?

6. Describe how you could estimate the speed of water waves 
across the surface of a pond.

7. The speed of sound in most solids is somewhat greater than in 
air, yet the density of solids is much greater (103 to 104 times). 
Explain.

8. Give two reasons whv circular water waves decrease in



9. Two linear waves have the same amplitude and speed, and 
otherwise are identical, except one has half the wavelength 
of the other. Which transmits more energy? By what factor?

10. Will any function of (jc -  v t)—see Eq. 15-14—represent a 
wave motion? Why or why not? If not, give an example.

11. When a sinusoidal wave crosses the boundary between two 
sections of cord as in Fig. 15-19, the frequency does not change 
(although the wavelength and velocity do change). Explain why.

12. If a sinusoidal wave on a two-section cord (Fig. 15-19) is 
inverted upon reflection, does the transmitted wave have a 
longer or shorter wavelength?

13. Is energy always conserved when two waves interfere? 
Explain.

14. If a string is vibrating as a standing wave in three segments, 
are there any places you could touch it with a knife blade 
without disturbing the motion?

Problems__________________
15-1 and 15-2 Characteristics of Waves
1. (I) A fisherman notices that wave crests pass the bow of his 

anchored boat every 3.0 s. He measures the distance between 
two crests to be 8.0 m. How fast are the waves traveling?

2. (I) A sound wave in air has a frequency of 262 Hz and 
travels with a speed of 343 m/s. How far apart are the wave 
crests (compressions)?

3. (I) Calculate the speed of longitudinal waves in (a) water, 
(b) granite, and (c) steel.

4. (I) AM radio signals have frequencies between 550 kHz and 
1600 kHz (kilohertz) and travel with a speed of 3.0 X 108 m/s. 
What are the wavelengths of these signals? On FM the 
frequencies range from 88 MHz to 108 MHz (megahertz) and 
travel at the same speed. What are their wavelengths?

5. (I) Determine the wavelength of a 5800-Hz sound wave 
traveling along an iron rod.

6. (II) A cord of mass 0.65 kg is stretched between two supports
8.0 m apart. If the tension in the cord is 140 N, how long will it 
take a pulse to travel from one support to the other?

7. (II) A 0.40-kg cord is stretched between two supports, 7.8 m 
apart. When one support is struck by a hammer, a transverse 
wave travels down the cord and reaches the other support 
in 0.85 s. What is the tension in the cord?

8. (II) A sailor strikes the side of his ship just below the 
surface of the sea. He hears the echo of the wave reflected 
from the ocean floor directly below 2.8 s later. How deep is the 
ocean at this point?

9. (II) A ski gondola is connected to the top of a hill by a steel 
cable of length 660 m and diameter 1.5 cm. As the gondola 
comes to the end of its run, it bumps into the terminal and 
sends a wave pulse along the cable. It is observed that it 
took 17 s for the pulse to return, (a) What is the speed of the 
pulse? (b) What is the tension in the cable?

10. (II) P and S waves from an earthquake travel at different 
speeds, and this difference helps locate the earthquake 
“epicenter” (where the disturbance took place), (a) Assuming 
typical speeds of 8.5km/s and 5.5km/s for P and S waves, 
respectively, how far away did the earthquake occur if a 
particular seismic station detects the arrival of these two
tvnes o f w aves 1 7 min anart? (h \ Ts one seismic: station snffi-

15. When a standing wave exists on a string, the vibrations of 
incident and reflected waves cancel at the nodes. Does this 
mean that energy was destroyed? Explain.

16. Can the amplitude of the standing waves in Fig. 15-25 be 
greater than the amplitude of the vibrations that cause them 
(up and down motion of the hand)?

17. When a cord is vibrated as in Fig. 15-25 by hand or by a 
mechanical oscillator, the “nodes” are not quite true nodes 
(at rest). Explain. [Hint: Consider damping and energy flow 
from hand or oscillator.]

* 18. AM radio signals can usually be heard behind a hill, but FM
often cannot. That is, AM signals bend more than FM. 
Explain. (Radio signals, as we shall see, are carried by elec­
tromagnetic waves whose wavelength for AM is typically 
200 to 600 m and for FM about 3 m.)

* 19. If we knew that energy was being transmitted from one place
to another, how might we determine whether the energy was 
being carried by particles (material objects) or by waves?

11. (II) The wave on a string shown in Fig. 15-33 is moving to 
the right with a speed of 1.10 m/s. (a) Draw the shape of the 
string 1.00 s later and indicate which parts of the string are 
moving up and which down at that instant, (b) Estimate the 
vertical speed of point A on the string at the instant shown 
in the Figure.

2 cm 
1 cm

-1 cm 
-2  cm

0 1 m 2 m 3 m

FIGURE 15-33 Problem 11.

12. (II) A 5.0 kg ball hangs from a steel wire 1.00 mm in 
diameter and 5.00 m long. What would be the speed of a 
wave in the steel wire?

13. (II) Two children are sending signals along a cord of total 
mass 0.50 kg tied between tin cans with a tension of 35 N. It 
takes the vibrations in the string 0.50 s to go from one child 
to the other. How far apart are the children?

*14. (II) Dimensional analysis. Waves on the surface of the 
ocean do not depend significantly on the properties of 
water such as density or surface tension. The primary 
“return force” for water piled up in the wave crests is 
due to the gravitational attraction of the Earth. Thus the 
speed v (m/s) of ocean waves depends on the acceleration 
due to gravity g. It is reasonable to expect that v might also 
depend on water depth h and the wave’s wavelength A. 
Assume the wave speed is given by the functional form 
v = CgahP\y, where a, j8, y, and C are numbers without 
dimension, (a) In deep water, the water deep below does 
not affect the motion of waves at the surface. Thus v 
should be independent of depth h (i.e., /3 = 0). Using only 
dimensional analysis (Section 1-7), determine the formula for 
the speed of surface waves in deep water. (b) In shallow 
water, the speed of surface waves is found experimentally to be 
independent of the wavelength (i.e., 7 = 0). Using only 
dim ensional analvsis. determ ine the formula for the sneed o f



15-3 Energy Transported by Waves
15. (I) Two earthquake waves of the same frequency travel 

through the same portion of the Earth, but one is carrying
3.0 times the energy. What is the ratio of the amplitudes of 
the two waves?

16. (II) What is the ratio of (a) the intensities, and (b) the ampli­
tudes, of an earthquake P wave passing through the Earth 
and detected at two points 15 km and 45 km from the source.

17. (II) Show that if damping is ignored, the amplitude A  of 
circular water waves decreases as the square root of the 
distance r from the source: A  oc 1 /V r .

18. (II) The intensity of an earthquake wave passing through 
the Earth is measured to be 3.0 X 106 J/m 2-s at a distance 
of 48 km from the source, (a) What was its intensity when it 
passed a point only 1.0 km from the source? (b) At what 
rate did energy pass through an area of 2.0 m2 at 1.0 km?

19. (II) A small steel wire of diameter 1.0 mm is connected to an 
oscillator and is under a tension of 7.5 N. The frequency of 
the oscillator is 60.0 Hz and it is observed that the amplitude 
of the wave on the steel wire is 0.50 cm. (a) What is the 
power output of the oscillator, assuming that the wave is not 
reflected back? (b) If the power output stays constant but 
the frequency is doubled, what is the amplitude of the wave?

20. (II) Show that the intensity of a wave is equal to the energy 
density (energy per unit volume) in the wave times the 
wave speed.

21. (II) (a) Show that the average rate with which energy is 
transported along a cord by a mechanical wave of frequency /  
and amplitude A  is

P = 27T2/Jivf2̂ ,
where v is the speed of the wave and /jl is the mass per unit 
length of the cord. (b) If the cord is under a tension 
Ft = 135 N and has mass per unit length 0.10 kg/m, what 
power is required to transmit 120-Hz transverse waves of 
amplitude 2.0 cm?

15-4 Mathematical Representation of Traveling Wave
22. (I) A transverse wave on a wire is given by D(x, t ) = 

0.015 sin (25* -  1200?) where D  and x  are in meters and ? is 
in seconds, (a) Write an expression for a wave with the same 
amplitude, wavelength, and frequency but traveling in the 
opposite direction, (b) What is the speed of either wave?

23. (I) Suppose at ? = 0, a wave shape is represented by 
D = A  sin{2ttx/A + (f>); that is, it differs from Eq. 15-9 by 
a constant phase factor cf). What then will be the equation 
for a wave traveling to the left along the x  axis as a function 
of x  and ??

24. (II) A transverse traveling wave on a cord is represented by 
D  = 0.22 sin(5.6x + 34?) where D and x  are in meters and t 
is in seconds. For this wave determine (a) the wavelength, 
(b) frequency, (c) velocity (magnitude and direction), 
(id) amplitude, and (e) maximum and minimum speeds of 
particles of the cord.

25. (II) Consider the point x  = 1.00 m on the cord of 
Example 15-5. Determine (a) the maximum velocity of this 
point, and (b) its maximum acceleration, (c) What is its 
velocity and acceleration at ? = 2.50 s?

26. (II) A transverse wave on a cord is given by D {x,t)  =
0.12 sin(3.0x -  15.0?), where D and x are in m and ? is in s. 
At t = 0 90 s. what are the Hisnlaeement and veloeitv nf the

27. (II) A transverse wave pulse travels to the right along a 
string with a speed v = 2.0 m/s. At ? = 0 the shape of the 
pulse is given by the function

D = 0.45 cos (2.6a: + 1.2), 
where D and x  are in meters, (a) Plot D  vs. x  at ? = 0.
(b) Determine a formula for the wave pulse at any time t 
assuming there are no frictional losses, (c) Plot D(x, t ) vs. x 
at ? = 1.0 s. (d) Repeat parts (b) and (c) assuming the 
pulse is traveling to the left. Plot all 3 graphs on the same 
axes for easy comparison.

28. (II) A 524-Hz longitudinal wave in air has a speed of 
345 m/s. (a) What is the wavelength? (b) How much time is 
required for the phase to change by 90° at a given point in 
space? (c) At a particular instant, what is the phase differ­
ence (in degrees) between two points 4.4 cm apart?

29. (II) Write the equation for the wave in Problem 28 traveling 
to the right, if its amplitude is 0.020 cm, and D = -0.020 cm, 
at t = 0 and x  = 0.

30. (II) A sinusoidal wave traveling on a string in the negative x 
direction has amplitude 1.00 cm, wavelength 3.00 cm, and 
frequency 245 Hz. At ? = 0, the particle of string at x  = 0 is 
displaced a distance D = 0.80 cm above the origin and is 
moving upward, (a) Sketch the shape of the wave at t = 0 and
(b) determine the function of x  and t that describes the wave.

*15-5 The Wave Equation
*31. (II) Determine if the function D = A sin cos a>? is a 

solution of the wave equation.
* 32. (II) Show by direct substitution that the following functions 

satisfy the wave equation: (a) D(x, ?) = A  In(x + vt);
(b) D{x, ?) = (x -  v t ) \

*33. (II) Show that the wave forms of Eqs. 15-13 and 15-15 
satisfy the wave equation, Eq. 15-16.

*34. (II) Let two linear waves be represented by Di = fi(x , t) 
and D2 = f 2(x, ?). If both these waves satisfy the wave 
equation (Eq. 15-16), show that any combination 
D = C1D1 + C2D2 does as well, where C\ and C2 are 
constants.

*35. (II) Does the function D(x, t ) = e~̂ kx~ ^ 2 satisfy the wave 
equation? Why or why not?

*36. (II) In deriving Eq. 15-2, v = \ / f t /fx, for the speed of 
a transverse wave on a string, it was assumed that the 
wave’s amplitude A  is much less than its wavelength A. 
Assuming a sinusoidal wave shape D = A  sin(kx -  (at), 
show via the partial derivative v' = dD/dt  that the 
assumption A  «  A implies that the maximum transverse 
speed v'max of the string itself is much less than the wave 
velocity. If A  = A/100 determine the ratio v'max/v.

15-7 Reflection and Transmission
37. (II) A cord has two sections with linear densities of

0.10 kg/m and 0.20 kg/m, Fig. 15-34. An incident wave, 
given by D = (0.050 m) sin(7.5jc -  12.0?), where x  is in 
meters and ? in seconds, travels along the lighter cord.
(a) What is the wavelength on the lighter section of the 
cord? (b) What is the tension in the cord? (c) What is the 
wavelength when the wave travels on the heavier section?

fii = 0.10 kg/m fi2 = 0.20 kg/m



38. (II) Consider a sine wave traveling down the stretched two- 
part cord of Fig. 15-19. Determine a formula (a) for the 
ratio of the speeds of the wave in the two sections, v ^ /v ^ , 
and (b) for the ratio of the wavelengths in the two sections. 
(The frequency is the same in both sections. Why?) (c) Is 
the wavelength larger in the heavier cord or the lighter?

39. (II) Seismic reflection prospecting is commonly used to map 
deeply buried formations containing oil. In this technique, a 
seismic wave generated on the Earth’s surface (for example, 
by an explosion or falling weight) reflects from the subsurface 
formation and is detected upon its return to ground level. 
By placing ground-level detectors at a variety of locations 
relative to the source, and observing the variation in the 
source-to-detector travel times, the depth of the subsurface 
formation can be determined, (a) Assume a ground-level 
detector is placed a distance x  away from a seismic-wave 
source and that a horizontal boundary between overlying 
rock and a subsurface formation exists at depth D 
(Fig. 15-35a). Determine an 
expression for the time t 
taken by the reflected 
wave to travel from source 
to detector, assuming the 
seismic wave propagates 
at constant speed v.
(b) Suppose several detec­
tors are placed along a line 
at different distances x 
from the source as in 
Fig. 15-35b. Then, when a 
seismic wave is generated, f

(a)

the different travel times t Source! x i
for each detector are 
measured. Starting with 
your result from part (a), 
explain how a graph of t2 
vs. x2 can be used to 
determine D.

FIGURE 15-35
Problem 39.

Detectors

(b)

40. (Ill) A cord stretched to a tension FT consists of two sections 
(as in Fig. 15-19) whose linear densities are h i  and fx2 . Take 
x  = 0 to be the point (a knot) where they are joined, with ^  
referring to that section of cord to the left and that to the 
right. A sinusoidal wave, D = A  sinf/c^x -  V\ t)], starts at 
the left end of the cord. When it reaches the knot, part of it is 
reflected and part is transmitted. Let the equation of the 
reflected wave be D r = A R sin[fci(jt + Vit)\ and that for 
the transmitted wave be D j = A T sin[/c2(* -  v2t) ]. Since the 
frequency must be the same in both sections, we have coi = o)2 
or k\V\ = k2v2. (a) Because the cord is continuous, a point 
an infinitesimal distance to the left of the knot has the same 
displacement at any moment (due to incident plus reflected 
waves) as a point just to the right of the knot (due to 
the transmitted wave). Thus show that A  = A T + A R . 
(b) Assuming that the slope (dD/dx) of the cord just to the left 
of the knot is the same as the slope just to the right of the knot, 
show that the amplitude of the reflected wave is given by

15-8 Interference
41. (I) The two pulses shown in Fig. 15-36 are moving toward 

each other, (a) Sketch the shape of the string at the moment 
they directly overlap, (b) Sketch the shape of the string a 
few moments later, (c) In Fig. 15-22a, at the moment the 
pulses pass each other, the string is straight. What has 
happened to the energy at this 
moment?

A v — Vl ~ ”2
VX +  V2

A  = k2 ~ 
kn + /Ci

A.

FIGURE 15-36
Problem 41.

42. (II) Suppose two linear waves of equal amplitude and 
frequency have a phase difference 4> as they travel in the 
same medium. They can be represented by

Di =  A s in ( k x  — cot)

D2 = A s in ( k x  — cot +  </>).

(a) Use the trigonometric identity sin $1 + sin d2 = 
2 s i n + 02)cos|(0! -  02) to show that the resultant 
wave is given by

D  =  ^ 2 A c o s y j  s in ^ jc  -  cot +  y j .

(b) What is the amplitude of this resultant wave? Is the wave 
purely sinusoidal, or not? (c) Show that constructive interfer­
ence occurs if <f> = 0, 27r, 4tt, and so on, and destructive 
interference occurs if <f> = it, 3tt, 577, etc. (d) Describe the 
resultant wave, by equation and in words, if <j> = tt/2.

15-9 Standing Waves; Resonance
43. (I) A violin string vibrates at 441 Hz when unfingered. At 

what frequency will it vibrate if it is fingered one-third of 
the way down from the end? (That is, only two-thirds of the 
string vibrates as a standing wave.)

44. (I) If a violin string vibrates at 294 Hz as its fundamental 
frequency, what are the frequencies of the first four harmonics?

45. (I) In an earthquake, it is noted that a footbridge oscillated 
up and down in a one-loop (fundamental standing wave) 
pattern once every 1.5 s. What other possible resonant 
periods of motion are there for this bridge? What frequencies 
do they correspond to?

46. (I) A particular string resonates in four loops at a frequency 
of 280 Hz. Name at least three other frequencies at which it 
will resonate.

47. (II) A cord of length 1.0 m has two equal-length sections 
with linear densities of 0.50 kg/m and 1.00 kg/m. The tension 
in the entire cord is constant. The ends of the cord are 
oscillated so that a standing wave is set up in the cord with a 
single node where the two sections meet. What is the ratio 
of the oscillatory frequencies?

48. (II) The velocity of waves on a string is 96 m/s. If the 
frequency of standing waves is 445 Hz, how far apart are the 
two adjacent nodes?

49. (II) If two successive harmonics of a vibrating string are 
240 Hz and 320 Hz, what is the frequency of the fundamental?

50. (II) A guitar string is 90.0 cm long and has a mass of 3.16 g. 
From the bridge to the support post (= £) is 60.0 cm and the
strina is under a tension o f  59.0 N. W hat are the frennennies



51. (II) Show that the frequency of standing waves on a cord of 
length i  and linear density /jl, which is stretched to a 
tension FT, is given by

where n is an integer.
52. (II) One end of a horizontal string of linear density

6.6 X IO-4 kg/m is attached to a small-amplitude mechan­
ical 120-Hz oscillator. The string passes over a pulley, a 
distance I = 1.50 m away, and weights are hung from this 
end, Fig. 15-37. What mass m  must be hung from this end of 
the string to produce (a) one loop, (b) two loops, and
(c) five loops of a standing wave? Assume the string at the 
oscillator is a
node, which is i hi
nearly true. i m

%

(Jsril Liitor &

FIGURE 15-37 m
Problems 52 and 53.

53. (II) In Problem 52, Fig. 15-37, the length of the string may 
be adjusted by moving the pulley. If the hanging mass m  is 
fixed at 0.070 kg, how many different standing wave patterns 
may be achieved by varying i  between 10 cm and 1.5 m?

54. (II) The displacement of a standing wave on a string is given 
by D = 2.4sin(0.60jt) cos(42£), where x  and D  are in 
centimeters and t is in seconds, (a) What is the distance (cm) 
between nodes? (b) Give the amplitude, frequency, and 
speed of each of the component waves, (c) Find the speed of 
a particle of the string at x  = 3.20 cm when t = 2.5 s.

55. (II) The displacement of a transverse wave traveling on a 
string is represented by = 4.2 sin(0.84x -  Alt + 2.1), 
where D1 and x  are in cm and t in s. (a) Find an equation that 
represents a wave which, when traveling in the opposite 
direction, will produce a standing wave when added to this 
one. (b) What is the equation describing the standing wave?

56. (II) When you slosh the water back and forth in a tub at just 
the right frequency, the water alternately rises and falls at each 
end, remaining relatively calm at the center. Suppose the 
frequency to produce such a standing wave in a 45-cm-wide 
tub is 0.85 Hz. What is the speed of the water wave?

57. (II) A particular violin string plays at a frequency of 294 Hz. If 
the tension is increased 15%, what will the new frequency be?

58. (II) Two traveling waves are described by the functions

Di = Asm.{kx — cot)

D2 = A sin (kx  + cot),

where A  = 0.15 m, k  = 3.5 m-1, and co = 1.8 s-1. (a) Plot 
these two waves, from x  = 0 to a point x(>  0) that includes 
one full wavelength. Choose t = 1.0 s. (b) Plot the sum of 
the two waves and identify the nodes and antinodes in 
the plot, and compare to the analytic (mathematical) 
representation.

59. (II) Plot the two waves given in Problem 58 and their sum,
as a function o f  tim e from t = 0 to  t = T  fo n e  neriodV

60. (II) A standing wave on a 1.64-m-long horizontal string 
displays three loops when the string vibrates at 120 Hz. The 
maximum swing of the string (top to bottom) at the center 
of each loop is 8.00 cm. (a) What is the function describing 
the standing wave? (b) What are the functions describing 
the two equal-amplitude waves traveling in opposite 
directions that make up the standing wave?

61. (II) On an electric guitar, a “pickup” under each string trans­
forms the string’s vibrations directly into an electrical 
signal. If a pickup is placed 16.25 cm from one of the fixed ends 
of a 65.00-cm-long string, which of the harmonics from 
n = 1 to n = 12 will not be “picked up” by this pickup?

62. (II) A 65-cm guitar string is fixed at both ends. In the 
frequency range between 1.0 and 2.0 kHz, the string is found 
to resonate only at frequencies 1.2,1.5, and 1.8 kHz. What is 
the speed of traveling waves on this string?

63. (II) Two oppositely directed traveling waves given by 
Di = (5.0 mm) cos[(2.0m_1)jc -  (3.0rad/s)f] and D2 = 
(5.0 mm) cos[(2.0m_1)jc + (3.0 rad/s)^] form a standing 
wave. Determine the position of nodes along the x  axis.

64. (II) A wire is composed of aluminum with length
= 0.600 m and mass per unit length m  = 2.70 g/m 

joined to a steel section with length i2 = 0.882 m and mass 
per unit length /jl2 = 7.80 g/m. This composite wire is fixed 
at both ends and held at a uniform tension of 135 N. Find 
the lowest frequency standing wave that can exist on this 
wire, assuming there is a node at the joint between 
aluminum and steel. How many nodes (including the two at 
the ends) does this standing wave possess?

*15-10 Refraction
*65. (I) An earthquake P wave traveling 8.0km/s strikes a 

boundary within the Earth between two kinds of material. If 
it approaches the boundary at an incident angle of 52° and 
the angle of refraction is 31°, what is the speed in the second 
medium?

* 66. (I) Water waves approach an underwater “shelf” where the
velocity changes from 2.8 m/s to 2.5 m/s. If the incident 
wave crests make a 35° angle with the shelf, what will be the 
angle of refraction?

* 67. (II) A sound wave is traveling in warm air (25°C) when it hits a
layer of cold (—15°C) denser air. If the sound wave hits the 
cold air interface at an angle of 33°, what is the angle of refrac­
tion? The speed of sound as a function of temperature can be 
approximated by v = (331 + 0.60 T) m/s, where Tis in °C.

* 68. (II) Any type of wave that reaches a boundary beyond which
its speed is increased, there is a maximum incident angle if 
there is to be a transmitted refracted wave. This maximum inci­
dent angle 0iM corresponds to an angle of refraction equal to 
90°. If 6{ > 0iM, all the wave is reflected at the boundary and 
none is refracted, because this would correspond to sin 0r >  1 
(where 0r is the angle of refraction), which is impossible. This 
phenomenon is referred to as total internal reflection, (a) Find a 
formula for 0iM using the law of refraction, Eq. 15-19. (b) How 
far from the bank should a trout fisherman stand (Fig. 15-38) 
so trout won’t be frightened 
by his voice (1.8 m above 
the ground)? The speed 
of sound is about
343 m/s in air and 
1440 m/s in water.

FIGURE 1 5 - 3 8



*69. (II) A longitudinal earthquake wave strikes a boundary 
between two types of rock at a 38° angle. As the wave crosses 
the boundary, the specific gravity of the rock changes from
3.6 to 2.8. Assuming that the elastic modulus is the same for 
both types of rock, determine the angle of refraction.

*15-11 Diffraction
* 70. (II) A satellite dish is about 0.5 m in diameter. According to 

the user’s manual, the dish has to be pointed in the direction 
of the satellite, but an error of about 2° to either side is allowed 
without loss of reception. Estimate the wavelength of the elec­
tromagnetic waves (speed = 3 X 108m/s) received by the dish.

| General Problems
71. A sinusoidal traveling wave has frequency 880 Hz and phase 

velocity 440 m/s. (a) At a given time, find the distance 
between any two locations that correspond to a difference 
in phase of tt/6  rad. (b) At a fixed location, by how much 
does the phase change during a time interval of 1.0 X 10-4 s?

72. When you walk with a cup of coffee (diameter 8 cm) at just 
the right pace of about one step per second, the coffee 
sloshes higher and higher in your cup until eventually it 
starts to spill over the top, Fig 15-39. Estimate the speed of 
the waves in the coffee.

FIGURE 15-39 Problem 72.

73. Two solid rods have the same bulk modulus but one is
2.5 times as dense as the other. In which rod will the speed 
of longitudinal waves be greater, and by what factor?

74. Two waves traveling along a stretched string have the same 
frequency, but one transports 2.5 times the power of the 
other. What is the ratio of the amplitudes of the two waves?

75. A bug on the surface of a pond is observed to move up and 
down a total vertical distance of 0.10 m, lowest to highest 
point, as a wave passes, (a) What is the amplitude of the 
wave? (b) If the amplitude increases to 0.15 m, by what 
factor does the bug’s maximum kinetic energy change?

76. A guitar string is supposed to vibrate at 247 Hz, but is measured 
to actually vibrate at 255 Hz. By what percentage should the 
tension in the string be changed to get the frequency to the 
correct value?

77. An earthquake-produced surface wave can be approxi­
mated by a sinusoidal transverse wave. Assuming a 
frequency of 0.60 Hz (typical of earthquakes, which actually 
include a mixture of frequencies), what amplitude is needed 
so that objects begin to leave contact with the ground? 
[Hint: Set the acceleration a > g.\

78. A uniform cord of length £ and mass m  is hung vertically 
from a support, (a) Show that the speed of transverse waves 
in this cord is Vg/z, where h is the height above the lower 
end. (h} H o w  Inno does it take for a n iilse to  travel iinward

79.

80.

83.

84.

A transverse wave pulse travels to the right along a string 
with a speed v = 2.4 m/s. At t = 0 the shape of the pulse 
is given by the function

D = 4.0 m3
x2 + 2.0 m2

where D and x  are in meters, (a) Plot D vs. x  at t = 0 
from x = —10 m to x = +10 m. (b) Determine a formula 
for the wave pulse at any time t assuming there are no 
frictional losses, (c) Plot D (x ,t) vs. x  at t = 1.00 s. 
(id) Repeat parts (b) and (c) assuming the pulse is traveling 
to the left.
(a) Show that if the tension in a stretched string is changed by 
a small amount AF^, the frequency of the fundamental is 
changed by an amount A/  = l(A.FT/FT)f. (b) By what 
percent must the tension in a piano string be increased or 
decreased to raise the frequency from 436 Hz to 442 Hz.
(c) Does the formula in part (a) apply to the overtones as well?

81. Two strings on a musical instrument are tuned to play at 
392 Hz (G) and 494 Hz (B). (a) What are the frequencies of 
the first two overtones for each string? (b) If the two strings 
have the same length and are under the same tension, what 
must be the ratio of their masses (ntQ/mA)l (c) If the 
strings, instead, have the same mass per unit length and are 
under the same tension, what is the ratio of their lengths 
[£g/£a)1 (d) If their masses and lengths are the same, what 
must be the ratio of the tensions in the two strings?

82. The ripples in a certain groove 10.8 cm from the center of a 
33-rpm phonograph record have a wavelength of 1.55 mm. 
What will be the frequency of the sound emitted?
A 10.0-m-long wire of mass 152 g is stretched under a 
tension of 255 N. A pulse is generated at one end, and
20.0 ms later a second pulse is generated at the opposite 
end. Where will the two pulses first meet?
A wave with a frequency of 220 Hz and a wavelength 
of 10.0 cm is traveling along a cord. The maximum speed of 
particles on the cord is the same as the wave speed. What is 
the amplitude of the wave?

85. A string can have a “free” end if that end is attached to a 
ring that can slide without friction on a vertical pole 
(Fig. 15-40). Determine the wavelengths of the resonant 
vibrations of such a string with one end fixed and the 
other free.

Free
fend

FIGURE 15-40



86. A highway overpass was observed to resonate as one full 
loop ( | A) when a small earthquake shook the ground 
vertically at 3.0 Hz. The highway department put a support 
at the center of the overpass, anchoring it to the ground as 
shown in Fig. 15-41. What resonant frequency would you 
now expect for the overpass? It is noted that earthquakes 
rarely do significant shaking above 5 or 6 Hz. Did the modi­
fications do any good? Explain.

89.

Hefitrc nKuiiiiujuion

Added support

90. Two wave pulses are traveling in opposite directions with 
the same speed of 7.0 cm/s as shown in Fig. 15-43. At 
t = 0, the leading edges of the two pulses are 15 cm apart. 
Sketch the wave pulses at t = 1.0,2.0 and 3.0 s.

20
Dt̂ UinLV lemj 

FIGURE 15-43 Problem 90.

91. For a spherical wave traveling uniformly away from a point 
source, show that the displacement can be represented by

After modificziiinti

FIGURE 15-41 Problem 86.

87. Figure 15-42 shows the wave shape at two instants of time 
for a sinusoidal wave traveling to the right. What is the 
mathematical representation of this wave?

88. Estimate the average power of a water wave when it hits the 
chest of an adult standing in the water at the seashore. 
Assume that the amplitude of the wave is 0.50 m, the wave­
length is 2.5 m, and the period is 4.0 s.
A tsunami of wavelength 215 km and velocity 550 km /h 
travels across the Pacific Ocean. As it approaches Hawaii, 
people observe an unusual decrease of sea level in the 
harbors. Approximately how much time do they have to run 
to safety? (In the absence of knowledge and warning, 
people have died during tsunamis, some of them attracted 
to the shore to see stranded fishes and boats.)

D = ( — ] sin(A:r -  (ot),

where r is the radial distance from the source and A  is a 
constant.

92. What frequency of sound would have a wavelength the 
same size as a 1.0-m-wide window? (The speed of sound is
344 m/s at 20°C.) What frequencies would diffract through 
the window?

* Numerical/Computer
* 93. (II) Consider a wave generated by the periodic vibration of a

source and given by the expression D (x ,t)  = A  sin2 k (x  -  ct), 
where x  represents position (in meters), t represents time 
(in seconds), and c is a positive constant. We choose 
A  = 5.0 m and c = 0.50 m/s. Use a spreadsheet to make a 
graph with three curves of D (x ,t ) from x  = -5 .0  m to 
+5.0 m in steps of 0.050 m at times t = 0.0, 1.0, and 2.0 s. 
Determine the speed, direction of motion, period, and wave­
length of the wave.

*94. (II) The displacement of a bell-shaped wave pulse is described 
by a relation that involves the exponential function:

D (x ,t)  = A e-a(x~vt?

where the constants A  = 10.0 m, a = 2.0 m-2, and 
v = 3.0 m/s. (a) Over the range —10.0 m <  x  <  +10.0 m, 
use a graphing calculator or computer program to plot D{x, t) 
at each of the three times t = 0, t = 1.0, and t = 2.0 s. Do 
these three plots demonstrate the wave-pulse shape shifting 
along the x  axis by the expected amount over the span of 
each 1.0-s interval? (b) Repeat part (a) but assume 
D(x, t) = Ae~<x+Vt?.

Answers to Exercises

A: (c). C: (c).



“If music be the food of physics, play on.” 
[See Shakespeare, T w elfth  N ight, line 1.]
Stringed instruments depend on 

transverse standing waves on strings to 
produce their harmonious sounds. The 
sound of wind instruments originates in 
longitudinal standing waves of an air 
column. Percussion instruments create 
more complicated standing waves.
Besides examining sources of sound, 

we also study the decibel scale of sound 
level, sound wave interference and beats, 
the Doppler effect, shock waves and 
sonic booms, and ultrasound imaging.

Sound
CONTENTS
16-1 Characteristics of Sound
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CHAPTER-OPENING QUESTION—Guess now!
A pianist plays the note “middle C.” The sound is made by the vibration of the 
piano string and is propagated outward as a vibration of the air (which can reach 
your ear). Comparing the vibration on the string to the vibration in the air, which 
of the following is true?

(a) The vibration on the string and the vibration in the air have the same wavelength.
(b) They have the same frequency.
(c) They have the same speed.
(d) Neither wavelength, frequency, nor speed are the same in the air as on the string.

Sound is associated with our sense of hearing and, therefore, with the 
physiology of our ears and the psychology of our brain, which interprets the 
sensations that reach our ears. Tlie term sound also refers to the physical 
sensation that stimulates our ears: namely, longitudinal waves.

We can distinguish three aspects of any sound. First, there must be a source for 
a sound; as with any mechanical wave, the source of a sound wave is a vibrating 
object. Second, the energy is transferred from the source in the form of longitudinal 
sound waves. And third, the sound is detected bv an ear or bv a microphone. We



16—1 Characteristics of Sound
We saw in Chapter 15, Fig. 15-5, how a vibrating drumhead produces a sound 
wave in air. Indeed, we usually think of sound waves traveling in the air, for 
normally it is the vibrations of the air that force our eardrums to vibrate. But 
sound waves can also travel in other materials.

Two stones struck together under water can be heard by a swimmer beneath 
the surface, for the vibrations are carried to the ear by the water. When you put 
your ear flat against the ground, you can hear an approaching train or truck. In this 
case the ground does not actually touch your eardrum, but the longitudinal wave 
transmitted by the ground is called a sound wave just the same, for its vibrations 
cause the outer ear and the air within it to vibrate. Sound cannot travel in the 
absence of matter. For example, a bell ringing inside an evacuated jar cannot be 
heard, nor does sound travel through the empty reaches of outer space.

The speed of sound is different in different materials. In air at 0°C and 1 atm, 
sound travels at a speed of 331 m/s. We saw in Eq. 15-4 (v = V B /p) that the 
speed depends on the elastic modulus, B, and the density, p, of the material. Thus 
for helium, whose density is much less than that of air but whose elastic modulus is 
not greatly different, the speed is about three times as great as in air. In liquids and 
solids, which are much less compressible and therefore have much greater elastic 
moduli, the speed is larger still. The speed of sound in various materials is given in 
Table 16-1. The values depend somewhat on temperature, but this is significant 
mainly for gases. For example, in air at normal (ambient) temperatures, the speed 
increases approximately 0.60 m/s for each Celsius degree increase in temperature:

(331 + 0.60 T) m/s, [speed of sound in air]

where T  is the temperature in °C. Unless stated otherwise, we will assume in this 
Chapter that T  = 20°C, so that1 v = [331 + (0.60)(20)] m/s = 343 m/s.

CONCEPTUAL EXAMPLE I6-T 1 Distance from a lightning strike. A rule of 
thumb that tells how close lightning has struck is, “one mile for every five seconds 
before the thunder is heard.” Explain why this works, noting that the speed of light 
is so high (3 X 108 m/s, almost a million times faster than sound) that the time for 
light to travel to us is negligible compared to the time for the sound.

RESPONSE The speed of sound in air is about 340 m/s, so to travel 1 km = 1000 m 
takes about 3 seconds. One mile is about 1.6 kilometers, so the time for the thunder 
to travel a mile is about (1.6)(3) ~ 5 seconds.

| EXERCISE A What would be the rule used in Example 16-1  in terms of kilometers?

Two aspects of any sound are immediately evident to a human listener: “loudness” 
and “pitch.” Each refers to a sensation in the consciousness of the listener. But to each 
of these subjective sensations there corresponds a physically measurable quantity. 
Loudness is related to the intensity (energy per unit time crossing unit area) in the 
sound wave, and we shall discuss it in Section 16-3.

The pitch of a sound refers to whether it is high, like the sound of a piccolo or 
violin, or low, like the sound of a bass drum or string bass. The physical quantity 
that determines pitch is the frequency, as was first noted by Galileo. The lower the 
frequency, the lower the pitch; the higher the frequency, the higher the pitch.* The 
best human ears can respond to frequencies from about 20 Hz to almost 20,000 Hz. 
(Recall that 1 Hz is 1 cycle per second.) This frequency range is called the audible 
range. These limits vary somewhat from one individual to another. One general 
trend is that as people age, they are less able to hear high frequencies, so the 
high-frequency limit may be 10,000 Hz or less.

TABLE 16-1 Speed of 
Sound in Various Materials
(20°C and 1 atm)

Material Speed (m/s)
Air 343
Air (0°C) 331
Helium 1005
Hydrogen 1300
Water 1440
Sea water 1560
Iron and steel — 5000
Glass ~ 4500
Aluminum « 5100
Hardwood -4 0 0 0
Concrete ~ 3000

( ^ P H Y S I C S  A P P L I E D
H ow  far away is the lightning?



A  CAUTI ON
D o not confuse 

ultrasonic (high frequency) 
with supersonic (high speed)

@ P H Y S I C S  A P P L I E D
Autofocusing camera

FIGURE 16-1 Example 16-2. 
Autofocusing camera emits an 
ultrasonic pulse. Solid lines 
represent the wave front of the 
outgoing wave pulse moving to the 
right; dashed lines represent the 
wave front of the pulse reflected off 
the person’s face, returning to the 
camera. The time information allows 
the camera mechanism to adjust the 
lens to focus at the proper distance.

Sound waves whose frequencies are outside the audible range may reach the 
ear, but we are not generally aware of them. Frequencies above 20,000 Hz are 
called ultrasonic (do not confuse with supersonic, which is used for an object 
moving with a speed faster than the speed of sound). Many animals can hear 
ultrasonic frequencies; dogs, for example, can hear sounds as high as 50,000 Hz, 
and bats can detect frequencies as high as 100,000 Hz. Ultrasonic waves have 
many useful applications in medicine and other fields, which we discuss later in 
this Chapter.

■ >:f‘V; IJ I  Autofocusing with sound waves. Older autofocusing cameras
determine the distance by emitting a pulse of very high frequency (ultrasonic) 
sound that travels to the object being photographed, and include a sensor that 
detects the returning reflected sound, as shown in Fig. 16-1. To get an idea of the 
time sensitivity of the detector, calculate the travel time of the pulse for an object
(a) 1.0 m away, and (b) 20 m away.
APPROACH If we assume the temperature is about 20°C, then the speed of 
sound is 343 m/s. Using this speed v and the total distance d back and forth in 
each case, we can obtain the time (v = d/t).
SOLUTION (a) The pulse travels 1.0 m to the object and 1.0 m back, for a total of
2.0 m. We solve for t in v = d/t:

2.0 m
t = d-  = v = 0.0058 s = 5.8 ms.

343 m/s
(b) The total distance now is 2 X 20 m = 40 m, so 

40 m
t = = 0.12 s = 120 ms.

343 m/s
NOTE Newer autofocus cameras use infrared light (v = 3 X 108m/s) instead of 
ultrasound, and/or a digital sensor array that detects light intensity differences between 
adjacent receptors as the lens is automatically moved back and forth, choosing the 
lens position that provides maximum intensity differences (sharpest focus).

Sound waves whose frequencies are below the audible range (that is, less than 
20 Hz) are called infrasonic. Sources of infrasonic waves include earthquakes, 
thunder, volcanoes, and waves produced by vibrating heavy machinery. This last 
source can be particularly troublesome to workers, for infrasonic waves—even 
though inaudible—can cause damage to the human body. These low-frequency 
waves act in a resonant fashion, causing motion and irritation of the body’s organs.

16—2 Mathematical Representation 
of Longitudinal Waves

In Section 15-4, we saw that a one-dimensional sinusoidal wave traveling along 
the x axis can be represented by the relation (Eq. 15-10c)

FIGURE 16-2 Longitudinal sound 
wave traveling to the right, and its 
graphical representation in terms of 
pressure.

EZxpaJisicjn 
(pressure lower)

Compression
(pressure hit:l)LT)

D = A  sin (kx -  wt), (16-1)

where D is the displacement of the wave at position x and time t, and A  is its 
amplitude (maximum value). The wave number k  is related to the wavelength A by 
k = 2tt/X , and o) = 2irf where /  is the frequency. For a transverse wave—such 
as a wave on a string—the displacement D is perpendicular to the direction of wave 
propagation along the x axis. But for a longitudinal wave the displacement D is 
along the direction o f wave propagation. That is, D is parallel to x and represents the 
displacement of a tiny volume element of the medium from its equilibrium position.

Longitudinal (sound) waves can also be considered from the point of view of 
variations in pressure rather than displacement. Indeed, longitudinal waves are 
often called pressure waves. The pressure variation is usually easier to measure



Figure 16-3 shows a graphical representation of a sound wave in air in terms of
(a) displacement and (b) pressure. Note that the displacement wave is a quarter 
wavelength, or 90° (7r/2rad), out of phase with the pressure wave: where the 
pressure is a maximum or minimum, the displacement from equilibrium is zero; and 
where the pressure variation is zero, the displacement is a maximum or minimum.

Pressure Wave Derivation
Let us now derive the mathematical representation of the pressure variation in a 
traveling longitudinal wave. From the definition of the bulk modulus, B (Eq. 12-7),

A P = -B (  AV/V),
where AP represents the pressure difference from the normal pressure P0 (no wave 
present) and A V /V  is the fractional change in volume of the medium due to the 
pressure change AP. The negative sign reflects the fact that the volume decreases 
(Ay < 0) if the pressure is increased. Consider now a layer of fluid through which 
the longitudinal wave is passing (Fig. 16-4). If this layer has thickness Ax and area S, 
then its volume is V = S Ax. As a result of pressure variation in the wave, the volume 
will change by an amount A V = S AD, where AD is the change in thickness of this 
layer as it compresses or expands. (Remember that D represents the displacement of 
the medium.) Thus we have

S AD
AP - B S Ax

To be precise, we take the limit of Ax 

AP = - B  —  ’
dX

0, so we obtain

(16-2)

where we use the partial derivative notation since D is a function of both x and t. If the 
displacement D is sinusoidal as given by Eq. 16-1, then we have from Eq. 16-2 that

AP = -(B A k)co s(kx  -  cot). (16-3)
(Here A  is the displacement amplitude, not area which is S.) Thus the pressure varies 
sinusoidally as well, but is out of phase from the displacement by 90° or a quarter 
wavelength, as in Fig. 16-3. The quantity BAk  is called the pressure amplitude, APM. 
It represents the maximum and minimum amounts by which the pressure varies 
from the normal ambient pressure. We can thus write

AP =  - A P m cos(A:x -  cot), (16-4)
where, using v = V B/p  (Eq. 15-4), and k = co/v = 2 irf/v  (Eq. 15-12), then 

A PM = BAk  
= pv2 Ak
= lirpv A f.  (16-5)

16-3  Intensity of Sound:_Decibels
Loudness is a sensation in the consciousness of a human being and is related to a 
physically measurable quantity, the intensity of the wave. Intensity is defined as the 
energy transported by a wave per unit time across a unit area perpendicular to 
the energy flow. As we saw in Chapter 15, intensity is proportional to the square of the 
wave amplitude. Intensity has units of power per unit area, or watts/meter2 (W/m2).

The human ear can detect sounds with an intensity as low as IO-12 W/m2 and as 
high as 1 W/m2 (and even higher, although above this it is painful). This is an incredibly 
wide range of intensity, spanning a factor of 1012 from lowest to highest. Presumably 
because of this wide range, what we perceive as loudness is not directly proportional to 
the intensity. To produce a sound that sounds about twice as loud requires a sound 
wave that has about 10 times the intensity. This is roughly valid at any sound level for 
frequencies near the middle of the audible range. For example, a sound wave of 
intensitv 10 2 W/m2 sounds to an average human beine like it is about twice as loud as
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FIGURE 16-3 Representation of a 
sound wave in space at a given instant 
in terms of (a) displacement, 
and (b) pressure.

FIGURE 16-4 Longitudinal wave 
in a fluid moves to the right. A  thin 
layer of fluid, in a thin cylinder of 
area S and thickness Ax, changes in 
volume as a result of pressure 
variation as the wave passes. A t the 
moment shown, the pressure will 
increase as the wave moves to the 
right, so the thickness of our layer 
will decrease, by an amount AD.
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Wide range o f  human hearing



Sound Level
Because of this relationship between the subjective sensation of loudness and the 
physically measurable quantity “intensity,” sound intensity levels are usually 
specified on a logarithmic scale. The unit on this scale is a bel, after the inventor 
Alexander Graham Bell, or much more commonly, the decibel (dB), which is 
3̂  bel (10 dB = 1 bel). The sound level, /3, of any sound is defined in terms 
of its intensity, I, as

A  CAUTI ON
0 dB does not mean zero intensity 

TABLE 16-2
Intensity of Various Sounds

Sound
Source Level
of the Sound (dB)

Intensity
(W /m 2)

Jet plane at 30 m 140 100
Threshold of pain 120 1
Loud rock concert 120 1
Siren at 30 m 100 1 X 10“2
Truck traffic 90 1 X 10“3
Busy street traffic 80 1 X 10“4
Noisy restaurant 70 1 X o

1 LA

Talk, at 50 cm 65 3 X 10“6
Quiet radio 40 1 X 10“8
Whisper 30 1 X i o - 9
Rustle of leaves 10 1 X i o - 11
Threshold of hearing 0 1 X 10“12

jS(indB) = 10 log —;
■*o

(16- 6)

where 70 is the intensity of a chosen reference level, and the logarithm 
is to the base 10. I0 is usually taken as the minimum intensity audible to a 
good ear—the “threshold of hearing,” which is I0 = 1.0 X 10_12W/m2. Thus, 
for example, the sound level of a sound whose intensity I  = 1.0 X 10-10W/m2 
will be

f3 = 10 log
1.0 X 10~1Q W/m2
1.0 X 10-12 W/m2

= 10 log 100 = 20 dB,

since log 100 is equal to 2.0. (Appendix A has a brief review of logarithms.) 
Notice that the sound level at the threshold of hearing is OdB. That is, 
/3 = 10 log 10-12/10-12 = 10 log 1 = 0 since log 1 = 0 .  Notice too that an increase 
in intensity by a factor of 10 corresponds to a sound level increase of 10 dB. An 
increase in intensity by a factor of 100 corresponds to a sound level increase of 
20 dB. Thus a 50-dB sound is 100 times more intense than a 30-dB sound, and so on.

Intensities and sound levels for a number of common sounds are listed in 
Table 16-2.

EXAMPLE 16-3 Sound intensity on the street. At a busy street corner, the 
sound level is 75 dB. What is the intensity of sound there?

APPROACH We have to solve Eq. 16-6 for intensity I, remembering that 
/0 = 1.0 X 10-12 W/m2.
SOLUTION From Eq. 16-6

i 1 Plog — = TT’

SO

10

-  = 10^10.

With /3 = 75, then

/  = /010 /̂10 = (1.0 X 10“12W/m2)(l07-5) = 3.2 X 10“5W/m2. 

NOTE Recall that x = logy is the same as y = 10* (Appendix A).

P H Y S I C S  A P P L I E D
Loudspeaker response ( +  3 dB )

EXAMPLE 16-4 Loudspeaker response. A high-quality loudspeaker is 
advertised to reproduce, at full volume, frequencies from 30 Hz to 18,000 Hz 
with uniform sound level + 3 dB. That is, over this frequency range, the sound 
level output does not vary by more than 3 dB for a given input level. By what 
factor does the intensity change for the maximum change of 3 dB in output 
sound level?

APPROACH Let us call the average intensity Ix and the average sound level . 
Then the maximum intensitv. L . corresDonds to a level Bn = j8i + 3 dB. We



Pi -  Pi = 10 log Y  -  10 log Y
in  in

SOLUTION Equation 16-6 gives

3 dB = 101 lo g y  -  lo g ~  
4> 4)

10 log y  
h

because (log a — log b) = log a/b (see Appendix A). This last equation gives

log y ~ = 0.30, 
h

— = 10°-30 = 2.0. 
h

So + 3 dB corresponds to a doubling or halving of the intensity.

It is worth noting that a sound-level difference of 3 dB (which corresponds to 
a doubled intensity, as we just saw) corresponds to only a very small change in the 
subjective sensation of apparent loudness. Indeed, the average human can distin­
guish a difference in sound level of only about 1 or 2 dB.

I EXERCISE B If an increase of 3 dB means “twice as intense,” what does an increase of 
I 6 dB mean?

CONCEPTUAL EXAMPLE 16-5 I Trumpet players. A trumpeter plays at a 
sound level of 75 dB. Three equally loud trumpet players join in. What is the new 
sound level?

RESPONSE The intensity of four trumpets is four times the intensity of one 
trumpet (= /j) or 4Ix. The sound level of the four trumpets would be

P = 10 log = 10 log 4 + 10 log y

= 6.0 dB + 75 dB = 81 dB.

EXERCISE C From Table 16-2 , we see that ordinary conversation corresponds to a sound 
level of about 65 dB. If two people are talking at once, the sound level is (a) 65 dB, 
(b) 68 dB, (c) 75 dB, (d) 130 dB, (e) 62 dB.

Normally, the loudness or intensity of a sound decreases as you get farther 
from the source of the sound. In interior rooms, this effect is altered because of 
reflections from the walls. However, if a source is in the open so that sound can 
radiate out freely in all directions, the intensity decreases as the inverse square of 
the distance,

,  1/  oc
rl

as we saw in Section 15-3. Over large distances, the intensity decreases faster than 
1 /r2 because some of the energy is transferred into irregular motion of air 
molecules. This loss haooens more for higher freauencies. so anv sound of mixed



@  P H Y S I C S A P P L I E D
Jet plane noise

FIGURE 16-5 Example 16-6. 
Airport worker with sound- 
intensity-reducing ear covers 
(headphones).

^ P H Y S I C S  A P P L I E D
Incredible sensitivity o f  the ear

EXAMPLE 16-6 Airplane roar. The sound level measured 30 m from a jet plane 
is 140 dB. What is the sound level at 300 m? (Ignore reflections from the ground.) 
APPROACH Given the sound level, we can determine the intensity at 30 m using 
Eq. 16-6. Because intensity decreases as the square of the distance, ignoring 
reflections, we can find I  at 300 m and again apply Eq. 16-6 to obtain the sound level. 
SOLUTION The intensity I  at 30 m is

140 dB = 10 log I 1

(3 = 101og| „n_12 ' . 2 ) = 120 dB.

10 W/m

14 “  IOgV 10 12 W/m2 
We raise both sides of this equation to the power 10 (recall 10logx = x) and have

1014 = ------ ------- >
10-12 W/m2

so I  = (1014)(10-12 W/m2) = 102 W/m2. At 300 m, 10 times as far, the intensity will 
be (^)2 = 1/100 as much, or 1 W/m2. Hence, the sound level is 

1 W/m2 
10-12 W/m2

Even at 300 m, the sound is at the threshold of pain. This is why workers at 
airports wear ear covers to protect their ears from damage (Fig. 16-5).
NOTE Here is a simpler approach that avoids Eq. 16-6. Because the intensity 
decreases as the square of the distance, at 10 times the distance the intensity 
decreases by (^)2 = We can use the result that 10 dB corresponds to 
an intensity change by a factor of 10 (see text just before Example 16-3). Then 
an intensity change by a factor of 100 corresponds to a sound-level change of 
(2)(10dB) = 20 dB. This confirms our result above: 140 dB -  20 dB = 120 dB.

Intensity Related to Amplitude
The intensity I  of a wave is proportional to the square of the wave amplitude, as 
we saw in Chapter 15. We can therefore relate the amplitude quantitatively to the 
intensity I  or level (3, as the following Example shows.

EXAMPLE 16-7 How tiny the displacement is. (a) Calculate the displacement 
of air molecules for a sound having a frequency of 1000 Hz at the threshold of 
hearing. (b) Determine the maximum pressure variation in such a sound wave. 
APPROACH In Section 15-3 we found a relation between intensity I  and displace­
ment amplitude A  of a wave, Eq. 15-7. The amplitude of oscillation of air molecules 
is what we want to solve for, given the intensity. The pressure is found from Eq. 16-5. 
SOLUTION (a) At the threshold of hearing, /  = 1.0 X 10“12 W/m2 (Table 16-2). 
We solve for the amplitude A  in Eq. 15-7:

A - ± l ±
77f  V 2 PV

1 / 1.0 X 10“12W/m2
(3.14)(1.0 X 1 0 V 1) V (2)(l.29 kg/m3)(343 m/s)

= 1.1 X 10“n m,
where we have taken the density of air to be 1.29 kg/m3 and the speed of sound 
in air (assumed 20°C) as 343 m/s.
NOTE We see how incredibly sensitive the human ear is: it can detect displacements 
of air molecules which are actually less than the diameter of atoms (about 10-10 m). 
(b) Now we are dealing with sound as a pressure wave (Section 16-2). From Eq. 16-5, 

APm = lirpvA f



By combining Eqs. 15-7 and 16-5, we can write the intensity in terms of the 
pressure amplitude, APM:

•j yI  = 2tr2vp f2A2 = 2it v p f

I  = W
2 vp

Xlirpvf )

(16-7)

The intensity, when given in terms of pressure amplitude, thus does not depend on 
frequency.

The Ear's Response
The ear is not equally sensitive to all frequencies. To hear the same loudness for 
sounds of different frequencies requires different intensities. Studies averaged over 
large numbers of people have produced the curves shown in Fig. 16-6. On this 
graph, each curve represents sounds that seemed to be equally loud. The number 
labeling each curve represents the loudness level (the units are called phons), 
which is numerically equal to the sound level in dB at 1000 Hz. For example, the 
curve labeled 40 represents sounds that are heard by an average person to have 
the same loudness as a 1000-Hz sound with a sound level of 40 dB. From this 
40-phon curve, we see that a 100-Hz tone must be at a level of about 62 dB to be 
perceived as loud as a 1000-Hz tone of only 40 dB.

The lowest curve in Fig. 16-6 (labeled 0) represents the sound level, as a function 
of frequency, for the threshold o f hearing, the softest sound that is just audible by a 
very good ear. Note that the ear is most sensitive to sounds of frequency between 
2000 and 4000 Hz, which are common in speech and music. Note too that whereas 
a 1000-Hz sound is audible at a level of 0 dB, a 100-Hz sound must be nearly 40 dB 
to be heard. The top curve in Fig. 16-6, labeled 120 phons, represents the threshold 
o f pain. Sounds above this level can actually be felt and cause pain.

Figure 16-6 shows that at lower sound levels, our ears are less sensitive to the 
high and low frequencies relative to middle frequencies. The “loudness” control on 
some stereo systems is intended to compensate for this low-volume insensitivity. 
As the volume is turned down, the loudness control boosts the high and low 
frequencies relative to the middle frequencies so that the sound will have a more 
“normal-sounding” frequency balance. Many listeners, however, find the sound 
more pleasing or natural without the loudness control.

1 6 -4  Sources of Sound: 
Vibrating Strings and Air Columns

The source of any sound is a vibrating object. Almost any object can vibrate 
and hence be a source of sound. We now discuss some simple sources of 
sound, particularly musical instruments. In musical instruments, the source 
is set into vibration by striking, plucking, bowing, or blowing. Standing 
waves are produced and the source vibrates at its natural resonant frequencies. 
The vibrating source is in contact with the air (or other medium) and pushes on it to 
produce sound waves that travel outward. The frequencies of the waves are the same 
as those of the source, but the speed and wavelengths can be different. A drum has a 
stretched membrane that vibrates. Xylophones and marimbas have metal or wood 
bars that can be set into vibration. Bells, cymbals, and gongs also make use of a 
vibrating metal. Many instruments make use of vibrating strings, such as the violin, 
guitar, and piano, or make use of vibrating columns of air, such as the flute, trumpet, 
and pipe organ. We have already seen that the pitch of a pure sound is determined 
by the frequency. Typical frequencies for musical notes on the “equally tempered 
chromatic scale” are given in Table 16-3 for the octave beginning with middle C. 
Note that one octave corresponds to a doubling of frequency. For example, middle C 
has freauencv of 262 Hz whereas C' (C above middle O  has twice that freauencv.

Sound 
level (dB)

Intensity
(W/m2)

Frequency (Hz)

FIGURE 16-6 Sensitivity of the 
human ear as a function of 
frequency (see text). N ote that the 
frequency scale is “logarithmic” in 
order to cover a wide range of 
frequencies.

TABLE 16-3 Equally 
Tempered Chromatic Scalet

N ote Frequency (Hz)

C 262
C# or 277
D 294
D# or E^ 311
E 330
F 349
F# or 370
G 392
G# or A^ 415
A 440
A# or B^ 466
B 494
C' 524



Fundamental or first harmonic,/!

FIGURE 16-7 Standing waves on a 
string— only the lowest three frequencies 
are shown.

0 P H Y S I C S  A P P L I E D
Stringed instruments

(a)

(b)

FIGURE 16-8 The wavelength of
(a) an unfingered string is longer 
than that of (b) a fingered string. 
Hence, the frequency of the fingered 
string is higher. Only one string is 
shown on this guitar, and only the 
simplest standing wave, the 
fundamental, is shown.

Second overtone or third harmonic,/3 = 3f i

Stringed Instruments
We saw in Chapter 15, Fig. 15-26b, how standing waves are established on a string, and 
we show this again here in Fig. 16-7. Such standing waves are the basis for all stringed 
instruments. The pitch is normally determined by the lowest resonant frequency, the 
fundamental, which corresponds to nodes occurring only at the ends. The string 
vibrating up and down as a whole corresponds to a half wavelength as shown at the 
top of Fig. 16-7; so the wavelength of the fundamental on the string is equal to twice 
the length of the string. Therefore, the fundamental frequency is f x = v /k  = v/2£, 
where v is the velocity of the wave on the string (not in the air). The possible 
frequencies for standing waves on a stretched string are whole-number multiples 
of the fundamental frequency:

f n  =  n f l
V

n 2T
n = 1,2,3,

where n = 1 refers to the fundamental and n = 2,3, • • • are the overtones. All of 
the standing waves, n = 1,2,3, • • •, are called harmonics,1 as we saw in Section 15-9.

When a finger is placed on the string of a guitar or violin, the effective length of 
the string is shortened. So its fundamental frequency, and pitch, is higher since the 
wavelength of the fundamental is shorter (Fig. 16-8). The strings on a guitar or 
violin are all the same length. They sound at a different pitch because the strings 
have different mass per unit length, /x, which affects the velocity on the string, Eq. 15-2,

v = \ / F T/fjL. [stretched string]
Thus the velocity on a heavier string is lower and the frequency will be lower for the 
same wavelength. The tension FT may also be different. Adjusting the tension is 
the means for tuning the pitch of each string. In pianos and harps the strings are of 
different lengths. For the lower notes the strings are not only longer, but heavier as 
well, and the reason is illustrated in the following Example.

EXAMPLE 16-8 Piano strings. The highest key on a piano corresponds to a 
frequency about 150 times that of the lowest key. If the string for the highest note 
is 5.0 cm long, how long would the string for the lowest note have to be if it had 
the same mass per unit length and was under the same tension?
APPROACH Since v = \ / Ft //jl, the velocity would be the same on each string. So 
the frequency is inversely proportional to the length i  of the string ( / = v/X = v/2i). 
SOLUTION We can write, for the fundamental frequencies of each string, the ratio

I I  _  / h  

/ l

where the subscripts L and H refer to the lowest and highest notes, respectively. 
Thus ih = Ih( / h/ / l) = (5-0 cm) (150) = 750 cm, or 7.5 m. This would be ridicu­
lously long (« 25 ft) for a piano.
NOTE The longer strings of lower frequency are made heavier, of higher mass 
per unit length, so even on grand pianos the strings are less than 3 m long.



EXERCISE D Two strings have the same length and tension, but one is more massive than 
the other. Which plays the higher note?

EXAMPLE 16-9 Frequencies and wavelengths in the violin. A 0.32-m-long 
violin string is tuned to play A above middle C at 440 Hz. (a) What is the 
wavelength of the fundamental string vibration, and (b) what are the frequency 
and wavelength of the sound wave produced? (c) Why is there a difference?
APPROACH The wavelength of the fundamental string vibration equals twice the 
length of the string (Fig. 16-7). As the string vibrates, it pushes on the air, which 
is thus forced to oscillate at the same frequency as the string.
SOLUTION (a) From Fig. 16-7 the wavelength of the fundamental is 

A = 21 = 2(0.32 m) = 0.64 m = 64 cm.
This is the wavelength of the standing wave on the string.
(b) The sound wave that travels outward in the air (to reach our ears) has the 
same frequency, 440 Hz. Its wavelength is

343 m/s

A  CAUTI ON

= 0.78 m = 78 cm,440 Hz
where v is the speed of sound in air (assumed at 20°C), Section 16-1.
(c) The wavelength of the sound wave is different from that of the standing wave 
on the string because the speed of sound in air (343 m/s at 20°C) is different from 
the speed of the wave on the string (= /A = 440 Hz X 0.64 m = 280 m/s) 
which depends on the tension in the string and its mass per unit length.
NOTE The frequencies on the string and in the air are the same: the string and air 
are in contact, and the string “forces” the air to vibrate at the same frequency. 
But the wavelengths are different because the wave speed on the string is 
different than that in air.

Stringed instruments would not be very loud if they relied on their vibrating 
strings to produce the sound waves since the strings are too thin to compress and 
expand much air. Stringed instruments therefore make use of a kind of mechanical 
amplifier known as a sounding board (piano) or sounding box (guitar, violin), which 
acts to amplify the sound by putting a greater surface area in contact with the air 
(Fig. 16-9). When the strings are set into vibration, the sounding board or box is set 
into vibration as well. Since it has much greater area in contact with the air, it can 
produce a more intense sound wave. On an electric guitar, the sounding box is not 
so important since the vibrations of the strings are amplified electronically.

Wind Instruments
Instruments such as woodwinds, the brasses, and the pipe organ produce sound 
from the vibrations of standing waves in a column of air within a tube (Fig. 16-10). 
Standing waves can occur in the air of any cavity, but the frequencies present are 
complicated for any but very simple shapes such as the uniform, narrow tube of a 
flute or an organ pipe. In some instruments, a vibrating reed or the vibrating lip of 
the player helps to set up vibrations of the air column. In others, a stream of air is 
directed against one edge of the opening or mouthpiece, leading to turbulence 
which sets up the vibrations. Because of the disturbance, whatever its source, the 
air within the tube vibrates with a variety of frequencies, but only frequencies that 
correspond to standing waves will persist.

For a string fixed at both ends, Fig. 16-7, we saw that the standing waves have 
nodes (no movement) at the two ends, and one or more antinodes (large amplitude 
of vibration) in between. A node separates successive antinodes. The lowest- 
frequency standing wave, the fundamental, corresponds to a single antinode. The 
higher-frequency standing waves are called overtones or harmonics, as we saw in 
Section 15-9. Soecificallv. the first harmonic is the fundamental, the second harmonic

Speed o f  standing w ave on string 
speed o f  sound w ave in air

(a)

(b)

FIGURE 1 6 -9  (a) Piano, showing 
sounding board to which the strings 
are attached; (b) sounding box 
(guitar).

FIGURE 1 6 -1 0  Wind instruments: 
flute (left) and clarinet.



TUBE OPEN AT BOTH ENDS
(a) Displacement of air 

I
(b) Pressure variation in the air
----------------- 1-------------------

First harmonic = fundamental 
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-  ^m otion of air molecules]

node antinode
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FIGURE 16-11 Graphs of the three 
simplest modes of vibration (standing 
waves) for a uniform tube open at both 
ends (“open tube”). These simplest 
modes of vibration are graphed in (a), 
on the left, in terms of the motion of the 
air (displacement), and in (b), on the 
right, in terms of air pressure. Each 
graph shows the wave format at two 
times, A  and B, a half period apart. The 
actual motion of molecules for one 
case, the fundamental, is shown just 
below the tube at top left.

@ P H Y S I C S  A P P L I E D
Wind instruments

The situation is similar for a column of air in a tube of uniform diameter, but 
we must remember that it is now air itself that is vibrating. We can describe the 
waves either in terms of the flow of the air—that is, in terms of the displacement of 
air—or in terms of the pressure in the air (see Figs. 16-2 and 16-3). In terms of 
displacement, the air at the closed end of a tube is a displacement node since the air 
is not free to move there, whereas near the open end of a tube there will be an 
antinode because the air can move freely in and out. The air within the tube vibrates 
in the form of longitudinal standing waves. The possible modes of vibration for a 
tube open at both ends (called an open tube) are shown graphically in Fig. 16-11. 
They are shown for a tube that is open at one end but closed at the other (called a 
closed tube) in Fig. 16-12. [A tube closed at both ends, having no connection to the 
outside air, would be useless as an instrument.] The graphs in part (a) of each Figure 
(left-hand sides) represent the displacement amplitude of the vibrating air in the 
tube. Note that these are graphs, and that the air molecules themselves oscillate 
horizontally, parallel to the tube length, as shown by the small arrows in the top 
diagram of Fig. 16-1 la  (on the left). The exact position of the antinode near the 
open end of a tube depends on the diameter of the tube, but if the diameter is small 
compared to the length, which is the usual case, the antinode occurs very close to 
the end as shown. We assume this is the case in what follows. (The position of the 
antinode may also depend slightly on the wavelength and other factors.)

Let us look in detail at the open tube, in Fig. 16-11 a, which might be an organ 
pipe or a flute. An open tube has displacement antinodes at both ends since the air 
is free to move at open ends. There must be at least one node within an open tube 
if there is to be a standing wave at all. A single node corresponds to the 
fundamental frequency of the tube. Since the distance between two successive 
nodes, or between two successive antinodes, is \k , there is one-half of a wavelength 
within the length of the tube for the simplest case of the fundamental (top 
diagram in Fig. 16-lla): I = \k , or A = 21. So the fundamental frequency is 
fi = v /k  = v/2l, where v is the velocity of sound in air (the air in the tube). The 
standing wave with two nodes is the first overtone or second harmonic and has half 
the wavelength (I = A) and twice the frequency of the fundamental. Indeed, in a 
uniform tube open at both ends, the frequency of each overtone is an integral 
multiple of the fundamental frequency, as shown in Fig. 16-lla . This is just what is 
found for a string.

For a closed tube, shown in Fig. 16-12a, which could be an organ pipe, there is 
always a displacement node at the closed end (because the air is not free 
to move) and an antinode at the open end (where the air can move freely). Since 
the distance between a node and the nearest antinode is }A, we see that the



TUBE CLOSED AT ONE END
(a) Displacement of air 

£-
(b) Pressure variation in the air

First harmonic = fundamental
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Third harmonic
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difference, for as we can see from Fig. 16-12a, only the odd harmonics are present 
in a closed tube: the overtones have frequencies equal to 3 ,5 ,7 ,... times the 
fundamental frequency. There is no way for waves with 2, 4, 6 ,... times the funda­
mental frequency to have a node at one end and an antinode at the other, and thus 
they cannot exist as standing waves in a closed tube.

Another way to analyze the vibrations in a uniform tube is to consider a 
description in terms of the pressure in the air, shown in part (b) of Figs. 16-11 and 
16-12 (right-hand sides). Where the air in a wave is compressed, the pressure is 
higher, whereas in a wave expansion (or rarefaction), the pressure is less than normal. 
The open end of a tube is open to the atmosphere. Hence the pressure variation at an 
open end must be a node: the pressure does not alternate, but remains at the outside 
atmospheric pressure. If a tube has a closed end, the pressure at that closed end can 
readily alternate to be above or below atmospheric pressure. Hence there is a pressure 
antinode at a closed end of a tube. There can be pressure nodes and antinodes within 
the tube. Some of the possible vibrational modes in terms of pressure for an open 
tube are shown in Fig. 16-llb , and for a closed tube are shown in Fig. 16-12b.

Organ pipes. What will be the fundamental frequency and first 
three overtones for a 26-cm-long organ pipe at 20°C if it is (a) open and (b) closed? 
APPROACH All our calculations can be based on Figs. 1 6 -lla  and 16-12a. 
SOLUTION (a) For the open pipe, Fig. 16-lla , the fundamental frequency is 

343 m/sf  = — J i 2 i = 660 Hz.2(0.26 m)
The speed v is the speed of sound in air (the air vibrating in the pipe). The 
overtones include all harmonics: 1320 Hz, 1980 Hz, 2640 Hz, and so on.
(b) For a closed pipe, Fig. 16-12a, the fundamental frequency is 

343 m/s
= 330 Hz.

4(0.26 m)
Only odd harmonics are present: the first three overtones are 990 Hz, 1650 Hz, 
and 2310 Hz.
NOTE The closed pipe plays 330 Hz, which, from Table 16-3, is E above middle C, 
whereas the open pipe of the same length plays 660 Hz, an octave higher.

L p
r l

A

B

FIGURE 16-12 M odes of vibration 
(standing waves) for a tube closed at 
one end (“closed tube”). See caption 
for Fig. 16—11-

Pipe organs use both open and closed pipes, with lengths from a few centimeters 
to 5 m or more. A flute acts as an open tube, for it is open not only where you blow 
into it, but also at the opposite end. The different notes on a flute are obtained bv



FIGURE 16-13 The amplitudes of 
the fundamental and first two 
overtones are added at each point to 
get the “sum,” or composite waveform.

FIGURE 16-14 Sound spectra for 
different instruments. The spectra 
change when the instruments play 
different notes. The clarinet is a bit 
complicated: it acts like a closed tube 
at lower frequencies, having only odd 
harmonics, but at higher frequencies all 
harmonics occur as for an open tube.
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EXAMPLE 16-11 Flute. A flute is designed to play middle C (262 Hz) as the 
fundamental frequency when all the holes are covered. Approximately how long 
should the distance be from the mouthpiece to the far end of the flute? (This is 
only approximate since the antinode does not occur precisely at the mouthpiece.) 
Assume the temperature is 20°C.
APPROACH When all holes are covered, the length of the vibrating air column is 
the full length. The speed of sound in air at 20°C is 343 m/s. Because a flute is 
open at both ends, we use Fig. 16-11: the fundamental frequency f x is related to 
the length I of the vibrating air column by /  = v/2L 
SOLUTION Solving for £, we find

1 2/
343 m/s 

2(262 s”1)
= 0.655 m 0.66 m.

0 1000 2000 3000

EXERCISE E To see why players of wind instruments “warm up” their instruments (so they 
will be in tune), determine the fundamental frequency of the flute of Example 16-11 when 
all holes are covered and the temperature is 10°C instead of 20°C.

EXERCISE F Return to the Chapter-Opening Question, page 424, and answer it again now. 
Try to explain why you may have answered differently the first time.

16—5 Quality of Sound, and Noise; 
Superposition

Whenever we hear a sound, particularly a musical sound, we are aware of its loud­
ness, its pitch, and also of a third aspect called its timbre or “quality.” For example, 
when a piano and then a flute play a note of the same loudness and pitch (say, 
middle C), there is a clear difference in the overall sound. We would never mistake 
a piano for a flute. This is what is meant by the timbre or quality of a sound. For 
musical instruments, the term tone color is also used.

Just as loudness and pitch can be related to physically measurable quantities, so 
too can quality. The quality of a sound depends on the presence of overtones—their 
number and their relative amplitudes. Generally, when a note is played on a musical 
instrument, the fundamental as well as overtones are present simultaneously. 
Figure 16-13 illustrates how the principle o f superposition (Section 15-6) applies to 
three wave forms, in this case the fundamental and first two overtones (with 
particular amplitudes): they add together at each point to give a composite waveform. 
Normally, more than two overtones are present. [Any complex wave can be analyzed 
into a superposition of sinusoidal waves of appropriate amplitudes, wavelengths, and 
frequencies—see Section 15-6. Such an analysis is called a Fourier analysis.]

The relative amplitudes of the overtones for a given note are different for 
different musical instruments, which is what gives each instrument its characteristic 
quality or timbre. A bar graph showing the relative amplitudes of the harmonics for a 
given note produced by an instrument is called a sound spectrum. Several typical 
examples for different musical instruments are shown in Fig. 16-14. The fundamental 
usually has the greatest amplitude, and its frequency is what is heard as the pitch.

The manner in which an instrument is played strongly influences the sound 
quality. Plucking a violin string, for example, makes a very different sound than 
pulling a bow across it. The sound spectrum at the very start (or end) of a note (as 
when a hammer strikes a piano string) can be very different from the subsequent 
sustained tone. This too affects the subjective tone quality of an instrument.

An ordinary sound, like that made by striking two stones together, is a noise 
that has a certain quality, but a clear pitch is not discernible. Such a noise is a 
mixture of many frequencies which bear little relation to one another. A sound 
spectrum made of that noise would not show discrete lines like those of Fie. 16-14.



16—6 Interference of Sound Waves; Beats
Interference in Space
We saw in Section 15-8 that when two waves simultaneously pass through the 
same region of space, they interfere with one another. Interference also occurs 
with sound waves.

Consider two large loudspeakers, A and B, a distance d apart on the stage of an 
auditorium as shown in Fig. 16-15. Let us assume the two speakers are emitting sound 
waves of the same single frequency and that they are in phase: that is, when one speaker 
is forming a compression, so is the other. (We ignore reflections from walls, floor, etc.) 
The curved lines in the diagram represent the crests of sound waves from each speaker 
at one instant in time. We must remember that for a sound wave, a crest is a compression 
in the air whereas a trough—which falls between two crests—is a rarefaction. A human 
ear or detector at a point such as C, which is the same distance from each speaker, will 
experience a loud sound because the interference will be constructive—two crests 
reach it at one moment, two troughs reach it a moment later. On the other hand, at a 
point such as D in the diagram, little if any sound will be heard because destructive 
interference occurs—compressions of one wave meet rarefactions of the other and 
vice versa (see Fig. 15-24 and the related discussion on water waves in Section 15-8).

An analysis of this situation is perhaps clearer if we graphically represent the 
waveforms as in Fig. 16-16. In Fig. 16-16a, it can be seen that at point C, constructive 
interference occurs since both waves simultaneously have crests or simultaneously 
have troughs when they arrive at C. In Fig. 16-16b we see that, to reach point D, the 
wave from speaker B must travel a greater distance than the wave from A. Thus 
the wave from B lags behind that from A. In this diagram, point E is chosen so that 
the distance ED is equal to AD. Thus we see that if the distance BE is equal to 
precisely one-half the wavelength of the sound, the two waves will be exactly out of 
phase when they reach D, and destructive interference occurs. This then is the 
criterion for determining at what points destructive interference occurs: destructive 
interference occurs at any point whose distance from one speaker is one-half wave­
length greater than its distance from the other speaker. Notice that if this extra 
distance (BE in Fig. 16-16b) is equal to a whole wavelength (or 2,3,... wavelengths), 
then the two waves will be in phase and constructive interference occurs. If the 
distance BE equals ... wavelengths, destructive interference occurs.

It is important to realize that a person at point D in Fig. 16-15 or 16-16 hears 
nothing at all (or nearly so), yet sound is coming from both speakers. Indeed, if one 
of the speakers is turned off, the sound from the other speaker will be clearly heard.

If a loudspeaker emits a whole range of frequencies, only specific wavelengths 
will destructively interfere completely at a given point.

EXAMPLE 16-12 Loudspeakers' interference. Two loudspeakers are 1.00 m 
apart. A person stands 4.00 m from one speaker. How far must this person be 
from the second speaker to detect destructive interference when the speakers 
emit an 1150-Hz sound? Assume the temperature is 20°C.
APPROACH To sense destructive interference, the person must be one-half 
wavelength closer to or farther from one speaker than from the other—that is, at 
a distance = 4.00 m + A/2. We can determine A since we know /  and v. 
SOLUTION The speed of sound at 20°C is 343 m/s, so the wavelength of this 
sound is (Eq. 15-1)

343 m/s

A "7" 1150 Hz
= 0.30 m.

For destructive interference to occur, the person must be one-half wavelength 
farther from one loudspeaker than from the other, or 0.15 m. Thus the person 
must be 3.85 m or 4.15 m from the second speaker.

FIGURE 16-15 Sound waves from 
two loudspeakers interfere.

FIGURE 16-16 Sound waves 
of a single frequency from  
loudspeakers A  and B (see  
Fig. 16-15) constructively interfere 
at C and destructively interfere at D. 
[Shown here are graphical 
representations, not the actual 
longitudinal sound waves.]

Ti? J.A_ ____„  __ *11
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FIGURE 1 6 -1 7  Beats occur as a 
result of the superposition of two 
sound waves of slightly different 
frequency.

Beats—Interference in Time
We have been discussing interference of sound waves that takes place in space. 
An interesting and important example of interference that occurs in time is the 
phenomenon known as beats: If two sources of sound—say, two tuning forks—are 
close in frequency but not exactly the same, sound waves from the two sources interfere 
with each other. The sound level at a given position alternately rises and falls in time, 
because the two waves are sometimes in phase and sometimes out of phase due to 
their different wavelengths. The regularly spaced intensity changes are called beats.

To see how beats arise, consider two equal-amplitude sound waves of frequency 
f A = 50 Hz and / B = 60 Hz, respectively. In 1.00 s, the first source makes 50 
vibrations whereas the second makes 60. We now examine the waves at one point in 
space equidistant from the two sources. The waveforms for each wave as a function 
of time, at a fixed position, are shown on the top graph of Fig. 16-17; the red 
line represents the 50-Hz wave, and the blue line represents the 60-Hz wave. The 
lower graph in Fig. 16-17 shows the sum of the two waves as a function of time. At 
time t = 0 the two waves are shown to be in phase and interfere constructively. 
Because the two waves vibrate at different rates, at time t = 0.05 s they are 
completely out of phase and interfere destructively. At t = 0.10 s, they are again in 
phase and the resultant amplitude again is large. Thus the resultant amplitude is 
large every 0.10 s and drops drastically in between. This rising and falling of the 
intensity is what is heard as beats.f In this case the beats are 0.10 s apart. That is, the 
beat frequency is ten per second, or 10 Hz. This result, that the beat frequency equals 
the difference in frequency of the two waves, is valid in general, as we now show.

Let the two waves, of frequencies f x and f 2, be represented at a fixed point in

Using the trigonometric identity sind1 + sin02 = 2sm^(d1 + 02)c o s l (d l — d2),  
we have

We can interpret Eq. 16-8 as follows. The superposition of the two waves results in a 
wave that vibrates at the average frequency of the two components, + f 2)/2. This 
vibration has an amplitude given by the expression in brackets, and this amplitude varies 
in time, from zero to a maximum of 2A  (the sum of the separate amplitudes), with a 
frequency of (/x -  / 2)/2. A beat occurs whenever cos 27t[(/1 — f 2)/2 ]t equals +1 or
— 1 (see  Fip. 1 6 -1 7V that is. tw o beats occur ner cvcle. so the beat frenuencv is tw ice

(16- 8)



The phenomenon of beats can occur with any kind of wave and is a very 
sensitive method for comparing frequencies. For example, to tune a piano, a piano 
tuner listens for beats produced between his standard tuning fork and that of a 
particular string on the piano, and knows it is in tune when the beats disappear. The 
members of an orchestra tune up by listening for beats between their instruments 
and that of a standard tone (usually A above middle C at 440 Hz) produced by a 
piano or an oboe. A beat frequency is perceived as an intensity modulation (a wavering 
between loud and soft) for beat frequencies below 20 Hz or so, and as a separate low 
tone for higher beat frequencies (audible if the tones are strong enough).

Beats. A tuning fork produces a steady 400-Hz tone. When this 
tuning fork is struck and held near a vibrating guitar string, twenty beats are counted 
in five seconds. What are the possible frequencies produced by the guitar string? 
APPROACH For beats to occur, the string must vibrate at a frequency different 
from 400 Hz by whatever the beat frequency is.
SOLUTION The beat frequency is

/beat =  20 vibrations/5 s = 4 H z .

This is the difference of the frequencies of the two waves. Because one wave is 
known to be 400 Hz, the other must be either 404 Hz or 396 Hz.

16—7 Doppler Effect
You may have noticed that you hear the pitch of the siren on a speeding fire truck 
drop abruptly as it passes you. Or you may have noticed the change in pitch of a 
blaring horn on a fast-moving car as it passes by you. The pitch of the engine noise 
of a racecar changes as the car passes an observer. When a source of sound is moving 
toward an observer, the pitch the observer hears is higher than when the source is at 
rest; and when the source is traveling away from the observer, the pitch is lower. This 
phenomenon is known as the Doppler effect1 and occurs for all types of waves. Let 
us now see why it occurs, and calculate the difference between the perceived and 
source frequencies when there is relative motion between source and observer.

Consider the siren of a fire truck at rest, which is emitting sound of a particular 
frequency in all directions as shown in Fig. 16-18a. The sound waves are moving at 
the speed of sound in air, vsnd, which is independent of the velocity of the source or 
observer. If our source, the fire truck, is moving, the siren emits sound at the same 
frequency as it does at rest. But the sound wavefronts it emits forward, in front of it, 
are closer together than when the fire truck is at rest, as shown in Fig. 16-18b. This 
is because the fire truck, as it moves, is “chasing” the previously emitted wavefronts, 
and emits each crest closer to the previous one. Thus an observer on the sidewalk in 
front of the truck will detect more wave crests passing per second, so the frequency 
heard is higher. The wavefronts emitted behind the truck, on the other hand, are 
farther apart than when the truck is at rest because the truck is speeding away from 
them. Hence, fewer wave crests per second pass by an observer behind the moving 
truck (Fig. 16-18b) and the perceived pitch is lower.

FIGURE 16-18 (a) Both observers 
on the sidewalk hear the same 
frequency from a fire truck at rest, 
(b) Doppler effect: observer toward 
whom the fire truck moves hears a 
higher-frequency sound, and 
observer behind the fire truck hears 
a lower-frequency sound.

EXAMPLE 16-13

0 P H Y S I C S  A P P L I E D
Tuning a piano



Source •> -d = A-

(a) Source fixed

Crest emitted 
when source 
was at point 1.

Crest emitted 
when source 
was at point 2.

(b) Source moving

FIGURE 16-19 Determination of 
the frequency shift in the Doppler 
effect (see text). The red dot is the

We can calculate the frequency shift perceived by making use of Fig. 16-19, 
and we assume the air (or other medium) is at rest in our reference frame. 
(The stationary observer is off to the right.) In Fig. 16-19a, the source of the sound 
is shown as a red dot, and is at rest. Two successive wave crests are shown, the 
second of which has just been emitted and so is still near the source. The distance 
between these crests is A, the wavelength. If the frequency of the source is / ,  then 
the time between emissions of wave crests is

T = 1 =
A
ŝnd

In Fig. 16-19b, the source is moving with a velocity vsource toward the observer. 
In a time T  (as just defined), the first wave crest has moved a distance 
d = wsnd T = A, where vsnd is the velocity of the sound wave in air (which is the 
same whether the source is moving or not). In this same time, the source has 
moved a distance dsource = vsource T. Then the distance between successive wave 
crests, which is the wavelength A' the observer will perceive, is

A d dcmiTrf*

= A
ŝnd 

iree i= A( 1 -  -
ŝnd /

We subtract A from both sides of this equation and find that the shift in wavelength, 
AA, is

. ŝniir rpAA = A' -  A =
ŝnd

So the shift in wavelength is directly proportional to the source speed Source - The 
frequency / '  that will be perceived by our stationary observer on the ground is given by

ŝndr f _  ŝnd
X' ~

Since vsnd/A = / ,  then 

/ '  =

A 1
ŝnd

ŝnd
[source moving toward] 

stationary observer (16-9a)

Because the denominator is less than 1, the observed frequency / '  is greater than 
the source frequency / .  That is, / '  >  / .  For example, if a source emits a sound of 
frequency 400 Hz when at rest, then when the source moves toward a fixed 
observer with a speed of 30 m/s, the observer hears a frequency (at 20°C) of 

= _ 400 Hz

1
30 m /s

= 438 Hz.

343 m /s
Now consider a source moving away from the stationary observer at a speed i>source. 

Using the same arguments as above, the wavelength A' perceived by our observer 
will have the minus sign on dsourCe (second equation on this page) changed to plus:

A' = d + d,

. j *

source

ŝnd
The difference between the observed and emitted wavelengths will be AA = A' -  A = 
+^(vsourceMsnd)- The observed frequency of the wave, f  = i>snd/A', will be

f t  = _____ L______ T source moving away from 1
( .  ŝource \  [stationary observer (16-9b)



The Doppler effect also occurs when the source is at rest and the observer is in 
motion. If the observer is traveling toward the source, the pitch heard is higher than 
that of the emitted source frequency. If the observer is traveling away from the 
source, the pitch heard is lower. Quantitatively the change in frequency is different 
than for the case of a moving source. With a fixed source and a moving observer, the 
distance between wave crests, the wavelength A, is not changed. But the velocity of 
the crests with respect to the observer is changed. If the observer is moving toward 
the source, Fig. 16-20, the speed v' of the waves relative to the observer is a simple 
addition of velocities: v' = i>snd + vohs, where vsnd is the velocity of sound in air 
(we assume the air is still) and vobs is the velocity of the observer. Hence, the 
frequency heard is

ŝnd ôbs

Because A = vsnd/ / ,  then

(^snd v o b s ) f
r ŝnd

or

r  = i i  + — )/.
«snd. [observer moving toward I \

stationary source J '  '

If the observer is moving away from the source, the relative velocity is
V ' =  VSnd ~  Vo h s , SO

/ '  = i i - — )/.
Vsnd [observer moving away | ^  . 

from stationary source] * '

EXAMPLE 16-14 A moving siren. The siren of a police car at rest emits at a 
predominant frequency of 1600 Hz. What frequency will you hear if you are at 
rest and the police car moves at 25.0 m/s (a) toward you, and (b) away from you?
APPROACH The observer is fixed, and the source moves, so we use Eqs. 16-9. 
The frequency you (the observer) hear is the emitted frequency /  divided by 
the factor (l + Source/^snd) where ŝource is the speed of the police car. Use the 
minus sign when the car moves toward you (giving a higher frequency); use 
the plus sign when the car moves away from you (lower frequency).
SOLUTION (a) The car is moving toward you, so (Eq. 16-9a)

/  1600 Hz
f

1 - 1 -
25.0 m/s

ŝnd J V 343 m/s
(b) The car is moving away from you, so (Eq. 16-9b) 

/  1600 Hz
r

1 +
ŝnd

1 +
25.0 m/s 
343 m/s

= 1726 Hz

= 1491Hz

1730 Hz.

1490 Hz.

FIGURE 16-20 Observer moving 
with speed vobs toward a stationary 
source detects wave crests passing at 
speed v' =  v snd +  vobs where vsnd is 
the speed of the sound waves in air.

I EXERCISE G Suppose the police car of Example 16-14  is at rest and emits at 1600 Hz. 
W hat frenuencv w ould von hear if von w ere m ovino at 9.5.0m /s  (a\ toward it. and



When a sound wave is reflected from a moving obstacle, the frequency of the 
reflected wave will, because of the Doppler effect, be different from that of 
the incident wave. This is illustrated in the following Example.

Object
Original wkve

•  I
source 'velocity

X i
vobs =

3.50 m7s"
(a)

Object

FIGURE 16-21 Example 16-15.

EXAMPLE 16-15 Two Doppler shifts. A 5000-Hz sound wave is emitted by a 
stationary source. This sound wave reflects from an object moving 3.50 m/s 
toward the source (Fig. 16-21). What is the frequency of the wave reflected by 
the moving object as detected by a detector at rest near the source?

APPROACH There are actually two Doppler shifts in this situation. First, the 
moving object acts like an observer moving toward the source with speed 
î obs = 3.50 m/s (Fig. 16-21a) and so “detects” a sound wave of frequency 
(Eq. 16-10a) / '  = / [  1 + (t’obsMnd)]- Second, reflection of the wave from the 
moving object is equivalent to the object reemitting the wave, acting effectively 
as a moving source with speed vSOUrce = 3.50 m/s (Fig. 16-21b). The final 
frequency detected, /" ,  is given by / "  = / ' / [  1 -  ?WceMnd]> Eq. 16-9a. 
SOLUTION The frequency f  that is “detected” by the moving object is 
(Eq. 16-10a):

r  = i  + ^  1/ = 
Vsnd

1 +
3.50 m/s 
343 m/s

(5000 Hz) = 5051Hz.

The moving object now “emits” (reflects) a sound of frequency (Eq. 16-9a) 

/ '  _  5051 Hz
/"

1 -
ŝnd

1 -
3.50 m/s 
343 m/s

5103 Hz.

Thus the frequency shifts by 103 Hz.
NOTE Bats use this technique to be aware of their surroundings. This is also the 
principle behind Doppler radar as speed-measuring devices for vehicles and 
other objects.

P H Y S I C S  A P P L I E D
D oppler blood-flow  meter 

and other medical uses

The incident wave and the reflected wave in Example 16-15, when mixed 
together (say, electronically), interfere with one another and beats are produced. 
The beat frequency is equal to the difference in the two frequencies, 103 Hz. This 
Doppler technique is used in a variety of medical applications, usually with ultra­
sonic waves in the megahertz frequency range. For example, ultrasonic waves 
reflected from red blood cells can be used to determine the velocity of blood flow. 
Similarly, the technique can be used to detect the movement of the chest of a 
young fetus and to monitor its heartbeat.

For convenience, we can write Eqs. 16-9 and 16-10 as a single equation that 
covers all cases of both source and observer in motion:

r  = f
ŝnd — ôbs 

ŝnd ŝource
source and 
observer moving (16- 11)

P R O B L E M  S O L V I N G
Getting the signs right

To get the signs right, recall from your own experience that the frequency is 
higher when observer and source approach each other, and lower when they 
move apart. Thus the upper signs in numerator and denominator apply if 
source and/or observer move toward each other; the lower signs apply if they are 
moving apart.

EXERCISE H How fast would a source have to approach an observer for the observed 
frequency to be one octave above (twice) the produced frequency? (a) (b) tUd,



Doppler Effect for Light
The Doppler effect occurs for other types of waves as well. Light and other types 
of electromagnetic waves (such as radar) exhibit the Doppler effect: although the 
formulas for the frequency shift are not identical to Eqs. 16-9 and 16-10, as 
discussed in Chapter 44, the effect is similar. One important application is for 
weather forecasting using radar. The time delay between the emission of radar 
pulses and their reception after being reflected off raindrops gives the position of 
precipitation. Measuring the Doppler shift in frequency (as in Example 16-15) 
tells how fast the storm is moving and in which direction.

Another important application is to astronomy, where the velocities of distant 
galaxies can be determined from the Doppler shift. Light from distant galaxies is 
shifted toward lower frequencies, indicating that the galaxies are moving away 
from us. This is called the redshift since red has the lowest frequency of visible 
light. The greater the frequency shift, the greater the velocity of recession. It is 
found that the farther the galaxies are from us, the faster they move away. This 
observation is the basis for the idea that the universe is expanding, and is one basis 
for the idea that the universe began as a great explosion, affectionately called the 
“Big Bang” (Chapter 44).

16-8  Shock Waves and the Sonic Boom
An object such as an airplane traveling faster than the speed of sound is said 
to have a supersonic speed. Such a speed is often given as a Machf number, 
which is defined as the ratio of the speed of the object to the speed of 
sound in the surrounding medium. For example, a plane traveling 600 m/s high 
in the atmosphere, where the speed of sound is only 300 m/s, has a speed of 
Mach 2.

0 P H Y S I C S  A P P L I E D
D oppler effect fo r E M  waves 
and weather forecasting

@  P H Y S I C S A P P L I E D
Redshift in cosm ology

FIGURE 16-22 Sound waves emitted by an object (a) at rest or (b, c, and d) moving, (b) If the 
object’s velocity is less than the velocity of sound, the Doppler effect occurs; (d) if its velocity is greater 
than the velocity of sound, a shock wave is produced.

When a source of sound moves at subsonic speeds (less than the speed of 
sound), the pitch of the sound is altered as we have seen (the Doppler effect); see 
also Fig. 16-22a and b. But if a source of sound moves faster than the speed of 
sound, a more dramatic effect known as a shock wave occurs. In this case, the 
source is actually “outrunning” the waves it produces. As shown in Fig. 16-22c, 
when the source is traveling at the speed of sound, the wave fronts it emits in the 
forward direction “pile up” directly in front of it. When the object moves faster, at 
a supersonic speed, the wave fronts pile up on one another along the sides, as 
shown in Fig. 16-22d. The different wave crests overlap one another and form a 
single very large crest which is the shock wave. Behind this very large crest there is 
usually a very large trough. A shock wave is essentially the result of constructive 
interference of a large number of wave fronts. A shock wave in air is analogous to 
the bow wave of a boat traveling faster than the speed of the water waves it 
produces, Fig. 16-23.

FIGURE 16-23 Bow  waves 
produced by a boat.



(b)

FIGURE 1 6 -2 4  (a) The (double) sonic boom has already been heard by person A  on the left. The front shock wave is just being 
heard by person B in the center. And it will shortly be heard by person C on the right, (b) Special photo of supersonic aircraft 
showing shock waves produced in the air. (Several closely spaced shock waves are produced by different parts of the aircraft.)

When an airplane travels at supersonic speeds, the noise it makes and its 
disturbance of the air form into a shock wave containing a tremendous amount of 
sound energy. When the shock wave passes a listener, it is heard as a loud 

@  P H Y S I C S  A P P L I E D  sonic boom. A sonic boom lasts only a fraction of a second, but the energy it 
Sonic boom  contains is often sufficient to break windows and cause other damage. Actually, a 

sonic boom is made up of two or more booms since major shock waves can form at 
the front and the rear of the aircraft, as well as at the wings, etc. (Fig. 16-24). Bow 
waves of a boat are also multiple, as can be seen in Fig. 16-23.

When an aircraft approaches the speed of sound, it encounters a barrier of 
sound waves in front of it (see Fig. 16-22c). To exceed the speed of sound, the 
aircraft needs extra thrust to pass through this “sound barrier.” This is called 
“breaking the sound barrier.” Once a supersonic speed is attained, this barrier no 
longer impedes the motion. It is sometimes erroneously thought that a sonic boom 
is produced only at the moment an aircraft is breaking through the sound barrier. 
Actually, a shock wave follows the aircraft at all times it is traveling at supersonic 
speeds. A series of observers on the ground will each hear a loud “boom” as the 
shock wave passes, Fig. 16-24. The shock wave consists of a cone whose apex is at 
the aircraft. The angle of this cone, 6 (see Fig. 16-22d), is given by

sin 8 = — . (16-12)
ôbj

where vobj- is the velocity of the object (the aircraft) and vsnd is the velocity of 
sound in the medium. (The proof is left as Problem 75.)

* 16—9 Applications: Sonar, Ultrasound, 
and Medical Imaging

* Sonar
( P H Y S I C S  A P P L I E D  The reflection of sound is used in many applications to determine distance. The 

Sonar: depth finding, Earth sonar1 or pulse-echo technique is used to locate underwater objects. A transmitter 
soundings sends out a sound pulse through the water, and a detector receives its reflection, or 

echo, a short time later. This time interval is carefully measured, and from it the 
distance to the reflecting object can be determined since the speed of sound in water 
is known. The depth of the sea and the location of reefs, sunken ships, submarines, or 
schools of fish can be determined in this way. The interior structure of the Earth is 
studied in a similar way by detecting reflections of waves traveling through the 
Earth whose source was a deliberate explosion (called “soundings”). An analysis of 
waves reflected from various structures and boundaries within the Earth reveals 
characteristic patterns that are also useful in the exploration for oil and minerals.



Sonar generally makes use of ultrasonic frequencies: that is, waves whose 
frequencies are above 20 kHz, beyond the range of human detection. For sonar, 
the frequencies are typically in the range 20 kHz to 100 kHz. One reason for using 
ultrasound waves, other than the fact that they are inaudible, is that for shorter 
wavelengths there is less diffraction (Section 15-11) so the beam spreads less and 
smaller objects can be detected.

* Ultrasound Medical Imaging
The diagnostic use of ultrasound in medicine, in the form of images (sometimes 
called sonograms), is an important and interesting application of physical principles.
A pulse-echo technique is used, much like sonar, except that the frequencies used 
are in the range of 1 to 10 MHz (l MHz = 106 Hz). A high-frequency sound pulse 
is directed into the body, and its reflections from boundaries or interfaces between 
organs and other structures and lesions in the body are then detected. Tumors and 
other abnormal growths, or pockets of fluid, can be distinguished; the action of 
heart valves and the development of a fetus can be examined; and information 
about various organs of the body, such as the brain, heart, liver, and kidneys, can be 
obtained. Although ultrasound does not replace X-rays, for certain kinds of 
diagnosis it is more helpful. Some kinds of tissue or fluid are not detected in X-ray 
photographs, but ultrasound waves are reflected from their boundaries. “Real-time” 
ultrasound images are like a movie of a section of the interior of the body.

The pulse-echo technique for medical imaging works as follows. A brief pulse @  P H Y S I C S  A P P L I E D  
of ultrasound is emitted by a transducer that transforms an electrical pulse into a Ultrasound medical imaging 
sound-wave pulse. Part of the pulse is reflected as echoes at each interface in the 
body, and most of the pulse (usually) continues on, Fig. 16-25a. The detection of 
reflected pulses by the same transducer can then be displayed on the screen of a 
display terminal or monitor. The time elapsed from when the pulse is emitted to when 
each reflection (echo) is received is proportional to the distance to the reflecting 
surface. For example, if the distance from transducer to the vertebra is 25 cm, the 
pulse travels a round-trip distance of 2 X 25 cm = 0.50 m. The speed of sound in 
human tissue is about 1540 m/s (close to that of sea water), so the time taken is

. d  (0.50 m)
v  (1540 m/s) M

The strength of a reflected pulse depends mainly on the difference in density of the 
two materials on either side of the interface and can be displayed as a pulse or as a dot 
(Figs. 16-25b and c). Each echo dot (Fig. 16-25c) can be represented as a point whose posi­
tion is given by the time delay and whose brightness depends on the strength of the echo.

FIGURE 16-25 (a) Ultrasound 
pulse passes through the abdomen, 
reflecting from surfaces in its path, 
(b) Reflected pulses plotted as a 
function of time when received by 
transducer. The vertical dashed lines 
point out which reflected pulse goes 
with which surface, (c) Dot display 
for the same echoes: brightness of 
each dot is related to signal strength.



FIG U RE 1 6-26  (a) Ten traces are made 
across the abdomen by moving the transducer, 
or by using an array of transducers, (b) The 
echoes are plotted as dots to produce the 
image. More closely spaced traces would give 
a more detailed image.
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FIG U RE 16-27  Ultrasound image 
of a human fetus within the uterus.

(b)

A  two-dimensional image can then be formed out of these dots from a series of 
scans. The transducer is moved, or an array of transducers is used, each of which 
sends out a pulse at each position and receives echoes as shown in Fig. 16-26a. 
Each trace can be plotted, spaced appropriately one below the other, to form an 
image on a monitor screen as shown in Fig. 16-26b. Only 10 lines are shown in 
Fig. 16-26, so the image is crude. M ore lines give a more precise image.1 
A n ultrasound image is shown in Fig. 16-27.

tRadar used for aircraft involves a similar pulse-echo technique except that it uses electromagnetic (EM) 
waves, which, like light, travel with a speed of 3 X 108 m /s.

Summary
Sound travels as a longitudinal wave in air and other materials. 
In air, the speed of sound increases with temperature; at 20°C, it 
is about 343 m/s.

The pitch of a sound is determined by the frequency; the 
higher the frequency, the higher the pitch.

The audible range of frequencies for humans is roughly 
20 Hz to 20,000 Hz (1 Hz = 1 cycle per second).

The loudness or intensity of a sound is related to the ampli­
tude squared of the wave. Because the human ear can detect 
sound intensities from 10-12 W/m2 to over 1 W/m2, sound levels 
are specified on a logarithmic scale. The sound level /3, specified 
in decibels, is defined in terms of intensity I  as

/3(in dB) = 101og(^), (16-6)

where the reference intensity /0 is usually taken to be 
10-12 W/m2.

Musical instruments are simple sources of sound in which 
standing waves are produced.

The strings of a stringed instrument may vibrate as a whole 
with nodes only at the ends; the frequency at which this standing 
wave occurs is called the fundamental. The fundamental 
frequency corresponds to a wavelength equal to twice the length 
nf th e  strine* =  19. T he string can alsn v ibrate at h igher

one or more additional nodes. The frequency of each harmonic 
is a whole-number multiple of the fundamental.

In wind instruments, standing waves are set up in the 
column of air within the tube.

The vibrating air in an open tube (open at both ends) has 
displacement antinodes at both ends. The fundamental 
frequency corresponds to a wavelength equal to twice the tube 
length: X1 = 2L The harmonics have frequencies that are
1 .2 .3 .4 .... times the fundamental frequency, just as for strings. 

For a closed tube (closed at one end), the fundamental
corresponds to a wavelength four times the length of the tube: 
Ai = 4i. Only the odd harmonics are present, equal to
1 .3.5 .1 .... times the fundamental frequency.

Sound waves from different sources can interfere with each 
other. If two sounds are at slightly different frequencies, beats 
can be heard at a frequency equal to the difference in frequency 
of the two sources.

The Doppler effect refers to the change in pitch of a sound 
due to the motion either of the source or of the listener. If source 
and listener are approaching each other, the perceived pitch is 
higher; if they are moving apart, the perceived pitch is lower.

[*Shock waves and a sonic boom occur when an object 
moves at a supersonic speed—faster than the speed of sound.
I Iltrasnnir.-frennenr.v (hiaher than 30 kHz'! sound waves are used



Questions
1. What is the evidence that sound travels as a wave?
2. What is the evidence that sound is a form of energy?
3. Children sometimes play with a homemade “telephone” by 

attaching a string to the bottoms of two paper cups. When the 
string is stretched and a child speaks into one cup, the sound 
can be heard at the other cup (Fig. 16-28). Explain clearly 
how the sound wave travels from one cup to the other.

10.

FIGURE 16-28 Question 3.

4. When a sound wave passes from air into water, do you 
expect the frequency or wavelength to change?

5. What evidence can you give that the speed of sound in air 
does not depend significantly on frequency?

6. The voice of a person who has inhaled helium sounds very 
high-pitched. Why?

7. What is the main reason the speed of sound in hydrogen is 
greater than the speed of sound in air?

8. Two tuning forks oscillate with the same amplitude, but one 
has twice the frequency. Which (if either) produces the more 
intense sound?

9. How will the air temperature in a room affect the pitch of 
organ pipes?
Explain how a tube might be used as a filter to reduce the 
amplitude of sounds in various frequency ranges. (An 
example is a car muffler.)

11. Why are the frets on a guitar (Fig. 16-29) spaced closer 
together as you move up 
the fingerboard toward Bridge
the bridge? Frees

FIGURE 16-29
Question 11.

r
12. A noisy truck approaches you from behind a building. 

Initially you hear it but cannot see it. When it emerges and 
you do see it, its sound is suddenly “brighter”—you hear 
more of the high-frequency noise. Explain. [Hint: See 
Section 15-11 on diffraction.]

13. Standing waves can be said to be due to “interference in 
space,” whereas beats can be said to be due to “interference 
in time.” Explain.

14. In Fig. 16-15, if the frequency of the speakers is lowered, 
would the points D and C (where destructive and constructive 
interference occur) move farther apart or closer together?

15. Traditional methods of protecting the hearing of people who 
work in areas with very high noise levels have consisted 
mainly of efforts to block or reduce noise levels. With a 
relatively new technology, headphones are worn that do not 
block the ambient noise. Instead, a device is used which 
detects the noise, inverts it electronically, then feeds it to the 
h e a d n h o n e s  in  a d d itio n  tn  th e  a m b ien t n o ise . H n w  cou ld

16. Consider the two waves shown in Fig. 16-30. Each wave can 
be thought of as a superposition of two sound waves with 
slightly different frequencies, as in Fig. 16-17. In which of 
the waves, (a) or (b), are the two component frequencies 
farther apart? Explain.

■/ (si

(b)

FIGURE 16-30 Question 16.

17. Is there a Doppler shift if the source and observer move in 
the same direction, with the same velocity? Explain.

18. If a wind is blowing, will this alter the frequency of the 
sound heard by a person at rest with respect to the source? 
Is the wavelength or velocity changed?

19. Figure 16-31 shows various positions of a child on a swing 
moving toward a person on the ground who is blowing a 
whistle. At which position, A through E, will the child hear 
the highest frequency
for the sound of 
the whistle? Explain 
your reasoning.

£

FIGURE 16-31
Question 19.

20. Approximately how many octaves are there in the human 
audible range?

21. At a race track, you can estimate the speed of cars just by 
listening to the difference in pitch of the engine noise 
between approaching and receding cars. Suppose the sound 
nf a certa in  ear d ron s b v  a full o c ta v e  (frenuenr.v  halved"! as



| Problems
[Unless stated otherwise, assume T = 20°C and vsound = 343 m/s 
in air.]

16-1 Characteristics of Sound
1. (I) A hiker determines the length of a lake by listening for 

the echo of her shout reflected by a cliff at the far end 
of the lake. She hears the echo 2.0 s after shouting. Estimate 
the length of the lake.

2. (I) A sailor strikes the side of his ship just below the water­
line. He hears the echo of the sound reflected from the ocean 
floor directly below 2.5 s later. How deep is the ocean at this 
point? Assume the speed of sound in sea water is 1560 m/s 
(Table 16-1) and does not vary significantly with depth.

3. (I) (a) Calculate the wavelengths in air at 20° C for sounds in 
the maximum range of human hearing, 20 Hz to 20,000 Hz.
(b) What is the wavelength of a 15-MHz ultrasonic wave?

4. (I) On a warm summer day (27°C), it takes 4.70 s for an echo 
to return from a cliff across a lake. On a winter day, it takes 
5.20 s. What is the temperature on the winter day?

5. (II) A motion sensor can accurately measure the distance d 
to an object repeatedly via the sonar technique used in 
Example 16-2. A short ultrasonic pulse is emitted and 
reflects from any objects it encounters, creating echo pulses 
upon their arrival back at the sensor. The sensor measures 
the time interval t between the emission of the original pulse 
and the arrival of the first echo, (a) The smallest time interval t 
that can be measured with high precision is 1.0 ms. What is the 
smallest distance (at 20°C) that can be measured with the 
motion sensor? (b) If the motion sensor makes 15 distance 
measurements every second (that is, it emits 15 sound pulses 
per second at evenly spaced time intervals), the measurement 
of t must be completed within the time interval between the 
emissions of successive pulses. What is the largest distance 
(at 20°C) that can be measured with the motion sensor?
(c) Assume that during a lab period the room’s temperature 
increases from 20°C to 23°C. What percent error will this 
introduce into the motion sensor’s distance measurements?

6. (II) An ocean fishing boat is drifting just above a school of 
tuna on a foggy day. Without warning, an engine backfire 
occurs on another boat 1.35 km away (Fig. 16-32). How 
much time elapses
before the backfire 
is heard (a) by the 
fish, and (b) by the * 
fishermen? *mf\ '

_1.35 km"^

FIGURE 16-32 ^
Problem 6.

7. (II) A stone is dropped from the top of a cliff. The splash it 
makes when striking the water below is heard 3.0 s later. 
How high is the cliff?

8. (II) A person, with his ear to the ground, sees a huge stone 
strike the concrete pavement. A moment later two sounds 
are heard from the impact: one travels in the air and the 
other in the concrete, and they are 0.75 s apart. How far away 
did the impact occur? See Table 16-1.

9. (II) Calculate the percent error made over one mile of distance 
bv the “5-second rule” fnr estim ating the distance from a

16-2 Mathematical Representation of Waves
10. (I) The pressure amplitude of a sound wave in air 

(p = 1.29 kg/m3) at 0°C is 3.0 X 10_3Pa. What is the 
displacement amplitude if the frequency is (a) 150 Hz and
(b) 15 kHz?

11. (I) What must be the pressure amplitude in a sound wave in 
air (0°C) if the air molecules undergo a maximum displace­
ment equal to the diameter of an oxygen molecule, about
3.0 X 10-10m? Assume a sound-wave frequency of (a) 55 Hz 
and (b) 5.5 kHz.

12. (II) Write an expression that describes the pressure variation 
as a function of x and t for the waves described in Problem 11.

13. (II) The pressure variation in a sound wave is given by
AP = 0.0035 sin(0.3877jc -  135077?), 

where AP  is in pascals, x in meters, and t in seconds. Deter­
mine (a) the wavelength, (b) the frequency, (c) the speed, 
and (d) the displacement amplitude of the wave. Assume 
the density of the medium to be p =  2.3 X 103 kg/m3.

16-3 Intensity of Sound; Decibels
14. (I) What is the intensity of a sound at the pain level of 

120 dB? Compare it to that of a whisper at 20 dB.
15. (I) What is the sound level of a sound whose intensity is

2.0 X 10-6 W /m2?
16. (I) What are the lowest and highest frequencies that an ear 

can detect when the sound level is 40 dB? (See Fig. 16-6.)
17. (II) Your auditory system can accommodate a huge range of 

sound levels. What is the ratio of highest to lowest intensity 
at (a) 100 Hz, (b) 5000 Hz? (See Fig. 16-6.)

18. (II) You are trying to decide between two new stereo ampli­
fiers. One is rated at 100 W per channel and the other is 
rated at 150 W per channel. In terms of dB, how much 
louder will the more powerful amplifier be when both are 
producing sound at their maximum levels?

19. (II) At a painfully loud concert, a 120-dB sound wave travels 
away from a loudspeaker at 343 m/s. How much sound 
wave energy is contained in each 1.0-cm3 volume of air in 
the region near this loudspeaker?

20. (II) If two firecrackers produce a sound level of 95 dB when 
fired simultaneously at a certain place, what will be the sound 
level if only one is exploded?

21. (II) A person standing a certain distance from an airplane 
with four equally noisy jet engines is experiencing a sound 
level of 130 dB. What sound level would this person experi­
ence if the captain shut down all but one engine?

22. (II) A cassette player is said to have a signal-to-noise ratio 
of 62 dB, whereas for a CD player it is 98 dB. What is the 
ratio of intensities of the signal and the background noise 
for each device?

23. (II) (a) Estimate the power output of sound from a person 
speaking in normal conversation. Use Table 16-2. Assume 
the sound spreads roughly uniformly over a sphere centered 
on the mouth, (b) How many people would it take to 
produce a total sound output of 75 W of ordinary conversa­
tion? [Hint: Add intensities, not dBs.]

24. (II) A 50-dB sound wave strikes an eardrum whose area is
5.0 X 10-5m2. (a) How much energy is received by the 
eardrum ner second? (h \  A t this rate, how  Iona w ould it



25.

26.

27.

(II) Expensive amplifier A is rated at 250 W, while the more 
modest amplifier B is rated at 45 W. (a) Estimate the sound 
level in decibels you would expect at a point 3.5 m from a 
loudspeaker connected in turn to each amp. (b) Will the 
expensive amp sound twice as loud as the cheaper one?
(II) At a rock concert, a dB meter registered 130 dB when 
placed 2.2 m in front of a loudspeaker on the stage, (a) What 
was the power output of the speaker, assuming uniform 
spherical spreading of the sound and neglecting absorption 
in the air? (b) How far away would the sound level be a 
somewhat reasonable 85 dB?
(II) A fireworks shell explodes 100 m above the ground, 
creating a colorful display of sparks. How much greater is the 
sound level of the 
explosion for a person 
standing at a point 
directly below the 
explosion than for a 
person a horizontal 
distance of 200 m 
away (Fig. 16-33)?

38. (II) Estimate the frequency of the “sound of the ocean” 
when you put your ear very near a 20-cm-diameter seashell 
(Fig. 16-34).

T100 m

FIG U RE 16-33
Problem 27.

200 m

28. (II) If the amplitude of a sound wave is made 2.5 times greater,
(a) by what factor will the intensity increase? (b) By how 
many dB will the sound level increase?

29. (II) Two sound waves have equal displacement amplitudes, 
but one has 2.6 times the frequency of the other, (a) Which 
has the greater pressure amplitude and by what factor is it 
greater? (b) What is the ratio of their intensities?

30. (II) What would be the sound level (in dB) of a sound wave 
in air that corresponds to a displacement amplitude of 
vibrating air molecules of 0.13 mm at 380 Hz?

31. (II) (a) Calculate the maximum displacement of air mole­
cules when a 330-Hz sound wave passes whose intensity is 
at the threshold of pain (120 dB). (b) What is the pressure 
amplitude in this wave?

32. (II) A jet plane emits 5.0 X 105J of sound energy per 
second, (a) What is the sound level 25 m away? Air absorbs 
sound at a rate of about 7.0dB/km; calculate what the 
sound level will be (b) 1.00 km and (c) 7.50 km away from this 
jet plane, taking into account air absorption.

1 6 -4  Sources of Sound: Strings and A ir Colum ns
33. (I) What would you estimate for the length of a bass clar­

inet, assuming that it is modeled as a closed tube and that 
the lowest note that it can play is a whose frequency is 
69.3 Hz?

34. (I) The A string on a violin has a fundamental frequency of 
440 Hz. The length of the vibrating portion is 32 cm, and it has 
a mass of 0.35 g. Under what tension must the string be placed?

35. (I) An organ pipe is 124 cm long. Determine the fundamental 
and first three audible overtones if the pipe is (a) closed at 
one end, and (b) open at both ends.

36. (I) (a) What resonant frequency would you expect from 
blowing across the top of an empty soda bottle that is 21 cm 
deep, if you assumed it was a closed tube? (b) How would 
that change if it was one-third full of soda?

37. (I) If you were to build a pipe organ with open-tube pipes
snannino the. ranae of human hearino (7.0 H z to ?.0kH7Y

FIG U RE 16-34
Problem 38.

39. (II) An unfingered guitar string is 0.73 m long and is tuned 
to play E above middle C (330 Hz), (a) How far from the 
end of this string must a fret (and your finger) be placed to 
play A above middle C (440 Hz)? (b) What is the wave­
length on the string of this 440-Hz wave? (c) What are the 
frequency and wavelength of the sound wave produced in 
air at 25°C by this fingered string?

40. (II) (a) Determine the length of an open organ pipe that 
emits middle C (262 Hz) when the temperature is 15°C.
(b) What are the wavelength and frequency of the funda­
mental standing wave in the tube? (c) What are A and /  in 
the traveling sound wave produced in the outside air?

41. (II) An organ is in tune at 22.0°C. By what percent will the 
frequency be off at 5.0°C?

42. (II) How far from the mouthpiece of the flute in 
Example 16-11 should the hole be that must be uncovered 
to play F above middle C at 349 Hz?

43. (II) A bugle is simply a tube of fixed length that behaves as 
if it is open at both ends. A bugler, by adjusting his lips 
correctly and blowing with proper air pressure, can cause a 
harmonic (usually other than the fundamental) of the air 
column within the tube to sound loudly. Standard military 
tunes like Taps and Reveille require only four musical notes: 
G4 (392 Hz), C5 (523 Hz), E5 (659 Hz), and G5 (784 Hz).
(a) For a certain length £, a bugle will have a sequence of 
four consecutive harmonics whose frequencies very nearly 
equal those associated with the notes G4, C5, E5, and G5. 
Determine this t  (b) Which harmonic is each of the 
(approximate) notes G4, C5, E5, and G5 for the bugle?

44. (II) A particular organ pipe can resonate at 264 Hz, 440 Hz, 
and 616 Hz, but not at any other frequencies in between.
(a) Show why this is an open or a closed pipe, (b) What is 
the fundamental frequency of this pipe?

45. (II) When a player’s finger presses a guitar string down onto 
a fret, the length of the vibrating portion of the string is 
shortened, thereby increasing the string’s fundamental 
frequency (see Fig. 16-35). The string’s tension and mass per 
unit length remain unchanged. If the unfingered length of the 
string is £ = 65.0 cm, determine the positions x of the first six 
frets, if each fret raises the pitch of the fundamental by one 
musical note in comparison to the neighboring fret. On 
the equally tempered chromatic scale, the ratio of frequen­
cies of neighboring
notes is 21/12.

FIGURE 1 6 -3 5



46. (II) A uniform narrow tube 1.80 m long is open at both ends. 
It resonates at two successive harmonics of frequencies 
275 Hz and 330 Hz. What is (a) the fundamental frequency, 
and (b) the speed of sound in the gas in the tube?

47. (II) A pipe in air at 23.0°C is to be designed to produce two 
successive harmonics at 240 Hz and 280 Hz. How long must 
the pipe be, and is it open or closed?

48. (II) How many overtones are present within the audible 
range for a 2.48-m-long organ pipe at 20°C (a) if it is open, 
and (b) if it is closed?

49. (II) Determine the fundamental and first overtone frequen­
cies for an 8.0-m-long hallway with all doors closed. Model 
the hallway as a tube closed at both ends.

50. (II) In a quartz oscillator, used as a stable clock in electronic 
devices, a transverse (shear) standing sound wave is excited 
across the thickness d of a quartz disk and its frequency /  is 
detected electronically. The parallel faces of the disk are unsup­
ported and so behave as “free ends” when the sound wave 
reflects from them (see Fig. 16-36). If the oscillator is designed 
to operate with the first harmonic, determine the required disk 
thickness if /  = 12.0 MHz. The density and shear modulus of 
quartz are p =  2650 kg/m3 and G =  2.95 X 1010N/m2.

fi /s Air

Air

FIGURE 16-36 Problem 50.

51. (Ill) The human ear canal is approximately 2.5 cm long. It is 
open to the outside and is closed at the other end by the 
eardrum. Estimate the frequencies (in the audible range) of 
the standing waves in the ear canal. What is the relationship 
of your answer to the information in the graph of Fig. 16-6?

1 6 -5  Quality of Sound, Superposition
52. (II) Approximately what are the intensities of the first two 

overtones of a violin compared to the fundamental? How 
many decibels softer than the fundamental are the first and 
second overtones? (See Fig. 16-14.)

1 6 -6  Interference; Beats
53. (I) A piano tuner hears one beat every 2.0 s when trying to 

adjust two strings, one of which is sounding 370 Hz. How far 
off in frequency is the other string?

54. (I) What is the beat frequency if middle C (262 Hz) and C# 
(277 Hz) are played together? What if each is played two 
octaves lower (each frequency reduced by a factor of 4)?

55. (II) A guitar string produces 4 beats/s when sounded with 
a 350-Hz tuning fork and 9 beats/s when sounded with a 
355-Hz tuning fork. What is the vibrational frequency of the 
string? Explain your reasoning.

56. (II) The two sources of sound in Fig. 16-15 face each other 
and emit sounds of equal amplitude and equal frequency 
(294 Hz) but 180° out of phase. For what minimum separa­
tion of the two speakers will there be some point at which
(n\ mrrmlp.te romtrnrtivp interferpnrp nrrnrs and (h\ comnletp

57. (II) How many beats will be heard if two identical flutes, 
each 0.66 m long, try to play middle C (262 Hz), but one is at 
5.0°C and the other at 28°C?

58. (II) Two loudspeakers are placed 3.00 m apart, as shown in 
Fig. 16-37. They emit 494-Hz sounds, in phase. A micro­
phone is placed 3.20 m distant from a point midway 
between the two speakers, where an intensity maximum is 
recorded, (a) How far must the microphone be moved to the 
right to find the first inten­
sity minimum? (b) Suppose 
the speakers are reconnected 
so that the 494-Hz sounds 
they emit are exactly out of 
phase. At what positions are 
the intensity maximum and $2 
minimum now?

FIGURE 16-37
Problem 58.

59. (II) Two piano strings are supposed to be vibrating at 
220 Hz, but a piano tuner hears three beats every 2.0 s when 
they are played together, (a) If one is vibrating at 220.0 Hz, 
what must be the frequency of the other (is there only one 
answer)? (b) By how much (in percent) must the tension be 
increased or decreased to bring them in tune?

60. (II) A source emits sound of wavelengths 2.64 m and 
2.72 m in air. (a) How many beats per second will be heard? 
(Assume T  = 20°C.) (b) How far apart in space are the 
regions of maximum intensity?

1 6 -7  Doppler Effect
61. (I) The predominant frequency of a certain fire truck’s siren 

is 1350 Hz when at rest. What frequency do you detect if 
you move with a speed of 30.0 m/s (a) toward the fire truck, 
and (b) away from it?

62. (I) A bat at rest sends out ultrasonic sound waves at
50.0 kHz and receives them returned from an object moving 
directly away from it at 30.0 m/s. What is the received 
sound frequency?

63. (II) (a) Compare the shift in frequency if a 2300-Hz source 
is moving toward you at 18 m/s, versus you moving toward 
it at 18 m/s. Are the two frequencies exactly the same? Are 
they close? (b) Repeat the calculation for 160 m/s and then 
again (c) for 320 m/s. What can you conclude about the 
asymmetry of the Doppler formulas? (d) Show that at low 
speeds (relative to the speed of sound), the two formulas— 
source approaching and detector approaching—yield the 
same result.

64. (II) Two automobiles are equipped with the same single­
frequency horn. When one is at rest and the other is moving 
toward the first at 15 m/s, the driver at rest hears a beat 
frequency of 4.5 Hz. What is the frequency the horns emit? 
Assume T  = 20°C.

65. (II) A police car sounding a siren with a frequency of 
1280 Hz is traveling at 120.0 km/h. (a) What frequencies 
does an observer standing next to the road hear as the car 
approaches and as it recedes? (b) What frequencies are 
heard in a car traveling at 90.0 km/h in the opposite direc­
tion before and after passing the police car? (c) The police 
car nasses a car traveling in the same direction at 80.0 km /h.



66. (II) A bat flies toward a wall at a speed of 7.0 m/s. As it flies, 
the bat emits an ultrasonic sound wave with frequency 30.0 kHz. 
What frequency does the bat hear in the reflected wave?

67. (II) In one of the original Doppler experiments, a tuba was 
played on a moving flat train car at a frequency of 75 Hz, 
and a second identical tuba played the same tone while at 
rest in the railway station. What beat frequency was heard 
in the station if the train car approached the station at a 
speed of 12.0 m/s?

68. (II) If a speaker mounted on an automobile broadcasts a 
song, with what speed (km/h) does the automobile have to 
move toward a stationary listener so that the listener hears 
the song with each musical note shifted up by one note in 
comparison to the song heard by the automobile’s driver? 
On the equally tempered chromatic scale, the ratio of 
frequencies of neighboring notes is 21/12.

69. (II) A wave on the surface of the ocean with wavelength 
44 m is traveling east at a speed of 18 m/s relative to the 
ocean floor. If, on this stretch of ocean surface, a powerboat 
is moving at 15 m/s (relative to the ocean floor), how often 
does the boat encounter a wave crest, if the boat is traveling
(a) west, and (b) east?

70. (Ill) A factory whistle emits sound of frequency 720 Hz. When 
the wind velocity is 15.0 m/s from the north, what frequency 
will observers hear who are located, at rest, (a) due north,
(b) due south, (c) due east, and (d) due west, of the whistle? 
What frequency is heard by a cyclist heading (e) north or 
( /)  west, toward the whistle at 12.0 m/s? Assume T  = 20°C.

71. (Ill) The Doppler effect using ultrasonic waves of frequency
2.25 X 106 Hz is used to monitor the heartbeat of a fetus. A 
(maximum) beat frequency of 260 Hz is observed. Assuming 
that the speed of sound in tissue is 1.54 X 103 m/s, calculate 
the maximum velocity of the surface of the beating heart.

* 16-8 Shock Waves; Sonic Boom
* 72. (II) An airplane travels at Mach 2.0 where the speed of sound

is 310 m/s. (a) What is the angle the shock wave makes with 
the direction of the airplane’s motion? (b) If the plane is 
flying at a height of 6500 m, how long after it is directly over­
head will a person on the ground hear the shock wave?

| General Problems__________
78. A fish finder uses a sonar device that sends 20,000-Hz sound 

pulses downward from the bottom of the boat, and then 
detects echoes. If the maximum depth for which it is 
designed to work is 75 m, what is the minimum time 
between pulses (in fresh water)?

79. A science museum has a display called a sewer pipe symphony. 
It consists of many plastic pipes of various lengths, which are 
open on both ends, (a) If the pipes have lengths of 3.0 m, 2.5 m,
2.0 m, 1.5 m and 1.0 m, what frequencies will be heard by a 
visitor’s ear placed near the ends of the pipes? (b) Why does 
this display work better on a noisy day than on a quiet day?

80. A single mosquito 5.0 m from a person makes a sound close 
to the threshold of human hearing (0 dB). What will be the 
sound level of 100 such mosquitoes?

81. What is the resultant sound level when an 82-dB sound and 
an 89-dB sound are heard simultaneously?

82. The sound level 9.00 m from a loudspeaker, placed in the
nnen is 11 5 dR What is the ar-mistir. nnwer nntnnt fWl nf

*73. (II) A space probe enters the thin atmosphere of a planet 
where the speed of sound is only about 45 m/s. (a) What is 
the probe’s Mach number if its initial speed is 15,000 km/h?
(b) What is the angle of the shock wave relative to the 
direction of motion?

*74. (II) A meteorite traveling 8800 m/s strikes the ocean. 
Determine the shock wave angle it produces (a) in the air 
just before entering the ocean, and (b) in the water just 
after entering. Assume T  = 20°C.

*75. (II) Show that the angle 6 a sonic boom makes with the 
path of a supersonic object is given by Eq. 16-12.

*76. (II) You look directly overhead and see a plane exactly
1.25 km above the ground flying faster than the speed of 
sound. By the time you hear the sonic boom, the plane has 
traveled a horizontal distance of 2.0 km. See Fig. 16-38. 
Determine (a) the angle of the shock cone, 6, and (b) the 
speed of the plane 
(the Mach number).
Assume the speed 
of sound is 330 m/s.

FIGURE 16-38
Problem 76.

*77. (II) A supersonic jet traveling at Mach 2.2 at an altitude of 
9500 m passes directly over an observer on the ground. 
Where will the plane be relative to the observer when the 
latter hears the sonic boom? (See Fig. 16-39.)

83. A stereo amplifier is rated at 175 W output at 1000 Hz. The 
power output drops by 12 dB at 15 kHz. What is the power 
output in watts at 15 kHz?

84. Workers around jet aircraft typically wear protective 
devices over their ears. Assume that the sound level 
of a jet airplane engine, at a distance of 30 m, is 130 dB, 
and that the average human ear has an effective radius 
of 2.0 cm. What would be the power intercepted by 
an unprotected ear at a distance of 30 m from a jet 
airplane engine?

85. In audio and communications systems, the gain, /3, in 
decibels is defined as

„  -

where P[n is the power input to the system and Pout is 
the power output. A particular stereo amplifier puts out 
125 W  n f nnw er fnr an innut n f 1 .0m W . W hat is its pain

Observer J  ± direction

<a) <b)

FIGURE 16-39 Problem 77.



86. For large concerts, loudspeakers are sometimes used to 
amplify a singer’s sound. The human brain interprets sounds 
that arrive within 50 ms of the original sound as if they came 
from the same source. Thus if the sound from a loudspeaker 
reaches a listener first, it would sound as if the loudspeaker 
is the source of the sound. Conversely, if the singer is heard 
first and the loudspeaker adds to the sound within 50 ms, 
the sound would seem to come from the singer, who would 
now seem to be singing louder. The second situation is 
desired. Because the signal to the loudspeaker travels at the 
speed of light (3 X 108m/s), which is much faster than 
the speed of sound, a delay is added to the signal sent to 
the loudspeaker. How much delay must be added if the 
loudspeaker is 3.0 m behind the singer and we want its sound 
to arrive 30 ms after the singer’s?

87. Manufacturers typically offer a particular guitar string in a 
choice of diameters so that players can tune their instruments 
with a preferred string tension. For example, a nylon 
high-E string is available in a low- and high-tension model 
with diameter 0.699 mm and 0.724 mm, respectively. Assuming 
the density p of nylon is the same for each model, compare 
(as a ratio) the tension in a tuned high- and low-tension 
string.

88. The high-E string on a guitar is fixed at both ends with length 
I = 65.0 cm and fundamental frequency f i  = 329.6 Hz. On 
an acoustic guitar, this string typically has a diameter of 
0.33 mm and is commonly made of brass (7760 kg/m3), 
while on an electric guitar it has a diameter of 0.25 mm and 
is made of nickel-coated steel (7990 kg/m3). Compare (as a 
ratio) the high-E string tension on an acoustic versus an 
electric guitar.

89. The A string of a violin is 32 cm long between fixed points 
with a fundamental frequency of 440 Hz and a mass per unit 
length of 7.2 X 10-4 kg/m. (a) What are the wave speed and 
tension in the string? (b) What is the length of the tube of a 
simple wind instrument (say, an organ pipe) closed at one 
end whose fundamental is also 440 Hz if the speed of sound 
is 343 m/s in air? (c) What is the frequency of the first over­
tone of each instrument?

90. A tuning fork is set into vibration above a vertical open 
tube filled with water (Fig. 16-40). The water level is 
allowed to drop slowly. As it does so, the air in the tube 
above the water level is heard to 
resonate with the tuning fork when 
the distance from the tube opening ^  
to the water level is 0.125 m and 
again at 0.395 m. What is the (). 125 m 
frequency of the tuning fork?

FIGURE 16-40
Problem 90.

91. Two identical tubes, each closed at one end, have a 
fundamental frequency of 349 Hz at 25.0°C. The air 
temperature is increased to 30.0°C in one tube. If the two 
pipes are sounded together now, what beat frequency results?

92. Each string on a violin is tuned to a frequency 1 \  times that 
of its neighbor. The four equal-length strings are to be placed
under the. sam e tension* what m ust be  the m ass tier unit

93. The diameter D of a tube does affect the node at the open 
end of a tube. The end correction can be roughly approxi­
mated as adding D/3 to the effective length of the tube. For a 
closed tube of length 0.60 m and diameter 3.0 cm, what are the 
first four harmonics, taking the end correction into consideration?

94. A person hears a pure tone in the 500 to 1000-Hz range 
coming from two sources. The sound is loudest at points 
equidistant from the two sources. To determine exactly what 
the frequency is, the person moves about and finds that the 
sound level is minimal at a point 0.28 m farther from one 
source than the other. What is the frequency of the sound?

95. The frequency of a steam train whistle as it approaches 
you is 552 Hz. After it passes you, its frequency is 
measured as 486 Hz. How fast was the train moving 
(assume constant velocity)?

96. Two trains emit 516-Hz whistles. One train is stationary. 
The conductor on the stationary train hears a 3.5-Hz beat 
frequency when the other train approaches. What is the 
speed of the moving train?

97. Two loudspeakers are at opposite ends of a railroad car as 
it moves past a stationary observer at 10.0 m/s, as shown in 
Fig. 16-41. If the speakers have identical sound frequencies 
of 348 Hz, what is the beat frequency heard by the observer 
when (a) he listens from the position A, in front of the car,
(b) he is between the speakers, at B, and (c) he hears the 
speakers after they have passed him, at C?

C H A

FIGURE 16-41 Problem 97.

98. Two open organ pipes, sounding together, produce a beat 
frequency of 8.0 Hz. The shorter one is 2.40 m long. How 
long is the other?

99. A bat flies toward a moth at speed 7.5 m /s while the moth 
is flying toward the bat at speed 5.0 m/s. The bat emits a 
sound wave of 51.35 kHz. What is the frequency of the wave 
detected by the bat after that wave reflects off the moth?

100. If the velocity of blood flow in the aorta is normally about 
0.32 m/s, what beat frequency would you expect if 
3.80-MHz ultrasound waves were directed along the flow 
and reflected from the red blood cells? Assume that the 
waves travel with a speed of 1.54 X 103 m/s.

101. A bat emits a series of high-frequency sound pulses as it 
approaches a moth. The pulses are approximately 70.0 ms 
apart, and each is about 3.0 ms long. How far away can the 
moth be detected by the bat so that the echo from one 
pulse returns before the next pulse is emitted?

102. (a) Use the binomial expansion to show that Eqs. 16-9a 
and 16-10a become essentially the same for small relative 
velocity between source and observer. (b) What percent 
error would result if Eq. 16-10a were used instead of 
Eq. 16-9a for a relative velocity of 18.0 m/s?

103. Two loudspeakers face each other at opposite ends of a 
long corridor. They are connected to the same source 
which produces a pure tone of 282 Hz. A person walks 
frnm on e sneaker toward the other at a sneed o f 1.4 m /s .



104. A Doppler flow meter is used to measure the speed of blood 
flow. Transmitting and receiving elements are placed on the 
skin, as shown in Fig. 16-42. Typical sound-wave frequencies 
of about 5.0 MHz are used, which have a reasonable chance 
of being reflected from red blood cells. By measuring the 
frequency of the reflected waves, which are Doppler-shifted 
because the red blood cells are moving, the speed of the 
blood flow can be deduced. “Normal” blood flow speed is 
about 0.1 m/s. Suppose that an artery is partly constricted, 
so that the speed of the blood flow is increased, and the flow 
meter measures a Doppler shift of 780 Hz. What is the speed 
of blood flow in the constricted region? The effective angle 
between the sound waves (both transmitted and reflected) 
and the direction
of blood flow 
is 45°. Assume the 
velocity of sound 
in tissue is 
1540 m/s.

FIGURE 16-42
Problem 104.

Transmitter Receiver

R ed  b lo o d  cells

105. The wake of a speedboat is 15° in a lake where the speed of 
the water wave is 2.2 km/h. What is the speed of the boat?

106. A source of sound waves (wavelength A) is a distance I 
from a detector. Sound reaches the detector directly, and 
also by reflecting off an obstacle, as shown in Fig. 16-43. 
The obstacle is equidistant from source and detector. 
When the obstacle is a distance d to the right of the line of 
sight between source and detector, as shown, the two 
waves arrive in phase. DetectorHow much farther to 
the right must the 
obstacle be moved if 
the two waves are to be 
out of phase by \  wave­
length, so destructive 
interference occurs? 
(Assume A «  I, d.)

FIGURE 16-43
Problem 106.

107. A dramatic demonstration, called “singing rods,” involves a 
long, slender aluminum rod held in the hand near the rod’s 
midpoint. The rod is stroked with the other hand. With a 
little practice, the rod can be made to “sing,” or emit a 
clear, loud, ringing sound. For a 75-cm-long rod, (a) what is 
the fundamental frequency of the sound? (b) What is its 
wavelength in the rod, and (c) what is the wavelength of 
the sound in air at 20°C?

108. Assuming that the maximum displacement of the air 
molecules in a sound wave is about the same as that of the 
speaker cone that produces the sound (Fig. 16-44),

Rjunglaclion Compression

cone
estimate by how 
much a loudspeaker 
cone moves for a 
fairly loud (105 dB) 
sound of (a) 8.0 kHz, 
and (b) 35 Hz.

FIGURE 16-44
Problem 108.

Minion of speaker cone 
{exaggerated)

* Numerical/Computer
* 109. (Ill) The manner in which a string is plucked determines

the mixture of harmonic amplitudes in the resulting wave. 
Consider a string exactly |-m long that is fixed at both its ends 
located at x = 0.0 and x = \  m. The first five harmonics 
of this string have wavelengths X\ = 1.0 m, A2 = |m , 
A3 = \  m, A4 = \  m, and A5 = |  m. According to Fourier’s 
theorem, any shape of this string can be formed by a sum 
of its harmonics, with each harmonic having its own unique 
amplitude A. We limit the sum to the first five harmonics 
in the expression

. (2 tt \  . (2ttD(x) = AiSinl —  x j + v42sinl —  x

A . (2ir \  A . (2 tt \  A . (2ir \  
+ A 3 sin I —  xJ + A 4 sin I —  xJ + A 5 sin I —  xJ,

and D is the displacement of the string at a time t = 0. 
Imagine plucking this string at its midpoint (Fig. 16-45a) or 
at a point two-thirds from the left end (Fig. 16-45b). Using 
a graphing calculator or computer program, show that 
the above expression 
can fairly accurately 
represent the shape 
in: (a) Fig. 16-45a, if 
A \  = 1.00,
A 2 = 0.00,
A 3 = -0.11,
A 4 = 0.00, and , .
A s = 0.040; and in {U}
(b) Fig. 16-45b, if 
A 1 = 0.87,
A 2 = -0.22,
A 3 = 0.00,
A 4 = 0.054, and 
A s = -0.035.

FIGURE 16-45
Problem 109.
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Answers to Exercises

A: 1 km for every 3 s before the thunder is heard. E: 257 Hz.
B: 4 times as intense. F: (b).
C: (b). G: (a) 1717 Hz, (b) 1483 Hz.



Heating the air inside a “hot-air” balloon raises the 
air’s temperature, causing it to expand, and forces air 
out the opening at the bottom. The reduced amount of 
air inside means its density is lower than the outside 
air, so there is a net buoyant force upward on the 
balloon. In this Chapter we study temperature and its 
effects on matter: thermal expansion and the gas laws.

/
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CHAPTER-OPENING QUESTION—Guess now!
A hot-air balloon, open at one end (see photos above), rises when the air inside is 
heated by a flame. For the following properties, is the air inside the balloon higher, 
lower, or the same as for the air outside the balloon?

(i) Temperature,
(ii) Pressure,
(iii) Density.

I n the next four Chapters, Chapters 17 through 20, we study temperature, heat 
and thermodynamics, and the kinetic theory of gases.

We will often consider a particular system, by which we mean a particular 
object or set of objects; everything else in the universe is called the 

“environment.” We can describe the state (or condition) of a particular system— 
such as a gas in a container—from either a microscopic or macroscopic point of 
view. A microscopic description would involve details of the motion of all the 
atoms or molecules making up the system, which could be very complicated. A 
macrosconic descriDtion is given in terms of Quantities that are detectable directlv



The description of processes in terms of macroscopic quantities is the field of 
thermodynamics. Quantities that can be used to describe the state of a system are 
called state variables. To describe the state of a pure gas in a container, for 
example, requires only three state variables, which are typically the volume, the 
pressure, and the temperature. More complex systems require more than three 
state variables to describe them.

The emphasis in this Chapter is on the concept of temperature. We begin, 
however, with a brief discussion of the theory that matter is made up of atoms and 
that these atoms are in continual random motion. This theory is called kinetic 
theory (“kinetic,” you may recall, is Greek for “moving”), and we discuss it in more 
detail in Chapter 18.

17—1 Atomic Theory of Matter
The idea that matter is made up of atoms dates back to the ancient Greeks. 
According to the Greek philosopher Democritus, if a pure substance—say, a piece 
of iron—were cut into smaller and smaller bits, eventually a smallest piece of that 
substance would be obtained which could not be divided further. This smallest 
piece was called an atom, which in Greek means “ indivisible.”f

Today the atomic theory is universally accepted. The experimental evidence in 
its favor, however, came mainly in the eighteenth, nineteenth, and twentieth 
centuries, and much of it was obtained from the analysis of chemical reactions.

We will often speak of the relative masses of individual atoms and 
molecules—what we call the atomic mass or molecular mass, respectively.* 
These are based on arbitrarily assigning the abundant carbon atom, 12C, 
the atomic mass of exactly 12.0000 unified atomic mass units (u). In terms 
of kilograms,

l u  = 1.6605 X 10_27kg.

The atomic mass of hydrogen is then 1.0078 u, and the values for other atoms are 
as listed in the Periodic Table inside the back cover of this book, and also in 
Appendix F. The molecular mass of a compound is the sum of atomic masses of 
the atoms making up the molecules of that compound.®

An important piece of evidence for the atomic theory is called Brownian 
motion, named after the biologist Robert Brown, who is credited with its discovery 
in 1827. While he was observing tiny pollen grains suspended in water under his 
microscope, Brown noticed that the tiny grains moved about in tortuous paths 
(Fig. 17-1), even though the water appeared to be perfectly still. The atomic 
theory easily explains Brownian motion if the further reasonable assumption is 
made that the atoms of any substance are continually in motion. Then Brown’s tiny 
pollen grains are jostled about by the vigorous barrage of rapidly moving mole­
cules of water.

In 1905, Albert Einstein examined Brownian motion from a theoretical point 
of view and was able to calculate from the experimental data the approximate size 
and mass of atoms and molecules. His calculations showed that the diameter of a 
typical atom is about 10-10 m.

tToday we do not consider the atom as indivisible, but rather as consisting of a nucleus (containing 
protons and neutrons) and electrons.
*The terms atomic weight and molecular weight are sometimes used for these quantities, but properly 
speaking we are comparing masses.
§An element is a substance, such as gold, iron, or copper, that cannot be broken down into simpler 
substances by chemical means. Compounds are substances made up of elements, and can be broken 
down into them; examples are carbon dioxide and water. The smallest piece of an element is an atom; 
the smallest piece of a compound is a molecule. Molecules are made up of atoms; a molecule of

FIGURE 17-1 Path of a tiny 
particle (pollen grain, for example) 
suspended in water. The straight 
lines connect observed positions of 
the particle at equal time intervals.



FIGURE 17-2
Atom ic arrangements in
(a) a crystalline solid, (b) a liquid,
and (c) a gas.

At the start of Chapter 13, we distinguished the three common phases (or states) 
of matter—solid, liquid, gas—based on macroscopic, or “large-scale,” properties. Now 
let us see how these three phases of matter differ, from the atomic or microscopic 
point of view. Clearly, atoms and molecules must exert attractive forces on each other. 
For how else could a brick or a block of aluminum hold together in one piece? The 
attractive forces between molecules are of an electrical nature (more on this in later 
Chapters). When molecules come too close together, the force between them must 
become repulsive (electric repulsion between their outer electrons), for how else 
could matter take up space? Thus molecules maintain a minimum distance from each 
other. In a solid material, the attractive forces are strong enough that the atoms or 
molecules move only slightly (oscillate) about relatively fixed positions, often in an 
array known as a crystal lattice, as shown in Fig. 17-2a. In a liquid, the atoms or 
molecules are moving more rapidly, or the forces between them are weaker, so that 
they are sufficiently free to pass around one another, as in Fig. 17-2b. In a gas, the 
forces are so weak, or the speeds so high, that the molecules do not even stay close 
together. They move rapidly every which way, Fig. 17-2c, filling any container and 
occasionally colliding with one another. On average, the speeds are sufficiently 
high in a gas that when two molecules collide, the force of attraction is not strong 
enough to keep them close together and they fly off in new directions.

EXAMPLE 17-1 ESTIMATE 1 Distance between atoms. The density of 
copper is 8.9 X 103 kg/m3, and each copper atom has a mass of 63 u. Estimate the 
average distance between the centers of neighboring copper atoms.
APPROACH We consider a cube of copper 1 m on a side. From the given density p 
we can calculate the mass ra of a cube of volume V = 1 m3 (ra = pV ). We divide 
this by the mass of one atom (63 u) to obtain the number of atoms in 1 m3. We 
assume the atoms are in a uniform array, and we let N  be the number of atoms in 
a 1-m length; then (N ) ( N ) ( N ) = N 3 equals the total number of atoms in 1 m3. 
SOLUTION The mass of 1 copper atom is 63 u = 63 X 1.66 X 10-27 kg = 
1.05 X 10-25 kg. This means that in a cube of copper 1 m on a side (volume = 1 m3), 
there are

8.9 X 103 kg/m3 ,
------------- ~---- -------  = 8.5 X 10 8 atoms/m3.
1.05 X 10“25 kg/atom

The volume of a cube^f side £ is V = P, so on one edge of the 1-m-long cube
there are (8.5 X 1028)3 atoms = 4.4 X 109 atoms. Hence the distance between
neighboring atoms is

1 m = 2.3 X 10-1 0 m.
4.4 X 109 atoms

NOTE Watch out for units. Even though “atoms” is not a unit, it is helpful to 
include it to make sure you calculate correctly.

a bridge.17-̂ Expansion joint on 17—2 Temperature and Thermometers
In everyday life, temperature is a measure of how hot or cold something is. A hot 
oven is said to have a high temperature, whereas the ice of a frozen lake is said to 
have a low temperature.

Many properties of matter change with temperature. For example, most materials 
expand when their temperature is increased.1 An iron beam is longer when hot than when 
cold. Concrete roads and sidewalks expand and contract slightly according to temperature, 
which is why compressible spacers or expansion joints (Fig. 17-3) are placed at regular 
intervals. The electrical resistance of matter changes with temperature (Chapter 25). 
So too does the color radiated by objects, at least at high temperatures; you may have 
noticed that the heating element of an electric stove glows with a red color when hot.
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At higher temperatures, solids such as iron glow orange or even white. The white 
light from an ordinary incandescent lightbulb comes from an extremely hot tungsten 
wire. The surface temperatures of the Sun and other stars can be measured by the 
predominant color (more precisely, wavelengths) of light they emit.

Instruments designed to measure temperature are called thermometers. There 
are many kinds of thermometers, but their operation always depends on some 
property of matter that changes with temperature. Many common thermometers rely 
on the expansion of a material with an increase in temperature. The first idea for a 
thermometer, by Galileo, made use of the expansion of a gas. Common thermometers 
today consist of a hollow glass tube filled with mercury or with alcohol colored with a 
red dye, as were the earliest usable thermometers (Fig. 17-4).

Inside a common liquid-in-glass thermometer, the liquid expands more than 
the glass when the temperature is increased, so the liquid level rises in the tube 
(Fig. 17-5a). Although metals also expand with temperature, the change in length 
of a metal rod, say, is generally too small to measure accurately for ordinary 
changes in temperature. However, a useful thermometer can be made by bonding 
together two dissimilar metals whose rates of expansion are different (Fig. 17-5b). 
When the temperature is increased, the different amounts of expansion cause the 
bimetallic strip to bend. Often the bimetallic strip is in the form of a coil, one end 
of which is fixed while the other is attached to a pointer, Fig. 17-6. This kind of 
thermometer is used as ordinary air thermometers, oven thermometers, automatic 
off switches in electric coffeepots, and in room thermostats for determining when 
the heater or air conditioner should go on or off. Very precise thermometers 
make use of electrical properties (Chapter 25), such as resistance thermometers, 
thermocouples, and thermistors, often with a digital readout.

Temperature Scales
In order to measure temperature quantitatively, some sort of numerical scale must 
be defined. The most common scale today is the Celsius scale, sometimes called 
the centigrade scale. In the United States, the Fahrenheit scale is also common. The 
most important scale in scientific work is the absolute, or Kelvin, scale, and it will 
be discussed later in this Chapter.

One way to define a temperature scale is to assign arbitrary values to two 
readily reproducible temperatures. For both the Celsius and Fahrenheit scales these 
two fixed points are chosen to be the freezing point and the boiling point* of water, 
both taken at standard atmospheric pressure. On the Celsius scale, the freezing point 
of water is chosen to be 0°C (“zero degrees Celsius”) and the boiling point 100°C. 
On the Fahrenheit scale, the freezing point is defined as 32°F and the boiling point 
212°F. A practical thermometer is calibrated by placing it in carefully prepared 
environments at each of the two temperatures and marking the position of the liquid 
or pointer. For a Celsius scale, the distance between the two marks is divided into 
one hundred equal intervals representing each degree between 0°C and 100°C (hence 
the name “centigrade scale” meaning “hundred steps”). For a Fahrenheit scale, the 
two points are labeled 32°F and 212°F and the distance between them is divided into 
180 equal intervals. For temperatures below the freezing point of water and above 
the boiling point of water, the scales may be extended using the same equally spaced 
intervals. However, thermometers can be used only over a limited temperature 
range because of their own limitations—for example, the liquid mercury in a 
mercury-in-glass thermometer solidifies at some point, below which the thermometer 
will be useless. It is also rendered useless above temperatures where the fluid, 
such as alcohol, vaporizes. For very low or very high temperatures, specialized 
thermometers are required, some of which we will mention later.

trThe freezing point of a substance is defined as that temperature at which the solid and liquid phases 
coexist in equilibrium—that is, without any net liquid changing into the solid or vice versa. Experimen­
tally, this is found to occur at only one definite temperature, for a given pressure. Similarly, the boiling
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FIGURE 17-4 Thermometers built by 
the Accademia del Cimento (1657-1667) 
in Florence, Italy, are among the earliest 
known. These sensitive and exquisite 
instruments contained alcohol, sometimes 
colored, like many thermometers today.

FIGURE 17-5 (a) Mercury- or 
alcohol-in-glass thermometer;
(b) bimetallic strip.

Tube

Bulb (acts as 
a reservoir)

(a)

FIGURE 17-6 Photograph of a ther­
mometer using a coiled bimetallic strip.
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FIGURE 17-7 Celsius and 
Fahrenheit scales compared.

A  CAUTI ON
Convert temperature by 

remembering 0°C =  32°F and a 
change o f  5 C° =  9 F°

Every temperature on the Celsius scale corresponds to a particular temperature 
on the Fahrenheit scale, Fig. 17-7. It is easy to convert from one to the other if 
you remember that 0°C corresponds to 32°F and that a range of 100° on the 
Celsius scale corresponds to a range of 180° on the Fahrenheit scale. Thus, one 
Fahrenheit degree (1 F°) corresponds to 100/180 = § of a Celsius degree (1 C°). 
That is, I F 0 = §C°. (Notice that when we refer to a specific temperature, we say 
“degrees Celsius,” as in 20°C; but when we refer to a change in temperature or a 
temperature interval, we say “Celsius degrees,” as in “2C°.”) The conversion 
between the two temperature scales can be written

T(°C) = f[r(°F ) -  32]

T(°F) = § r(°c) + 32.

Rather than memorizing these relations (it would be easy to confuse them), it 
is usually easier simply to remember that 0°C = 32°F and that a change of
5 C° = a change of 9 F°.

Taking your temperature. Normal body temperature is 
98.6°F. What is this on the Celsius scale?

APPROACH We recall that 0°C = 32°F and 5C° = 9F°.
SOLUTION First we relate the given temperature to the freezing point of water 
(0°C). That is, 98.6°F is 98.6 -  32.0 = 66.6 F° above the freezing point of 
water. Since each F° is equal to § C°, this corresponds to 66.6 X § = 37.0 Celsius 
degrees above the freezing point. The freezing point is 0°C, so the temperature 
is 37.0°C.

EXERCISE A Determ ine the temperature at which both scales give the same numerical 
reading (Tc  =  7>).

FIGURE 17-8 Constant-volume 
gas thermometer.

Different materials do not expand in quite the same way over a wide 
temperature range. Consequently, if we calibrate different kinds of thermometers 
exactly as described above, they will not usually agree precisely. Because of how 
we calibrate them, they will agree at 0°C and at 100°C. But because of different 
expansion properties, they may not agree precisely at intermediate temperatures 
(remember we arbitrarily divided the thermometer scale into 100 equal divisions 
between 0°C and 100°C). Thus a carefully calibrated mercury-in-glass thermometer 
might register 52.0°C, whereas a carefully calibrated thermometer of another 
type might read 52.6°C. Discrepancies below 0°C and above 100°C can also be 
significant.

Because of such discrepancies, some standard kind of thermometer must be 
chosen so that all temperatures can be precisely defined. The chosen stan­
dard for this purpose is the constant-volume gas thermometer. As shown in 
the simplified diagram of Fig. 17-8, this thermometer consists of a bulb 
filled with a dilute gas connected by a thin tube to a mercury manometer 
(Section 13-6). The volume of the gas is kept constant by raising or lowering 
the right-hand tube of the manometer so that the mercury in the left-hand 
tube coincides with the reference mark. An increase in temperature causes a 
proportional increase in pressure in the bulb. Thus the tube must be lifted higher 
to keep the gas volume constant. The height of the mercury in the right-hand 
column is then a measure of the temperature. This thermometer gives the 
same results for all gases in the limit of reducing the gas pressure in the bulb 
toward zero. The resulting scale serves as a basis for the standard temperature



17—3 Thermal Equilibrium and the 
Zeroth Law of Thermodynamics

We are all familiar with the fact that if two objects at different temperatures are 
placed in thermal contact (meaning thermal energy can transfer from one to the 
other), the two objects will eventually reach the same temperature. They are then 
said to be in thermal equilibrium. For example, you leave a fever thermometer in 
your mouth until it comes into thermal equilibrium with that environment, and 
then you read it. Two objects are defined to be in thermal equilibrium if, when 
placed in thermal contact, no net energy flows from one to the other, and their 
temperatures don’t change. Experiments indicate that

if two systems are in thermal equilibrium with a third system, then they are in 
thermal equilibrium with each other.

This postulate is called the zeroth law of thermodynamics. It has this unusual name 
because it was not until after the great first and second laws of thermodynamics 
(Chapters 19 and 20) were worked out that scientists realized that this apparently 
obvious postulate needed to be stated first.

Temperature is a property of a system that determines whether the system will 
be in thermal equilibrium with other systems. When two systems are in thermal 
equilibrium, their temperatures are, by definition, equal, and no net thermal 
energy will be exchanged between them. This is consistent with our everyday 
notion of temperature, since when a hot object and a cold one are put into contact, 
they eventually come to the same temperature. Thus the importance of the zeroth 
law is that it allows a useful definition of temperature.

17—4 Thermal Expansion
Most substances expand when heated and contract when cooled. However, the 
amount of expansion or contraction varies, depending on the material.

Linear Expansion
Experiments indicate that the change in length A£ of almost all solids is, to a good 
approximation, directly proportional to the change in temperature A T, as long as 
AT is not too large. The change in length is also proportional to the original length 
of the object, £0. That is, for the same temperature increase, a 4-m-long iron rod 
will increase in length twice as much as a 2-m-long iron rod. We can write this 
proportionality as an equation:

A! = a£0AT, (17-la)
where a, the proportionality constant, is called the coefficient o f linear expansion 
for the particular material and has units of (C0)-1. We write £ = £0 + A£, 
Fig. 17-9, and rewrite this equation as £ = £0 + A£ = £0 + a£0AT, or

£ = 4,(1 + a AT), (17-lb)
where £0 is the length initially, at temperature T0, and £ is the length after heating 
or cooling to a temperature T. If the temperature change AT = T — T0 is 
negative, then A£ = £ — £0 is also negative; the length shortens as the temperature 
decreases.

at Tq , FIGURE 1 7 -9  A  thin rod of length £0 
. at temperature T0 is heated to a new

uniform temperature T  and acquires 
aI 7* _  _______  length £, where £ =  £0 +  A t
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Expansion in structures

FIGURE 17-10 Example 17-4.

TABLE 17-1 Coefficients of Expansion, near 20°C

Coefficient o f Linear Coefficient o f Volume
Material Expansion, a  (C °)_1 Expansion, f i  (C °)_1

Solids
Aluminum 25 X IO-6 75 X 10-6
Brass 19 X 1(T6 56 X 10“6
Copper 17 X 10“6 50 X 10“6
Gold 14 X 10“6 42 X 10“6
Iron or steel 12 X 1(T6 35 X 10“6
Lead 29 X 1(T6 87 X 10“6
Glass (Pyrex®) 3 X 1(T6 9 X 10“6
Glass (ordinary) 9 X 1(T6 27 X 10“6
Quartz 0.4 X 10“6 1 X 10“6
Concrete and brick ~  12 X 10“6 ~ 3 6  X 10“6
Marble 1.4-3.5 X 10“6 4 -1 0  X 10“6

Liquids
Gasoline 950 X 10“6
Mercury 180 X 10“6
Ethyl alcohol 1100 X 10“6
Glycerin 500 X 10“6
Water 210 X 10“6

Gases
Air (and most other gases

at atmospheric pressure) 3400 X 10“6

The values of a for various materials at 20°C are listed in Table 17-1. Actually, 
a does vary slightly with temperature (which is why thermometers made of 
different materials do not agree precisely). However, if the temperature range is 
not too great, the variation can usually be ignored.

Bridge expansion. The steel bed of a suspension bridge is 
200 m long at 20°C. If the extremes of temperature to which it might be exposed 
are -30°C to +40°C, how much will it contract and expand?

APPROACH We assume the bridge bed will expand and contract linearly with 
temperature, as given by Eq. 17-la.
SOLUTION From Table 17-1, we find that a  = 12 X 10-6(C°)-1 for steel. The 
increase in length when it is at 40°C will be

M  = at0AT = (12 X 10-6/C°)(200 m)(40°C -  20°C) = 4.8 X 10“2m,

or 4.8 cm. When the temperature decreases to -30°C, AT = -50  C°. Then
A£ = (12 X 10_6/C°)(200m )(-50 C°) = -12.0 X 10“2m,

or a decrease in length of 12 cm. The total range the expansion joints must 
accommodate is 12 cm + 4.8 cm « 17 cm (Fig. 17-3).

CONCEPTUAL EXAMPLE 17-41 Do holes expand or contract? If you heat a 
thin, circular ring (Fig. 17-10a) in the oven, does the ring’s hole get larger or smaller?

RESPONSE You might guess that the metal expands into the hole, making the 
hole smaller. But it is not so. Imagine the ring is solid, like a coin (Fig. 17-10b). 
Draw a circle on it with a pen as shown. When the metal expands, the material 
inside the circle will expand along with the rest of the metal; so the circle 
expands. Cutting the metal where the circle is makes clear to us that the hole

EXAMPLE 17-3



EXAMPLE 17-5 Ring on a rod. An iron ring is to fit snugly on a cylindrical 
iron rod. At 20°C, the diameter of the rod is 6.445 cm and the inside diameter of 
the ring is 6.420 cm. To slip over the rod, the ring must be slightly larger than the 
rod diameter by about 0.008 cm. To what temperature must the ring be brought if 
its hole is to be large enough so it will slip over the rod?
APPROACH The hole in the ring must be increased from a diameter of 6.420 cm 
to 6.445 cm + 0.008 cm = 6.453 cm. The ring must be heated since the hole 
diameter will increase linearly with temperature (Example 17-4).
SOLUTION We solve for AT in Eq. 17-la and find 

A £ 6.453 cm -  6.420 cm

450°C.

A T = —  = = 430 C°.
(12 X 10_6/C°)(6.420 cm)

So it must be raised at least to T = (20°C + 430 C°) :
NOTE In doing Problems, do not forget the last step, adding in the initial 
temperature (20°C here).

CONCEPTUAL EXAMPLE 17-6 I Opening a tight jar lid. When the lid of a glass
jar is tight, holding the lid under hot water for a short time will often make it easier to 
open (Fig. 17-11). Why?
RESPONSE The lid may be struck by the hot water more directly than the glass 
and so expand sooner. But even if not, metals generally expand more than 
glass for the same temperature change (a is greater—see Table 17-1).
NOTE If you put a hard-boiled egg in cold water immediately after cooking it, it 
is easier to peel: the different thermal expansions of the shell and egg cause the 
egg to separate from the shell.

Volume Expansion
The change in volume of a material which undergoes a temperature change is 
given by a relation similar to Eq. 17-la, namely,

Ay = (3VqAT, (17-2)
where AT is the change in temperature, V0 is the original volume, AV is the change 
in volume, and (3 is the coefficient o f volume expansion. The units of /3 are (C0)-1.

Values of /3 for various materials are given in Table 17-1. Notice that for 
solids, j8 is normally equal to approximately 3a. To see why, consider a rectangular 
solid of length £0, width WQ, and height H0. When its temperature is changed by 
AT, its volume changes from VQ = £0W0H0 to

V = Iq(1 + aAT)W 0(l + a AT)H0(1 + a AT), 
using Eq. 17-lb and assuming a is the same in all directions. Thus,

AV  = V -  V0 = V„(l + a i r )3 -  V0 = V0[3 aA T  + 3(a AT)2 + (aA T)3]. 
If the amount of expansion is much smaller than the original size of the object, 
then a AT  «  1 and we can ignore all but the first term and obtain 

AV « (3a)V0AT.
This is Eq. 17-2 with /3 ~ 3a. For solids that are not isotropic (having the same prop­
erties in all directions), however, the relation /3 ~ 3a is not valid. Note also that linear 
expansion has no meaning for liquids and gases since they do not have fixed shapes.

EXERCISE B A  long thin bar of aluminum at 0°C is 1.0 m long and has a volume of
1.0000 X 10-3 m3. When heated to 100°C, the length of the bar becom es 1.0025 m. What is 
the approximate volume of the bar at 100°C? (a) 1.0000 X 10“3 m3; (b) 1.0025 X 10“3 m3;
(c) 1.0050 X 10-3 m3; (d) 1.0075 X 10-3 m3; (e) 2.5625 X 10“3 m3.

Equations 17-1 and 17-2 are accurate only if At (or Ay) is small compared 
to £0 (or Vq). This is of particular concern for liquids and even more so for gases 
because of the large values of /3. Furthermore, f3 itself varies substantially with 
temoerature for eases. Therefore, a more convenient wav of dealing with eases is

P H Y S I C S  A P P L I E D
Opening a tight lid

0 P H Y S I C S  A P P L I
Peeling a hard-boiled egg

E D

FIGURE 17-11 Example 17-6 .
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Gas tank overflow
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Life under ice

FIGURE 1 7 -1 2  Behavior of water 
as a function of temperature near 
4°C. (a) Volume of 1.00000 g of 
water, as a function of temperature, 
(b) Density vs. temperature.
[Note the break in each axis.]

EXAMPLE 17-7 Gas tank in the Sun. The 70-liter (L) steel gas tank of a car is 
filled to the top with gasoline at 20° C. The car sits in the Sun and the tank 
reaches a temperature of 40°C (104°F). How much gasoline do you expect to 
overflow from the tank?
APPROACH Both the gasoline and the tank expand as the temperature increases, 
and we assume they do so linearly as described by Eq. 17-2. The volume of over­
flowing gasoline equals the volume increase of the gasoline minus the increase in 
volume of the tank.
SOLUTION The gasoline expands by

AF = PV0 A T  = (950 X 10-6/C°)(70L)(40°C -  20°C) = 1.3L. 
The tank also expands. We can think of it as a steel shell that undergoes volume 
expansion (/3 ~ 3 a  = 36 X 10_6/C°). If the tank were solid, the surface layer 
(the shell) would expand just the same. Thus the tank increases in volume by 

A V  = (36 X 10-6/C°)(70 L)(40°C -  20°C) =  0.050 L, 
so the tank expansion has little effect. More than a liter of gas could spill out. 
NOTE Want to save a few pennies? You pay for gas by volume, so fill your gas 
tank when it is cool and the gas is denser—more molecules for the same price. 
But don’t fill the tank quite all the way.

Anomalous Behavior of Water Below 4°C
Most substances expand more or less uniformly with an increase in temperature, as 
long as no phase change occurs. Water, however, does not follow the usual pattern. 
If water at 0°C is heated, it actually decreases in volume until it reaches 4°C. Above 
4°C water behaves normally and expands in volume as the temperature is 
increased, Fig. 17-12. Water thus has its greatest density at 4°C. This anomalous 
behavior of water is of great importance for the survival of aquatic life during cold 
winters. When the water in a lake or river is above 4°C and begins to cool by 
contact with cold air, the water at the surface sinks because of its greater density. It 
is replaced by warmer water from below. This mixing continues until the tempera­
ture reaches 4°C. As the surface water cools further, it remains on the surface 
because it is less dense than the 4°C water below. Water then freezes first at the 
surface, and the ice remains on the surface since ice (specific gravity = 0.917) is 
less dense than water. The water at the bottom remains liquid unless it is so cold 
that the whole body of water freezes. If water were like most substances, becoming 
more dense as it cools, the water at the bottom of a lake would be frozen first. 
Lakes would freeze solid more easily since circulation would bring the warmer water 
to the surface to be efficiently cooled. The complete freezing of a lake would cause 
severe damage to its plant and animal life. Because of the unusual behavior of water 
below 4°C, it is rare for any large body of water to freeze completely, and this is 
helped by the layer of ice on the surface which acts as an insulator to reduce the flow 
of heat out of the water into the cold air above. Without this peculiar but wonderful 
property of water, life on this planet as we know it might not have been possible.

Not only does water expand as it cools from 4°C to 0°C, it expands even more 
as it freezes to ice. This is why ice cubes float in water and pipes break when water 
inside them freezes.
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*17—5 Thermal Stresses
In many situations, such as in buildings and roads, the ends of a beam or slab of material 
are rigidly fixed, which greatly limits expansion or contraction. If the temperature 
should change, large compressive or tensile stresses, called thermal stresses, will occur. 
The magnitude of such stresses can be calculated using the concept of elastic modulus 
developed in Chapter 12. To calculate the internal stress, we can think of this process as 
occurring in two steps: (1) the beam tries to expand (or contract) by an amount At 
given by Eq. 17-1; (2) the solid in contact with the beam exerts a force to compress (or 
expand) it, keeping it at its original length. The force F required is given by Eq. 12-4: 

1 F 
Af "  E A l° ’

where E  is Young’s modulus for the material. To calculate the internal stress, F /A , 
we then set At in Eq. 17-la equal to At in the equation above and find

Hence, the stress
F
— = aEAT. A

EXAMPLE 17-8 Stress in concrete on a hot day. A highway is to be made 
of blocks of concrete 10 m long placed end to end with no space between them to 
allow for expansion. If the blocks were placed at a temperature of 10°C, what 
compressive stress would occur if the temperature reached 40°C? The contact 
area between each block is 0.20 m2. Will fracture occur?
APPROACH We use the expression for the stress F /A  we just derived, and find 
the value of E  from Table 12-1. To see if fracture occurs, we compare this stress 
to the ultimate strength of concrete in Table 12-2.
SOLUTION

4  = AT = (12 x  10"6/C°)(20 x  109N/m2)(30C°) = 7.2 x  106N/m2.

This stress is not far from the ultimate strength of concrete under compression 
(Table 12-2) and exceeds it for tension and shear. If the concrete is not perfectly 
aligned, part of the force will act in shear, and fracture is likely. This is why soft spacers 
or expansion joints (Fig. 17-3) are used in concrete sidewalks, highways, and bridges.

I EXERCISE C How much space would you allow between the 10-m-long concrete blocks if 
| you expected a temperature range of 0°F to 110°F?

17—6 The Gas Laws and 
Absolute Temperature

Equation 17-2 is not very useful for describing the expansion of a gas, partly because 
the expansion can be so great, and partly because gases generally expand to fill 
whatever container they are in. Indeed, Eq. 17-2 is meaningful only if the pressure is 
kept constant. The volume of a gas depends very much on the pressure as well as on 
the temperature. It is therefore valuable to determine a relation between the volume, 
the pressure, the temperature, and the mass of a gas. Such a relation is called an 
equation of state. (By the word state, we mean the physical condition of the system.)

If the state of a system is changed, we will always wait until the pressure and 
temperature have reached the same values throughout. We thus consider only 
equilibrium states of a system—when the variables that describe it (such as 
temperature and pressure) are the same throughout the system and are not 
changing in time. We also note that the results of this Section are accurate only for

0 P H Y S I C S  A P P L I E D
H ighway buckling



FIGURE 1 7 -1 3  Pressure vs. 
volume of a fixed amount of gas at a 
constant temperature, showing the 
inverse relationship as given by 
B oyle’s law: as the pressure 
decreases, the volume increases.

FIGURE 1 7 -1 4  Volume of a fixed 
amount of gas as a function of
(a) Celsius temperature, and
(b) Kelvin temperature, when the 
pressure is kept constant.

-273°C 0°C 100°C 200°C
Temperature (°C)

(a)

Temperature (kelvins, or K) 

(b)

For a given quantity of gas it is found experimentally that, to a good approxi­
mation, the volume o f a gas is inversely proportional to the absolute pressure 
applied to it when the temperature is kept constant. That is,

[constant T]

where P is the absolute pressure {not “gauge pressure”—see Section 13-4). For 
example, if the pressure on a gas is doubled, the volume is reduced to half its 
original volume. This relation is known as Boyle’s law, after Robert Boyle 
(1627-1691), who first stated it on the basis of his own experiments. A graph 
of P vs. V  for a fixed temperature is shown in Fig. 17-13. Boyle’s law can 
also be written

PV = constant. [constant T]
That is, at constant temperature, if either the pressure or volume of a fixed amount 
of gas is allowed to vary, the other variable also changes so that the product PV  
remains constant.

Temperature also affects the volume of a gas, but a quantitative relationship 
between V  and T  was not found until more than a century after Boyle’s work. The 
Frenchman Jacques Charles (1746-1823) found that when the pressure is not too 
high and is kept constant, the volume of a gas increases with temperature at a 
nearly linear rate, as shown in Fig. 17-14a. However, all gases liquefy at low 
temperatures (for example, oxygen liquefies at -183°C), so the graph cannot be 
extended below the liquefaction point. Nonetheless, the graph is essentially a 
straight line and if projected to lower temperatures, as shown by the dashed line, it 
crosses the axis at about -273°C.

Such a graph can be drawn for any gas, and the straight line always projects 
back to -273°C at zero volume. This seems to imply that if a gas could be cooled 
to -273°C, it would have zero volume, and at lower temperatures a negative 
volume, which makes no sense. It could be argued that -273°C is the lowest 
temperature possible; indeed, many other more recent experiments indicate that 
this is so. This temperature is called the absolute zero of temperature. Its value has 
been determined to be -273.15°C.

Absolute zero forms the basis of a temperature scale known as the absolute 
scale or Kelvin scale, and it is used extensively in scientific work. On this scale 
the temperature is specified as degrees Kelvin or, preferably, simply as kelvins (K) 
without the degree sign. The intervals are the same as for the Celsius scale, 
but the zero on this scale (OK) is chosen as absolute zero. Thus the freezing 
point of water (0°C) is 273.15 K, and the boiling point of water is 373.15 K. 
Indeed, any temperature on the Celsius scale can be changed to kelvins by 
adding 273.15 to it:

T( K) = T(°C) + 273.15.

Now let us look at Fig. 17-14b, where the graph of the volume of a gas versus 
absolute temperature is a straight line that passes through the origin. Thus, to a 
good approximation, the volume o f a given amount o f gas is directly proportional 
to the absolute temperature when the pressure is kept constant. This is known as 
Charles’s law, and is written

V  oc T. [constant P]

A third gas law, known as Gay-Lussac’s law, after Joseph Gay-Lussac 
(1778-1850), states that at constant volume, the absolute pressure o f a gas is directly 
proportional to the absolute temperature'.

P oc T. [constant V]

The laws of Boyle, Charles, and Gay-Lussac are not really laws in the sense 
that we use this term todav (precise, deeo. wide-raneine validitvV Thev are reallv



and density of the gas are not too high, and the gas is not too close to liquefaction 
(condensation). The term law applied to these three relationships has become 
traditional, however, so we have stuck with that usage.

CONCEPTUAL EXAMPLE 17-9 Why you should not throw a closed glass jar 
into a campfire. What can happen if you did throw an empty glass jar, with the lid 
on tight, into a fire, and why?
RESPONSE The inside of the jar is not empty. It is filled with air. As the fire 
heats the air inside, its temperature rises. The volume of the glass jar changes only 
slightly due to the heating. According to Gay-Lussac’s law the pressure P of the 
air inside the jar can increase dramatically, enough to cause the jar to explode, 
throwing glass pieces outward.

17—7 The Ideal Gas Law
The gas laws of Boyle, Charles, and Gay-Lussac were obtained by means of a very 
useful scientific technique: namely, holding one or more variables constant to see 
clearly the effects on one variable due to changing one other variable. These laws 
can now be combined into a single more general relation between the absolute 
pressure, volume, and absolute temperature of a fixed quantity of gas:

PV  oc T.

This relation indicates how any of the quantities P, V, or T  will vary when the 
other two quantities change. This relation reduces to Boyle’s, Charles’s, or 
Gay-Lussac’s law when either T, P, or V, respectively, is held constant.

Finally, we must incorporate the effect of the amount of gas present. Anyone 
who has blown up a balloon knows that the more air forced into the balloon, the 
bigger it gets (Fig. 17-15). Indeed, careful experiments show that at constant 
temperature and pressure, the volume V  of an enclosed gas increases in direct 
proportion to the mass ra of gas present. Hence we write

PV  oc mT.

This proportion can be made into an equation by inserting a constant of propor­
tionality. Experiment shows that this constant has a different value for different 
gases. However, the constant of proportionality turns out to be the same for all 
gases if, instead of the mass ra, we use the number of moles.

One mole (abbreviated mol) is defined as the amount of substance that 
contains as many atoms or molecules as there are in precisely 12 grams of carbon 12 
(whose atomic mass is exactly 12 u). A simpler but equivalent definition is this:
1 mol is that quantity of substance whose mass in grams is numerically equal to the 
molecular mass (Section 17-1) of the substance. For example, the molecular mass 
of hydrogen gas (H2) is 2.0 u (since each molecule contains two atoms of hydrogen 
and each atom has an atomic mass of 1.0 u). Thus 1 mol of H2 has a mass of 2.0 g. 
Similarly, 1 mol of neon gas has a mass of 20 g, and 1 mol of C 02 has a mass of 
[12 + (2 X 16)] = 44 g since oxygen has atomic mass of 16 (see Periodic Table 
inside the rear cover). The mole is the official unit of amount of substance in the SI 
system. In general, the number of moles, n, in a given sample of a pure substance is 
equal to the mass of the sample in grams divided by the molecular mass specified 
as grams per mole:

mass (grams) 
n (mole) molecular mass (g/mol)

For example, the number of moles in 132 g of C 02 (molecular mass 44 u) is 
132 g™ 5_ — a n

FIGURE 1 7 -1 5  Blowing up a 
balloon means putting more air 
(more air molecules) into the 
balloon, which increases its volume. 
The pressure is nearly constant 
(atmospheric) except for the small 
effect of the balloon’s elasticity.



We can now write the proportion discussed above (PV oc mT) as an equation:

IDEAL GAS LAW PV = nRT, (17-3)

A  CAUTI ON
A lw ays give T  in kelvins and 

P  as absolute (not gauge) pressure

where n represents the number of moles and R is the constant of proportionality. 
R is called the universal gas constant because its value is found experimentally to 
be the same for all gases. The value of R, in several sets of units (only the first is 
the proper SI unit), is

R = 8.314 J/(mol-K) [SI units]
= 0.0821 (L-atm)/(mol-K)
= 1.99 calories/(mol*K).t

Equation 17-3 is called the ideal gas law, or the equation of state for an ideal gas.
We use the term “ideal” because real gases do not follow Eq. 17-3 precisely, 
particularly at high pressure (and density) or when the gas is near the liquefaction 
point (= boiling point). However, at pressures less than an atmosphere or so, and 
when T  is not close to the liquefaction point of the gas, Eq. 17-3 is quite accurate 
and useful for real gases.

Always remember, when using the ideal gas law, that temperatures must be 
given in kelvins (K) and that the pressure P must always be absolute pressure, not 
gauge pressure (Section 13-4).

EXERCISE D Return to the Chapter-Opening Question, page 454, and answer it again now. 
Try to explain why you may have answered differently the first time.

EXERCISE E A n ideal gas is contained in a steel sphere at 27.0°C and 1.00 atm absolute 
pressure. If no gas is allowed to escape and the temperature is raised to 127°C, what will 
be the new pressure? (a) 1.33 atm; (b ) 0.75 atm; (c) 4.7 atm; (d ) 0.21 atm; (e) 1.00 atm.

STP

17-8  Problem Solving with the 
______Ideal Gas Law
The ideal gas law is an extremely useful tool, and we now consider some Examples. 
We will often refer to “standard conditions” or standard temperature and 
pressure (STP), which means:

T = 273 K (0°C) and P = 1.00 atm = 1.013 X 105 N/m2 = 101.3 kPa.

\ P R O B L E M  S O L V I N G
1 m ol o f  gas at STP has V  =  22.4 L

EXAMPLE 17-10 Volume of one mole at STP. Determine the volume of
1.00 mol of any gas, assuming it behaves like an ideal gas, at STP.

APPROACH We use the ideal gas law, solving for V.
SOLUTION We solve for V  in Eq. 17-3:

nRT (1.00 mol) (8.314 J/mol • K) (273 K)
V =

Since 1 liter (L) is 1000 cm3 = 1.00 X 10 3m 
volume V = 22.4 L at STP.

= 22.4 X 10_3m3. 
(1.013 x  10 N/m )

3 1.00 mol of any (ideal) gas has

The value of 22.4 L for the volume of 1 mol of an ideal gas at STP is worth 
remembering, for it sometimes makes calculation simpler.

EXERCISE F What is the volume of 1.00 mol of ideal gas at 5 4 6 K (= 2  X 273 K) and
2.0 atm absolute pressure? (a) 11.2 L, (b) 22.4 L, (c) 44.8 L, (d) 67.2 L, (e) 89.6 L.



EXAMPLE 17-11 Helium balloon. A helium party balloon, assumed to be a 
perfect sphere, has a radius of 18.0 cm. At room temperature (20°C), its internal 
pressure is 1.05 atm. Find the number of moles of helium in the balloon and the 
mass of helium needed to inflate the balloon to these values.
APPROACH We can use the ideal gas law to find n, since we are given P and T, 
and can find V  from the given radius.
SOLUTION We get the volume V  from the formula for a sphere:

V = firr3
= fir (0.180 m)3 = 0.0244 m3.

The pressure is given as 1.05 atm = 1.064 X 105N/m2. The temperature must 
be expressed in kelvins, so we change 20°C to (20 + 273)K = 293 K. Finally, 
we use the value R = 8.314 J/(mol*K) because we are using SI units. 
Thus

PV _  (1.064 X 105N/m2)(0.0244m3)
~RT

n = = 1.066 mol.
(8.314 J/mol-K) (293 K)

The mass of helium (atomic mass = 4.00 g/mol as given in the Periodic Table or 
Appendix F) can be obtained from

mass = n X molecular mass = (1.066 mol) (4.00 g/mol) = 4.26 g

or 4.26 X 10-3 kg.

EXAMPLE 17-12 ESTIMATE"! Mass of air in a room. Estimate the mass of 
air in a room whose dimensions are 5 m X 3 m X 2.5 m high, at STP.
APPROACH First we determine the number of moles n using the given volume. 
Then we can multiply by the mass of one mole to get the total mass.
SOLUTION Example 17-10 told us that 1 mol of a gas at 0°C has a volume of 22.4 L. 
The room’s volume is 5 m X 3 m X 2.5 m, so 

(5 m)(3 m)(2.5 m)
n = 1700 mol.

22.4 X 10 m
Air is a mixture of about 20% oxygen (0 2) and 80% nitrogen (N2). The molecular 
masses are 2 X 16 u = 32 u and 2 X 14 u = 28 u, respectively, for an average 
of about 29 u. Thus, 1 mol of air has a mass of about 29 g = 0.029 kg, so our 
room has a mass of air

m «  (1700 mol) (0.029 kg/mol) 
NOTE That is roughly 100 lb of air!

50 kg.

I EXERCISE G A t 20°C, would there be (a) more, (b ) less, or (c) the same air mass in a room  
I than at 0°C?

Frequently, volume is specified in liters and pressure in atmospheres. Rather than 
convert these to SI units, we can instead use the value of R given in Section 17-7 as
0.0821 L • atm/mol • K.

In many situations it is not necessary to use the value of R at all. For example, 
many problems involve a change in the pressure, temperature, and volume of a 
fixed amount of gas. In this case, P V /T  = nR = constant, since n and R remain 
constant. If we now let P\,VU and Tx represent the appropriate variables initially, 
and P2,V2,T2 represent the variables after the change is made, then we can write

PiVi P2Vi 
Ti T2 '

If we know any five of the quantities in this equation, we can solve for the sixth. 
Or, if one of the three variables is constant (V̂  = V2, or P1 = P2, or Tx = T2) 
then we can use this eauation to solve for one unknown when given the other

P H Y S I C S  A P P L I E D
Mass (and weight) 
o f  the air in a room

g j P R O B L E M  S O L V I N G
Using the ideal gas law  as a ratio



@  P H Y S I C S A P P L I E D
Pressure in a hot tire

FIGURE 1 7 -1 6  Example 17-13.

A vogadro ’s number

IDEAL GAS LAW 
(in terms of molecules)

EXAMPLE 17-13 Check tires cold. An automobile tire is filled (Fig. 17-16) 
to a gauge pressure of 200 kPa at 10°C. After a drive of 100 km, the temperature 
within the tire rises to 40°C. What is the pressure within the tire now? 
APPROACH We do not know the number of moles of gas, or the volume of the 
tire, but we assume they are constant. We use the ratio form of the ideal gas law. 
SOLUTION Since V1 = V2, then

Pi = Pi
71 T2’

This is, incidentally, a statement of Gay-Lussac’s law. Since the pressure given is 
the gauge pressure (Section 13-4), we must add atmospheric pressure 
(=101kPa) to get the absolute pressure P1 = (200 kPa + 101 kPa) = 301 kPa. 
We convert temperatures to kelvins by adding 273 and solve for P2:

= * ( § )  = (3.01 X 105P a ) ( | | f )  = 333 kPa.

Subtracting atmospheric pressure, we find the resulting gauge pressure to be 
232 kPa, which is a 16% increase. This Example shows why car manuals suggest 
checking tire pressure when the tires are cold.

17-9  Ideal Gas Law in Terms of Molecules: 
Avogadro's Number

The fact that the gas constant, R, has the same value for all gases is a remarkable 
reflection of simplicity in nature. It was first recognized, although in a slightly 
different form, by the Italian scientist Amedeo Avogadro (1776-1856). Avogadro 
stated that equal volumes o f gas at the same pressure and temperature contain equal 
numbers o f molecules. This is sometimes called Avogadro’s hypothesis. That this is 
consistent with R being the same for all gases can be seen as follows. From 
Eq. 17-3, PV = nRT, we see that for the same number of moles, n, and the same 
pressure and temperature, the volume will be the same for all gases as long as R is 
the same. Second, the number of molecules in 1 mole is the same for all gases.1" 
Thus Avogadro’s hypothesis is equivalent to R being the same for all gases.

The number of molecules in one mole of any pure substance is known as 
Avogadro’s number, NA. Although Avogadro conceived the notion, he was not 
able to actually determine the value of NA. Indeed, precise measurements were 
not done until the twentieth century.

A number of methods have been devised to measure NA, and the accepted 
value today is

Na = 6.02 X 1023. [m olecu les /m ole]

Since the total number of molecules, N, in a gas is equal to the number per mole 
times the number of moles (N  = nN/J, the ideal gas law, Eq. 17-3, can be written 
in terms of the number of molecules present:

NPV = nRT = — RT,
Na

or
PV = NkT, (17-4)

where k = R /N A is called the Boltzmann constant and has the value
R 8.314 J/mol-K _  „r t - , T/Tjrk  = —— = — ---- — - = 1.38 X 10-23J/K.

Na 6.02 X 10 3/mol

1For example, the molecular mass of H2 gas is 2.0 atomic mass units (u), whereas that of 0 2 gas is 
32.0 u. Thus 1 mol of H2 has a mass of 0.0020 kg and 1 mol of 0 2 gas, 0.0320 kg. The number of mole­
cules in a mole is equal to the total mass M  of a mole divided by the mass m of one molecule; since this



Hydrogen atom mass. Use Avogadro’s number to determine 
the mass of a hydrogen atom.

APPROACH The mass of one atom equals the mass of 1 mol divided by the 
number of atoms in 1 mol, NA.
SOLUTION One mole of hydrogen atoms (atomic mass = 1.008 u, Section 17-1 
or Appendix F) has a mass of 1.008 X 10“3kg and contains 6.02 X 1023 atoms. 
Thus one atom has a mass

1.008 X 10-3 kg  

m ~  6.02 X 1023

= 1.67 X 10-27 kg.

ESTIMATE- ! How many molecules in one breath? Estimate 
how many molecules you breathe in with a 1.0-L breath of air.

APPROACH We determine what fraction of a mole 1.0 L is by using the result of 
Example 17-10 that 1 mole has a volume of 22.4 L at STP, and then multiply that 
by Na to get the number of molecules in this number of moles.
SOLUTION One mole corresponds to 22.4 L at STP, so 1.0 L of air is 
(1.0 L ) /(22.4 L/mol) = 0.045 mol. Then 1.0 L of air contains

(0.045 mol)(6.02 X 1023 molecules/mol) «  3 X 1022 molecules.

*17—10 Ideal Gas Temperature Scale— 
a Standard

It is important to have a very precisely defined temperature scale so that measure­
ments of temperature made at different laboratories around the world can be 
accurately compared. We now discuss such a scale that has been accepted by the 
general scientific community.

The standard thermometer for this scale is the constant-volume gas thermometer 
discussed in Section 17-2. The scale itself is called the ideal gas temperature scale, since 
it is based on the property of an ideal gas that the pressure is directly proportional to 
the absolute temperature (Gay-Lussac’s law). A real gas, which would need to be 
used in any real constant-volume gas thermometer, approaches this ideal at low 
density. In other words, the temperature at any point in space is defined as being 
proportional to the pressure in the (nearly) ideal gas used in the thermometer. To set 
up a scale we need two fixed points. One fixed point will be P = 0 at T = 0 K. 
The second fixed point is chosen to be the triple point of water, which is that point 
where water in the solid, liquid, and gas states can coexist in equilibrium. This occurs 
only at a unique temperature and pressure,f and can be reproduced at different 
laboratories with great precision. The pressure at the triple point of water is 4.58 torr 
and the temperature is 0.01°C. This temperature corresponds to 273.16 K, since 
absolute zero is about -273.15°C. In fact, the triple point is now defined to be 
exactly 273.16 K.

f Liquid water and steam can coexist (the boiling point) at a range of temperatures depending on the 
pressure. Water boils at a lower temperature when the pressure is less, such as high in the mountains.
TTia  t r in lp  n n tn t  r p n rp c p n tc  a m n r p  nrA PicA lir r A n rn ^ n ^ iK lp  fiv p r l r^rvint tVian rlnpc Ai'tViPr tliA  frA A T ina
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EXAMPLE 17-14
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Molecules in a breath



374.00 The absolute or Kelvin temperature T  at any point is then defined, using a 
constant-volume gas thermometer for an ideal gas, as

[ideal gas; constant volume] (17-5a)T = (273.16 K) —
tp

0 200 400 600 800 
Ptp (torr)

FIGURE 17-17 Temperature 
readings o f a constant-volum e gas 
therm om eter for the boiling point of  
water at 1.00 atm are plotted, for 
different gases, as a function of the  
gas pressure in the therm om eter at 
the triple point (Ptp). N ote that as 
the amount o f gas in the 
therm om eter is reduced, so that 
Ptp —> 0, all gases give the same 
reading, 373.15 K. For pressure less 
than 0.10 atm (76 torr), the variation  
shown is less than 0.07 K.

In this relation, Ptp is the pressure of the gas in the thermometer at the triple point 
temperature of water, and P  is the pressure in the thermometer when it is at the 
point where T  is being determined. Note that if we let P = Ptp in this relation, 
then T = 273.16 K, as it must.

The definition of temperature, Eq. 17-5a, with a constant-volume gas thermometer 
filled with a real gas is only approximate because we find that we get different results 
for the temperature depending on the type of gas that is used in the thermometer. 
Temperatures determined in this way also vary depending on the amount of gas in the 
bulb of the thermometer: for example, the boiling point of water at 1.00 atm is found 
from Eq. 17-5a to be 373.87 K when the gas is 0 2 and Ptp = 1000 torr. If the amount 
of 0 2 in the bulb is reduced so that at the triple point P = 500 torr, the boiling point 
of water from Eq. 17-5a is then found to be 373.51 K. If H 2 gas is used instead, the 
corresponding values are 373.07 K and 373.11 K (see Fig. 17-17). But now suppose we 
use a particular real gas and make a series of measurements in which the amount of 
gas in the thermometer bulb is reduced to smaller and smaller amounts, so that 
becomes smaller and smaller. It is found experimentally that an extrapolation of such 
data to ^p  = 0 always gives the same value for the temperature of a given system 
(such as T = 373.15 K for the boiling point of water at 1.00 atm) as shown in 
Fig. 17-17. Thus the temperature T  at any point in space, determined using a constant- 
volume gas thermometer containing a real gas, is defined using this limiting process:

T = (273.16 K) Jim ( - [constant volume] (17-5b)

This defines the ideal gas temperature scale. One of the great advantages of this 
scale is that the value for T  does not depend on the kind of gas used. But the scale 
does depend on the properties of gases in general. Helium has the lowest 
condensation point of all gases; at very low pressures it liquefies at about 1 K, so 
temperatures below this cannot be defined on this scale.

Summary
The atomic theory o f matter postulates that all matter is made up of  
tiny entities called atoms, which are typically 1 0 10 m in diameter.

Atomic and molecular masses are specified on a scale 
where ordinary carbon (12C) is arbitrarily given the value
12.0000 u (atom ic mass units).

The distinction betw een solids, liquids, and gases can be  
attributed to the strength o f the attractive forces betw een  the 
atoms or m olecules and to their average speed.

Temperature is a m easure o f how  hot or cold som ething is. 
Thermometers are used to measure temperature on the Celsius (°C), 
Fahrenheit (°F), and Kelvin (K ) scales. Two standard points 
on each scale are the freezing point o f water (0°C, 32°F, 273.15 K) 
and the boiling point o f water (100°C, 212°F, 373.15 K). 
A  one-kelvin change in temperature equals a change of one  
Celsius degree or § Fahrenheit degrees. Kelvins are related to °C 
by r (K )  =  r ( ° C )  +  273.15.

The change in length, A£, o f a solid, when its temperature 
changes by an amount A T, is directly proportional to the 
temperature change and to its original length f0 • That is,

A£ = at0AT, (17-la)
where a is the coefficient of linear expansion.

The change in volume of most solids, limiids. and aases is

volum e Vq :
AV = PV0A T. (17-2)

The coefficient of volume expansion, /3, is approximately  
equal to 3a  for uniform solids.

Water is unusual because, unlike m ost materials whose  
volum e increases with temperature, its volum e actually decreases 
as the temperature increases in the range from 0°C to 4°C.

The ideal gas law, or equation of state for an ideal gas, 
relates the pressure P, volum e V, and temperature T (in kelvins) 
of n m oles o f gas by the equation

PV = nRT, (17-3)
w here R =  8.314 J /m o l-K  for all gases. R eal gases obey the 
ideal gas law quite accurately if they are not at too  high a 
pressure or near their liquefaction point.

O ne mole is that am ount o f a substance w hose mass in 
grams is numerically equal to the atomic or m olecular mass o f  
that substance.

Avogadro’s number, NA = 6.02 X 1023, is the number of  
atoms or m olecules in 1 m ol o f any pure substance.

The ideal gas law can be written in terms of the number of  
m olecules N  in the gas as

PV = NkT, (17- 4)



Questions
1. Which has more atoms: 1 kg of iron or 1 kg of aluminum? 

See the Periodic Table or Appendix F.
2. Name several properties of materials that could be 

exploited to make a thermometer.
3. Which is larger, 1C° or IF 0?
4. If system A is in equilibrium with system B, but B is not in 

equilibrium with system C, what can you say about the 
temperatures of A, B, and C?

5. Suppose system C is not in equilibrium with system A nor in 
equilibrium with system B. Does this imply that A and B are 
not in equilibrium? What can you infer regarding the 
temperatures of A, B, and C?

6. In the relation M  = aiQ A T, should £0 be the initial 
length, the final length, or does it matter?

7. A flat bimetallic strip consists of a strip of aluminum riveted 
to a strip of iron. When heated, the strip will bend. Which 
metal will be on the outside of the curve? Why?

8. Long steam pipes that are fixed at the ends often have a 
section in the shape of a U. Why?

9. A flat uniform cylinder of lead floats in mercury at 0°C. Will 
the lead float higher or lower if the temperature is raised?

10. Figure 17-18 shows a diagram of a simple thermostat used 
to control a furnace (or other heating or cooling system). 
The bimetallic strip consists of two strips of different metals 
bonded together. The electric switch (attached to the bimetallic 
strip) is a glass vessel containing liquid mercury that conducts 
electricity when it can 
flow to touch both 
contact wires. Explain 
how this device controls 
the furnace and how it 
can be set at different 
temperatures.

FIGURE 17-18
A thermostat
(Question 10).

Problems
17-1 Atomic Theory
1. (I) How does the number of atoms in a 21.5-g gold ring 

compare to the number in a silver ring of the same mass?
2. (I) How many atoms are there in a 3.4-g copper penny?

17-2 Temperature and Thermometers
3. (I) (a) “Room temperature” is often taken to be 68°F. What 

is this on the Celsius scale? (b) The temperature of the fila­
ment in a lightbulb is about 1900°C. What is this on the 
Fahrenheit scale?

4. (I) Among the highest and lowest natural air temperatures 
recorded are 136°F in the Libyan desert and — 129°F in 
Antarctica. What are these temperatures on the Celsius scale?

5. (I) A thermometer tells you that you have a fever of 39.4°C. 
What is this in Fahrenheit?

6. (II) In an alcohol-in-glass thermometer, the alcohol column has 
length 11.82 cm at 0.0°C and length 21.85 cm at 100.0°C. What
is the terrmerature if the m liim n has length (a\  18 7 0 r.m and

11. Explain why it is advisable to add water to an overheated 
automobile engine only slowly, and only with the engine 
running.

12. The units for the coefficients of expansion a are (C0)-1, and 
there is no mention of a length unit such as meters. Would 
the expansion coefficient change if we used feet or millime­
ters instead of meters?

13. When a cold mercury-in-glass thermometer is first placed in 
a hot tub of water, the mercury initially descends a bit and 
then rises. Explain.

14. The principal virtue of Pyrex glass is that its coefficient of 
linear expansion is much smaller than that for ordinary glass 
(Table 17-1). Explain why this gives rise to the higher 
resistance to heat of Pyrex.

15. Will a grandfather clock, accurate at 20°C, run fast or slow 
on a hot day (30°C)? The clock uses a pendulum supported 
on a long thin brass rod.

16. Freezing a can of soda will cause its bottom and top to 
bulge so badly the can will not stand up. What has 
happened?

17. Why might you expect an alcohol-in-glass thermometer to 
be more precise than a mercury-in-glass thermometer?

18. Will the buoyant force on an aluminum sphere submerged 
in water increase, decrease, or remain the same, if the 
temperature is increased from 20°C to 40°C?

19. If an atom is measured to have a mass of 6.7 X 10-27kg, 
what atom do you think it is?

20. From a practical point of view, does it really matter what gas 
is used in a constant-volume gas thermometer? If so, 
explain. [Hint: See Fig. 17-17.]

21. A ship loaded in sea water at 4°C later sailed up a river 
into fresh water where it sank in a storm. Explain why 
a ship might be more likely to sink in fresh water than 
on the open sea. [Hint: Consider the buoyant force due 
to water.]

17-4 Thermal Expansion
7.

Estimate how much its 
height changes between 
January (average tempera­
ture of 2°C) and July 
(average temperature of 
25°C). Ignore the angles of 
the iron beams and treat the 
tower as a vertical beam.

FIGURE 17-19 Problem  7.

(I) The Eiffel Tower (Fig. 17-19) is built of wrought iron
approximately 300 m tall. _________________________
Estimate how



8. (I) A concrete highway is built of slabs 12 m long (20°C). 
How wide should the expansion cracks between the slabs be 
(at 15°C) to prevent buckling if the range of temperature is 
—30°C to +50°C?

9. (I) Super Invar™, an alloy of iron and nickel, is a strong 
material with a very low coefficient of thermal expansion 
(0.20 X 10_6/C°). A 1.6-m-long tabletop made of this alloy is 
used for sensitive laser measurements where extremely high 
tolerances are required. How much will this alloy table 
expand along its length if the temperature increases 5.0 C°? 
Compare to tabletops made of steel.

10. (II) To what temperature would you have to heat a brass 
rod for it to be 1.0% longer than it is at 25°C?

11. (II) The density of water at 4°C is 1.00 X 103 kg/m3. What is 
water’s density at 94°C? Assume a constant coefficient of 
volume expansion.

12. (II) At a given latitude, ocean water in the so-called “mixed 
layer” (from the surface to a depth of about 50 m) is at 
approximately the same temperature due to the mixing 
action of waves. Assume that because of global warming, the 
temperature of the mixed layer is everywhere increased 
by 0.5 °C, while the temperature of the deeper portions of the 
ocean remains unchanged. Estimate the resulting rise in sea 
level. The ocean covers about 70% of the Earth’s surface.

13. (II) To make a secure fit, rivets that are larger than the rivet 
hole are often used and the rivet is cooled (usually in dry 
ice) before it is placed in the hole. A steel rivet 1.872 cm in 
diameter is to be placed in a hole 1.870 cm in diameter in a 
metal at 20° C. To what temperature must the rivet be cooled 
if it is to fit in the hole?

14. (II) A uniform rectangular plate of length £ and width w  has 
a coefficient of linear expansion a. Show that, if we neglect 
very small quantities, the change in area of the plate due to a 
temperature change A T
is A A  = 2aiw AT. See 1---------------h —A f
Fig. 17-20.

FIGURE 17-20
Problem 14.
A rectangular 
plate is heated.

15. (II) An aluminum sphere is 8.75 cm in diameter. What will 
be its change in volume if it is heated from 30° C to 180°C?

16. (II) A typical car has 17 L of liquid coolant circulating at a 
temperature of 93°C through the engine’s cooling system. 
Assume that, in this normal condition, the coolant 
completely fills the 3.5-L volume of the aluminum radiator 
and the 13.5-L internal cavities within the steel engine. 
When a car overheats, the radiator, engine, and coolant 
expand and a small reservoir connected to the radiator 
catches any resultant coolant overflow. Estimate how much 
coolant overflows to the reservoir if the system is heated 
from 93 °C to 105°C. Model the radiator and engine as 
hollow shells of aluminum and steel, respectively. The coeffi­
cient of volume expansion for coolant is (3 = 410 X 10 6/ C°.

17. (II) It is observed that 55.50 mL of water at 20°C 
completely fills a container to the brim. When the container 
and the water are heated to 60°C, 0.35 g of water is lost.
(a) What is the coefficient of volume expansion of the 
container? (h\  W hat is the m ost likelv m aterial o f  the

18. (II) (a) A brass plug is to be placed in a ring made of iron. 
At 15°C, the diameter of the plug is 8.753 cm and that of the 
inside of the ring is 8.743 cm. They must both be brought to 
what common temperature in order to fit? (b) What if the 
plug were iron and the ring brass?

19. (II) If a fluid is contained in a long narrow vessel so it can 
expand in essentially one direction only, show that the effec­
tive coefficient of linear expansion a is approximately equal 
to the coefficient of volume expansion /3.

20. (II) (a) Show that the change in the density p of a 
substance, when the temperature changes by AT, is given by 
Ap = —(3p AT. (b) What is the fractional change in density 
of a lead sphere whose temperature decreases from 25 °C to 
-55°C?

21. (II) Wine bottles are never completely filled: a small volume 
of air is left in the glass bottle’s cylindrically shaped neck 
(inner diameter d = 18.5 mm) to allow for wine’s fairly 
large coefficient of thermal expansion. The distance H  
between the surface of the liquid contents and the bottom of 
the cork is called the “headspace height” (Fig. 17-21), and is 
typically H  = 1.5 cm

Air
1 headspace >

Cork

Clhk.ss
bottle

for a 750-mL bottle 
filled at 20° C. Due to 
its alcoholic content, 
wine’s coefficient of 
volume expansion is 
about double that of 
water; in comparison, 
the thermal expansion 
of glass can be 
neglected. Estimate H  
if the bottle is kept
(a) at 10°C, (b) at 30°C.

FIGURE 17-21
Problem 21.

22. (Ill) (a) Determine a formula for the change in surface area 
of a uniform solid sphere of radius r if its coefficient of 
linear expansion is a (assumed constant) and its tempera­
ture is changed by AT. (b) What is the increase in area of a 
solid iron sphere of radius 60.0 cm if its temperature is 
raised from 15°C to 275°C?

23. (Ill) The pendulum in a grandfather clock is made of brass and 
keeps perfect time at 17°C. How much time is gained or lost in 
a year if the clock is kept at 28°C? (Assume the frequency 
dependence on length for a simple pendulum applies.)

24. (Ill) A 28.4-kg solid aluminum cylindrical wheel of radius
0.41 m is rotating about its axle in frictionless bearings with 
angular velocity (o = 32.8 rad/s. If its temperature is then 
raised from 20.0°C to 95.0°C, what is the fractional change in &>?

* 17-5 Thermal Stresses
*25. (I) An aluminum bar has the desired length when at 18°C. 

How much stress is required to keep it at this length if the 
temperature increases to 35 °C?

*26. (II) (a) A  horizontal steel I-beam of cross-sectional area
0.041 m2 is rigidly connected to two vertical steel girders. If 
the beam was installed when the temperature was 25°C, what 
stress is developed in the beam when the temperature drops 
to -25°C? (b) Is the ultimate strength of the steel exceeded?
(n\ W hat stress is develoned if the beam  is concrete and has a



*27. (Ill) A barrel of diameter 134.122 cm at 20°C is to be 
enclosed by an iron band. The circular band has an inside 
diameter of 134.110 cm at 20°C. It is 9.4 cm wide and
0.65 cm thick, {a) To what temperature must the band be 
heated so that it will fit over the barrel? (b) What will be 
the tension in the band when it cools to 20° C?

17-6 Gas Laws; Absolute Temperature
28. (I) What are the following temperatures on the Kelvin scale:

(a) 66°C, (b) 92°F, (c) -55°C, (d) 5500°C?
29. (I) Absolute zero is what temperature on the Fahrenheit scale?
30. (II) Typical temperatures in the interior of the Earth and Sun 

are about 4000°C and 15 X 106 °C, respectively, (a) What are 
these temperatures in kelvins? (b) What percent error is 
made in each case if a person forgets to change °C to K?

17-7 and 17-8 Ideal Gas Law
31. (I) If 3.80 m3 of a gas initially at STP is placed under a pres­

sure of 3.20 atm, the temperature of the gas rises to 38.0°C. 
What is the volume?

32. (I) In an internal combustion engine, air at atmospheric 
pressure and a temperature of about 20° C is compressed in 
the cylinder by a piston to § of its original volume (compres­
sion ratio = 8.0). Estimate the temperature of the 
compressed air, assuming the pressure reaches 40 atm.

33. (II) Calculate the density of nitrogen at STP using the ideal 
gas law.

34. (II) If 14.00 mol of helium gas is at 10.0°C and a gauge pres­
sure of 0.350 atm, calculate (a) the volume of the helium gas 
under these conditions, and (b) the temperature if the gas is 
compressed to precisely half the volume at a gauge pressure 
of 1.00 atm.

35. (II) A stoppered test tube traps 25.0 cm3 of air at a pressure 
of 1.00 atm and temperature of 18°C. The cylindrically shaped 
stopper at the test tube’s mouth has a diameter of 1.50 cm and 
will “pop off’ the test tube if a net upward force of 10.0 N is 
applied to it. To what temperature would one have to heat the 
trapped air in order to “pop off” the stopper? Assume the air 
surrounding the test tube is always at a pressure of 1.00 atm.

36. (II) A storage tank contains 21.6 kg of nitrogen (N2) at an 
absolute pressure of 3.85 atm. What will the pressure be if 
the nitrogen is replaced by an equal mass of C 02 at the 
same temperature?

37. (II) A storage tank at STP contains 28.5 kg of nitrogen (N2).
(a) What is the volume of the tank? (b) What is the pressure 
if an additional 25.0 kg of nitrogen is added without 
changing the temperature?

38. (II) A scuba tank is filled with air to a pressure of 204 atm 
when the air temperature is 29°C. A diver then jumps into the 
ocean and, after a short time treading water on the ocean 
surface, checks the tank’s pressure and finds that it is only 
194 atm. Assuming the diver has inhaled a negligible amount of 
air from the tank, what is the temperature of the ocean water?

39. (II) What is the pressure inside a 38.0-L container holding
105.0 kg of argon gas at 20.0°C?

40. (II) A tank contains 30.0 kg of 0 2 gas at a gauge pressure of 
8.20 atm. If the oxygen is replaced by helium at the same 
temnerature. how manv kilograms of the latter will he

41. (II) A sealed metal container contains a gas at 20.0°C and
1.00 atm. To what temperature must the gas be heated for the 
pressure to double to 2.00 atm? (Ignore expansion of the 
container.)

42. (II) A tire is filled with air at 15°C to a gauge pressure of 
250 kPa. If the tire reaches a temperature of 38°C, what 
fraction of the original air must be removed if the original 
pressure of 250 kPa is to be maintained?

43. (II) If 61.5 L of oxygen at 18.0°C and an absolute pressure of 
2.45 atm are compressed to 48.8 L and at the same time the 
temperature is raised to 56.0°C, what will the new pressure be?

44. (II) A helium-filled balloon escapes a child’s hand at sea 
level and 20.0°C. When it reaches an altitude of 3600 m, 
where the temperature is 5.0°C and the pressure only
0.68 atm, how will its volume compare to that at sea level?

45. (II) A sealed metal container can withstand a pressure 
difference of 0.50 atm. The container initially is filled with an 
ideal gas at 18°C and 1.0 atm. To what temperature can you 
cool the container before it collapses? (Ignore any changes 
in the container’s volume due to thermal expansion.)

46. (II) You buy an “airtight” bag of potato chips packaged at 
sea level, and take the chips on an airplane flight. When you 
take the potato chips out of your luggage, you notice it has 
noticeably “puffed up.” Airplane cabins are typically pres­
surized at 0.75 atm, and assuming the temperature inside an 
airplane is about the same as inside a potato chip processing 
plant, by what percentage has the bag “puffed up” in 
comparison to when it was packaged?

47. (II) A typical scuba tank, when fully charged, contains 12 L 
of air at 204 atm. Assume an “empty” tank contains air at 
34 atm and is connected to an air compressor at sea level. 
The air compressor intakes air from the atmosphere, 
compresses it to high pressure, and then inputs this high- 
pressure air into the scuba tank. If the (average) flow rate of 
air from the atmosphere into the intake port of the air 
compressor is 290L/min, how long will it take to fully 
charge the scuba tank? Assume the tank remains at the same 
temperature as the surrounding air during the filling process.

48. (Ill) A sealed container containing 4.0 mol of gas is 
squeezed, changing its volume from 0.020 m3 to 0.018 m3. 
During this process, the temperature decreases by 9.0 K 
while the pressure increases by 450 Pa. What was the orig­
inal pressure and temperature of the gas in the container?

49. (Ill) Compare the value for the density of water vapor at 
exactly 100°C and 1 atm (Table 13-1) with the value predicted 
from the ideal gas law. Why would you expect a difference?

50. (Ill) An air bubble at the bottom of a lake 37.0 m deep has 
a volume of 1.00 cm3. If the temperature at the bottom is 
5.5°C and at the top 18.5°C, what is the volume of the 
bubble just before it reaches the surface?

17-9 Ideal Gas Law in Terms of Molecules; 
Avogadro's Number
51. (I) Calculate the number of molecules/m3 in an ideal gas at 

STP.
52. (I) How many moles of water are there in 1.000 L at STP? 

How many molecules?
53. (II) What is the pressure in a region of outer space where 

there is 1 molecule/cm3 and the temperature is 3 K?
54. (II) Estimate the number of (a) moles and (b) molecules of 

water in all the F.arth’s oceans. Assum e water covers 75% of



55. (II) The lowest pressure attainable using the best available 
vacuum techniques is about 10_12N/m 2. At such a pressure, 
how many molecules are there per cm3 at 0°C?

56. (II) Is a gas mostly empty space? Check by assuming that 
the spatial extent of common gas molecules is about

= 0.3 nm so one gas molecule occupies an approximate 
volume equal to £§ • Assume STP.

57. (Ill) Estimate how many molecules of air are in each 2.0-L 
breath you inhale that were also in the last breath Galileo 
took. [Hint. Assume the atmosphere is about 10 km high 
and of constant density.]

17-10 Ideal Gas Temperature Scale
58. (I) In a constant-volume gas thermometer, what is the 

limiting ratio of the pressure at the boiling point of water at 
1 atm to that at the triple point? (Keep five significant 
figures.)

| General Problems__________
62. A Pyrex measuring cup was calibrated at normal room 

temperature. How much error will be made in a recipe 
calling for 350 mL of cool water, if the water and the cup are 
hot, at 95°C, instead of at room temperature? Neglect the 
glass expansion.

63. A precise steel tape measure has been calibrated at 15°C. At 
36°C, (a) will it read high or low, and (b) what will be the 
percentage error?

64. A cubic box of volume 6.15 X 10_2m3 is filled with air at 
atmospheric pressure at 15°C. The box is closed and heated 
to 185°C. What is the net force on each side of the box?

65. The gauge pressure in a helium gas cylinder is initially 
32 atm. After many balloons have been blown up, the gauge 
pressure has decreased to 5 atm. What fraction of the orig­
inal gas remains in the cylinder?

66. If a rod of original length ^  has its temperature changed 
from Ti to T2, determine a formula for its new length i2 in 
terms of T \,T 2, and a. Assume (a) a = constant, 
(ib) a = a(T) is some function of temperature, and
(c) a = a0 + bT where a 0 and b are constants.

67. If a scuba diver fills his lungs to full capacity of 5.5 L when
8.0 m below the surface, to what volume would his lungs 
expand if he quickly rose to the surface? Is this advisable?

68. (a) Use the ideal gas law to show that, for an ideal gas at 
constant pressure, the coefficient of volume expansion is 
equal to /3 = 1/T, where T  is the kelvin temperature. 
Compare to Table 17-1 for gases at T = 293 K. (b) Show 
that the bulk modulus (Section 12-4) for an ideal gas held 
at constant temperature is B = P, where P  is the pressure.

69. A house has a volume of 870 m3. (a) What is the total mass 
of air inside the house at 15°C? (b) If the temperature drops 
to — 15°C, what mass of air enters or leaves the house?

70. Assume that in an alternate universe, the laws of physics are 
very different from ours and that “ideal” gases behave as 
follows: (i) At constant temperature, pressure is inversely 
proportional to the square of the volume, (ii) At constant 
pressure, the volume varies directly with the § power of the 
temperature, (iii) At 273.15 K and 1.00 atm pressure, 1.00 mole 
of an ideal gas is found to occupy 22.4 L. Obtain the form of 
the ideal pas law in this alternate universe, including the

*59. (I) At the boiling point of sulfur (444.6°C) the pressure in a 
constant-volume gas thermometer is 187 torr. Estimate
(a) the pressure at the triple point of water, (b) the temper­
ature when the pressure in the thermometer is 118 torr.

*60. (II) Use Fig. 17-17 to determine the inaccuracy of a 
constant-volume gas thermometer using oxygen if it reads a 
pressure P = 268 torr at the boiling point of water at 
1 atm. Express answer (a) in kelvins and (b) as a percentage.

*61. (Ill) A constant-volume gas thermometer is being used to 
determine the temperature of the melting point of a 
substance. The pressure in the thermometer at this tempera­
ture is 218 torr; at the triple point of water, the pressure is 
286 torr. Some gas is now released from the thermometer 
bulb so that the pressure at the triple point of water 
becomes 163 torr. At the temperature of the melting 
substance, the pressure is 128 torr. Estimate, as accurately as 
possible, the melting-point temperature of the substance.

71. An iron cube floats in a bowl of liquid mercury at 0°C. (a) If 
the temperature is raised to 25°C, will the cube float higher 
or lower in the mercury? (b) By what percent will the frac­
tion of volume submerged change?

72. (a) The tube of a mercury thermometer has an inside diam­
eter of 0.140 mm. The bulb has a volume of 0.275 cm3. How 
far will the thread of mercury move when the temperature 
changes from 10.5°C to 33.0°C? Take into account expan­
sion of the Pyrex glass. (b) Determine a formula for the 
change in length of the mercury column in terms of relevant 
variables. Ignore tube volume compared to bulb volume.

73. From the known value of atmospheric pressure at the 
surface of the Earth, estimate the total number of air mole­
cules in the Earth’s atmosphere.

74. Estimate the percent difference in the density of iron at 
STP, and when it is a solid deep in the Earth where the 
temperature is 2000°C and under 5000 atm of pressure. 
Assume the bulk modulus (90 X 109N/m 2) and the coeffi­
cient of volume expansion do not vary with temperature 
and are the same as at STP.

75. What is the average distance between nitrogen molecules at 
STP?

76. A helium balloon, assumed to be a perfect sphere, has a 
radius of 22.0 cm. At room temperature (20°C), its internal 
pressure is 1.06 atm. Determine the number of moles of 
helium in the balloon, and the mass of helium needed to 
inflate the balloon to these values.

77. A standard cylinder of oxygen used in a hospital has 
gauge pressure = 2000 psi (13,800 kPa) and volume = 
14 L (0.014 m3) at T = 295 K. How long will the cylinder 
last if the flow rate, measured at atmospheric pressure, is 
constant at 2.4 L/min?

78. A brass lid screws tightly onto a glass jar at 15°C. To help open 
the jar, it can be placed into a bath of hot water. After this 
treatment, the temperatures of the lid and the jar are both 
75°C. The inside diameter of the lid is 8.0 cm. Find the size of 
the gap (difference in radius) that develops by this procedure.

79. The density of gasoline at 0°C is 0.68 X 103 kg/m3, (a) What
is the densitv on a hot dav w hen the terrmerature is 35°C!?



80. A helium balloon has volume Vq and temperature T0 at 
sea level where the pressure is P0 and the air density is p0. 
The balloon is allowed to float up in the air to altitude y 
where the temperature is T\. (a) Show that the volume 
occupied by the balloon is then V = Vo(Ti/To)e+cy where 
c = Pog/Po = 1.25 X 10-4m-1. (b) Show that the buoyant 
force does not depend on altitude y. Assume that the skin of 
the balloon maintains the helium pressure at a constant factor 
of 1.05 times greater than the outside pressure. [Hint. Assume 
that the pressure change with altitude is P = Pq e~cy, as in 
Example 13-5, Chapter 13.]

81. The first length standard, adopted in the eighteenth century, 
was a platinum bar with two very fine marks separated by 
what was defined to be exactly one meter. If this standard 
bar was to be accurate to within ±1.0 pm, how carefully 
would the trustees have needed to control the temperature? 
The coefficient of linear expansion is 9 X 10_6/C°.

82. A scuba tank when fully charged has a pressure of 180 atm 
at 20° C. The volume of the tank is 11.3 L. (a) What would 
the volume of the air be at 1.00 atm and at the same 
temperature? (b) Before entering the water, a person 
consumes 2.0 L of air in each breath, and breathes 12 times 
a minute. At this rate, how long would the tank last? (c) At 
a depth of 20.0 m in sea water at a temperature of 10°C, 
how long would the same tank last assuming the breathing 
rate does not change?

83. A temperature controller, designed to work in a steam envi­
ronment, involves a bimetallic strip constructed of brass and 
steel, connected at their ends by rivets. Each of the metals is
2.0 mm thick. At 20°C, the strip is 10.0 cm long and straight.

Find the radius of curvature r of the 
t -------------4 t assembly at 100°C. See Fig. 17-22.

FIGURE 17-22 Problem 83.

84. A copper wire sags 50.0 cm between two utility poles
30.0 m apart when the temperature is — 15°C. Estimate the 
amount of sag when the temperature is +35°C. [Hint: An 
estimate can be made by assuming the shape of the wire is 
approximately an arc of a circle; hard equations can some­
times be solved by guessing values.]

Answers to Exercises
A: -40°.
B: (d).
C: 8 mm.
r». /’\ t t ’ 1__ f n \ _____/•••\ 1_____

85. Snorkelers breathe through short tubular “snorkels” while 
swimming under water very near the surface. One end of the 
snorkel attaches to the snorkeler’s mouth while the other 
end protrudes above the water’s surface. Unfortunately, 
snorkels cannot support breathing to any great depth: it is 
said that a typical snorkeler below a water depth of only 
about 30 cm cannot draw a breath through a snorkel. Based 
on this claim, what is the approximate fractional change in a 
typical person’s lung volume when drawing a breath? 
Assume, in equilibrium, the air pressure in a snorkeler’s 
lungs matches that of the surrounding water pressure.

* Numerical/Computer
* 86. (II) A thermocouple consists of a junction of two different types

of materials that produces a voltage depending on its 
temperature. A thermocouple’s voltages were recorded 
when at different temperatures as follows:

Temperature (°C) 50 100 200 300 
Voltage (mV)________1.41 2.96 5.90 8.92

Use a spreadsheet to fit these data to a cubic equation and 
determine the temperature when the thermocouple 
produces 3.21 mV. Get a second value of the temperature by 
fitting the data to a quadratic equation.

*87. (Ill) You have a vial of an unknown liquid which might be 
octane (gasoline), water, glycerin, or ethyl alcohol. You are 
trying to determine its identity by studying how its volume 
changes with temperature changes. You fill a Pyrex gradu­
ated cylinder to 100.00 mL with the liquid when the liquid 
and the cylinder are at 0.000°C. You raise the temperature 
in five-degree increments, allowing the graduated cylinder 
and liquid to come to equilibrium at each temperature. You 
read the volumes listed below off the graduated cylinder at 
each temperature. Take into account the expansion of the Pyrex 
glass cylinder. Graph the data, possibly using a spreadsheet 
program, and determine the slope of the line to find the 
effective (combined) coefficient of volume expansion /3. Then 
determine (3 for the liquid and which liquid is in the vial.

Temperature (°C) Volume Reading (apparent mL)

0.000 100.00
5.000 100.24

10.000 100.50
15.000 100.72
20.000 100.96
25.000 101.26
30.000 101.48
35.000 101.71
40.000 101.97
45.000 102.20
50.000 102.46

E: (a).
F: (b).
G: (b) Less.



In this winter scene in Yellowstone 
Park, we recognize the three states 
of matter for water: as a liquid, as a 
solid (snow and ice), and as a gas 
(steam). In this Chapter we examine 
the microscopic theory of matter as 
atoms or molecules that are always 
in motion, which we call kinetic theory. 
We will see that the temperature of a 
gas is directly related to the average 
kinetic energy of its molecules. We 
will consider ideal gases, but we will 
also look at real gases and how they 
change phase, including evaporation, 
vapor pressure, and humidity.T £ * 
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Kinetic Theory of Gases
CHAPTER-OPENING QUESTION—Guess now!
The typical speed of an air molecule at room temperature (20°C) is

(a) nearly at rest (<10 km/h).
(b) on the order of 10 km/h.
(c) on the order of 100 km/h.
(d) on the order of 1000 km/h.
(e) nearly the speed of light.

The analysis of matter in terms of atoms in continuous random motion is 
called kinetic theory. We now investigate the properties of a gas from the 
point of view of kinetic theory, which is based on the laws of classical 
mechanics. But to apply Newton’s laws to each one of the vast number of 

molecules in a gas (>1025/m 3 at STP) is far beyond the capability of any present 
computer. Instead we take a statistical approach and determine averages of certain 
quantities, and these averages correspond to macroscopic variables. We will, of 
course, demand that our microscopic description correspond to the macroscopic 
properties of gases; otherwise our theory would be of little value. Most importantly, 
we will arrive at an important relation between the average kinetic energy of 
molecules in a gas and the absolute temperature.

18—1 The Ideal Gas Law and the Molecular 
Interpretation of Temperature

We make the following assumptions about the molecules in a gas. These assumptions 
reflect a simple view of a gas, but nonetheless the results they predict correspond 
well to the essential features of real gases that are at low pressures and far from 
the liauefaction ooint. Under these conditions real eases follow the ideal eas law



The assumptions, which represent the basic postulates of the kinetic theory for an 
ideal gas, are
1. There are a large number of molecules, N, each of mass ra, moving in random 

directions with a variety of speeds. This assumption is in accord with our 
observation that a gas fills its container and, in the case of air on Earth, is kept 
from escaping only by the force of gravity.

2. The molecules are, on average, far apart from one another. That is, their 
average separation is much greater than the diameter of each molecule.

3. The molecules are assumed to obey the laws of classical mechanics, and are 
assumed to interact with one another only when they collide. Although 
molecules exert weak attractive forces on each other between collisions, the 
potential energy associated with these forces is small compared to the kinetic 
energy, and we ignore it for now.

4. Collisions with another molecule or the wall of the vessel are assumed to be 
perfectly elastic, like the collisions of perfectly elastic billiard balls (Chapter 9). 
We assume the collisions are of very short duration compared to the time 
between collisions. Then we can ignore the potential energy associated with 
collisions in comparison to the kinetic energy between collisions.
We can see immediately how this kinetic view of a gas can explain Boyle’s law 

(Section 17-6). The pressure exerted on a wall of a container of gas is due to the constant 
bombardment of molecules. If the volume is reduced by (say) half, the molecules are 
closer together and twice as many will be striking a given area of the wall per second. 
Hence we expect the pressure to be twice as great, in agreement with Boyle’s law.

Now let us calculate quantitatively the pressure a gas exerts on its container as 
based on kinetic theory. We imagine that the molecules are inside a rectangular 
container (at rest) whose ends have area A  and whose length is I, as shown in 
Fig. 18-la. The pressure exerted by the gas on the walls of its container is, according 
to our model, due to the collisions of the molecules with the walls. Let us focus our 
attention on the wall, of area A, at the left end of the container and examine what 
happens when one molecule strikes this wall, as shown in Fig. 18-lb. This molecule 
exerts a force on the wall, and according to Newton’s third law the wall exerts an 
equal and opposite force back on the molecule. The magnitude of this force on the 
molecule, according to Newton’s second law, is equal to the molecule’s rate of 
change of momentum, F = dp/dt (Eq. 9-2). Assuming the collision is elastic, only 
the x component of the molecule’s momentum changes, and it changes from —mvx 
(it is moving in the negative x direction) to +mvx. Thus the change in the molecule’s 
momentum, A (mv), which is the final momentum minus the initial momentum, is

A (mv) = mvx — ( -  mvx) = 2mvx
for one collision. This molecule will make many collisions with the wall, each 
separated by a time At, which is the time it takes the molecule to travel across the 
container and back again, a distance (x component) equal to 21. Thus 21 = vx At, or 

2tAt = —
vx

The time At between collisions is very small, so the number of collisions per 
second is very large. Thus the average force—averaged over many collisions—will 
be equal to the momentum change during one collision divided by the time 
between collisions (Newton’s second law):

A (mv) 2mvx mvx
F = — -----  = ——— = —-— [due to one molecule]

At 2 i /v x I L J
During its passage back and forth across the container, the molecule may collide 
with the tops and sides of the container, but this does not alter its x component of 
momentum and thus does not alter our result. It may also collide with other 
molecules, which may change its vx. However, any loss (or gain) of momentum is 
acauired bv other molecules, and because we will eventuallv sum over all the

FIGURE 18-1  (a) M olecules of a 
gas moving about in a rectangular 
container, (b) Arrows indicate the 
momentum of one molecule as it 
rebounds from the end wall.



TEMPERATURE RELATED TO 
AVERAGE KINETIC ENERGY 

OFMOLECULES

The actual force due to one molecule is intermittent, but because a huge 
number of molecules are striking the wall per second, the force is, on average, 
nearly constant. To calculate the force due to all the molecules in the container, we 
have to add the contributions of each. Thus the net force on the wall is

F  =  y ( ^ i  +  v l 2 +  • -  +  v 2x N ) ,

where vxl means vx for molecule number 1 (we arbitrarily assign each molecule a 
number) and the sum extends over the total number of molecules N  in the 
container. The average value of the square of the x component of velocity is

~2 V2xl + V2x2 + + V2xN
Vx = ------------------------------’ (18-1)

where the overbar (- ) means “average.” Thus we can write the force as 

F = jNtfx.
We know that the square of any vector is equal to the sum of the squares of its 
components (theorem of Pythagoras). Thus v2 = v2x + v2y + v\ for any velocity v. 
Taking averages, we obtain

v2 = vx + Vy + v\.
Since the velocities of the molecules in our gas are assumed to be random, there is 
no preference to one direction or another. Hence

= Vy = «!•
Combining this relation with the one just above, we get

5* = 3%.
We substitute this into the equation for net force F: 

m A7 v2
~ i  r

The pressure on the wall is then 

F = 1 NmV1 
A  ~ 3 A t

or
1 Nmv2 ^
3 V  * ~  *

where V = IA  is the volume of the container. This is the result we were seeking, the 
pressure exerted by a gas on its container expressed in terms of molecular properties.

Equation 18-2 can be rewritten in a clearer form by multiplying both sides by
V and rearranging the right-hand side:

PV = lN(\mu2). (18-3)
The quantity \  mv2 is the average kinetic energy K  of the molecules in the gas. If 
we compare Eq. 18-3 with Eq. 17-4, the ideal gas law PV = NkT, we see that 
the two agree if

|  (imv2) = kT,
or

K = \m v2 = \kT . [ideal gas] (18-4)

This equation tells us that

the average translational kinetic energy of molecules in random motion in an 
ideal gas is directly proportional to the absolute temperature of the gas.

The higher the temperature, according to kinetic theorv. the faster the molecules are



EXAMPLE 18-1 Molecular kinetic energy. What is the average translational 
kinetic energy of molecules in an ideal gas at 37°C?

APPROACH We use the absolute temperature in Eq. 18-4.
SOLUTION We change 37°C to 310 K and insert into Eq. 18-4:

K  = \k T  = |(1.38 X 10_23J/K)(310K) = 6.42 X 10 21J.

NOTE A mole of molecules would have a total translational kinetic energy equal 
to (6.42 X 10-21j)(6.02 X 1023) = 3860 J, which equals the kinetic energy of 
a 1-kg stone traveling almost 90 m/s.

EXERCISE A In a mixture of the gases oxygen and helium, which statement is valid:
(a) the helium molecules will be moving faster than the oxygen molecules, on average;
(b) both kinds of molecules will be moving at the same speed; (c) the oxygen molecules 
will, on average, be moving more rapidly than the helium molecules; (d) the kinetic energy 
of the helium will exceed that of the oxygen; (e) none of the above.

Equation 18-4 holds not only for gases, but also applies reasonably accurately 
to liquids and solids. Thus the result of Example 18-1 would apply to molecules 
within living cells at body temperature (37°C).

We can use Eq. 18-4 to calculate how fast molecules are moving on the 
average. Notice that the average in_Eqs. 18-1 through 18-4 is over the square 
of the speed. The square root of v2 is called the root-mean-square speed, vrms 
(since we are taking the square root of the mean of the square of the speed):

(18-5)= V i?  = J m

EXAMPLE 18-2 Speeds of air molecules. What is the rms speed of air 
molecules ( 0 2 and N2) at room temperature (20°C)?

APPROACH To obtain vrms, we need the masses of 0 2 and N2 molecules and 
then apply Eq. 18-5 to oxygen and nitrogen separately, since they have different 
masses.
SOLUTION The masses of one molecule of 0 2 (molecular mass = 32 u) and 
N2 (molecular mass = 28 u) are (where 1 u = 1.66 X 10-27 kg)

m (0 2) = (32)(l.66 x  10~27kg) = 5.3 x  10““  kg, 
m (N2) = (28)(1.66 X 10“27kg) = 4.6 X 10“26kg.

Thus, for oxygen

/ (3)(l.38 x  10-23 J/K)(293K) _  ;
= V~m~ = V ---------(5.3 X 10 26kg)--------- = 48° m /s’

and for nitrogen the result is vrms = 510 m/s. These speeds are more than 
1700 km /h or 1000 mi/h, and are greater than the speed of sound «340 m /s at 
20°C (Chapter 16).
NOTE The speed vTms is a magnitude only. The velocity of molecules averages to 
zero: the velocity has direction, and as many molecules move to the right as 
to the left, as many up as down, as many inward as outward.

EXERCISE B Now you can return to the Chapter-Opening Question, page 476, and answer 
it correctly. Try to explain why you may have answered differently the first time.

EXERCISE C If you double the volume of a gas while keeping the pressure and number of 
moles constant, the average (rms) speed of the molecules (a) doubles, (b) quadruples,
(c) increases by V5, (d) is half, (e) is \ -

I EXERCISE D Rv what far.tor must the absolute temneratnre r.hanae to double v__ ? (d\



FIGURE 1 8 -2  Distribution of 
speeds of molecules in an ideal gas. 
Note that v  and are not at the 
peak of the curve. This is because the 
curve is skewed to the right: it is not 
symmetrical. The speed at the peak 
of the curve is the “most probable 
speed,” vp .

CONCEPTUAL EXAMPLE 18-5 I Less gas in the tank. A tank of helium is used
to fill balloons. As each balloon is filled, the number of helium atoms remaining in 
the tank decreases. How does this affect the rms speed of molecules remaining 
in the tank?
RESPONSE The rms speed is given by Eq. 18-5: vrm& = V3A:T/m. So only the 
temperature matters, not pressure P or number of moles n. If the tank remains at 
a constant (ambient) temperature, then the rms speed remains constant even 
though the pressure of helium in the tank decreases.

In a collection of molecules, the average speed, v, is the average of the magnitudes 
of the speeds themselves; v is generally not equal to vrms. To see the difference 
between the average speed and the rms speed, consider the following Example.

EXAMPLE 18-4 Average speed and rms speed. Eight particles have the 
following speeds, given in m/s: 1.0, 6.0, 4.0, 2.0, 6.0, 3.0, 2.0, 5.0. Calculate 
(a) the average speed and (b) the rms speed.
APPROACH In (a) we sum the speeds and divide by N  = S. In (b) we square 
each speed, sum the squares, divide by N  = 8, and take the square root. 
SOLUTION (a) The average speed is

1.0 + 6.0 + 4.0 + 2.0 + 6.0 + 3.0 + 2.0 + 5.0 „  ̂ ,v = ------------------------------- --------------------------------  = 3.6 m/s.

(b) The rms speed is (Eq. 18-1):
(1.0)2 + (6.0)2 + (4.0)2 + (2.0)2 + (6.0)2 + (3.0)2 + (2.0)2 + (5.0)̂

m/s

= 4.0 m/s.

We see in this Example that v and i>rms are not necessarily equal. In fact, for an ideal 
gas they differ by about 8%. We will see in the next Section how to calculate v for 
an ideal gas. We already have the tool to calculate vrms (Eq. 18-5).

* Kinetic Energy Near Absolute Zero
Equation 18-4, K = \k T , implies that as the temperature approaches absolute zero, 
the kinetic energy of molecules approaches zero. Modern quantum theory, however, 
tells us this is not quite so. Instead, as absolute zero is approached, the kinetic energy 
approaches a very small nonzero minimum value. Even though all real gases become 
liquid or solid near 0 K, molecular motion does not cease, even at absolute zero.

18—2 Distribution of Molecular Speeds
The Maxwell Distribution
The molecules in a gas are assumed to be in random motion, which means that 
many molecules have speeds less than the average speed and others have speeds 
greater than the average. In 1859, James Clerk Maxwell (1831-1879) worked out a 
formula for the most probable distribution of speeds in a gas containing N  molecules. 
We will not give a derivation here but merely quote his result:

f(v )  = 4ttN
m

2irkT v \
1 mv2 

"2 kT (18- 6)

where f ( v ) is called the Maxwell distribution of speeds, and is plotted in Fig. 18-2. 
The quantity f(v )  dv represents the number of molecules that have speed between v 
and v + dv. Notice that f(v )  does not give the number of molecules with speed v; 
f(v )  must be multiplied by dv to give the number of molecules (the number of 
molecules depends on the “width” or “range” of velocities included, dv). In the 
formula for f (v ) .m  is the mass of a single molecule. T  is the absolute temoerature.



when we sum over all the molecules in the gas we must get N; thus we must have

[ f (v )  dv = N.
Jo

(Problem 22 is an exercise to show that this is true.)
Experiments to determine the distribution of speeds in real gases, starting in 

the 1920s, confirmed with considerable accuracy the Maxwell distribution (for 
gases at not too high a pressure) and the direct proportion between average 
kinetic energy and absolute temperature, Eq. 18-4.

The Maxwell distribution for a given gas depends only on the absolute 
temperature. Figure 18-3 shows the distributions for two different temperatures. 
Just as i;rms increases with temperature, so the whole distribution curve shifts to the 
right at higher temperatures.

Figure 18-3 illustrates how kinetic theory can be used to explain why many 
chemical reactions, including those in biological cells, take place more rapidly as the 
temperature increases. Most chemical reactions take place in a liquid solution, and the 
molecules in a liquid have a distribution of speeds close to the Maxwell distribution. 
Two molecules may chemically react only if their kinetic energy is great enough so 
that when they collide, they partially penetrate into each other. The minimum energy 
required is called the activation energy, EA, and it has a specific value for each 
chemical reaction. The molecular speed corresponding to a kinetic energy of EA 
for a particular reaction is indicated in Fig. 18-3. The relative number of molecules 
with energy greater than this value is given by the area under the curve to the right 
of v(Ea), shown in Fig. 18-3 by the two different shadings. We see that the number 
of molecules that have kinetic energies in excess of EA increases greatly for only a 
small increase in temperature. The rate at which a chemical reaction occurs is 
proportional to the number of molecules with energy greater than EA , and thus we 
see why reaction rates increase rapidly with increased temperature.

* Calculations Using the Maxwell Distribution
Let us see how the Maxwell distribution can be used to obtain some interesting results.

EXAMPLE 18-5 up. Determine formulas for (a) the
of molecules in an ideal

Determining v and
average speed, v, and (b) the most probable speed, vp 
gas at temperature T.
APPROACH (a) The average value of any quantity is found by multiplying each 
possible value of the quantity (here, speed) by the number of molecules that have that 
value, and then summing all these numbers and dividing by N  (the total number). For 
(b), we want to find where the curve of Fig. 18-2 has zero slope; so we set df/dv = 0. 
SOLUTION (a) We are given a continuous distribution of speeds (Eq. 18-6), so 
the sum over the speeds becomes an integral over the product of v and the 
number f(v )  dv that have speed v:

v =

r 00
v f(v )  dv

Jo = 477 m 1 mv2
v3e 2 kT dv.

N  \2irkT,
We can integrate by parts or look up the definite integral in a Table, and obtain

2k2T2
V =  477

m 
2t7 kT m

S_kT 
77 m

(b) The most probable speed is that speed which occurs more than any others, 
and thus is that speed where f(y )  has its maximum value. At the maximum of the 
curve, the slope is zero: df(v)/dv  = 0. Taking the derivative of Eq. 18-6 gives

3 /df{v) M m 2mv3
dv

= 4ttN
2irkT

2ve
mv̂  
2 kT

2kT
= 0.

Solving for v, we find
'2 kT [kT

FIGURE 1 8 -3  Distribution of 
molecular speeds for two different 
temperatures.

0 P H Y S I C S  A P P L I E D
H ow  chemical reactions depend on 
temperature



In summary,

M ost probable speed, vp

Average speed, v

rms speed, vrms

V

FIGURE 1 8 -4  P V  diagram for a 
real substance. Curves A , B, C, and 
D  represent the same substance at 
different temperatures 
(Ta > T b > T c >  Td).

= , /  2 —  ~ 1.41 (18-7a)ra

— —  ~ 1.60 J —  (18-7b)77 ra v ra

and from Eq. 18-5

-  a / 3 —— «  1.73• J ~ ~ ’ 
m  V m

These are all indicated in Fig. 18-2. From Eq. 18-6 and Fig. 18-2, it is clear that 
the speeds of molecules in a gas vary from zero up to many times the average 
speed, but as can be seen from the graph, most molecules have speeds that are not 
far from the average. Less than 1% of the molecules exceed four times vrms.

18-3  Real Gases and Changes of Phase
The ideal gas law

PV = N kT

is an accurate description of the behavior of a real gas as long as the pressure is 
not too high and as long as the temperature is far from the liquefaction point. But 
what happens when these two criteria are not satisfied? First we discuss real gas 
behavior, and then we examine how kinetic theory can help us understand this 
behavior.

Let us look at a graph of pressure plotted against volume for a given amount 
of gas. On such a “PV  diagram,” Fig. 18-4, each point represents an equilibrium 
state of the given substance. The various curves (labeled A, B, C, and D) show how 
the pressure varies, as the volume is changed at constant temperature, for several 
different values of the temperature. The dashed curve A' represents the behavior 
of a gas as predicted by the ideal gas law; that is, PV = constant. The solid 
curve A represents the behavior of a real gas at the same temperature. Notice that 
at high pressure, the volume of a real gas is less than that predicted by the ideal 
gas law. The curves B and C in Fig. 18-4 represent the gas at successively lower 
temperatures, and we see that the behavior deviates even more from the curves 
predicted by the ideal gas law (for example, B'), and the deviation is greater the 
closer the gas is to liquefying.

To explain this, we note that at higher pressure we expect the molecules to be 
closer together. And, particularly at lower temperatures, the potential energy 
associated with the attractive forces between the molecules (which we ignored 
before) is no longer negligible compared to the now reduced kinetic energy of the 
molecules. These attractive forces tend to pull the molecules closer together so that 
at a given pressure, the volume is less than expected from the ideal gas law, as in 
Fig. 18-4. At still lower temperatures, these forces cause liquefaction, and the 
molecules become very close together. Section 18-5 discusses in more detail the 
effect of these attractive molecular forces, as well as the effect of the volume which 
the molecules themselves occupy.

Curve D represents the situation when liquefaction occurs. At low pressure on 
curve D (on the right in Fig. 18-4), the substance is a gas and occupies a large volume. 
As the pressure is increased, the volume decreases until point b is reached. Beyond b,



liquid. Further increase in pressure reduces the volume only slightly—liquids are 
nearly incompressible—so on the left the curve is very steep as shown. The 
colored area under the dashed line represents the region where the gas and liquid 
phases exist together in equilibrium.

Curve C in Fig. 18-4 represents the behavior of the substance at its critical 
temperature; the point c (the one point where curve C is horizontal) is called the 
critical point. At temperatures less than the critical temperature (and this is the 
definition of the term), a gas will change to the liquid phase if sufficient pressure is 
applied. Above the critical temperature, no amount of pressure can cause a gas to 
change phase and become a liquid. The critical temperatures for various gases are 
given in Table 18-1. Scientists tried for many years to liquefy oxygen without 
success. Only after the discovery of the behavior of substances associated with the 
critical point was it realized that oxygen can be liquefied only if first cooled below 
its critical temperature of -118°C.

Often a distinction is made between the terms “gas” and “vapor”: a substance 
below its critical temperature in the gaseous state is called a vapor; above the crit­
ical temperature, it is called a gas.

The behavior of a substance can be diagrammed not only on a PV  diagram but 
also on a PT  diagram. A PT  diagram, often called a phase diagram, is particularly 
convenient for comparing the different phases of a substance. Figure 18-5 is the 
phase diagram for water. The curve labeled l-v represents those points where the 
liquid and vapor phases are in equilibrium—it is thus a graph of the boiling point 
versus pressure. Note that the curve correctly shows that at a pressure of 1 atm the 
boiling point is 100°C and that the boiling point is lowered for a decreased 
pressure. The curve s-i represents points where solid and liquid exist in equilibrium 
and thus is a graph of the freezing point versus pressure. At 1 atm, the freezing 
point of water is 0°C, as shown. Notice also in Fig. 18-5 that at a pressure of 1 atm, 
the substance is in the liquid phase if the temperature is between 0°C and 100°C, 
but is in the solid or vapor phase if the temperature is below 0°C or above 100°C. 
The curve labeled s-v is the sublimation point versus pressure curve. Sublimation 
refers to the process whereby at low pressures a solid changes directly into the 
vapor phase without passing through the liquid phase. For water, sublimation occurs 
if the pressure of the water vapor is less than 0.0060 atm. Carbon dioxide, which in 
the solid phase is called dry ice, sublimates even at atmospheric pressure 
(Fig. 18-6).

The intersection of the three curves (in Fig. 18-5) is the triple point. For water 
this occurs at T = 273.16 K and P = 6.03 X 10“3 atm. It is only at the triple 
point that the three phases can exist together in equilibrium. Because the triple 
point corresponds to a unique value of temperature and pressure, it is precisely 
reproducible and is often used as a point of reference. For example, the standard of 
temperature is usually specified as exactly 273.16 K at the triple point of water, 
rather than 273.15 K at the freezing point of water at 1 atm.

Notice that the solid liquid (s-i) curve for water slopes upward to the left. This 
is true only of substances that expand upon freezing: at a higher pressure, a lower 
temperature is needed to cause the liquid to freeze. More commonly, substances 
contract upon freezing and the s-i curve slopes upward to the right, as shown for 
carbon dioxide (C 02) in Fig. 18-6.

The phase transitions we have been discussing are the common ones. Some 
substances, however, can exist in several forms in the solid phase. A transition from 
one phase to another occurs at a particular temperature and pressure, just like 
ordinary phase changes. For example, ice has been observed in at least eight 
forms at very high pressure. Ordinary helium has two distinct liquid phases, called 
helium I and II. They exist only at temperatures within a few degrees of absolute 
zero. Helium II exhibits very unusual properties referred to as superfluidity. It has 
essentially zero viscosity and exhibits strange properties such as climbing up the 
sides of an open container. Also interesting are liquid crystals (used for TV and

TABLE 18-1 Critical 
Temperatures and Pressures

Substance

Critical
Temperature

°C K

Critical
Pressure

(atm)
Water 374 647 218
co 2 31 304 72.8
Oxygen -1 1 8 155 50
Nitrogen -1 4 7 126 33.5
Hydrogen -2 3 9 .9 33.3 12.8
Helium -2 6 7 .9 5.3 2.3

^  218

1 
^  1.0

0.006

Solidl Critical
point

IcW1 I
1 Liquid

\ m / ! Gas

------- iJk Vapor!
plej | point

0.00 0.01 100 374

FIGURE 1 8 -5  Phase diagram for 
water (note that the scales are not 
linear).

FIGURE 1 8 -6  Phase diagram for 
carbon dioxide.
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Liquid crystals



1 8 -4  Vapor Pressure and Humidity

@  P H Y S I C S A P P L I E D
Evaporation cools

FIGURE 1 8 -7  Vapor appears 
above a liquid in a closed container.

TABLE 18-2 Saturated 
Vapor Pressure of Water

Temp­
erature

(°C)

Saturated Vapor Pressure
torr 

(= mm-Hg)
Pa

(= N/m2)
- 5 0 0.030 4.0
- 1 0 1.95 2.60 X 102

0 4.58 6.11 X 102
5 6.54 8.72 X 102

10 9.21 1.23 X 103
15 12.8 1.71 X 103
20 17.5 2.33 X 103
25 23.8 3.17 X 103
30 31.8 4.24 X 103
40 55.3 7.37 X 103
50 92.5 1.23 X 104
60 149 1.99 X 104
70f 234 3.12 X 104
80 355 4.73 X 104
90 526 7.01 X 104

100* 760 1.01 X 105
120 1489 1.99 X 105
150 3570 4.76 X 105

foiling point on summit of Mt. Everest.

Evaporation
If a glass of water is left out overnight, the water level will have dropped by 
morning. We say the water has evaporated, meaning that some of the water has 
changed to the vapor or gas phase.

This process of evaporation can be explained on the basis of kinetic theory. The 
molecules in a liquid move past one another with a variety of speeds that follow, approx­
imately, the Maxwell distribution. There are strong attractive forces between these 
molecules, which is what keeps them close together in the liquid phase. A molecule 
near the surface of the liquid may, because of its speed, leave the liquid momentarily. 
But just as a rock thrown into the air returns to the Earth, so the attractive forces of the 
other molecules can pull the vagabond molecule back to the liquid surface—that is, if 
its velocity is not too large. A molecule with a high enough velocity, however, will escape 
the liquid entirely (like an object leaving Earth with a high enough speed, Section 8-7), 
and become part of the gas phase. Only those molecules that have kinetic energy above 
a particular value can escape to the gas phase. We have already seen that kinetic theory 
predicts that the relative number of molecules with kinetic energy above a particular 
value (such as EA in Fig. 18-3) increases with temperature. This is in accord with the 
well-known observation that the evaporation rate is greater at higher temperatures.

Because it is the fastest molecules that escape from the surface, the average speed 
of those remaining is less. When the average speed is less, the absolute temperature is 
less. Thus kinetic theory predicts that evaporation is a cooling process. You have no 
doubt noticed this effect when you stepped out of a warm shower and felt cold as the 
water on your body began to evaporate; and after working up a sweat on a hot day, 
even a slight breeze makes you feel cool through evaporation.

Vapor Pressure
Air normally contains water vapor (water in the gas phase), and it comes mainly 
from evaporation. To look at this process in a little more detail, consider a closed 
container that is partially filled with water (or another liquid) and from which the 
air has been removed (Fig. 18-7). The fastest moving molecules quickly evaporate 
into the empty space above the liquid’s surface. As they move about, some of these 
molecules strike the liquid surface and again become part of the liquid phase: this is 
called condensation. The number of molecules in the vapor increases until a point is 
reached when the number of molecules returning to the liquid equals the number 
leaving in the same time interval. Equilibrium then exists, and the space above the 
liquid surface is said to be saturated. The pressure of the vapor when it is saturated 
is called the saturated vapor pressure (or sometimes simply the vapor pressure).

The saturated vapor pressure does not depend on the volume of the container. 
If the volume above the liquid were reduced suddenly, the density of molecules in 
the vapor phase would be increased temporarily. More molecules would then be 
striking the liquid surface per second. There would be a net flow of molecules back 
to the liquid phase until equilibrium was again reached, and this would occur at 
the same value of the saturated vapor pressure, as long as the temperature had 
not changed.

The saturated vapor pressure of any substance depends on the temperature. 
At higher temperatures, more molecules have sufficient kinetic energy to break 
from the liquid surface into the vapor phase. Hence equilibrium will be reached at 
a higher pressure. The saturated vapor pressure of water at various temperatures is 
given in Table 18-2. Notice that even solids—for example, ice—have a measurable 
saturated vapor pressure.

In everyday situations, evaporation from a liquid takes place into the air above 
it rather than into a vacuum. This does not materially alter the discussion above 
relating to Fig. 18-7. Equilibrium will still be reached when there are sufficient
mnlpr.nlps in the. aas nhasp that the number rppntprina thp liniiiH p.nnals thp nnmhpr



is not affected by the presence of air, although collisions with air molecules may 
lengthen the time needed to reach equilibrium. Thus equilibrium occurs at the same 
value of the saturated vapor pressure as if air were not there.

If the container is large or is not closed, all the liquid may evaporate before 
saturation is reached. And if the container is not sealed—as, for example, a room 
in your house—it is not likely that the air will become saturated with water vapor 
(unless it is raining outside).

Boiling
The saturated vapor pressure of a liquid increases with temperature. When the 
temperature is raised to the point where the saturated vapor pressure at that 
temperature equals the external pressure, boiling occurs (Fig. 18-8). As the boiling 
point is approached, tiny bubbles tend to form in the liquid, which indicate a 
change from the liquid to the gas phase. However, if the vapor pressure inside the 
bubbles is less than the external pressure, the bubbles immediately are crushed. 
As the temperature is increased, the saturated vapor pressure inside a bubble 
eventually becomes equal to or exceeds the external pressure. The bubble will 
then not collapse but can rise to the surface. Boiling has then begun. A  liquid boils 
when its saturated vapor pressure equals the external pressure. This occurs for water 
at a pressure of 1 atm (760 torr) at 100°C, as can be seen from Table 18-2.

The boiling point of a liquid clearly depends on the external pressure. At high 
elevations, the boiling point of water is somewhat less than at sea level since the 
air pressure is less up there. For example, on the summit of Mt. Everest (8850 m) 
the air pressure is about one-third of what it is at sea level, and from Table 18-2 
we can see that water will boil at about 70°C. Cooking food by boiling takes longer 
at high elevations, since the temperature is less. Pressure cookers, however, reduce 
cooking time, because they build up a pressure as high as 2 atm, allowing higher 
boiling temperatures to be attained.

Partial Pressure and Humidity
When we refer to the weather as being dry or humid, we are referring to the water 
vapor content of the air. In a gas such as air, which is a mixture of several types of 
gases, the total pressure is the sum of the partial pressures of each gas present.1 By 
partial pressure, we mean the pressure each gas would exert if it alone were 
present. The partial pressure of water in the air can be as low as zero and can vary 
up to a maximum equal to the saturated vapor pressure of water at the given 
temperature. Thus, at 20°C, the partial pressure of water cannot exceed 17.5 torr 
(see Table 18-2). The relative humidity is defined as the ratio of the partial 
pressure of water vapor to the saturated vapor pressure at a given temperature. It 
is usually expressed as a percentage:

partial pressure of H20  _
Relative humidity = ---------- ----------------------- X 100%.saturated vapor pressure of H20

Thus, when the humidity is close to 100%, the air holds nearly all the water vapor it can.

M Relative humidity. On a particular hot day, the temperature 
is 30°C and the partial pressure of water vapor in the air is 21.0 torr. What is the 
relative humidity?

APPROACH From Table 18-2, we see that the saturated vapor pressure of water 
at 30°C is 31.8 torr.
SOLUTION The relative humidity is thus

^  x  100% =  66%.31.8 torr

tFor example, 78% (by volume) of air molecules are nitrogen and 21% oxygen, with much smaller

FIGURE 1 8 -8  Boiling: bubbles of 
water vapor float upward from the 
bottom (where the temperature is 
highest).



@  P H Y S I C S A P P L I E D
H um idity and com fort

^ P H Y S I C S  A P P L I E D
Weather

FIGURE 18-9 Fog or mist settling 
around a castle where the temperature 
has dropped below the dew point.

FIGURE 18-10 Molecules, of 
radius r, colliding.

Humans are sensitive to humidity. A relative humidity of 40-50% is generally 
optimum for both health and comfort. High humidity, particularly on a hot day, 
reduces the evaporation of moisture from the skin, which is one of the body’s vital 
mechanisms for regulating body temperature. Very low humidity, on the other 
hand, can dry the skin and mucous membranes.

Air is saturated with water vapor when the partial pressure of water in the air is 
equal to the saturated vapor pressure at that temperature. If the partial pressure of 
water exceeds the saturated vapor pressure, the air is said to be supersaturated. This 
situation can occur when a temperature decrease occurs. For example, suppose the 
temperature is 30°C and the partial pressure of water is 21 torr, which represents a 
humidity of 66% as we saw in Example 18-6. Suppose now that the temperature 
falls to, say, 20°C, as might happen at nightfall. From Table 18-2 we see that the 
saturated vapor pressure of water at 20°C is 17.5 torr. Hence the relative humidity 
would be greater than 100%, and the supersaturated air cannot hold this much water. 
The excess water may condense and appear as dew, or as fog or rain (Fig. 18-9).

When air containing a given amount of water is cooled, a temperature is reached 
where the partial pressure of water equals the saturated vapor pressure. This is 
called the dew point. Measurement of the dew point is the most accurate means of 
determining the relative humidity. One method uses a polished metal surface in 
contact with air, which is gradually cooled down. The temperature at which moisture 
begins to appear on the surface is the dew point, and the partial pressure of water 
can then be obtained from saturated vapor pressure Tables. If, for example, on a 
given day the temperature is 20°C and the dew point is 5°C, then the partial pressure 
of water (Table 18-2) in the 20°C air is 6.54 torr, whereas its saturated vapor 
pressure is 17.5 torr; hence the relative humidity is 6.54/17.5 = 37%.

EXERCISE E A s the air warms up in the afternoon, how would the relative humidity change 
if there were no further evaporation? It would (a) increase, (b ) decrease, (c) stay the same.

CONCEPTUAL EXAMPLE 18-7 I Dryness in winter. Why does the air inside 
heated buildings seem very dry on a cold winter day?

RESPONSE Suppose the relative humidity outside on a — 10°C day is 50%. 
Table 18-2 tells us the partial pressure of water in the air is about 1.0 torr. If 
this air is brought indoors and heated to +20°C, the relative humidity is 
(1.0 torr)/(17.5 torr) = 5.7%. Even if the outside air were saturated at a partial 
pressure of 1.95 torr, the inside relative humidity would be at a low 11%.

*18—5 Van der Waals Equation of State
In Section 18-3, we discussed how real gases deviate from ideal gas behavior, 
particularly at high densities or when near condensing to a liquid. We would like 
to understand these deviations using a microscopic (molecular) point of view. 
J. D. van der Waals (1837-1923) analyzed this problem and in 1873 arrived at an 
equation of state which fits real gases more accurately than the ideal gas law. His 
analysis is based on kinetic theory but takes into account: (1) the finite size of 
molecules (we previously neglected the actual volume of the molecules themselves, 
compared to the total volume of the container, and this assumption becomes 
poorer as the density increases and molecules become closer together); (2) the 
range of the forces between molecules may be greater than the size of the molecules 
(we previously assumed that intermolecular forces act only during collisions, when 
the molecules are “in contact”). Let us now look at this analysis and derive the 
van der Waals equation of state.

Assume the molecules in a gas are spherical with radius r. If we assume 
these molecules behave like hard spheres, then two molecules collide and 
bounce off one another if the distance between their centers (Fig. 18-10) 
eets as small as 2r. Thus the actual volume in which the molecules can move



Then in the ideal gas law we replace V  by (V — nb), where n is the number of moles, 
and we obtain

P(V -  nb) = nRT.
If we divide through by n, we have

P ("n ~ b )  = RT' <18—8)
This relation (sometimes called the Clausius equation of state) predicts that for a 
given temperature T  and volume V, the pressure P will be greater than for an ideal 
gas. This makes sense since the reduced “available” volume means the number of 
collisions with the walls is increased.

Next we consider the effects of attractive forces between molecules, which are 
responsible for holding molecules in the liquid and solid states at lower temperatures. 
These forces are electrical in nature and although they act even when molecules are 
not touching, we assume their range is small—that is, they act mainly between nearest 
neighbors. Molecules at the edge of the gas, headed toward a wall of the container, 
are slowed down by a net force pulling them back into the gas. Thus these molecules 
will exert less force and less pressure on the wall than if there were no attractive 
forces. The reduced pressure will be proportional to the density of molecules in the 
layer of gas at the surface, and also to the density in the next layer, which exerts 
the inward force.1 Therefore we expect the pressure to be reduced by a factor 
proportional to the density squared (n /V )2, here written as moles per volume. If the 
pressure P is given by Eq. 18-8, then we should reduce this by an amount a(n /V )2 
where a is a proportionality constant. Thus we have

P =
{V/n) -  b (V /n)2

or

V  * (^?)u - alM”
which is the van der Waals equation of state.

The constants a and b in the van der Waals equation are different for different 
gases and are determined by fitting to experimental data for each gas. For C 02 gas, 
the best fit is obtained for a = 0.36N-m4/mol2 and b = 4.3 X 10_5m3/mol. 
Figure 18-11 shows a typical PV  diagram for Eq. 18-9 (a “van der Waals gas”) for 
four different temperatures, with detailed caption, and it should be compared to 
Fig. 18-4 for real gases.

Neither the van der Waals equation of state nor the many other equations of 
state that have been proposed are accurate for all gases under all conditions. Yet 
Eq. 18-9 is a very useful relation. And because it is quite accurate for many situations, 
its derivation gives us further insight into the nature of gases at the microscopic level. 
Note that at low densities, a/ (V /n)2 «  P and b «  V/n, so that the van der Waals 
equation reduces to the equation of state for an ideal gas, PV = nRT.

*18—6 Mean Free Path
If gas molecules were truly point particles, they would have zero cross-section and 
never collide with one another. If you opened a perfume bottle, you would be able to 
smell it almost instantaneously across the room, since molecules travel hundreds of 
meters per second. In reality, it takes time before you detect an odor and, according 
to kinetic theory, this must be due to collisions between molecules of nonzero size.

If we were to follow the path of a particular molecule, we would expect to see 
it follow a zigzag path as shown in Fig. 18-12. Between each collision the molecule 
would move in a straight-line path. (Not quite true if we take account of the small 
intermolecular forces that act between collisions.) An important parameter for a 
given situation is the mean free path, which is defined as the average distance a 
molecule travels between collisions. We would expect that the greater the gas 
densitv. and the larger the molecules, the shorter the mean free oath would be. We

P

FIGURE 18-11 P V  diagram for a 
van der Waals gas, shown for four 
different temperatures. For TA ,T B , 
and Tc (Tc  is chosen equal to the 
critical temperature), the curves fit 
experimental data very well for most 
gases. The curve labeled TD , a 
temperature below the critical point, 
passes through the liquid-vapor 
region. The maximum (point b) and 
minimum (point d) would seem to 
be artifacts, since we usually see 
constant pressure, as indicated by 
the horizontal dashed line (and 
Fig. 18-4). However, for very pure 
supersaturated vapors or supercooled 
liquids, the sections ab and ed, 
respectively, have been observed. 
(The section bd would be unstable 
and has not been observed.)

FIGURE 1 8 -1 2  Zigzag path of a 
molecule colliding with other 
molecules.



FIGURE 1 8 -1 3  M olecule at left 
moves to the right with speed v.
It collides with any m olecule whose 
center is within the cylinder of 
radius 2 r.

Mean p e e  path

Suppose our gas is made up of molecules which are hard spheres of radius r. 
A collision will occur whenever the centers of two molecules come within a 
distance 2r of one another. Let us follow a molecule as it traces a straight-line 
path. In Fig. 18-13, the dashed line represents the path of our particle if it makes 
no collisions. Also shown is a cylinder of radius 2r. If the center of another 
molecule lies within this cylinder, a collision will occur. (Of course, when a 
collision occurs the particle’s path would change direction, as would our imagined 
cylinder, but our result won’t be altered by unbending a zigzag cylinder into a 
straight one for purposes of calculation.) Assume our molecule is an average one, 
moving at the mean speed v in the gas. For the moment, let us assume that the 
other molecules are not moving, and that the concentration of molecules (number 
per unit volume) is N /V . Then the number of molecules whose centers lie within 
the cylinder of Fig. 18-13 is N /V  times the volume of this cylinder, and this also 
represents the number of collisions that will occur. In a time At, our molecule 
travels a distance v At, so the length of the cylinder is v At and its volume is 
7r(2r)2v At. Hence the number of collisions that occur in a time At is 
(N /V)ir(2r)2 v At. We define the mean free path, iM, as the average distance 
between collisions. This distance is equal to the distance traveled (v At) in a time 
At divided by the number of collisions made in time At:

v At _ 1
(N/V)ir{2r)2v At ~ 4irr2(N /V )

Thus we see that is inversely proportional to the cross-sectional area (= irr2) of 
the molecules and to their concentration (number/volume), N /V . However, 
Eq. 18-10a is not fully correct since we assumed the other molecules are all at rest. 
In fact, they are moving, and the number of collisions in a time At must depend on 
the relative speed of the colliding molecules, rather than on v. Hence the number 
of collisions per second is (N /V )7r(2r)2vXQ\ At (rather than (N /V )7r(2r)2 v At), 
where vTel is the average relative speed of colliding molecules. A careful calculation 
shows that for a Maxwellian distribution of speeds vrel = \/2v. Hence the mean 
free path is

lu  = 4 W l7 (N /V ) '  (18-10b)

ESTIMATE! Mean free path of air molecules at STP.
Estimate the mean free path of air molecules at STP, standard temperature and 
pressure (0°C, 1 atm). The diameter of 0 2 and N2 molecules is about 3 X 10-10m.
APPROACH We saw in Example 17-10 that 1 mol of an ideal gas occupies a volume 
of 22.4 X 10-3m3 at STP. We can thus determine N /V  and apply Eq. 18-10b. 
SOLUTION

N  6.02 X 1023 molecules ^  , -
— = ------------------z—=----  = 2.69 X 1025 molecules/m3.
V  22.4 X 10 m

Then

= -------—----------------------------------------- «  9 X 10 8 m.
4tt V 2(l.5  X 10“10m)2(2.7 X 1025m-3)

NOTE This is about 300 times the diameter of an air molecule.

At very low densities, such as in an evacuated vessel, the concept of mean free 
path loses meaning since collisions with the container walls may occur more 
frequently than collisions with other molecules. For example, in a cubical box 
that is (say) 20 cm on a side containing air at 10-7 torr (~ 10-10 atm), the mean free 
path would be about 900 m, which means many more collisions are made with the 
walls than with other molecules. (Note, nonetheless, that the box contains over 
1012 molecules.') If the conceDt of mean free oath included also collision with the

EXAMPLE 18-8



*18—7 Diffusion
If you carefully place a few drops of food coloring in a container of water as in 
Fig. 18-14, you will find that the color spreads throughout the water. The process 
may take some time (assuming you do not shake the glass), but eventually the 
color will become uniform. This mixing, known as diffusion, takes place because 
of the random movement of the molecules. Diffusion occurs in gases too. 
Common examples include perfume or smoke (or the odor of something cooking 
on the stove) diffusing in air, although convection (moving air currents) often 
plays a greater role in spreading odors than does diffusion. Diffusion depends on 
concentration, by which we mean the number of molecules or moles per unit volume. 
In general, the diffusing substance moves from a region where its concentration is 
high to one where its concentration is low.

FIGURE 18-14 A few drops of 
food coloring (a) dropped into 
water, (b) spreads slowly throughout 
the water, eventually (c) becoming 
uniform.

Diffusion can be readily understood on the basis of kinetic theory and the 
random motion of molecules. Consider a tube of cross-sectional area A  containing 
molecules in a higher concentration on the left than on the right, Fig. 18-15. We 
assume the molecules are in random motion. Yet there will be a net flow of 
molecules to the right. To see why this is true, let us consider the small section of 
tube of length Ax as shown. Molecules from both regions 1 and 2 cross into this 
central section as a result of their random motion. The more molecules there are in 
a region, the more will strike a given area or cross a boundary. Since there is a greater 
concentration of molecules in region 1 than in region 2, more molecules cross into 
the central section from region 1 than from region 2. There is, then, a net flow of 
molecules from left to right, from high concentration toward low concentration. 
The net flow becomes zero only when the concentrations become equal.

You might expect that the greater the difference in concentration, the greater 
the flow rate. Indeed, the rate of diffusion, J  (number of molecules or moles or 
kg per second), is directly proportional to the difference in concentration per unit 
distance, (Cx -  C2) /Ax (which is called the concentration gradient), and to the 
cross-sectional area A  (see Fig. 18-15):

C i — C 2
J = D A

or, in terms of derivatives,
Ax

r , A dCJ = D A —— 
dx

(18- 11)

D  is a constant of proportionality called the diffusion constant. Equation 18-11 is 
known as the diffusion equation, or Fick’s law. If the concentrations are given 
in mol/m3, then J  is the number of moles passing a given point per second. If the 
concentrations are given in kg/m3, then J  is the mass movement per second (kg/s). 
The length Ax is given in meters. The values of D  for a varietv of substances are

FIGURE 18-15 Diffusion occurs 
from a region of high concentration 
to one of lower concentration (only 
one type of molecule is shown).

m T j n k  * - J * <A
* * \

■ L  i :  S J
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1 concenira 
= C

Region I; 
concentration
= C,

TABLE 18-3 Diffusion 
Constants, D (20°C, 1 atm)

all on

Diffusing
Molecules Medium D (m2/s)

H 2 Air 6.3 X 10“5
o 2 Air 1.8 X 10“5
o 2 Water 100 X 10-11
Blood
hemoglobin Water 6.9 X 10“n

Glycine (an 
amino acid) Water 95 X 10“n

DNA (mass
~  ~  . .. ^ -1 1



EXAMPLE 18-9

^ P H Y S I C S  A P P L I E D
Diffusion time

ESTIMATE"! Diffusion of ammonia in air. To get an idea of 
the time required for diffusion, estimate how long it might take for ammonia 
( N H 3) to be detected 10 cm from a bottle after it is opened, assuming only diffusion 
is occurring.

APPROACH This will be an order-of-magnitude calculation. The rate of diffu­
sion J can be set equal to the number of molecules N  diffusing across area A  in a 
time t: J  = N /t. Then the time t = N /J , w here/is given by Eq. 18-11. We will 
have to make some assumptions and rough approximations about concentrations 
to use Eq. 18-11.
SOLUTION Using Eq. 18-11, we find

N_ _ N  Ax
1 ~ J  ~ DA  A C

The average concentration (midway between bottle and nose) can be approximated 
by C ~ N /V , where V  is the volume over which the molecules move and is 
roughly of the order of V  ~ A  Ax, where Ax is 10 cm = 0.10 m. We substitute 
N  = CV = CA Ax into the above equation:

(CA Ax) Ax c  (Ajc)2
DA AC AC D

The concentration of ammonia is high near the bottle (C) and low near the 
detecting nose (« 0), so C « C/2 «  AC/2, or (C/AC) « Since NH3 molecules
have a size somewhere between H2 and 0 2. 
D «  4 X 10-5 m2/s. Then

(0.10 m)2

from Table 18-3 we can estimate

(4 X 10-5 m2/s)
100 s,

or about a minute or two.
NOTE This result seems rather long from experience, suggesting that air currents 
(convection) are more important than diffusion for transmitting odors.

^ P H Y S I C S  A P P L I E D
Chromatography

CONCEPTUAL EXAMPLE 18-Tol Colored rings on a paper towel. A child 
colors a small spot on a wet paper towel with a brown marker. Later, she discovers 
that instead of a brown spot, there are concentric colored rings around the marked 
spot. What happened?

RESPONSE The ink in a brown marker is composed of several different inks that 
mix to make brown. These inks each diffuse at different rates through the wet 
paper towel. After a period of time the inks have diffused far enough that the 
differences in distances traveled is sufficient to separate the different colors. 
Chemists and biochemists use a similar technique, called chromatography, to 
separate substances based on their diffusion rates through a medium.

Summary
According to the kinetic theory of gases, which is based on the 
idea that a gas is made up of molecules that are moving rapidly 
and at random, the average kinetic energy of the molecules is 
proportional to the Kelvin temperature T:

K  =  \rrw2 =  \k T  (18-4)
where k  is Boltzmann’s constant.

A t any moment, there exists a wide distribution of m ole­
cular speeds within a gas. The Maxwell distribution of speeds is
derived from sirnnle kinetic*. theorv assnm ntions and is in aood

The behavior of real gases at high pressure, and/or when 
near their liquefaction point, deviates from the ideal gas law 
due to the finite size of molecules and to the attractive forces 
between molecules.

Below  the critical temperature, a gas can change to a liquid 
if sufficient pressure is applied; but if the temperature is higher 
than the critical temperature, no amount of pressure will cause a 
liquid surface to form.

The triple point of a substance is that unique tempera­
ture and nressnre at which all three n h ases— solid limn'd



reproducibility, the triple point of water is often taken as a 
standard reference point.

Evaporation of a liquid is the result of the fastest moving 
molecules escaping from the surface. Because the average 
molecular velocity is less after the fastest molecules escape, the 
temperature decreases when evaporation takes place.

Saturated vapor pressure refers to the pressure of the vapor 
above a liquid when the two phases are in equilibrium. The 
vapor pressure of a substance (such as water) depends strongly 
on temperature and is equal to atmospheric pressure at the 
boiling point.

Relative humidity of air at a given place is the ratio of the 
partial pressure of water vapor in the air to the saturated vapor 
pressure at that temperature; it is usually expressed as a percentage.

[*The van der Waals equation of state takes into account 
the finite volume of molecules, and the attractive forces between 
molecules, to better approximate the behavior of real gases.]

[*The mean free path is the average distance a molecule 
moves between collisions with other molecules.]

[^Diffusion is the process whereby molecules of a substance 
move (on average) from one area to another because of a 
difference in that substance’s concentration.]

Questions
1. Why doesn’t the size of different molecules enter into the 

ideal gas law?
2. When a gas is rapidly compressed (say, by pushing down a 

piston) its temperature increases. When a gas expands 
against a piston, it cools. Explain these changes in tempera­
ture using the kinetic theory, in particular noting what 
happens to the momentum of molecules when they strike 
the moving piston.

3. In Section 18-1 we assumed the gas molecules made 
perfectly elastic collisions with the walls of the container. 
This assumption is not necessary as long as the walls are at 
the same temperature as the gas. Why?

4. Explain in words how Charles’s law follows from kinetic 
theory and the relation between average kinetic energy and 
the absolute temperature.

5. Explain in words how Gay-Lussac’s law follows from kinetic 
theory.

6. As you go higher in the Earth’s atmosphere, the ratio of 
N2 molecules to 0 2 molecules increases. Why?

7. Can you determine the temperature of a vacuum?
8. Is temperature a macroscopic or microscopic variable?
9. Explain why the peak of the curve for 310 K in Fig. 18-3 is 

not as high as for 273 K. (Assume the total number of 
molecules is the same for both.)

10. Escape velocity for the Earth refers to the minimum speed 
an object must have to leave the Earth and never return.
(a) The escape velocity for the Moon is about one-fifth what 
it is for the Earth due to the Moon’s smaller mass; explain 
why the Moon has practically no atmosphere. (b) If 
hydrogen was once in the Earth’s atmosphere, why would it 
have probably escaped?

11. If a container of gas is at rest, the average velocity of mole­
cules must be zero. Yet the average speed is not zero. Explain.

12. If the pressure in a gas is doubled while its volume is held 
constant, by what factor do (a) vTms and (b) v change?

13. What everyday observation would tell you that not all 
molecules in a material have the same speed?

14. We saw that the saturated vapor pressure of a liquid (say, 
water) does not depend on the external pressure. Yet the 
temperature of boiling does depend on the external 
pressure. Is there a contradiction? Explain.

15. Alcohol evaporates more quickly than water at room
temneratnre. What ran vnn infer ahnnt the molecular

16. Explain why a hot humid day is far more uncomfortable 
than a hot dry day at the same temperature.

17. Is it possible to boil water at room temperature (20° C) 
without heating it? Explain.

18. What exactly does it mean when we say that oxygen boils at 
—183°C?

19. A length of thin wire is placed over a block of ice (or an ice 
cube) at 0°C and weights are hung from the ends of the 
wire. It is found that the wire cuts its way through the ice 
cube, but leaves a solid block of ice behind it. This process is 
called regelation. Explain how this happens by inferring how 
the freezing point of water depends on pressure.

20. Consider two days when the air temperature is the same but 
the humidity is different. Which is more dense, the dry air or 
the humid air at the same 77 Explain.

21. (a) Why does food cook faster in a pressure cooker?
(b) Why does pasta or rice need to boil longer at high 
altitudes? (c) Is it harder to boil water at high altitudes?

22. How do a gas and a vapor differ?
23. (a) At suitable temperatures and pressures, can ice be 

melted by applying pressure? (b) At suitable temperatures 
and pressures, can carbon dioxide be melted by applying 
pressure?

24. Why does dry ice not last long at room temperature?
25. Under what conditions can liquid C 0 2 exist? Be specific. 

Can it exist as a liquid at normal room temperature?
26. Why does exhaled air appear as a little white cloud in the 

winter (Fig. 18-16)?

FIGURE 18-16
Question 26.

*27. Discuss why sound waves can travel in a gas only if their 
wavelength is somewhat larger than the mean free path.



| Problems
18-1 Molecular Interpretation of Temperature
1. (I) (a) What is the average translational kinetic energy of an 

oxygen molecule at STP? (b) What is the total translational 
kinetic energy of 1.0 mol of 0 2 molecules at 25°C?

2. (I) Calculate the rms speed of helium atoms near the 
surface of the Sun at a temperature of about 6000 K.

3. (I) By what factor will the rms speed of gas molecules 
increase if the temperature is increased from 0°C to 180°C?

4. (I) A gas is at 20° C. To what temperature must it be raised 
to triple the rms speed of its molecules?

5. (I) What speed would a 1.0-g paper clip have if it had the 
same kinetic energy as a molecule at 15°C?

6. (I) A 1.0-mol sample of hydrogen gas has a temperature of 
27°C. (a) What is the total kinetic energy of all the gas mole­
cules in the sample? (b) How fast would a 65-kg person 
have to run to have the same kinetic energy?

7. (I) Twelve molecules have the following speeds, given in 
arbitrary units: 6.0, 2.0, 4.0, 6.0, 0.0, 4.0,1.0, 8.0, 5.0, 3.0, 7.0, 
and 8.0. Calculate (a) the mean speed, and (b) the rms speed.

8. (II) The rms speed of molecules in a gas at 20.0° C is to be 
increased by 2.0%. To what temperature must it be raised?

9. (II) If the pressure in a gas is tripled while its volume is 
held constant, by what factor does i;rms change?

10. (II) Show that the rms speed of molecules in a gas is given 
by r̂ms = V3P /p , where P  is the pressure in the gas, 
and p is the gas density.

11. (II) Show that for a mixture of two gases at the same 
temperature, the ratio of their rms speeds is equal to the 
inverse ratio of the square roots of their molecular masses.

12. (II) What is the rms speed of nitrogen molecules contained 
in an 8.5-m3 volume at 3.1 atm if the total amount of 
nitrogen is 1800 mol?

13. (II) (a) For an ideal gas at temperature T  show that

^rms _  1 r̂ms
dT 2 T  ’

^rmsand using the approximation Avrms ~ — — AT, show that

A^rms _  1 A T  
^rms 2 T

(b) If the average air temperature changes from -5°C  in 
winter to 25 °C in summer, estimate the percent change in 
the rms speed of air molecules between these seasons.

14. (II) What is the average distance between oxygen molecules 
at STP?

15. (II) Two isotopes of uranium, 235U and 238U (the super­
scripts refer to their atomic masses), can be separated 
by a gas diffusion process by combining them with fluorine 
to make the gaseous compound UF6. Calculate the ratio of 
the rms speeds of these molecules for the two isotopes, at 
constant T. Use Appendix F for masses.

16. (II) Can pockets of vacuum persist in an ideal gas? Assume 
that a room is filled with air at 20° C and that somehow a 
small spherical region of radius 1 cm within the room 
becomes devoid of air molecules. Estimate how long it will
take for air to  refill this reaion o f  var.iinm. A ssum e the

17. (II) Calculate (a) the rms speed of a nitrogen molecule at 0°C 
and (b) determine how many times per second it would move 
back and forth across a 5.0-m-long room on the average, 
assuming it made very few collisions with other molecules.

18. (Ill) Estimate how many air molecules rebound from a 
wall in a typical room per second, assuming an ideal gas of 
N  molecules contained in a cubic room with sides of 
length I at temperature T  and pressure P. (a) Show that the 
frequency /  with which gas molecules strike a wall is

where vx is the average x  component of the molecule’s 
velocity. (b) Show that the equation can then be written as

p f
V  4mAT

where m  is the mass of a gas molecule, (c) Assume a cubic 
air-filled room is at sea level, has a temperature 20° C, and 
has sides of length £ = 3 m. Determine / .

18-2 Distribution of Molecular Speeds
19. (I) If you double the mass of the molecules in a gas, is it 

possible to change the temperature to keep the velocity 
distribution from changing? If so, what do you need to do to 
the temperature?

20. (I) A group of 25 particles have the following speeds: two 
have speed 10 m/s, seven have 15 m/s, four have 20 m/s, 
three have 25 m/s, six have 30 m/s, one has 35 m/s, and two 
have 40 m/s. Determine (a) the average speed, (b) the rms 
speed, and (c) the most probable speed.

21. (II) A gas consisting of 15,200 molecules, each of mass
2.00 X 10 26 kg, has the following distribution of speeds, which 
crudely mimics the Maxwell distribution:

Number of Molecules Speed (m/s)

1600 220
4100 440
4700 660
3100 880
1300 1100
400 1320

(a) Determine vrms for this distribution of speeds. (b) Given 
your value for vrms, what (effective) temperature would you 
assign to this gas? (c) Determine the mean speed v of this 
distribution and use this value to assign an (effective) 
temperature to the gas. Is the temperature you find here 
consistent with the one you determined in part (b)l

22. (Ill) Starting from the Maxwell distribution of speeds, 
Eq. 18-6, show (a) dv = N , and (b)

J'OOv2 f ( v )  d v /N  = 3kT/m .
o

18-3 Real Gases
23. (I) C 0 2 exists in what phase when the pressure is 30 atm 

and the temperature is 30°C (Fig. 18-6)?
24. (I) (a) At atmospheric pressure, in what phases can C 0 2 

exist? (b) For what range of pressures and temperatures can 
C 0 2 be a liquid? Refer to Fig. 18-6.

25. f n  W ater is in which nhase when the nressnre is 0.01 atm



26. (II) You have a sample of water and are able to control temper­
ature and pressure arbitrarily, (a) Using Fig. 18-5, describe the 
phase changes you would see if you started at a temperature 
of 85°C, a pressure of 180 atm, and decreased the pressure 
down to 0.004 atm while keeping the temperature fixed.
(b) Repeat part (a) with the temperature at 0.0°C. Assume 
that you held the system at the starting conditions long enough 
for the system to stabilize before making further changes.

18-4 Vapor Pressure and Humidity
27. (I) What is the partial pressure of water vapor at 30°C if the 

humidity is 85%?
28. (I) What is the partial pressure of water on a day when the 

temperature is 25°C and the relative humidity is 55%?
29. (I) What is the air pressure at a place where water boils at 

80°C?
30. (II) What is the dew point if the humidity is 75% on a day 

when the temperature is 25°C?
31. (II) If the air pressure at a particular place in the mountains 

is 0.75 atm, estimate the temperature at which water boils.
32. (II) What is the mass of water in a closed room

5.0 m X 6.0 m X 2.4 m when the temperature is 24.0°C and 
the relative humidity is 65%?

33. (II) What is the approximate pressure inside a pressure cooker 
if the water is boiling at a temperature of 120°C? Assume no 
air escaped during the heating process, which started at 12°C.

34. (II) If the humidity in a room of volume 440 m3 at 25°C is 65%, 
what mass of water can still evaporate from an open pan?

35. (II) A pressure cooker is a sealed pot designed to cook food 
with the steam produced by boiling water somewhat above 
100°C. The pressure cooker in Fig. 18-17 uses a weight of 
mass m to allow steam to escape at a certain pressure 
through a small hole (diameter d) in the cooker’s lid. If 
d = 3.0 mm, what should m be in order to cook food at 
120°C? Assume that atmospheric pressure outside the 
cooker is 1.01 X 105 Pa.

36. (II) When using a mercury barometer (Section 13-6), the 
vapor pressure of mercury is usually assumed to be zero. At 
room temperature mercury’s vapor pressure is about
0.0015 mm-Hg. At sea level, the height h of mercury in a 
barometer is about 760 mm. (a) If the vapor pressure of 
mercury is neglected, is the true atmospheric pressure greater 
or less than the value read from the barometer? (b) What is the 
percent error? (c) What is the percent error if you use a water 
barometer and ignore water’s saturated vapor pressure at STP?

37. (II) If the humidity is 45% at 30.0°C, what is the dew point? 
U se linear internolation to find the temnerature nf the Hew

38. (Ill) Air that is at its dew point of 5°C is drawn into a 
building where it is heated to 20° C. What will be the relative 
humidity at this temperature? Assume constant pressure of
1.0 atm. Take into account the expansion of the air.

39. (Ill) What is the mathematical relation between water’s 
boiling temperature and atmospheric pressure? (a) Using 
the data from Table 18-2, in the temperature range from 
50°C to 150°C, plot In P versus (1/7), where P is water’s 
saturated vapor pressure (Pa) and T  is temperature on the 
Kelvin scale. Show that a straight-line plot results and 
determine the slope and ^-intercept of the line, (b) Show 
that your result implies

P = Be~AIT

where A  and B are constants. Use the slope and ^-intercept 
from your plot to show that A  ~ 5000 K and 
B «  7 X 1010 Pa.

* 18-5 Van der Waals Equation of State
* 40. (II) In the van der Waals equation of state, the constant b

represents the amount of “unavailable volume” occupied by 
the molecules themselves. Thus V  is replaced by (V — nb), 
where n is the number of moles. For oxygen, b is about 
3.2 X 10_5m3/mol. Estimate the diameter of an oxygen 
molecule.

*41. (II) For oxygen gas, the van der Waals equation of state 
achieves its best fit for a = 0.14N-m4/mol2 and 
b = 3.2 X 10_5m3/mol. Determine the pressure in 1.0 mol 
of the gas at 0°C if its volume is 0.70 L, calculated using
(a) the van der Waals equation, (b) the ideal gas law.

*42. (Ill) A 0.5-mol sample of 0 2 gas is in a large cylinder with a 
movable piston on one end so it can be compressed. The 
initial volume is large enough that there is not a significant 
difference between the pressure given by the ideal gas law 
and that given by the van der Waals equation. As the gas is 
slowly compressed at constant temperature (use 300 K), at 
what volume does the van der Waals equation give a 
pressure that is 5% different than the ideal gas law pressure? 
Let a = 0.14N*m4/mol2 and b = 3.2 X 10_5m3/mol.

*43. (Ill) (a) From the van der Waals equation of state, show 
that the critical temperature and pressure are given by

_ 8 a 
cr “  27 bR

a
21b2

[Hint: Use the fact that the P versus V  curve has an inflec­
tion point at the critical point so that the first and second 
derivatives are zero.] (b) Determine a and b for C 02 from 
the measured values of r cr = 304 K and Pcr = 72.8 atm.

* 44. (Ill) How well does the ideal gas law describe the pressurized 
air in a scuba tank? (a) To fill a typical scuba tank, an air 
compressor intakes about 2300 L of air at 1.0 atm and 
compresses this gas into the tank’s 12-L internal volume. If 
the filling process occurs at 20° C, show that a tank holds 
about 96 mol of air. (b) Assume the tank has 96 mol of air 
at 20°C. Use the ideal gas law to predict the air’s pressure 
within the tank, (c) Use the van der Waals equation of state 
to predict the air’s pressure within the tank. For air, the 
van der Waals constants are a = 0.1373 N • m4/mol2 and 
b = 3.72 X 10_5m3/mol. (d) Taking the van der Waals
nressnre as the true air nressnre show that the ideal aas law



18-6 Mean Free Path
45. (II) At about what pressure would the mean free path of air 

molecules be (a) 0.10 m and (b) equal to the diameter of air 
molecules, «  3 X 10-10m? Assume T  = 20°C.

46. (II) Below a certain threshold pressure, the air molecules 
(0.3-nm diameter) within a research vacuum chamber are in 
the “collision-free regime,” meaning that a particular air 
molecule is as likely to cross the container and collide first 
with the opposite wall, as it is to collide with another air 
molecule. Estimate the threshold pressure for a vacuum 
chamber of side 1.0 m at 20°C.

47. (II) A very small amount of hydrogen gas is released into 
the air. If the air is at 1.0 atm and 15°C, estimate the mean 
free path for a H 2 molecule. What assumptions did you 
make?

48. (II) (a) The mean free path of C 0 2 molecules at STP is 
measured to be about 5.6 X 10-8 m. Estimate the diameter 
of a C 0 2 molecule, (b) Do the same for He gas for which 
£m ~ 25 X 10“8 at STP

49. (II) (a) Show that the number of collisions a molecule 
makes per second, called the collision frequency, f ,  is given 
by /  = v/£u , and thus /  = 4V2Trr2 vN /V . (b) What is 
the collision frequency for N2 molecules in air at T = 20° C 
and P = 1.0 X 10_2atm?

50. (II) We saw in Example 18-8 that the mean free path of air 
molecules at STP, £M, is about 9 X 10_8m. Estimate the 
collision frequency / ,  the number of collisions per unit time.

| General Problems__________
56. A sample of ideal gas must contain at least N  — 106 molecules 

in order for the Maxwell distribution to be a valid description 
of the gas, and to assign it a meaningful temperature. For 
an ideal gas at STP, what is the smallest length scale £ 
(volume V  = £3) for which a valid temperature can be 
assigned?

57. In outer space the density of matter is about one atom per 
cm3, mainly hydrogen atoms, and the temperature is about
2.7 K. Calculate the rms speed of these hydrogen atoms, and 
the pressure (in atmospheres).

58. Calculate approximately the total translational kinetic 
energy of all the molecules in an E. coli bacterium of mass
2.0 X 10-15 kg at 37°C. Assume 70% of the cell, by weight, is 
water, and the other molecules have an average molecular 
mass on the order of 105 u.

59. (a) Estimate the rms speed of an amino acid, whose molecular 
mass is 89 u, in a living cell at 37°C. (b) What would be the rms 
speed of a protein of molecular mass 85,000 u at 37°C?

60. The escape speed from the Earth is 1.12 X 104m/s, so that 
a gas molecule travelling away from Earth near the outer 
boundary of the Earth’s atmosphere would, at this speed, be 
able to escape from the Earth’s gravitational field and be 
lost to the atmosphere. At what temperature is the average 
speed of (a) oxygen molecules, and (b) helium atoms equal 
tn  1 .1 9 .X  10 4 m  /s?  M  C an vnu  ex n la in  w h v  ou r  a tm o s-

*51. (II) A cubic box 1.80 m on a side is evacuated so the 
pressure of air inside is 10_6torr. Estimate how many 
collisions molecules make with each other for each collision 
with a wall (0°C).

* 52. (Ill) Estimate the maximum allowable pressure in a 32-cm-
long cathode ray tube if 98% of all electrons must hit the 
screen without first striking an air molecule.

*18-7 Diffusion
* 53. (I) Approximately how long would it take for the ammonia

of Example 18-9 to be detected 1.0 m from the bottle 
after it is opened? What does this suggest about the 
relative importance of diffusion and convection for 
carrying odors?

*54. (II) Estimate the time needed for a glycine molecule (see 
Table 18-3) to diffuse a distance of 15 jum in water at 20°C 
if its concentration varies over that distance from 
1.00mol/m3 to 0.50mol/m3? Compare this “speed” to its 
rms (thermal) speed. The molecular mass of glycine is 
about 75 u.

*55. (II) Oxygen diffuses from the surface of insects to the 
interior through tiny tubes called tracheae. An average 
trachea is about 2 mm long and has cross-sectional area of
2 X 10-9 m2. Assuming the concentration of oxygen inside 
is half what it is outside in the atmosphere, (a) show that the 
concentration of oxygen in the air (assume 21% is oxygen) 
at 20°C is about 8.7 mol/m3, then (b) calculate the diffusion 
rate / , and (c) estimate the average time for a molecule to 
diffuse in. Assume the diffusion constant is 1 X 10-5 m2/s.

61. The second postulate of kinetic theory is that the molecules 
are, on the average, far apart from one another. That is, 
their average separation is much greater than the diameter 
of each molecule. Is this assumption reasonable? To check, 
calculate the average distance between molecules of a gas 
at STP, and compare it to the diameter of a typical gas 
molecule, about 0.3 nm. If the molecules were the diameter 
of ping-pong balls, say 4 cm, how far away would the next 
ping-pong ball be on average?

62. A sample of liquid cesium is heated in an oven to 400° C 
and the resulting vapor is used to produce an atomic beam. 
The volume of the oven is 55 cm3, the vapor pressure of Cs 
at 400°C is 17 mm-Hg, and the diameter of cesium atoms in 
the vapor is 0.33 nm. (a) Calculate the mean speed of 
cesium atoms in the vapor. (b) Determine the number of 
collisions a single Cs atom undergoes with other cesium 
atoms per second, (c) Determine the total number of colli­
sions per second between all of the cesium atoms in the 
vapor. Note that a collision involves two Cs atoms and 
assume the ideal gas law holds.

63. Consider a container of oxygen gas at a temperature of 
20°C that is 1.00 m tall. Compare the gravitational potential 
energy of a molecule at the top of the container (assuming 
the potential energy is zero at the bottom) with the average 
kinetic enerav nf the m olecules. Ts it reasonable to neg lect



64. In humid climates, people constantly dehumidify their cellars to 
prevent rot and mildew. If the cellar in a house (kept at 20°C) 
has 115 m2 of floor space and a ceiling height of 2.8 m, what is 
the mass of water that must be removed from it in order to 
drop the humidity from 95% to a more reasonable 40%?

65. Assuming a typical nitrogen or oxygen molecule is about
0.3 nm in diameter, what percent of the room you are 
sitting in is taken up by the volume of the molecules 
themselves?

66. A scuba tank has a volume of 3100 cm3. For very deep dives, 
the tank is filled with 50% (by volume) pure oxygen and 
50% pure helium, (a) How many molecules are there of 
each type in the tank if it is filled at 20°C to a gauge pres­
sure of 12 atm? (b) What is the ratio of the average kinetic 
energies of the two types of molecule? (c) What is the ratio 
of the rms speeds of the two types of molecule?

67. A space vehicle returning from the Moon enters the atmos­
phere at a speed of about 42,000 km/h. Molecules (assume 
nitrogen) striking the nose of the vehicle with this speed 
correspond to what temperature? (Because of this high 
temperature, the nose of a space vehicle must be made of 
special materials; indeed, part of it does vaporize, and this is 
seen as a bright blaze upon reentry.)

68. At room temperature, it takes approximately 2.45 X 103 J 
to evaporate 1.00 g of water. Estimate the average speed of 
evaporating molecules. What multiple of vrms (at 20°C) for 
water molecules is this? (Assume Eq. 18-4 holds.)

69. Calculate the total water vapor pressure in the air on the 
following two days: (a) a hot summer day, with the temperature 
30°C and the relative humidity at 65%; (b) a cold winter day, 
with the temperature 5°C and the relative humidity at 75%.

*70. At 300 K, an 8.50-mol sample of carbon dioxide occupies a 
volume of 0.220 m3. Calculate the gas pressure, first by 
assuming the ideal gas law, and then by using the van der Waals 
equation of state. (The values for a and b are given in 
Section 18-5.) In this range of pressure and volume, the 
van der Waals equation is very accurate. What percent 
error did you make in assuming ideal-gas-law behavior?

* 71. The density of atoms, mostly hydrogen, in interstellar space is 
about one per cubic centimeter. Estimate the mean free path of 
the hydrogen atoms, assuming an atomic diameter of 10-10 m.

Answers to Exercises

A: (a).
B: (d).
r-1.

*72. Using the ideal gas law, find an expression for the mean free 
path that involves pressure and temperature instead of 
(N /V ). Use this expression to find the mean free path for 
nitrogen molecules at a pressure of 7.5 atm and 300 K.

73. A sauna has 8.5 m3 of air volume, and the temperature is 
90°C. The air is perfectly dry. How much water (in kg) 
should be evaporated if we want to increase the relative 
humidity from 0% to 10%? (See Table 18-2.)

74. A 0.50-kg trash-can lid is suspended against gravity by tennis 
balls thrown vertically upward at it. How many tennis balls 
per second must rebound from the lid elastically, assuming 
they have a mass of 0.060 kg and are thrown at 12 m/s?

*75. Sound waves in a gas can only propagate if the gas 
molecules collide with each other on the time scale of the 
sound wave’s period. Thus the highest possible frequency 
/max f°r a sound wave in a gas is approximately equal 
to the inverse of the average collision time between 
molecules. Assume a gas, composed of molecules with 
mass m and radius r, is at pressure P and temperature T.
(a) Show that

/max -

(b) Determine / max for 20°C air at sea level. How many 
times larger is / max than the highest frequency in the human 
audio range (20 kHz)?

* Numerical/Computer
*76. (II) Use a spreadsheet to calculate and graph the fraction of 

molecules in each 50-m/s speed interval from lOOm/s 
to 5000 m/s if T = 300 K.

* 77. (II) Use numerical integration [Section 2-9] to estimate (within
2%) the fraction of molecules in air at 1.00 atm and 20°C that 
have a speed greater than 1.5 times the most probable speed.

*78. (II) For oxygen gas the van der Waals constants are 
a = 0.14 N • m4/mol2 and b = 3.2 X 10_5m3/mol. Using 
these values, graph six curves of pressure vs. volume 
between V = 2 X 10-5 m3 to 2.0 X 10-4 m3, for 1 mol of 
oxygen gas at temperatures of 80 K, 100 K, 120 K, 130 K, 
150 K, and 170 K. From the graphs determine approximately 
the critical temperature for oxygen.

D: {d). 
E: (b).



W hen it is cold, warm clothes act as 
insulators to reduce heat loss from  
the body to the environment by 
conduction and convection. H eat 
radiation from a campfire can warm  
you and your clothes. The fire can 
also transfer energy directly by heat 
convection and conduction to what you  
are cooking. Heat, like work, represents 
a transfer o f energy. H eat is defined as 
a transfer o f energy due to a difference 
of temperature. Work is a transfer o f  
energy by mechanical means, not due 
to a temperature difference. The first 
law of thermodynamics links the 
two in a general statement o f  
energy conservation: the heat Q  
added to a system minus the net 
work W  done by the system equals 
the change in internal energy A £ int o f 
the system: A £ int =  Q -  W . Internal 
energy E int is the sum total o f all the 
energy of the m olecules of the system.

Heat and the First Law 
of Thermodynamics
CHAPTER-OPENING QUESTION—Guess now!
A 5-kg cube of warm iron (60°C) is put in thermal contact with a 10-kg cube of 
cold iron (15°C). Which statement is valid:

(a) Heat flows spontaneously from the warm cube to the cold cube until both 
cubes have the same heat content.

(b) Heat flows spontaneously from the warm cube to the cold cube until both 
cubes have the same temperature.

(c) Heat can flow spontaneously from the warm cube to the cold cube, but can 
also flow spontaneously from the cold cube to the warm cube.

(d) Heat can never flow from a cold object or area to a hot object or area.
(e) Heat flows from the larger cube to the smaller one because the larger one has 

more internal energy.

W hen a pot of cold water is placed on a hot burner of a stove, the 
temperature of the water increases. We say that heat “flows” from the 
hot burner to the cold water. When two objects at different temperatures 
are put in contact, heat spontaneously flows from the hotter one to the 

colder one. The spontaneous flow of heat is in the direction tending to equalize the 
temperature. If the two objects are kept in contact long enough for their temperatures 
to become equal, the objects are said to be in thermal equilibrium, and there is no 
further heat flow between them. For example, when a fever thermometer is first 
placed in your mouth, heat flows from your mouth to the thermometer. When 
the thermometer reaches the same temoerature as the inside of vour mouth, the
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Heat and temperature are often confused. They are very different concepts 
and we will make the clear distinction between them. We start this Chapter 
by defining and using the concept of heat. We also begin our discussion of 
thermodynamics, which is the name we give to the study of processes in which 
energy is transferred as heat and as work.

19-1  Heat as Energy Transfer
We use the term “heat” in everyday life as if we knew what we meant. But the 
term is often used inconsistently, so it is important for us to define heat clearly, and 
to clarify the phenomena and concepts related to heat.

We commonly speak of the flow of heat—heat flows from a stove burner to a 
pot of soup, from the Sun to the Earth, from a person’s mouth into a fever 
thermometer. Heat flows spontaneously from an object at higher temperature to 
one at lower temperature. Indeed, an eighteenth-century model of heat pictured 
heat flow as movement of a fluid substance called caloric. However, the caloric 
fluid could never be detected. In the nineteenth century, it was found that the 
various phenomena associated with heat could be described consistently using a 
new model that views heat as akin to work, as we will discuss in a moment. First 
we note that a common unit for heat, still in use today, is named after caloric. It is 
called the calorie (cal) and is defined as the amount o f heat necessary to raise the 
temperature o f 1 gram o f water by 1 Celsius degree. [To be precise, the particular 
temperature range from 14.5°C to 15.5°C is specified because the heat required is 
very slightly different at different temperatures. The difference is less than 1% over 
the range 0 to 100°C, and we will ignore it for most purposes.] More often used 
than the calorie is the kilocalorie (kcal), which is 1000 calories. Thus 1 kcal is the 
heat needed to raise the temperature o f 1 kg o f water by 1 C°. Often a kilocalorie is 
called a Calorie (with a capital C), and this Calorie (or the kJ) is used to specify 
the energy value of food. In the British system of units, heat is measured in British 
thermal units (Btu). One Btu is defined as the heat needed to raise the temperature of 
1 lb of water by 1 F°. It can be shown (Problem 4) that 1 Btu = 0.252 kcal = 1056 J.

The idea that heat is related to energy transfer was pursued by a number of 
scientists in the 1800s, particularly by an English brewer, James Prescott Joule 
(1818-1889). One of Joule’s experiments is shown (simplified) in Fig. 19-1. The 
falling weight causes the paddle wheel to turn. The friction between the water and 
the paddle wheel causes the temperature of the water to rise slightly (barely 
measurable, in fact, by Joule). In this and many other experiments (some involving 
electrical energy), Joule determined that a given amount of work done was always 
equivalent to a particular amount of heat input. Quantitatively, 4.186 joules (J) of 
work was found to be equivalent to 1 calorie (cal) of heat. This is known as the 
mechanical equivalent of heat:

4.186 J = leal;
4.186 kJ = 1 kcal.

As a result of these and other experiments, scientists came to interpret heat 
not as a substance, and not exactly as a form of energy. Rather, heat refers to a 
transfer o f energy: when heat flows from a hot object to a cooler one, it is energy 
that is being transferred from the hot to the cold object. Thus, heat is energy 
transferred from one object to another because o f a difference in temperature. 
In SI units, the unit for heat, as for any form of energy, is the joule. Nonetheless, 
calories and kcal are still sometimes used. Today the calorie is defined in terms of 
the joule (via the mechanical equivalent of heat, above), rather than in terms 
of the properties of water, as given previously. The latter is still handy to remember: 
1 cal raises 1 g of water by 1 C°, or 1 kcal raises 1 kg of water by 1 C°.

Joule’s result was crucial because it extended the work-energy principle to 
include orocesses involving heat. It also led to the establishment of the law of

/? \ CAUTI ON
Heat is not a fluid

FIGURE 19-1  Joule’s experiment 
on the mechanical equivalent of heat.

/ j \  CAUTI ON
Heat is energy transferred 
because o f  a A T
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EXAMPLE 19-1 ESTIMATE"! Working off the extra calories. Suppose you 
throw caution to the wind and eat too much ice cream and cake on the order of 
500 Calories. To compensate, you want to do an equivalent amount of work 
climbing stairs or a mountain. How much total height must you climb?
APPROACH The work W  you need to do in climbing stairs equals the change in 
gravitational potential energy: W  = A PE = mgh, where h is the vertical height 
climbed. For this estimate, approximate your mass as m ~ 60 kg.
SOLUTION 500 food Calories are 500 kcal, which in joules is 

(500 kcal)(4.186 X 103J/kcal) = 2.1 X 106J.
The work done to climb a vertical height h is W = mgh. We solve for h:

W 2.1 X 106J _
h = ----  = --------- ----------- -rr = 3600 m.

mg (60 kg) (9.80 m/s2)

This is a huge elevation change (over 11,000 ft).
NOTE The human body does not transform food energy with 100% efficiency—it 
is more like 20% efficient. As we shall discuss in the next Chapter, some energy is 
always “wasted,” so you would actually have to climb only about 
(0.2)(3600 m) « 700 m, which is more reasonable (about 2300 ft of elevation gain).

19—2 Internal Energy
The sum total of all the energy of all the molecules in an object is called its internal 
energy. (Sometimes thermal energy is used to mean the same thing.) We introduce 
the concept of internal energy now since it will help clarify ideas about heat.

Distinguishing Temperature, Heat, and Internal Energy
Using the kinetic theory, we can make a clear distinction between temperature, 
heat, and internal energy. Temperature (in kelvins) is a measure of the average 
kinetic energy of individual molecules. Internal energy refers to the total energy of 
all the molecules within the object. (Thus two equal-mass hot ingots of iron may 
have the same temperature, but two of them have twice as much internal energy as 
one does.) Heat, finally, refers to a transfer of energy from one object to another 
because of a difference in temperature.

Notice that the direction of heat flow between two objects depends on their 
temperatures, not on how much internal energy each has. Thus, if 50 g of water at 
30°C is placed in contact (or mixed) with 200 g of water at 25°C, heat flows from 
the water at 30°C to the water at 25°C even though the internal energy of the 25°C 
water is much greater because there is so much more of it.

EXERCISE A Return to the Chapter-Opening Question, page 496, and answer it again now. 
Try to explain why you may have answered differently the first time.

Internal Energy of anldeal Gas
Let us calculate the internal energy of n moles of an ideal monatomic (one atom 
per molecule) gas. The internal energy, Emu is the sum of the translational kinetic 
energies of all the atoms.1 This sum is equal to the average kinetic energy per 
molecule times the total number of molecules, N:

Emt =

Using Eq. 18-4, K  = \m vL = \kT , we can write this as



Eint = I nRT, [ideal monatomic gas] (19-lb)

where n is the number of moles. Thus, the internal energy of an ideal gas depends 
only on temperature and the number of moles of gas.

If the gas molecules contain more than one atom, then the rotational and 
vibrational energy of the molecules (Fig. 19-2) must also be taken into account. 
The internal energy will be greater at a given temperature than for a monatomic 
gas, but it will still be a function only of temperature for an ideal gas.

The internal energy of real gases also depends mainly on temperature, but 
where real gases deviate from ideal gas behavior, their internal energy depends 
also somewhat on pressure and volume (due to atomic potential energy).

The internal energy of liquids and solids is quite complicated, for it includes 
electrical potential energy associated with the forces (or “chemical” bonds) 
between atoms and molecules.

or (recall Section 17-9)

19—3 Specific Heat
If heat flows into an object, the object’s temperature rises (assuming no phase 
change). But how much does the temperature rise? That depends. As early as the 
eighteenth century, experimenters had recognized that the amount of heat Q 
required to change the temperature of a given material is proportional to the 
mass m of the material present and to the temperature change AT. This remarkable 
simplicity in nature can be expressed in the equation

Q = mcAT, (19-2)
where c is a quantity characteristic of the material called its specific heat. Because 
c = Q/mAT, specific heat is specified in units1" of J/kg-C° (the proper SI 
unit) or kcal/kg-C°. For water at 15°C and a constant pressure of 1 atm, 
c = 4.19 X 103J/kg*C° or 1.00kcal/kg*C°, since, by definition of the cal and 
the joule, it takes 1 kcal of heat to raise the temperature of 1 kg of water by 1 C°. 
Table 19-1 gives the values of specific heat for other solids and liquids at 20°C. The 
values of c for solids and liquids depend to some extent on temperature (as well as 
slightly on pressure), but for temperature changes that are not too great, c can often 
be considered constant.* Gases are more complicated and are treated in Section 19-8.

How heat transferred depends on specific heat, (a) How
much heat input is needed to raise the temperature of an empty 20-kg vat made 
of iron from 10°C to 90°C? (b) What if the vat is filled with 20 kg of water?
APPROACH We apply Eq. 19-2 to the different materials involved.
SOLUTION (a) Our system is the iron vat alone. From Table 19-1, the specific heat 
of iron is 450 J/kg-C°. The change in temperature is (90°C -  10°C) = 80 C°. Thus,

Q = mc AT = (20 kg) (450 J/kg • C°) (80 C°) = 7.2 X l t f j  = 720 kJ.
(b) Our system is the vat plus the water. The water alone would require

Q = mc AT = (20 kg) (4186 J/kg-C°) (80 C°) = 6.7 X 106J = 6700 kJ,
or almost 10 times what an equal mass of iron requires. The total, for the vat plus 
the water, is 720 kJ + 6700 kJ = 7400 kJ.
NOTE In (b), the iron vat and the water underwent the same temperature 
change, AT = 80 C°, but their specific heats are different.

tNote that J/kg - C° means 
that way). kg-C

and not (J/kg) • C° = J - C°/kg (otherwise we would have written it

*To take into account the dependence of c on T, we can write Eq. 19-2 in differential form: 
dQ = mc(T) dT, where c(T) means c is a function of temperature T. Then the heat Q required to 
change the temperature from 7\ to T2 is

/  ' 1  
/  V

«  V ../  7

Q Q ^ O
(b)

FIGURE 1 9 -2  Besides translational 
kinetic energy, molecules can have
(a) rotational kinetic energy, and
(b) vibrational energy (both kinetic 
and potential).

TABLE 19-1 Specific Heats 
(at 1 atm constant pressure and 20°C 
unless otherwise stated)

Specific Heat, c
Substance kcal/kg 

(= cal/g
C° JAg 
C°)

c°

Aluminum 0.22 900
Alcohol

(ethyl) 0.58 2400
Copper 0.093 390
Glass 0.20 840
Iron or steel 0.11 450
Lead 0.031 130
Marble 0.21 860
Mercury 0.033 140
Silver 0.056 230
Wood 0.4 1700
Water

Ice ( —5°C) 0.50 2100
Liquid (15°C) 1.00 4186
Steam (110°C) 0.48 2010

Human body 
(average) 0.83 3470
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FIGURE 1 9 -3  Example 19-3.

If the iron vat in part (a) of Example 19-2 had been cooled from 90°C to 10°C, 
720 kJ of heat would have flowed out of the iron. In other words, Eq. 19-2 is valid 
for heat flow either in or out, with a corresponding increase or decrease in tempera­
ture. We saw in part (b) that water requires almost 10 times as much heat as an equal 
mass of iron to make the same temperature change. Water has one of the highest 
specific heats of all substances, which makes it an ideal substance for hot-water 
space-heating systems and other uses that require a minimal drop in temperature for 
a given amount of heat transfer. It is the water content, too, that causes the apples 
rather than the crust in hot apple pie to burn our tongues, through heat transfer.

19—4  Calorimetry—Solving Problems
In discussing heat and thermodynamics, we shall often refer to particular systems. As 
already mentioned in earlier Chapters, a system is any object or set of objects that we 
wish to consider. Everything else in the universe we will refer to as its “environment” 
or the “surroundings.” There are several categories of systems. A closed system is 
one for which no mass enters or leaves (but energy may be exchanged with the 
environment). In an open system, mass may enter or leave (as may energy). Many 
(idealized) systems we study in physics are closed systems. But many systems, 
including plants and animals, are open systems since they exchange materials (food, 
oxygen, waste products) with the environment. A closed system is said to be isolated 
if no energy in any form passes across its boundaries; otherwise it is not isolated.

When different parts of an isolated system are at different temperatures, heat 
will flow (energy is transferred) from the part at higher temperature to the part at 
lower temperature—that is, within the system. If the system is truely isolated, 
no energy is transferred into or out of it. So the conservation o f energy again plays 
an important role for us: the heat lost by one part of the system is equal to the heat 
gained by the other part:

heat lost = heat gained
or

energy out of one part = energy into another part.
These simple relations are very useful, but depend on the (often very good) 
approximation that the whole system is isolated (no other energy transfers occur). 
Let us take an Example.

U 5 E Q H E H S  The CUP cools the tea. If 200 cm3 of tea at 95°C is poured 
into a 150-g glass cup initially at 25°C (Fig. 19-3), what will be the common final 
temperature T  of the tea and cup when equilibrium is reached, assuming no heat 
flows to the surroundings?
APPROACH We apply conservation of energy to our system of tea plus cup, which 
we are assuming is isolated: all of the heat that leaves the tea flows into the cup. 
We use the specific heat equation, Eq. 19-2, to determine how the heat flow is 
related to the temperature changes.
SOLUTION Because tea is mainly water, its specific heat is 4186 J/kg • C ° (Table 19-1), 
and its mass m is its density times its volume (V = 200 cm3 = 200 X 10-6 m3): 
m = pV = (1.0 X 103kg/m3)(200 X 10“6m3) = 0.20 kg. We use Eq. 19-2, apply 
conservation of energy, and let T  be the as yet unknown final temperature: 

heat lost by tea = heat gained by cup 
rateaCtea (9 5 °C  -  T) = mcupccup(T -  2 5 ° C ) .

Putting in numbers and using Table 19-1 (ccup = 840 J/kg-C° for glass), we 
solve for T, and find

(0.20 kg)(4186 J/kg • C°)(95°C -  T) =
79,500 J -  (837J/C°)T =

T =

(0.15 kg)(840 J/kg-C °)(r -  25°C)
(126J/C°)T -  3150 J
86°C.

The tea drops in temperature by 9 C° by coming into equilibrium with the cup.



NOTE In this calculation, the AT (of Eq. 19-2, Q = mc AT) is a positive quantity 
on both sides of our conservation of energy equation. On the left is “heat lost” 
and AT is the initial minus the final temperature (95°C -  T), whereas on the 
right is “heat gained” and AT is the final minus the initial temperature. But 
consider the following alternate approach.
Alternate Solution We can set up this Example (and others) by a different approach. 
We can write that the total heat transferred into or out of the isolated system is zero: 

2 0  = 0.
Then each term is written as Q = mc(Tt — 7]), and AT = Tf — 7] is always the 
final minus the initial temperature, and each AT  can be positive or negative. In 
the present Example:

2 0  = m cupccup( r  -  25°C) + mteactea(T -  95°C) = 0.
The second term is negative because T  will be less than 95°C. Solving the algebra 
gives the same result.

The exchange of energy, as exemplified in Example 19-3, is the basis for a 
technique known as calorimetry, which is the quantitative measurement of heat 
exchange. To make such measurements, a calorimeter is used; a simple water 
calorimeter is shown in Fig. 19-4. It is very important that the calorimeter be well 
insulated so that almost no heat is exchanged with the surroundings. One important 
use of the calorimeter is in the determination of specific heats of substances. In the 
technique known as the “method of mixtures,” a sample of a substance is heated to 
a high temperature, which is accurately measured, and then quickly placed in 
the cool water of the calorimeter. The heat lost by the sample will be gained by the 
water and the calorimeter cup. By measuring the final temperature of the mixture, 
the specific heat can be calculated, as illustrated in the following Example.

Unknown specific heat determined by calorimetry.
An engineer wishes to determine the specific heat of a new metal alloy. A 0.150-kg 
sample of the alloy is heated to 540°C. It is then quickly placed in 0.400 kg of water at 
10.0°C, which is contained in a 0.200-kg aluminum calorimeter cup. (We do not need 
to know the mass of the insulating jacket since we assume the air space between it 
and the cup insulates it well, so that its temperature does not change significantly.) 
The final temperature of the system is 30.5°C. Calculate the specific heat of the alloy. 
APPROACH We apply conservation of energy to our system, which we take to be 
the alloy sample, the water, and the calorimeter cup. We assume this system is 
isolated, so the energy lost by the hot alloy equals the energy gained by the water 
and calorimeter cup.
SOLUTION The heat lost equals the heat gained:

heat lost j _ / heat gained \  ( heat gained by 
by alloy J y by water J y calorimeter cup

^a ^-^a ^ c a l ^cal ^-^cal
where the subscripts a, w, and cal refer to the alloy, water, and calorimeter, respectively, 
and each AT > 0. When we put in values and use Table 19-1, this equation becomes 
(0.150 kg) (ca) (540°C -  30.5°C) = (0.400 kg) (4186 J/kg-C°)(30.5°C -  10.0°C)

+ (0.200 kg) (900 J/kg-C°)(30.5°C -  10.0°C) 
(76.4 kg • C°) ca = (34,300 + 3690) J 

ca = 497 J/kg • C°.
In making this calculation, we have ignored any heat transferred to the thermometer 
and the stirrer (which is used to quicken the heat transfer process and thus reduce heat 
loss to the outside). It can be taken into account by adding additional terms to the 
right side of the above equation and will result in a slight correction to the value of ca .

In all Examples and Problems of this sort, be sure to include all objects that 
sain or lose heat (within reason). On the “heat loss” side here, it is onlv the hot

/9\ CAUTION______
When using
heat lost =  heat gained, 
AT is positive on both sides

i P R O B L E M  S O L V I N G
Alternate approach: HQ =  0
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FIGURE 1 9 -4  Simple water 
calorimeter.
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FIGURE 19-5 Temperature as a function of the heat added to bring 1.0 kg 
of ice at — 40°C to steam above 100°C.

19—5 Latent Heat
When a material changes phase from solid to liquid, or from liquid to gas (see also 
Section 18-3), a certain amount of energy is involved in this change of phase. For 
example, let us trace what happens when a 1.0-kg block of ice at -40°C is heated at a 
slow steady rate until all the ice has changed to water, then the (liquid) water is heated 
to 100°C and changed to steam, and heated further above 100°C, all at 1 atm 
pressure. As shown in the graph of Fig. 19-5, as the ice is heated starting at 
-40°C, its temperature rises at a rate of about 2 C°/kcal of heat added (for ice, 
c ~ 0.50 kcal/kg • C°). However, when 0°C is reached, the temperature stops 
increasing even though heat is still being added. The ice gradually changes to water in 
the liquid state, with no change in temperature. After about 40 kcal has been added 
at 0°C, half the ice remains and half has changed to water. After about 80 kcal, or 
330 kJ, has been added, all the ice has changed to water, still at 0°C. Continued 
addition of heat causes the water’s temperature to again increase, now at a rate of
1 C°/kcal. When 100°C is reached, the temperature again remains constant as the 
heat added changes the liquid water to vapor (steam). About 540 kcal (2260 kJ) is 
required to change the 1.0 kg of water completely to steam, after which the graph 
rises again, indicating that the temperature of the steam rises as heat is added.

The heat required to change 1.0 kg of a substance from the solid to the liquid 
state is called the heat of fusion; it is denoted by LF. The heat of fusion of water is
79.7 kcal/kg or, in proper SI units, 333 kJ/kg (= 3.33 X 105 J/kg). The heat 
required to change a substance from the liquid to the vapor phase is called the 
heat of vaporization, Lv . For water it is 539 kcal/kg or 2260 kJ/kg. Other 
substances follow graphs similar to Fig. 19-5, although the melting-point and 
boiling-point temperatures are different, as are the specific heats and heats of 
fusion and vaporization. Values for the heats of fusion and vaporization, which are 
also called the latent heats, are given in Table 19-2 for a number of substances.

The heats of vaporization and fusion also refer to the amount of heat released 
by a substance when it changes from a gas to a liquid, or from a liquid to a solid. 
Thus, steam releases 2260 kJ/kg when it changes to water, and water releases 
333 kJ/kg when it becomes ice.

The heat involved in a change of phase depends not only on the latent heat 
but also on the total mass of the substance. That is,

Q = mL, (19-3)
where L  is the latent heat of the particular process and substance, m is the mass of the



TABLE 1 9 -2  Latent Heats (at l atm)

Melting Point Heat of Fusion Boiling Point Heat of Vaporization
Substance (°C) kcal/kg1 kJ/kg (°C) kcal/kg1 kJ/kg

Oxygen -2 1 8 .8 3.3 14 -1 8 3 51 210
Nitrogen -2 1 0 .0 6.1 26 -1 9 5 .8 48 200
Ethyl alcohol -1 1 4 25 104 78 204 850
Ammonia -7 7 .8 8.0 33 -3 3 .4 33 137
Water 0 79.7 333 100 539 2260
Lead 327 5.9 25 1750 208 870
Silver 961 21 88 2193 558 2300
Iron 1808 69.1 289 3023 1520 6340
Tungsten 3410 44 184 5900 1150 4800

Numerical values in kcal/kg are the same in cal/g.

EXERCISE B A  pot of water is boiling on a gas stove, and then you turn up the heat. What 
happens? (a) The temperature of the water starts increasing. (b ) There is a tiny decrease in 
the rate of water loss by evaporation, (c) The rate of water loss by boiling increases. 
((d) There is an appreciable increase in both the rate of boiling and the temperature of the 
water. (e) N one of these.

Calorimetry sometimes involves a change of state, as the following Examples 
show. Indeed, latent heats are often measured using calorimetry.

EXAMPLE 19-5 Will all the ice melt? A 0.50-kg chunk of ice at — 10°C is 
placed in 3.0 kg of “iced” tea at 20°C. At what temperature and in what phase will 
the final mixture be? The tea can be considered as water. Ignore any heat flow to 
the surroundings, including the container.
APPROACH Before we can write down an equation applying conservation of 
energy, we must first check to see if the final state will be all ice, a mixture of ice 
and water at 0°C, or all water. To bring the 3.0 kg of water at 20°C down to 0°C 
would require an energy release of (Eq. 19-2)

rawcw(20°C -  0°C) = (3.0kg)(4186J/k g • C°)(20C°) = 250kJ.
On the other hand, to raise the ice from — 10°C to 0°C would require

micecice[0oC -  (-10°C)] = (0.50kg)(2100J/kg-C°)(10C°) = 10.5kJ,
and to change the ice to water at 0°C would require (Eq. 19-3)

miceLF = (0.50 kg) (333 kJ/kg) = 167 kJ,
for a total of 10.5 kJ + 167 kJ = 177 kJ. This is not enough energy to bring the
3.0 kg of water at 20°C down to 0°C, so we see that the mixture must end up all 
water, somewhere between 0°C and 20°C.
SOLUTION To determine the final temperature T, we apply conservation of 
energy and write: heat gain = heat loss,

^heat to raise ̂ ^heat to change^ ( heat to raise ( heat lost by \
0.50 kg of ice -L 0.50 kg -L 0.50 kg of water 3.0 kg of
from -10°C l of ice l from 0°C water cooling
 ̂ to 0°C j  ̂ to water J tor j ^from 20°C to TJ

Using some of the results from above, we obtain
10.5 kJ + 167kJ + (0.50kg)(4186 J/k g -C°){T -  0°C)

= (3.0kg)(4186J/kg• C°)(20°C -  T).
Solving for T  we obtain

T = 5.0°C.

j P R O B L E M  S O L V I N G
First determine (or 
estimate) the final state

i P R O B L E M  S O L V I N G
Then determine the final temperature



Calorimetry
1. Be sure you have sufficient information to apply 

energy conservation. Ask yourself: is the system
p* isolated (or very nearly so, enough to get a good 

estimate)? Do we know or can we calculate all 
significant sources of energy transfer?

2. Apply conservation of energy:
heat gained = heat lost.

For each substance in the system, a heat (energy) 
term will appear on either the left or right side of 
this equation. [Alternatively, use 2 0  = 0.]

3. If no phase changes occur, each term in the energy 
conservation equation (above) will have the form

G(gain) = mc(Tf -  7-)
or

G(lost) = mc(Ti -  Tf) 
where Tx and Tf are the initial and final temperatures

of the substance, and m and c are its mass and 
specific heat, respectively.

4. If phase changes do or might occur, there may be 
terms in the energy conservation equation of the 
form Q = mL, where L  is the latent heat. But 
before applying energy conservation, determine (or 
estimate) in which phase the final state will be, as we 
did in Example 19-5 by calculating the different 
contributing values for heat Q.

5. Be sure each term appears on the correct side of the 
energy equation (heat gained or heat lost) and that 
each A T  is positive.

6. Note that when the system reaches thermal 
equilibrium, the final temperature of each substance 
will have the same value. There is only one 7f.

7. Solve your energy equation for the unknown.

Determining a latent heat. The specific heat of liquid 
mercury is 140 J/kg-C°. When 1.0 kg of solid mercury at its melting point of 
-39°C is placed in a 0.50-kg aluminum calorimeter filled with 1.2 kg of water at 
20.0°C, the mercury melts and the final temperature of the combination is found 
to be 16.5°C. What is the heat of fusion of mercury in J/kg?
APPROACH We follow the Problem Solving Strategy above.
SOLUTION
1. Is the system isolated? The mercury is placed in a calorimeter, which we 

assume is well insulated. Our isolated system is the calorimeter, the water, 
and the mercury.

2. Conservation of energy. The heat gained by the mercury = the heat lost by 
the water and calorimeter.

3. and 4. Phase changes. There is a phase change (of mercury), plus we use specific 
heat equations. The heat gained by the mercury (Hg) includes a term representing 
the melting of the Hg,

Q(melt solid Hg) = mHgLHg,
plus a term representing the heating of the liquid Hg from -39°C to +16.5°C:

Q(heat liquid Hg) = mHgcHg[16.5°C -  (-39°C)]
= (1.0 kg) (140 J/kg-C°) (55.5 C°) = 7770 J.

All of this heat gained by the mercury is obtained from the water and 
calorimeter, which cool down:
Qcai + Qw = ^caiccai(20.0°C -  16.5°C) + rawcw(20.0°C -  16.5°C)

= (0.50 kg) (900 J/kg-C°) (3.5 C°) + (1.2 kg) (4186 J/kg- C°) (3.5 C°) 
= 19,200 J.

5. Energy equation. The conservation of energy tells us the heat lost by the water 
and calorimeter cup must equal the heat gained by the mercury:

<2cai + Qw = <2(melt solid Hg) + Q(heat liquid Hg)
or

EXAMPLE 19-6

19,200 J = mHgLHg + 7770 J.



7. Solve. The only unknown in our energy equation (point 5) is LHg, the 
latent heat of fusion (or melting) of mercury. We solve for it, putting in 
raH g = 1.0 kg:

^  = 1 9 ,2 0 0 ^ 7 7 7 0 1  = 11,400 J/kg « llk J/k g , 

where we rounded off to 2 significant figures.

Evaporation
The latent heat to change a liquid to a gas is needed not only at the boiling point. 
Water can change from the liquid to the gas phase even at room temperature. This 
process is called evaporation (see also Section 18-4). The value of the heat of 
vaporization of water increases slightly with a decrease in temperature: at 20°C, for 
example, it is 2450kJ/kg (585kcal/kg) compared to 2260kJ/kg (= 539kcal/kg) 
at 100°C. When water evaporates, the remaining liquid cools, because the energy 
required (the latent heat of vaporization) comes from the water itself; so its 
internal energy, and therefore its temperature, must drop.*

Evaporation of water from the skin is one of the most important methods the 
body uses to control its temperature. When the temperature of the blood rises 
slightly above normal, the hypothalamus region of the brain detects this tempera­
ture increase and sends a signal to the sweat glands to increase their production. 
The energy (latent heat) required to vaporize this water comes from the body, and 
hence the body cools.

Kinetic Theory of Latent Heats
We can make use of kinetic theory to see why energy is needed to melt or vaporize 
a substance. At the melting point, the latent heat of fusion does not act to increase 
the average kinetic energy (and the temperature) of the molecules in the solid, but 
instead is used to overcome the potential energy associated with the forces between 
the molecules. That is, work must be done against these attractive forces to break 
the molecules loose from their relatively fixed positions in the solid so they can 
freely roll over one another in the liquid phase. Similarly, energy is required for 
molecules held close together in the liquid phase to escape into the gaseous phase. 
This process is a more violent reorganization of the molecules than is melting (the 
average distance between the molecules is greatly increased), and hence the heat of 
vaporization is generally much greater than the heat of fusion for a given substance.

19—6 The First Law of Thermodynamics
Up to now in this Chapter we have discussed internal energy and heat. But work 
too is often involved in thermodynamic processes.

In Chapter 8 we saw that work is done when energy is transferred from one 
object to another by mechanical means. In Section 19-1 we saw that heat is a 
transfer of energy from one object to a second one at a lower temperature. Thus, 
heat is much like work. To distinguish them, heat is defined as a transfer o f energy 
due to a difference in temperature, whereas work is a transfer of energy that is not 
due to a temperature difference.

In Section 19-2, we defined the internal energy of a system as the sum total 
of all the energy of the molecules within the system. We would expect that the 
internal energy of a system would be increased if work was done on the system, 
or if heat were added to it. Similarly the internal energy would be decreased if 
heat flowed out of the system or if work were done by the system on something in 
the surroundings.

tAccording to kinetic theory, evaporation is a cooling process because it is the fastest-moving molecules
tV ia t AO panA f r n m  f l i p  c n r fa p p  LTprir ’A t l iA  a irA ra rrp  on A A rl n f  f l ip  r p m a in in a  m n lp p n lp c  ie  Ip cg  c n  In n  1 8 _A
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FIRST LAW OF 
THERMODYNAMICS

H eat added is +  
Heat lost is -  

Work on system is — 
W ork  by system is +

Thus it is reasonable to extend conservation of energy and propose an impor­
tant law: the change in internal energy of a closed system, AEint, will be equal to 
the energy added to the system by heating minus the work done by the system on 
the surroundings. In equation form we write

A-Eint = Q - W  (19-4)

where Q is the net heat added to the system and W  is the net work done by the 
system.* We must be careful and consistent in following the sign conventions for 
Q and W. Because W  in Eq. 19-4 is the work done by the system, then if work is 
done on the system, W  will be negative and Emt will increase. Similarly, Q is 
positive for heat added to the system, so if heat leaves the system, Q is negative.

Equation 19-4 is known as the first law of thermodynamics. It is one of the 
great laws of physics, and its validity rests on experiments (such as Joule’s) to which 
no exceptions have been seen. Since Q and W  represent energy transferred into or 
out of the system, the internal energy changes accordingly. Thus, the first law of 
thermodynamics is a great and broad statement of the law o f conservation o f energy.

It is worth noting that the conservation of energy law was not formulated until the 
nineteenth century, for it depended on the interpretation of heat as a transfer of energy.

Equation 19-4 applies to a closed system. It also applies to an open system 
(Section 19-4) if we take into account the change in internal energy due to the 
increase or decrease in the amount of matter. For an isolated system (p. 500), no 
work is done and no heat enters or leaves the system, so W = Q = 0, and hence 
A £ in , =  0 .

A given system at any moment is in a particular state and can be said to have 
a certain amount of internal energy, -Eint • But a system does not “have” a certain 
amount of heat or work. Rather, when work is done on a system (such as 
compressing a gas), or when heat is added or removed from a system, the state of 
the system changes. Thus, work and heat are involved in thermodynamic processes 
that can change the system from one state to another; they are not characteristic of 
the state itself. Quantities which describe the state of a system, such as internal 
energy E-mt, pressure P, volume V, temperature T, and mass m or number of 
moles n, are called state variables. Q and W  are not state variables.

Because Eint is a state variable, which depends only on the state of the system 
and not on how the system arrived in that state, we can write

AEint = -Eint, 2 — Eint = Q — W

where Eint, 1 and Eint, 2 represent the internal energy of the system in states 1 and 2, 
and Q and W  are the heat added to the system and work done by the system in 
going from state 1 to state 2.

It is sometimes useful to write the first law of thermodynamics in differential form:

dEmt = dQ -  dW.

Here, dE-mX represents an infinitesimal change in internal energy when an infinitesimal 
amount of heat dQ is added to the system, and the system does an infinitesimal 
amount of work dW}

trrhis convention relates historically to steam engines: the interest was in the heat input and the work 
output, both regarded as positive. In other books you may see the first law of thermodynamics written 
as A£int = Q + W, in which case W refers to the work done on the system.
*The differential form of the first law is often written

dEint = r n  -  aw,
where the bars on the differential sign (d) are used to remind us that W and Q are not functions of the 
state variables (such as P, V, T, n). Internal energy, E-mt, is a function of the state variables, and so dEmi 
represents the differential (called an exact differential) of some function E-m\ • The differentials dW  and



EXAMPLE 19-7 Using the first law. 2500 J of heat is added to a system, and 
1800 J of work is done on the system. What is the change in internal energy of the 
system?
APPROACH We apply the first law of thermodynamics, Eq. 19-4, to our system. 
SOLUTION The heat added to the system is Q = 2500 J. The work W  done by 
the system is -1800 J. Why the minus sign? Because 1800 J done on the system 
(as given) equals -1800 J done by the system, and it is the latter we need for the 
sign conventions we used in Eq. 19-4. Hence

AEint = 2500 J -  (-1800 J) = 2500 J + 1800 J = 4300 J.
You may have intuitively thought that the 2500 J and the 1800 J would need to be 
added together, since both refer to energy added to the system. You would have 
been right.

EXERCISE D What would be the internal energy change in Example 19 -7  if 2500 J of heat 
is added to the system and 1800 J of work is done by the system (i.e., as output)?

*The First Law of Thermodynamics Extended
To write the first law of thermodynamics in its complete form, consider a system that 
has kinetic energy K  (there is motion) as well as potential energy U. Then the first 
law of thermodynamics would have to include these terms and would be written as 

AK  + A U + AEint = Q -  W. (19-5)

EXAMPLE 19-8 Kinetic energy transformed to thermal energy. A 3.0-g bullet 
traveling at a speed of 400 m/s enters a tree and exits the other side with a speed 
of 200 m/s. Where did the bullet’s lost kinetic energy go, and what was the energy 
transferred?
APPROACH Take the bullet and tree as our system. No potential energy is involved. 
No work is done on (or by) the system by outside forces, nor is any heat added because 
no energy was transferred to or from the system due to a temperature difference. 
Thus the kinetic energy gets transformed into internal energy of the bullet and tree. 
SOLUTION From the first law of thermodynamics as given in Eq. 19-5, we are 
given Q = W = A U = 0, so we have 

A K  + A£int = 0 
or, using subscripts i and f for initial and final velocities 

A-Eint = -A X  = -(X f -  Ki) = \m (v\ -  vj)
= |(3.0 X l(T3kg)[(400m/s)2 -  (200m/s)2] = 180J. 

NOTE The internal energy of the bullet and tree both increase, as both experience 
a rise in temperature. If we had chosen the bullet alone as our system, work would 
be done on it and heat transfer would occur.

1 9 -7  The First Law of Thermodynamics 
Applied; Calculating the Work

Let us analyze some simple processes in the light of the first law of thermodynamics. 

Isothermal Processes (AT = 0)
First we consider an idealized process that is carried out at constant temperature. 
Such a process is called an isothermal process (from the Greek meaning “same 
temperature”). If the system is an ideal gas, then PV = nRT (Eq. 17-3), so for a 
fixed amount of gas kept at constant temperature, PV = constant. Thus the 
process follows a curve like AB on the PV  diagram shown in Fig. 19-6, which is a 
curve for PV = constant. Each point on the curve, such as point A, represents 
the state of the system at a given moment—that is, its pressure P and volume V. At 
a lower temperature, another isothermal process would be represented by a curve

FIGURE 19-6 PV diagram for an 
ideal gas undergoing isothermal 
processes at two different 
temperatures.



FIGURE 19-7 A n ideal gas in a 
cylinder fitted with a movable piston.

^ I s o t h e r m a l  

Adiabatic''"* ̂

FIGURE 19-8 P V  diagram for 
adiabatic (AC) and isothermal (A B ) 
processes on an ideal gas.

FIGURE 19-9 (a) Isobaric (“same 
pressure”) process, (b) Isovolumetric 
(“same volume”) process.

A  B

V
(a) Isobaric

0 V
(b) Isovolumetric

FIGURE 19-10 The work done by 
a gas when its volume increases by 
d V  =  A d i  is dW  =  P  dV.

di

Let us assume that the gas is enclosed in a container fitted with a movable 
piston, Fig. 19-7, and that the gas is in contact with a heat reservoir (a body whose 
mass is so large that, ideally, its temperature does not change significantly when heat 
is exchanged with our system). We also assume that the process of compression 
(volume decreases) or expansion (volume increases) is done quasistatically (“almost 
statically”), by which we mean extremely slowly, so that all of the gas moves between 
a series of equilibrium states each of which are at the same constant temperature. If 
an amount of heat Q is added to the system and temperature is to remain 
constant, the gas will expand and do an amount of work W  on the environment 
(it exerts a force on the piston and moves it through a distance). The temperature 
and mass are kept constant so, from Eq. 19-1, the internal energy does not 
change: A£jnt = \nR  AT = 0. Hence, by the first law of thermodynamics, Eq. 19-4, 
AE-mt = Q — W = 0, so W  = Q: the work done by the gas in an isothermal 
process equals the heat added to the gas.

Adiabatic Processes (Q = 0)
An adiabatic process is one in which no heat is allowed to flow into or out of the 
system: Q = 0. This situation can occur if the system is extremely well insulated, or 
the process happens so quickly that heat—which flows slowly—has no time to flow 
in or out. The very rapid expansion of gases in an internal combustion engine is one 
example of a process that is very nearly adiabatic. A slow adiabatic expansion of an 
ideal gas follows a curve like that labeled AC in Fig. 19-8. Since Q = 0, we have 
from Eq. 19-4 that AEint = —W. That is, the internal energy decreases if the gas 
expands; hence the temperature decreases as well (because AEint = \nR  AT).This is 
evident in Fig. 19-8 where the product PV  (= nRT) is less at point C than at point B 
(curve AB is for an isothermal process, for which AEint = 0 and AT = 0). In the 
reverse operation, an adiabatic compression (going from C to A, for example), work 
is done on the gas, and hence the internal energy increases and the temperature rises. 
In a diesel engine, the fuel-air mixture is rapidly compressed adiabatically by a factor 
of 15 or more; the temperature rise is so great that the mixture ignites spontaneously.

Isobaric and Isovolumetric Processes
Isothermal and adiabatic processes are just two possible processes that can occur. 
Two other simple thermodynamic processes are illustrated on the PV  diagrams of 
Fig. 19-9: (a) an isobaric process is one in which the pressure is kept constant, so 
the process is represented by a horizontal straight line on the PV  diagram, 
Fig. 19-9a; (b) an isovolumetric (or isochoric) process is one in which the volume 
does not change (Fig. 19-9b). In these, and in all other processes, the first law of 
thermodynamics holds.

Work Done in Volume Changes
We often want to calculate the work done in a process. Suppose we have a gas 
confined to a cylindrical container fitted with a movable piston (Fig. 19-10). We 
must always be careful to define exactly what our system is. In this case we choose 
our system to be the gas; so the container’s walls and the piston are parts of the 
environment. Now let us calculate the work done by the gas when it expands 
quasistatically, so that P and T  are defined for the system at all instants.f The gas 
expands against the piston, whose area is A. The gas exerts a force F = PA on 
the piston, where P is the pressure in the gas. The work done by the gas to move 
the piston an infinitesimal displacement dl is

dW = F-dl = P A di = P dV  (19-6)

since the infinitesimal increase in volume is dV  = A  dl. If the gas was compressed 
so that di pointed into the gas, the volume would decrease and dV  <  0. The work 
done by the gas in this case would then be negative, which is equivalent to saying 
that positive work was done on the gas, not by it. For a finite change in volume



from VA to VB, the work W  done by the gas will be

W  = jrfW = |  "pdV. (19-7)

Equations 19-6 and 19-7 are valid for the work done in any volume change—by a 
gas, a liquid, or a solid—as long as it is done quasistatically.

In order to integrate Eq. 19-7, we need to know how the pressure varies during 
the process, and this depends on the type of process. Let us first consider a quasistatic 
isothermal expansion of an ideal gas. This process is represented by the curve 
between points A and B on the PV  diagram of Fig. 19-11. The work done by the gas 
in this process, according to Eq. 19-7, is just the area between the PV  curve and the
V axis, and is shown shaded in Fig. 19-11. We can do the integral in Eq. 19-7 for an 
ideal gas by using the ideal gas law, P = nRT/V. The work done at constant T  is

w  = \ V"pdV = nRT I*' —  = nRTln^- [isothermalprocess;] (W_8) 
JvA JvA y  Va LiaealSas J

Let us next consider a different way of taking an ideal gas between the same 
states A and B. This time, let us lower the pressure in the gas from PA to PB, as 
indicated by the line AD in Fig. 19-12. (In this isovolumetric process, heat must 
be allowed to flow out of the gas so its temperature drops.) Then let the gas 
expand from VA to at constant pressure (= PB), which is indicated by the 
line DB in Fig. 19-12. (In this isobaric process, heat is added to the gas to raise its 
temperature.) No work is done in the isovolumetric process AD, since dV = 0:

W = 0. [isovolumetric process]
In the isobaric process DB the pressure remains constant, so

fVB
W = P dV  = PB{VB -  >A.) = P AF. [isobaric process] (19-9a)

JVa
The work done is again represented on the PV  diagram by the area between the 
curve (ADB) and the V  axis, as indicated by the shading in Fig. 19-12. Using the 
ideal gas law, we can also write

w  = P jv n -  VA) = n R lJy l -  J spr0CeSS;] (19-9b)

As can be seen from the shaded areas in Figs. 19-11 and 19-12, or by putting 
in numbers in Eqs. 19-8 and 19-9 (try it for VB = 2VA ), the work done in these 
two processes is different. This is a general result. The work done in taking a 
system from one state to another depends not only on the initial and final states but 
also on the type o f process (or “path”).

This result reemphasizes the fact that work cannot be considered a property of a 
system. The same is true of heat. The heat input required to change the gas from 
state A to state B depends on the process; for the isothermal process of Fig. 19-11, 
the heat input turns out to be greater than for the process ADB of Fig. 19-12. In 
general, the amount o f heat added or removed in taking a system from one state to 
another depends not only on the initial and final states but also on the path or process.

CONCEPTUAL EXAMPLE 19-9~| Work in isothermal and adiabatic processes.
In Fig. 19-8 we saw the PV  diagrams for a gas expanding in two ways, isothermally 
and adiabatically. The initial volume VA was the same in each case, and the final 
volumes were the same (VB = Vc). In which process was more work done by the gas? 
RESPONSE Our system is the gas. More work was done by the gas in the 
isothermal process, which we can see in two simple ways by looking at Fig. 19-8. 
First, the “average” pressure was higher during the isothermal process AB, so 
W = P AV was greater (AV is the same for both processes). Second, we can look 
at the area under each curve: the area under curve AB, which represents the 
work done, was greater (since curve AB is higher) than that under AC.

P

FIGURE 19-11 Work done by an 
ideal gas in an isothermal process 
equals the area under the P V  curve. 
Shaded area equals the work done by 
the gas when it expands from VA to V B.

FIGURE 1 9 -1 2  Process A D B  
consists of an isovolumetric (A D ) 
and an isobaric (D B ) process.
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FIGURE 19-13 Example 19-10.

First law in isobaric and isovolumetric processes. An ideal 
gas is slowly compressed at a constant pressure of 2.0 atm from 10.0 L to 2.0 L. This 
process is represented in Fig. 19-13 as the path B to D. (In this process, some heat 
flows out of the gas and the temperature drops.) Heat is then added to the gas, holding 
the volume constant, and the pressure and temperature are allowed to rise (line DA) 
until the temperature reaches its original value (TA = TB). Calculate (a) the total 
work done by the gas in the process BDA, and (b) the total heat flow into the gas.
APPROACH (a) Work is done only in the compression process BD. In process 
DA, the volume is constant so AV = 0 and no work is done. (b) We use the first 
law of thermodynamics, Eq. 19-4.
SOLUTION (a) During the compression BD, the pressure is 2.0 atm = 
2(1.01 X 105 N/m2) and the work done is (since 1 L = 103 cm3 = 10-3 m3)

W = P AV = (2.02 X 105N/m2)(2.0 X 10-3m3 -  10.0 X 10-3m3) 
= -1.6 X 103 J.

The total work done by the gas is -1.6 X 103 J, where the minus sign means that 
+1.6 X 103 J of work is done on the gas.
(b) Because the temperature at the beginning and at the end of process BDA is 
the same, there is no change in internal energy: AE mt = 0. From the first law of 
thermodynamics we have

0 = A Eint = Q - W
so Q = W = -1.6 X 103 J. Because Q is negative, 1600 J of heat flows out of 
the gas for the whole process, BDA.

EXERCISE F In Example 19-10, if the heat lost from the gas in the process B D  is
8.4 X 103 J, what is the change in internal energy of the gas during process BD?

Work done in an engine. In an engine, 0.25 mol of an 
ideal monatomic gas in the cylinder expands rapidly and adiabatically against the 
piston. In the process, the temperature of the gas drops from 1150 K to 400 K. 
How much work does the gas do?
APPROACH We take the gas as our system (the piston is part of the surroundings). 
The pressure is not constant, and its varying value is not given. Instead, we can 
use the first law of thermodynamics because we can determine A£int given 
Q = 0 (the process is adiabatic).
SOLUTION We determine A£int from Eq. 19-1 for the internal energy of an ideal 
monatomic gas, using subscripts f and i for final and initial states:

AEint =  £int,f -  -Bin,,! =  \n R {T t  -  71)
= I (0.25 mol) (8.314 J/mol-K) (400 K -  1150 K) 
= -2300 J.

Then, from the first law of thermodynamics, Eq. 19-4,
W = Q -  AEint = 0 -  (-2300J) = 2300J.

Table 19-3 gives a brief summary of the processes we have discussed.

Free Expansion
One type of adiabatic process is a so-called free expansion in which a gas is allowed 
to expand in volume adiabatically without doing any work. The apparatus to

TABLE 19-3 Simple Thermodynamic Processes and the First Law
Process What is constant: The first law predicts:

Isothermal T  =  constant AT  =  0 makes A E ^  =  0, so Q = W
T> —  + /O —  A TP. _L W  —  A 77. _1_ P A T /

EXAMPLE 19-11

EXAMPLE 19-10



accomplish a free expansion is shown in Fig. 19-14. It consists of two well-insulated 
compartments (to ensure no heat flow in or out) connected by a valve or stopcock.
One compartment is filled with gas, the other is empty. When the valve is opened, 
the gas expands to fill both containers. No heat flows in or out (Q = 0), and no 
work is done because the gas does not move any other object. Thus Q = W = 0 
and by the first law of thermodynamics, A Eint = 0. The internal energy o f a gas does 
not change in a free expansion. For an ideal gas, AT =  0 also, since Eint depends FIGURE 19-14 Free expansion, 
only on T  (Section 19-2). Experimentally, the free expansion has been used to 
determine if the internal energy of real gases depends only on T. The experiments 
are very difficult to do accurately, but it has been found that the temperature of a 
real gas drops very slightly in a free expansion. Thus the internal energy of real gases 
does depend, a little, on pressure or volume as well as on temperature.

A free expansion can not be plotted on a PV  diagram, because the process is 
rapid, not quasistatic. The intermediate states are not equilibrium states, and hence 
the pressure (and even the volume at some instants) is not clearly defined.

19—8 Molar Specific Heats for Gases, 
and the Equipartition of Energy

In Section 19-3 we discussed the concept of specific heat and applied it to solids 
and liquids. Much more than for solids and liquids, the values of the specific heat 
for gases depends on how the process is carried out. Two important processes are 
those in which either the volume or the pressure is kept constant. Although for 
solids and liquids it matters little, Table 19-4 shows that the specific heats of gases 
at constant volume (cy) and at constant pressure (cP) are quite different.

Molar Specific Heats for Gases
The difference in specific heats for gases is nicely explained in terms of the first 
law of thermodynamics and kinetic theory. Our discussion is simplified if we use molar 
specific heats, Cv and CP, which are defined as the heat required to raise 1 mol of the 
gas by 1 C° at constant volume and at constant pressure, respectively. That is, in analogy 
to Eq. 19-2, the heat Q needed to raise the temperature of n moles of gas by AT is

Q = nCyAT [volume constant] (19-10a)
Q = nCpAT. [pressure constant] (19-10b)

It is clear from the definition of molar specific heat (or by comparing Eqs. 19-2 and 
19-10) that

Cy = A/ Cy

Cp = Mcp,
where M  is the molecular mass of the gas (M = m /n  in grams/mol). The values for 
molar specific heats are included in Table 19-4, and we see that the values are nearly 
the same for different gases that have the same number of atoms per molecule.

TABLE 19-4 Specific Heats of Gases at 15°C
Specific heats Molar specific heats
(kcal/kg • K) (cal/mol • K) C„ -  C „ CP

Gas C y  Cp C y Cp (cal/mol • K) C y

M onatomic
H e 0.75 1.15 2.98 4.97 1.99 1.67
N e

Diatomic
0.148 0.246 2.98 4.97 1.99 1.67

n 2 0.177 0.248 4.96 6.95 1.99 1.40

o 2 0.155 0.218 5.03 7.03 2.00 1.40



FIGURE 1 9 -1 5  A  diatomic 
m olecule can rotate about two 
different axes.

Axis

Now we use kinetic theory and imagine that an ideal gas is slowly heated via 
two different processes—first at constant volume, and then at constant pressure. In 
both of these processes, we let the temperature increase by the same amount, AT. 
In the process done at constant volume, no work is done since AV = 0. Thus, 
according to the first law of thermodynamics, the heat added (which we denote by 
Qv) all goes into increasing the internal energy of the gas:

Qv = A E-mi.
In the process carried out at constant pressure, work is done, and hence the heat 
added, QP, must not only increase the internal energy but also is used to do the 
work W  = PAV. Thus, more heat must be added in this process at constant 
pressure than in the first process at constant volume. For the process at constant 
pressure, we have from the first law of thermodynamics 

Qp = A Eint + P AV.
Since AE^ is the same in the two processes (AT  was chosen to be the same), we 
can combine the two above equations:

QP - Q V = P AV.
From the ideal gas law, V = nRT/P, so for a process at constant pressure we have 
AV = nR AT/P. Putting this into the above equation and using Eqs. 19-10, we find

nCPAT -  nCv AT = p ( ^ y ^ J

or, after cancellations,
CP -  Cv = R. (19-11)

Since the gas constant R = 8.314 J/mol-K = 1.99 cal/mol-K, our prediction is 
that CP will be larger than Cv by about 1.99 cal/mol • K. Indeed, this is very close to 
what is obtained experimentally, as shown in the next to last column of Table 19-4.

Now we calculate the molar specific heat of a monatomic gas using kinetic 
theory. In a process carried out at constant volume, no work is done; so the first 
law of thermodynamics tells us that if heat Q is added to the gas, the internal 
energy of the gas changes by 

A £ i n t  =  f i .

For an ideal monatomic gas, the internal energy -Eint is the total kinetic energy of 
all the molecules,

-Eint = N (jm v2) = I nRT 
as we saw in Section 19-2. Then, using Eq. 19-10a, we can write AE'int = Q in the form 

A£int = \n R A T  = nCv AT (19-12)
or

Cv = \R . (19-13)
Since R = 8.314J/mol-K = 1.99cal/mol-K, kinetic theory predicts that Cv = 
2.98cal/mol-K for an ideal monatomic gas. This is very close to the experimental 
values for monatomic gases such as helium and neon (Table 19-4). From Eq. 19-11, 
CP is predicted to be about 4.97 cal/mol-K, also in agreement with experiment.

Equipartition of Energy
The measured molar specific heats for more complex gases (Table 19-4), such as 
diatomic (two atoms) and triatomic (three atoms) gases, increase with the increased 
number of atoms per molecule. We can explain this by assuming that the internal 
energy includes not only translational kinetic energy but other forms of energy as 
well. Take, for example, a diatomic gas. As shown in Fig. 19-15 the two atoms can 
rotate about two different axes (but rotation about a third axis passing through the 
two atoms would give rise to very little energy since the moment of inertia is so 
small). The molecules can have rotational as well as translational kinetic energy. It is 
useful to introduce the idea of degrees of freedom, by which we mean the number of 
independent ways molecules can possess energy. For example, a monatomic gas is said 
to have three degrees of freedom, since an atom can have velocity alone the x axis, the



energy plus two more degrees of freedom associated with rotational kinetic energy, 
for a total of five degrees of freedom. A quick look at Table 19-4 indicates that the 
Cy for diatomic gases is about f  times as great as for a monatomic gas—that is, in the 
same ratio as their degrees of freedom. This result led nineteenth-century physicists 
to an important idea, the principle of equipartition of energy. This principle states 
that energy is shared equally among the active degrees of freedom, and in particular 
each active degree of freedom of a molecule has on the average an energy equal to 
\k T . Thus, the average energy for a molecule of a monatomic gas would be \ k T  
(which we already knew) and of a diatomic gas f  kT. Hence the internal energy of a 
diatomic gas would be EMt = N (^kT) = f  nRT, where n is the number of moles. 
Using the same argument we did for monatomic gases, we see that for diatomic 
gases the molar specific heat at constant volume would be ^R  = 4.97 cal/mol-K, 
in accordance with measured values. More complex molecules have even more 
degrees of freedom and thus greater molar specific heats.

The situation was complicated, however, by measurements that showed that for 
diatomic gases at very low temperatures, Cv has a value of only § R, as if it had only 
three degrees of freedom. And at very high temperatures, Cv was about \  R, as if there 
were seven degrees of freedom. The explanation is that at low temperatures, nearly all 
molecules have only translational kinetic energy. That is, no energy goes into rotational 
energy, so only three degrees of freedom are “active.” At very high temperatures, on 
the other hand, all five degrees of freedom are active plus two additional ones. We can 
interpret the two new degrees of freedom as being associated with the two atoms 
vibrating as if they were connected by a spring, as shown in Fig. 19-16. One degree of 
freedom comes from the kinetic energy of the vibrational motion, and the second 
comes from the potential energy of vibrational motion Q kx 2). At room temperature, 
these two degrees of freedom are apparently not active. See Fig. 19-17.

Q m Q

FIGURE 19-16 A  diatom ic 
m olecule can vibrate, as if the two 
atoms w ere connected by a spring. 
O f course they are not connected by 
a spring; rather they exert forces on  
each other that are electrical in 
nature, but o f a form that resem bles 
a spring force.
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FIGURE 19-17 M olar specific heat C v  as a 
function o f temperature for hydrogen m olecules 
(H 2). A s the temperature is increased, som e o f the 
translational kinetic energy can be transferred in 
collisions into rotational kinetic energy and, at 
still higher temperature, into vibrational kinetic 
energy. [Note: H 2 dissociates into two atoms at 
about 3200 K, so the last part o f the curve is 
shown dashed .1

Just why fewer degrees of freedom are “active” at lower temperatures was 
eventually explained by Einstein using the quantum theory. [According to quantum 
theory, energy does not take on continuous values but is quantized—it can have 
only certain values, and there is a certain minimum energy. The minimum rotational 
and vibrational energies are higher than for simple translational kinetic energy, so 
at lower temperatures and lower translational kinetic energy, there is not enough 
energy to excite the rotational or vibrational kinetic energy.] Calculations based on 
kinetic theory and the principle of equipartition of energy (as modified by the 
quantum theory) give numerical results in accord with experiment.

* Solids
The principle of equipartition of energy can be applied to solids as well. The molar 
specific heat of any solid, at high temperature, is close to 3R  (6.0cal/mol-K), 
Fig. 19-18. This is called the Dulong and Petit value after the scientists who first 
measured it in 1819. (Note that Table 19-1 gives the specific heats per kilogram, 
not per mole.) At high temperatures, each atom apparently has six degrees of 
freedom, although some are not active at low temperatures. Each atom in a 
crystalline solid can vibrate about its eauilibrium position as if it were connected

FIGURE 19-18 M olar specific 
heats o f solids as a function o f  
temperature.
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19—9 Adiabatic Expansion of a Gas
The PV  curve for the quasistatic (slow) adiabatic expansion (Q = 0) of an ideal gas 
was shown in Fig. 19-8 (curve AC). It is somewhat steeper than for an isothermal 
process (AT =0) ,  which indicates that for the same change in volume the change in 
pressure will be greater. Hence the temperature of the gas must drop during an adia­
batic expansion. Conversely, the temperature rises during an adiabatic compression.

We can derive the relation between the pressure P and the volume V  of an 
ideal gas that is allowed to slowly expand adiabatically. We begin with the first law 
of thermodynamics, written in differential form:

dEmX = dQ -  dW = -d W  = -P d V , 
since dQ = 0 for an adiabatic process. Equation 19-12 gives us a relation 
between A E^ and Cv , which is valid for any ideal gas process since -̂ int is a function 
only of T  for an ideal gas. We write this in differential form: 

dEmi = nCv dT.
When we combine these last two equations, we obtain 

nCv dT + P dV  = 0.
We next take the differential of the ideal gas law, PV = nRT, allowing P, V, and T 
to vary:

P dV  + VdP = nRdT.
We solve for dT  in this relation and substitute it into the previous relation and get

„  , P dV  + VdP  . 
nCv \ -------- —-------I + P dV  = 0

or, multiplying through by R and rearranging,
(CV + R)PdV + Cv V dP = 0.

We note from Eq. 19-11 that Cv + R = CP, so we have 
CpPdV  + Cv VdP = 0,

or

We define

CP
-z^P dV  + VdP = 0.
Cy

Cp
y = (w-14)Uy

so that our last equation becomes 
dP dV  
p + 7 V ~ '

This is integrated to become
\nP + 7 \n V  = constant.

This simplifies (using the rules for addition and multiplication of logarithms) to

PVy = constant. [q uasistaticadiabatic]  / i  q _ i c  \ 
process; ideal gas J  ̂ '

This is the relation between P and V  for a quasistatic adiabatic expansion or 
contraction. We will find it very useful when we discuss heat engines in the next 
Chapter. Table 19-4 (p. 511) gives values of 7 for some real gases. Figure 19-8 
compares an adiabatic expansion (Eq. 19-15) in curve AC to an isothermal expansion 
(PV = constant) in curve AB. It is important to remember that the ideal gas law, 
PV = nRT, continues to hold even for an adiabatic expansion (PVy = constant); 
clearly PV is not constant, meaning T  is not constant.

Compressing an ideal gas. An ideal monatomic gas is 
compressed starting at point A in the PV  diagram of Fig. 19-19, where 
PA = 100 kPa, VA = 1.00 m3, and TA = 300 K. The gas is first compressed adia- 
baticallv to state B (Pa = 200kPa>). The gas is then further compressed from



APPROACH Volume VB is obtained using Eq. 19-15. The work done by a gas is given 
by Eq. 19-7, W  = J PdV. The work on the gas is the negative of this: Won = -  J PdV. 
SOLUTION In the adiabatic process, Eq. 19-15 tells us PVy = constant. Therefore, 
PV '1 = PAV yA = PBV l  where for a monatomic gas 7 = CP/CV = (5/2)/(3/2) = f.
(a) Eq. 19-15 gives VB = VA(PJPBfr = (l.00m3)(l00kPa/200kPa)! = 0.66 m3.
(b) The pressure P at any instant during the adiabatic process is given by 
P = Pa V aV~7. The work done on the gas in going from VA to VB is

WAB == - [  P d v  = - p Av \ f B
JA  JVA

V y dV = -P AV l
1

■7 + 1 ( n - y

Since 7 = §.

=

then - 7  + 1 = 1 — 7 = —| ,  so

PAv j | iiva 1|  = + 2 P* V* ~~ I — 1

= + -(1 0 0  kPa) (1.00 m3) | (0.66)[(0.66)"*- l ] = +48 kJ.

For the isothermal process from B to C, the work is done at constant temperature, 
so the pressure at any instant during the process is P = nRTB/V  and

c dV Vc Vc
—  = -nRT„\ n-r- = - P « K ln - #  = +37 kJ.IPdV  = -nRTr f  JVB

The total work done on the gas is 48 kJ + 37 kJ = 85 kJ.

19—10 Heat Transfer: Conduction, 
Convection, Radiation

Heat is transferred from one place or body to another in three different ways: by 
conduction, convection, and radiation. We now discuss each of these in turn; but in 
practical situations, any two or all three may be operating at the same time. We 
start with conduction.

Conduction
When a metal poker is put in a hot fire, or a silver spoon is placed in a hot bowl of 
soup, the exposed end of the poker or spoon soon becomes hot as well, even 
though it is not directly in contact with the source of heat. We say that heat has 
been conducted from the hot end to the cold end.

Heat conduction in many materials can be visualized as being carried out via 
molecular collisions. As one end of an object is heated, the molecules there move 
faster and faster. As they collide with slower-moving neighbors, they transfer some 
of their kinetic energy to these other molecules, which in turn transfer energy by 
collision with molecules still farther along the object. In metals, collisions of free 
electrons are mainly responsible for conduction.

Heat conduction from one point to another takes place only if there is a 
difference in temperature between the two points. Indeed, it is found experimentally 
that the rate of heat flow through a substance is proportional to the difference in 
temperature between its ends. The rate of heat flow also depends on the size and 
shape of the object. To investigate this quantitatively, let us consider the heat flow 
through a uniform cylinder, as illustrated in Fig. 19-20. It is found experimentally 
that the heat flow A Q over a time interval At is given by the relation

AQ 
At

= kA (19-16a)

where A  is the cross-sectional area of the object, i  is the distance between the two 
ends, which are at temperatures Tx and T2, and A: is a proportionality constant
p q I I p H  f l i p  f h u r m Q l  p n n r l i i p f l v i t i ;  Yx/Viir*Vi i c  p V i Q r Q p f p r i c t i p  r \ f  f l i p  m a t e r i a l  T 7 r r \m

Isothermal
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FIGURE 19-19 Example 19-12
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FIGURE 19-20 Heat conduction 
between areas at temperatures Ti 
and T2 . If Ti is greater than T2, the 
heat flows to the right; the rate is 
given by Eq. 19-16a.



TABLE 19-5 
Thermal Conductivities

Substance

Thermal conductivity, k 
kcal J

Silver 
Copper 
Aluminum  
Steel 
Ice 
Glass 
Brick 
Concrete 
Water 
Human tissue 0.5 
Wood 0.3
Fiberglass 0.12 
Cork 0.1
Wool 0.1
G oose down 0.06 
Polyurethane 0.06 
Air 0.055

( sm-C°)  ( sm-C°)

420 
380 
200 

40 
2
0.84 
0.84 
0.84 
0.56 
0.2 
0.1 
0.048 
0.042 
0.040 
0.025 
0.024 
0.023

X 10“2 
X 10“2 
X 10“2 
X 10“2 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4 
X 10“4

FIGURE 19-21 Example 19-13.

(^ P H Y S I C S  A P P L I E D
Thermal w indow s

In some cases (such as when k  or A  cannot be considered constant) we need 
to consider the limit of an infinitesimally thin slab of thickness dx. Then 
Eq. 19-16a becomes

¥■  -dt dx (19-16b)

where dT/dx is the temperature gradient and the negative sign is included since 
the heat flow is in the direction opposite to the temperature gradient.

The thermal conductivities, k, for a variety of substances are given in Table 19-5. 
Substances for which k  is large conduct heat rapidly and are said to be good 
thermal conductors. Most metals fall in this category, although there is a wide 
range even among them, as you may observe by holding the ends of a silver spoon 
and a stainless-steel spoon immersed in the same hot cup of soup. Substances for 
which k  is small, such as wool, fiberglass, polyurethane, and goose down, are poor 
conductors of heat and are therefore good thermal insulators.

The relative magnitudes of k  can explain simple phenomena such as why a tile 
floor is much colder on the feet than a rug-covered floor at the same temperature. 
Tile is a better conductor of heat than the rug. Heat that flows from your foot to the 
rug is not conducted away rapidly, so the rug’s surface quickly warms up to the temper­
ature of your foot and feels good. But the tile conducts the heat away rapidly and thus 
can take more heat from your foot quickly, so your foot’s surface temperature drops.

EXAMPLE 19-13 Heat loss through windows. A major source of heat loss 
from a house is through the windows. Calculate the rate of heat flow through a 
glass window 2.0 m X 1.5 m in area and 3.2 mm thick, if the temperatures at the 
inner and outer surfaces are 15.0°C and 14.0°C, respectively (Fig. 19-21).
APPROACH Heat flows by conduction through the glass from the higher inside 
temperature to the lower outside temperature. We use the heat conduction 
equation, Eq. 19-16a.
SOLUTION Here A  = (2.0m)(1.5m) = 3.0m2 and I = 3.2 X 10_3m. Using 
Table 19-5 to get k, we have

AQ 
At

= kA
71 -  T2 (0.84 J/s • m • C°)(3.0 m2)(15.0°C -  14.0°C)

(3.2 X 10-3 m
= 790 J/s.

NOTE This rate of heat flow is equivalent to (790 J/s)/(4.19 X 103J/kcal) = 
0.19kcal/s, or (0.19kcal/s) X (3600 s/h) = 680kcal/h.

You might notice in Example 19-13 that 15°C is not very warm for the living 
room of a house. The room itself may indeed be much warmer, and the outside might 
be colder than 14°C. But the temperatures of 15°C and 14°C were specified as those 
at the window surfaces, and there is usually a considerable drop in temperature of 
the air in the vicinity of the window both on the inside and the outside. That is, the 
layer of air on either side of the window acts as an insulator, and normally the major 
part of the temperature drop between the inside and outside of the house takes place 
across the air layer. If there is a heavy wind, the air outside a window will constantly 
be replaced with cold air; the temperature gradient across the glass will be greater 
and there will be a much greater rate of heat loss. Increasing the width of the air 
layer, such as using two panes of glass separated by an air gap, will reduce the heat 
loss more than simply increasing the glass thickness, since the thermal conductivity of 
air is much less than that for glass.

The insulating properties of clothing come from the insulating properties of air. 
Without clothes, our bodies in still air would heat the air in contact with the skin and 
would soon become reasonably comfortable because air is a very good insulator.

Equations 19-16 are quite similar to the relations describing diffusion (Section 18-7) and the flow of



But since air moves—there are breezes and drafts, and people move about—the 
warm air would be replaced by cold air, thus increasing the temperature difference 
and the heat loss from the body. Clothes keep us warm by trapping air so it cannot 
move readily. It is not the cloth that insulates us, but the air that the cloth traps. 
Goose down is a very good insulator because even a small amount of it fluffs up 
and traps a great amount of air.

[For practical purposes the thermal properties of building materials, particularly 
when considered as insulation, are usually specified by i?-values (or “thermal 
resistance”), defined for a given thickness £ of material as:

R = i/k .
The i?-value of a given piece of material combines the thickness £ and the thermal 
conductivity k  in one number. In the United States, R -values are given in British 
units as ft2 • h • F°/Btu (for example, R-19 means R = 19 ft2 • h • F°/Btu ). Table 19-6 
gives i?-values for some common building materials. ^-values increase directly with 
material thickness: for example, 2 inches of fiberglass is R-6, whereas 4 inches is R-12.]

Convection
Although liquids and gases are generally not very good conductors of heat, they can 
transfer heat quite rapidly by convection. Convection is the process whereby heat flows 
by the mass movement of molecules from one place to another. Whereas conduction 
involves molecules (and/or electrons) moving only over small distances and colliding, 
convection involves the movement of large numbers of molecules over large distances.

A forced-air furnace, in which air is heated and then blown by a fan into a 
room, is an example of forced convection. Natural convection occurs as well, and 
one familiar example is that hot air rises. For instance, the air above a radiator 
(or other type of heater) expands as it is heated (Chapter 17), and hence its density 
decreases. Because its density is less than that of the surrounding cooler air, it rises, 
just as a log submerged in water floats upward because its density is less than that 
of water. Warm or cold ocean currents, such as the balmy Gulf Stream, represent 
natural convection on a global scale. Wind is another example of convection, and 
weather in general is strongly influenced by convective air currents.

When a pot of water is heated (Fig. 19-22), convection currents are set up as 
the heated water at the bottom of the pot rises because of its reduced density. That 
heated water is replaced by cooler water from above. This principle is used in 
many heating systems, such as the hot-water radiator system shown in Fig. 19-23. 
Water is heated in the furnace, and as its temperature increases, it expands and 
rises as shown. This causes the water to circulate in the heating system. Hot water 
then enters the radiators, heat is transferred by conduction to the air, and the 
cooled water returns to the furnace. Thus, the water circulates because of convection; 
pumps are sometimes used to improve circulation. The air throughout the room 
also becomes heated as a result of convection. The air heated by the radiators rises 
and is replaced by cooler air, resulting in convective air currents, as shown by the 
green arrows in Fig. 19-23.

Other types of furnaces also depend on convection. Hot-air furnaces with 
registers (openings) near the floor often do not have fans but depend on natural 
convection, which can be appreciable. In other systems, a fan is used. In either case, 
it is important that cold air can return to the furnace so that convective currents 
circulate throughout the room if the room is to be uniformly heated. Convection is 
not always favorable. Much of the heat from a fireplace, for example, goes up the 
chimney and not out into the room.

Radiation
Convection and conduction require the presence of matter as a medium to carry 
the heat from the hotter to the colder region. But a third type of heat transfer 
occurs without any medium at all. All life on Earth depends on the transfer of 
enerev from the Sun. and this enerev is transferred to the Earth over emotv for

[g  P H Y S I C S  A P P L I E D
Clothes insulate by trapping 
an air layer

0 P H Y S I C S  A P P L I E D
R-values o f  thermal insulation

TABLE 19-6 / -̂values
Material Thickness R -yalue 

(ft2 • h • F°/Btu)

Glass |in ch 1
Brick 3 \  inches 0.6-1
Plywood \  inch 0.6
Fiberglass

insulation 4 inches 12

Cooler
water

FIGURE 19-22 Convection 
currents in a pot of water being 
heated on a stove.

( ^ P H Y S I C S  A P P L I E D
Convective home heating

FIGURE 19-23 Convection plays a 
role in heating a house. The circular 
arrows show the convective air 
currents in the rooms.
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D ark vs. light clothing

^ P H Y S I C S  A P P L I E D
The b o d y ’s radiative heat loss

P R O B L E M  S O L V I N G
Must use the Kelvin temperature

As we shall see in later Chapters, radiation consists essentially of electromagnetic 
waves. Suffice it to say for now that radiation from the Sun consists of visible light 
plus many other wavelengths that the eye is not sensitive to, including infrared (IR) 
radiation.

The rate at which an object radiates energy has been found to be proportional 
to the fourth power of the Kelvin temperature, T. That is, an object at 2000 K, as 
compared to one at 1000 K, radiates energy at a rate 24 = 16 times as much. 
The rate of radiation is also proportional to the area A  of the emitting object, so 
the rate at which energy leaves the object, AQ / At, is 

AQ 
At

= ecrAT4. (19-17)

This is called the Stefan-Boltzmann equation, and a  is a universal constant called 
the Stefan-Boltzmann constant which has the value

o- = 5.67 X 10_8W/m2*K4.
The factor e (Greek letter epsilon), called the emissivity, is a number between 0 and 1 
that is characteristic of the surface of the radiating material. Very black surfaces, 
such as charcoal, have emissivity close to 1, whereas shiny metal surfaces have e 
close to zero and thus emit correspondingly less radiation. The value depends 
somewhat on the temperature of the material.

Not only do shiny surfaces emit less radiation, but they absorb little of the 
radiation that falls upon them (most is reflected). Black and very dark objects are 
good emitters (e ~ 1), and they also absorb nearly all the radiation that falls on 
them—which is why light-colored clothing is usually preferable to dark clothing 
on a hot day. Thus, a good absorber is also a good emitter.

Any object not only emits energy by radiation but also absorbs energy 
radiated by other objects. If an object of emissivity e and area A  is at a 
temperature 7\, it radiates energy at a rate eaA T 4. If the object is surrounded 
by an environment at temperature T2, the rate at which the surroundings 
radiate energy is proportional to T \ , and the rate that energy is absorbed by the 
object is proportional to T\. The net rate of radiant heat flow from the object is 
given by

^  = «rA (T i ~ T i l (19-18)

where A  is the surface area of the object, Tx its temperature and e its emissivity (at 
temperature 7\), and T2 is the temperature of the surroundings. This equation is 
consistent with the experimental fact that equilibrium between the object and 
its surroundings is reached when they come to the same temperature. That is, 
AQ /At must equal zero when Tx = T2, so e must be the same for emission and 
absorption. This confirms the idea that a good emitter is a good absorber. Because 
both the object and its surroundings radiate energy, there is a net transfer of 
energy from one to the other unless everything is at the same temperature.

EXAMPLE 19-14 ESTIMATE"! Cooling by radiation. An athlete is sitting 
unclothed in a locker room whose dark walls are at a temperature of 15°C. 
Estimate his rate of heat loss by radiation, assuming a skin temperature of 34°C 
and e = 0.70. Take the surface area of the body not in contact with the chair to 
be 1.5 m2.
APPROACH We use Eq. 19-18, with Kelvin temperatures.
SOLUTION We have

^  = eaA(T\ -  71)

= (0.70)(5.67 x  10“8W/m2-K4)(l.5m 2)[(307K)4 -  (288 K)4] = 120 W.

NOTE The “output” of this resting person is a bit more than what a 100-W



A resting person naturally produces heat internally at a rate of about 100 W, 
which is less than the heat loss by radiation as calculated in Example 19-14. Hence, 
the person’s temperature would drop, causing considerable discomfort. The body 
responds to excessive heat loss by increasing its metabolic rate, and shivering 
is one method by which the body increases its metabolism. Naturally, clothes help 
a lot. Example 19-14 illustrates that a person may be uncomfortable even if the 
temperature of the air is, say, 25°C, which is quite a warm room. If the walls or 
floor are cold, radiation to them occurs no matter how warm the air is. Indeed, it is 
estimated that radiation accounts for about 50% of the heat loss from a sedentary 
person in a normal room. Rooms are most comfortable when the walls and floor 
are warm and the air is not so warm. Floors and walls can be heated by means of 
hot-water conduits or electric heating elements. Such first-rate heating systems are 
becoming more common today, and it is interesting to note that 2000 years ago the 
Romans, even in houses in the remote province of Great Britain, made use of 
hot-water and steam conduits in the floor to heat their houses.

Heating of an object by radiation from the Sun cannot be calculated using 
Eq. 19-18 since this equation assumes a uniform temperature, T2, of the environment 
surrounding the object, whereas the Sun is essentially a point source. Hence the 
Sun must be treated as a separate source of energy. Heating by the Sun is 
calculated using the fact that about 1350 J of energy strikes the atmosphere of the 
Earth from the Sun per second per square meter of area at right angles to the 
Sun’s rays. This number, 1350 W/m2, is called the solar constant. The atmosphere 
may absorb as much as 70% of this energy before it reaches the ground, depending 
on the cloud cover. On a clear day, about 1000 W/m2 reaches the Earth’s surface. 
An object of emissivity e with area A  facing the Sun absorbs energy from the Sun 
at a rate, in watts, of about

= (1000 W/m2) € A  cos 6, (19-19)

where 0 is the angle between the Sun’s rays and a line perpendicular to the 
area A  (Fig. 19-24). That is, A  cos 0 is the “effective” area, at right angles to 
the Sun’s rays.

The explanation for the seasons and the polar ice caps (see Fig. 19-25) 
depends on this cos 0 factor in Eq. 19-19. The seasons are not a result of how close 
the Earth is to the Sun—in fact, in the Northern Hemisphere, summer occurs 
when the Earth is farthest from the Sun. It is the angle (i.e., cos0) that really 
matters. Furthermore, the reason the Sun heats the Earth more at midday than at 
sunrise or sunset is also related to this cos 0 factor.

An interesting application of thermal radiation to diagnostic medicine is 
thermography. A special instrument, the thermograph, scans the body, measuring 
the intensity of radiation from many points and forming a picture that resembles 
an X-ray (Fig. 19-26). Areas where metabolic activity is high, such as in tumors, 
can often be detected on a thermogram as a result of their higher temperature and 
consequent increased radiation.

FIGURE 19-24 Radiant energy 
striking a body at an angle 6.

FIGURE 19-25 (a) Earth’s seasons 
arise from the 231° angle Earth’s axis 
makes with its orbit around the Sun.
(b) June sunlight makes an angle of 
about 23° with the equator. Thus 6 in 
the southern United States (A) is 
near 0° (direct summer sunlight), 
whereas in the Southern Hemisphere (B), 
6 is 50° or 60°, and less heat can 
be absorbed— hence it is winter. Near 
the poles (C), there is never strong 
direct sunlight; cos 6 varies from 
about \  in summer to 0 in winter; 
so with little heating, ice can form.
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FIGURE 19-26 Thermograms of a 
healthy person’s arms and hands 
(a) before and (b) after smoking a 
cigarette, showing a temperature 
decrease due to impaired blood  
circulation associated with smoking. 
The thermograms have been  
color-coded according to temperature; 
the scale on the right goes from blue 
(cold) to white (hot).
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P H Y S I C S  A P P L I E D EXAMPLE 19-15 ESTIMATE I Star radius. The giant star Betelgeuse emits 
radiant energy at a rate 104 times greater than our Sun, whereas its surface 
temperature is only half (2900 K) that of our Sun. Estimate the radius of Betelgeuse, 
assuming e = 1 for both. The Sun’s radius is rs = 7 X 108 m. 

APPROACH We assume both Betelgeuse and the Sun are spherical, with surface 
area Airr2.
SOLUTION We solve Eq. 19-17 for A:

( A Q / A t )

Then

Airr A  =
t o - r

( A Q / A ( ) b  T\
( A G / A O s  T

=  (104)(24) =  16 X 104.

H ence rB = V 16 x  1q4 rs =  (400)(7 X 108m) «  3 X 10u m.
NOTE If Betelgeuse were our Sun, it would envelop us (Earth is 1.5 X 1011 m 
from the Sun).

EXERCISE G Fanning yourself on a hot day cools you by (a) increasing the radiation rate 
of the skin; (b) increasing conductivity; (c) decreasing the mean free path of air;
(d) increasing the evaporation of perspiration; (e) none of these.

Summary
Internal energy, E{nt, refers to the total energy of all the 
molecules in an object. For an ideal monatomic gas,

Eint = \N k T  = I nRT (19-1)

where N  is the number of molecules or n is the number of 
moles.

Heat refers to the transfer of energy from one object to 
another because of a difference of temperature. Heat is thus 
measured in energy units, such as joules.

Heat and internal energy are also sometimes specified in 
calories or kilocalories (kcal), where

1 kcal = 4.186 kJ

is the amount of heat needed to raise the temperature of 1 kg of 
water by 1 C°.

The specific heat, c, of a substance is defined as the energy 
(or heat) required to change the temperature of unit mass of 
substance by 1 degree; as an equation,

Q = mcAT, (19-2)

where Q is the heat absorbed or given off, AT is the temperature 
increase or decrease, and m is the mass of the substance.

When heat flows between parts of an isolated system, 
conservation of energy tells us that the heat gained by one part 
of the system is equal to the heat lost by the other part of the 
system. This is the basis of calorimetry, which is the quantitative 
measurement of heat exchange.

Exchange of energy occurs, without a change in temperature, 
whenever a substance changes phase. The heat of fusion is the 
heat required to melt 1 kg of a solid into the liquid phase; it is 
also equal to the heat given off when the substance changes 
from liquid to solid. The heat of vaporization is the energy 
required to change 1 kg of a substance from the liquid to the 
vanor nhase: it is also the enerov piven off when the substance

The first law of thermodynamics states that the change in 
internal energy AE[nt of a system is equal to the heat added to 
the system, Q, minus the work, W, done by the system:

A E i n t  =  Q -  w.  (19-4)
This important law is a broad restatement of the conservation of 
energy and is found to hold for all processes.

Two simple thermodynamic processes are isothermal, which 
is a process carried out at constant temperature, and adiabatic, a 
process in which no heat is exchanged. Two more are isobaric 
(a process carried out at constant pressure) and isovolumetric 
(a process at constant volume).

The work done by (or on) a gas to change its volume by dV  
is dW  = P dV, where P is the pressure.

Work and heat are not functions of the state of a system (as 
are P, V, T,n, and £int) but depend on the type of process that 
takes a system from one state to another.

The molar specific heat of an ideal gas at constant volume, 
C y , and at constant pressure, CP, are related by

CP -  Cv = R, (19-11)
where R is the gas constant. For a monatomic ideal gas, Cy = \R .

For ideal gases made up of diatomic or more complex 
molecules, Cy is equal to \R  times the number of degrees of 
freedom of the molecule. Unless the temperature is very high, 
some of the degrees of freedom may not be active and so do not 
contribute. According to the principle of equipartition of 
energy, energy is shared equally among the active degrees of 
freedom in an amount \k T  per molecule on average.

When an ideal gas expands (or contracts) adiabatically 
(Q = 0), the relation PVy = constant holds, where

H eat is transferred from one nlar.e (or ohieet'i to another in



In conduction, energy is transferred by collisions between 
molecules or electrons with higher kinetic energy to slower- 
moving neighbors.

Convection is the transfer of energy by the mass movement 
of molecules over considerable distances.

Radiation, which does not require the presence of matter, is 
energy transfer by electromagnetic waves, such as from the Sun.

All objects radiate energy in an amount that is proportional to the 
fourth power of their Kelvin temperature (T4) and to their surface 
area. The energy radiated (or absorbed) also depends on the 
nature of the surface, which is characterized by the emissivity, e 
(dark surfaces absorb and radiate more than do bright shiny ones).

Radiation from the Sun arrives at the surface of the Earth 
on a clear day at a rate of about 1000 W/m2.

Questions
1. What happens to the work done on a jar of orange juice 

when it is vigorously shaken?
2. When a hot object warms a cooler object, does temperature 

flow between them? Are the temperature changes of the 
two objects equal? Explain.

3. (a) If two objects of different temperature are placed in 
contact, will heat naturally flow from the object with higher 
internal energy to the object with lower internal energy?
(b) Is it possible for heat to flow even if the internal energies 
of the two objects are the same? Explain.

4. In warm regions where tropical plants grow but the 
temperature may drop below freezing a few times in the 
winter, the destruction of sensitive plants due to freezing 
can be reduced by watering them in the evening. Explain.

5. The specific heat of water is quite large. Explain why this 
fact makes water particularly good for heating systems (that 
is, hot-water radiators).

6. Why does water in a canteen stay cooler if the cloth jacket 
surrounding the canteen is kept moist?

7. Explain why burns caused by steam at 100°C on the skin are 
often more severe than burns caused by water at 100°C.

8. Explain why water cools (its temperature drops) when it 
evaporates, using the concepts of latent heat and internal 
energy.

9. Will potatoes cook faster if the water is boiling more 
vigorously?

10. Very high in the Earth’s atmosphere the temperature can be 
700°C. Yet an animal there would freeze to death rather 
than roast. Explain.

11. What happens to the internal energy of water vapor in the 
air that condenses on the outside of a cold glass of water? Is 
work done or heat exchanged? Explain.

12. Use the conservation of energy to explain why the temperature 
of a well-insulated gas increases when it is compressed—say, 
by pushing down on a piston—whereas the temperature 
decreases when the gas expands.

13. In an isothermal process, 3700 J of work is done by an ideal 
gas. Is this enough information to tell how much heat has 
been added to the system? If so, how much?

14. Explorers on failed Arctic expeditions have survived by 
covering themselves with snow. Why would they do that?

15. Why is wet sand at the beach cooler to walk on than dry 
sand?

16. When hot-air furnaces are used to heat a house, why is it 
important that there be a vent for air to return to the 
furnace? What happens if this vent is blocked by a bookcase?

17. Is it possible for the temperature of a system to remain 
constant even though heat flows into or out of it? Tf so. oive

18. Discuss how the first law of thermodynamics can apply to 
metabolism in humans. In particular, note that a person 
does work W, but very little heat Q is added to the body 
(rather, it tends to flow out). Why then doesn’t the internal 
energy drop drastically in time?

19. Explain in words why Cp is greater than Cy.
20. Explain why the temperature of a gas increases when it is 

adiabatically compressed.
21. An ideal monatomic gas is allowed to expand slowly to twice 

its volume (1) isothermally; (2) adiabatically; (3) isobarically. 
Plot each on a PV  diagram. In which process is A£int 
the greatest, and in which is A£jnt the least? In which is W  the 
greatest and the least? In which is Q the greatest and 
the least?

22. Ceiling fans are sometimes reversible, so that they drive the 
air down in one season and pull it up in another season. 
Which way should you set the fan for summer? For winter?

23. Goose down sleeping bags and parkas are often specified as 
so many inches or centimeters of loft, the actual thickness of 
the garment when it is fluffed up. Explain.

24. Microprocessor chips nowadays have a “heat sink” glued on 
top that looks like a series of fins. Why is it shaped like that?

25. Sea breezes are often encountered on sunny days at the shore 
of a large body of water. Explain, assuming the temperature 
of the land rises more rapidly than that of the nearby water.

26. The Earth cools off at night much more quickly when the 
weather is clear than when cloudy. Why?

27. Explain why air-temperature readings are always taken with 
the thermometer in the shade.

28. A premature baby in an incubator can be dangerously 
cooled even when the air temperature in the incubator is 
warm. Explain.

29. The floor of a house on a foundation under which the air 
can flow is often cooler than a floor that rests directly on 
the ground (such as a concrete slab foundation). Explain.

30. Why is the liner of a thermos bottle silvered (Fig. 19-27), 
and why does it have a
vacuum between its two 
walls?

FIGURE 19-27
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31. A 22°C day is warm, while a swimming pool at 22°C feels 
cool. Why?

32. In the Northern Hemisphere the amount of heat required to 
heat a room where the windows face north is much higher 
than that required where the windows face south. Explain. 35.

33. Heat loss occurs through windows by the following processes:
(1) ventilation around edges; (2) through the frame, particu­
larly if it is metal; (3) through the glass panes; and (4) radia- 36. 
tion. (a) For the first three, what is (are) the mechanism(s): 
conduction, convection, or radiation? (b) Heavy curtains 37. 
reduce which of these heat losses? Explain in detail.

34. Early in the day, after the Sun has reached the slope of a 
mountain, there tends to be a gentle upward movement of 
air. Later, after a slope goes into shadow, there is a gentle 
downdraft. Explain.
A piece of wood lying in the Sun absorbs more heat than a 
piece of shiny metal. Yet the metal feels hotter than the 
wood when you pick it up. Explain.
An “emergency blanket” is a thin shiny (metal-coated) plastic 
foil. Explain how it can help to keep an immobile person warm. 
Explain why cities situated by the ocean tend to have less 
extreme temperatures than inland cities at the same latitude.

| Problems
19-1 Heat as Energy Transfer
1. (I) To what temperature will 8700 J of heat raise 3.0 kg of 

water that is initially at 10.0°C?
2. (II) When a diver jumps into the ocean, water leaks into the 

gap region between the diver’s skin and her wetsuit, forming 
a water layer about 0.5 mm thick. Assuming the total 
surface area of the wetsuit covering the diver is about
1.0 m2, and that ocean water enters the suit at 10°C and is 
warmed by the diver to skin temperature of 35 °C, estimate 
how much energy (in units of candy bars = 300kcal) is 
required by this heating process.

3. (II) An average active person consumes about 2500 Cal a 
day. (a) What is this in joules? (b) What is this in kilowatt- 
hours? (c) If your power company charges about 10 0 per 
kilowatt-hour, how much would your energy cost per day if 
you bought it from the power company? Could you feed 
yourself on this much money per day?

4. (II) A British thermal unit (Btu) is a unit of heat in the 
British system of units. One Btu is defined as the heat 
needed to raise 1 lb of water by 1 F°. Show that

1 Btu = 0.252 kcal = 1056 J.

5. (II) How many joules and kilocalories are generated when 
the brakes are used to bring a 1200-kg car to rest from a 
speed of 95 km /h?

6. (II) A small immersion heater is rated at 350 W. Estimate 
how long it will take to heat a cup of soup (assume this is 
250 mL of water) from 15°C to 75°C.

19-3 and 19-4 Specific Heat; Calorimetry
7. (I) An automobile cooling system holds 18 L of water. How 

much heat does it absorb if its temperature rises from 15°C 
to 95°C?

8. (I) What is the specific heat of a metal substance if 135 kJ of 
heat is needed to raise 5.1 kg of the metal from 18.0°C to 
37.2°C?

9. (II) (a) How much energy is required to bring a 1.0-L pot of 
water at 20°C to 100°C? (b) For how long could this amount 
of energy run a 100-W lightbulb?

10. (II) Samples of copper, aluminum, and water experience 
the same temperature rise when they absorb the same 
amount of heat. What is the ratio of their masses?

11. (II) How long does it take a 750-W coffeepot to bring to a 
boil 0.75 L of water initially at 8.0°C? Assume that the part
n f  the. n n t  w h ir .h  is  h e a te d  w ith  the. w a te r  is  m a d e  n f  9 8 0  o n f

12. (II) A hot iron horseshoe (mass = 0.40 kg), just forged 
(Fig. 19-28), is dropped into 1.05 L of water in a 0.30-kg 
iron pot initially at 
20.0°C. If the final 
equilibrium temper­
ature is 25.0°C, 
estimate the initial 
temperature of the 
hot horseshoe.

FIGURE 19-28
Problem 12.

13. (II) A 31.5-g glass thermometer reads 23.6°C before it is 
placed in 135 mL of water. When the water and thermometer 
come to equilibrium, the thermometer reads 39.2°C. What 
was the original temperature of the water? [Hint: Ignore the 
mass of fluid inside the glass thermometer.]

14. (II) Estimate the Calorie content of 65 g of candy from the 
following measurements. A 15-g sample of the candy is placed in 
a small aluminum container of mass 0.325 kg filled with oxygen. 
This container is placed in 2.00 kg of water in an aluminum 
calorimeter cup of mass 0.624 kg at an initial temperature of 
15.0°C. The oxygen-candy mixture in the small container is 
ignited, and the final temperature of the whole system is 53.5°C.

15. (II) When a 290-g piece of iron at 180°C is placed in a 
95-g aluminum calorimeter cup containing 250 g of glycerin 
at 10°C, the final temperature is observed to be 38°C. 
Estimate the specific heat of glycerin.

16. (II) The heat capacity, C, of an object is defined as the amount 
of heat needed to raise its temperature by 1 C°. Thus, to raise 
the temperature by AT  requires heat Q given by

Q = CAT.
(a) Write the heat capacity C in terms of the specific heat, c, 
of the material, (b) What is the heat capacity of 1.0 kg of 
water? (c) Of 35 kg of water?

17. (II) The 1.20-kg head of a hammer has a speed of 7.5 m/s 
just before it strikes a nail (Fig. 19-29) and is brought to 
rest. Estimate the temperature rise of a 14-g 
iron nail generated by 10 such 
hammer blows done in 
quick succession. Assume 
the nail absorbs all the
energy.

FIGURE 19-29



19-5 Latent Heat
18. (I) How much heat is needed to melt 26.50 kg of silver that 

is initially at 25 °C?
19. (I) During exercise, a person may give off 180 kcal of heat in 

25 min by evaporation of water from the skin. How much 
water has been lost?

20. (II) A 35-g ice cube at its melting point is dropped into an 
insulated container of liquid nitrogen. How much nitrogen 
evaporates if it is at its boiling point of 77 K and has a latent 
heat of vaporization of 200 kJ/kg? Assume for simplicity 
that the specific heat of ice is a constant and is equal to its 
value near its melting point.

21. (II) High-altitude mountain climbers do not eat snow, but 
always melt it first with a stove. To see why, calculate the 
energy absorbed from your body if you (a) eat 1.0 kg of 
—10°C snow which your body warms to body temperature 
of 37°C. (ib) You melt 1.0 kg of — 10°C snow using a stove 
and drink the resulting 1.0 kg of water at 2°C, which your 
body has to warm to 37°C.

22. (II) An iron boiler of mass 180 kg contains 730 kg of water 
at 18°C. A heater supplies energy at the rate of 52,000 kJ/h. 
How long does it take for the water (a) to reach the boiling 
point, and (b) to all have changed to steam?

23. (II) In a hot day’s race, a bicyclist consumes 8.0 L of water 
over the span of 3.5 hours. Making the approximation that 
all of the cyclist’s energy goes into evaporating this water as 
sweat, how much energy in kcal did the rider use during the 
ride? (Since the efficiency of the rider is only about 20%, 
most of the energy consumed does go to heat, so our 
approximation is not far off.)

24. (II) The specific heat of mercury is 138 J/kg - C°. Determine 
the latent heat of fusion of mercury using the following 
calorimeter data: 1.00 kg of solid Hg at its melting point of 
—39.0°C is placed in a 0.620-kg aluminum calorimeter with 
0.400 kg of water at 12.80°C; the resulting equilibrium 
temperature is 5.06°C.

25. (II) At a crime scene, the forensic investigator notes that the 
7.2-g lead bullet that was stopped in a doorframe apparently 
melted completely on impact. Assuming the bullet was shot 
at room temperature (20° C), what does the investigator 
calculate as the minimum muzzle velocity of the gun?

26. (II) A 58-kg ice-skater moving at 7.5 m/s glides to a stop. 
Assuming the ice is at 0°C and that 50% of the heat generated 
by friction is absorbed by the ice, how much ice melts?

19-6 and 19-7 First Law of Thermodynamics
27. (I) Sketch a PV  diagram of the following process: 2.0 L of 

ideal gas at atmospheric pressure are cooled at constant 
pressure to a volume of 1.0 L, and then expanded isothermally 
back to 2.0 L, whereupon the pressure is increased at 
constant volume until the original pressure is reached.

28. (I) A gas is enclosed in a cylinder fitted with a light frictionless 
piston and maintained at atmospheric pressure. When 1250 kcal 
of heat is added to the gas, the volume is observed to increase 
slowly from 12.0 m3 to 18.2 m3. Calculate (a) the work done by 
the gas and (b) the change in internal energy of the gas.

29. (II) The pressure in an ideal gas is cut in half slowly, while 
being kept in a container with rigid walls. In the process, 
365 kJ of heat left the gas. (a) How much work was done 
fh ir in p  th is  n ro ce ss?  (hi\ W h a t w as th e  ehanpe in  in te rn a l

30. (II) A 1.0-L volume of air initially at 3.5 atm of (absolute) 
pressure is allowed to expand isothermally until the pressure 
is 1.0 atm. It is then compressed at constant pressure to its 
initial volume, and lastly is brought back to its original 
pressure by heating at constant volume. Draw the process 
on a PV  diagram, including numbers and labels for 
the axes.

31. (II) Consider the following two-step process. Heat is 
allowed to flow out of an ideal gas at constant volume so 
that its pressure drops from 2.2 atm to 1.4 atm. Then the gas 
expands at constant pressure, from a volume of 5.9 L to
9.3 L, where the temperature reaches its original value. 
See Fig. 19-30. Calculate (a) the total work done by the 
gas in the process,
(b) the change in 
internal energy of 
the gas in the 
process, and (c) the 
total heat flow into 
or out of the gas.

FIGURE 19-30
Problem 31.

32. (II) The PV  diagram in Fig. 19-31 shows two possible states 
of a system containing 1.55 moles of a monatomic ideal 
gas. (Px = P2 = 455 N/m2, ^  = 2.00 m3, V2 = 8.00 m3.)
(a) Draw the process which depicts an isobaric expansion 
from state 1 to state 2, and label this process A. (b) Find the 
work done by the gas and the change in internal energy of the 
gas in process A. (c) Draw the two-step process which depicts 
an isothermal expansion from state 1 to the volume V2, 
followed by an isovolumetric increase in temperature to 
state 2, and label this process B. (d) Find the change in
internal energy of 
the gas for the 
two-step process B.

FIGURE 19-31
Problem 32.
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33. (II) Suppose 2.60 mol of an ideal gas of volume 
Vi = 3.50 m3 at T\ = 290 K is allowed to expand 
isothermally to V2 = 7.00 m3 at T2 = 290 K. Determine
(a) the work done by the gas, (b) the heat added to the gas, 
and (c) the change in internal energy of the gas.

34. (II) In an engine, an almost ideal gas is compressed 
adiabatically to half its volume. In doing so, 2850 J of work 
is done on the gas. (a) How much heat flows into or out of 
the gas? (b) What is the change in internal energy of the 
gas? (c) Does its temperature rise or fall?

35. (II) One and one-half moles of an ideal monatomic gas 
expand adiabatically, performing 7500 J of work in the 
process. What is the change in temperature of the gas during 
this expansion?

36. (II) Determine (a) the work done and (b) the change in 
in te rn a l e n e rp v  n f  1 .00  kp  n f  w a te r  w h en  it  is  a ll b o iled  to



37. (II) How much work is done by a pump to slowly compress, 
isothermally, 3.50 L of nitrogen at 0°C and 1.00 atm to 1.80 L 
at 0°C?

38. (II) When a gas is taken from a to c along the curved path in 
Fig. 19-32, the work done by the gas is W = -35  J and 
the heat added to the gas is Q = -63 J. Along path abc, 
the work done is W = — 54 J. (a) What is Q for path 
abc? (b) If PC = \P\) , what is W  for path cda? (c) What 
is Q for path cda? (d) What is Eint>a ~~ Eint, c? (e) If 
Eint, d — Eint, c = 12 J, what is Q for path da?

P

FIGURE 19-32
Problems 38,39, _________________________
and 40. 0 y

39. (Ill) In the process of taking a gas from state a to state c 
along the curved path shown in Fig. 19-32, 85 J of heat 
leaves the system and 55 J of work is done on the system.
(a) Determine the change in internal energy, Ejnt a — Ejnt c.
(b) When the gas is taken along the path cda, the work done 
by the gas is W = 38 J. How much heat Q is added to the 
gas in the process cda? (c) If Pa = 22P&, how much work 
is done by the gas in the process abc? (d) What is Q for 
path abc? (e) If Eintj a -  Eint; b = 15 J, what is Q for the 
process be? Here is a summary of what is given:

Qa-»c = — 85 J
Wa_>c = -55 J
Wcda = 38 J

Eint, a — E^t, b — 15 J
Pa = 2.2 Pd.

40. (Ill) Suppose a gas is taken clockwise around the 
rectangular cycle shown in Fig. 19-32, starting at b, then to
a, to d, to c, and returning to b. Using the values given in 
Problem 39, (a) describe each leg of the process, and then 
calculate (b) the net work done during the cycle, (c) the 
total internal energy change during the cycle, and (d) the 
net heat flow during the cycle. (e) What percentage of the 
intake heat was turned into usable work: i.e., how efficient is 
this “rectangular” cycle (give as a percentage)?

*41. (Ill) Determine the work done by 1.00 mol of a van der 
Waals gas (Section 18-5) when it expands from volume V\ 
to V2 isothermally.

19-8 Molecular Specific Heat for Gases; 
Equipartition of Energy
42. (I) What is the internal energy of 4.50 mol of an ideal 

diatomic gas at 645 K, assuming all degrees of freedom are 
active?

43. (I) If a heater supplies 1.8 X 106J/h  to a room
3.5 m X 4.6 m X 3.0 m containing air at 20°C and 1.0 atm, 
by how much will the temperature rise in one hour, 
assu m in g  n n  lo sses n f  h e a t n r  a ir  m ass tn  th e  n n ts id e ?

44. (I) Show that if the molecules of a gas have n degrees of 
freedom, then theory predicts C y  = \nR  and 
Cp = \  {n + 2 )i?.

45. (II) A certain monatomic gas has specific heat 
cv  = 0.0356 kcal/kg *C°, which changes little over a wide 
temperature range. What is the atomic mass of this gas? 
What gas is it?

46. (II) Show that the work done by n moles of an ideal gas 
when it expands adiabatically is W = nCv (T\ -  T2), where 
T\ and T2 are the initial and final temperatures, and C y  is the 
molar specific heat at constant volume.

47. (II) An audience of 1800 fills a concert hall of volume
22.000 m3. If there were no ventilation, by how much would 
the temperature of the air rise over a period of 2.0 h due to 
the metabolism of the people (70 W/person)?

48. (II) The specific heat at constant volume of a particular gas 
is 0.182 kcal/kg • K at room temperature, and its molecular 
mass is 34. (a) What is its specific heat at constant pressure? 
(b) What do you think is the molecular structure of this gas?

49. (II) A 2.00 mole sample of N2 gas at 0°C is heated to 150°C 
at constant pressure (1.00 atm). Determine (a) the change in 
internal energy, (b) the work the gas does, and (c) the heat 
added to it.

50. (Ill) A 1.00-mol sample of an ideal diatomic gas at a 
pressure of 1.00 atm and temperature of 420 K undergoes a 
process in which its pressure increases linearly with 
temperature. The final temperature and pressure are 720 K 
and 1.60 atm. Determine (a) the change in internal energy,
(b) the work done by the gas, and (c) the heat added to the 
gas. (Assume five active degrees of freedom.)

19-9 Adiabatic Expansion of a Gas
51. (I) A 1.00-mol sample of an ideal diatomic gas, originally at

1.00 atm and 20°C, expands adiabatically to 1.75 times its 
initial volume. What are the final pressure and temperature 
for the gas? (Assume no molecular vibration.)

52. (II) Show, using Eqs. 19-6 and 19-15, that the work 
done by a gas that slowly expands adiabatically from 
pressure Pi and volume Vl5 to P2 and V2, is given by
w = (PtVi -  p2v2)/(y -  l).

53. (II) A 3.65-mol sample of an ideal diatomic gas expands 
adiabatically from a volume of 0.1210 m3 to 0.750 m3. 
Initially the pressure was 1.00 atm. Determine: (a) the initial 
and final temperatures; (b) the change in internal energy;
(c) the heat lost by the gas; (d) the work done on the gas. 
(Assume no molecular vibration.)

54. (II) An ideal monatomic gas, consisting of 2.8 mol of volume 
0.086 m3, expands adiabatically. The initial and final 
temperatures are 25°C and — 68°C. What is the final volume 
of the gas?

55. (Ill) A 1.00-mol sample of an ideal monatomic gas, 
originally at a pressure of 1.00 atm, undergoes a three-step 
process: (1) it is expanded adiabatically from 7i = 588 K to 
T2 = 389 K; (2) it is compressed at constant pressure until 
its temperature reaches T3; (3) it then returns to its original 
pressure and temperature by a constant-volume process,
(a) Plot these processes on a PV  diagram, (b) Determine T3.
(c) Calculate the change in internal energy, the work done 
hv th e  pas. and th e  heat added  tn th e  pas fnr each  nrncess.



56. (Ill) Consider a parcel of air moving to a different altitude y 
in the Earth’s atmosphere (Fig. 19-33). As the parcel 
changes altitude it acquires the pressure P  of the 
surrounding air. From Eq. 13-4 we have

dP
dy =  ~ P g

where p is the parcel’s altitude-dependent mass density.

y = 0 J .

i

/ “Parcel” of N 
air molecules

FIGURE 19-33
Problem 56.

During this motion, the parcel’s volume will change and, 
because air is a poor heat conductor, we assume this expansion 
or contraction will take place adiabatically. (a) Starting with 
Eq. 19-15, P V 7 = constant, show that for an ideal 
gas undergoing an adiabatic process, p l yT y = constant. 
Then show that the parcel’s pressure and temperature are 
related by

,d P  P d T
^ - 7^ + y T ^  = °  
and thus

x/ x P d T
(i -  y)(-pg) + y = °-

(b) Use the ideal gas law with the result from part (a) to 
show that the change in the parcel’s temperature with 
change in altitude is given by

dT
dy

1 - 7  mg 
7 k

where m  is the average mass of an air molecule and k  is 
the Boltzmann constant, (c) Given that air is a diatomic 
gas with an average molecular mass of 29, show that 
dT/dy = — 9.8C°/km. This value is called the adiabatic 
lapse rate for dry air. (d) In California, the prevailing west­
erly winds descend from one of the highest elevations (the 
4000-m Sierra Nevada mountains) to one of the lowest 
elevations (Death Valley, -100 m) in the continental United 
States. If a dry wind has a temperature of — 5°C at the top of 
the Sierra Nevada, what is the wind’s temperature after it 
has descended to Death Valley?

19-10 Conduction, Convection, Radiation
57. (I) (a) How much power is radiated by a tungsten sphere 

(emissivity e = 0.35 ) of radius 16 cm at a temperature of 
25 °C? (b) If the sphere is enclosed in a room whose walls
are k e n t  at — 5°C  w h a t is th e  n e t  f lo w  ra te  o f  en e r o v  n u t n f

58. (I) One end of a 45-cm-long copper rod with a diameter 
of 2.0 cm is kept at 460° C, and the other is immersed in 
water at 22°C. Calculate the heat conduction rate along 
the rod.

59. (II) How long does it take the Sun to melt a block of ice at 
0°C with a flat horizontal area 1.0 m2 and thickness 1.0 cm? 
Assume that the Sun’s rays make an angle of 35° with the 
vertical and that the emissivity of ice is 0.050.

60. (II) Heat conduction to skin. Suppose 150 W of heat flows 
by conduction from the blood capillaries beneath the skin to 
the body’s surface area of 1.5 m2. If the temperature 
difference is 0.50 C°, estimate the average distance of 
capillaries below the skin surface.

61. (II) A ceramic teapot (e = 0.70) and a shiny one (e = 0.10) 
each hold 0.55 L of tea at 95°C. (a) Estimate the rate of heat 
loss from each, and (b) estimate the temperature drop after 
30 min for each. Consider only radiation, and assume the 
surroundings are at 20° C.

62. (II) A copper rod and an aluminum rod of the same length 
and cross-sectional area are attached end to end (Fig. 19-34). 
The copper end is placed in a furnace maintained at a 
constant temperature of 225°C. The aluminum end is placed 
in an ice bath held at constant temperature of 0.0°C. 
Calculate the temperature at the point where the two rods 
are joined.

Cu A1

225°C r = ?  0.0°C

FIGURE 19-34 Problem 62.

63. (II) (a) Using the solar constant, estimate the rate at which 
the whole Earth receives energy from the Sun. (b) Assume 
the Earth radiates an equal amount back into space (that is, 
the Earth is in equilibrium). Then, assuming the Earth is a 
perfect emitter (e = 1.0), estimate its average surface 
temperature. [Hint: Use area A  = 4 t7 t| , and state why.]

64. (II) A 100-W lightbulb generates 95 W of heat, which is 
dissipated through a glass bulb that has a radius of 3.0 cm 
and is 0.50 mm thick. What is the difference in temperature 
between the inner and outer surfaces of the glass?

65. (Ill) A house thermostat is normally set to 22°C, but at 
night it is turned down to 12°C for 9.0 h. Estimate how 
much more heat would be needed (state as a percentage of 
daily usage) if the thermostat were not turned down at 
night. Assume that the outside temperature averages 0°C 
for the 9.0 h at night and 8°C for the remainder of the day, 
and that the heat loss from the house is proportional to the 
difference in temperature inside and out. To obtain an 
estimate from the data, you will have to make other 
simplifying assumptions; state what these are.

66. (Ill) Approximately how long should it take 9.5 kg of ice 
at 0°C to melt when it is placed in a carefully sealed 
Styrofoam ice chest of dimensions 25 cm X 35 cm X 55 cm 
whose walls are 1.5 cm thick? Assume that the conductivity
n f S tvrnfn am  is d n n h le  th a t n f  air and th a t th e  n iits id e



67. (Ill) A cylindrical pipe has inner radius R 1 and outer 
radius R2. The interior of the pipe carries hot water at 
temperature 7 \ . The temperature outside is T2 (< Tj).
(a) Show that the rate of heat loss for a length L  of pipe is

dQ _  2ir k fc  -  T2)L 
dt ~ \n(R2/R i)

where k  is the thermal conductivity of the pipe, (b) Suppose 
the pipe is steel with R\ = 3.3 cm, R2 = 4.0 cm, and 
T2 = 18°C. If the pipe holds still water at Tx = 71 °C, what 
will be the initial rate of change of its temperature?
(c) Suppose water at 71 °C enters the pipe and moves at a 
speed of 8.0 cm/s. What will be its temperature drop per 
centimeter of travel?

Brick Insulation 
itt |> iR2)

68. (Ill) Suppose the insulating qualities of the wall of a 
come mainly from a 4.0-in. 
layer of brick and an R -19 
layer of insulation, as shown 
in Fig. 19-35. What is the total 
rate of heat loss through such 
a wall, if its total area is 195 ft2 
and the temperature difference 
across it is 12 F°?

house

FIGURE 19-35 Problem 68. 
Two layers insulating a wall.

| General Problems__________
69. A soft-drink can contains about 0.20 kg of liquid at 5°C. 

Drinking this liquid can actually consume some of the fat in 
the body, since energy is needed to warm the liquid to body 
temperature (37°C). How many food Calories should the 
drink have so that it is in perfect balance with the heat 
needed to warm the liquid (essentially water)?

70. (a) Find the total power radiated into space by the Sun, 
assuming it to be a perfect emitter at T  = 5500 K. The 
Sun’s radius is 7.0 X 108m. ( b ) From this, determine the 
power per unit area arriving at the Earth, 1.5 X 1011m 
away.

71. To get an idea of how much thermal energy is contained in the 
world’s oceans, estimate the heat liberated when a cube of 
ocean water, 1 km on each side, is cooled by 1 K. (Approximate 
the ocean water as pure water for this estimate.)

72. A mountain climber wears a goose-down jacket 3.5 cm thick 
with total surface area 0.95 m2. The temperature at the surface 
of the clothing is — 18°C and at the skin is 34°C. Determine 
the rate of heat flow by conduction through the jacket
(a) assuming it is dry and the thermal conductivity k  is that 
of goose down, and (b) assuming the jacket is wet, so k  is that 
of water and the jacket has matted to 0.50 cm thickness.

73. During light activity, a 70-kg person may generate 
200kcal/h. Assuming that 20% of this goes into useful work 
and the other 80% is converted to heat, estimate the 
temperature rise of the body after 30 min if none of this heat 
is transferred to the environment.

74. Estimate the rate at which heat can be conducted from the 
interior of the body to the surface. Assume that the 
thickness of tissue is 4.0 cm, that the skin is at 34°C and the 
interior at 37°C, and that the surface area is 1.5 m2. 
Compare this to the measured value of about 230 W that 
must be dissipated by a person working lightly. This clearly 
shows the necessity of convective cooling by the blood.

75. A marathon runner has an average metabolism rate of 
about 950 kcal/h during a race. If the runner has a mass of 
55 k o  e s t im a te  h n w  rrmr.h w a te r  sh e  w o u ld  lo se  to  e va n o ra t io n

76. A house has well-insulated walls 19.5 cm thick (assume 
conductivity of air) and area 410 m2, a roof of wood
5.5 cm thick and area 280 m2, and uncovered windows
0.65 cm thick and total area 33 m2. (a) Assuming that 
heat is lost only by conduction, calculate the rate 
at which heat must be supplied to this house to maintain 
its inside temperature at 23°C if the outside temperature 
is -15°C. (b) If the house is initially at 12°C, estimate 
how much heat must be supplied to raise the temperature 
to 23°C within 30 min. Assume that only the air 
needs to be heated and that its volume is 750 m3. (c) If 
natural gas costs $0,080 per kilogram and its heat of 
combustion is 5.4 X 107J/kg, how much is the monthly 
cost to maintain the house as in part (a) for 24 h 
each day, assuming 90% of the heat produced is used 
to heat the house? Take the specific heat of air to be
0.24 kcal/kg-C°.

77. In a typical game of squash (Fig. 19-36), two people hit a 
soft rubber ball at a wall until they are about to drop due to 
dehydration and exhaustion. Assume that the ball hits the 
wall at a velocity of 22 m /s and bounces back with a 
velocity of 12 m/s, and that the kinetic energy lost in the 
process heats the ball. What will be the temperature 
increase of the ball after one bounce? (The specific heat of 
rubber is about 1200 J/kg-C°.)



78. A bicycle pump is a cylinder 22 cm long and 3.0 cm in 
diameter. The pump contains air at 20.0° C and 1.0 atm. If 
the outlet at the base of the pump is blocked and the handle 
is pushed in very quickly, compressing the air to half its 
original volume, how hot does the air in the pump become?

79. A microwave oven is used to heat 250 g of water. On its 
maximum setting, the oven can raise the temperature of the 
liquid water from 20°C to 100°C in 1 min 45 s (= 105 s). (a) At 
what rate does the oven input energy to the liquid water?
(b) If the power input from the oven to the water remains 
constant, determine how many grams of water will boil away if 
the oven is operated for 2 min (rather than just 1 min 45 s).

80. The temperature within the Earth’s crust increases about
1.0 C° for each 30 m of depth. The thermal conductivity 
of the crust is 0.80W/C°-m. (a) Determine the heat 
transferred from the interior to the surface for the entire 
Earth in 1.0 h. (b) Compare this heat to the amount of 
energy incident on the Earth in 1.0 h due to radiation from 
the Sun.

81. An ice sheet forms on a lake. The air above the sheet 
is at — 18°C, whereas the water is at 0°C. Assume that 
the heat of fusion of the water freezing on the lower 
surface is conducted through the sheet to the air above. 
How much time will it take to form a sheet of ice 15 cm 
thick?

82. An iron meteorite melts when it enters the Earth’s 
atmosphere. If its initial temperature was -105°C outside 
of Earth’s atmosphere, calculate the minimum velocity the 
meteorite must have had before it entered Earth’s 
atmosphere.

83. A scuba diver releases a 3.60-cm-diameter (spherical) 
bubble of air from a depth of 14.0 m. Assume the temperature 
is constant at 298 K, and that the air behaves as an ideal gas.
(a) How large is the bubble when it reaches the surface?
(b) Sketch a PV  diagram for the process, (c) Apply the first 
law of thermodynamics to the bubble, and find the work 
done by the air in rising to the surface, the change in its 
internal energy, and the heat added or removed from the air 
in the bubble as it rises. Take the density of water to be 
1000 kg/m3.

84. A reciprocating compressor is a device that compresses air 
by a back-and-forth straight-line motion, like a piston in a 
cylinder. Consider a reciprocating compressor running at 
150 rpm. During a compression stroke, 1.00 mol of air is 
compressed. The initial temperature of the air is 390 K, 
the engine of the compressor is supplying 7.5 kW of 
power to compress the air, and heat is being removed at the 
rate of 1.5 kW. Calculate the temperature change per 
compression stroke.

85. The temperature of the glass surface of a 75-W lightbulb is 
75°C when the room temperature is 18°C. Estimate the 
temperature of a 150-W lightbulb with a glass bulb the same 
size. Consider only radiation, and assume that 90% of the 
energy is emitted as heat.

86. Suppose 3.0 mol of neon (an ideal monatomic gas) at STP 
are compressed slowly and isothermally to 0.22 the original 
volume. The gas is then allowed to expand quickly and 
adiabatically back to its original volume. Find the highest 
and lowest temperatures and pressures attained by the gas, 
and show on a PV  diagram where these values occur.

87. At very low temperatures, the molar specific heat of many 
substances varies as the cube of the absolute temperature:

which is sometimes called Debye’s law. For rock salt, 
T0 = 281 K and k  = 1940J/mol*K. Determine the heat 
needed to raise 2.75 mol of salt from 22.0 K to 48.0 K.

88. A diesel engine accomplishes ignition without a spark plug 
by an adiabatic compression of air to a temperature above 
the ignition temperature of the diesel fuel, which is injected 
into the cylinder at the peak of the compression. Suppose 
air is taken into the cylinder at 2 8 0  K and volume V\ and is 
compressed adiabatically to 5 6 0 ° C  ( ~  1 0 0 0 ° F )  and volume V2. 
Assuming that the air behaves as an ideal gas whose ratio 
of C p  to C y  is 1 .4 , calculate the compression ratio V\/V2 of 
the engine.

89. When 6.30 X 105 J of heat is added to a gas enclosed in a 
cylinder fitted with a light frictionless piston maintained at 
atmospheric pressure, the volume is observed to increase 
from 2.2 m3 to 4.1 m3. Calculate (a) the work done by the 
gas, and (b) the change in internal energy of the gas.
(c) Graph this process on a PV  diagram.

90. In a cold environment, a person can lose heat by conduction 
and radiation at a rate of about 200 W. Estimate how long it 
would take for the body temperature to drop from 36.6°C to 
35.6°C if metabolism were nearly to stop. Assume a mass of 
70 kg. (See Table 19-1.)

* Numerical/Computer
*91. (II) Suppose 1.0 mol of steam at 100°C of volume

0.50 m3 is expanded isothermally to volume 1.00 m3. 
Assume steam obeys the van der Waals equation 
(P + n2a /V 2)(V /n  -  b) = RT, Eq. 18-9, with a =
0.55 N • m4/mol2 and b = 3.0 X 10_5m3/mol. Using the 
expression dW  = P dV, determine numerically the total 
work done W. Your result should agree within 2% of the 
result obtained by integrating the expression for dW.

Answers to Exercises

A: (b). E: Less.
B: (c). F: -6 .8  X 103J.
C: 0.21 kg. G: (d).
r » . t



There are many uses for a heat 
engine, such as old steam trains and 
modern coal-burning power plants. 
Steam engines produce steam which 
does work: on turbines to generate 
electricity, and on a piston that 
moves linkage to turn locomotive 
wheels. The efficiency of any 
engine— no matter how carefully 
engineered— is limited by nature as 
described in the second law of 
thermodynamics. This great law is 
best stated in terms of a quantity 
called entropy, which is unlike any 
other. Entropy is not conserved, but 
instead is constrained always to 
increase in any real process. Entropy 
is a measure of disorder. The second 
law of thermodynamics tells us that 
as time moves forward, the disorder 
in the universe increases.

We discuss many practical matters 
including heat engines, heat pumps, 
and refrigeration.

T £

Second Law of 
Thermodynamics
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CHAPTER-OPENING QUESTION—Guess now!
Fossil-fuel electric generating plants produce “thermal pollution.” Part of the heat 
produced by the burning fuel is not converted to electric energy. The reason for 
this waste is

(a) The efficiency is higher if some heat is allowed to escape.
(b) Engineering technology has not yet reached the point where 100% waste 

heat recovery is possible.
(c) Some waste heat must be produced: this is a fundamental property of nature 

when converting heat to useful work.
(d) The plants rely on fossil fuels, not nuclear fuel.
(e) None of the above.

I n this final Chapter on heat and thermodynamics, we discuss the famous 
second law of thermodynamics, and the quantity “entropy” that arose 
from this fundamental law and is its quintessential expression. We 
also discuss heat engines—the engines that transform heat into work 

in power plants, trains, and motor vehicles—because they first showed us 
that a new law was needed. Finallv. we brieflv discuss the third law of



20—1 The Second Law of 
Thermodynamics—Introduction

The first law of thermodynamics states that energy is conserved. There are, 
however, many processes we can imagine that conserve energy but are not 
observed to occur in nature. For example, when a hot object is placed in contact 
with a cold object, heat flows from the hotter one to the colder one, never 
spontaneously the reverse. If heat were to leave the colder object and pass to the 
hotter one, energy could still be conserved. Yet it does not happen spontaneously. * 
As a second example, consider what happens when you drop a rock and it hits 
the ground. The initial potential energy of the rock changes to kinetic energy 
as the rock falls. When the rock hits the ground, this energy in turn is transformed 
into internal energy of the rock and the ground in the vicinity of the impact; 
the molecules move faster and the temperature rises slightly. But have you seen 
the reverse happen—a rock at rest on the ground suddenly rise up in the air 
because the thermal energy of molecules is transformed into kinetic energy of 
the rock as a whole? Energy could be conserved in this process, yet we never 
see it happen.

There are many other examples of processes that occur in nature but whose 
reverse does not. Here are two more. (1) If you put a layer of salt in a jar and 
cover it with a layer of similar-sized grains of pepper, when you shake it you get a 
thorough mixture. But no matter how long you shake it, the mixture does not 
separate into two layers again. (2) Coffee cups and glasses break spontaneously if 
you drop them. But they do not go back together spontaneously (Fig. 20-1).

FIGURE 20-1 Have you ever 
observed this process, a broken cup 
spontaneously reassembling and 
rising up onto a table? This process 
could conserve energy and other 
laws of mechanics.

(a) Initial state. (b) Later: cup reassembles (c) Later still: cup lands on table.
and rises up.

The first law of thermodynamics (conservation of energy) would not be 
violated if any of these processes occurred in reverse. To explain this lack of 
reversibility, scientists in the latter half of the nineteenth century formulated a new 
principle known as the second law of thermodynamics.

The second law of thermodynamics is a statement about which processes occur 
in nature and which do not. It can be stated in a variety of ways, all of which are 
equivalent. One statement, due to R. J. E. Clausius (1822-1888), is that

heat can flow spontaneously from a hot object to a cold object; heat will not
flow spontaneously from a cold object to a hot object.

Since this statement applies to one particular process, it is not obvious how it 
applies to other processes. A more general statement is needed that will include 
other possible processes in a more obvious way.

The development of a general statement of the second law of thermodynamics 
was based partly on the study of heat engines. A heat engine is any device 
that changes thermal energy into mechanical work, such as a steam engine 
or automobile engine. We now examine heat engines, both from a practical 
point of view and to show their importance in developing the second law 
of thermodynamics.

SECOND LAW OF THERMODYNAMICS 
(Clausius statement)
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FIGURE 2 0 - 2  Schematic diagram 
of energy transfers for a heat engine.
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20—2 Heat Engines
It is easy to produce thermal energy by doing work—for example, by simply 
rubbing your hands together briskly, or indeed by any frictional process. But to get 
work from thermal energy is more difficult, and a practical device to do this was 
invented only about 1700 with the development of the steam engine.

The basic idea behind any heat engine is that mechanical energy can be 
obtained from thermal energy only when heat is allowed to flow from a high 
temperature to a low temperature. In the process, some of the heat can then be 
transformed to mechanical work, as diagrammed schematically in Fig. 20-2. 
We will be interested only in engines that run in a repeating cycle (that 
is, the system returns repeatedly to its starting point) and thus can run 
continuously. In each cycle the change in internal energy of the system is 

= 0 because it returns to the starting state. Thus a heat input <2H at a high 
temperature Tu is partly transformed into work W  and partly exhausted as heat 
Ql  at a lower temperature TL (Fig. 20-2). By conservation of energy, 
Qh = W + Ql. The high and low temperatures, Tu and Th, are called the 
operating temperatures of the engine. Note carefully that we are now using a 
new sign convention: we take QH, QL, and W  as always positive. The direction of 
each energy transfer is shown by the arrow on the applicable diagram, such as 
Fig. 20-2.

Steam Engine and Internal Combustion Engine
The operation of a steam engine is illustrated in Fig. 20-3. Steam engines are of 
two main types, each making use of steam heated by combustion of coal, oil or gas, 
or by nuclear energy. In a reciprocating engine, Fig. 20-3a, the heated steam passes 
through the intake valve and expands against a piston, forcing it to move. As the 
piston returns to its original position, it forces the gases out the exhaust valve. A 
steam turbine, Fig. 20-3b, is very similar except that the reciprocating piston is 
replaced by a rotating turbine that resembles a paddlewheel with many sets of 
blades. Most of our electricity today is generated using steam turbines.1 The 
material that is heated and cooled, steam in this case, is called the working substance.

tEven nuclear power plants utilize steam turbines; the nuclear fuel—uranium—merely serves as fuel to 
heat the steam.

(a) Reciprocating type (b) Turbine (boiler and 
condenser noi shown)

FIGURE 2 0 -3  Steam engines.

High-pressure steam, 
from boiler

Low-pressure steam, 
exhausted to condenser

High temperature

Exhaust valve 
(closed during 
expansion)

Condenser



Intake
valve

Exhaust
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Both valves 
dosed

Both valves 
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Both valves 
closed

(power stroke)

In an internal combustion engine (used in most automobiles), the high 
temperature is achieved by burning the gasoline-air mixture in the cylinder itself 
(ignited by the spark plug), as described in Fig. 20-4.

Why a AT  Is^Needed to Drive a Heat Engine
To see why a temperature difference is required to run an engine, let us examine 
the steam engine. In the reciprocating engine, for example, suppose there were no 
condenser or pump (Fig. 20-3a), and that the steam was at the same temperature 
throughout the system. This would mean that the pressure of the gas being 
exhausted would be the same as that on intake. Thus, although work would be 
done by the gas on the piston when it expanded, an equal amount of work would 
have to be done by the piston to force the steam out the exhaust; hence, no net 
work would be done. In a real engine, the exhausted gas is cooled to a lower 
temperature and condensed so that the exhaust pressure is less than the intake 
pressure. Thus, although the piston must do work on the gas to expel it on the 
exhaust stroke, it is less than the work done by the gas on the piston during the 
intake. So a net amount of work can be obtained—but only if there is a difference 
of temperature. Similarly, in the gas turbine if the gas isn’t cooled, the pressure on 
each side of the blades would be the same. By cooling the gas on the exhaust side, 
the pressure on the back side of the blade is less and hence the turbine turns.

Efficiency and the Second Law
The efficiency, e, of any heat engine can be defined as the ratio of the work it 
does, W, to the heat input at the high temperature, Qu (Fig. 20-2):

* "  Qh
This is a sensible definition since W  is the output (what you get from the engine), 
whereas QH is what you put in and pay for in burned fuel. Since energy is 
conserved, the heat input Qu must equal the work done plus the heat that flows 
out at the low temperature (<2l ) :

Qh = W + q l .
Thus W = QH “  Ql > and the efficiency of an engine is 

W (20-la)e =
Qh

Qh Ql

Qh = 1 - 7 T  Qh
(20-lb)

To give the efficiency as a percent, we multiply Eqs. 20-1 by 100. Note that e could 
be 1.0 for 100%) onlv if Or were zero—that is. onlv if no heat were exhausted to

hxhaust
valve

(c) Exhaust

FIGURE 20-4 Four-stroke-cycle 
internal combustion engine: (a) the 
gasoline-air mixture flows into the 
cylinder as the piston moves down; 
(b) the piston moves upward and 
compresses the gas; (c) the brief 
instant when firing of the spark plug 
ignites the highly compressed 
gasoline-air mixture, raising it to a 
high temperature; (d) the gases, now  
at high temperature and pressure, 
expand against the piston in this, the 
power stroke; (e) the burned gases 
are pushed out to the exhaust pipe; 
when the piston reaches the top, the 
exhaust valve closes and the intake 
valve opens, and the whole cycle 
repeats, (a), (b), (d), and (e) are the 
four strokes of the cycle.



FIGURE 20-5
Exercise A.

Adiabatic process,

EXAMPLE 20-1 Car efficiency. An automobile engine has an efficiency of 
20% and produces an average of 23,000 J of mechanical work per second during 
operation, (a) How much heat input is required, and (b) how much heat is 
discharged as waste heat from this engine, per second?
APPROACH We want to find the heat input <2H as well as the heat output QL, 
given W = 23,000 J each second and an efficiency e = 0.20. We can use the 
definition of efficiency, Eq. 20-1 in its various forms, to find first QH and 
then Ql .
SOLUTION (a) From Eq. 20-la, e = W /Q n , we solve for Qn :

23,000 J
QH  -  e - 0.20 

= 1.15 X 105J 115 kJ.
The engine requires 115 kJ/s = 115 kW of heat input.
(b) Now we use Eq. 20-lb (e = 1 -  QL/Qu) and solve for QL :

Ql = (1 — e)QH = (0.80)115 kJ = 92 kJ.
The engine discharges heat to the environment at a rate of 92 kJ/s = 92 kW. 
NOTE Of the 115 kJ that enters the engine per second, only 23 kJ does useful 
work whereas 92 kJ is wasted as heat output.
NOTE The problem was stated in terms of energy per unit time. We could just as 
well have stated it in terms of power, since 1 J/s = 1 W.

EXERCISE A A n adiabatic process is defined as one in which no heat flows in or out of the 
system. If an ideal gas expands as shown in Fig. 20 -5  (see also Fig. 19 -8 ), the work W 
done in this expansion equals the area under the graph, shown shaded. The efficiency of 
this process would be e = W/Q, much greater than 100% (= o o  since Q =  0). Is this a 
violation of the second law?

It is clear from Eq. 20-lb, e = 1 — Q l /£ ?h  > that the efficiency of an engine will 
be greater if QL can be made small. However, from experience with a wide variety of 
systems, it has not been found possible to reduce QL to zero. If QL could be reduced 
to zero we would have a 100% efficient engine, as diagrammed in Fig. 20-6.

High
temperature

FIGURE 20-6 Schematic diagram 
of a hypothetical perfect heat engine 
in which all the heat input would be 
used to do work.

Heat

■sfP'
Work. 

Engine

SECOND LAW OF THERMODYNAMICS 
(Kelvin-Planck statement)

That such a perfect engine (running continuously in a cycle) is not possible is 
another way of expressing the second law of thermodynamics:

No device is possible whose sole effect is to transform a given amount of heat 
completely into work.

This is known as the Kelvin-Planck statement of the second law of thermodynamics.
Said another way, there can be no perfect (100% efficient) heat engine such as that 
diagrammed in Fig. 20-6.

If the second law were not true, so that a perfect engine could be built, some 
rather remarkable things could happen. For example, if the engine of a ship did not 
need a low-temperature reservoir to exhaust heat into, the ship could sail across 
the ocean usine the vast resources of the internal enerev of the ocean water.



20—3 Reversible and Irreversible 
Processes; the Carnot Engine

In the early nineteenth century, the French scientist N. L. Sadi Carnot (1796-1832) 
studied in detail the process of transforming heat into mechanical energy. His aim 
had been to determine how to increase the efficiency of heat engines, but his 
studies soon led him to investigate the foundations of thermodynamics itself. In 1824, 
Carnot invented (on paper) an idealized type of engine which we now call the Carnot 
engine. No Carnot engine actually exists, but as a theoretical idea it played an impor­
tant role in the establishment and understanding of the second law of thermodynamics.

Reversible and Irreversible Processes
The Carnot engine involves reversible processes, so before we discuss it we must 
discuss what is meant by reversible and irreversible processes. A reversible 
process is one that is carried out infinitely slowly, so that the process can be 
considered as a series of equilibrium states, and the whole process could be done 
in reverse with no change in magnitude of the work done or heat exchanged. For 
example, a gas contained in a cylinder fitted with a tight, movable, but frictionless 
piston could be compressed isothermally in a reversible way if done infinitely 
slowly. Not all very slow (quasistatic) processes are reversible, however. If there is 
friction present, for example (as between the movable piston and cylinder just 
mentioned), the work done in one direction (going from some state A to state B) 
will not be the negative of the work done in the reverse direction (state B to 
state A). Such a process would not be considered reversible. A perfectly reversible 
process is not possible in reality because it would require an infinite time; reversible 
processes can be approached arbitrarily closely, however, and they are very 
important theoretically.

All real processes are irreversible: they are not done infinitely slowly. There 
could be turbulence in the gas, friction would be present, and so on. Any process 
could not be done precisely in reverse since the heat lost to friction would not 
reverse itself, the turbulence would be different, and so on. For any given volume 
there would not be a well-defined pressure P and temperature T  since the system 
would not always be in an equilibrium state. Thus a real, irreversible, process 
cannot be plotted on a PV  diagram, except insofar as it may approach an ideal 
reversible process. But a reversible process (since it is a quasistatic series of 
equilibrium states) always can be plotted on a PV  diagram; and a reversible 
process, when done in reverse, retraces the same path on a PV  diagram. Although 
all real processes are irreversible, reversible processes are conceptually important, 
just as the concept of an ideal gas is.

Carnot's Engine
Now let us look at Carnot’s idealized engine. The Carnot engine makes use of a 
reversible cycle, by which we mean a series of reversible processes that take a 
given substance (the working substance) from an initial equilibrium state through 
many other equilibrium states and returns it again to the same initial state. 
In particular, the Carnot engine utilizes the Carnot cycle, which is illustrated in 
Fig. 20-7, with the working substance assumed to be an ideal gas. Let us take point a 
as the initial state. The gas is first expanded isothermally and reversibly, path ab, 
at temperature JH > as heat Qh is added to it. Next the gas is expanded adiabati­
cally and reversibly, path be; no heat is exchanged and the temperature of the gas 
is reduced to TL. The third step is a reversible isothermal compression, path cd, 
during which heat QL flows out of the working substance. Finally, the gas is 
compressed adiabatically, path da, back to its original state. Thus a Carnot cycle 
consists of two isothermal and two adiabatic processes.

The net work done in one cycle by a Carnot engine (or any other type of engine 
using a reversible cvcle) is eaual to the area enclosed bv the curve representing the

Tl

FIGURE 20-7 The Carnot cycle. 
Heat engines work in a cycle, and 
the cycle for the Carnot engine 
begins at point a on this P V  
diagram. (1) The gas is first 
expanded isothermally, with the 
addition of heat <2H» along the 
path ab at temperature TH.
(2) Next the gas expands 
adiabatically from b to c— no 
heat is exchanged, but the 
temperature drops to r L. (3) The 
gas is then compressed at constant 
temperature TL, path cd, and heat 
<2l flows out. (4) Finally, the gas is 
compressed adiabatically, path da, 
back to its original state. N o Carnot 
engine actually exists, but as a 
theoretical idea it played an 
im nnrtant rnle in the develnnm ent



Camot Efficiency and the Second Law of Thermodynamics
The efficiency of a Carnot engine, like any heat engine, is given by Eq. 20-lb:

1 Ql
e  =  1 -  —-  •

Qh

For a Carnot engine using an ideal gas, however, we can show that the efficiency 
depends only on the temperatures of the heat reservoirs, TH and TL. In the first 
isothermal process ab in Fig. 20-7, the work done by the gas is (see Eq. 19-8)

Wab = nRTH] n ^

where n is the number of moles of the ideal gas used as working substance. 
Because the internal energy of an ideal gas does not change when the temperature 
remains constant, the first law of thermodynamics tells us that the heat added to 
the gas equals the work done by the gas:

Qh = nRTH In — •

Similarly, the heat lost by the gas in the isothermal process cd is

Ql = nRTL ln £ *

The paths be and da are adiabatic, so we have from Eq. 19-15:

PbVl = PcV yc and PdV yd = PaV l ,

where 7 = CP/CV is the ratio of molar specific heats (Eq. 19-14). Also, from the 
ideal gas law,

P*Vh PCVC PdVd PaVa
and

Th Tl Th 7h

When we divide these last equations, term by term, into the corresponding set of 
equations on the line above, we obtain

T h V V  = and T^ 1 = T^V y~l .

v 7- 1

Next we divide the equation on the left by the one on the right and obtain

Vi.

n  = n
va vd

Inserting this result in our equations for QH and QL above, we obtain

[Carnot cycle] (20-2)
U h  1 h

Hence the efficiency of a reversible Carnot engine can now be written

— 1 Ql
-  Gh

or
_ 1 _ ^ l [ Carnot efficiency; 1

6ideal t h ' I  Kelvin temperatures J i  U

The temperatures TL and TH are the absolute or Kelvin temperatures as measured 
on the ideal eas temperature scale. Thus the efficiencv of a Carnot engine depends



We could imagine other possible reversible cycles that could be used for an 
ideal reversible engine. According to a theorem stated by Carnot:

All reversible engines operating between the same two constant temperatures 
Tu and TL have the same efficiency. Any irreversible engine operating between 
the same two fixed temperatures will have an efficiency less than this.

This is known as Carnot’s theorem.1 It tells us that Eq. 20-3, e = 1 — (Tl /Th), 
applies to any ideal reversible engine with fixed input and exhaust temperatures, 
Th and JL, and that this equation represents a maximum possible efficiency for a 
real (i.e., irreversible) engine.

In practice, the efficiency of real engines is always less than the Carnot 
efficiency. Well-designed engines reach perhaps 60% to 80% of Carnot efficiency.

EXAMPLE 20-2 A phony claim? An engine manufacturer makes the 
following claims: An engine’s heat input per second is 9.0 kJ at 435 K. The heat 
output per second is 4.0 kJ at 285 K. Do you believe these claims?
APPROACH The engine’s efficiency can be calculated from the definition, 
Eqs. 20-1. It must be less than the maximum possible, Eq. 20-3.
SOLUTION The claimed efficiency of the engine is (Eq. 20-lb)

4.0 kJ
e = 1 TT = 1 Qh 9.0 kJ = 0.56,

or 56%. However, the maximum possible efficiency is given by the Carnot efficiency, 
Eq. 20-3:

= 1 _Zk = - 285K
^ideal 1 - 435 K

= 0.34,

or 34%. The manufacturer’s claims violate the second law of thermodynamics and 
cannot be believed.

EXERCISE B A  motor is running with an intake temperature r H =  400 K and an exhaust 
temperature TL =  300 K. Which of the following is not a possible efficiency for the 
engine? (a) 0.10; (b) 0.16; (c) 0.24; (d) 0.30.

It is clear from Eq. 20-3 that a 100% efficient engine is not possible. Only if 
the exhaust temperature, TL, were at absolute zero would 100% efficiency be 
obtainable. But reaching absolute zero is a practical (as well as theoretical) 
impossibility.* Thus we can state, as we already did in Section 20-2, that no device 
is possible whose sole effect is to transform a given amount of heat completely into 
work. As we saw in Section 20-2, this is known as the Kelvin-Planck statement o f 
the second law o f thermodynamics. It tells us that there can be no perfect (100% 
efficient) heat engine such as the one diagrammed in Fig. 20-6.

EXERCISE C Return to the Chapter-Opening Question, page 528, and answer it again now. 
Try to explain why you may have answered differently the first time.

* The Otto Cyde
The operation of an automobile internal combustion engine (Fig. 20-4) can be 
approximated by a reversible cycle known as the Otto cycle, whose PV  diagram is 
shown in Fig. 20-8. Unlike the Carnot cycle, the input and exhaust temperatures of 
the Otto cycle are not constant. Paths ab and cd are adiabatic, and paths be and da 
are at constant volume. The gas (gasoline-air mixture) enters the cylinder at point a 
and is compressed adiabatically (compression stroke) to point b. At b ignition 
occurs (spark plug) and the burning of the gas adds heat QH to the system at con­
stant volume (approximately in a real engine). The temperature and pressure rise, 
and then in the power stroke, cd, the gas expands adiabatically. In the exhaust 
stroke, da, heat QL is ejected to the environment (in a real engine, the gas leaves 
the engine and is replaced by a new mixture of air and fuel).

FIGURE 20-8 The Otto cycle.



FIGURE 2 0 - 8  (repeated for 
Example 2 0 -3 ) The Otto cycle.

FIGURE 2 0 - 9  Schematic diagram 
of energy transfers for a refrigerator 
or air conditioner.

Qh

w

I
Ql

Refrigerator or 
air conditioner

EXAMPLE 20-3 The Otto cycle, (a) Show that for an ideal gas as working 
substance, the efficiency of an Otto cycle engine is

• - ‘- s r
where 7 is the ratio of specific heats (7 = CP/CV, Eq. 19-14) and Va/Vh is the 
compression ratio. (b) Calculate the efficiency for a compression ratio VjV^  = 8.0 
assuming a diatomic gas like 0 2 and N2.

APPROACH We use the original definition of efficiency and the results from 
Chapter 19 for constant volume and adiabatic processes (Sections 19-8 and 19-9). 
SOLUTION The heat exchanges take place at constant volume in the ideal 
Otto cycle, so from Eq. 19-10a:

Qh = nCv(Tc — Tb) and QL = nCv (Td — Ta).

Then from Eq. 20-lb,

~Td -  T»\ Td ~ T A
ITC- T h\Tc ~ T h

To get this in terms of the compression ratio, Va/Vh, we use the result from 
Section 19-9, Eq. 19-15, PVy = constant during the adiabatic processes ab and cd. 
Thus

P*Vl = PhV l  and Pcv l  = P iV l.

We use the ideal gas law, P = nRT/V, and substitute P into these two equations

and

Then the efficiency (see above) is

7 d - r , i  „ r^V c/V df"1 -  Tb{vb/ v , y - 1

T . v l 1 = T t V l 1 T,Vyn  = T i V l 1

e = 1

But processes be and da are at constant volume, so Vc = Vb and Vj = Ka. Hence 
VJVd = Fb/K and

( h /v ay - \ T c -  Tb)~
e = 1 -

Vb.Tc ~ T h

(b) For diatomic molecules (Section 19-8), 7 = CP/CV = 1.4 so

e = 1 -  (8.0)1-7 = 1 -  (8.0)-04 = 0.56.

Real engines do not reach this high efficiency because they do not follow 
perfectly the Otto cycle, plus there is friction, turbulence, heat loss and incomplete 
combustion of the gases.

20—4  Refrigerators, Air Conditioners, and 
Heat Pumps

The operating principle of refrigerators, air conditioners, and heat pumps is just the 
reverse of a heat engine. Each operates to transfer heat out of a cool environment 
into a warm environment. As diagrammed in Fig. 20-9, by doing work W, heat is 
taken from a low-temperature region, TL (such as inside a refrigerator), and a 
greater amount of heat is exhausted at a high temperature, Tu (the room). You can 
often feel this heated air blowing out beneath a refrigerator. The work W  is usuallv
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A perfect refrigerator—one in which no work is required to take heat from 
the low-temperature region to the high-temperature region—is not possible. This 
is the Clausius statement of the second law of thermodynamics, already mentioned 
in Section 20-1, which can be stated formally as

No device is possible whose sole effect is to transfer heat from one system at 
a temperature Th into a second system at a higher temperature TH.

To make heat flow from a low-temperature object (or system) to one at a higher 
temperature, work must be done. Thus, there can be no perfect refrigerator.

The coefficient of performance (COP) of a refrigerator is defined as the heat 
Q l  removed from the low-temperature area (inside a refrigerator) divided by the 
work W  done to remove the heat (Fig. 20-9 or 20-10b):

COP = r refrigerator andl
W [  air conditioner J v '

This makes sense because the more heat Q h that can be removed from the inside of the 
refrigerator for a given amount of work, the better (more efficient) the refrigerator is. 
Energy is conserved, so from the first law of thermodynamics we can write 
(see Fig. 20-9 or 20-10b) Q L +  W  =  Q H , or W  =  Q H -  Q L . Then Eq. 20-4a 
becomes

Ql Ql
COP = —  =

w  G h -  Q l

\ refrigerator 1 (20_4b)
[a ir  conditioner J v 7

For an ideal refrigerator (not a perfect one, which is impossible), the best we 
could do would be

COPideal -
r refrigerator 1
[a ir  conditioner J v 7

analagous to an ideal (Carnot) engine (Eqs. 20-2 and 20-3).
An air conditioner works very much like a refrigerator, although the actual 

construction details are different: an air conditioner takes heat Q L from inside a 
room or building at a low temperature, and deposits heat Q H outside to the envi­
ronment at a higher temperature. Equations 20-4 also describe the coefficient of

FIGURE 2 0 -1 0  (a) Typical 
refrigerator system. The electric 
compressor motor forces a gas at 
high pressure through a heat 
exchanger (condenser) on the rear 
outside wall of the refrigerator 
where QH is given off and the gas 
cools to becom e liquid. The liquid 
passes from a high-pressure region, 
via a valve, to low-pressure tubes on 
the inside walls of the refrigerator; 
the liquid evaporates at this lower 
pressure and thus absorbs heat (QL) 
from the inside of the refrigerator. 
The fluid returns to the compressor 
where the cycle begins again.
(b) Schematic diagram, like Fig. 20-9 .

SECOND LAW OF THERMODYNAMICS 
(Clausius statem ent)

( ^ P H Y S I C S  A P P L I E D
Refrigerator

0 P H Y S I C S  A P P L I E D
A ir  conditioner
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FIGURE 20-11 A heat pump uses an 
electric motor to “pump” heat from the 
cold outside to the warm inside of a house.

/j\ CAUTION_________
H eat pum ps and air conditioners 

have different C O P  definitions

EXAMPLE 20-4 Making ice. A freezer has a COP of 3.8 and uses 200 W of 
power. How long would it take this otherwise empty freezer to freeze an ice-cube 
tray that contains 600 g of water at 0°C?

APPROACH In Eq. 20-4b, QL is the heat that must be transferred out of the 
water so it will become ice. To determine QL, we use the latent heat of fusion L  of 
water and Eq. 19-3, Q = mL.
SOLUTION From Table 19-2, L = 333 kJ/kg. Hence Q = mL = 
(0.600 kg)(3.33 X 105J/kg) =  2.0 X 105J is the total energy that needs to be 
removed from the water. The freezer does work at the rate of 200 W = 
200 J/s = W /t, which is the work W  it can do in t seconds. We solve for t: 
t = W/(200 J/s). For W, we use Eq. 20-4a: W = Q J C OP. Thus

t = w  = eL/cop
200J/s 200J/s

(2.0 X 105j)/(3.8) 
200 J/s

260 s,

or about 4imin.

Heat naturally flows from high temperature to low temperature. Refrigerators 
and air conditioners do work to accomplish the opposite: to make heat flow from 
cold to hot. We might say they “pump” heat from cold areas to hotter areas, 
against the natural tendency of heat to flow from hot to cold, just as water can be 
pumped uphill, against the natural tendency to flow downhill. The term heat pump 
is usually reserved for a device that can heat a house in winter by using an electric 
motor that does work W  to take heat QL from the outside at low temperature 
and delivers heat QH to the warmer inside of the house; see Fig. 20-11. As 
in a refrigerator, there is an indoor and an outdoor heat exchanger (coils of 
the refrigerator) and an electric compressor motor. The operating principle 
is like that for a refrigerator or air conditioner; but the objective of a heat 
pump is to heat (deliver QH), rather than to cool (remove 0 L). Thus, the 
coefficient of performance of a heat pump is defined differently than for an air 
conditioner because it is the heat Qu delivered to the inside of the house that is 
important now:

Q hCOP = ~  [heat pump] (20-5)
V'V

The COP is necessarily greater than 1. Most heat pumps can be “turned around” 
and used as air conditioners in the summer.

Heat pump. A heat pump has a coefficient of performance 
of 3.0 and is rated to do work at 1500 W. (a) How much heat can it add to a room 
per second? (b) If the heat pump were turned around to act as an air conditioner 
in the summer, what would you expect its coefficient of performance to be, 
assuming all else stays the same?

APPROACH We use the definitions of coefficient of performance, which are 
different for the two devices in (a) and (b).
SOLUTION (a) We use Eq. 20-5 for the heat pump, and, since our device does 
1500 J of work per second, it can pour heat into the room at a rate of

EXAMPLE 20-5

Qh = COP X W = 3.0 X 1500J = 4500J



(b) If our device is turned around in summer, it can take heat QL from inside the 
house, doing 1500 J of work per second to then dump QH = 4500 J per second to 
the hot outside. Energy is conserved, so QL + W = QH (see Fig. 20-11, but 
reverse the inside and outside of the house). Then

Ql = Qh ~ W = 4500J -  1500J = 3000J.

The coefficient of performance as an air conditioner would thus be (Eq. 20-4a)

C O P  =  = 3000J =
W  1500J

2 0 -5  Entropy
Thus far we have stated the second law of thermodynamics for specific situations. 
What we really need is a general statement of the second law of thermodynamics 
that will cover all situations, including those discussed earlier in this Chapter that 
are not observed in nature even though they would not violate the first law of 
thermodynamics. It was not until the latter half of the nineteenth century that the 
second law of thermodynamics was finally stated in a general way—namely, in 
terms of a quantity called entropy, introduced by Clausius in the 1860s. In Section 20-7 
we will see that entropy can be interpreted as a measure of the order or disorder 
of a system.

When we deal with entropy—as with potential energy—it is the change in 
entropy during a process that is important, not the absolute amount. According to 
Clausius, the change in entropy S of a system, when an amount of heat Q is added 
to it by a reversible process at constant temperature, is given by

AS = (20-6)

where T  is the kelvin temperature.
If the temperature is not constant, we define entropy S by the relation

dQ
dS = - y -  (20-7)

Then the change in entropy of a system taken reversibly between two states a and b is 
given by1"

fb fb dO
AS = Sb -  S.d = I dS = —— • [reversible process] (20-8)

A careful analysis (see next page) shows that the change in entropy when a system 
moves by a reversible process from any state a to another state b does not depend 
on the process. That is, AS = Sb -  Sa depends only on the states a and b of the 
system. Thus entropy (unlike heat) is a state variable. Any system in a given state 
has a temperature, a volume, a pressure, and also has a particular value of entropy.

It is easy to see why entropy is a state variable for a Carnot cycle. In Eq. 20-2 
we saw that QlIQh = TL/TU, which we rewrite as

Q l =  Q h 

^  Th
In the PV  diagram for a Carnot cycle, Fig. 20-7, the entropy change AS = Q /T  in 
going from state a to state c along path abc (=Qh/^h + 0) is thus the same as 
going along the path adc. That is, the change in entropy is path independent—it 
depends only on the initial and final states of the system.

tEquation 20-8 says nothing about the absolute value of 5; it only gives the change in S. This is much
lit/a  nr»t/antici1 p n A rm r  ( o n t p r  n t iA  f n r m  f l i p  tfaivrl



FIGURE 2 0 -1 2  A ny reversible 
cycle can be approximated as a 
series of Carnot cycles. (The dashed 
lines represent isotherms.)

FIGURE 2 0 -1 3  The integral, § dS, 
of the entropy for a reversible cycle 
is zero. H ence the difference in 
entropy between states a and b,
$b ~  *Sa =  fa dS, is the same for 
path I as for path II.

* Showing Entropy Is a State Variable
In our study of the Carnot cycle we found (Eq. 20-2) that Ql/Q h = ^l/^ h • We 
rewrite this as

Q h  _  Q l  

Th Tl '
In this relation, both QH and QL are positive. But now let us recall our original 
convention as used in the first law (Section 19-6), that Q is positive when it 
represents a heat flow into the system (as £?H) and negative for a heat flow out of 
the system (as -<2L). Then this relation becomes

Q h  

Tn
Now consider any reversible cycle, as represented by the smooth (oval-shaped) 

curve in Fig. 20-12. Any reversible cycle can be approximated as a series of Carnot 
cycles. Figure 20-12 shows only six—the isotherms (dashed lines) are connected by 
adiabatic paths for each—and the approximation becomes better and better if we 
increase the number of Carnot cycles. Equation 20-9 is valid for each of these 
cycles, so we can write

+ —  = 0. 
TL

[Carnot cycle] (20-9)

[Carnot cycles] (20-10)

for the sum of all these cycles. But note that the heat output QL of one cycle 
crosses the boundary below it and is approximately equal to the negative of the 
heat input, QH, of the cycle below it (actual equality occurs in the limit of an 
infinite number of infinitely thin Carnot cycles). Hence the heat flows on the inner 
paths of all these Carnot cycles cancel out, so the net heat transferred, and the 
work done, is the same for the series of Carnot cycles as for the original cycle. 
Hence, in the limit of infinitely many Carnot cycles, Eq. 20-10 applies to any 
reversible cycle. In this case Eq. 20-10 becomes

^  = 0, 
T

[reversible cycle] (20-11)

where dQ represents an infinitesimal heat flow.1 The symbol <j> means that the 
integral is taken around a closed path; the integral can be started at any point on 
the path such as at a or b in Fig. 20-12, and proceed in either direction. If we 
divide the cycle of Fig. 20-12 into two parts as indicated in Fig. 20-13, then

r f ♦ 1:
dQ
T

= 0.

The first term is the integral from point a to point b along path I in Fig. 20-13, and 
the second term is the integral from b back to a along path II. If path II is taken in 
reverse, dQ at each point becomes - dQ, since the path is reversible. Therefore

ff ■ Ib dQ 
, T

[reversible paths] (20-12)

The integral o id Q /T  between any two equilibrium states, a and b, does not depend 
on the path of the process. By defining entropy as dS = dQ /T  (Eq. 20-7), we see 
from Eq. 20-12 that the change in entropy between any two states along a reversible 
path is independent o f the path between two points a and b. Thus entropy is a state 
variable—its value depends only on the state of the system, and not on the process or 
the past history of how it got there.* This is in clear distinction to Q and W  which are 
not state variables; their values do depend on the processes undertaken.

*dQ is often written ctQ: see footnote at the end of Section 19-6.
*Real processes are irreversible. Because entropy is a state variable, the change in entropy AS for



2 0 -6  Entropy and the Second Law o f 
Thermodynamics

We have defined a new quantity, S, the entropy, which can be used to describe the 
state of the system, along with P, T, V, -Eint, and n. But what does this rather 
abstract quantity have to do with the second law of thermodynamics? To answer 
this, let us take some examples in which we calculate the entropy changes during 
particular processes. But note first that Eq. 20-8 can be applied only to reversible 
processes. How then do we calculate AS = Sb -  Sa for a real process that is 
irreversible? What we can do is this: we figure out some other reversible process 
that takes the system between the same two states, and calculate AS for this 
reversible process. This will equal AS for the irreversible process since AS depends 
only on the initial and final states of the system.

If the temperature varies during a process, a summation of the heat flow over the 
changing temperature can often be calculated using calculus or a computer. However, 
if the temperature change is not too great, a reasonable approximation can be made 
using the average value of the temperature, as indicated in the next Example.

ESTIMATE"! Entropy change when mixing water. A sample 
of 50.0 kg of water at 20.00°C is mixed with 50.0 kg of water at 24.00°C. Estimate 
the change in entropy.

APPROACH The final temperature of the mixture will be 22.00°C, since we started 
with equal amounts of water. We use the specific heat of water and the methods of 
calorimetry (Sections 19-3 and 19-4) to determine the heat transferred. Then we 
use the average temperature of each sample of water to estimate the entropy 
change (AQAB­
SOLUTION A quantity of heat,

Q = mcAT = (50.0 kg) (4186 J/kg-C°) (2.00 C°) = 4.186 X 105J,

flows out of the hot water as it cools down from 24°C to 22°C, and this heat flows 
into the cold water as it warms from 20° C to 22° C. The total change in entropy, 
AS, will be the sum of the changes in entropy of the hot water, ASH, and that of 
the cold water, A Sc :

AS = AiSjj + ASq.

We estimate entropy changes by writing AS = Q/T, where T  is an “average” 
temperature for each process, which ought to give a reasonable estimate since the 
temperature change is small. For the hot water we use an average temperature of 
23°C (296 K), and for the cold water an average temperature of 21°C (294 K). Thus

which is negative because this heat flows out, whereas heat is added to the cold water: 

* *  ‘
The entropy of the hot water (SH) decreases since heat flows out of the hot water. 
But the entropy of the cold water (Sc) increases by a greater amount. The total 
change in entropy is

AS = ASh + ASC w -1414 J/K  + 1424 J/K  «  10J/K.

We see that although the entropy of one part of the system decreased, the 
entropy of the other part increased by a greater amount so that the net change in

EXAMPLE 20-6



We can now show in general that for an isolated system of two objects, the 
flow of heat from the higher-temperature (rH) object to the lower-temperature 
(rL) object always results in an increase in the total entropy. The two objects 
eventually come to some intermediate temperature, . The heat lost by the hotter 
object (Qh = —Q, where Q is positive) is equal to the heat gained by the colder 
one (Ql = Q \ so the total change in entropy is

Q Q AS = ASU + ASh = - f -  +
^H M  -*LM

where r HM is some intermediate temperature between Tu and for the hot object 
as it cools from TH to Tm> and Tlm is the counterpart for the cold object. Since the 
temperature of the hot object is, at all times during the process, greater than that of 
the cold object, then JHM > TLM. Hence

One object decreases in entropy, while the other gains in entropy, but the total change 
is positive.

Entropy changes in a free expansion. Consider the 
adiabatic free expansion of n moles of an ideal gas from volume V1 to volume V2, 
where V2 > V1 as was discussed in Section 19-7, Fig. 19-14. Calculate the change 
in entropy (a) of the gas and (b) of the surrounding environment, (c) Evaluate 
AS for 1.00 mole, with V2 = 2.00 Vx.

APPROACH We saw in Section 19-7 that the gas is initially in a closed container 
of volume V1, and, with the opening of a valve, it expands adiabatically into a 
previously empty container. The total volume of the two containers is V2. The 
whole apparatus is thermally insulated from the surroundings, so no heat flows 
into the gas, Q = 0. The gas does no work, W = 0, so there is no change in 
internal energy, AEint = 0, and the temperature of the initial and final states is 
the same, T2 = Tx = T. The process takes place very quickly, and so is irre­
versible. Thus we cannot apply Eq. 20-8 to this process. Instead we must think of 
a reversible process that will take the gas from volume Vx to V2 at the same 
temperature, and use Eq. 20-8 on this reversible process to get AS. A  reversible 
isothermal process will do the trick; in such a process, the internal energy does 
not change, so from the first law,

dQ = dW = PdV.

SOLUTION (a) For the gas,

f dQ 1 [v*aV  = j f  • -  jv p dv.

The ideal gas law tells us P = nRT/V , so

nRT (v*dV V2
sas "  T )Vt V  Vi

Since V2 > Vx, A*Sgas > 0.
(b) Since no heat is transferred to the surrounding environment, there is no 
change of the state of the environment due to this process. Hence ASenv = 0. 
Note that the total change in entropy, AS1̂  + ASenv, is greater than zero.

EXAMPLE 20-7



Heat transfer. A red-hot 2.00-kg piece of iron at temperature 
Ti = 880 K is thrown into a huge lake whose temperature is T2 = 280 K. 
Assume the lake is so large that its temperature rise is insignificant. Determine 
the change in entropy (a) of the iron and (b) of the surrounding environment 
(the lake).
APPROACH The process is irreversible, but the same entropy change will occur 
for a reversible process, and we use the concept of specific heat, Eq. 19-2. 
SOLUTION (a) We assume the specific heat of the iron is constant at 
c = 450 J/kg • K. Then dQ = mc dT and in a quasistatic reversible process

f dQ f T*dT T2 TiASiron = j —  = mc j —  = mc In — = - ra c ln — •

Putting in numbers, we find
880 K

A S iron =  - ( 2 . 0 0 k g ) ( 4 5 0 J / k g - K ) l n ^ -  =  - 1 0 3 0  J /K .

(b) The initial and final temperatures of the lake are the same, T = 280 K. The 
lake receives from the iron an amount of heat

Q = mc(T2 -  71) = (2.00kg)(450J/kg-K)(880K -  280K) = 540kJ.
Strictly speaking, this is an irreversible process (the lake heats up locally before 
equilibrium is reached), but is equivalent to a reversible isothermal transfer of 
heat Q = 540 kJ at T = 280 K. Hence 

540 kT

= 280K = 193° J/K - 
Thus, although the entropy of the iron actually decreases, the total change in 
entropy of iron plus environment is positive: 1930 J/K  -  1030 J/K  = 900 J/K.

EXERCISE D A  1.00-kg piece of ice at 0°C melts very slowly to water at 0°C. Assum e the 
ice is in contact with a heat reservoir whose temperature is only infinitesimally greater 
than 0°C. Determ ine the entropy change of (a) the ice cube and (b) the heat reservoir.

In each of these Examples, the entropy of our system plus that of the 
environment (or surroundings) either stayed constant or increased. For any 
reversible process, such as that in Exercise D, the total entropy change is zero. This 
can be seen in general as follows: any reversible process can be considered as a 
series of quasistatic isothermal transfers of heat A Q between a system and the 
environment, which differ in temperature only by an infinitesimal amount. Hence 
the change in entropy of either the system or environment is A Q /T  and that of the 
other is -  A Q/T, so the total is

AS = ASsyst + AiSenv = 0- [any reversible process]

In Examples 20-6, 20-7, and 20-8, we found that the total entropy of system 
plus environment increases. Indeed, it has been found that for all real (irreversible) 
processes, the total entropy increases. No exceptions have been found. We can thus 
make the general statement o f the second law o f thermodynamics as follows:

The entropy of an isolated system never decreases. It either stays constant 
(reversible processes) or increases (irreversible processes).

Since all real processes are irreversible, we can equally well state the second law as:

The total entropy of any system plus that of its environment increases as a 
result of any natural process:

AS = AiSgyst + AiSenv >  0. (20—13)

Although the entropy of one part of the universe may decrease in any process (see 
the Examoles above), the entroDv of some other oart of the universe alwavs

EXAMPLE 20-8

SECOND LAW OF 
THERMODYNAMICS 
(general statement)



SECOND LAW OF THERMODYNAMICS 
(general statement)

Now that we finally have a quantitative general statement of the second law of 
thermodynamics, we can see that it is an unusual law. It differs considerably from other 
laws of physics, which are typically equalities (such as F = ma) or conservation laws 
(such as for energy and momentum). The second law of thermodynamics introduces a 
new quantity, the entropy, S, but does not tell us it is conserved. Quite the opposite. 
Entropy is not conserved in natural processes. Entropy always increases in time.

"Time's Arrow"
The second law of thermodynamics summarizes which processes are observed in 
nature, and which are not. Or, said another way, it tells us about the direction 
processes go. For the reverse of any of the processes in the last few Examples, the 
entropy would decrease; and we never observe them. For example, we never observe 
heat flowing spontaneously from a cold object to a hot object, the reverse of 
Example 20-8. Nor do we ever observe a gas spontaneously compressing itself into a 
smaller volume, the reverse of Example 20-7 (gases always expand to fill their 
containers). Nor do we see thermal energy transform into kinetic energy of a rock so 
the rock rises spontaneously from the ground. Any of these processes would be 
consistent with the first law of thermodynamics (conservation of energy). But they are 
not consistent with the second law of thermodynamics, and this is why we need the 
second law. If you were to see a movie run backward, you would probably realize it 
immediately because you would see odd occurrences—such as rocks rising sponta­
neously from the ground, or air rushing in from the atmosphere to fill an empty balloon 
(the reverse of free expansion). When watching a movie or video, we are tipped off to 
a faked reversal of time by observing whether entropy is increasing or decreasing. Hence 
entropy has been called time’s arrow, for it can tell us in which direction time is going.

20—7 Order to Disorder
The concept of entropy, as we have discussed it so far, may seem rather abstract. 
But we can relate it to the more ordinary concepts of order and disorder. In fact, 
the entropy of a system can be considered a measure o f the disorder o f the system. 
Then the second law of thermodynamics can be stated simply as:

Natural processes tend to move toward a state of greater disorder.

Exactly what we mean by disorder may not always be clear, so we now consider a 
few examples. Some of these will show us how this very general statement of the 
second law applies beyond what we usually consider as thermodynamics.

Let us look at the simple processes mentioned in Section 20-1. First, a jar 
containing separate layers of salt and pepper is more orderly than when the salt 
and pepper are all mixed up. Shaking a jar containing separate layers results in a 
mixture, and no amount of shaking brings the layers back again. The natural 
process is from a state of relative order (layers) to one of relative disorder (a 
mixture), not the reverse. That is, disorder increases. Next, a solid coffee cup is a 
more “orderly” and useful object than the pieces of a broken cup. Cups break 
when they fall, but they do not spontaneously mend themselves (as faked in 
Fig. 20-1). Again, the normal course of events is an increase of disorder.

Let us consider some processes for which we have actually calculated the 
entropy change, and see that an increase in entropy results in an increase in 
disorder (or vice versa). When ice melts to water at 0°C, the entropy of the water 
increases (Exercise D). Intuitively, we can think of solid water, ice, as being more 
ordered than the less orderly fluid state which can flow all over the place. This 
change from order to disorder can be seen more clearly from the molecular point 
of view: the orderly arrangement of water molecules in an ice crystal has changed 
to the disorderly and somewhat random motion of the molecules in the fluid state.

When a hot object is put in contact with a cold object, heat flows from the 
high temperature to the low until the two obiects reach the same intermediate



molecules: those with a high average kinetic energy (the hot object), and those 
with a low average kinetic energy (the cooler object). After the process in which 
heat flows, all the molecules are in one class with the same average kinetic 
energy. We no longer have the more orderly arrangement of molecules in two 
classes. Order has gone to disorder. Furthermore, the separate hot and cold 
objects could serve as the hot- and cold-temperature regions of a heat engine, and 
thus could be used to obtain useful work. But once the two objects are put in 
contact and reach the same temperature, no work can be obtained. Disorder has 
increased, since a system that has the ability to perform work must surely be 
considered to have a higher order than a system no longer able to do work.

When a stone falls to the ground, its macroscopic kinetic energy is transformed to 
thermal energy. Thermal energy is associated with the disorderly random motion of 
molecules, but the molecules in the falling stone all have the same velocity downward in 
addition to their own random velocities. Thus, the more orderly kinetic energy of the 
stone as a whole is changed to disordered thermal energy when the stone strikes the 
ground. Disorder increases in this process, as it does in all processes that occur in nature.

* Biological Evolution
An interesting example of the increase in entropy relates to biological evolution 
and to growth of organisms. Clearly, a human being is a highly ordered organism. 
The theory of evolution describes the process from the early macromolecules and 
simple forms of life to Homo sapiens, which is a process of increasing order. So, 
too, the development of an individual from a single cell to a grown person is a 
process of increasing order. Do these processes violate the second law of thermo­
dynamics? No, they do not. In the processes of evolution and growth, and even 
during the mature life of an individual, waste products are eliminated. These small 
molecules that remain as a result of metabolism are simple molecules without 
much order. Thus they represent relatively higher disorder or entropy. Indeed, the 
total entropy of the molecules cast aside by organisms during the processes of 
evolution and growth is greater than the decrease in entropy associated with the 
order of the growing individual or evolving species.

20—8 Unavailability of Energy; Heat Death
In the process of heat conduction from a hot object to a cold one, we have seen that 
entropy increases and that order goes to disorder. The separate hot and cold objects 
could serve as the high- and low-temperature regions for a heat engine and thus could 
be used to obtain useful work. But after the two objects are put in contact with each 
other and reach the same uniform temperature, no work can be obtained from them. 
With regard to being able to do useful work, order has gone to disorder in this process.

The same can be said about a falling rock that comes to rest upon striking the 
ground. Before hitting the ground, all the kinetic energy of the rock could have 
been used to do useful work. But once the rock’s mechanical kinetic energy 
becomes thermal energy, doing useful work is no longer possible.

Both these examples illustrate another important aspect of the second law of 
thermodynamics:

in any natural process, some energy becomes unavailable
to do useful work.

In any process, no energy is ever lost (it is always conserved). Rather, energy 
becomes less useful—it can do less useful work. As time goes on, energy is 
degraded, in a sense; it goes from more orderly forms (such as mechanical) even­
tually to the least orderly form, internal, or thermal, energy. Entropy is a factor 
here because the amount of energy that becomes unavailable to do work is 
proportional to the change in entropy during any process.1

t i t  „ o ,  i  cVirwx/n th a t  tVi<=* a m m in t  n f  o n A rm ;  tVi a t  KA/’ AtnAC n n a v a i la W p  t o  H o  n c p fn l  u /o rV  to A rrn a l t o  T .  A  C
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A natural outcome of the degradation of energy is the prediction that as time 
goes on, the universe should approach a state of maximum disorder. Matter would 
become a uniform mixture, and heat will have flowed from high-temperature 
regions to low-temperature regions until the whole universe is at one temperature. 
No work could then be done. All the energy of the universe would have degraded 
to thermal energy. This prediction, called the heat death of the universe, has been 
much discussed, but would lie very far in the future. It is a complicated subject, 
and some scientists question whether thermodynamic modeling of the universe 
is possible or appropriate.

*20—9 Statistical Interpretation of Entropy 
and the Second Law

The ideas of entropy and disorder are made clearer with the use of a statistical or 
probabilistic analysis of the molecular state of a system. This statistical approach, 
which was first applied toward the end of the nineteenth century by Ludwig 
Boltzmann (1844-1906), makes a clear distinction between the “macrostate” and 
the “microstate” of a system. The microstate of a system would be specified in 
giving the position and velocity of every particle (or molecule). The macrostate of 
a system is specified by giving the macroscopic properties of the system—the 
temperature, pressure, number of moles, and so on. In reality, we can know only 
the macrostate of a system. We could not possibily know the velocity and position 
of every one of the huge number of molecules in a system at a given moment. 
Nonetheless, we can hypothesize a great many different microstates that can 
correspond to the same macrostate.

Let us take a very simple example. Suppose you repeatedly shake four coins in 
your hand and drop them on a table. Specifying the number of heads and the 
number of tails that appear on a given throw is the macrostate of this system. 
Specifying each coin as being a head or a tail is the microstate of the system. In the 
following Table we see how many microstates correspond to each macrostate:

Possible Microstates Number of
Macrostate (H = heads, T = tails) Microstates

4 heads H H H H  1
3 heads, 1 tail H H H T , H H T H , H T H H , T H H H  4 
2 heads,2 tails H H T T , H T H T , T H H T , H T T H , T H T H , T T H H  6 
1 head ,3 tails T T T H , T T H T , T H T T , H T T T  4
4 tails T T T T  1

A basic assumption behind the statistical approach is that each microstate is 
equally probable. Thus the number of microstates that give the same macrostate 
corresponds to the relative probability of that macrostate occurring. The 
macrostate of two heads and two tails is the most probable one in our case of 
tossing four coins; out of the total of 16 possible microstates, six correspond to 
two heads and two tails, so the probability of throwing two heads and two tails is 
6 out of 16, or 38%. The probability of throwing one head and three tails is 4 out 
of 16, or 25%. The probability of four heads is only 1 in 16, or 6%. If you threw 
the coins 16 times, you might not find that two heads and two tails appear exactly 
6 times, or four tails exactly once. These are only probabilities or averages. But if 
you made 1600 throws, very nearly 38% of them would be two heads and two 
tails. The greater the number of tries, the closer the percentages are to the 
calculated probabilities.

I EXERCISE E In the Table above, what is the probability that there will be at least two heads?



If we toss more coins—say, 100 all at the same time—the relative probability 
of throwing all heads (or all tails) is greatly reduced. There is only one microstate 
corresponding to all heads. For 99 heads and 1 tail, there are 100 microstates 
since each of the coins could be the one tail. The relative probabilities for other 
macrostates are given in Table 20-1. About 1.3 X 1030 microstates are possible. * 
Thus the relative probability of finding all heads is 1 in 1030, an incredibly 
unlikely event! The probability of obtaining 50 heads and 50 tails (see 
Table 20-1) is (l.O X 1029)/1.3 X 1030 = 0.08 or 8%. The probability of obtaining 
anything between 45 and 55 heads is over 70%.

TABLE 20-1 Probabilities of Various Macrostates for 100 Coin Tosses
Macrostate

Number of 
Microstates ProbabilityHeads Tails

100 0 1 7.9 X 10“31
99 1 1.0 X 102 7.9 X 10-29
90 10 1.7 X 1013 1.4 X 10 -17
80 20 5.4 X 1020 4.2 X 10“10
60 40 1.4 X 1028 0.01
55 45 6.1 X 1028 0.05
50 50 1.0 X 1029 0.08
45 55 6.1 X 1028 0.05
40 60 1.4 X 1028 0.01
20 80 5.4 X 1020 4.2 X 10“10
10 90 1.7 X 1013 1.4 X 10“17

1 99 1.0 X 102 7.9 X 10“29
0 100 1 7.9 X 10-31

Thus we see that as the number of coins increases, the probability of obtaining 
the most orderly arrangement (all heads or all tails) becomes extremely unlikely. 
The least orderly arrangement (half heads, half tails) is the most probable, and the 
probability of being within, say, 5% of the most probable arrangement greatly 
increases as the number of coins increases. These same ideas can be applied to the 
molecules of a system. For example, the most probable state of a gas (say, the air 
in a room) is one in which the molecules take up the whole space and move about 
randomly; this corresponds to the Maxwellian distribution, Fig. 20-14a (and see 
Section 18-2). On the other hand, the very orderly arrangement of all the 
molecules located in one corner of the room and all moving with the same 
velocity (Fig. 20-14b) is extremely unlikely.

From these examples, it is clear that probability is directly related to disorder 
and hence to entropy. That is, the most probable state is the one with greatest 
entropy or greatest disorder and randomness. Boltzmann showed, consistent 
with Clausius’s definition (dS = dQ/T), that the entropy of a system in a given
(macro) state can be written

S = k \nW , (20-14)

where k  is Boltzmann’s constant (k = R /N A = 1.38 X 10-23 J/K) and °W is the
number of microstates corresponding to the given macrostate. That is, W is
proportional to the probability of occurrence of that state. W is called the
thermodynamic probability, or, sometimes, the disorder parameter.

FIGURE 2 0 -1 4  (a) Most probable 
distribution of molecular speeds in 
a gas (Maxwellian, or random);
(b) orderly, but highly unlikely, 
distribution of speeds in which all 
molecules have nearly the same speed.

(a)
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Free expansion-statistical determination of entropy.
Use Eq. 20-14 to determine the change in entropy for the adiabatic free expansion 
of a gas, a calculation we did macroscopically in Example 20-7. Assume °W, the 
number of microstates for each macrostate, is the number of possible positions.
APPROACH We assume the number of moles is n = 1, and then the number of 
molecules is N  = nNA = NA. We let the volume double, just as in Example 20-7. 
Because the volume doubles, the number of possible positions for each molecule 
doubles.
SOLUTION When the volume doubles, each molecule has two times as many 
positions (microstates) available. For two molecules, the number of total 
microstates increases by 2 X 2 = 22. For NA molecules, the total number of 
microstates increases by a factor of 2 X 2 X 2 X  •■• = 2Na. That is 

T̂fi
The change in entropy is, from Eq. 20-14,

°W'
AS = S2 -  Si = k(\n°W2 -  ln 0!^) = A:In—r  = /t in 2 ^  = fcJVAln2 = i?ln2 

which is the same result we obtained in Example 20-7.

In terms of probability, the second law of thermodynamics—which tells us 
that entropy increases in any process—reduces to the statement that those 
processes occur which are most probable. The second law thus becomes a trivial 
statement. However there is an additional element now. The second law in 
terms of probability does not forbid a decrease in entropy. Rather, it says the 
probability is extremely low. It is not impossible that salt and pepper could 
separate spontaneously into layers, or that a broken tea cup could mend 
itself. It is even possible that a lake could freeze over on a hot summer day 
(that is, heat flow out of the cold lake into the warmer surroundings). But 
the probability for such events occurring is extremely small. In our coin 
examples, we saw that increasing the number of coins from 4 to 100 drastically 
reduced the probability of large deviations from the average, or most probable, 
arrangement. In ordinary systems we are not dealing with 100 molecules, but 
with incredibly large numbers of molecules: in 1 mol alone there are 6 X 1023 
molecules. Hence the probability of deviation far from the average is incredibly 
tiny. For example, it has been calculated that the probability that a stone resting 
on the ground should transform 1 cal of thermal energy into mechanical energy 
and rise up into the air is much less likely than the probability that a group of 
monkeys typing randomly would by chance produce the complete works of 
Shakespeare.

*20-10 Thermodynamic Temperature; 
Third Law of Thermodynamics

In Section 20-3 we saw for a Carnot cycle that the ratio of the heat absorbed QH from 
the high-temperature reservoir and the heat exhausted QL to the low-temperature 
reservoir is directly related to the ratio of the temperatures of the two reservoirs 
(Eq. 20-2):

Ql = Tl 
Qh Th

This result is valid for any reversible engine and does not depend on the working 
substance. It can thus serve as the basis for the Kelvin or thermodynamic 
temperature scale.

We use this relation and the ideal sas temperature scale (Section 17-10) to

EXAMPLE 20-9



Ttp = 273.16 K to the triple point of water so that 

T = (273.16

where Q and <2tp are the magnitudes of the heats exchanged by a Carnot engine 
with reservoirs at temperatures T  and Then the thermodynamic scale is 
identical to the ideal gas scale over the latter’s range of validity.

Very low temperatures are difficult to obtain experimentally. The closer the 
temperature is to absolute zero, the more difficult it is to reduce the temperature 
further, and it is generally accepted that it is not possible to reach absolute zero in 
any finite number o f processes. This last statement is one way to state1 the third 
law of thermodynamics. Since the maximum efficiency that any heat engine can 
have is the Carnot efficiency

and since TL can never be zero, we see that a 100% efficient heat engine is not possible.

FIGURE 2 0 -1 5  (a) A n array of mirrors focuses sunlight on a boiler to produce steam at a solar energy installation.
(b) A  fossil-fuel steam plant (this one uses forest waste products, biomass), (c) Large cooling towers at an electric generating plant.

(a)

20—11 Thermal Pollution, Global Warming, 
and Energy Resources

Much of the energy we utilize in everyday life—from motor vehicles to most of 
the electricity produced by power plants—makes use of a heat engine. Electricity 
produced by falling water at dams, by windmills, or by solar cells (Fig. 20-15a) 
does not involve a heat engine. But over 90% of the electric energy produced 
in the U.S. is generated at fossil-fuel steam plants (coal, oil, or gas—see 
Fig. 20-15b), and they make use of a heat engine (essentially steam engines). 
In electric power plants, the steam drives the turbines and generators (Fig. 20-16) 
whose output is electric energy. The various means to turn the turbine are discussed 
briefly in Table 20-2 (next page), along with some of the advantages and 
disadvantages of each. Even nuclear power plants use nuclear fuel to run a steam 
engine.

The heat output QL from every heat engine, from power plants to cars, is 
referred to as thermal pollution because this heat (QL) must be absorbed by the 
environment—such as by water from rivers or lakes, or by the air using large 
cooling towers (Fig. 20-15c). When water is the coolant, this heat raises the 
temperature of the water, altering the natural ecology of aquatic life (largely 
because warmer water holds less oxygen). In the case of air cooling towers, the 
output heat QL raises the temperature of the atmosphere, which affects the weather.

FIGURE 2 0 -1 6  Mechanical energy 
is transformed to electric energy 
with a turbine and generator.

Source of energy: 
water, 
steam, 

or wind

Electric 
generator

Turbine
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TABLE 20-2 Electric Energy Resources

Form of Electric 
Energy Production

of Production (approx.) 
U.S. World Advantages Disadvantages

Fossil-fuel steam plants: burn coal, 71 66
oil, or natural gas to boil water,
producing high-pressure steam that
turns a turbine of a generator
(Figs. 20-3b, 20-16); uses heat
engine.

Nuclear energy:
Fission: nuclei of uranium or 20 16
plutonium atoms split (“fission”) 
with release of energy (Chapter 42) 
that heats steam; uses heat engine.

Fusion: energy released when 
isotopes of hydrogen (or other 
small nuclei) combine or “fuse” 
(Chapter 42).

We know how to build them; for 
now relatively inexpensive.

Normally 
almost no air 
pollution; less 
contribution to 
global warming; 
relatively inexpensive.
Relatively “clean”; vast fuel 
supply (hydrogen in water 
molecules in oceans); less 
contribution to global warming.

Air pollution; thermal pollution; 
limited efficiency; land 
devastation from extraction of 
raw materials (mining); global 
warming; accidents such as 
oil spills at sea; limited fuel 
supply (estimates range from a 
couple of decades to a few 
centuries).

Thermal pollution; accidents can 
release damaging radioactivity; 
difficult disposal of radioactive 
by-products; possible diversion of 
nuclear material by terrorists; 
limited fuel supply.
Not yet workable.

Hydroelectric:
falling water 
turns turbines at 
the base of a 
dam.

16 No heat engine needed; no air, 
water, or thermal pollution; 
relatively inexpensive; high 
efficiency; dams can control 
flooding.

Reservoirs behind dams 
inundate scenic or inhabited 
land; dams block upstream 
migration of salmon and other 
fish for reproduction; few 
locations remain for new dams; 
drought.

Geothermal: natural steam from 
inside the Earth comes to the 
surface (hot springs, geysers, steam 
vents); or cold water passed down 
into contact with hot, dry rock is 
heated to steam.
Wind power:
3-kW to 5-MW 
windmills (vanes 
up to 50 m wide) 
turn a generator.

Solar energy:
Active solar heating: rooftop solar 
panels absorb the Sun’s rays, which 
heat water in tubes for space 
heating and hot water supply.

Passive solar heating: architectural 
devices—windows Song southern 
exposure, sunshade over windows 
to keep Sun’s rays out in summer.

Solar cells (photovoltaic cells):
convert sunlight directly into 
electricity without use of heat 
engine.

<1 <1

<1 <1

<1 <1

No heat engine needed; little air 
pollution; good efficiency; 
relatively inexpensive and 
“clean.”

No heat engine; no air, water, or 
thermal pollution; relatively 
inexpensive.

No heat engine 
needed; no air or 
thermal pollution; 
unlimited fuel 
supply.
No heat engine needed; no air or 
thermal pollution; relatively 
inexpensive.

No heat engine; thermal, air, 
and water pollution very low; 
good efficiency (>30% and 
improving).

Few appropriate sites; small 
production; mineral content of 
spent hot water can pollute.

Large array of big windmills 
might affect weather and be 
eyesores; hazardous to migratory 
birds; winds not always strong.

Space limitations; may require 
back-up; relatively expensive; 
less effective when cloudy.

Almost
none, but
other
methods
needed
too.

I rtiHrf
Expensive; chemical pollution at 
manufacture; large land area 
needed as Sun’s energy not 
concentrated.



Air pollution—by which we mean the chemicals released in the burning of 
fossil fuels in cars, power plants, and industrial furnaces—gives rise to smog and 
other problems. Another much talked about issue is the buildup of C 02 in the Earth’s 
atmosphere due to the burning of fossil fuels. C 02 absorbs some of the infrared 
radiation that the Earth naturally emits (Section 19-10) and thus can contribute to 
global warming. Limiting the burning of fossil fuels can help these problems.

Thermal pollution, however, is unavoidable. Engineers can try to design and 
build engines that are more efficient, but they cannot surpass the Carnot efficiency 
and must live with JL being at best the ambient temperature of water or air. The 
second law of thermodynamics tells us the limit imposed by nature. What we can 
do, in the light of the second law of thermodynamics, is use less energy and 
conserve our fuel resources.

s o l v ,
c> _______________________________

^  Thermodynamics
O 1. Define the system you are dealing with; distinguish 4.
^  the system under study from its surroundings.
^  2. Be careful of signs associated with work and heat. In 5. 

the first law, work done b y  the system is positive; 
work done on  the system is negative. Heat ad d ed  to the 
system is positive, but heat rem o ved  from it is negative.
With heat engines, we usually consider the heat intake, 
the heat exhausted, and the work done as positive. 6.

3. Watch the units used for work and heat; work is most 
often expressed in joules, and heat can be in calories, 
kilocalories, or joules. Be consistent: choose only one 
unit for use throughout a given problem.

Temperatures must generally be expressed in kelvins; 
temperature differences  may be expressed in C° or K. 
Efficiency (or coefficient of performance) is a ratio 
of two energy transfers: useful output divided by 
required input. Efficiency (but n o t  coefficient of 
performance) is always less than 1 in value, and 
hence is often stated as a percentage.
The entropy of a system increases when heat is 
added to the system, and decreases when heat is 
removed. If heat is transferred from system A to 
system B, the change in entropy of A is negative and 
the change in entropy of B is positive.

Summary
A  heat engine is a device for changing thermal energy, by means 
of heat flow, into useful work.

The efficiency of a heat engine is defined as the ratio of the 
work W  done by the engine to the heat input QH. Because of 
conservation of energy, the work output equals Qh ~  Ql > 
where Ql is the heat exhausted to the environment; hence the 
efficiency

= i  _  Ql 
Qh Qh

(20- 1)

Carnot’s (idealized) engine consists of two isothermal and 
two adiabatic processes in a reversible cycle. For a Carnot 
engine, or any reversible engine operating between two 
temperatures, TH and TL (in kelvins), the efficiency is

Tl
eideal — 1 — r  

I H
(20-3)

Irreversible (real) engines always have an efficiency less than 
this.

The operation of refrigerators and air conditioners is the
reverse of that of a heat engine: work is done to extract heat 
from a cool region and exhaust it to a region at a higher 
temperature. The coefficient of performance (COP) for either is

COP = % •  f refrigerator or 1
W  [air conditioner] v 7

A  heat pump does work W  to bring heat Q l from the cold 
outside and deliver heat QH to warm the interior. The coefficient 
of performance of a heat pump is

Q h
[heat pump] (20-5)COP w

The second law of thermodynamics can be stated in several 
equivalent ways:

(a) heat flows spontaneously from a hot object to a cold 
one, but not the reverse;

(b) there can be no 100% efficient heat engine— that is, one that 
can change a given amount of heat completely into work;

(c) natural processes tend to move toward a state of greater 
disorder or greater entropy.

Statement (c) is the most general statement of the second law of 
thermodynamics, and can be restated as: the total entropy, S, 
of any system plus that of its environment increases as a result of 
any natural process:

AS >  0. (20-13)
Entropy, which is a state variable, is a quantitative measure 

of the disorder of a system. The change in entropy of a system  
during a reversible process is given by AS = J dQ /T .

The second law of thermodynamics tells us in which direction 
processes tend to proceed; hence entropy is called “time’s arrow.”

A s time goes on, energy is degraded to less useful forms—  
that is. it is less available to do useful work.



Questions
1. Can mechanical energy ever be transformed completely 

into heat or internal energy? Can the reverse happen? In 
each case, if your answer is no, explain why not; if yes, give 
one or two examples.

2. Can you warm a kitchen in winter by leaving the oven door 
open? Can you cool the kitchen on a hot summer day by 
leaving the refrigerator door open? Explain.

3. Would a definition of heat engine efficiency as e = W /Q^ 
be useful? Explain.

4. What plays the role of high-temperature and low-temperature 
areas in (a) an internal combustion engine, and (b) a steam 
engine? Are they, strictly speaking, heat reservoirs?

5. Which will give the greater improvement in the efficiency of 
a Carnot engine, a 10C° increase in the high-temperature 
reservoir, or a 10 C° decrease in the low-temperature reservoir? 
Explain.

6. The oceans contain a tremendous amount of thermal 
(internal) energy. Why, in general, is it not possible to put 
this energy to useful work?

7. Discuss the factors that keep real engines from reaching 
Carnot efficiency.

8. The expansion valve in a refrigeration system, Fig. 20-10, is 
crucial for cooling the fluid. Explain how the cooling occurs.

9. Describe a process in nature that is nearly reversible.
10. (a) Describe how heat could be added to a system 

reversibly. (b) Could you use a stove burner to add heat to a 
system reversibly? Explain.

11. Suppose a gas expands to twice its original volume
(a) adiabatically, (b) isothermally. Which process would 
result in a greater change in entropy? Explain.

12. Give three examples, other than those mentioned in this 
Chapter, of naturally occurring processes in which order 
goes to disorder. Discuss the observability of the reverse 
process.

13. Which do you think has the greater entropy, 1 kg of solid 
iron or 1 kg of liquid iron? Why?

14. (a) What happens if you remove the lid of a bottle 
containing chlorine gas? (b) Does the reverse process ever 
happen? Why or why not? (c) Can you think of two other 
examples of irreversibility?

15. You are asked to test a machine that the inventor calls an 
“in-room air conditioner”: a big box, standing in the middle 
of the room, with a cable that plugs into a power outlet. 
When the machine is switched on, you feel a stream of cold 
air coming out of it. How do you know that this machine 
cannot cool the room?

16. Think up several processes (other than those already 
mentioned) that would obey the first law of thermodynamics, 
but, if they actually occurred, would violate the second 
law.

17. Suppose a lot of papers are strewn all over the floor; then 
you stack them neatly. Does this violate the second law of 
thermodynamics? Explain.

18. The first law of thermodynamics is sometimes whimsically 
stated as, “You can’t get something for nothing,” and the 
second law as, “You can’t even break even.” Explain 
how these statements could be equivalent to the formal 
statements.

19. Powdered milk is very slowly (quasistatically) added to 
water while being stirred. Is this a reversible process? Explain.

20. Two identical systems are taken from state a to state b by 
two different irreversible processes. Will the change in 
entropy for the system be the same for each process? For 
the environment? Answer carefully and completely.

21. It can be said that the total change in entropy during a 
process is a measure o f the irreversibility o f the process. 
Discuss why this is valid, starting with the fact that A,Stotai = 
A ̂ system A ̂ environment — 0 for & reversible process.

22. Use arguments, other than the principle of entropy increase, 
to show that for an adiabatic process, AS = 0 if it is done 
reversibly and AS >  0 if done irreversibly.

| Problems
20-2 Heat Engines
1. (I) A heat engine exhausts 7800 J of heat while performing 

2600 J of useful work. What is the efficiency of this engine?
2. (I) A certain power plant puts out 580 MW of electric 

power. Estimate the heat discharged per second, assuming 
that the plant has an efficiency of 35%.

3. (II) A typical compact car experiences a total drag force at 
55 mi/h of about 350 N. If this car gets 35 miles per gallon 
of gasoline at this speed, and a liter of gasoline (1 gal = 3.8 L) 
releases about 3.2 X 107J when burned, what is the car’s 
efficiency?

4. (II) A four-cylinder gasoline engine has an efficiency of 0.22 
and delivers 180 J of work per cycle per cylinder. The engine 
fires at 25 cycles per second, (a) Determine the work done 
per second, (b) What is the total heat input per second from
th e  a a sn lin e ?  ( r \  Tf th e  en e ro v  co n te n t n f  aa so lin e  is  130M .T

5. (II) The burning of gasoline in a car releases about
3.0 X 104 kcal/gal. If a car averages 38 km/gal when driving 
95 km/h, which requires 25 hp, what is the efficiency of the 
engine under those conditions?

6. (II) Figure 20-17 is a PV  diagram for a reversible heat 
engine in which 1.0 mol of argon, a nearly ideal

monatomic gas, is initially at STP (point a). 
Points b and c are on an isotherm at 

b T = 423 K. Process ab is at constant
volume, process ac at constant 

^  pressure, (a) Is the path of the
cycle carried out clockwise or 

counterclockwise? (b) What is 
the efficiency of this engine?

FIGURE 20—17



7. (Ill) The operation of a diesel engine can be idealized by the 
cycle shown in Fig. 20-18. Air is drawn into the cylinder 
during the intake stroke (not part of the idealized cycle). 
The air is compressed adiabatically, path ab. At point b 
diesel fuel is injected into the cylinder which immediately 
burns since the temperature is very high. Combustion is 
slow, and during the first part of the power stroke, the gas 
expands at (nearly) constant pressure, path be. After 
burning, the rest of the power stroke is adiabatic, path cd. 
Path da corresponds to the exhaust stroke, (a) Show that, 
for a quasistatic reversible engine undergoing this cycle 
using an ideal gas, the ideal efficiency is

= 1 ( v ^ r 7 -  (tyyb)~T
y iiv jv c ) -1 -  (ya/yb)-1] ’

where VJVb is the “compression ratio”, VJVC is the “expansion 
ratio”, and T is defined by Eq. 19-14. 

(b) If V jV h = 16 and VJVC = 4.5, 
calculate the efficiency assuming 

the gas is diatomic (like N2 and 
0 2) and ideal.

2 l

_________ FIGURE 20-18
0 V Problem 7.

10. (II) A heat engine exhausts its heat at 340° C and has a 
Carnot efficiency of 38%. What exhaust temperature would 
enable it to achieve a Carnot efficiency of 45%?

11. (II) (a) Show that the work done by a Carnot engine is equal 
to the area enclosed by the Carnot cycle on a PV  diagram, 
Fig. 20-7. (See Section 19-7.) (b) Generalize this to any 
reversible cycle.

12. (II) A Carnot engine’s operating temperatures are 210°C 
and 45°C. The engine’s power output is 950 W. Calculate the 
rate of heat output.

13. (II) A nuclear power plant operates at 65% of its maximum 
theoretical (Carnot) efficiency between temperatures of 660°C
and 33 0 °C  Tf the n lan t nrndnr.es eler.trir. enerov at the ra te  n f

14. (II) A Carnot engine performs work at the rate of 520 kW 
with an input of 950kcal of heat per second. If the 
temperature of the heat source is 560°C, at what temperature 
is the waste heat exhausted?

15. (II) Assume that a 65 kg hiker needs 4.0 X 103 kcal of 
energy to supply a day’s worth of metabolism. Estimate the 
maximum height the person can climb in one day, using only 
this amount of energy. As a rough prediction, treat the 
person as an isolated heat engine, operating between the 
internal temperature of 37°C (98.6°F) and the ambient air 
temperature of 20° C.

16. (II) A particular car does work at the rate of about 7.0kJ/s 
when traveling at a steady 20.0 m/s along a level road. This 
is the work done against friction. The car can travel 17 km 
on 1 L of gasoline at this speed (about 40 mi/gal). What is 
the minimum value for TH if TL is 25 °C? The energy avail­
able from 1 L of gas is 3.2 X 107 J.

17. (II) A heat engine utilizes a heat source at 580°C and has a 
Carnot efficiency of 32%. To increase the efficiency to 38%, 
what must be the temperature of the heat source?

18. (II) The working substance of a certain Carnot engine is
1.0 mol of an ideal monatomic gas. During the isothermal 
expansion portion of this engine’s cycle, the volume of the gas 
doubles, while during the adiabatic expansion the volume 
increases by a factor of 5.7. The work output of the engine is 
920 J in each cycle. Compute the temperatures of the two 
reservoirs between which this engine operates.

19. (Ill) A Carnot cycle, shown in Fig. 20-7, has the following 
conditions: Fa = 7.5 L, Vb = 15.0 L, TH = 470°C, and TL = 
260°C. The gas used in the cycle is 0.50 mol of a diatomic 
gas, J = 1.4. Calculate (a) the pressures at a and b; (b) the 
volumes at c and d. (c) What is the work done along 
process ab? (d) What is the heat lost along process cd? 
(e) Calculate the net work done for the whole cycle. (/)  What 
is the efficiency of the cycle, using the definition e = W/QH? 
Show that this is the same as given by Eq. 20-3.

20. (Ill) One mole of monatomic gas undergoes a Carnot cycle 
with JH = 350°C and TL = 210°C. The initial pressure is 
8.8 atm. During the isothermal expansion, the volume 
doubles, (a) Find the values of the pressure and volume at 
the points a, b, c, and d (see Fig. 20-7). (b) Determine Q, W, 
and A^nt for each segment of the cycle, (c) Calculate the 
efficiency of the cycle using Eqs. 20-1 and 20-3.

*21. (Ill) In an engine that approximates the Otto cycle (Fig. 20-8), 
gasoline vapor must be ignited at the end of the cylinder’s 
adiabatic compression by the spark from a spark plug. The 
ignition temperature of 87-octane gasoline vapor is about 
430° C and, assuming that the working gas is diatomic and 
enters the cylinder at 25 °C, determine the maximum 
compression ratio of the engine.

20-4 Refrigerators, Air Conditioners, Heat Pumps
22. (I) If an ideal refrigerator keeps its contents at 3.0°C when 

the house temperature is 22°C, what is its coefficient of 
performance?

23. (I) The low temperature of a freezer cooling coil is -15°C 
and the discharge temperature is 33°C. What is the 
maximum theoretical coefficient of performance?

24. (II) An ideal (Carnot) engine has an efficiency of 38%. If it 
w e re  n n ss ih le  tn  ru n  it  b a ckw a rd  as a heat num n . w h a t

20-3 Carnot Engine
8. (I) What is the maximum efficiency of a heat engine whose 

operating temperatures are 550°C and 365°C?
9. (I) It is not necessary that a heat engine’s hot environment be 

hotter than ambient temperature. Liquid nitrogen (77 K) is 
about as cheap as bottled water. What would be the efficiency 
of an engine that made use of heat transferred from air 
at room temperature (293 K) to the liquid nitrogen “fuel” 
(Fig. 20-19)?

FIGURE 20-19
Problem 9.



25. (II) An ideal heat pump is used to maintain the inside 
temperature of a house at 7]n = 22° C when the outside 
temperature is Tout. Assume that when it is operating, the 
heat pump does work at a rate of 1500 W. Also assume that 
the house loses heat via conduction through its walls and 
other surfaces at a rate given by (650W /C0) (7]n — Tout)
(a) For what outside temperature would the heat pump 
have to operate at all times in order to maintain the 
house at an inside temperature of 22°C? (b) If the outside 
temperature is 8°C, what percentage of the time does the 
heat pump have to operate in order to maintain the house 
at an inside temperature of 22°C?

26. (II) A restaurant refrigerator has a coefficient of performance 
of 5.0. If the temperature in the kitchen outside the refrigerator 
is 32° C, what is the lowest temperature that could be 
obtained inside the refrigerator if it were ideal?

27. (II) A heat pump is used to keep a house warm at 22°C. 
How much work is required of the pump to deliver 3100 J of 
heat into the house if the outdoor temperature is (a) 0°C,
(b) — 15°C? Assume ideal (Carnot) behavior.

28. (II) (a) Given that the coefficient of performance of a 
refrigerator is defined (Eq. 20-4a) as

show that for an ideal (Carnot) refrigerator,

COPideal = ™ ‘

(b) Write the COP in terms of the efficiency e of the 
reversible heat engine obtained by running the refrigerator 
backward, (c) What is the coefficient of performance for an 
ideal refrigerator that maintains a freezer compartment at 
—18°C when the condenser’s temperature is 24°C?

29. (II) A “Carnot” refrigerator (reverse of a Carnot engine) 
absorbs heat from the freezer compartment at a temperature 
of — 17°C and exhausts it into the room at 25°C.
(a) How much work must be done by the refrigerator to 
change 0.40 kg of water at 25°C into ice at -17°C? (b) If the 
compressor output is 180 W, what minimum time is needed 
to take 0.40 kg of 25°C water and freeze it at 0°C?

30. (II) A central heat pump operating as an air conditioner 
draws 33,000 Btu per hour from a building and operates 
between the temperatures of 24°C and 38°C. (a) If its 
coefficient of performance is 0.20 that of a Carnot air 
conditioner, what is the effective coefficient of performance? 
(ib) What is the power (kW) required of the compressor motor?
(c) What is the power in terms of hp?

31. (II) What volume of water at 0°C can a freezer make into 
ice cubes in 1.0 h, if the coefficient of performance of the 
cooling unit is 7.0 and the power input is 1.2 kilowatt?

20-5 and 20-6 Entropy
32. (I) What is the change in entropy of 250 g of steam at 100°C 

when it is condensed to water at 100°C?
33. (I) A 7.5-kg box having an initial speed of 4.0 m/s slides 

along a rough table and comes to rest. Estimate the total
r .h an ae  in  e n t rn n v  n f  the. u n iv e rs e  A s s u m e  a ll n b ie r .ts  a re  at

34. (I) What is the change in entropy of 1.00 m3 of water at 0°C 
when it is frozen to ice at 0°C?

35. (II) If 1.00 m3 of water at 0°C is frozen and cooled to — 10°C 
by being in contact with a great deal of ice at — 10°C, 
estimate the total change in entropy of the process.

36. (II) If 0.45 kg of water at 100°C is changed by a reversible 
process to steam at 100°C, determine the change in entropy 
of (a) the water, (b) the surroundings, and (c) the universe 
as a whole. (d) How would your answers differ if the process 
were irreversible?

37. (II) An aluminum rod conducts 9.50 cal/s from a heat source 
maintained at 225°C to a large body of water at 22° C. 
Calculate the rate at which entropy increases in this process.

38. (II) A 2.8-kg piece of aluminum at 43.0°C is placed in 1.0 kg 
of water in a Styrofoam container at room temperature 
(20° C). Estimate the net change in entropy of the system.

39. (II) An ideal gas expands isothermally (T  = 410 K) from a 
volume of 2.50 L and a pressure of 7.5 atm to a pressure of
1.0 atm. What is the entropy change for this process?

40. (II) When 2.0 kg of water at 12.0°C is mixed with 3.0 kg of 
water at 38.0°C in a well-insulated container, what is the 
change in entropy of the system? (a) Make an estimate;
(b) use the integral AS = JdQ /T.

41. (II) (a) An ice cube of mass m  at 0°C is placed in a large 
20°C room. Heat flows (from the room to the ice cube) 
such that the ice cube melts and the liquid water warms to 
20° C. The room is so large that its temperature remains 
nearly 20°C at all times. Calculate the change in entropy 
for the (water + room) system due to this process. Will 
this process occur naturally? (b) A mass m  of liquid 
water at 20°C is placed in a large 20°C room. Heat 
flows (from the water to the room) such that the liquid 
water cools to 0°C and then freezes into a 0°C ice 
cube. The room is so large that its temperature remains 
20° C at all times. Calculate the change in entropy for 
the (water + room) system due to this process. Will this 
process occur naturally?

42. (II) The temperature of 2.0 mol of an ideal diatomic gas 
goes from 25°C to 55°C at a constant volume. What is the 
change in entropy? Use AS = JdQ /T.

43. (II) Calculate the change in entropy of 1.00 kg of water 
when it is heated from 0°C to 75°C. (a) Make an estimate;
(b) use the integral AS = JdQ /T. (c) Does the entropy of 
the surroundings change? If so, by how much?

44. (II) An ideal gas of n moles undergoes the reversible 
process ab shown in the PV  diagram of Fig. 20-20. The 
temperature T  of the gas is the same at points a and b. 
Determine the change in entropy of the gas due to this 
process.



45. (II) Two samples of an ideal gas are initially at the same 
temperature and pressure. They are each compressed 
reversibly from a volume V  to volume V/2, one isothermally, 
the other adiabatically. (a) In which sample is the final pres­
sure greater? (b) Determine the change in entropy of the 
gas for each process by integration, (c) What is the entropy 
change of the environment for each process?

46. (II) A 150-g insulated aluminum cup at 15°C is filled with 
215 g of water at 100°C. Determine (a) the final temperature 
of the mixture, and (b) the total change in entropy as a 
result of the mixing process (use AS = jdQ /T).

47. (II) (a) Why would you expect the total entropy change in a 
Carnot cycle to be zero? (b) Do a calculation to show that it 
is zero.

48. (II) 1.00 mole of nitrogen (N2) gas and 1.00 mole of argon 
(Ar) gas are in separate, equal-sized, insulated containers at 
the same temperature. The containers are then connected 
and the gases (assumed ideal) allowed to mix. What is the 
change in entropy (a) of the system and (b) of the environ­
ment? (c) Repeat part (a) but assume one container is twice 
as large as the other.

49. (II) Thermodynamic processes are sometimes represented 
on TS (temperature-entropy) diagrams, rather than 
PV  diagrams. Determine the slope of a constant-volume 
process on a TS diagram when a system with n moles of an 
ideal gas with constant-volume molar specific heat Cv  is at 
temperature T.

50. (Ill) The specific heat per mole of potassium at low 
temperatures is given by Cv = aT + bT3, where 
a = 2.08mJ/mol-K2 and b = 2.57mJ/mol*K4. Determine 
(by integration) the entropy change of 0.15 mol of potassium 
when its temperature is lowered from 3.0 K to 1.0 K.

51. (Ill) Consider an ideal gas of n moles with molar specific 
heats Cy and CP. (a) Starting with the first law, show that 
when the temperature and volume of this gas are changed 
by a reversible process, its change in entropy is given by

^  dT dV dS = nCy—  + nR-^r-

(b) Show that the expression in part (a) can be written as

^  dP dV
dS — nCy p  + nCp y  '

(c) Using the expression from part (b), show that if dS = 0 
for the reversible process (that is, the process is adiabatic), 
then PVy = constant, where J  = CP/CV.

2 0 -8  Unavailability of Energy
52. (Ill) A general theorem states that the amount of energy that 

becomes unavailable to do useful work in any process is equal 
to r L AS, where TL is the lowest temperature available and AS 
is the total change in entropy during the process. Show that 
this is valid in the specific cases of (a) a falling rock that comes 
to rest when it hits the ground; (b) the free adiabatic expansion 
of an ideal gas; and (c) the conduction of heat, Q, from a 
high-temperature (rH) reservoir to a low-temperature (rL) 
reservoir. [Hint: In part (c) compare to a Carnot engine.]

53. (Ill) Determine the work available in a 3.5-kg block of 
Conner at 490 K if th e  surroundings are at 290 K. U se  results

*2 0 -9  Statistical Interpretation of Entropy
*54. (I) Use Eq. 20-14 to determine the entropy of each of the 

five macrostates listed in the Table on page 546.
*55. (II) Suppose that you repeatedly shake six coins in your 

hand and drop them on the floor. Construct a table showing 
the number of microstates that correspond to each 
macrostate. What is the probability of obtaining (a) three 
heads and three tails and (b) six heads?

* 56. (II) Calculate the relative probabilities, when you throw two
dice, of obtaining (a) a 7, (b) an 11, (c) a 4.

* 57. (II) (a) Suppose you have four coins, all with tails up. You now
rearrange them so two heads and two tails are up. What was 
the change in entropy of the coins? (b) Suppose your system is 
the 100 coins of Table 20-1; what is the change in entropy of the 
coins if they are mixed randomly initially, 50 heads and 50 tails, 
and you arrange them so all 100 are heads? (c) Compare 
these entropy changes to ordinary thermodynamic entropy 
changes, such as Examples 20-6,20-7, and 20-8.

*58. (Ill) Consider an isolated gas-like system consisting of a box 
that contains N  = 10 distinguishable atoms, each moving at 
the same speed v. The number of unique ways that these atoms 
can be arranged so that NL atoms are within the left-hand 
half of the box and NR atoms are within the right-hand 
half of the box is given by N l/N i)N r\, where, for example, the 
factorial 4! = 4-3-2-1 (the only exception is that 0! = 1). 
Define each unique arrangement of atoms within the box to 
be a microstate of this system. Now imagine the following 
two possible macrostates: state A where all of the atoms are 
within the left-hand half of the box and none are within the 
right-hand half; and state B where the distribution is uniform 
(that is, there is the same number in each half). See 
Fig. 20-21. (a) Assume the system is initially in state A and, 
at a later time, is found to be in state B. Determine the 
system’s change in entropy. Can this process occur naturally?
(b) Assume the system is initially in state B and, at a later 
time, is found to be in state A. Determine the system’s 
change in entropy. Can this process occur naturally?

State A (Nh = 10, NR = 0)

^  f  ^  V

o r  f &

State B (iVL = ii > II

j  ?  >> \ *

FIGURE 20-21 Problem 58.

*20-11 Energy Resources
*59. (II) Energy may be stored for use during peak demand by 

pumping water to a high reservoir when demand is low and 
then releasing it to drive turbines when needed. Suppose 
water is pumped to a lake 135 m above the turbines at a 
rate of 1.35 X 105kg/s for 10.0 h at night, (a) How much 
energy (kWh) is needed to do this each night? (b) If all 
th is  e n e rp v  is  re le ase d  d u rin g  a 14-h dav. at 75%  e ffid e n c v .



*60. (II) Solar cells (Fig. 20-22) can produce about 40 W of 
electricity per square meter of surface area if directly facing 
the Sun. How large an area is required to supply the needs 
of a house that requires 22 kWh/day? Would this fit on the 
roof of an average house? (Assume the Sun shines about 
9 h/day.)

*61. (II) Water is stored in an artificial lake created by a dam 
(Fig. 20-23). The water depth is 38 m at the dam, and a steady 
flow rate of 32m3/s  is maintained through hydroelectric 
turbines installed near the base of the dam. How much 
electrical power can be produced?

FIGURE 20-22 Problem 60.

| General Problems
62. It has been suggested that a heat engine could be developed 

that made use of the temperature difference between water 
at the surface of the ocean and water several hundred meters 
deep. In the tropics, the temperatures may be 27°C and 4°C, 
respectively, (a) What is the maximum efficiency such an 
engine could have? (b) Why might such an engine be 
feasible in spite of the low efficiency? (c) Can you imagine 
any adverse environmental effects that might occur?

63. A heat engine takes a diatomic gas around the cycle shown 
in Fig. 20-24. (a) Using the ideal gas law, determine how many 
moles of gas are in this engine. (b) Determine the temperature 
at point c. (c) Calculate the heat input into the gas during the 
constant volume process from points b to c. (d) Calculate the 
work done by the gas during the isothermal process from 
points a to b. (e) Calculate the work done by the gas during 
the adiabatic process from points c to a. ( /)  Determine the 
engine’s efficiency, (g) What is the maximum efficiency 
possible for an engine working between Ta and TC1

64. A 126.5-g insulated aluminum cup at 18.00°C is filled with
132.5 g of water at 46.25°C. After a few minutes, equilibrium 
is reached. Determine (a) the final temperature, and (b) the 
total change in entropy.

65. (a) A t a steam power plant, steam engines work in pairs, 
the heat output of the first one being the approximate 
heat input of the second. The operating temperatures of the 
first are 710°C and 430°C, and of the second 415°C and 
270°C. If the heat of combustion of coal is 2.8 X 107 J/kg, at 
what rate must coal be burned if the plant is to put out 
950 MW of power? Assume the efficiency of the engines is 
65% of the ideal (Carnot) efficiency. (b) Water is used to 
cool the power plant. If the water temperature is allowed to 
increase by no more than 5.5 C°, estimate how much water 
must pass through the plant per hour.

66. (II) Refrigeration units can be rated in “tons.” A 1-ton air 
conditioning system can remove sufficient energy to freeze 
1 British ton (2000 pounds = 909 kg) of 0°C water into 0°C 
ice in one 24-h day. If, on a 35°C day, the interior of a house 
is maintained at 22°C by the continuous operation of a 5-ton 
air conditioning system, how much does this cooling cost 
the homeowner per hour? Assume the work done by the 
refrigeration unit is powered by electricity that costs 
$0.10 per kWh and that the unit’s coefficient of performance 
is 15% that of an ideal refrigerator. 1 kWh = 3.60 X 106 J.

67. A 35% efficient power plant puts out 920 MW of electrical 
power. Cooling towers are used to take away the exhaust 
heat, (a) If the air temperature (15°C) is allowed to rise 7.0 C°, 
estimate what volume of air (km3) is heated per day. Will 
the local climate be heated significantly? (b) If the heated 
air were to form a layer 150 m thick, estimate how large an 
area it would cover for 24 h of operation. Assume the air
h a s  f le n s itv  1.9. k a / m 3 an d  th a t  it s  sn e n ifir . h e a t is  a h n u t

FIGURE 20-23 Problem 61.



68.

69.

(a) What is the coefficient of performance of an ideal heat 
pump that extracts heat from 11°C air outside and deposits 
heat inside your house at 24°C? (b) If this heat pump 
operates on 1400 W of electrical power, what is the 
maximum heat it can deliver into your house each hour? 
The operation of a certain heat engine takes an ideal 
monatomic gas through a cycle shown as the rectangle on 
the PV  diagram of Fig. 20-25. (a) Determine the efficiency 
of this engine. Let QH and QL be the total heat input and 
total heat exhausted during one cycle of this engine.

(b) Compare (as a ratio) the effi­
ciency of this engine to that of 

a Carnot engine operating 
between J H and Tl > where 
Th and Tl  are the highest 
and lowest temperatures 
achieved.

3 P —O'

FIGURE 20-25
Problem 69.

70. A car engine whose output power is 155 hp operates at 
about 15% efficiency. Assume the engine’s water tempera­
ture of 95 °C is its cold-temperature (exhaust) reservoir and 
495°C is its thermal “intake” temperature (the temperature 
of the exploding gas-air mixture), (a) What is the ratio of its 
efficiency relative to its maximum possible (Carnot) effi­
ciency? (b) Estimate how much power (in watts) goes into 
moving the car, and how much heat, in joules and in kcal, is 
exhausted to the air in 1.0 h.

71. Suppose a power plant delivers energy at 850 MW using 
steam turbines. The steam goes into the turbines 
superheated at 625 K and deposits its unused heat in river 
water at 285 K. Assume that the turbine operates as an ideal 
Carnot engine, (a) If the river’s flow rate is 34m3/s, 
estimate the average temperature increase of the river 
water immediately downstream from the power plant.
(b) What is the entropy increase per kilogram of the 
downstream river water in J/kg • K?

72. 1.00 mole of an ideal monatomic gas at STP first undergoes an 
isothermal expansion so that the volume at b is 2.5 times the 
volume at a (Fig. 20-26). Next, heat is extracted at a constant 
volume so that the pressure drops. The gas is then compressed 
adiabatically back to the original state, (a) Calculate the pres­
sures at b and c. (b) Determine the temperature at c.
(c) Determine the work done, heat input or extracted, and the 
change in entropy for each process. (d) What is the efficiency 
of this cycle?

73. Two 1100-kg cars are traveling 75 km/h in opposite directions 
when they collide and are brought to rest. Estimate the 
change in entropy of the universe as a result of this 
collision. Assume T  = 15°C.

74. Metabolizing 1.0 kg of fat results in about 3.7 X 107J of 
internal energy in the body, (a) In one day, how much fat 
does the body burn to maintain the body temperature of a 
person staying in bed and metabolizing at an average rate of 
95 W? (b) How long would it take to burn 1.0-kg of fat this 
way assuming there is no food intake?

75. A cooling unit for a new freezer has an inner surface area of
6.0 m2, and is bounded by walls 12 cm thick with a thermal 
conductivity of 0.050 W/m-K. The inside must be kept at 
—10°C in a room that is at 20°C. The motor for the cooling 
unit must run no more than 15% of the time. What is the 
minimum power requirement of the cooling motor?

76. An ideal air conditioner keeps the temperature inside a 
room at 21 °C when the outside temperature is 32° C. If
3.3 kW of power enters a room through the windows in the 
form of direct radiation from the Sun, how much electrical 
power would be saved if the windows were shaded so only 
500 W came through them?

77. The Stirling cycle, shown in Fig. 20-27, is useful to describe 
external combustion engines as well as solar-power systems. 
Find the efficiency of the cycle in terms of the parameters

shown, assuming a monatomic gas 
as the working substance. The 

processes ab and cd are 
isothermal whereas be 

and da are at constant 
volume. How does it 
compare to the Carnot 
efficiency?

H-------  FIGURE 20-27
yb V Problem 77.

78. A gas turbine operates under the Brayton cycle, which is 
depicted in the PV  diagram of Fig. 20-28. In process ab the 
air-fuel mixture undergoes an adiabatic compression. This 
is followed, in process be, with an isobaric (constant 
pressure) heating, by combustion. Process cd is an adiabatic 
expansion with expulsion of the products to the atmosphere. 
The return step, da, takes place at constant pressure. If the 

working gas behaves like an ideal 
gas, show that the efficiency of 

the Brayton cycle is
b \  > \ c , x 1-7

pb

FIGURE 20-28
Problem 78.

FIGURE 2 0 -2 6

79. Thermodynamic processes can be represented not only on 
PV  and PT  diagrams; another useful one is a TS (tempera­
tu re —e n tro ™ /! H iao ram . (n \ D ra w  a T S  d iag ram  fo r  a C a rn o t



80. An aluminum can, with negligible heat capacity, is filled with 
450 g of water at 0°C and then is brought into thermal 
contact with a similar can filled with 450 g of water at 50°C. 
Find the change in entropy of the system if no heat is allowed 
to exchange with the surroundings. Use AS = JdQ/T.

81. A dehumidifier is essentially a “refrigerator with an open 
door.” The humid air is pulled in by a fan and guided to a 
cold coil, whose temperature is less than the dew point, 
and some of the air’s water condenses. After this water is 
extracted, the air is warmed back to its original temperature 
and sent into the room. In a well-designed dehumidifier, the 
heat is exchanged between the incoming and outgoing air. 
Thus the heat that is removed by the refrigerator coil 
mostly comes from the condensation of water vapor to liquid. 
Estimate how much water is removed in 1.0 h by an 
ideal dehumidifier, if the temperature of the room is 25 °C, 
the water condenses at 8°C, and the dehumidifier does work 
at the rate of 650 W of electrical power.

Answers to Exercises

A: No. Efficiency makes no sense for a single process. It is 
defined (Eqs. 20-1) only for cyclic processes that return to 
the initial state.

B : (<*).

*82. A bowl contains a large number of red, orange, and green 
jelly beans. You are to make a line of three jelly beans.
(a) Construct a table showing the number of microstates that 
correspond to each macrostate. Then determine the proba­
bility of (b) all 3 beans red, and (c) 2 greens, 1 orange.

* Numerical/Computer
* 83. (II) At low temperature the specific heat of diamond varies

with absolute temperature T according to the Debye 
equation Cy = 1.88 X 103 (T/Td)3 J-m oP^KT1 where the 
Debye temperature for diamond is TD = 2230 K. Use a 
spreadsheet and numerical integration to determine the 
entropy change of 1.00 mol of diamond when it is heated at 
constant volume from 4 K to 40 K. Your result should agree 
within 2% of the result obtained by integrating the expres­
sion for dS. [Hint: dS = nCy dT/T, where n is the number 
of moles.]

D : 1220 J/K; -1220 J/K. (Note that the total entropy change, 
ASice + AtSj-gs, is zero.)

E: (e).



Electric Charge and 
Electric Field

This com b  has acquired  a static  
electric  charge, eith er from  passing  
through  hair, or b ein g  rubbed  by a 
clo th  or p aper tow el. T he electrica l 
charge on  th e  com b  in d uces a 
polarization  (sep aration  o f  charge)  
in  scraps o f  paper, and thus attracts 
them .

O ur in trodu ction  to  electricity  in  
this C hapter covers con d u ctors and  
insulators, and C o u lo m b ’s law  w hich  
rela tes th e  force  b e tw een  tw o  p o in t  
charges as a fun ction  o f  their  
distance apart. W e also  in trodu ce the  
pow erfu l co n cep t o f  electric  fie ld .

CHAPTER-OPENING QUESTION— Guess now!
Two identical tiny spheres have the same electric charge. If the electric charge on 
each of them is doubled, and their separation is also doubled, the force each exerts 
on the other will be 

(a) half.
(b) double.
(c) four times larger.
(d) one-quarter as large.
(e) unchanged.

The word “electricity” may evoke an image of complex modern technology: 
lights, motors, electronics, and computers. But the electric force plays an 
even deeper role in our lives. According to atomic theory, electric forces 
between atoms and molecules hold them together to form liquids and 

solids, and electric forces are also involved in the metabolic processes that occur 
within our bodies. Many of the forces we have dealt with so far, such as elastic 
forces, the normal force, and friction and other contact forces (pushes and pulls), 
are now considered to result from electric forces acting at the atomic level. Gravity, 
on the other hand, is a separate forced

fA s we discussed in Section 6 -7 , physicists in the twentieth century came to recognize four different 
fundamental forces in nature: (1) gravitational force, (2) electromagnetic force (we will see later that 
electric and magnetic forces are intimately related), (3) strong nuclear force, and (4) weak nuclear 
force. The last two forces operate at the level of the nucleus of an atom. Recent theory has combined
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FIGURE 2 1 -1  (a) Rub a plastic 
ruler and (b) bring it close to some 
tiny pieces of paper.

FIGURE 2 1 -2  Like charges repel 
one another; unlike charges attract. 
(N ote color coding: positive and 
negative charged objects are often  
colored pink and blue-green, 
respectively, when we want to 
emphasize them. We use these colors 
especially for point charges, but not 
often for real objects.)

(c) Charged glass rod attracts 
charged plastic ruler

LAW OF CONSERVATION 
OF ELECTRIC CHARGE

The earliest studies on electricity date back to the ancients, but only in the past 
two centuries has electricity been studied in detail. We will discuss the development 
of ideas about electricity, including practical devices, as well as its relation to 
magnetism, in the next eleven Chapters.

21-1 Static Electricity; Electric 
Charge and Its Conservation

The word electricity comes from the Greek word elektron, which means “amber.” 
Amber is petrified tree resin, and the ancients knew that if you rub a piece of 
amber with a cloth, the amber attracts small pieces of leaves or dust. A piece of 
hard rubber, a glass rod, or a plastic ruler rubbed with a cloth will also display this 
“amber effect,” or static electricity as we call it today. You can readily pick up 
small pieces of paper with a plastic comb or ruler that you have just vigorously 
rubbed with even a paper towel. See the photo on the previous page and Fig. 21-1. 
You have probably experienced static electricity when combing your hair or when 
taking a synthetic blouse or shirt from a clothes dryer. And you may have felt a 
shock when you touched a metal doorknob after sliding across a car seat or 
walking across a nylon carpet. In each case, an object becomes “charged” as a 
result of rubbing, and is said to possess a net electric charge.

Is all electric charge the same, or is there more than one type? In fact, there are 
two types of electric charge, as the following simple experiments show. A plastic 
ruler suspended by a thread is vigorously rubbed with a cloth to charge it. When a 
second plastic ruler, which has been charged in the same way, is brought close 
to the first, it is found that one ruler repels the other. This is shown in 
Fig. 21-2a. Similarly, if a rubbed glass rod is brought close to a second charged glass 
rod, again a repulsive force is seen to act, Fig. 21-2b. However, if the charged glass 
rod is brought close to the charged plastic ruler, it is found that they attract each 
other, Fig. 21-2c. The charge on the glass must therefore be different from that on 
the plastic. Indeed, it is found experimentally that all charged objects fall into one 
of two categories. Either they are attracted to the plastic and repelled by the glass; 
or they are repelled by the plastic and attracted to the glass. Thus there seem to be 
two, and only two, types of electric charge. Each type of charge repels the same type 
but attracts the opposite type. That is: unlike charges attract; like charges repel.

The two types of electric charge were referred to as positive and negative by the 
American statesman, philosopher, and scientist Benjamin Franklin (1706-1790). 
The choice of which name went with which type of charge was arbitrary. Franklin’s 
choice set the charge on the rubbed glass rod to be positive charge, so the charge on 
a rubbed plastic ruler (or amber) is called negative charge. We still follow this 
convention today.

Franklin argued that whenever a certain amount of charge is produced on one 
object, an equal amount of the opposite type of charge is produced on another 
object. The positive and negative are to be treated algebraically, so during any 
process, the net change in the amount of charge produced is zero. For example, 
when a plastic ruler is rubbed with a paper towel, the plastic acquires a negative 
charge and the towel acquires an equal amount of positive charge. The charges are 
separated, but the sum of the two is zero.

This is an example of a law that is now well established: the law of conservation 
of electric charge, which states that

the net amount of electric charge produced in any process is zero; 
or, said another way,

no net electric charge can be created or destroyed.
If one object (or a region of space) acquires a positive charge, then an equal 
amount of negative charge will be found in neighboring areas or objects. No 
violations have ever been found, and this conservation law is as firmlv established



21—2 Electric Charge in the Atom
Only within the past century has it become clear that an understanding of 
electricity originates inside the atom itself. In later Chapters we will discuss atomic 
structure and the ideas that led to our present view of the atom in more detail. But 
it will help our understanding of electricity if we discuss it briefly now.

A simplified model of an atom shows it as having a tiny but heavy, positively 
charged nucleus surrounded by one or more negatively charged electrons (Fig. 21-3). 
The nucleus contains protons, which are positively charged, and neutrons, which 
have no net electric charge. All protons and all electrons have exactly the same 
magnitude of electric charge; but their signs are opposite. Hence neutral atoms, 
having no net charge, contain equal numbers of protons and electrons. Sometimes 
an atom may lose one or more of its electrons, or may gain extra electrons, in which 
case it will have a net positive or negative charge and is called an ion.

In solid materials the nuclei tend to remain close to fixed positions, whereas 
some of the electrons may move quite freely. When an object is neutral, it contains 
equal amounts of positive and negative charge. The charging of a solid object by 
rubbing can be explained by the transfer of electrons from one object to the other. 
When a plastic ruler becomes negatively charged by rubbing with a paper towel, 
the transfer of electrons from the towel to the plastic leaves the towel with a 
positive charge equal in magnitude to the negative charge acquired by the plastic. 
In liquids and gases, nuclei or ions can move as well as electrons.

Normally when objects are charged by rubbing, they hold their charge only for 
a limited time and eventually return to the neutral state. Where does the charge 
go? Usually the charge “leaks off” onto water molecules in the air. This is because 
water molecules are polar—that is, even though they are neutral, their charge is not 
distributed uniformly, Fig. 21-4. Thus the extra electrons on, say, a charged plastic ruler 
can “leak off’ into the air because they are attracted to the positive end of water mole­
cules. A positively charged object, on the other hand, can be neutralized by transfer of 
loosely held electrons from water molecules in the air. On dry days, static electricity is 
much more noticeable since the air contains fewer water molecules to allow leakage. 
On humid or rainy days, it is difficult to make any object hold a net charge for long.

21-3  Insulators and Conductors
Suppose we have two metal spheres, one highly charged and the other electrically 
neutral (Fig. 21-5a). If we now place a metal object, such as a nail, so that it 
touches both spheres (Fig. 21-5b), the previously uncharged sphere quickly 
becomes charged. If, instead, we had connected the two spheres by a wooden rod 
or a piece of rubber (Fig. 21-5c), the uncharged ball would not become noticeably 
charged. Materials like the iron nail are said to be conductors of electricity, 
whereas wood and rubber are nonconductors or insulators.

Metals are generally good conductors, whereas most other materials are insu­
lators (although even insulators conduct electricity very slightly). Nearly all natural 
materials fall into one or the other of these two very distinct categories. However, 
a few materials (notably silicon and germanium) fall into an intermediate category 
known as semiconductors.

From the atomic point of view, the electrons in an insulating material are 
bound very tightly to the nuclei. In a good conductor, on the other hand, some of 
the electrons are bound very loosely and can move about freely within the 
material (although they cannot leave the object easily) and are often referred to as 
free electrons or conduction electrons. When a positively charged object is brought 
close to or touches a conductor, the free electrons in the conductor are attracted 
by this positively charged object and move quickly toward it. On the other hand, 
the free electrons move swiftly away from a negatively charged object that is 
broueht close to the conductor. In a semiconductor, there are manv fewer free

atom.

FIGURE 2 1 -4  Diagram of a water 
molecule. Because it has opposite 
charges on different ends, it is called 
a “polar” molecule.

FIGURE 2 1 -5  (a) A  charged metal 
sphere and a neutral metal sphere,
(b) The two spheres connected by a 
conductor (a metal nail), which 
conducts charge from one sphere to 
the other, (c) The original two spheres 
connected by an insulator (wood); 
almost no charge is conducted.

Charged Menlml

(a)

Melal

+ + +

fb)

Wood

+ +



2 1 -4  Induced Charge; the Electroscope

Charged ** 
metal object

(a) Neutral metal nkI

c passagei
v ++++
(b) Metal rod acquires 

charge by contact

FIGURE 21-6 A  neutral metal rod 
in (a) will acquire a positive charge 
if placed in contact (b) with a 
positively charged metal object. 
(Electrons move as shown by the 
orange arrow.) This is called 
charging by conduction.

Suppose a positively charged metal object is brought close to an uncharged metal 
object. If the two touch, the free electrons in the neutral one are attracted to the 
positively charged object and some will pass over to it, Fig. 21-6. Since the second 
object, originally neutral, is now missing some of its negative electrons, it will have 
a net positive charge. This process is called “charging by conduction,” or “by 
contact,” and the two objects end up with the same sign of charge.

Now suppose a positively charged object is brought close to a neutral metal 
rod, but does not touch it. Although the free electrons of the metal rod do not 
leave the rod, they still move within the metal toward the external positive 
charge, leaving a positive charge at the opposite end of the rod (Fig. 21-7). 
A charge is said to have been induced at the two ends of the metal rod. No net 
charge has been created in the rod: charges have merely been separated. The 
net charge on the metal rod is still zero. However, if the metal is separated into 
two pieces, we would have two charged objects: one charged positively and one 
charged negatively.

(a)
Neutral metal rod

+++

I
(b)

+ '
(b) Metal Mill neutral, but 

with a separation of chargc

FIGURE 21-7 Charging by 
induction.

FIGURE 21-8 Inducing a 
charge on an object connected 
to ground.

:l -+ 
Nuneouductor

FIGURE 21-9 A  charged object 
brought near an insulator causes a 
charge separation within the 
insulator’s molecules.

FIGURE 21-10 Electroscope.

Another way to induce a net charge on a metal object is to first connect it with 
a conducting wire to the ground (or a conducting pipe leading into the ground) as 
shown in Fig. 21-8a (the symbol =  means connected to “ground”). The object is 
then said to be “grounded” or “earthed.” The Earth, because it is so large and can 
conduct, easily accepts or gives up electrons; hence it acts like a reservoir for 
charge. If a charged object—say negative this time—is brought up close to the 
metal object, free electrons in the metal are repelled and many of them move 
down the wire into the Earth, Fig. 21-8b. This leaves the metal positively charged. 
If the wire is now cut, the metal object will have a positive induced charge 
on it (Fig. 21-8c). If the wire were cut after the negative object was moved away, 
the electrons would all have moved back into the metal object and it would 
be neutral.

Charge separation can also be done in nonconductors. If you bring a positively 
charged object close to a neutral nonconductor as shown in Fig. 21-9, almost no 
electrons can move about freely within the nonconductor. But they can move 
slightly within their own atoms and molecules. Each oval in Fig. 21-9 represents a 
molecule (not to scale); the negatively charged electrons, attracted to the external 
positive charge, tend to move in its direction within their molecules. Because the 
negative charges in the nonconductor are nearer to the external positive charge, 
the nonconductor as a whole is attracted to the external positive charge (see the 
Chapter-Opening Photo, page 559).

An electroscope is a device that can be used for detecting charge. As shown in 
Fie. 21-10. inside of a case are two movable metal leaves, often made of sold.



If a positively charged object is brought close to the knob, a separation of 
charge is induced: electrons are attracted up into the knob, leaving the leaves 
positively charged, Fig. 21-11a. The two leaves repel each other as shown, 
because they are both positively charged. If, instead, the knob is charged by 
conduction, the whole apparatus acquires a net charge as shown in Fig. 21 -llb . 
In either case, the greater the amount of charge, the greater the separation of 
the leaves.

Note that you cannot tell the sign of the charge in this way, since negative 
charge will cause the leaves to separate just as much as an equal amount of 
positive charge; in either case, the two leaves repel each other. An electroscope 
can, however, be used to determine the sign of the charge if it is first charged by 
conduction, say, negatively, as in Fig. 21-12a. Now if a negative object is brought 
close, as in Fig. 21-12b, more electrons are induced to move down into the leaves 
and they separate further. If a positive charge is brought close instead, the 
electrons are induced to flow upward, leaving the leaves less negative and their 
separation is reduced, Fig. 21-12c.

The electroscope was used in the early studies of electricity. The same 
principle, aided by some electronics, is used in much more sensitive modern 
electrometers.

21—5 Coulomb's Law
We have seen that an electric charge exerts a force of attraction or repulsion 
on other electric charges. What factors affect the magnitude of this force? 
To find an answer, the French physicist Charles Coulomb (1736-1806) 
investigated electric forces in the 1780s using a torsion balance (Fig. 21-13) 
much like that used by Cavendish for his studies of the gravitational force 
(Chapter 6).

Precise instruments for the measurement of electric charge were not available 
in Coulomb’s time. Nonetheless, Coulomb was able to prepare small spheres with 
different magnitudes of charge in which the ratio of the charges was known.1- 
Although he had some difficulty with induced charges, Coulomb was able to 
argue that the force one tiny charged object exerts on a second tiny charged 
object is directly proportional to the charge on each of them. That is, if the charge 
on either one of the objects is doubled, the force is doubled; and if the charge 
on both of the objects is doubled, the force increases to four times the original 
value. This was the case when the distance between the two charges remained the 
same. If the distance between them was allowed to increase, he found that 
the force decreased with the square o f the distance between them. That is, if the 
distance was doubled, the force fell to one-fourth of its original value. Thus, 
Coulomb concluded, the force one small charged object exerts on a second one is 
proportional to the product of the magnitude of the charge on one, Q1, times the 
magnitude of the charge on the other, Q2, and inversely proportional to the 
square of the distance r between them (Fig. 21-14). As an equation, we can write 
Coulomb’s law as

%  %
+

+ +

(a)
FIGURE 21-11
(a) by induction, (b) by conduction.

(fc)

Electroscope charged

FIGURE 21-12 A previously 
charged electroscope can be used to 
determine the sign of a charged object.

(a) (c)

FIGURE 21-13 (below)
Coulomb used a torsion balance to 
investigate how the electric force 
varies as a function of the magnitude 
of the charges and of the distance 
between them. When an external 
charged sphere is placed close to the 
charged one on the suspended bar, 
the bar rotates slightly. The 
suspending fiber resists the twisting 
motion, and the angle of twist is 
proportional to the electric force.

Y l-iber

Q i Q 2

where A: is a proportionality constant.

[magnitudes] (21-1)

Coulomb reasoned that if a charged conducting sphere is placed in contact with an identical uncharged 
sphere, the charge on the first would be shared equally by the two of them because of symmetry. He 
thus had a way to produce charges equal to \ , \ , and so on, of the original charge.
*The validity of Coulomb’s law today rests on precision measurements that are much more sophisticated

COULOMB’S LAW

FIGURE 21-14 Coulomb’s law, 
Eq. 21-1, gives the force between 
two point charges, Q1 and Q2, a 
distance r apart.

Q\
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1 (c) 2
FIGURE 2 1 -1 5  The direction of 
the static electric force one point 
charge exerts on another is always 
along the line joining the two 
charges, and depends on whether the 
charges have the same sign as in (a) 
and (b), or opposite signs (c).

As we just saw, Coulomb’s law,

r  j Q i Q iF = k — > [magnitudes] (21-1)

gives the magnitude of the electric force that either charge exerts on the other. The 
direction of the electric force is always along the line joining the two charges. If the two 
charges have the same sign, the force on either charge is directed away from the other 
(they repel each other). If the two charges have opposite signs, the force on one is 
directed toward the other (they attract). See Fig. 21-15. Notice that the force one 
charge exerts on the second is equal but opposite to that exerted by the second on the 
first, in accord with Newton’s third law.

The SI unit of charge is the coulomb (C).f The precise definition of the 
coulomb today is in terms of electric current and magnetic field, and will be 
discussed later (Section 28-3). In SI units, the constant k  in Coulomb’s law has 
the value

k = 8.99 X 109N-m2/C 2 

or, when we only need two significant figures,

k  «  9.0 X 109N*m2/C 2.

Thus, 1 C is that amount of charge which, if placed on each of two point 
objects that are 1.0 m apart, will result in each object exerting a force of 
(9.0 X 109N-m2/C 2)(1.0C)(1.0C)/(1.0m)2 = 9.0 X 109N on the other. This 
would be an enormous force, equal to the weight of almost a million tons. We rarely 
encounter charges as large as a coulomb.

Charges produced by rubbing ordinary objects (such as a comb or plastic 
ruler) are typically around a microcoulomb (l ijlC = 10-6 C) or less. Objects that 
carry a positive charge have a deficit of electrons, whereas negatively charged 
objects have an excess of electrons. The charge on one electron has been 
determined to have a magnitude of about 1.602 X 10-19 C, and is negative. This is 
the smallest charge found in nature,* and because it is fundamental, it is given the 
symbol e and is often referred to as the elementary charge'.

e = 1.602 X 10“19 C.

Note that e is defined as a positive number, so the charge on the electron is —e. (The 
charge on a proton, on the other hand, is +e.) Since an object cannot gain or lose a 
fraction of an electron, the net charge on any object must be an integral multiple of 
this charge. Electric charge is thus said to be quantized (existing only in discrete 
amounts: le, 2e, 3e, etc.). Because e is so small, however, we normally do not notice 
this discreteness in macroscopic charges (1 julC requires about 1013 electrons), which 
thus seem continuous.

Coulomb’s law looks a lot like the law o f universal gravitation, F = Gm1m1/r 2, 
which expresses the gravitational force a mass mx exerts on a mass m2 (Eq. 6-1). 
Both are inverse square laws (F oc 1/r2). Both also have a proportionality to a 
property of each object—mass for gravity, electric charge for electricity. And both 
act over a distance (that is, there is no need for contact). A major difference between 
the two laws is that gravity is always an attractive force, whereas the electric force 
can be either attractive or repulsive. Electric charge comes in two types, positive and 
negative; gravitational mass is only positive.

the once common cgs system of units, k is set equal to 1, and the unit of electric charge is called the 
electrostatic unit (esu) or the statcoulomb. One esu is defined as that charge, on each of two point 
objects 1 cm apart, that gives rise to a force of 1 dyne.
* According to the standard model of elementary particle physics, subnuclear particles called quarks



The constant k  in Eq. 21-1 is often written in terms of another constant, e0, 
called the permittivity of free space. It is related to A: by k = I/Attzq. Coulomb’s 
law can then be written

1 Q1 Q2

where
4776,

e0 = -j-T- = 8.85 X 10-12 C2/N  • m2. 477Ac

(21- 2)

Equation 21-2 looks more complicated than Eq. 21-1, but other fundamental 
equations we haven’t seen yet are simpler in terms of e0 rather than k. It doesn’t 
matter which form we use since Eqs. 21-1 and 21-2 are equivalent. (The latest 
precise values of e and e0 are given inside the front cover.)

[Our convention for units, such as C2/N*m2 for e0> means m2 is in the 
denominator. That is, C2/N*m2 does not mean (C2/N)-m 2 = C2-m2/N.]

Equations 21-1 and 21-2 apply to objects whose size is much smaller than the 
distance between them. Ideally, it is precise for point charges (spatial size 
negligible compared to other distances). For finite-sized objects, it is not always 
clear what value to use for r, particularly since the charge may not be distributed 
uniformly on the objects. If the two objects are spheres and the charge is known to 
be distributed uniformly on each, then r is the distance between their centers.

Coulomb’s law describes the force between two charges when they are at rest. 
Additional forces come into play when charges are in motion, and will be 
discussed in later Chapters. In this Chapter we discuss only charges at rest, the study 
of which is called electrostatics, and Coulomb’s law gives the electrostatic force.

When calculating with Coulomb’s law, we usually ignore the signs of the charges 
and determine the direction of a force separately based on whether the force is 
attractive or repulsive.

EXERCISE A Return to the Chapter-Opening Question, page 559, and answer it again now.
Try to explain why you may have answered differently the first time.

COULOMB’S LAW 
(in terms o fe0)

P R O B L E M  S O L V I N G
Use magnitudes in Coulomb’s law; 
find force direction from signs o f  charges

CONCEPTUAL EXAMPLE 21-1 ] Which charge exerts the greater force? Two
positive point charges, Q1 = 50 /jlC  and Q2 = 1 juC, are separated by a distance I, 
Fig. 21-16. Which is larger in magnitude, the force that Qi exerts on Q2, or the force 
that Q2 exerts on Q{!

RESPONSE From Coulomb’s law, the force on exerted by Q2 is
r  r Q1Q2 
Fn  = k —jp—

The force on Q2 exerted by Qx is

r  r Q2 Q1 
F21 = k ~ f ~

which is the same magnitude. The equation is symmetric with respect to the two 
charges, so F21 = F12.
NOTE Newton’s third law also tells us that these two forces must have equal 
magnitude.

Qi = 50 fi C 02-1
—

FIGURE 2 1 -1 6  Example 21-1 .

| EXERCISE B What is the magnitude of F12 (and F21) in Example 21-1  if £ =  30 cm?

Keep in mind that Eq. 21-2 (or 21-1) gives the force on a charge due to only 
one other charge. If several (or many) charges are present, the net force on any 
one o f them will be the vector sum o f the forces due to each o f the others. This 
principle of superposition is based on experiment, and tells us that electric force 
vectors add like anv other vector. For continuous distributions of charge, the sum
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Q 1 =  0 2 =  Q 3 =

-8 .0  jaC +3.0 juC - 4 .0  jnC
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y

Q3
GO

FIGURE 21-17 Example 21-2.

A  CAUTION_________
Each charge exerts its ow n force. 

N o charge blocks the effect o f  
the others

EXAMPLE 21-2 Three charges in a line. Three charged particles are 
arranged in a line, as shown in Fig. 21-17. Calculate the net electrostatic force on 
particle 3 (the -4.0 /jlC on the right) due to the other two charges.
APPROACH The net force on particle 3 is the vector sum of the force F31 exerted 
on 3 by particle 1 and the force F32 exerted on 3 by particle 2: F — F31 + F32. 
SOLUTION The magnitudes of these two forces are obtained using Coulomb’s 
law, Eq. 21-1:

0 3  Q l

r\ 1

= 1.2 N,

= 2.7 N.

(9.0 X 109 N • m2/C 2)(4.0 X 10“6C)(8.0 X 10“6C)
(0.50 m)2

where r31 = 0.50 m is the distance from Q3 to Qx. Similarly,

^ , Q3 Q2
32 = k ~ i —

r  32

(9.0 X 109N-m2/C 2)(4.0 X 10“6C)(3.0 X 10“6C)
(0.20 m)2

Since we were calculating the magnitudes of the forces, we omitted the signs of 
the charges. But we must be aware of them to get the direction of each force. Let 
the line joining the particles be the x axis, and we take it positive to the right. 
Then, because F31 is repulsive and F32 is attractive, the directions of the forces are 
as shown in Fig. 21-17b: F31 points in the positive x direction and F32 points in the 
negative x direction. The net force on particle 3 is then

F = -F 32 + F31 = -2.7 N + 1.2 N = -1.5 N.
The magnitude of the net force is 1.5 N, and it points to the left.
NOTE Charge Q1 acts on charge Q3 just as if Q2 were not there (this is the 
principle of superposition). That is, the charge in the middle, Q2, in no way blocks 
the effect of charge Q1 acting on Q3. Naturally, Q2 exerts its own force on Q3.

| EXERCISE C Determine the magnitude and direction of the net force on Q 1 in Fig. 21-17a.

■ I J l  Electric force using vector components. Calculate the net
electrostatic force on charge Q3 shown in Fig. 21-18a due to the charges Qx and Q2.
APPROACH We use Coulomb’s law to find the magnitudes of the individual 
forces. The direction of each force will be along the line connecting Q3 to 
Qi or Q2 - The forces F31 and F32 have the directions shown in Fig. 21-18a, since 
Q1 exerts an attractive force on Q3, and Q2 exerts a repulsive force. The forces 
F31 and F32 are not along the same line, so to find the resultant force on Q3 we 
resolve F31 and F32 into x and y components and perform the vector addition. 
SOLUTION The magnitudes of F31 and F32 are (ignoring signs of the charges since 
we know the directions)

Q 3 Q 1 (9-° x  109N-m2/C 2)(6.5 X 10“5C)(8.6 X 10“5C)
----------------------= 140N’

Q3Q2 (9-° x  109N-m2/C 2)(6.5 X 10“5C)(5.0 X 10“5C)
F32 = k —5— = -------------------------——— -------------------------= 330 N.3 r\2 (0.30 m)2

We resolve F31 into its components along the x and y axes, as shown in Fig. 21-18a: 

*31* = *31 cos 30° = (WON) cos 30° = 120 N,



FIGURE 21-18 Determining the forces 
for Example 21-3 . (a) The directions of 
the individual forces are as shown because 
F32 is repulsive (the force on Q3 is in the 
direction away from Q2 because Q3 and Q2 
are both positive) whereas F31 is attractive 
(Q 3 and Q i have opposite signs), so F31 points 
toward Q \ . (b) Adding F32 to F31 to obtain the 
net force F.

The force F32 
components

has only a y component. So the net force F on Q3 has

Fy = 31 yF 32 +  f 3

The magnitude of the net force is

f  =  v n

330 N -  70 N = 260 N.

= \ / ( 120N)2 + (260 N)2 = 290 N; 
and it acts at an angle 0 (see Fig. 21-18b) given by

tanfl = —  =
X

260 N
2.2,

120 N
so 0 = tan_1(2.2) = 65°.
NOTE Because f 31 and F32 are not along the same line, the magnitude of F3 is not 
equal to the sum (or difference as in Example 21-2) of the separate magnitudes.

CONCEPTUAL EXAMPLE 2 M l  Make the force on Q} zero. In Fig. 21-18, 
where could you place a fourth charge, QA = -50^tC, so that the net force on Q3 
would be zero?
RESPONSE By the principle of superposition, we need a force in exactly the opposite 
direction to the resultant F due to Q2 and Q1 that we calculated in Example 21-3, 
Fig. 21-18b. Our force must have magnitude 290 N, and must point down and to the 
left of Q3 in Fig. 21-18b. So Q4 must be along this line. See Fig. 21-19.

EXERCISE D (a) Consider two point charges of the same magnitude but opposite sign 
( + Q  and —Q), which are fixed a distance d  apart. Can you find a location where a third 
positive charge Q  could be placed so that the net electric force on this third charge is 
zero? (b) What if the first two charges were both +Q 1

* Vector Form of Coulomb's Law
Coulomb’s law can be written in vector form (as we did for Newton’s law of 
universal gravitation in Chapter 6, Section 6-2) as

p  _ k Q iQ i~
*12 “  & 2 r21> 

r21
where F12 is the vector force on charge Qx due to Q2 and r21 is the unit vector 
pointing from Q2 toward Q1. That is, ?21 points from the “source” charge (Q2) 
toward the charge on which we want to know the force ( g j .  See Fig. 21-20. The 
charges Qx and Q2 can be either positive or negative, and this will affect the direc­
tion of the electric force. If Qx and Q2 have the same sign, the product Qi Q2 >  0 
and the force on 0i ooints awav from On—that is. it is retmlsive. If 0^ and On have

04

FIGURE 21-19 ^Example 21-4:
Q 4 exerts force (F34) that makes the 
net force on Q3 zero.

FIGURE 21-20 Determining the 
force on Q \ due to Q2 , showing the 
direction of the unit vector r21.



21—6 The Electric Field

FIGURE 21-21 A n electric field 
surrounds every charge. P is an 
arbitrary point.

FIGURE 21-22 Force exerted by 
charge + Q  on a small test charge, q, 
placed at points A , B, and C.

• + Q

4:

FIGURE 21-23 (a) Electric field at 
a given point in space, (b) Force on a 
positive charge at that point, (c) Force 
on a negative charge at that point.

Many common forces might be referred to as “contact forces,” such as your hands 
pushing or pulling a cart, or a tennis racket hitting a tennis ball.

In contrast, both the gravitational force and the electrical force act over a distance: 
there is a force between two objects even when the objects are not touching. The idea 
of a force acting at a distance was a difficult one for early thinkers. Newton himself felt 
uneasy with this idea when he published his law of universal gravitation. A helpful way 
to look at the situation uses the idea of the field, developed by the British scientist 
Michael Faraday (1791-1867). In the electrical case, according to Faraday, an electric 
field extends outward from every charge and permeates all of space (Fig. 21-21). If a 
second charge (call it Q2) is placed near the first charge, it feels a force exerted by the 
electric field that is there (say, at point P in Fig. 21-21). The electric field at point P is 
considered to interact directly with charge Q2 to produce the force on Q2.

We can in principle investigate the electric field surrounding a charge or group 
of charges by measuring the force on a small positive test charge at rest. By a test 
charge we mean a charge so small that the force it exerts does not significantly 
affect the charges that create the field. If a tiny positive test charge q is placed 
at various locations in the vicinity of a single positive charge Q as shown in 
Fig. 21-22 (points A, B, C), the force exerted on q is as shown. The force at B is less 
than at A because B’s distance from Q is greater (Coulomb’s law); and the force at C 
is smaller still. In each case, the force on q is directed radially away from Q. The elec­
tric field is defined in terms of the force on such a positive test charge. In particular, 
the electric field, E, at any point in space is defined as the force F exerted on a tiny 
positive test charge placed at that point divided by the magnitude of the test charge q:

(21-3)

More precisely, E is defined as the limit of F/q as q is taken smaller and smaller, 
approaching zero. That is, q is so tiny that it exerts essentially no force on the other 
charges which created the field. From this definition (Eq. 21-3), we see that the 
electric field at any point in space is a vector whose direction is the direction of the 
force on a tiny positive test charge at that point, and whose magnitude is the force 
per unit charge. Thus E has SI units of newtons per coulomb (N/C).

The reason for defining E as F/q (with —> 0) is so that E does not depend 
on the magnitude of the test charge q. This means that E describes only the effect 
of the charges creating the electric field at that point.

The electric field at any point in space can be measured, based on the definition, 
Eq. 21-3. For simple situations involving one or several point charges, we can 
calculate E. For example, the electric field at a distance r from a single point 
charge Q would have magnitude
kqQ/r1

e  = f-  = 
q

E = k %  
rz

[single point charge] (21-4a)

[single point charge] (21-4b)

or, in terms of e0 as in Eq. 21-2 (k = l/47re0):

4?7€„ r2

Notice that E  is independent of the test charge q—that is, E  depends only on the 
charge Q which produces the field, and not on the value of the test charge q. 
Equations 21-4 are referred to as the electric field form of Coulomb’s law.

If we are given the electric field E at a given point in space, then we can 
calculate the force F on any charge q placed at that point by writing (see Eq. 21-3): 

F = qft. (21-5)



Photocopy machine. A photocopy machine works by p h y s i c s  a p p l i e d
arranging positive charges (in the pattern to be copied) on the surface of a Photocopier 
drum, then gently sprinkling negatively charged dry toner (ink) particles onto 
the drum. The toner particles temporarily stick to the pattern on the drum 
(Fig. 21-24) and are later transferred to paper and “melted” to produce the 
copy. Suppose each toner particle has a mass of 9.0 X 10-16kg and carries an 
average of 20 extra electrons to provide an electric charge. Assuming that the 
electric force on a toner particle must exceed twice its weight in order to ensure 
sufficient attraction, compute the required electric field strength near the surface 
of the drum.

APPROACH The electric force on a toner particle of charge q = 20e is F = qE, 
where E  is the needed electric field. This force needs to be at least as great as 
twice the weight (mg) of the particle.
SOLUTION The minimum value of electric field satisfies the relation

where q

qE = 2 mg 

= 20e. Hence

2jns _ _
q 20(1.6 X 10“19C)

EXAMPLE 21-5

EXAMPLE 21-6 Electric field of a single point charge. Calculate the 
magnitude and direction of the electric field at a point P which is 30 cm to the right 
of a point charge Q = -3.0 X 10“6 C.

APPROACH The magnitude of the electric field due to a single point charge is 
given by Eq. 21-4. The direction is found using the sign of the charge Q. 
SOLUTION The magnitude of the electric field is:

= k%  
rz

(9.0 X 109 N ■ m2/C 2)(3.0 X 10~6C) 
(0.30 m)2

3.0 x  105N/C.

The direction of the electric field is toward the charge Q, to the left as shown in 
Fig. 21-25a, since we defined the direction as that of the force on a positive test 
charge which here would be attractive. If Q had been positive, the electric field 
would have pointed away, as in Fig. 21-25b.
NOTE There is no electric charge at point P. But there is an electric field there. 
The only real charge is Q.

This Example illustrates a general result: The electric field E due to a positive 
charge points away from the charge, whereas E due to a negative charge points 
toward that charge.

FIGURE 21-24 Example 21-5 .

FIGURE 21-25 Example 21-6 . 
Electric field at point P (a) due to a 
negative charge Q, and (b) due to a 
positive charge Q, each 30 cm from P.

-̂-------- 30 cm----------

< »P
<2 = -3 .0  x 10-6 C ii = 3.0 x  105 N/C

(a)
•  P » »

<2 =+ 3 .0  x  10-6 C E = 3 .0 x l0 5 N/C

(b)

EXERCISE E Four charges of equal magnitude, but possibly different sign, are placed on 
the corners of a square. What arrangement of charges will produce an electric field with 
the greatest magnitude at the center of the square? (a) A ll four positive charges; (b) all 
four negative charges; (c) three positive and one negative; (d) two positive and two 
negative; (e) three negative and one positive.

If the electric field at a given point in space is due to more than one charge, 
the individual fields (call them E i, E2, etc.) due to each charge are added vectori- 
ally to get the total field at that point:

E — Ei + E2 +

Surface of

Toner particles 
hdd Lt» drum surfutx 
h> efeclric field E

The validitv of this suDeroosition nrincinle for electric fields is fullv confirmed bv



<2] = -25  jxC P (22 = +50/aC

FIGURE 21-26 Example 21 -7 . In (b), we h*-r1 = 2.0cm-H-<-------------------------------- r2 = 8.0cm ----------------------- H
don’t know the relative lengths of Ej and E 2 (a)
until we do the calculation.

Qi h  Qi
• -------  •

E i  (b)

EXAMPLE 21-7 E  at a point between two charges. Two point charges are 
separated by a distance of 10.0 cm. One has a charge of -25 and the other 
+50/aC. (0) Determine the direction and magnitude of the electric field at a 
point P between the two charges that is 2.0 cm from the negative charge 
(Fig. 21-26a). (b) If an electron (mass = 9.11 X 10“31 kg) is placed at rest at P and 
then released, what will be its initial acceleration (direction and magnitude)?
APPROACH The electric field at P will be the vector sum of the fields created sepa­
rately by Q1 and Q2. The field due to the negative charge Q1 points toward Q1, and 
the field due to the positive charge Q2 points away from Q2. Thus both fields point 
to the left as shown in Fig. 21-26b and we can add the magnitudes of the two fields 
together algebraically, ignoring the signs of the charges. In (b) we use Newton’s 
second law (F = ma) to determine the acceleration, where F = qE (Eq. 21-5). 
SOLUTION (a) Each field is due to a point charge as given by Eq. 21-4, 
E = kQ /r2. The total field is

zr i Q i  . j Q i j ( Q i Q 2E = k  —y  + k  —y  = k \ —r  H— 7 
n  rz2 \  r{ ri

(9.0 X 109 N • m2/C 2
25 X 10_6C 50 X 10_6C

.(2 .0  X 1 0 -2 m)2 (8 .0  X 1 0 -2 m)2.
= 6.3 X 108 N/C.

(b) The electric field points to the left, so the electron will feel a force to the right 
since it is negatively charged. Therefore the acceleration a = F/m  (Newton’s 
second law) will be to the right. The force on a charge q in an electric field E  is 
F = qE (Eq. 2 1 - 5 ) .  Hence the magnitude of the acceleration is

C m x i o - c X m x W n / c )  _  u  s ,

m m 9 .11  X 10  31 kg

NOTE By carefully considering the directions of each field (Ex and E2) before doing 
any calculations, we made sure our calculation could be done simply and correctly.

P R O B L E M  S O L V I N G
Ignore signs o f  charges and 

determine direction physically, 
show ing directions on diagram

EXAMPLE 21-8 E above two point charges. Calculate the total electric field
(a) at point A and (b) at point B in Fig. 21-27 due to both charges, Q1 and Q2.
APPROACH The calculation is much like that of Example 21-3, except now we 
are dealing with electric fields instead of force. The electric field at point A is 
the vector sum of the fields EA1 due to Q1, and EA2 due to Q2. We find the 
magnitude of the field produced by each point charge, then we add their components 
to find the total field at point A. We do the same for point B.
SOLUTION (a) The magnitude of the electric field produced at point A by each 
of the charges Q1 and Q2 is given by E = kQ /r2, so

E\o —

(9.0 X 109N-m2/C 2)(50 X 10“6C) 
(0.60 m)2 

(9.0 X 109N-m2/C 2)(50 X 10“6C) 
(0.30 m)2

= 1.25 X 106N/C,

= 5.0 X 106N/C.



O
'A

FIGURE 21-27 Calculation of the 
electric field at points A and B for 
Example 21-8.

from A away from Q2, as shown; so the total electric field at A, E A, has components 
EAx = £ AiCOs30° = 1.1 X 106N/C,
EAy = EA2 -  EA1 sin 30° = 4.4 X 106N/C.

Thus the magnitude of EA is
Ea = V ( l - l ) 2 + (4.4)2 X 106N/C = 4.5 X 106N/C, 

and its direction is (f> given by tan<£ = EAy/E Ax = 4.4/1.1 = 4.0, so <f> = 76°.
(b) Because B is equidistant from the two equal charges (40 cm by the Pythagorean 
theorem), the magnitudes of Ebi and Eb2 are the same; that is,

kQ (9.0 X 109N-m2/C 2)(50 X 10“6C)
Jl =

\ P R O B L E M  S O L V I N G
Use sym metry to save work, 
when possible

Et> 1 — Euo —
(0.40 m)2 

= 2.8 X 106N/C.
Also, because of the symmetry, the y components are equal and opposite, and so 
cancel out. Hence the total field EB is horizontal and equals Ebi cos 0 + e B2 cos 6 = 
2£B1cos0. From the diagram, cos0 = 26cm/40cm = 0.65. Then 

Eb = 2Eb1 cos 6 = 2(2.8 X 106N/C)(0.65)
= 3.6 X 106N/C, 

and the direction of EB is along the +x direction.
NOTE We could have done part (b) in the same way we did part (a). But 
symmetry allowed us to solve the problem with less effort.

^  c> ____________________________________________

Electrostatics: Electric Forces and 
Electric Fields
Solving electrostatics problems follows, to a large extent, 
the general problem-solving procedure discussed in 
Section 4-8. Whether you use electric field or electro­
static forces, the procedure is similar:
1. Draw a careful diagram—namely, a free-body 

diagram for each object, showing all the forces acting 
on that object, or showing the electric field at a point 
due to all significant charges present. Determine the 
direction of each force or electric field physically: 
like charges repel each other, unlike charges attract;
fipIHe nnint q w qv  from a -I- r,Viarn,p» anrl tnvi/arrl

a -  charge. Show and label each vector force or field 
on your diagram.

2. Apply Coulomb’s law to calculate the magnitude of 
the force that each contributing charge exerts on a 
charged object, or the magnitude of the electric field 
each charge produces at a given point. Deal only with 
magnitudes of charges (leaving out minus signs), and 
obtain the magnitude of each force or electric field.

3. Add vectorially all the forces on an object, or the 
contributing fields at a point, to get the resultant. Use 
symmetry (say, in the geometry) whenever possible.

4. Check your answer. Is it reasonable? If a function of 
distance, does it give reasonable results in limiting



21—7 Electric Field Calculations for 
Continuous Charge Distributions

P R O B L E M  S O L V I N G
Use sym metry 
when possible

\ P R O B L E M  S O L V I N G
Check result by noting that at a great 

distance the ring looks like a point charge

In many cases we can treat charge as being distributed continuously.* We can divide 
up a charge distribution into infinitesimal charges dQ, each of which will act as a tiny 
point charge. The contribution to the electric field at a distance r from each dQ is 

1 dQdE = (21-6a)
4t7€0 r

Then the electric field, E, at any point is obtained by summing over all the 
infinitesimal contributions, which is the integral

-
E = \dE. (21-6b)

Note that dE is a vector (Eq. 21-6a gives its magnitude). [In situations where Eq. 21-6b 
is difficult to evaluate, other techniques (discussed in the next two Chapters) can often 
be used instead to determine E. Numerical integration can also be used in many cases.]

EXAMPLE 21-9 A ring of charge. A thin, ring-shaped object of radius a 
holds a total charge +Q distributed uniformly around it. Determine the electric 
field at a point P on its axis, a distance x from the center. See Fig. 21-28. Let A be 
the charge per unit length (C/m).
APPROACH AND SOLUTION We explicitly follow the steps of the Problem 
Solving Strategy on page 571.
1. Draw a careful diagram. The direction of the electric field due to one infinitesimal 

length di of the charged ring is shown in Fig. 21-28.
2. Apply Coulomb’s law. The electric field, dE, due to this particular segment of 

the ring of length di has magnitude
1 dQ

dE = A--------2~'47re0 r1
The whole ring has length (circumference) of 2ira, so the charge on a length di is 

di 
2770

where A = Q/hra  is the charge per unit length. Now we write dE as 
1 A di

dQ = Q =  A di

dE = A4776o r
3. Add vectorially and use symmetry: The vector dE has components dEx along 

the x axis and dE± perpendicular to the x  axis (Fig. 21-28). We are going to 
sum (integrate) around the entire ring. We note that an equal-length segment 
diametrically opposite the di shown will produce a dE whose component 
perpendicular to the x axis will just cancel the dE± shown. This is true for all 
segments of the ring, so by symmetry E will have zero y component, and so we 
need only sum the x components, dEx . The total field is then

E = Ex = |  dEx = |  dE cos 0 = ^  A j, i di n 
A —z cos 0. 

4776o I r

Since cos0 = x/r, 
A

(4776 0) (.

where r = (x
r l ira 

di =
Jo

+ aL 2 ,

a2)i

)z, we have 
1 Ax(277«) 

+ a2)l
Qx

4776 o (x2 + a2)2

4. To check reasonableness, note that at great distances, x »  a, this result 
reduces to E = <2/(47re0%2). We would expect this result because at great 
distances the ring would appear to be a point charge (1/r2 dependence). Also 
note that our result gives E = 0 at x = 0, as we might expect because all



Note in this Example three important problem-solving techniques that can be 
used elsewhere: (1) using symmetry to reduce the complexity of the problem;
(2) expressing the charge dQ in terms of a charge density (here linear, A = Q/2ira)\ 
and (3) checking the answer at the limit of large r, which serves as an indication 
(but not proof) of the correctness of the answer—if the result does not check at 
large r, your result has to be wrong.

CONCEPTUAL EXAMPLE 21-10~1 Charge at the center of a ring. Imagine a 
small positive charge placed at the center of a nonconducting ring carrying a 
uniformly distributed negative charge. Is the positive charge in equilibrium if it is 
displaced slightly from the center along the axis of the ring, and if so is it stable? 
What if the small charge is negative? Neglect gravity, as it is much smaller than the 
electrostatic forces.
RESPONSE The positive charge is in equilibrium because there is no net force on 
it, by symmetry. If the positive charge moves away from the center of the ring 
along the axis in either direction, the net force will be back towards the center of 
the ring and so the charge is in sta b le  equilibrium. A negative charge at the center 
of the ring would feel no net force, but is in u n stab le  equilibrium because if it 
moved along the ring’s axis, the net force would be away from the ring and the 
charge would be pushed farther away.

g t P R O B L E M  S O L V I N G
Use symmetry, 
charge density, and 
values at r =  0 and  oo

EXAMPLE 21-11 Long line of charge. Determine the magnitude of the 
electric field at any point P a distance x from the midpoint 0 of a very long line (a 
wire, say) of uniformly distributed positive charge, Fig. 21-29. Assume x  is much 
smaller than the length of the wire, and let A be the charge per unit length (C/m).
APPROACH We set up a coordinate system so the wire is on the y axis with 
origin 0 as shown. A segment of wire dy has charge dQ = A dy. The field dE at 
point P due to this length dy of wire (at y) has magnitude

1 dQ 1 A dy
dE =

4776 o r2 47T€0 (x 2 +  y 2)

where r = (x2 + y2)2 as shown in Fig. 21-29. The vector dE has components 
dEx and dEy as shown where dEx = dE cos 6 and dEy = dE sin 6.
SOLUTION Because 0 is at the midpoint of the wire, the y component of E will 
be zero since there will be equal contributions to Ey = JdEy from above and 
below point 0:

Ev = dE sin 0 = 0.

Thus we have

E == Ex = |= dE  cos 6 =
A f a

4776 0 J X
cos 0 dy

The integration here is over y, along the wire, with x treated as constant. 
We must now write 0 as a function of y, or y as a function of 0. We 
do the latter: since y = x tan 0, then dy = x dd/cos2 0. 

x / \ / x 2 + y2, then l / ( x 2 + y2) = cos20/x2cos 6
(cosd)(xdd/cos2d)(cos2d/x2) = cosddd/x. Hence 

A 1 T /2 _ A

Furthermore, because 
and our integrand above is

E =
4776,

■7t/2

— | cos 6 dO =
- 77-/2ff 4776 nX (sin 0)

7t / 2

-7J-/2

1 A
2776 a X

where we have assumed the wire is extremely long in both directions (y —> +oo) 
which corresponds to the limits 0 = + 77/ 2. Thus the field near a long straight wire of 
uniform charge decreases inversely as the first power of the distance from the wire. 
NOTE This result, obtained for an infinite wire, is a good approximation for a 
wire of finite length as long as x is small compared to the distance of P from the



FIGURE 2 1 -3 0  Example 21-12; 
a uniformly charged flat disk of 
radius R.

EXAMPLE 21-12 Uniformly charged disk. Charge is distributed uniformly 
over a thin circular disk of radius R. The charge per unit area (C/m2) is cr. 
Calculate the electric field at a point P on the axis of the disk, a distance z above 
its center, Fig. 21-30.

APPROACH We can think of the disk as a set of concentric rings. We can then 
apply the result of Example 21-9 to each of these rings, and then sum over all 
the rings.
SOLUTION For the ring of radius r shown in Fig. 21-30, the electric field has 
magnitude (see result of Example 21-9)

1 z dQdE =
4t7€0 (z2 + r2)i

where we have written dE (instead of E) for this thin ring of total charge dQ. The 
ring has area (dr)(l7rr) and charge per unit area cr = dQ/{2irr dr). We solve 
this for dQ (= cr 2irr dr) and insert it in the equation above for dE:

1 zcrlirr dr zcrr dr
dE =

4we0 (z2 + r2)l 2e0(z2 + r2)i

Now we sum over all the rings, starting at r = 0 out to the largest with r = R:

zcr
2eTo Jo

r dr

(z2 + r*)f
Zcr
2e0

cr
2e0

{z2 + r2)\

1 -
+ R

This gives the magnitude of E at any point z along the axis of the disk. The 
direction of each dE due to each ring is along the z axis (as in Example 21-9), 
and therefore the direction of E is along z • If Q (and o) are positive, E points 
away from the disk; if Q (and cr) are negative, E points toward the disk.

If the radius of the disk in Example 21-12 is much greater than the distance of our 
point P from the disk (i.e., z «  R) then we can obtain a very useful result: the 
second term in the solution above becomes very small, so

2e0
[infinite plane] (21-7)

This result is valid for any point above (or below) an infinite plane of any shape 
holding a uniform charge density cr. It is also valid for points close to a finite 
plane, as long as the point is close to the plane compared to the distance to the 
edges of the plane. Thus the field near a large uniformly charged plane is uniform, 
and directed outward if the plane is positively charged.

It is interesting to compare here the distance dependence of the electric field due 
to a point charge (E  ~ 1/r2), due to a very long uniform line of charge (E ~ 1/r), 
and due to a very large uniform plane of charge (E  does not depend on r).

EXAMPLE 21-13 Two parallel plates. Determine the electric field between 
two large parallel plates or sheets, which are very thin and are separated by a 
distance d which is small compared to their height and width. One plate carries a 
uniform surface charge density cr and the other carries a uniform surface charge 
density -cr, as shown in Fig. 21-31 (the plates extend upward and downward 
beyond the part shown).

APPROACH From Eq. 21-7, each plate sets up an electric field of magnitude 
cr/2en. The field due to the oositive elate ooints awav from that Dlate whereas



-E

E = E+ + E_ = 0 E = E+ + E_ = 0

FIGURE 21-31 Example 21-13. 
(Only the center portion of these 
large plates is shown: their 
dimensions are large compared to 
their separation d .)

SOLUTION In the region between the plates, the fields add together as shown:

_  _  _  cr a  crE — E+ + E_ — —— + - — — —
2t a 2en €o

The field is uniform, since the plates are very large compared to their separation, 
so this result is valid for any point, whether near one or the other of the plates, or 
midway between them as long as the point is far from the ends. Outside the 
plates, the fields cancel,

as shown in Fig. 21-31. These results are valid ideally for infinitely large plates; 
they are a good approximation for finite plates if the separation is much less 
than the dimensions of the plate and for points not too close to the edge.
NOTE: These useful and extraordinary results illustrate the principle of superpo­
sition and its great power.

21—8 Field Lines
Since the electric field is a vector, it is sometimes referred to as a vector field. 
We could indicate the electric field with arrows at various points in a given 
situation, such as at A, B, and C in Fig. 21-32. The directions of EA, EB, and Ec 
are the same as that of the forces shown earlier in Fig. 21-22, but the 
magnitudes (arrow lengths) are different since we divide F in Fig. 21-22 by q  to 
get E . However, the relative lengths of EA, EB, and Ec are the same as for the 
forces since we divide by the same q  each time. To indicate the electric field in 
such a way at m a n y  points, however, would result in many arrows, which might 
appear complicated or confusing. To avoid this, we use another technique, that 
of field lines.

To visualize the electric field, we draw a series of lines to indicate the direction 
of the electric field at various points in space. These electric field lines (sometimes 
called lines of force) are drawn so that they indicate the direction of the force due 
to the given field on a positive test charge. The lines of force due to a single 
isolated positive charge are shown in Fig. 21-33a, and for a single isolated negative 
charge in Fig. 21-33b. In part (a) the lines point radially outward from the charge, 
and in part (b) they point radially inward toward the charge because that is the 
direction the force would be on a positive test charge in each case (as in Fig. 21-25). 
Only a few representative lines are shown. We could just as well draw lines in 
between those shown since the electric field exists there as well. We can draw the 
lines so that the n u m b er o f  lines s ta rtin g  on  a p o s i t iv e  charge, o r  en d in g  on  a  
n eg a tive  charge, is p ro p o r tio n a l to  the m a g n itu d e  o f  the charge. Notice that nearer 
the charge, where the electric field is greater (F oc 1/r2), the lines are closer 
together. This is a general property of electric field lines: the c lo ser togeth er the  
lines are, the s tro n g er the electric  f ie ld  in th a t region . In fact, field lines can be drawn
cn tViQt tVifi m im hp.r rrnccinCT unit arp^ nfvm pnH irn liir tr» ¥T. ic r»rr»r»nrtinnn1 tn

Ea
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•  +Q
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FIGURE 21-32 Electric field 
vector shown at three points, due to 
a single point charge Q. (Compare 
to Fig. 21-22.)

FIGURE 21-33 Electric field lines
(a) near a single positive point 
charge, (b) near a single negative 
point charge.

(a) (b)



+Q

(d)

FIGURE 21-34 Electric field lines 
for four arrangements of charges.

Figure 21-34a shows the electric field lines due to two equal charges of opposite 
sign, a combination known as an electric dipole. The electric field lines are curved in 
this case and are directed from the positive charge to the negative charge. The 
direction of the electric field at any point is tangent to the field line at that point as 
shown by the vector arrow E at point P. To satisfy yourself that this is the correct 
pattern for the electric field lines, you can make a few calculations such as those done 
in Example 21-8 for just this case (see Fig. 21-27). Figure 21-34b shows the electric 
field lines for two equal positive charges, and Fig. 21-34c for unequal charges, —Q and 
+2Q. Note that twice as many lines leave +2Q, as enter —Q (number of lines is 
proportional to magnitude of Q). Finally, in Fig. 21-34d, we see the field lines between 
two parallel plates carrying equal but opposite charges. Notice that the electric field 
lines between the two plates start out perpendicular to the surface of the metal plates 
(we will see why this is true in the next Section) and go directly from one plate to the 
other, as we expect because a positive test charge placed between the plates would feel 
a strong repulsion from the positive plate and a strong attraction to the negative plate. 
The field lines between two close plates are parallel and equally spaced in the central 
region, but fringe outward near the edges. Thus, in the central region, the electric field 
has the same magnitude at all points, and we can write (see Example 21-13)

r  . _ o- [ between two closely spaced, |
cons an  ̂ [ oppositely charged, parallel plates J  ̂ ^

The fringing of the field near the edges can often be ignored, particularly if the 
separation of the plates is small compared to their height and width.

We summarize the properties of field lines as follows:
1. Electric field lines indicate the direction of the electric field; the field points in 

the direction tangent to the field line at any point.
2. The lines are drawn so that the magnitude of the electric field, E, is propor­

tional to the number of lines crossing unit area perpendicular to the lines. The 
closer together the lines, the stronger the field.

3. Electric field lines start on positive charges and end on negative charges; and 
the number starting or ending is proportional to the magnitude of the charge.

Also note that field lines never cross. Why not? Because the electric field can not 
have two directions at the same point, nor exert more than one force on a test charge.

Gravitational Field
The field concept can also be applied to the gravitational force as mentioned in 
Chapter 6. Thus we can say that a gravitational field exists for every object that has 
mass. One object attracts another by means of the gravitational field. The Earth, 
for example, can be said to possess a gravitational field (Fig. 21-35) which is 
responsible for the gravitational force on objects. The gravitational field is defined 
as the force per unit mass. The magnitude of the Earth’s gravitational field at any 
point above the Earth’s surface is thus (GME/r 2), where ME is the mass of the 
Earth, r is the distance of the point from the Earth’s center, and G is the gravitational 
constant (Chapter 6). At the Earth’s surface, r is the radius of the Earth and the 
gravitational field is equal to g, the acceleration due to gravity. Beyond the Earth, 
the gravitational field can be calculated at any point as a sum of terms due to 
Earth, Sun, Moon, and other bodies that contribute significantly.

FIGURE 21-35 The Earth’s 
gravitational field.



21—9 Electric Fields and Conductors
We now discuss some properties of conductors. First, the electric field inside a 
conductor is zero in the static situation—that is, when the charges are at rest. If 
there were an electric field within a conductor, there would be a force on the free 
electrons. The electrons would move until they reached positions where the 
electric field, and therefore the electric force on them, did become zero.

This reasoning has some interesting consequences. For one, any net charge on a 
conductor distributes itself on the surface. (If there were charges inside, there would 
be an electric field.) For a negatively charged conductor, you can imagine that the 
negative charges repel one another and race to the surface to get as far from one 
another as possible. Another consequence is the following. Suppose that a positive 
charge Q is surrounded by an isolated uncharged metal conductor whose shape is a 
spherical shell, Fig. 21-36. Because there can be no field within the metal, the lines 
leaving the central positive charge must end on negative charges on the inner 
surface of the metal. Thus an equal amount of negative charge, —Q , is induced on 
the inner surface of the spherical shell. Then, since the shell is neutral, a positive 
charge of the same magnitude, +Q, must exist on the outer surface of the shell. 
Thus, although no field exists in the metal itself, an electric field exists outside of it, 
as shown in Fig. 21-36, as if the metal were not even there.

A related property of static electric fields and conductors is that the electric 
field is always perpendicular to the surface outside o f a conductor. If there were a 
component of E parallel to the surface (Fig. 21-37), it would exert a force on free 
electrons at the surface, causing the electrons to move along the surface until they 
reached positions where no net force was exerted on them parallel to the 
surface—that is, until the electric field was perpendicular to the surface.

These properties apply only to conductors. Inside a nonconductor, which does 
not have free electrons, a static electric field can exist as we will see in the next 
Chapter. Also, the electric field outside a nonconductor does not necessarily make 
an angle of 90° to the surface.

□

(a)

□

FIGURE 21-38 Example 21-14.

(b)

CONCEPTUAL EXAMPLE 21-14 I Shielding, and safety in a storm. A neutral 
hollow metal box is placed between two parallel charged plates as shown in 
Fig. 21-38a. What is the field like inside the box?
RESPONSE If our metal box had been solid, and not hollow, free electrons in the 
box would have redistributed themselves along the surface until all their individual 
fields would have canceled each other inside the box. The net field inside the box 
would have been zero. For a hollow box, the external field is not changed since 
the electrons in the metal can move just as freely as before to the surface. Hence 
the field inside the hollow metal box is also zero, and the field lines are shown in 
Fig. 21-38b. A conducting box used in this way is an effective device for shielding 
delicate instruments and electronic circuits from unwanted external electric 
fields. We also can see that a relatively safe place to be during a lightning storm is 
inside a parked car, surrounded by metal. See also Fig. 21-39, where a person inside

FIGURE 21-36 A charge inside a 
neutral spherical metal shell induces 
charge on its surfaces. The electric 
field exists even beyond the shell, 
but not within the conductor itself.

FIGURE 21-37 If the electric 
field E at the surface of a conductor 
had a component parallel to the 
surface, E ||, the latter would accelerate 
electrons into motion. In the static 
case, E| | must be zero, and the electric 
field must be perpendicular to the 
conductor’s surface: E = E±.

Good conductor

FIGURE 21-39 A strong electric 
field exists in the vicinity of this 
“Faraday cage,” so strong that stray 
electrons in the atmosphere are 
accelerated to the kinetic energy 
needed to knock electrons out of air 
atoms, causing an avalanche of 
charge which flows to (or from) the 
metal cage. Yet the person inside the 
cage is not affected.

^ P H Y S I C S  A P P L I E D



21—10 Motion of a Charged Particle in 
an Electric Field

FIGURE 21-40 Example 21-15.

FIGURE 21-41 Example 21-16.

-  -  -  3

o v0]

If an object having an electric charge q is at a point in space where the electric field 
is E, the force on the object is given by 

F = qE
(see Eq. 21-5). In the past few Sections we have seen how to determine E for some 
particular situations. Now let us suppose we know E and we want to find the force on 
a charged object and the object’s subsequent motion. (We assume no other forces act.)

EXAMPLE 21-15____________________ Electron accelerated by electric field. An electron (mass
m = 9.1 X 10-31kg) is accelerated in the uniform field E (E = 2.0 X 104N/C) 
between two parallel charged plates. The separation of the plates is 1.5 cm. The 
electron is accelerated from rest near the negative plate and passes through a 
tiny hole in the positive plate, Fig. 21-40. (a) With what speed does it leave the 
hole? (b) Show that the gravitational force can be ignored. Assume the hole is so 
small that it does not affect the uniform field between the plates.
APPROACH We can obtain the electron’s velocity using the kinematic equations 
of Chapter 2, after first finding its acceleration from Newton’s second law, F = ma. 
The magnitude of the force on the electron is F = qE and is directed to the right. 
SOLUTION (a) The magnitude of the electron’s acceleration is 

qE 
m

F̂
m

Between the plates E is uniform so the electron undergoes uniformly accelerated 
motion with acceleration

a =
(1.6 X 10“19C)(2.0 X 104N/C)

= 3.5 X 1015 m/s2.

+ + + + +

(9.1 X IO”31 kg)

It travels a distance x = 1.5 X 10_2m before reaching the hole, and since its 
initial speed was zero, we can use the kinematic equation, v2 = v\ + 2ax 
(Eq. 2 -12c), with v0 = 0:

v = V 2Vx = \/2(3.5 X 1015m/s2)(l.5 X 10“2m) = 1.0 X 107m/s.
There is no electric field outside the plates, so after passing through the hole, the 
electron moves with this speed, which is now constant.
(b) The magnitude of the electric force on the electron is

qE = (1.6 X 10“19C)(2.0 X 104N/C) = 3.2 X 10“15N.
The gravitational force is

mg = (9.1 X 10“31kg)(9.8m/s2) = 8.9 X 10“30N,
which is 1014 times smaller! Note that the electric field due to the electron does 
not enter the problem (since a particle cannot exert a force on itself).

EXAMPLE 21-16 Electron moving perpendicular to E. Suppose an 
electron traveling with speed v0 enters a uniform electric field E, which is 
at right angles to v0 as shown in Fig. 21-41. Describe its motion by giving the 
equation of its path while in the electric field. Ignore gravity.
APPROACH Again we use Newton’s second law, with F = qE, and the kinematic 
equations from Chapter 2.
SOLUTION When the electron enters the electric field (at x = y = 0) it has 
velocity v0 = v0i in the x direction. The electric field E, pointing vertically 
upward, imparts a uniform vertical acceleration to the electron of



The electron’s vertical position is given by Eq. 2-12b,
1 9 eE 9

y = 2 ^  = - l i n 1 
since the motion is at constant acceleration. The horizontal position is given by 

x = v01
since ax = 0. We eliminate t between these two equations and obtain

eE -
y = — 2 * ’

which is the equation of a parabola (just as in projectile motion, Section 3-7).

21—11 Electric Dipoles
The combination of two equal charges of opposite sign, +Q and —Q, separated by 
a distance £, is referred to as an electric dipole. The quantity Q£ is called the dipole 
moment and is represented* by the symbol p. The dipole moment can be 
considered to be a vector p, of magnitude Q£, that points from the negative to the 
positive charge as shown in Fig. 21-42. Many molecules, such as the diatomic 
molecule CO, have a dipole moment (C has a small positive charge and O a small 
negative charge of equal magnitude), and are referred to as polar molecules. Even 
though the molecule as a whole is neutral, there is a separation of charge that 
results from an uneven sharing of electrons by the two atoms.* (Symmetric 
diatomic molecules, like 0 2, have no dipole moment.) The water molecule, with its 
uneven sharing of electrons (O is negative, the two H are positive), also has a 
dipole moment—see Fig. 21-43.

Dipole in an External Field
First let us consider a dipole, of dipole moment p = Q£, that is placed in a 
uniform electric field E, as shown in Fig. 21-44. If the field is uniform, the force 
QE on the positive charge and the force -Q E  on the negative charge result in no 
net force on the dipole. There will, however, be a torque on the dipole (Fig. 21-44) 
which has magnitude (calculated about the center, 0, of the dipole)

£ £
t  =  QE —  sin0 +  Q E -sin  0  =  pE sin 6 .  (21-9a)

This can be written in vector notation as
f  = p X E. (21-9b)

The effect of the torque is to try to turn the dipole so p is parallel to E. The work done 
on the dipole by the electric field to change the angle 0 from 8i to 02 is (see Eq. 10-22)

[02
W = t  dd.

Jex
We need to write the torque as t  = - p E  sin 0 because its direction is opposite to 
the direction of increasing 0 (right-hand rule). Then

W  = r  dd = - p E  sin 0 dd = pE  cos 0
r#2

sii
Jft

= pE(c,osd2 — cos dij.

Positive work done by the field decreases the potential energy, U, of the dipole in 
this field. (Recall the relation between work and potential energy, Eq. 8-4, 
AU = —W.) If we choose U = 0 when p is perpendicular to E (that is, choosing 
0! = 90° so cos 0! = 0), and setting 02 = 0, then

u  =  - w  =  - p E  c o s e  =  - p - E .  (21-10)
If the electric field is not uniform, the force on the +Q of the dipole may not have 

the same magnitude as on the —Q, so there may be a net force as well as a torque.

h-----------£-----------H
•  .  > I

- Q  P + Q

FIGURE 21-42 A  dipole consists of 
equal but opposite charges, +  Q  and -  Q, 
separated by a distance t  The dipole 
moment is p =  Q£ and points from the 
negative to the positive charge.

FIGURE 21-43 In the water 
molecule (H 20 ) ,  the electrons spend 
more time around the oxygen atom  
than around the two hydrogen 
atoms. The net dipole moment p can 
be considered as the vector sum of 
two dipole moments px and p2 that 
point from the O toward each H as 
shown: p =  Pi +  p2.

FIGURE 21-44 (below) A n electric 
dipole in a uniform electric field.



FIGURE 21-45 Electric field due 
to an electric dipole.

EXAMPLE 21-17 Dipole in a field. The dipole moment of a water molecule 
is 6.1 X 10_30C*m. A water molecule is placed in a uniform electric field with 
magnitude 2.0 X 105N/C. (a) What is the magnitude of the maximum torque 
that the field can exert on the molecule? (b) What is the potential energy when 
the torque is at its maximum? (c) In what position will the potential energy take 
on its greatest value? Why is this different than the position where the torque 
is maximum?

APPROACH The torque is given by Eq. 21-9 and the potential energy by 
Eq. 21-10.
SOLUTION (a) From Eq. 21-9 we see that r  is maximized when 6 is 90°. Then 
t = pE  = (6.1 X 10_3°0m )(2 .0  X 105N/C) = 1.2 X 10“24N-m.
(b) The potential energy for 6 = 90° is zero (Eq. 21-10). Note that the potential 
energy is negative for smaller values of 0, so U is not a minimum for 0 = 90°.
(c) The potential energy U will be a maximum when cos0 = -1  in Eq. 21-10, 
so 0 = 180°, meaning E and p are antiparallel. The potential energy is maximized 
when the dipole is oriented so that it has to rotate through the largest angle, 180°, 
to reach the equilibrium position at 0 = 0°. The torque on the other hand is 
maximized when the electric forces are perpendicular to p.

Electric_Field Produced by a Dipole
We have just seen how an external electric field affects an electric dipole. Now let 
us suppose that there is no external field, and we want to determine the electric 
field produced by the dipole. For brevity, we restrict ourselves to points that are on 
the perpendicular bisector of the dipole, such as point P in Fig. 21-45 which is a 
distance r above the midpoint of the dipole. Note that r in Fig. 21-45 is not the 
distance from either charge to point P; the latter distance is (r2 + l2/4)i and this 
is what must be used in Eq. 21-4. The total field at P is

E = E+ + E_,

where E+ and E_ are the fields due to the + and -  charges respectively. The 
magnitudes E+ and E  are equal:

£ , = £ _ =  Q
4776 o r2 + P/4

Their y components cancel at point P (symmetry again), so the magnitude of the 
total field E is

E  = 2E+ cos <f> = —  + f2/4 j  2^ 2 +

or, setting Qi = p,
p __1______ P [on perpendicular bisector] ✓r i _11v

47r€0 (r2 + i2/4 ) i ' I of dipole j  Xij

Far from the dipole, r »  I, this reduces to

r  _  1 P [on perpendicular bisector]
h  ~ 47760 r3' L of dipole; r »  £ J

So the field decreases more rapidly for a dipole than for a single point charge 
( l / r 3 versus 1/r2), which we expect since at large distances the two opposite 
charges appear so close together as to neutralize each other. This 1 /r3 
dependence also applies for points not on the perpendicular bisector (see



*21-12 Electric Forces in Molecular Biology; 
DNA

The interior of every biological cell is mainly water. We can imagine a cell as a vast 
sea of molecules continually in motion (kinetic theory, Chapter 18), colliding with 
one another with various amounts of kinetic energy. These molecules interact with 
one another because of electrostatic attraction between molecules.

Indeed, cellular processes are now considered to be the result of random 
(“thermal”) molecular motion plus the ordering effect o f the electrostatic force. As 
an example, we look at DNA structure and replication. The picture we present has 
not been seen “in action.” Rather, it is a model of what happens based on physical 
theories and experiment.

The genetic information that is passed on from generation to generation in all 
living cells is contained in the chromosomes, which are made up of genes. Each 
gene contains the information needed to produce a particular type of protein 
molecule, and that information is built into the principal molecule of a chromosome, 
DNA (deoxyribonucleic acid), Fig. 21-46. DNA molecules are made up of many 
small molecules known as nucleotide bases which are each polar due to unequal 
sharing of electrons. There are four types of nucleotide bases in DNA: adenine (A), 
cytosine (C), guanine (G), and thymine (T).

The DNA of a chromosome generally consists of two long DNA strands wrapped 
about one another in the shape of a “double helix.” The genetic information is 
contained in the specific order of the four bases (A, C, G,T) along the strand. As shown 
in Fig. 21-47, the two strands are attracted by electrostatic forces—that is, by the 
attraction of positive charges to negative charges that exist on parts of the molecules. 
We see in Fig. 21-47a that an A (adenine) on one strand is always opposite a T on the 
other strand; similarly, a G is always opposite a C.This important ordering effect occurs 
because the shapes of A, T, C, and G are such that a T fits closely only into an A, and 
a G into a C; and only in the case of this close proximity of the charged portions is 
the electrostatic force great enough to hold them together even for a short time 
(Fig. 21-47b), forming what are referred to as “weak bonds.”

Thymine \T)

®  I®
H --V / r  0.280

T O P H Y S I C S  A P P L I E D
Inside a cell: 
kinetic theory plus 
electrostatic force

FIGURE 21-46 DNA replicating in 
a human HeLa cancer cell. This is a 
false-color image made by a 
transmission electron microscope 
(TEM; discussed in Chapter 37).
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FIGURE 21 -47 (a) Section of a DNA double helix, 
(b) “Close-up” view of the helix, showing how A and T 
attract each other and how G and C attract each other 
through electrostatic forces. The + and -  signs 
represent net charges, usually a fraction of e, due to 
uneven sharing of electrons. The red dots indicate the 
electrostatic attraction (often called a “weak bond” or 
“hydrogen bond”— Section 40-3). Note that there are
tw n  w e a k  h n n d s b e tw e en  A  an d  T  and th re e  b e tw e en



FIGURE 21-48 Replication of DNA.

2

When the DNA replicates (duplicates) itself just before cell division, the 
arrangement of A opposite T and G opposite C is crucial for ensuring that the 
genetic information is passed on accurately to the next generation, Fig. 21-48. 
The two strands of DNA separate (with the help of enzymes, which also operate 
via the electrostatic force), leaving the charged parts of the bases exposed. Once 
replication starts, let us see how the correct order of bases occurs by looking at 
the G molecule indicated by the red arrow in Fig. 21-48. Many unattached 
nucleotide bases of all four kinds are bouncing around in the cellular fluid, and 
the only type that will experience attraction to our G, if it bounces close to it, will 
be a C. The charges on the other three bases can not get close enough to those on 
the G to provide a significant attractive force—remember that the force 
decreases rapidly with distance (oc 1/r2). Because the G does not attract an A, T, 
or G appreciably, an A, T, or G will be knocked away by collisions with other 
molecules before enzymes can attach it to the growing chain (number 3). But the 
electrostatic force will often hold a C opposite our G long enough so that an 
enzyme can attach the C to the growing end of the new chain. Thus we see that 
electrostatic forces are responsible for selecting the bases in the proper order 
during replication.

This process of DNA replication is often presented as if it occurred in 
clockwork fashion—as if each molecule knew its role and went to its assigned 
place. But this is not the case. The forces of attraction are rather weak, and if the 
molecular shapes are not just right, there is almost no electrostatic attraction, 
which is why there are few mistakes. Thus, out of the random motion of the 
molecules, the electrostatic force acts to bring order out of chaos.

*21—13 Photocopy Machines and Computer 
Printers Use Electrostatics

Photocopy machines and laser printers use electrostatic attraction to print an 
image. They each use a different technique to project an image onto a special 
cylindrical drum. The drum is typically made of aluminum, a good conductor; its 
surface is coated with a thin layer of selenium, which has the interesting property 
(called “photoconductivity”) of being an electrical nonconductor in the dark, but a 
conductor when exposed to light.

In a photocopier, lenses and mirrors focus an image of the original sheet of 
paper onto the drum, much like a camera lens focuses an image on film. Step 1 is 
the placing of a uniform positive charge on the drum’s selenium layer by a charged 
rod or roller, done in the dark. In stet> 2. the imase to be cooied or orinted is

(^ P H Y S I C S  A P P L I E D
Photocopy machines



(2) Lens focuses image of original

I) Charging rod or roller

(5 ) Heeler rollersCharging rod

FIGURE 21-49 Inside a photocopy 
machine: (1) the selenium drum is given 
a + charge; (2) the lens focuses image 
on drum— only dark spots stay charged;
(3) toner particles (negatively charged) 
are attracted to positive areas on drum;
(4) the image is transferred to paper;
(5) heat binds the image to the paper.

a white background (as on the page of a book) as shown in Fig. 21-49. The 
letter A on the drum is dark, but all around it is light. At all these light places, the 
selenium becomes conducting and electrons flow in from the aluminum beneath, 
neutralizing those positive areas. In the dark areas of the letter A, the selenium is 
nonconducting and so retains a positive charge, Fig. 21-49. In step 3, a fine dark 
powder known as toner is given a negative charge, and brushed on the drum as it 
rotates. The negatively charged toner particles are attracted to the positive areas 
on the drum (the A in our case) and stick only there. In step 4, the rotating drum 
presses against a piece of paper which has been positively charged more strongly 
than the selenium, so the toner particles are transferred to the paper, forming the 
final image. Finally, step 5, the paper is heated to fix the toner particles firmly on 
the paper.

In a color copier (or printer), this process is repeated for each color—black, 
cyan (blue), magenta (red), and yellow. Combining these four colors in different 
proportions produces any desired color.

A laser printer, on the other hand, uses a computer output to program the 
intensity of a laser beam onto the selenium-coated drum. The thin beam of light 
from the laser is scanned (by a movable mirror) from side to side across the 
drum in a series of horizontal lines, each line just below the previous line. As the 
beam sweeps across the drum, the intensity of the beam is varied by the computer 
output, being strong for a point that is meant to be white or bright, and weak or 
zero for points that are meant to come out dark. After each sweep, the drum 
rotates very slightly for additional sweeps, Fig. 21-50, until a complete image is 
formed on it. The light parts of the selenium become conducting and lose their 
electric charge, and the toner sticks only to the dark, electrically charged areas. The 
drum then transfers the image to paper, as in a photocopier.

An inkjet printer does not use a drum. Instead nozzles spray tiny droplets of 
ink directly at the paper. The nozzles are swept across the paper, each sweep just 
above the previous one as the paper moves down. On each sweep, the ink makes 
dots on the paper, except for those points where no ink is desired, as directed by 
the computer. The image consists of a huge number of very tiny dots. The quality 
or resolution of a printer is usually specified in dots per inch (dpi) in each 
(linear) direction.

( g  P H Y S I C S  A P P L I E D
Laser printer

Cg] P H Y S I C S  A P P L I E D
Inkjet printer

FIGURE 21-50 Inside a laser 
printer: A movable mirror sweeps 
the laser beam in horizontal lines 
across the drum.



Summary
There are two kinds of electric charge, positive and negative. 
These designations are to be taken algebraically—that is, any 
charge is plus or minus so many coulombs (C), in SI units.

Electric charge is conserved: if a certain amount of one type of 
charge is produced in a process, an equal amount of the opposite 
type is also produced; thus the net charge produced is zero.

According to atomic theory, electricity originates in the 
atom, each consisting of a positively charged nucleus surrounded 
by negatively charged electrons. Each electron has a charge 
- e  = -1 .6  X 10“19C.

Electric conductors are those materials in which many 
electrons are relatively free to move, whereas electric insulators 
are those in which very few electrons are free to move.

An object is negatively charged when it has an excess of 
electrons, and positively charged when it has less than its normal 
amount of electrons. The charge on any object is thus a whole 
number times +e or —e. That is, charge is quantized.

An object can become charged by rubbing (in which 
electrons are transferred from one material to another), by 
conduction (which is transfer of charge from one charged object 
to another by touching), or by induction (the separation of 
charge within an object because of the close approach of 
another charged object but without touching).

Electric charges exert a force on each other. If two charges 
are of opposite types, one positive and one negative, they each 
exert an attractive force on the other. If the two charges are the 
same type, each repels the other.

The magnitude of the force one point charge exerts on 
another is proportional to the product of their charges, and 
inversely proportional to the square of the distance between them:

Qi Qi l Qi QiF = k
4 7 7 6  r

(21- 1, 21- 2)

We think of an electric field as existing in space around any 
charge or group of charges. The force on another charged object 
is then said to be due to the electric field present at its location.

The electric field, E, at any point in space due to one or 
more charges, is defined as the force per unit charge that would 
act on a positive test charge q placed at that point:

*  FE = — 
q

(21-3)

The magnitude of the electric field a distance r from a point 
charge Q is

E = k® -  
r

(21-4a)

this is Coulomb’s law. In SI units, k  is often written as l/47re0.

The total electric field at a point in space is equal to the 
vector sum of the individual fields due to each contributing 
charge (principle of superposition).

Electric fields are represented by electric field lines that start 
on positive charges and end on negative charges. Their direction 
indicates the direction the force would be on a tiny positive test 
charge placed at each point. The lines can be drawn so that the 
number per unit area is proportional to the magnitude of E.

The static electric field inside a conductor is zero, and the 
electric field lines just outside a charged conductor are perpen­
dicular to its surface.

An electric dipole is a combination of two equal but 
opposite charges, +Q and —Q, separated by a distance £. The 
dipole moment is p = Qi. A dipole placed in a uniform electric 
field feels no net force but does feel a net torque (unless p is 
parallel to E). The electric field produced by a dipole decreases 
as the third power of the distance r from the dipole (E oc 1/r3) 
for r large compared to £.

[*In the replication of DNA, the electrostatic force plays a 
crucial role in selecting the proper molecules so the genetic 
information is passed on accurately from generation to generation.]

Questions
1. If you charge a pocket comb by rubbing it with a silk 

scarf, how can you determine if the comb is positively or 
negatively charged?

2. Why does a shirt or blouse taken from a clothes dryer 
sometimes cling to your body?

3. Explain why fog or rain droplets tend to form around ions 
or electrons in the air.

4. A positively charged rod is brought close to a neutral piece of 
paper, which it attracts. Draw a diagram showing the separa­
tion of charge in the paper, and explain why attraction occurs.

5. Why does a plastic ruler that has been rubbed with a cloth 
have the ability to pick up small pieces of paper? Why is this 
difficult to do on a humid day?

6. Contrast the net charge on a conductor to the “free charges” 
in the conductor.

7. Figures 21-7 and 21-8 show how a charged rod placed near 
an uncharged metal object can attract (or repel) electrons. 
There are a great many electrons in the metal, yet only 
some of them move as shown. Why not all of them?

8. When an electroscope is charged, the two leaves repel each 
other and remain at an an ale. W hat balances the electric

9. The form of Coulomb’s law is very similar to that for 
Newton’s law of universal gravitation. What are the differences 
between these two laws? Compare also gravitational mass 
and electric charge.

10. We are not normally aware of the gravitational or electric 
force between two ordinary objects. What is the reason in 
each case? Give an example where we are aware of each 
one and why.

11. Is the electric force a conservative force? Why or why not? 
(See Chapter 8.)

12. What experimental observations mentioned in the text rule 
out the possibility that the numerator in Coulomb’s law 
contains the sum (Qi + Qi) rather than the product Qi Qi7-

13. When a charged ruler attracts small pieces of paper, 
sometimes a piece jumps quickly away after touching the 
ruler. Explain.

14. Explain why the test charges we use when measuring electric 
fields must be small.

15. When determining an electric field, must we use a positive 
test charge, or would a negative one do as well? Explain.

16. Draw the electric field lines snrroundina two negative



17. Assume that the two opposite charges in Fig. 21-34a are
12.0 cm apart. Consider the magnitude of the electric field
2.5 cm from the positive charge. On which side of this 
charge—top, bottom, left, or right—is the electric field the 
strongest? The weakest?

18. Consider the electric field at the three points indicated by 
the letters A, B, and C in Fig. 21-51. First draw an arrow at 
each point indicating the direction of the net force 
that a positive test charge would experience if placed at 
that point, then list 
the letters in order 
of decreasing field 
strength (strongest 
first).

FIGURE 21-51
Question 18.

19. Why can electric field lines never cross?
20. Show, using the three rules for field lines given in Section 21-8, 

that the electric field lines starting or ending on a single 
point charge must be symmetrically spaced around the 
charge.

21. Given two point charges, Q and 2Q, a distance I apart, is 
there a point along the straight line that passes through them 
where E  = 0 when their signs are (a) opposite, (b) the 
same? If yes, state roughly where this point will be.

22. Suppose the ring of Fig. 21-28 has a uniformly distributed 
negative charge Q. What is the magnitude and direction of 
E at point P?

23. Consider a small positive test charge located on an electric 
field line at some point, such as point P in Fig. 21-34a. Is the 
direction of the velocity and/or acceleration of the test 
charge along this line? Discuss.

24. We wish to determine the electric field at a point near a 
positively charged metal sphere (a good conductor). We do 
so by bringing a small test charge, q0, to this point and 
measure the force F0 on it. Will F0/q0 be greater than, less 
than, or equal to the electric field E as it was at that 
point before the test charge was present?

25. In what ways does the electron motion in Example 21-16 
resemble projectile motion (Section 3-7)? In which ways not?

26. Describe the motion of the dipole shown in Fig. 21-44 if it is 
released from rest at the position shown.

27. Explain why there can be a net force on an electric dipole 
placed in a nonuniform electric field.

| Problems
21-5 Coulomb's Law
[1 mC = 10“3 C, 1 fiC = 10“6 C, 1 nC = 10“9 C.]
1. (I) What is the magnitude of the electric force of attraction 

between an iron nucleus (q = +26e) and its innermost 
electron if the distance between them is 1.5 X 10-12 m?

2. (I) How many electrons make up a charge of —38.0 fiCl
3. (I) What is the magnitude of the force a +25 /jlC  charge 

exerts on a +2.5 mC charge 28 cm away?
4. (I) What is the repulsive electrical force between two protons

4.0 X 1 0 15 m apart from each other in an atomic nucleus?
5. (II) When an object such as a plastic comb is charged by 

rubbing it with a cloth, the net charge is typically a few 
microcoulombs. If that charge is 3.0 /jlC, by what percentage 
does the mass of a 35-g comb change during charging?

6. (II) Two charged dust particles exert a force of 3.2 X 10 2 N 
on each other. What will be the force if they are moved so 
they are only one-eighth as far apart?

7. (II) Two charged spheres are 8.45 cm apart. They are moved, 
and the force on each of them is found to have been tripled. 
How far apart are they now?

8. (II) A person scuffing her feet on a wool rug on a dry day 
accumulates a net charge of —46 /jlC. H o w  many excess elec­
trons does she get, and by how much does her mass increase?

9. (II) What is the total charge of all the electrons in a 15-kg 
bar of gold? What is the net charge of the bar? (Gold has 
79 electrons per atom and an atomic mass of 197 u.)

10. (II) Compare the electric force holding the electron in 
orbit (r = 0.53 X 10-10m) around the proton nucleus of 
the hydrogen atom, with the gravitational force between 
th e  sam e e le c tro n  and n ro to n . W h a t is  th e  ra t io  o f  these

11. (II) Two positive point charges are a fixed distance apart. 
The sum of their charges is QT. What charge must each 
have in order to (a) maximize the electric force between 
them, and (b) minimize it?

12. (II) Particles of charge +75, +48, and —85 jllC are placed in 
a line (Fig. 21-52). The center one is 0.35 m from each of 
the others. Calculate the net force on each charge due to the 
other two.

FIGURE 21-52
Problem 12.

+75 fiC
0.35 m

+48 fxC -85 ixC
0.35 m

+7.0 [jlC

13. (II) Three charged particles are placed at the corners of 
an equilateral triangle of side 1.20 m (Fig. 21-53). The 
charges are +7.0 (jlC, S.OfxC, and -6.0 pC. Calculate the 
magnitude and direction of the net 
force on each due to the other 
two.

FIGURE 21-53
Problem 13.

1.20 m
Q2  = — 8 .0 fxC (2 3 — —6 .0 fxC

14. (II) Two small nonconducting spheres have a total charge of
90.0 /JLC. (a) When placed 1.16 m apart, the force each exerts 
on the other is 12.0 N and is repulsive. What is the charge on 
each? (b) What if the force were attractive?

15. (II) A charge of 4.15 mC is placed at each corner of a square 
0.100 m on a side. D eterm ine the magnitude and direction



16. (II) Two negative and two positive point charges 
(magnitude Q = 4.15 mC) are placed on opposite corners 
of a square as shown in
Fig. 21-54. Determine the 
magnitude and direction of 
the force on each charge.

FIGURE 21-54
Problem 16.

-4.15 mC

0.100 m

4.15 mC

0.100 m

0.100 m

4.15 mC

0.100 m

-4.15 mC

17. (II) A charge Q is transferred from an initially uncharged 
plastic ball to an identical ball 12 cm away. The force of 
attraction is then 17 mN. How many electrons were trans­
ferred from one ball to the other?

18. (Ill) Two charges, —Q0 and ~4Q0, are a distance £ apart. 
These two charges are free to move but do not because 
there is a third charge nearby. What must be the magnitude 
of the third charge and its placement in order for the first 
two to be in equilibrium?

19. (Ill) Two positive charges +Q are affixed rigidly to the x axis, 
one at x = +d and the other at x = — d. A third charge +q 
of mass ra, which is constrained to move only along the x axis, 
is displaced from the origin by a small distance s «  d and 
then released from rest, (a) Show that (to a good approxima­
tion) +q will execute simple harmonic motion and determine 
an expression for its oscillation period T. (b) If these three 
charges are each singly ionized sodium atoms (q = Q = +e) 
at the equilibrium spacing d = 3 X 10-10m typical of the 
atomic spacing in a solid, find T  in picoseconds.

20. (Ill) Two small charged spheres hang from cords of equal 
length £ as shown in Fig. 21-55 and make
small angles $i and 02 with the vertical, (a) If Qi = Q, Qi = 20, and m1 = m2 = ra, 
determine the ratio 61/ 62- (b) If <2i = Qi Qi = 2<2, mi = ra, and ra2 = 2ra, deter­
mine the ratio 0i/02. (c) Estimate the 
distance between the spheres for each case.

FIGURE 21-55
Problem 20. Ql

21 -6  to 21 -8  Electric Field, Field Lines
21. (I) What are the magnitude and direction of the electric 

force on an electron in a uniform electric field of strength 
1920 N/C that points due east?

22. (I) A proton is released in a uniform electric field, and it expe­
riences an electric force of 2.18 X 10-14 N toward the south. 
What are the magnitude and direction of the electric field?

23. (I) Determine the magnitude and direction of the electric 
field 16.4 cm directly above an isolated 33.0 X 10-6 C charge.

24. (I) A downward electric force of 8.4 N  is exerted on a -8.8 jjlC  
charge. What are the magnitude and direction of the electric 
field at the position of this charge?

25. (I) The electric force on a +4.20-/aC charge is 
F = (7.22 X 10-4N)j. What is the electric field at the posi­
tion of the charge?

26. (I) What is the electric field at a point when the force 
on a 1.25-u.C. charge nlaeed at that noint is

27. (II) Determine the magnitude of the acceleration experienced 
by an electron in an electric field of 576 N/C. How does the 
direction of the acceleration depend on the direction of the 
field at that point?

28. (II) Determine the magnitude and direction of the electric 
field at a point midway between a -8.0jitC and a +5.8 /jlC  
charge 8.0 cm apart. Assume no other charges are nearby.

29. (II) Draw, approximately, the electric field lines about two 
point charges, +Q and — 3Q, which are a distance £ apart.

30. (II) What is the electric field strength at a point in space 
where a proton experiences an acceleration of 1.8 million “g’s”?

31. (II) A long uniformly charged thread (linear charge density 
A = 2.5 C/m) lies along the x axis in Fig. 21-56. A 
small charged sphere (Q = -2.0 C) is at the point 
x  = 0 cm, y = -5.0 cm. What 
is the electric field at the 
{joint x = 7.0 cm, y = 7.0 cm?
Fthread and Eq represent 
fields due to the long 
thread and the charge 
Q, respectively. 7.0 cm

/
thread

FIGURE 21-56
Problem 31.

5.0 cm

_ L

thread

X = +2.5 C/m

<2 = -2.0C

32. (II) The electric field midway between two equal but 
opposite point charges is 586 N/C, and the distance 
between the charges is 16.0 cm. What is the magnitude of 
the charge on each?

33. (II) Calculate the electric field at one corner of a square 
1.22 m on a side if the other three corners are occupied by 
2.25 X 10-6 C charges.

34. (II) Calculate the electric field at the center of a square 
52.5 cm on a side if one corner is occupied by a -38.6 /jlC  
charge and the other three are occupied by —27.0 /xC charges.

35. (II) Determine the direction and magnitude of the electric 
field at the point P in Fig. 21-57. The charges are separated 
by a distance 2a, and point P is a distance x  from the 
midpoint between the two charges. Express your answer in 
terms of Q, x, a, and k.

FIGURE 21-57
Problem 35.

+ Q 
• -

36. (II) Two point charges, Q\ = —25 /jlC  and Q2 = +45 fxC, 
are separated by a distance of 12 cm. The electric field at the 
point P (see Fig. 21-58) is zero. How far from Qi is P?

FIGURE 21-58 •_
Problem 36. P

Q i 12 cm Q i

-25 ix C +45 jxC

37. (II) A very thin line of charge lies along the x axis from 
x = — 00 to x = + 00. Another similar line of charge lies 
along the y axis from y — —00 to y = + 00. Both lines 
have a uniform charge per length A. Determine the resulting 
electric field magnitude and direction frelative to the r  axis'!



38. (II) (a) Determine the electric field E at the origin 0 in 
Fig. 21-59 due to the two charges at A and B. (b) Repeat, 
but let the charge at B be reversed v 
in sign.

FIGURE 21-59
Problem 38.

39. (II) Draw, approximately, the electric field lines emanating 
from a uniformly charged straight wire whose length £ is not 
great. The spacing between lines near the wire should be 
much less than £. [Hint. Also consider points very far from 
the wire.]

40. (II) Two parallel circular rings of radius R  have their centers 
on the x axis separated by a distance £ as shown in Fig. 21-60. 
If each ring carries a uniformly v 
distributed charge Q, find the 
electric field, E(jc), at points 
along the x axis.

FIGURE 21-60
Problem 40.

41. (II) You are given two unknown point charges, Q1 and Q2. 
At a point on the line joining them, one-third of the way 
from Qi to Q2, the electric field is zero (Fig. 21-61). What is 
the ratio Q\IQ{1

FIGURE 21-61
Problem 41.

42. (II) Use Coulomb’s law to determine the magnitude and 
direction of the electric field at points A and B in Fig. 21-62 
due to the two positive charges (Q = 5.7 /iC) shown. 
Are your results consistent 
with Fig. 21-34b? B A

f 1
'} 5 1 Qi

--------•

5.0 cm

FIGURE 21-62
Problem 42. 5.0 cm 5.0 cm 10.0 cm

43. (II) (a) Two equal charges Q are positioned at points 
(x = £, y = 0) and (jt = -£, y = 0). Determine the 
electric field as a function of y for points along the y axis.
(b) Show that the field is a maximum at y = ± f/V 2.

44. (II) At what position, x = xM, is the magnitude of the 
electric field along the axis of the ring of Example 21-9 a 
maximum?

45. (II) Estimate the electric field at a point 2.40 cm perpendicular 
to the midpoint of a uniformly charged 2.00-m-long thin wire 
carrying a total charge of 4.75 /xC.

46. (II) The uniformly charged straight wire in Fig. 21-29 has the 
length £, where point 0 is at the midpoint. Show that the field 
at point P, a perpendicular distance x from 0, is given by

A £

47. (II) Use your result from Problem 46 to find the electric 
field (magnitude and direction) a distance z above the 
center of a square loop of 
wire, each of whose sides 
has length £ and uniform 
charge per length A 
(Fig. 21-63).

FIGURE 21-63
Problem 47.

48. (II) Determine the direction and magnitude of the electric 
field at the point P shown in Fig. 21-64. The two charges are 
separated by a distance of 2a. Point P is on the perpendicular 
bisector of the line joining the charges, a distance x from the 
midpoint between them. Express your answers in terms of 
Q, x, a, and k.

FIGURE 21-64
Problem 48.

+Q'

-Q

o
cl x P
a

49. (Ill) A thin rod bent into the shape of an arc of a circle of 
radius R carries a uniform charge per unit length A. The arc 
subtends a total angle 2 0O, 
symmetric about the x axis, as 
shown in Fig. 21-65. Determine the 
electric field E at the origin 0.

FIGURE 21-65
Problem 49.

50. (Ill) A thin glass rod is a semicircle of radius R, Fig. 21-66. 
A charge is nonuniformly distributed along the rod with a 
linear charge density given by A = A0 sin 6, where A0 is a 
positive constant. Point P is at the center of the semicircle.
(a) Find the electric field E 
(magnitude and direction) at 
point P. [Hint: Remember 
sin(—6) = — sin 6, so the two 
halves of the rod are oppositely 
charged.] (b) Determine the 
acceleration (magnitude and 
direction) of an electron placed at 
point P, assuming R = 1.0 cm 
and A0 = 1.0/xC/m.

H

FIGURE 21-66
Problem 50. &

E =
277e0 x ( f  + 4X2)|

51. (Ill) Suppose a uniformly charged wire starts at point 0 and 
rises vertically along the positive y axis to a length £.
(a) Determine the components of the electric field Ex and 
Ey at point (x, 0). That is, calculate E near one end of a long 
wire, in the plane perpendicular to the wire. (b) If the 
wire extends from y = 0 to y = oo, so that £ = oo, show 
that F  makes a 45° anale to the horizontal for anv x.



52. (Ill) Suppose in Example 21-11 that x = 0.250 m, 
Q = 3.15 n C, and that the uniformly charged wire is only
6.50 m long and extends along the y axis from y = -4.00 m 
to y = +2.50 m. (a) Calculate Ex and Ey at point P.
(b) Determine what the error would be if you simply used 
the result of Example 21-11, E = A/277e0*. Express this 
error as (Ex -  E)/E  and Ey/E.

53. (Ill) A thin rod of length £ carries a total charge Q 
distributed uniformly along its length. See Fig. 21-67. 
Determine the electric field
along the axis of the rod starting v
at one end—that is, find E(x) u----p---- ^
for x > 0 in Fig. 21-67. " C

Q b
FIGURE 21-67
Problem 53.

54. (Ill) Uniform plane o f charge. Charge is distributed 
uniformly over a large square plane of side £, as shown in 
Fig. 21-68. The charge per unit area (C/m2) is cr. Determine 
the electric field at a point P a distance z above the center 
of the plane, in the limit 
£ —> oo. [Hint. Divide the 
plane into long narrow 
strips of width dy, 
and use the result of 
Example 21-11; then 
sum the fields due to 
each strip to get the 
total field at P.]

FIGURE 21-68
Problem 54. x"

55. (Ill) Suppose the charge Q on the ring of Fig. 21-28 was all 
distributed uniformly on only the upper half of the ring, and 
no charge was on the lower half. Determine the electric 
field E at P. (Take y vertically upward.)

21-10 Motion of Charges in an Electric Field
56. (II) An electron with speed v0 = 27.5 X 106m/s is 

traveling parallel to a uniform electric field of magnitude 
E = 11.4 X 103N/C. (a) How far will the electron travel 
before it stops? (b) How much time will elapse before it 
returns to its starting point?

57. (II) An electron has an initial velocity v0 = (8.0 X 104m/s)j. 
It enters a region where E = (2.0i + 8.0j) X 104N/C.
(a) Determine the vector acceleration of the electron as a 
function of time, (b) At what angle 6 is it moving (relative to 
its initial direction) at t = 1.0 ns?

58. (II) An electron moving to the right at 7.5 X 105m/s 
enters a uniform electric field parallel to its direction 
of motion. If the electron is to be brought to rest in the 
space of 4.0 cm, (a) what direction is required for the elec­
tric field, and (b) what is the strength of the field?

59. (II) At what angle will the electrons in Example 21-16 
leave the uniform electric field at the end of the parallel 
plates (point P in Fig. 21-41)? Assume the plates are 
4.9 cm lone and E = 5.0 X 103N/C. Tenore fringing of

60. (II) An electron is traveling through a uniform electric 
field. The field is constant and given by E = 
(2.00 X 10-11 N/C)i -  (1.20 X 10-11 N/C)j. At t = 0, the 
electron is at the origin and traveling in the x direction with 
a speed of 1.90 m/s. What is its position 2.00 s later?

61. (II) A positive charge q is placed at the center of a circular 
ring of radius R. The ring carries a 
uniformly distributed negative 
charge of total magnitude —Q. (a) If 
the charge q is displaced from the 
center a small distance x  as shown 
in Fig. 21-69, show that it will 
undergo simple harmonic motion 
when released. (b) If its mass is m, 
what is its period?

FIGURE 21-69
Problem 61.

21-11 Electric Dipoles
62. (II) A dipole consists of charges +e and —e separated by

0.68 nm. It is in an electric field E = 2.2 X 104N/C.
(a) What is the value of the dipole moment? (b) What is the 
torque on the dipole when it is perpendicular to the field?
(c) What is the torque on the dipole when it is at an angle of 
45° to the field? (d) What is the work required to rotate the 
dipole from being oriented parallel to the field to being 
antiparallel to the field?

63. (II) The HC1 molecule has a dipole moment of about
3.4 X 10_30C-m. The two atoms are separated by about
1.0 X 10-10m. (a) What is the net charge on each atom?
(b) Is this equal to an integral multiple of el If not, explain.
(c) What maximum torque would this dipole experience in a
2.5 X 104N/C electric field? (d) How much energy would 
be needed to rotate one molecule 45° from its equilibrium 
position of lowest potential energy?

64. (II) Suppose both charges in Fig. 21-45 (for a dipole) were 
positive, (a) Show that the field on the perpendicular 
bisector, for r »  £, is given by (l/477e0)(2<2/r2). (b) Explain 
why the field decreases as 1/r2 here whereas for a dipole it 
decreases as 1/r3.

65. (II) An electric dipole, of dipole moment p  and moment of 
inertia I, is placed in a uniform electric field E. (a) If 
displaced by an angle 6 as shown in Fig. 21-44 and released, 
under what conditions will it oscillate in simple harmonic 
motion? (b) What will be its frequency?

66. (Ill) Suppose a dipole p is placed in a nonuniform electric 
field E = Ei that points along the x axis. If E depends only 
on x, show that the net force on the dipole is

where dE/dx is the gradient of the field in the x direction.
67. (Ill) (a) Show that at points along the axis of a dipole 

(along the same line that contains +<2 and —Q), the electric 
field has magnitude

E = 1 2p 
47re0 r3

for r »  £ (Fig. 21-45), where r is the distance from a 
n o in t to  th e  ce n te r o f  th e  d in o le . (h \  Tn w h a t d ire c tio n  does



| General Problems
68. How close must two electrons be if the electric force between 

them is equal to the weight of either at the Earth’s surface?
69. Given that the human body is mostly made of water, estimate 

the total amount of positive charge in a 65-kg person.
70. A 3.0-g copper penny has a positive charge of 38 fiC. What 

fraction of its electrons has it lost?
71. Measurements indicate that there is an electric field 

surrounding the Earth. Its magnitude is about 150 N /C  at 
the Earth’s surface and points inward toward the Earth’s 
center. What is the magnitude of the electric charge on the 
Earth? Is it positive or negative? [Hint: The electric field 
outside a uniformly charged sphere is the same as if all the 
charge were concentrated at its center.]

72. (a) The electric field near the Earth’s surface has magnitude 
of about 150 N/C. What is the acceleration experienced 
by an electron near the surface of the Earth? (b) What 
about a proton? (c) Calculate the ratio of each acceleration 
to g = 9.8 m /s2.

73. A water droplet of radius 0.018 mm remains stationary in 
the air. If the downward-directed electric field of the Earth 
is 150 N/C, how many excess electron charges must the 
water droplet have?

74. Estimate the net force between the CO group and the 
HN group shown in Fig. 21-70. The C and O have charges 
± 0.40e, and the H and N have charges ± 0.20e, where 
e = 1.6 X 10-19 C. [Hint: Do not include the “internal” 
forces between C and O, or between H and N.]

-O" H - -N "

FIGURE 21-70
Problem 74.

0.12 nm 0.10 nm
-0.28 nm-

75. Suppose that electrical attraction, rather than gravity, were 
responsible for holding the Moon in orbit around the 
Earth. If equal and opposite charges Q were placed on the 
Earth and the Moon, what should be the value of Q to 
maintain the present orbit? Use data given on the inside 
front cover of this book. Treat the Earth and Moon as point 
particles.

76. In a simple model of the hydrogen atom, the electron 
revolves in a circular orbit around the proton with a speed 
of 2.2 X 106m/s. Determine the radius of the electron’s 
orbit. [Hint. See Chapter 5 on circular motion.]

77. A positive point charge Qi = 2.5 X 10-5 C is fixed 
at the origin of coordinates, and a negative point charge 
Q2 = —5.0 X 10_6C is fixed to the x  axis at x = +2.0 m. 
Find the location of the place(s) along the x  axis where the 
electric field due to these two charges is zero.

78. When clothes are removed from a dryer, a 40-g sock is stuck 
to a sweater, even with the sock clinging to the sweater's 
underside. Estimate the minimum attractive force between the 
sock and the sweater. Then estimate the minimum charge on 
the sock and the sweater. Assume the charging came entirely 
from the sock rubbing against the sweater so that they have 
equal and opposite charges, and approximate the sweater as a
flat sheet o f  uniform rharop

r
15.0 cm

I

|l0 .0  cm

79. A small lead sphere is encased in insulating plastic and 
suspended vertically from an ideal spring (spring constant 
k  = 126 N/m) as in Fig. 21-71. The total mass of the coated 
sphere is 0.650 kg, and its center lies 15.0 cm above a tabletop 
when in equilibrium. The sphere is pulled down 5.00 cm 
below equilibrium, an electric 
charge Q = -3.00 X 10-6 C is 
deposited on it, and then it is 
released. Using what you know 
about harmonic oscillation, write 
an expression for the electric field 
strength as a function of time that 
would be measured at the point on 
the tabletop (P) directly below the 
sphere.

FIGURE 21-71
Problem 79.

80. A large electroscope is made with “leaves” that are 78-cm- 
long wires with tiny 24-g spheres at the
ends. When charged, nearly all the charge 
resides on the spheres. If the wires each 
make a 26° angle with the vertical 
(Fig. 21-72), what total charge Q 
must have been applied to the 
electroscope? Ignore the mass of 
the wires. FIGURE 21-72

Problem 80.

81. Dry air will break down and generate a spark if the electric 
field exceeds about 3 X 106N/C. How much charge could 
be packed onto a green pea (diameter 0.75 cm) before the 
pea spontaneously discharges? [Hint: Eqs. 21-4 work outside 
a sphere if r is measured from its center.]

82. Two point charges, Qi = -6.7jitC and Q2 = 1.8 (jlC, are 
located between two oppositely charged parallel plates, as 
shown in Fig. 21-73. The two charges are separated by a 
distance of x = 0.34 m. Assume that the 
electric field produced by the charged 
plates is uniform and equal to 
E  = 73,000 N/C. Calculate the net electro­
static force on Q1 and give its direction.

78 cm .78 cm

Q i
t

Q i
*

FIGURE 21-73
Problem 82. h-*-H

83. Packing material made of pieces of foamed polystyrene can 
easily become charged and stick to each other. Given that 
the density of this material is about 35 kg/m3, estimate 
how much charge might be on a 2.0-cm-diameter foamed 
polystyrene sphere, assuming the electric force between two 
spheres stuck together is equal to the weight of one sphere.

84. One type of electric quadrupole consists of two dipoles placed 
end to end with their negative charges (say) overlapping; 
that is, in the center is —2Q flanked (on a line) by a +Q to 
either side (Fig. 21-74). Determine the 
electric field E at points along the 
perpendicular bisector and show that E  
decreases as 1/r4. Measure r from the 
- 2  Q charge and assume r »  £.



85. Suppose electrons enter a uniform electric field midway 
between two plates at an angle 0O to the horizontal, as shown in 
Fig. 21-75. The path is symmetrical, so they leave at the same 
angle 0O and just barely miss the top plate. What is 0 O? Ignore 
fringing of the field. 6.0 cm-

FIGURE 21-75
Problem 85.

1.0 cm

86. An electron moves in a circle of radius r around a very 
long uniformly charged wire in a vacuum chamber, as 
shown in Fig. 21-76. The charge density on the wire is 
A = 0.14 piC/ni. (a) What is the electric field at the electron 
(magnitude and direction in terms of r and A)? (b) What is 
the speed of the electron?

A = 0.14 ju,C/m 
+  + + + + + + + + + +1+ + + +

FIGURE 21-76
Problem 86.

87. Three very large square planes of charge are arranged as 
shown (on edge) in Fig. 21-77. From left to right, the planes 
have charge densities per unit area of -0.50 /LtC/m2, 
+0.25 ptC/m2, and -0.35 /zC/m2.
Find the total electric field 
(direction and magnitude) at the 
points A, B, C, and D. Assume 
the plates are much larger than ^  g 
the distance AD.

FIGURE 21-77
Problem 87.

88. A point charge (m = 1.0 g) at the end of an insulating cord of 
length 55 cm is observed to be in equilibrium in a uniform 
horizontal electric field of 15,000 N/C, when the pendulum’s 
position is as shown in Fig. 21-78,
with the charge 12 cm above the 
lowest (vertical) position. If the field 
points to the right in Fig. 21-78, 
determine the magnitude and sign 
of the point charge.

FIGURE 21-78
Problem 88.

89. Four equal positive point charges, each of charge 8.0 jjlC, are 
at the corners of a square of side 9.2 cm. What charge should 
be placed at the center of the square so that all charges are 
at equilibrium? Is this a stable or unstable equilibrium 
(Section 12-3) in the plane?

90. Two small, identical conducting spheres A and B are a distance R 
apart; each carries the same charge Q. (a) What is the force 
sphere B exerts on sphere A? (b) An identical sphere with zero 
charge, sphere C, makes contact with sphere B and is then moved 
very far away. What is the net force now acting on sphere A?
(c) Sphere C is brought back and now makes contact with 
sphere A and is then moved far away. What is the force on 
sphere A in this third case?

91. A point charge of mass 0.210 kg, and net charge +0.340 /iC, 
hangs at rest at the end of an insulating cord above a large 
sheet of charge. The horizontal sheet of fixed uniform charge 
creates a uniform vertical electric field in the vicinity of the 
point charge. The tension in the cord is measured to be 5.18 N.
(a) Calculate the magnitude and direction of the electric field 
due to the sheet of charge (Fig. 21-79). (b) What is the surface 
charge density 
a  (C/m2) on 
the sheet?

FIGURE 21-79
Problem 91.

t i
Q = 0.340 juC

> m = 0.210 kg

Uniform sheet of charge

92. A one-dimensional row of positive ions, each with charge 
+Q and separated from its neighbors by a distance d, 
occupies the right-hand half of the x axis. That is, there is a 
+Q charge at x = 0, x = +d, x = +2d, x = +3d, and so 
on out to oo. (a) If an electron is placed at the position 
x = —d, determine F, the magnitude of force that this row 
of charges exerts on the electron, (b) If the electron is instead 
placed at x = —3d, what is the value of F? [Hint: The

infinite sum where n is a positive integer.]

* Numerical/Computer
*93. (Ill) A thin ring-shaped object of radius a contains a 

total charge Q uniformly distributed over its length. The 
electric field at a point on its axis a distance x from 
its center is given in Example 21-9 as 

1 QxE =
47re0 (x 2 + a2)2

(a) Take the derivative to find where on the x axis (x > 0) Ex 
is a maximum. Assume Q = 6.00 fxC and a = 10.0 cm.
(b) Calculate the electric field for x = 0 to x  = +12.0 cm in 
steps of 0.1 cm, and make a graph of the electric field. Does the 
maximum of the graph coincide with the maximum of the elec­
tric field you obtained analytically? Also, calculate and graph 
the electric field (c) due to the ring, and (d) due to a point 
charge Q = 6.00 /xC at the center of the ring. Make a single 
graph, from x = 0 (orx = 1.0 cm) out to x = 50.0 cm in
1.0 cm steps, with two curves of the electric fields, and show 
that both fields converge at large distances from the center. 
(e) At what distance does the electric field of the ring differ 
from that of the point charge by 10%?

* 94. (Ill) An 8.00 /iC charge is on the x axis of a coordinate system 
at x = +5.00 cm. A -2 .00 /xC charge is at x = -5.00 cm.
(a) Plot the x  component of the electric field for points on 
the x axis from x = -30.0 cm to x = +30.0 cm. The sign 
of Ex is positive when E points to the right and negative 
when it points to the left, (b) Make a plot of Ex and Ey for 
points on the y axis from y = -30.0 to +30.0 cm.

Answers to Exercises
A: (<?). D: (a) No; (b) yes, midway between them.
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Gauss's Law
CHAPTER-OPENING QUESTION—Guess now!
A nonconducting sphere has a uniform charge density throughout. How does the 
magnitude of the electric field vary inside with distance from the center?

(a) The electric field is zero throughout.
(b) The electric field is constant but nonzero throughout.
(c) The electric field is linearly increasing from the center to the outer edge.
(d) The electric field is exponentially increasing from the center to the outer edge.
(e) The electric field increases quadratically from the center to the outer edge.

The great mathematician Karl Friedrich Gauss (1777-1855) developed an 
important relation, now known as Gauss’s law, which we develop and discuss 
in this Chapter. It is a statement of the relation between electric charge and 
electric field and is a more general and elegant form of Coulomb’s law.

We can, in principle, determine the electric field due to any given distribution of 
electric charge using Coulomb’s law. The total electric field at any point will be the 
vector sum (or integral) of contributions from all charges present (see Eq. 21-6). 
Except for some simple cases, the sum or integral can be quite complicated to 
evaluate. For situations in which an analytic solution (such as we carried out in the 
Examples of Sections 21-6 and 21-7) is not possible, a computer can be used.

In some cases, however, the electric field due to a given charge distribution can 
be calculated more easily or more elegantly using Gauss’s law, as we shall see in 
this Chapter. But the maior importance of Gauss’s law is that it gives us additional

Gauss’s law is an elegant relation 
between electric charge and electric 
field. It is more general than 
Coulomb’s law. Gauss’s law involves 
an integral of the electric field E at 
each point on a closed surface. The 
surface is only imaginary, and we 
choose the shape and placement of 
the surface so that we can evaluate 
the integral. In this drawing, two 
different 3-D surfaces are shown (one 
green, one blue), both enclosing a 
point charge Q. Gauss’s law states 
that the product E • dA , where d A  
is an infinitesimal area of the 
surface, integrated over the entire 
surface, equals the charge enclosed 
by the surface <2enci divided by e0. 
Both surfaces here enclose the same 
charge Q. Hence <f>E • d A  will give 
the same result for both surfaces.

T * * 
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FIGURE 22-1 (a) A  uniform electric 
field E passing through a flat area A. 
(b) E± = E  cos 0 is the component 
of E perpendicular to the plane of 
area A. (c) A ± = A  cos 6 is the 
projection (dashed) of the area A  
perpendicular to the field E.

FIGURE 22-2 Electric flux through 
a curved surface. One small area of 
the surface, A A /, is indicated.

FIGURE 22-3 Electric flux 
through a closed surface.

2 2 —1 Electric Flux
Gauss’s law involves the concept of electric flux, which refers to the electric field 
passing through a given area. For a uniform electric field E passing through an 
area A, as shown in Fig. 22-la, the electric flux <&E is defined as 

<PE = E A  cos 6,
where 0 is the angle between the electric field direction and a line drawn perpendicular 
to the area. The flux can be written equivalently as

<E>£ = El A  = E A ± = EA  cos 6, [E uniform] (22-la)

where E± = E  cos 0 is the component of E along the perpendicular to the area 
(Fig. 22-lb) and, similarly, A ± = A  cos 0 is the projection of the area A  perpen­
dicular to the field E (Fig. 22-lc).

The area A  of a surface can be represented by a vector A whose magnitude 
is A  and whose direction is perpendicular to the surface, as shown in Fig. 22-lc. 
The angle 0 is the angle between E and A, so the electric flux can also be written

<I>£ = E • A. [E uniform] (22-lb)
Electric flux has a simple intuitive interpretation in terms of field lines. We 

mentioned in Section 21-8 that field lines can always be drawn so that the 
number (N) passing through unit area perpendicular to the field (A±) is proportional 
to the magnitude of the field (E): that is, E  oc N /A ±. Hence,

N  oc E A ± =
so the flux through an area is proportional to the number of lines passing through 
that area.

Electric flux. Calculate the electric flux through the rectangle 
shown in Fig. 22-la. The rectangle is 10 cm by 20 cm, the electric field is uniform 
at 200 N/C, and the angle 0 is 30°.
APPROACH We use the definition of flux, = E • A = E A  cos 0.
SOLUTION The electric flux is

<$>E = (200 N/C) (0.10 m X 0.20 m) cos 30° = 3.5N-m2/C.

EXERCISE A Which of the following would cause a change in the electric flux through a circle 
lying in the xz  plane where the electric field is (10 N) j ?  (a) Changing the magnitude of the 
electric field, (b) Changing the size of the circle, (c) Tipping the circle so that it is lying in 
the xy  plane. (d) All of the above, (e) None of the above.

In the more general case, when the electric field E is not uniform and the 
surface is not flat, Fig. 22-2, we divide up the chosen surface into n small elements 
of surface whose areas are AA 1, AA2, • • •, AA n. We choose the division so that each 
AA t is small enough that (1) it can be considered flat, and (2) the electric field 
varies so little over this small area that it can be considered uniform. Then the 
electric flux through the entire surface is approximately

<&£ «  S E r A i , . ,
i=1

where Ef is the field passing through AAf. In the limit as we let AAj —» 0, the 
sum becomes an integral over the entire surface and the relation becomes 
mathematically exact:

<DE = |  E • dA. (22-2)

Gauss’s law involves the total flux through a closed surface—a surface of any 
shape that completely encloses a volume of space, such as that shown in Fig. 22-3. 
In this case, the net flux through the enclosing surface is given by

EXAMPLE 22-1



Up to now we have not been concerned with an ambiguity in the direction 
of the vector A or dA  that represents a surface. For example, in Fig. 22-lc, the 
vector A could point upward and to the right (as shown) or downward to the left 
and still be perpendicular to the surface. For a closed surface, we define (arbitrarily) 
the direction of A, or of dA, to point outward from the enclosed volume, Fig. 22-4. 
For an electric field line leaving the enclosed volume (on the right in Fig. 22-4), 
the angle 6 between E and dA  must be less than tt /2(=  90°); hence cos0 > 0. 
For a line entering the volume (on the left in Fig. 22-4) 6 > it/2; hence cos 6 < 0. 
Hence, flux entering the enclosed volume is negative ( fE  cos 6 dA < 0), whereas 
flux leaving the volume is positive. Consequently, Eq. 22-3 gives the net flux out of 
the volume. If 4>£ is negative, there is a net flux into the volume.

In Figs. 22-3 and 22-4, each field line that enters the volume also leaves the 
volume. Hence <E>£ = $E • dA = 0. There is no net flux into or out of this enclosed 
surface. The flux, <J>E • dA, will be nonzero only if one or more lines start or end 
within the surface. Since electric field lines start and stop only on electric charges, the 
flux will be nonzero only if the surface encloses a net charge. For example, the surface 
labeled A 1 in Fig. 22-5 encloses a positive charge and there is a net outward flux through 
this surface (<&£ > 0). The surface A 2 encloses an equal magnitude negative charge and 
there is a net inward flux (<&£ < 0). For the configuration shown in Fig. 22-6, the flux 
through the surface shown is negative (count the lines). The value of 4>£ depends on 
the charge enclosed by the surface, and this is what Gauss’s law is all about.

2 2 -2  Gauss's Law
The precise relation between the electric flux through a closed surface and the net 
charge <2encl enclosed within that surface is given by Gauss’s law:

Qe nclE - d A  = (22-4)

where e0 is the same constant (permittivity of free space) that appears in Coulomb’s 
law. The integral on the left is over the value of E on any closed surface, and we choose 
that surface for our convenience in any given situation. The charge Qenci is the net 
charge enclosed by that surface. It doesn’t matter where or how the charge is 
distributed within the surface. Any charge outside this surface must not be included. 
A charge outside the chosen surface may affect the position of the electric field lines, 
but will not affect the net number of lines entering or leaving the surface. For 
example, Qend for the gaussian surface A 1 in Fig. 22-5 would be the positive charge 
enclosed by A x; the negative charge does contribute to the electric field at A 1 but it 
is not enclosed by surface A 1 and so is not included in Qenc\ .

Now let us see how Gauss’s law is related to Coulomb’s law. First, we show 
that Coulomb’s law follows from Gauss’s law. In Fig. 22-7 we have a single isolated 
charge Q. For our “gaussian surface,” we choose an imaginary sphere of radius r 
centered on the charge. Because Gauss’s law is supposed to be valid for any surface, 
we have chosen one that will make our calculation easy. Because of the symmetry 
of this (imaginary) sphere about the charge at its center, we know that E must have 
the same magnitude at any point on the surface, and that E points radially outward 
(inward for a negative charge) parallel to dA, an element of the surface area. 
Hence, we write the integral in Gauss’s law as

i E d A  = E ^d A  = E(4nr2)

since the surface area of a sphere of radius r is 4irr2, and the magnitude of E is the 
same at all points on this spherical surface. Then Gauss’s law becomes, with Qencl = Q,

Q
e0

because E and dA  are both perpendicular to the surface at each point, and 
cos 6 = 1. Solving for E  we obtain

E - d A  =

— = cbE-dA = E{A7rr7

FIGURE 22-4 The direction of an 
element of area dA  is taken to point 
outward from an enclosed surface.

FIGURE 22-5 An electric dipole. 
Flux through surface A \  is positive. 
Flux through A 2 is negative.

FIGURE 22-6 Net flux through 
surface A  is negative.

FIGURE 22-7 A single point 
charge Q at the center of an imaginary 
sphere of radius r (our “gaussian 
surface”—that is, the closed surface 
we choose to use for applying 
Gauss’s law in this case).



FIGURE 22-8 A single point charge 
surrounded by a spherical surface, A 1, 
and an irregular surface, A 2.

FIGURE 22-9 Electric flux through 
a closed surface. (Same as Fig. 22-3.) 
No electric charge is enclosed by this 
surface (Qencl =  0 ).

Now let us do the reverse, and derive Gauss’s law from Coulomb’s law for 
static electric charges1. First we consider a single point charge Q surrounded by an 
imaginary spherical surface as in Fig. 22-7(and shown again, green, in Fig. 22-8). 
Coulomb’s law tells us that the electric field at the spherical surface is 
E = (l/477e0)(<2A2)- Reversing the argument we just used, we have

E • dA  = 1 QdA Q
(47rr) = — •

4-7760 r2 477€0r2
This is Gauss’s law, with Qend = Q, and we derived it for the special case of a spherical 
surface enclosing a point charge at its center. But what about some other surface, such 
as the irregular surface labeled A 2 in Fig. 22-8? The same number of field lines (due 
to our charge Q) pass through surface A 2, as pass through the spherical surface, A x. 
Therefore, because the flux through a surface is proportional to the number of lines 
through it as we saw in Section 22-1, the flux through A 2 is the same as through A x:

E • dA =

Hence, we can expect that

E d A  = —
«o

E dA = — 
e0

E; • dA = — >

would be valid for any surface surrounding a single point charge Q.
Finally, let us look at the case of more than one charge. For each charge, Qt, 

enclosed by the chosen surface,
a
e o

where Ef refers to the electric field produced by Qt alone. By the superposition 
principle for electric fields (Section 21-6), the total field E is equal to the sum of 
the fields due to each separate charge, E = DEf. Hence

Q enclE • dA  = dA =

where Qenc\ = 2 Qt is the total net charge enclosed within the surface. Thus we see, 
based on this simple argument, that Gauss’s law follows from Coulomb’s law for 
any distribution of static electric charge enclosed within a closed surface of any shape.

The derivation of Gauss’s law from Coulomb’s law is valid for electric fields 
produced by static electric charges. We will see later that electric fields can also be 
produced by changing magnetic fields. Coulomb’s law cannot be used to describe 
such electric fields. But Gauss’s law is found to hold also for electric fields 
produced in any of these ways. Hence Gauss’s law is a more general law than 
Coulomb’s law. It holds for any electric field whatsoever.

Even for the case of static electric fields that we are considering in this Chapter, 
it is important to recognize that E on the left side of Gauss’s law is not necessarily 
due only to the charge Qend that appears on the right. For example, in Fig. 22-9 
there is an electric field E at all points on the imaginary gaussian surface, but it is not 
due to the charge enclosed by the surface (which is Qenc\ = 0 in this case). The 
electric field E which appears on the left side of Gauss’s law is the total electric field 
at each point, on the gaussian surface chosen, not just that due to the charge 0 encl, 
which appears on the right side. Gauss’s law has been found to be valid for the total 
field at any surface. It tells us that any difference between the input and output flux 
of the electric field over any surface is due to charge within that surface.
'''Note that Gauss’s law would look more complicated in terms of the constant k = l/47re0 that we 
originally used in Coulomb’s law (Eqs. 21-1 or 21-4a):

Coulomb’s law Gauss’s law

E • dA = 4irkQ



CONCEPTUAL EXAMPLE 22-21 Flux from Gauss's law. Consider the two
gaussian surfaces, A 1 and A 2, shown in Fig. 22-10. The only charge present is the charge 
Q at the center of surface A x. What is the net flux through each surface, A 1 and A 2 ? 
RESPONSE The surface A 1 encloses the charge +Q. By Gauss’s law, the net flux 
through A 1 is then Q /e0. For surface A 2, the charge +Q is outside the surface. Surface 
A 2 encloses zero net charge, so the net electric flux through A 2 is zero, by Gauss’s law. 
Note that all field lines that enter the volume enclosed by surface A 2 also leave it.

EXERCISE B A point charge Q is at the center of a spherical gaussian surface A . When a 
second charge Q is placed just outside A , the total flux through this spherical surface A  is
(a) unchanged, (b) doubled, (c) halved, (d) none of these.

EXERCISE C Three 2.95 /xC charges are in a small box. What is the net flux leaving 
the box? (a) 3.3 X 1012N-m 2/C, (b) 3.3 X 105N-m 2/C, (c) 1.0 X 1012N-m 2/C,
(d) 1.0 X 106 N • m2/C, (e) 6.7 X 106N-m 2/C.

We note that the integral in Gauss’s law is often rather difficult to carry out in 
practice. We rarely need to do it except for some fairly simple situations that we 
now discuss.

2 2 -3  Applications o f Gauss's Law
Gauss’s law is a very compact and elegant way to write the relation between 
electric charge and electric field. It also offers a simple way to determine the 
electric field when the charge distribution is simple and/or possesses a high degree 
of symmetry. In order to apply Gauss’s law, however, we must choose the 
“gaussian” surface very carefully (for the integral on the left side of Gauss’s law) 
so we can determine E. We normally try to think of a surface that has just the 
symmetry needed so that E  will be constant on all or on parts of its surface. 
Sometimes we choose a surface so the flux through part of the surface is zero.
( 2 5 E E H S H B  Spherical conductor. A thin spherical shell of radius r0 

possesses a total net charge Q that is uniformly distributed on it (Fig. 22-11). 
Determine the electric field at points (a) outside the shell, and (b) inside the 
shell, (c) What if the conductor were a solid sphere?
APPROACH Because the charge is distributed symmetrically, the electric field must 
also be symmetric. Thus the field outside the sphere must be directed radially outward 
(inward if Q < 0) and must depend only on r, not on angle (spherical coordinates). 
SOLUTION (a) The electric field will have the same magnitude at all points on an 
imaginary gaussian surface, if we choose that surface as a sphere of radius r 
(r > r0) concentric with the shell, and shown in Fig. 22-11 as the dashed circle A 1. 
Because E is perpendicular to this surface, the cosine of the angle between 
E and dA  is always 1. Gauss’s law then gives (with Send = Q in Eq. 22-4)

E • dA  = £(4irr2) = —, 
e0

where 4irr2 is the surface area of our sphere (gaussian surface) of radius r. Thus

E = 1 Q
> r0]4t7€0 r2

Thus the field outside a uniformly charged spherical shell is the same as if all the 
charge were concentrated at the center as a point charge.
(b) Inside the shell, the electric field must also be symmetric. So E  must again 
have the same value at all points on a spherical gaussian surface (A2 in Fig. 22-11) 
concentric with the shell. Thus E  can be factored out of the integral and, with 
Genci =  0  because the charge enclosed within the sphere A 2 is zero, we have

Hence

E - d A  = £(4tjt2) = 0. 

E = 0

FIGURE 22-10 Example 22-2. 
Two gaussian surfaces.

FIGURE 22-11 Cross-sectional 
drawing of a thin spherical shell of 
radius r0, carrying a net charge Q 
uniformly distributed. A 1 and A 2 
represent two gaussian surfaces we 
use to determine E. Example 22-3.

\ r  <  r0l



FIGURE 22-12 A  solid sphere of 
uniform charge density. Example 22-4.

FIGURE 22-13 Magnitude of the 
electric field as a function of the 
distance r from the center of a 
uniformly charged solid sphere.

EXERCISE D A charge Q is placed on a hollow metal ball. We saw in Chapter 21 that the 
charge is all on the surface of the ball because metal is a conductor. How does the charge 
distribute itself on the ball? (a) Half on the inside surface and half on the outside surface, 
(ib) Part on each surface in inverse proportion to the two radii, (c) Part on each surface but 
with a more complicated dependence on the radii than in answer (b). (d) All on the inside 
surface, (e) All on the outside surface.

EXAMPLE 22-4 Solid sphere of charge. An electric charge Q is distributed 
uniformly throughout a nonconducting sphere of radius r0, Fig. 22-12. Determine 
the electric field (a) outside the sphere (r > rQ) and (b) inside the sphere (r <  r0).
APPROACH Since the charge is distributed symmetrically in the sphere, the 
electric field at all points must again be symmetric. E depends only on r and is 
directed radially outward (or inward if Q < 0).
SOLUTION (a) For our gaussian surface we choose a sphere of radius r(r > r0), 
labeled A x in Fig. 22-12. Since E  depends only on r, Gauss’s law gives, with
Gencl — Q ’

>E • d\ = £(4-7tt?' Q
or

1 Q
4/7T€0 r2

Again, the field outside a spherically symmetric distribution of charge is the 
same as that for a point charge of the same magnitude located at the center of 
the sphere.
(b) Inside the sphere, we choose for our gaussian surface a concentric sphere of 
radius r { r <  r0], labeled A 2 in Fig. 22-12. From symmetry, the magnitude of E is 
the same at all points on A 2 , and E is perpendicular to the surface, so

E • dA  = E{Airr2).

We must equate this to <2enci/€o where Qencl is the charge enclosed by A 2 . <2encl is not 
the total charge Q but only a portion of it. We define the charge density, pE, as the 
charge per unit volume (pE = dQ/dV), and here we are given that pE = constant. 
So the charge enclosed by the gaussian surface A 2 , a sphere of radius r, is

(  ̂ Trr3pE \  r3
Gene, = f “ FT  G = 3 f t  

\3 irr0PE/ r0
Hence, from Gauss’s law,

E(A7rr1) =  =  rlJ L
*o rl €0

or

E  = T ~  ^3 r - V  <  r o]4 ir e 0 r i

Thus the field increases linearly with r, until r = r0. It then decreases as 1/r2, as 
plotted in Fig. 22-13.

I EXERCISE E Return to the Chapter-Opening Question, page 591, and answer it again now. 
Try to explain why you may have answered differently the first time.

The results in Example 22-4 would have been difficult to obtain from 
Coulomb’s law by integrating over the sphere. Using Gauss’s law and the symmetry 
of the situation, this result is obtained rather easily, and shows the great power of 
Gauss’s law. However, its use in this way is limited mainly to cases where the charge 
distribution has a high degree of symmetry. In such cases, we choose a simple 
surface on which E = constant, so the integration is simple. Gauss’s law holds, of



EXAMPLE 22-5 Nonuniformly charged solid sphere. Suppose the charge 
density of the solid sphere in Fig. 22-12, Example 22-4, is given by pE = ar2, 
where a is a constant, (a) Find a in terms of the total charge Q on the sphere and 
its radius r0. (b) Find the electric field as a function of r inside the sphere.
APPROACH We divide the sphere up into concentric thin shells of thickness dr as 
shown in Fig. 22-14, and integrate (a) setting Q = JpE dV  and (b) using Gauss’s law. 
SOLUTION (a) A  thin shell of radius r and thickness dr (Fig. 22-14) has volume 
dV = 4irr2 dr. The total charge is given by

Attol cQ = f pE dV  = f (ar2)(A7rr2 dr) = A tto l  f
J Jo Jo

r*dr =
i o 5

Thus a = 5Q/A7rrQ.
(b) To find E  inside the sphere at distance r from its center, we apply Gauss’s law 
to an imaginary sphere of radius r which will enclose a charge

5< 2
Q encl [ pE dV  = [ (ar2) Airr2 dr = [ 

Jo Jo Jo 4777*0
r Airr dr „ r 5

Q - 5 -ro
By symmetry, E  will be the same at all points on the surface of a sphere of radius 
r, so Gauss’s law gives

GenclE • dA =

( £ ) ( 4 i7 T 2) =  Q ~ r~ 3  
e0r0

SO

E =
Q r

4ire0rg

FIGURE 22-14 Example 22-5.

EXAMPLE 22-6 Long uniform line of charge. A very long straight wire 
possesses a uniform positive charge per unit length, A. Calculate the electric field 
at points near (but outside) the wire, far from the ends.
APPROACH Because of the symmetry, we expect the field to be directed radially 
outward and to depend only on the perpendicular distance, R, from the wire. 
Because of the cylindrical symmetry, the field will be the same at all points on a 
gaussian surface that is a cylinder with the wire along its axis, Fig. 22-15. E is 
perpendicular to this surface at all points. For Gauss’s law, we need a closed 
surface, so we include the flat ends of the cylinder. Since E is parallel to the ends, 
there is no flux through the ends (the cosine of the angle between E and dA  on 
the ends is cos 90° = 0).
SOLUTION For our chosen gaussian surface Gauss’s law gives

Gencl =
to ’

E • dA = E(2ttR£)
*o

where I is the length of our chosen gaussian surface (£ «  length of wire), and 
2ttR is its circumference. Hence 

1 AE =
2776 n R

NOTE This is the same result we found in Example 21-11 using Coulomb’s law 
(we used x there instead of R), but here it took much less effort. Again we see the 
great power of Gauss’s law.f
NOTE Recall from Chapter 10, Fig. 10-2, that we use R for the distance of a 
particle from an axis (cylindrical symmetry), but lower case r for the distance 
from a point (usually the origin 0).

FIGURE 22-15 Calculation of E 
due to a very long line of charge. 
Example 22-6.
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FIGURE 22-16 Calculation of the 
electric field outside a large 
uniformly charged nonconducting 
plane surface. Example 22-7.

FIGURE 22-17 Electric field near 
surface of a conductor. Example 22-8.

/ t\  CAUTION
When is E  = o"/e0 and 

when is E  = a / 2e0

EXAMPLE 22-7 Infinite plane of charge. Charge is distributed uniformly, 
with a surface charge density cr (cr = charge per unit area = dQ/dA),  over a 
very large but very thin nonconducting flat plane surface. Determine the electric 
field at points near the plane.
APPROACH We choose as our gaussian surface a small closed cylinder whose 
axis is perpendicular to the plane and which extends through the plane as shown 
in Fig. 22-16. Because of the symmetry, we expect E to be directed perpendicular 
to the plane on both sides as shown, and to be uniform over the end caps of the 
cylinder, each of whose area is A.
SOLUTION Since no flux passes through the curved sides of our chosen cylindrical 
surface, all the flux is through the two end caps. So Gauss’s law gives

Qencl O -A
E - d A  = 2 EA =

e0 e0
where Qencl = a  A  is the charge enclosed by our gaussian cylinder. The electric 
field is then

NOTE This is the same result we obtained much more laboriously in Chapter 21, 
Eq. 21-7. The field is uniform for points far from the ends of the plane, and close 
to its surface.

EXAMPLE 22-8 Electric field near any conducting surface. Show that 
the electric field just outside the surface of any good conductor of arbitrary shape 
is given by

E = —  > 
e o

where cr is the surface charge density on the conductor’s surface at that point.
APPROACH We choose as our gaussian surface a small cylindrical box, as 
we did in the previous Example. We choose the cylinder to be very small in 
height, so that one of its circular ends is just above the conductor (Fig. 22-17). 
The other end is just below the conductor’s surface, and the sides are perpen­
dicular to it.
SOLUTION The electric field is zero inside a conductor and is perpendicular to 
the surface just outside it (Section 21-9), so electric flux passes only through the 
outside end of our cylindrical box; no flux passes through the short sides or inside 
end. We choose the area A  (of the flat cylinder end) small enough so that E  is 
essentially uniform over it. Then Gauss’s law gives

Q encl AE - d A  = EA
e o

so that

E = —  • [at surface of conductor] (22-5)
€o

NOTE This useful result applies for a conductor of any shape.

Why is it that the field outside a large plane nonconductor is E = cr/2e0 
(Example 22-7) whereas outside a conductor it is E = o-/e0 (Example 22-8)? 
The reason for the factor of 2 comes not from conductor verses nonconductor. It 
comes instead from how we define charge per unit area cr. For a thin flat noncon­
ductor, Fig. 22-16, the charge may be distributed throughout the volume (not only on 
the surface, as for a conductor). The charge per unit area cr represents all the charge 
throughout the thickness of the thin nonconductor. Also our gaussian surface has its



For a conductor, on the other hand, the charge accumulates on the outer surfaces 
only. For a thin flat conductor, as shown in Fig. 22-18, the charge accumulates on 
both surfaces, and using the same small gaussian surface we did in Fig. 22-17, with 
one end inside and the other end outside the conductor, we came up with the result, 
E = cr/e0. If we defined cr for a conductor, as we did for a nonconductor, cr would 
represent the charge per area for the entire conductor. Then Fig. 22-18 would 
show 0-/2 as the surface charge on each surface, and Gauss’s law would 
give JE  • dA  = EA = (o-/2)A /e0 = crA/2e0 so E = just as for a
nonconductor. We need to be careful about how we define charge per unit 
area a.

We saw in Section 21-9 that in the static situation, the electric field 
inside any conductor must be zero even if it has a net charge. (Otherwise, 
the free charges in the conductor would move—until the net force on each, 
and hence E, were zero.) We also mentioned there that any net electric 
charge on a conductor must all reside on its outer surface. This is readily 
shown using Gauss’s law. Consider any charged conductor of any shape, such 
as that shown in Fig. 22-19, which carries a net charge Q. We choose the 
gaussian surface, shown dashed in the diagram, so that it all lies just below 
the surface of the conductor and encloses essentially the whole volume of 
the conductor. Our gaussian surface can be arbitrarily close to the surface, 
but still inside the conductor. The electric field is zero at all points on this 
gaussian surface since it is inside the conductor. Hence, from Gauss’s law, 
Eq. 22-4, the net charge within the surface must be zero. Thus, there can 
be no net charge within the conductor. Any net charge must lie on the surface 
of the conductor.

If there is an empty cavity inside a conductor, can charge accumulate on 
that (inner) surface too? As shown in Fig. 22-20, if we imagine a gaussian 
surface (shown dashed) just inside the conductor above the cavity, we 
know that E must be zero everywhere on this surface since it is inside the 
conductor. Hence, by Gauss’s law, there can be no net charge at the surface o f  
the cavity.

But what if the cavity is not empty and there is a charge inside it?
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FIGURE 22-18 Thin flat charged 
conductor with surface charge 
density <r at each surface. For the 
conductor as a whole, the charge 
density is cr' = 2cr.

FIGURE 22-19 An insulated 
charged conductor of arbitrary shape, 
showing a gaussian surface (dashed) just 
below the surface of the conductor.

FIGURE 22-20 An empty cavity 
inside a charged conductor carries 
zero net charge.

FIGURE 22-21 Example 22-9.

CONCEPTUAL EXAMPLE 22-51 Conductor with charge inside a cavity.
Suppose a conductor carries a net charge +Q and contains a cavity, inside of which 
resides a point charge +q. What can you say about the charges on the inner and outer 
surfaces of the conductor?

RESPONSE As shown in Fig. 22-21, a gaussian surface just inside the conductor 
surrounding the cavity must contain zero net charge (E = 0 in a conductor). 
Thus a net charge of —q must exist on the cavity surface. The conductor 
itself carries a net charge +Q, so its outer surface must carry a charge equal
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EXERCISE F Which of the following statements about Gauss’s law is correct? (a) If we know 
the charge enclosed by a surface, we always know the electric field everywhere at the surface.
(b) When finding the electric field with Gauss’s law, we always use a sphere for the gaussian surface.
(c) If we know the total flux through a surface, we also know the total charge inside the surface, 
(id) We can only use Gauss’s law if the electric field is constant in space.

Gauss's Law for Symmetric Charge 
Distributions
1. First identify the symmetry of the charge distribu­

tion: spherical, cylindrical, planar. This identification 
should suggest a gaussian surface for which E will be 
constant and/or zero on all or on parts of the 
surface: a sphere for spherical symmetry, a cylinder 
for cylindrical symmetry and a small cylinder or 
“pillbox” for planar symmetry.

2. Draw the appropriate gaussian surface making sure 
it passes through the point where you want to know 
the electric field.

3. Use the symmetry of the charge distribution to 
determine the direction of E at points on the gaussian 
surface.

4. Evaluate the flux, <f)E • dA. With an appropriate 
gaussian surface, the dot product E • dA  should be 
zero or equal to + E dA, with the magnitude of E  
being constant over all or parts of the surface.

5. Calculate the charge enclosed by the gaussian 
surface. Remember it’s the enclosed charge that 
matters. Ignore all the charge outside the gaussian 
surface.

6. Equate the flux to the enclosed charge and solve 
for E.

FIGURE 22-22 (a) A charged 
conductor (metal ball) is lowered 
into an insulated metal can (a good 
conductor) carrying zero net charge.
(b) The charged ball is touched to 
the can and all of its charge quickly 
flows to the outer surface of the can.
(c) When the ball is then removed, it 
is found to carry zero net charge.

(A)

Insulator

It4- 41

(c>

22—4  Experimental Basis of Gauss's and 
Coulomb's Laws

Gauss’s law predicts that any net charge on a conductor must lie only on its 
surface. But is this true in real life? Let us see how it can be verified experimen­
tally. And in confirming this prediction of Gauss’s law, Coulomb’s law is also 
confirmed since the latter follows from Gauss’s law, as we saw in Section 22-2. 
Indeed, the earliest observation that charge resides only on the outside of a 
conductor was recorded by Benjamin Franklin some 30 years before Coulomb 
stated his law.

A simple experiment is illustrated in Fig. 22-22. A metal can with a small 
opening at the top rests on an insulator. The can, a conductor, is initially 
uncharged (Fig. 22-22a). A charged metal ball (also a conductor) is lowered 
by an insulating thread into the can, and is allowed to touch the can 
(Fig. 22-22b). The ball and can now form a single conductor. Gauss’s law, as 
discussed above, predicts that all the charge will flow to the outer surface of the 
can. (The flow of charge in such situations does not occur instantaneously, but 
the time involved is usually negligible). These predictions are confirmed in 
experiments by (1) connecting an electroscope to the can, which will show that 
the can is charged, and (2) connecting an electroscope to the ball after it has 
been withdrawn from the can (Fig. 22-22c), which will show that the ball carries 
zero charge.

The precision with which Coulomb’s and Gauss’s laws hold can be stated 
quantitatively by writing Coulomb’s law as

F = k Q 1 Q 2
J2+ 8

For a perfect inverse-square law, 5 = 0. The most recent and precise experiments 
(191V) sive 8 = (2.1 + 3.1) X 10-16. Thus Coulomb’s and Gauss’s laws are found



Summary
The electric flux passing through a flat area A  for a uniform 
electric field E is

<PE = E - A .  (22-lb)

If the field is not uniform, the flux is determined from the 
integral

Gauss’s law states that the net flux passing through any 
closed surface is equal to the net charge Qenci enclosed by the 
surface divided by e0:

Q e nclE • dA  =
eo

(22-4)

= E • dA. (22- 2)

The direction of the vector A or dA  is chosen to be perpendic­
ular to the surface whose area is A  or dA, and points outward 
from an enclosed surface. The flux through a surface is propor­
tional to the number of field lines passing through it.

Gauss’s law can in principle be used to determine the electric field 
due to a given charge distribution, but its usefulness is mainly 
limited to a small number of cases, usually where the charge 
distribution displays much symmetry. The real importance of 
Gauss’s law is that it is a more general and elegant statement 
(than Coulomb’s law) for the relation between electric charge and 
electric field. It is one of the basic equations of electromagnetism.

Questions
1. If the electric flux through a closed surface is zero, is the 

electric field necessarily zero at all points on the surface? 
Explain. What about the converse: If E = 0 at all points on 
the surface is the flux through the surface zero?

2. Is the electric field E in Gauss’s law, <|>E • dA  = Qencl/eo> 
created only by the charge Qenci ?

3. A point charge is surrounded by a spherical gaussian 
surface of radius r. If the sphere is replaced by a cube of 
side r, will be larger, smaller, or the same? Explain.

4. What can you say about the flux through a closed surface 
that encloses an electric dipole?

5. The electric field E is zero at all points on a closed surface; 
is there necessarily no net charge within the surface? If a 
surface encloses zero net charge, is the electric field 
necessarily zero at all points on the surface?

6. Define gravitational flux in analogy to electric flux. Are 
there “sources” and “sinks” for the gravitational field as 
there are for the electric field? Discuss.

7. Would Gauss’s law be helpful in determining the electric 
field due to an electric dipole?

8. A spherical basketball (a nonconductor) is given a charge Q 
distributed uniformly over its surface. What can you say 
about the electric field inside the ball? A person now steps 
on the ball, collapsing it, and forcing most of the air out 
without altering the charge. What can you say about the 
field inside now?

9. In Example 22-6, it may seem that the electric field calcu­
lated is due only to the charge on the wire that is enclosed 
by the cylinder chosen as our gaussian surface. In fact, the 
entire charge along the whole length of the wire contributes 
to the field. Explain how the charge outside the cylindrical 
gaussian surface of Fig. 22-15 contributes to E  at the 
gaussian surface. [Hint: Compare to what the field would be 
due to a short wire.l

10. Suppose the line of charge in Example 22-6 extended only 
a short way beyond the ends of the cylinder shown in 
Fig. 22-15. How would the result of Example 22-6 be 
altered?

11. A point charge Q is surrounded by a spherical surface of 
radius rQ, whose center is at C. Later, the charge is moved 
to the right a distance | r 0, but the sphere remains where it 
was, Fig. 22-23. How is the electric
flux OE through the sphere changed? Is 
the electric field at the surface of the 
sphere changed? For each “yes” answer, 
describe the change.

FIGURE 22-23
Question 11.

12.

FIGURE 22-24
Question 12.

13. A point charge q is placed at the center of the cavity of a 
thin metal shell which is neutral. Will a charge Q placed 
outside the shell feel an electric force? Explain.

14. A small charged ball is inserted into a balloon. The balloon 
is then blown up slowly. Describe how the flux through the 
balloon’s surface changes as the balloon is blown up. 
Consider both the total flux and the flux per unit surface 
area of the balloon.

| Problems
22-1 Electric Flux
1. (I) A uniform electric field of magnitude 5.8 X 102N /C passes 

through a circle of radius 13 cm. What is the electric flux 
through the circle when its face is (a) perpendicular to the
fip.lH linp.s (h \ at 4S° to  thp. fip.lH linp.s and ( r \  narallp.l to

2. (I) The Earth possesses an electric field of (average) magni­
tude 150 N /C  near its surface. The field points radially 
inward. Calculate the net electric flux outward through a
snhp.rir.al snrfar.p snrroimHina and inst hp.vonH thp F.arth’s

A solid conductor carries a net positive charge Q. There is a 
hollow cavity within the conductor, at 
whose center is a negative point charge q

—q (Fig. 22-24). What is the charge on /
(a) the outer surface of the conductor 
and (b) the inner surface of the /  \
conductor’s cavity? [ ( • ] ]



3. (II) A cube of side £ is placed in a uniform field 
Eq with edges parallel to the field lines, (a) What is the net 
flux through the cube? (b) What is the flux through each of 
its six faces?

4. (II) A uniform field E is parallel to the axis of a hollow 
hemisphere of radius r, Fig. 22-25. (a) What is the electric 
flux through the hemispherical
surface? (b) What is the result 
if E is instead perpendicular to the 
axis?

Axis
I

FIGURE 22-25
Problem 4.

22-2 Gauss's Law
5. (I) The total electric flux from a cubical box 28.0 cm on a 

side is 1.84 X 103N •m2/C. What charge is enclosed by 
the box?

6. (I) Figure 22-26 shows five closed surfaces that surround 
various charges in a plane, as indicated. Determine the electric 
flux through each surface,
51,52,53,54, and S$. The 
surfaces are flat “pillbox” 
surfaces that extend only 
slightly above and below 
the plane in which the 
charges lie.

FIGURE 22-26
Problem 6.

7. (II) In Fig. 22-27, two objects, and 0 2, have charges 
+1.0 /jlC  and -2 .0  /jlC  respectively, and a third object, 0 3, is 
electrically neutral, (a) What is the electric flux through the 
surface A 1 that encloses all the three objects? (b) What is 
the electric flux through the surface A 2 that encloses the 
third object only?

At

FIGURE 22-27
Problem 7.

( > , • + 1 .0  /aC

(V -2 ,0 f iC

*n 3
Ay

8. (II) A ring of charge with uniform charge density is 
completely enclosed in a hollow donut shape. An exact copy 
of the ring is completely enclosed in a hollow sphere. What 
is the ratio of the flux out of the donut shape to that out of 
the sphere?

9. (II) In a certain region of space, the electric field is constant 
in direction (say horizontal, in the x  direction), but its 
magnitude decreases from E  = 560 N /C  at x  = 0 to 
E  = 410 N /C  at x  = 25 m. Determine the charge within a 
cubical box of side £ = 25 m, where the box is oriented so 
that four of its sides are parallel
to the field lines (Fig. 22-28). jc= 0  x = 25 m

E
FIGURE 22-28
Problem 9. -25 tir

10. A noint charge O  is nlaced at the center nf a enhe o f

11. (II) A 15.0-cm-long uniformly charged plastic rod is sealed 
inside a plastic bag. The total electric flux leaving the bag 
is 7.3 X 105N*m2/C. What is the linear charge density on 
the rod?

22-3 Applications of Gauss's Law
12. (I) Draw the electric field lines around a negatively charged 

metal egg.
13. (I) The field just outside a 3.50-cm-radius metal ball is 

6.25 X 102N /C  and points toward the ball. What charge 
resides on the ball?

14. (I) Starting from the result of Example 22-3, show that the 
electric field just outside a uniformly charged spherical 
conductor is E = a / e 0, consistent with Example 22-8.

15. (I) A long thin wire, hundreds of meters long, carries a 
uniformly distributed charge of — 7.2 juC per meter of 
length. Estimate the magnitude and direction of the electric 
field at points (a) 5.0 m and (b) 1.5 m perpendicular from 
the center of the wire.

16. (I) A metal globe has 1.50 mC of charge put on it at the north 
pole. Then —3.00 mC of charge is applied to the south pole. 
Draw the field lines for this system after it has come to 
equilibrium.

17. (II) A nonconducting sphere is made of two layers. The 
innermost section has a radius of 6.0 cm and a uniform charge 
density of -5 .0  C/m 3. The outer layer has a uniform charge 
density of +8.0 C/m 3 and extends from an inner radius of
6.0 cm to an outer radius of 12.0 cm. Determine the electric 
field for (a) 0 <  r < 6.0 cm, (b) 6.0 cm <  r < 12.0 cm, and
(c) 12.0 cm <  r < 50.0 cm. (d) Plot the magnitude of the 
electric field for 0 <  r < 50.0 cm. Is the field continuous at 
the edges of the layers?

18. (II) A solid metal sphere of radius 3.00 m carries a total 
charge of -5.50 fxC. What is the magnitude of the electric 
field at a distance from the sphere’s center of (a) 0.250 m,
(b) 2.90 m, (c) 3.10 m, and (d) 8.00 m? How would the 
answers differ if the sphere were (e) a thin shell, or ( /)  a 
solid nonconductor uniformly charged throughout?

19. (II) A 15.0-cm-diameter nonconducting sphere carries a 
total charge of 2.25 /aC distributed uniformly throughout its 
volume. Graph the electric field E  as a function of the 
distance r from the center of the sphere from r = 0 to 
r = 30.0 cm.

20. (II) A flat square sheet of thin aluminum foil, 25 cm on a 
side, carries a uniformly distributed 275 nC charge. What, 
approximately, is the electric field (a) 1.0 cm above the 
center of the sheet and (b) 15 m above the center of the sheet?

21. (II) A spherical cavity of radius 4.50 cm is at the center of a 
metal sphere of radius 18.0 cm. A point charge Q = 5.50 /jlC  
rests at the very center of the cavity, whereas the metal 
conductor carries no net charge. Determine the electric 
field at a point (a) 3.00 cm from the center of the cavity,
(b) 6.00 cm from the center of the cavity, (c) 30.0 cm from 
the center.

22. (II) A point charge Q rests at the center of an uncharged 
thin spherical conducting shell. What is the electric field E  
as a function of r (a) for r less than the radius of the shell,
(b) inside the shell, and (c) beyond the shell? (d) Does the
shell affer.t the field due to (1 alone? D o e s  the r.harae O



23. (II) A solid metal cube has a spherical cavity at its center as 
shown in Fig. 22-29. At the center of the cavity there is a 
point charge Q = +8.00 /jlC. The metal cube carries a net 
charge q = -6.10 /xC (not including
Q). Determine (a) the total charge on 
the surface of the spherical cavity and
(b) the total charge on the outer 
surface of the cube.

FIGURE 22-29
Problem 23.

24. (II) Two large, flat metal plates are separated by a distance 
that is very small compared to their height and width. The 
conductors are given equal but opposite uniform surface 
charge densities + cr. Ignore edge effects and use Gauss’s 
law to show (a) that for points far from the edges, the elec­
tric field between the plates is E = cr/e0 and
(b) that outside the plates on either side the 
field is zero, (c) How would your results be 
altered if the two plates were nonconductors?
(See Fig. 22-30).

FIGURE 22-30
Problems 24,25, and 26.

25. (II) Suppose the two conducting plates in Problem 24 have 
the same sign and magnitude of charge. What then will be 
the electric field (a) between them and (b) outside them on 
either side? (c) What if the plates are nonconducting?

26. (II) The electric field between two square metal plates is 
160 N/C. The plates are 1.0 m on a side and are separated 
by 3.0 cm, as in Fig. 22-30. What is the charge on each 
plate? Neglect edge effects.

27. (II) Two thin concentric spherical shells of radii and r2 
(t*i <  r2) contain uniform surface charge densities ct\ and cr2, 
respectively (see Fig. 22-31). Determine the electric field 
for (a) 0 <  r < r \ , (b) < r < r2, and
(c) r > r2. (<d) Under what conditions 
will E  = 0 for r > r2l  (e) Under what 
conditions will E  = 0 for r\ < r < r2l  v 
Neglect the thickness of the shells.

FIGURE 22-31 Two spherical \  
shells (Problem 27).

28. (II) A spherical rubber balloon carries a total charge Q 
uniformly distributed on its surface. At t = 0 the noncon­
ducting balloon has radius rQ and the balloon is then slowly 
blown up so that r increases linearly to 2r0 in a time t. 
Determine the electric field as a function of time (a) just 
outside the balloon surface and (b) at r = 3.2r0.

29. (II) Suppose the nonconducting sphere of Example 22-4 
has a spherical cavity of radius centered at the sphere’s 
center (Fig. 22-32). Assuming the charge Q is distributed
uniformly in the “shell” (between r = r\ and r = r0), 
determine the electric field as a function 
of r for (a) 0 <  r < rx, (b) rx <  r < r0, 
and (c) r > r0.

FIGURE 22-32
Problems 29,30,31, and 44.

30. (II) Suppose in Fig. 22-32, Problem 29, there is also a 
charge n at the cen ter nf the cavitv. D eterm in e  the electric

31. (II) Suppose the thick spherical shell of Problem 29 is a 
conductor. It carries a total net charge Q and at its center 
there is a point charge q. What total charge is found on
(a) the inner surface of the shell and (b) the outer surface of 
the shell? Determine the electric field for (c) 0 <  r <  rl5
(id) rx < r < r0, and (e) r > r0.

32. (II) Suppose that at the center of the cavity inside the shell 
(charge Q) of Fig. 22-11 (and Example 22-3), there is a 
point charge q ±Q). Determine the electric field for
(a) 0 <  r < r0, and for (b) r > r0. What are your answers 
if (c) q = Q and (d) q = - Q l

33. (II) A long cylindrical shell of radius R q and length £ 
(Rq « .  £) possesses a uniform surface charge density (charge 
per unit area) cr (Fig. 22-33). Determine the electric field at 
points (a) outside the cylinder (R > Rq) and (b) inside the 
cylinder (0 < R  < R0); assume the
points are far from the ends and not , + + ^  ^
too far from the shell ( / ? « £ ) .  + + + +
(c) Compare to the result for a long + + + +
line of charge, Example 22-6. Neglect | + + + +
the thickness of shell. + + + +

FIGURE 22-33 + + + +
Problem 33. + + + +

34. (II) A very long solid nonconducting cylinder of radius R0 
and length £ (R0 «  £) possesses a uniform volume charge 
density pE (C/m3), Fig. 22-34. Determine the electric field 
at points (a) outside the cylinder (R > R0) and (b) inside 
the cylinder (R < R0). Do 
only for points far from the 
ends and for which R  «  L

FIGURE 22-34
Problem 34.

/ + \  + + + + + +
M oU>+ +  + + + + + 

\ + /  + + + + + +

35. (II) A thin cylindrical shell of radius R\ is surrounded by a 
second concentric cylindrical shell of radius R2 (Fig. 22-35). 
The inner shell has a total charge + Q and the outer 
shell —Q. Assuming the length £ of the shells is much greater 
than R\ or R2, determine the electric field as a function of R 
(the perpendicular distance from the common axis of the cylin­
ders) for (a) 0 < R < R i , (b) Ri < R < R2, and (c) R > R2.
(d) What is the kinetic energy of an
electron if it moves between (and
concentric with) the shells in a circular
orbit of radius (Ri + R2)/21 Neglect / r ^
thickness of shells. \

r/i<i
FIGURE 22-35
Problems 35,36, and 37.

36. (II) A thin cylindrical shell of radius Ri = 6.5 cm is 
surrounded by a second cylindrical shell of radius 
R2 = 9.0 cm, as in Fig. 22-35. Both cylinders are 5.0 m long 
and the inner one carries a total charge Q\ = —0.88 /jlC  
and the outer one Q2 = +1.56 fxC. For points far from the 
ends of the cylinders, determine the electric field at a radial 
distance r from the central axis of (a) 3.0 cm, (b) 7.0 cm, 
and (c) 12.0 cm.

37. (II) (a) If an electron (m  =  9.1 X 10-31kg) escaped from 
the surface of the inner cylinder in Problem 36 (Fig. 22-35) 
with negligible speed, what would be its speed when it reached 
the outer cylinder? (b) If a proton (m =  1.67 X 10-27kg)
revolves in a circular nrhit o f  radius r =  7 0 cm about the



38. (II) A very long solid nonconducting cylinder of radius Rx is 
uniformly charged with a charge density pE. It is surrounded 
by a concentric cylindrical tube of inner radius R2 and 
outer radius R3 as shown in Fig. 22-36, and it too 
carries a uniform charge density pE. Determine the electric 
field as a function of the distance R  from the center 
of the cylinders for (a) 0 <  R < R lt  (b) R x < R < R2,
(c) R2 < R  < R3, and (d) R >  R3. (e) If pE = 15pC /m 3 
and Ri = \ R 2 = \ R 3 = 5.0 cm, 
plot £  as a function of R  from 
R = 0 to R = 20.0 cm. Assume 
the cylinders are very long 
compared to R3.

FIGURE 22-36
Problem 38.

39. (II) A nonconducting sphere of radius r0 is uniformly 
charged with volume charge density pE. It is surrounded by 
a concentric metal (conducting) spherical shell of inner 
radius rx and outer radius r2, which carries a net charge +Q. 
Determine the resulting electric field in the regions
(a) 0 < r < r0, (b) r0 < r < rx, (c) rx < r < r2, and
(d) r > r2 where the radial distance r is measured from the 
center of the nonconducting sphere.

40. (II) A very long solid nonconducting cylinder of radius Rx is 
uniformly charged with charge density pE. It is surrounded by 
a cylindrical metal (conducting) tube of inner radius R2 and 
outer radius R3, which has no net charge (cross-sectional view 
shown in Fig. 22-37). If the axes of the two cylinders are 
parallel, but displaced from each other by a distance d, 
determine the resulting
electric field in the region 
R > R3, where the 
radial distance R  is 
measured from the 
metal cylinder’s axis.
Assume d < (R2 -  i^).

FIGURE 22-37
Problem 40.

41. (II) A flat ring (inner radius R0, outer radius 4R0) is 
uniformly charged. In terms of the total charge Q, deter­
mine the electric field on the axis at points (a) 0.25R0 and
(b) 75Rq from the center of the ring. [Hint: The ring can be 
replaced with two oppositely charged superposed disks.]

42. (II) An uncharged solid conducting sphere of radius r0 
contains two spherical cavities of radii rx and r2, respec­
tively. Point charge Q\ is then placed within the cavity of 
radius rx and point charge 
Q2 is placed within the 
cavity of radius r2 (Fig.
22-38). Determine the 
resulting electric field 
(magnitude and direc­
tion) at locations outside 
the solid sphere (r > r0), . 
where r is the distance 
from its center.

FIGURE 22-38

43. (Ill) A very large (i.e., assume infinite) flat slab of noncon­
ducting material has thickness d and a uniform volume charge 
density +pE. (a) Show that a uniform electric field exists 
outside of this slab. Determine its magnitude E  and its direc­
tion (relative to the slab’s surface), (b) As shown in Fig. 22-39, 
the slab is now aligned so that one of its surfaces lies on the 
line y = x. At time t = 0, a pointlike particle (mass ra, 
charge +q) is located at 
position r = + y0j  and has 
velocity v = v0i. Show 
that the particle will 
collide with the slab if 
v0 ^ V V 2 q y 0pEd/e0 ra.
Ignore gravity.

FIGURE 22-39 +
Problem 43.

44. (Ill) Suppose the density of charge between rx and r0 of the 
hollow sphere of Problem 29 (Fig. 22-32) varies as 
Pe =  Pori / r • Determine the electric field as a function of r 
for (a) 0 <  r < rx, (b) rx < r < r0, and (c) r > r0. (d) Plot 
E  versus r from r = 0 to r = 2r0.

45. (Ill) Suppose two thin flat plates measure 1.0 m X 1.0 m and 
are separated by 5.0 mm. They are oppositely charged with 
+ 15 fiC. (a) Estimate the total force exerted by one plate 
on the other (ignore edge effects), (b) How much work 
would be required to move the plates from 5.0 mm apart to
1.00 cm apart?

46. (Ill) A flat slab of nonconducting material (Fig. 22-40) 
carries a uniform charge per unit volume, pE. The slab has 
thickness d which is small compared to the v 
height and breadth of the slab. Determine 
the electric field as a function of x (a) inside 
the slab and (b) outside the slab (at distances 
much less than the slab’s height or breadth).
Take the origin at the center of the slab.

FIGURE 22-40
Problem 46.

-( / •

47. (Ill) A flat slab of nonconducting material has thickness 2d, 
which is small compared to its height and breadth. Define 
the x  axis to be along the direction of the slab’s thickness 
with the origin at the center of the slab (Fig. 22-41). 
If the slab carries a volume 
charge density pE(x) = — p0 in 
the region —d < x < 0  and 
pE(jc) = +p0 in the region
0 <  x  <  +d, determine the 
electric field E as a function of 
x  in the regions (a) outside the 
slab, (b) 0 <  x  <  +d, and
(c) —d <  x < 0. Let po be a 
positive constant.

FIGURE 72-A1
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48. (Ill) An extremely long, solid nonconducting cylinder has a 
radius R0. The charge density within the cylinder is a function 
of the distance R from the axis, given by pE (R) = p0(R /R0)2. 
What is the electric field everywhere inside and outside the 
cylinder (far away from the ends) in terms of p0 and R07

49. (Ill) Charge is distributed within a solid sphere of radius r0 in 
such a way that the charge density is a function of the radial 
position within the sphere of the form: pE(r) = po(r/r0). If 
the total charge within the sphere is Q (and positive), what is 
the electric field everywhere within the sphere in terms 
of Q, r0, and the radial position rl

| General Problems
50. A point charge Q is on the axis of a short cylinder at its 

center. The diameter of the cylinder is equal to its length i  
(Fig. 22-42). What is the total flux through the curved sides 
of the cylinder? [Hint. First calculate 
the flux through the ends.] t — 2/?0

58. Three large but thin charged sheets are parallel to each other 
as shown in Fig. 22-44. Sheet I has a total surface charge 
density of 6.5nC/m2, sheet II a charge of —2.0nC/m2, and 
sheet III a charge of 5.0nC/m2. Estimate the force per unit 
area on each sheet, in N/m2?

Q
FIGURE 22-42
Problem 50.

51. Write Gauss’s law for the gravitational field g (see 
Section 6-6).

52. The Earth is surrounded by an electric field, pointing 
inward at every point, of magnitude E  «  150 N/C near the 
surface, (a) What is the net charge on the Earth? (b) How 
many excess electrons per square meter on the Earth’s 
surface does this correspond to?

53. A cube of side i  has one corner at the origin of coordinates, 
and extends along the positive x, y, and z axes. Suppose the 
electric field in this region is given by E = (ay + b)\. 
Determine the charge inside the cube.

54. A solid nonconducting sphere of radius rQ has a total 
charge Q which is distributed according to pE = br, where 
pE is the charge per unit volume, or charge density (C/m3), 
and b is a constant. Determine (a) b in terms of Q, (b) the 
electric field at points inside the sphere, and (c) the electric 
field at points outside the sphere.

55. A point charge of 9.20 nC is located at the origin and a 
second charge of — 5.00 nC is located on the x axis at 
x = 2.75 cm. Calculate the electric flux through a sphere 
centered at the origin with radius 1.00 m. Repeat the calcu­
lation for a sphere of radius 2.00 m.

56. A point charge produces an electric flux of +235N-m2/C  
through a gaussian sphere of radius 15.0 cm centered on the 
charge, (a) What is the flux through a gaussian sphere with a 
radius 27.5 cm? (b) What is the magnitude and sign of 
the charge?

57. A point charge Q is placed a distance r0/2  above the surface 
of an imaginary spherical surface of radius r0 (Fig. 22-43).
(a) What is the electric flux through the sphere? (b) What 
range of values does E have at the surface of the sphere?
(c) Is E perpendicular to the sphere at all points? (d) Is 
Gauss’s law useful for obtaining E at the
surface of the sphere? j ̂  rt,

FIGURE 22-44
Problem 58.

I
II
m

59. Neutral hydrogen can be modeled as a positive point charge 
+1.6 X 10-19C surrounded by a distribution of negative 
charge with volume density given by p^(r) = —A e~ 2r^a° 
where a0 = 0.53 X 10-10 m is called the Bohr radius, A  is a 
constant such that the total amount of negative charge is 
—1.6 X 10-19 C, and e =  2.718 ••• is the base of the natural 
log. (a) What is the net charge inside a sphere of radius aQ ?
(b) What is the strength of the electric field at a distance a0 
from the nucleus? [Hint: Do not confuse the exponential 
number e with the elementary charge e which uses the same 
symbol but has a completely different meaning and value 
(e = 1.6 X 10“19C).]

60. A very large thin plane has uniform surface charge 
density a. Touching it on the right (Fig. 22-45) is a long 
wide slab of thickness d with uniform volume
charge density pE. Determine the electric field
(a) to the left of the plane, (b) to the right of 
the slab, and (c) everywhere inside the slab.

FIGURE 22-45
Problem 60.
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61. A sphere of radius r0 carries a volume charge density pE 
(Fig. 22-46). A spherical cavity of radius r0/2  is then 
scooped out and left empty, as shown, (a) What is the 
magnitude and direction of the electric field at point A?
(b) What is the direction and 
magnitude of the electric field at 
point B? Points A and C are at the 
centers of the respective spheres. /  pE

R< ♦A -C

FIGURE 22-46
Problem 61.

FIGURE 2 2 -4 3

62. Dry air will break down and generate a spark if the electric 
field exceeds about 3 X 106N/C. How much charge could
he narked onto the surf a re o f a oreen nea ^diameter



63. Three very large sheets are separated by equal distances 
of 15.0 cm (Fig. 22-47). The first and third sheets are very 
thin and nonconducting and have charge per unit area a  
of +5.00 f j i C / m 2  and -5.00 /iC /m 2 respectively. The 
middle sheet is conducting but has no net charge. 
(a) What is the electric field inside the middle sheet? 
What is the electric field (b) between the left and middle 
sheets, and (c) between the middle and right sheets? 
((d) What is the charge density on the surface of the 
middle sheet facing the left sheet, and (e) on the surface 
facing the right sheet?

- +5.00 fiCJm2 {Jnel = 0 - -5-00 /*C/m2 
* I- +1 W
— 15.0 cm— — 15.0 cm —

+ — —

FIGURE 22-47 Problem 63.

64. In a cubical volume, 0.70 m on a side, the electric field is 

E  = £o( l + f ) i  + £og ) j

where E0 = 0.125 N /C  and a = 0.70 m. The cube has its 
sides parallel to the coordinate axes, Fig. 22-48. Determine 
the net charge within the cube.

FIGURE 22-48 /
Problem 64.

65. A conducting spherical shell (Fig. 22-49) has inner 
radius = 10.0 cm, outer radius = 15.0 cm, and has a 
+3.0 fxC point charge at the . -  —
center. A charge of -3 .0  jjlC  is 
put on the conductor, (a) Where 
on the conductor does the 
-3 .0  fj,C end up? (b) What is the 
electric field both inside and 
outside the shell?

FIGURE 22-49
Problem 65.
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66. A hemisphere of radius R  is placed in a charge-free region 
of space where a uniform electric field exists of magnitude 
E  directed perpendicular to the hemisphere’s circular base 
(Fig. 22-50). (a) Using the definition of through an 
“open” surface, calculate (via explicit integration) the 
electric flux through the hemisphere. [Hint: In Fig. 22-50 
you can see that, on the surface of a sphere, the infinitesimal 
area located between the angles 0 and 0 + dd is 
dA = (2ttR sin 6)(Rdd) = 2ttR2 sin 6 d0.\ (b) Choose an 
appropriate gaussian 
surface and use Gauss’s 
law to much more easily 
obtain the same result 
for the electric flux 
through the hemisphere.

FIGURE 22-50
Problem 66.

* Numerical/Computer
* 67. (Ill) An electric field is given by

(x+y)2 (x+yV
E = E x o e \  a J i + Ey0e \ a ) J’

where Exq = 50 N/C, Eyo = 25 N/C, and a = 1.0 m. Given 
a cube with sides parallel to the coordinate axes, with one 
corner at the origin (as in Fig. 22-48), and with sides of 
length 1.0 m, estimate the flux out of the cube using a 
spreadsheet or other numerical method. How much total 
charge is enclosed by the cube?

Answers to Exercises

A: (d). D: (e).
B: («). E: (c).



We are used to voltage in our lives— a 
12-volt car battery, 110 V or 220 V at 
home, 1.5 volt flashlight batteries, 
and so on. Here we see a Van de 
Graaff generator, whose voltage may 
reach 50,000 V or more. Voltage is the 
same as electric potential difference 
between two points. Electric potential 
is defined as the potential energy per 
unit charge.

The children here, whose hair 
stands on end because each hair has 
received the same sign of charge, are 
not harmed by the voltage because 
the Van de Graaff cannot provide 
much current before the voltage 
drops. (It is current through the body 
that is harmful, as we will see later.)

T £

Electric Potential
CHAPTER-OPENING QUESTIO] —Guess now!
Consider a pair of parallel plates with equal and opposite charge densities, a. 
Which of the following actions will increase the voltage between the plates 
(assuming fixed charge density)?

(a) Moving the plates closer together.
(b) Moving the plates apart.
(c) Doubling the area of the plates.
(d) Halving the area of the plates.

W e saw in Chapters 7 and 8 that the concept of energy was extremely 
useful in dealing with the subject of mechanics. The energy point of 
view is especially useful for electricity. It not only extends the law of 
conservation of energy, but it gives us another way to view electrical 

phenomena. Energy is also a powerful tool for solving Problems more easily in 
many cases than by using forces and electric fields.

2 3 -1  Electric Potential Energy and 
Potential Difference

Electric Potential Energy
To apply conservation of energy, we need to define electric potential energy as we 
did for other types of potential energy. As we saw in Chapter 8, potential energy 
can be defined only for a conservative force. The work done by a conservative 
force in moving an object between any two positions is independent of the path 
taken. The electrostatic force between anv two charges (Ea. 21-1, F = k 0 1 0o/r2)
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FIGURE 23-1 Work is done by the 
electric field in moving the positive 
charge q from position a to position b.

We saw in Chapter 8 that the change in potential energy between two points, 
a and b, equals the negative of the work done by the conservative force as an 
object moves from a to b: AU = —W.

Thus we define the change in electric potential energy, Ub — Ua, when a point 
charge q moves from some point a to another point b, as the negative of the work 
done by the electric force as the charge moves from a to b. For example, consider 
the electric field between two equally but oppositely charged parallel plates; we 
assume their separation is small compared to their width and height, so the field E 
will be uniform over most of the region, Fig. 23-1. Now consider a tiny positive 
point charge q placed at point a very near the positive plate as shown. This 
charge q is so small it has no effect on E. If this charge q at point a is released, the 
electric force will do work on the charge and accelerate it toward the negative 
plate. The work W  done by the electric field E  to move the charge a distance d is

W = Fd = qEd
where we used Eq. 21-5, F = qE. The change in electric potential energy equals 
the negative of the work done by the electric force:

Uh -  Ua = -w = -q E d  [uniform E] (23-1)
for this case of uniform electric field E. In the case illustrated, the potential energy 
decreases (A U is negative); and as the charged particle accelerates from point a to 
point b in Fig. 23-1, the particle’s kinetic energy K  increases—by an equal 
amount. In accord with the conservation of energy, electric potential energy is 
transformed into kinetic energy, and the total energy is conserved. Note that the 
positive charge q has its greatest potential energy at point a, near the positive 
plate.f The reverse is true for a negative charge: its potential energy is greatest 
near the negative plate.

ElectricPotential and Potential Difference
In Chapter 21, we found it useful to define the electric field as the force per unit 
charge. Similarly, it is useful to define the electric potential (or simply the potential 
when “electric” is understood) as the electric potential energy per unit charge. 
Electric potential is given the symbol V. If a positive test charge q in an electric 
field has electric potential energy Ua at some point a (relative to some zero poten­
tial energy), the electric potential Va at this point is

UaV = —  ■
a q (23-2a)

As we discussed in Chapter 8, only differences in potential energy are physically 
meaningful. Hence only the difference in potential, or the potential difference,
between two points a and b (such as between a and b in Fig. 23-1) is measurable. 
When the electric force does positive work on a charge, the kinetic energy increases 
and the potential energy decreases. The difference in potential energy, Ub — Ua, 
is equal to the negative of the work, Wha, done by the electric field as the charge 
moves from a to b; so the potential difference Vha is

Vba = Ay = Fb -  Va = Uh ~  U° = - ~  (23-2b)

Note that electric potential, like electric field, does not depend on our test 
charge q. V  depends on the other charges that create the field, not on q; q acquires 
potential energy by being in the potential V  due to the other charges.

We can see from our definition that the positive plate in Fig. 23-1 is at a higher 
potential than the negative plate. Thus a positively charged object moves naturally 
from a high potential to a low potential. A negative charge does the reverse.

The unit of electric potential, and of potential difference, is joules/coulomb and is 
given a special name, the volt, in honor of Alessandro Volta (1745-1827) who is best 
known for inventing the electric battery. The volt is abbreviated V, so 1 V = 1 J/C. 
Potential difference, since it is measured in volts, is often referred to as voltage.



If we wish to speak of the potential Va at some point a, we must be aware that 
Va depends on where the potential is chosen to be zero. The zero for electric potential 
in a given situation can be chosen arbitrarily, just as for potential energy, because only 
differences in potential energy can be measured. Often the ground, or a conductor 
connected directly to the ground (the Earth), is taken as zero potential, and other 
potentials are given with respect to ground. (Thus, a point where the voltage is 50 V is 
one where the difference of potential between it and ground is 50 V.) In other cases, as 
we shall see, we may choose the potential to be zero at an infinite distance (r = oo).

CONCEPTUAL EXAMPLE 25-1 I A negative charge. Suppose a negative charge, 
such as an electron, is placed near the negative plate in Fig. 23-1, at point b, shown 
here in Fig. 23-2. If the electron is free to move, will its electric potential energy 
increase or decrease? How will the electric potential change?
RESPONSE An electron released at point b will move toward the positive plate. 
As the electron moves toward the positive plate, its potential energy decreases as 
its kinetic energy gets larger, so Ua < Uh and AU = Ua — Uh < 0. But note that 
the electron moves from point b at low potential to point a at higher potential: 
Kb = Va — Vb > 0. (Potentials Va and Vh are due to the charges on the plates, not due 
to the electron.) The sign of AU  and AV are opposite because of the negative charge.

Because the electric potential difference is defined as the potential energy 
difference per unit charge, then the change in potential energy of a charge q when 
moved between two points a and b is

AU = Ub -  [7a = q(Vb -  V'a) = c,Vb.A. (23-3)
That is, if an object with charge q moves through a potential difference Vba, its 
potential energy changes by an amount qV\ja. For example, if the potential 
difference between the two plates in Fig. 23-1 is 6 V, then a +1 C charge moved 
(say by an external force) from point b to point a will gain (1 C)(6 V) = 6 J of 
electric potential energy. (And it will lose 6 J of electric potential energy if it moves 
from a to b.) Similarly, a +2 C charge will gain 12 J, and so on. Thus, electric potential 
difference is a measure of how much energy an electric charge can acquire in a 
given situation. And, since energy is the ability to do work, the electric potential 
difference is also a measure of how much work a given charge can do. The exact 
amount depends both on the potential difference and on the charge.

To better understand electric potential, let’s make a comparison to the 
gravitational case when a rock falls from the top of a cliff. The greater the height, h, 
of a cliff, the more potential energy (= mgh) the rock has at the top of the cliff, 
relative to the bottom, and the more kinetic energy it will have when it reaches the 
bottom. The actual amount of kinetic energy it will acquire, and the amount of 
work it can do, depends both on the height of the cliff and the mass m of the rock. 
A large rock and a small rock can be at the same height h (Fig. 23-3a) and 
thus have the same “gravitational potential,” but the larger rock has the greater 
potential energy (it has more mass). The electrical case is similar (Fig. 23-3b): 
the potential energy change, or the work that can be done, depends both on the 
potential difference (corresponding to the height of the cliff) and on the charge 
(corresponding to mass), Eq. 23-3. But note a significant difference: electric charge 
comes in two types, + and —, whereas gravitational mass is always +.

Sources of electrical energy such as batteries and electric generators are meant 
to maintain a potential difference. The actual amount of energy transformed by 
such a device depends on how much charge flows, as well as the potential 
difference (Eq. 23-3). For example, consider an automobile headlight connected to 
a 12.0-V battery. The amount of energy transformed (into light and thermal 
energy) is proportional to how much charge flows, which depends on how long 
the light is on. If over a given period of time 5.0 C of charge flows through the 
light, the total energy transformed is (5.0 C)(12.0 V) = 60J. If the headlight 
is left on twice as lone. 10.0 C of charge will flow and the energv transformed is
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FIGURE 23-2 Central part of 
Fig. 23-1, showing a negative point 
charge near the negative plate, 
where its potential energy ( p e ) is 
high. Example 23-1.

A  CAUTION____________
A  negative charge has high 
potential energy when potential V  is low
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FIGURE 23-3 (a) Two rocks are at 
the same height. The larger rock has 
more potential energy, (b) Two charges 
have the same electric potential. The 
2 Q charge has more potential energy.

TABLE 23-1 Some Typical 
Potential Differences (Voltages)

Source
Voltage

(approx.)

Thundercloud to ground 108V
High-voltage power line 105-1 0 6V
Power supply for TV tube 104 V
Automobile ignition 104V
Household outlet 102V
Automobile battery 12 V
Flashlight battery 1.5 V
Resting potential across 
nerve membrane 10-1 V

Potential changes on skin
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FIGURE 23-4 Electron accelerated 
in CRT. Example 23-2.

Electron in CRT. Suppose an electron in a cathode ray tube 
(Section 23-9) is accelerated from rest through a potential difference 
Vb -  Va = Vba = +5000 V (Fig. 23-4). (a) What is the change in electric 
potential energy of the electron? (b) What is the speed of the electron 
(ra = 9.1 X 10-31 kg) as a result of this acceleration?
APPROACH The electron, accelerated toward the positive plate, will decrease in 
potential energy by an amount A U = qVba (Eq. 23-3). The loss in potential 
energy will equal its gain in kinetic energy (energy conservation).
SOLUTION (a) The charge on an electron is q = - e  = - 1.6 X 10-19 C. Therefore 
its change in potential energy is

AU = qVba = (-1 .6  X 10“19C)(+5000 V) = -8.0 X 10“16J.
The minus sign indicates that the potential energy decreases. The potential 
difference Vba has a positive sign since the final potential Vb is higher than the 
initial potential Va. Negative electrons are attracted toward a positive electrode 
and repelled away from a negative electrode.
(b) The potential energy lost by the electron becomes kinetic energy K. From 
conservation of energy (Eq. 8-9a), AK  + AU = 0, so

A K  = - A U  
W  -  0 = -q(Vb -  Fa) = ~qVi,a, 

where the initial kinetic energy is zero since we are given that the electron 
started from rest. We solve for v :

I 2(-1.6 x  10-19 C)(5000 V) ,
v = -v / ----------= \ -------------—-----— ----------  = 4.2 X lO'm/s.

M m  V 9.1 X 10“31 kg
NOTE The electric potential energy does not depend on the mass, only on the 
charge and voltage. The speed does depend on ra.

EXAMPLE 23-2

FIGURE 23-5 To find Vba in 
a nonuniform electric field E, we 
integrate E • d i  from point a to 
point b.

2 3 —2 Relation between Electric Potential 
and Electric Field

The effects of any charge distribution can be described either in terms of electric 
field or in terms of electric potential. Electric potential is often easier to use 
because it is a scalar, as compared to electric field which is a vector. There is a 
crucial connection between the electric potential produced by a given arrangement 
of charges and the electric field due to those charges, which we now examine.

We start by recalling the relation between a conservative force F and the 
potential energy U associated with that force. As discussed in Section 8-2, the 
difference in potential energy between any two points in space, a and b, is given by 
Eq. 8-4:

Ub ~ ua F • di,

where di is an infinitesimal increment of displacement, and the integral is 
taken along any path in space from point a to point b. For the electrical case, 
we are more interested in the potential difference, given by Eq. 23-2b, 
Vba = Vb — Va = (Ub — U^/q, rather than in the potential energy itself. Also, the 
electric field E at any point in space is defined as the force per unit charge 
(Eq. 21-3): E = F/q. Putting these two relations in the above equation gives us

Vba = Vb -  Va = -  f E • di. (23-4a)
J a

This is the general relation between electric field and potential difference. See 
Fie. 23-5. If we are siven the electric field due to some arrangement of electric



A simple special case is a uniform field. In Fig. 23-1, for example, a path 
parallel to the electric field lines from point a at the positive plate to point b at the 
negative plate gives (since E and dl are in the same direction at each point),

rb rb
Vba =  Vb -  Fa =  — E • di =  - E \  dt =  - E d

Ja Ja
or

Vba = - E d  [only if E  is uniform] (23-4b)
where d is the distance, parallel to the field lines, between points a and b. Be 
careful not to use Eq. 23-4b unless you are sure the electric field is uniform.

From either of Eqs. 23-4 we can see that the units for electric field intensity can 
be written as volts per meter (V/m) as well as newtons per coulomb (N/C). These 
are equivalent in general, since 1N/C = lN -m /C -m  = l J / C - m  = lV/m.

EXERCISE A Return to the Chapter-Opening Question, page 607, and answer it again now. 
Try to explain why you may have answered differently the first time.

EXAMPLE 23-3 Electric field obtained from voltage. Two parallel plates 
are charged to produce a potential difference of 50 V. If the separation between 
the plates is 0.050 m, calculate the magnitude of the electric field in the space 
between the plates (Fig. 23-6).
APPROACH We apply Eq. 23-4b to obtain the magnitude of E, assumed uniform. 
SOLUTION The electric field magnitude is E = Vba/d = (50V/0.050m) = 1000V/m.

EXAMPLE 23-4 Charged conducting sphere. Determine the potential at a 
distance r from the center of a charged conducting sphere of radius r0 for 
(a) r > r0, (b) r = r0, (c) r < r0. The total charge on the sphere is Q. 
APPROACH The charge Q is distributed over the surface of the sphere since it is 
a conductor. We saw in Example 22-3 that the electric field outside a conducting 
sphere is

£  =  ̂ [r > '■J
and points radially outward (inward if Q < 0). Since we know E, we can start by 
using Eq. 23-4a.
SOLUTION (a) We use Eq. 23-4a and integrate along a radial line with dl 
parallel to E (Fig. 23-7) between two points which are distances ra and rh from 
the sphere’s center:

Vh
L

E • dl = Q

[
r*dr

2
4 ^ 0  Jra r 4ire0

and we set di = dr. If we let V  = 0 for r = oo (let’s choose Vh = 0 at rb = oo), 
then at any other point r (for r > rQ) we have

1 Qv =
47T€f > '■o]

We will see in the next Section that this same equation applies for the potential a 
distance r from a single point charge. Thus the electric potential outside a 
spherical conductor with a uniformly distributed charge is the same as if all the 
charge were at its center.
(b) As r approaches r0, we see that

F  = [r = ro] 
at the surface of the conductor.
(c) For points within the conductor, E = 0. Thus the integral, JE • dl, between 
r = r0 and any point within the conductor gives zero change in V. Hence V  is 
constant within the conductor:

1 Q

1 b̂a *
= 50 V

£ = ?

_d= ^  
5.0 cm

FIGURE 23-6 Example 23-3.

FIGURE 23-7 Example 23-4. 
Integrating E • dl for the field 
outside a spherical conductor.

FIGURE 23-8 (a) E  versus r, and 
(b) V  versus r, for a positively charged 
solid conducting sphere of radius r0 
(the charge distributes itself on the 
surface); r is the distance from the 
center of the sphere.

(a)



FIGURE 23-9 We integrate 
Eq. 23-4a along the straight line 
(shown in black) from point a to 
point b. The line ab is parallel to a 
field line.

EXAMPLE 23-5 Breakdown voltage. In many kinds of equipment, very high 
voltages are used. A problem with high voltage is that the air can become ionized 
due to the high electric fields: free electrons in the air (produced by cosmic rays, for 
example) can be accelerated by such high fields to speeds sufficient to ionize 0 2 and 
N2 molecules by collision, knocking out one or more of their electrons. The air then 
becomes conducting and the high voltage cannot be maintained as charge flows. The 
breakdown of air occurs for electric fields of about 3 X 106 V/m. (a) Show that the 
breakdown voltage for a spherical conductor in air is proportional to the radius of the 
sphere, and (b) estimate the breakdown voltage in air for a sphere of diameter 1.0 cm.
APPROACH The electric potential at the surface of a spherical conductor of 
radius rQ (Example 23-4), and the electric field just outside its surface, are

l Q A l  QV = ---------and E = ---------------=-•
4776 0 r0 4776 0 n

SOLUTION (a) We combine these two equations and obtain
V = r0E. [at surface of spherical conductor]

(b) For r0 = 5 X 10-3 m, the breakdown voltage in air is
V = (5 X 10_3m)(3 X 106V/m) »  15,000 V.

When high voltages are present, a glow may be seen around sharp points, known 
as a corona discharge, due to the high electric fields at these points which ionize 
air molecules. The light we see is due to electrons jumping down to empty lower states. 
Lightning rods, with their sharp tips, are intended to ionize the surrounding air 
when a storm cloud is near, and to provide a conduction path to discharge a 
dangerous high-voltage cloud slowly, over a period of time. Thus lightning rods, 
connected to the ground, are intended to draw electric charge off threatening 
clouds before a large buildup of charge results in a swift destructive lightning bolt.

EXERCISE B On a dry day, a person can become electrically charged by rubbing against 
rugs and other ordinary objects. Suppose you notice a small shock as you reach for a metal 
doorknob, noting that the shock occurs along with a tiny spark when your hand is about
3.0 mm from the doorknob. As a rough estimate, use Eq. 23-4b to estimate the potential 
difference between your hand and the doorknob, (a) 9 V; (b) 90 V; (c) 900 V; (d) 9000 V;
(e) none of these.

2 3 -3  Electric Potential Due to 
Point Charges

The electric potential at a distance r from a single point charge Q can be derived 
directly from Eq. 23-4a, Vh -  Va = -  f  E • dl. The electric field due to a single 
point charge has magnitude (Eq. 21-4)

1 Q zr / QE = ---------z or E = k —
4776 0 r2 r2

(where k = l/47760 = 8.99 X 109N-m2/C 2), and is directed radially outward 
from a positive charge (inward if Q < 0). We take the integral in Eq. 23-4a along 
a (straight) field line (Fig. 23-9) from point a, a distance ra from Q, to point b, a 
distance rb from Q. Then dt will be parallel to E and di = dr. Thus

r b-  - q  frb i iVa = -  E • di = -  - d r  = —
Jr„ 47re0 Jra T2 4w>

Q_Q 
47re0 V'b r.

A s m entioned earlier, onlv differences in potential have nhvsical meaning. We are



be whatever we please. It is common to choose the potential to be zero at infinity 
(let Vh = 0 at rb = oo). Then the electric potential V  at a distance r from a single 
point charge is

T/ = 1 Q [single point charge;]
V 47reo r [ V = 0 at r = oo J

We can think of V  here as representing the absolute potential, where V = 0 at 
r = oo, or we can think of V  as the potential difference between r and infinity. 
Notice that the potential V  decreases with the first power of the distance, whereas 
the electric field (Eq. 21-4) decreases as the square of the distance. The potential 
near a positive charge is large, and it decreases toward zero at very large distances 
(Fig. 23-10). For a negative charge, the potential is negative and increases toward 
zero at large distances (Fig. 23-11).

In Example 23-4 we found that the potential due to a uniformly charged 
sphere is given by the same relation, Eq. 23-5, for points outside the sphere. Thus 
we see that the potential outside a uniformly charged sphere is the same as if all 
the charge were concentrated at its center.

I EXERCISE C What is the potential at a distance of 3.0 cm from a point charge 
Q = -2 .0  X 10“9C? (a) 600 V; (b) 60 V; (c) 6 V; (d) -6 0 0  V; (e) -6 0  V; ( / )  - 6  V.

Work required to bring two positive charges close together.
What minimum work must be done by an external force to bring a charge 
q = 3.00 fiC from a great distance away (take r = oo ) to a point 0.500 m from a 
charge Q = 20.0 /jlC?

APPROACH To find the work we cannot simply multiply the force times distance 
because the force is not constant. Instead we can set the change in potential energy 
equal to the (positive of the) work required of an external force (Chapter 8), and 
Eq. 23-3: W = AC/ = q(Vb -  Va). We get the potentials Vh and Va using Eq. 23-5.

SOLUTION The work required is equal to the change in potential energy:

EXAMPLE 23-6

w  = q ( v b -  Va) 

kQ kQ
r\> ra

where rh = 0.500 m and ra =  oo. The right-hand term within the parentheses is
zero ( l /o o  = 0) so

, N (8.99 X 109N -m 7C 2)(2.00 X 10“5C)
W = (3.00 X 10 C ------------------^  ^  7;------------------ = 1.08 J.v '  (0.500 m)

NOTE We could not use Eq. 23-4b here because it applies only to uniform fields.
But we did use Eq. 23-3 because it is always valid.

To determine the electric field at points near a collection of two or more point 
charges requires adding up the electric fields due to each charge. Since the electric 
field is a vector, this can be time consuming or complicated. To find the electric 
potential at a point due to a collection of point charges is far easier, since the 
electric potential is a scalar, and hence you only need to add numbers (with 
appropriate signs) without concern for direction. This is a major advantage in using 
electric ootential for solving Problems.

FIGURE 23-10 Potential V  as a 
function of distance r from a single 
point charge Q when the charge is 
positive.

FIGURE 23-11 Potential V  as a 
function of distance r from a single 
point charge Q when the charge is 
negative.

/?\ CAUTION
We cannot use W  = Fd 
when F  is not constant



FIGURE 23-12 Example 23-7. 
(See also Example 21-8, Fig. 21-27.)

CAUTION
Potential is a scalar and 

has no components

©  <

(i)

©  Q

(ii)

®  ©

(iii)

FIGURE 23-13 Exercise D.

EXAMPLE 23-7 Potential above two charges. Calculate the electric potential
(a) at point A in Fig. 23-12 due to the two charges shown, and (b) at point B. 
[This is the same situation as Example 21-8, Fig. 21-27, where we calculated the 
electric field at these points.]
APPROACH The total potential at point A (or at point B) is the sum of the 
potentials at that point due to each of the two charges Q1 and Q2. The potential 
due to each single charge is given by Eq. 23-5. We do not have to worry about 
directions because electric potential is a scalar quantity. But we do have to keep 
track of the signs of charges.
SOLUTION (a) We add the potentials at point A due to each charge Q1 and Q2, 
and we use Eq. 23-5 for each:

VA = VA2 + l^i
, Q2 , , Qi= k ------- 1- k  —

r2A r1A
where r1A = 60 cm and r2A = 30 cm. Then

VA =
(9.0 X 109N-m2/C 2)(5.0 X 10“5C)

0.30 m
(9.0 X 109 N • m2/C 2)(—5.0 X 10“5C)

(b) At point B,

0.60 m
1.50 X 106V -  0.75 X 106V
7.5 X 105V.

0.40 m, sorlB ~  r2B

= VB2 + VpB1

(9.0 X 109N-m2/C 2)(5.0 X 10“5C)
0.40 m

(9.0 X 109 N • m2/C 2)( -5.0 X 10“5C)
0.40 m

= 0V.
NOTE The two terms in the sum in (b) cancel for any point equidistant from 
Qi and Q2 (r1B = r2B). Thus the potential will be zero everywhere on the plane 
equidistant between the two opposite charges. This plane where V  is constant 
is called an equipotential surface.

Simple summations like these can easily be performed for any number of 
point charges.

EXERCISE D Consider the three pairs of charges, Q\ and Q2, in Fig. 23-13. (a) Which set 
has a positive potential energy? (b) Which set has the most negative potential energy?
(c) Which set requires the most work to separate the charges to infinity? Assume the 
charges all have the same magnitude.

2 3 -4  Potential Due to Any Charge 
Distribution

If we know the electric field in a region of space due to any distribution of electric 
charge, we can determine the difference in potential between two points in the 
region using Eq. 23-4a, Vba = -  Ja E • dt. In many cases we don’t know E as a 
function of position, and it may be difficult to calculate. We can calculate the 
potential V  due to a given charge distribution in another way, using the potential 
due to a single point charge, Eq. 23-5:

l  Qv  =
47T€f



If we have n individual point charges, the potential at some point a (relative to
V = 0 at r = oo) is

n 1 n q .

^ . =  2 ^  = 4 (23“6a>j=1 4776 o i=i

where ria is the distance from the ith charge (Qt)  to the point a. (We already used 
this approach in Example 23-7.) If the charge distribution can be considered 
continuous, then

V = — f — > (23-6b)
4 i r e 0  J  r

where r is the distance from a tiny element of charge, dq, to the point where V  is 
being determined.

IfrfiVilJ Potential due to a ring of charge. A thin circular ring of
radius R  has a uniformly distributed charge Q. Determine the electric potential at 
a point P on the axis of the ring a distance x from its center, Fig. 23-14.

APPROACH We integrate over the ring using Eq. 23-6b.
SOLUTION Each point on the ring is equidistant from point P, and this distance is 
(x2 + R2)2. So the potential at P is:

V =
1 (d q  = 1 1 f 

4 7 T € 0  J  r 4 7 7 6  o  (x2 + R2)i J  q 4 7 7 6  o  (x2 + R2)\

NOTE For points very far away from the ring, x »  R, this result reduces to 
(l/477€0) (£?/*), the potential of a point charge, as we should expect.

EXAMPLE 23-9 Potential due to a charged disk. A thin flat disk, of 
radius R0, has a uniformly distributed charge Q, Fig. 23-15. Determine the 
potential at a point P on the axis of the disk, a distance x  from its center.

APPROACH We divide the disk into thin rings of radius R and thickness dR and 
use the result of Example 23-8 to sum over the disk.
SOLUTION The charge Q is distributed uniformly, so the charge contained in 
each ring is proportional to its area. The disk has area ttRq and each thin ring has 
area dA = (2irR)(dR). Hence

dq 2ttR dR
Q nRl

so
(2irR){dR) 2 QRdR

dq = Q

Then the potential at P, using Eq. 23-6b in which r is replaced by (x2 + R2)2, is

l _  f dq = 2 Q f*° R dR  = Q 1

T € 0  J  ( X 2 +  R 2)l  4 7 7 € 0 i ? o  JO (X2 +  R 2) 2  2 7 7 € 0 i ? o

R=Ro

2776 0 R q

NOTE For x i?0; this formula reduces to

[*277€0 i?0 L V ^ X2
1 + i ^ \ -  x\  =

FIGURE 23-14 Example 23-8. 
Calculating the potential at point P, a 
distance x  from the center of a 
uniform ring of charge.

FIGURE 23-15 Example 23-9. 
Calculating the electric potential at 
point P on the axis of a uniformly 
charged thin disk.



2 3 —5 Equipotential Surfaces

20V.

FIGURE 23-16 Equipotential lines 
(the green dashed lines) between two 
oppositely charged parallel plates. 
Note that they are perpendicular to 
the electric field lines (solid red lines).

The electric potential can be represented graphically by drawing equipotential lines 
or, in three dimensions, equipotential surfaces. An equipotential surface is one on 
which all points are at the same potential. That is, the potential difference between 
any two points on the surface is zero, and no work is required to move a charge 
from one point to the other. An equipotential surface must be perpendicular to 
the electric field at any point. If this were not so—that is, if there were a component 
of E parallel to the surface—it would require work to move the charge along the 
surface against this component of E; and this would contradict the idea that it is an 
equipotential surface. This can also be seen from Eq. 23-4a, AV = -  JE • dl. 
On a surface where V  is constant, AV = 0, so we must have either E = 0, di = 0, 
or cos 0 = 0 where 0 is the angle between E and di. Thus in a region where E is 
not zero, the path di along an equipotential must have cos0 = 0, meaning 
6 = 90° and E is perpendicular to the equipotential.

The fact that the electric field lines and equipotential surfaces are mutually 
perpendicular helps us locate the equipotentials when the electric field lines are 
known. In a normal two-dimensional drawing, we show equipotential lines, 
which are the intersections of equipotential surfaces with the plane of the drawing. 
In Fig. 23-16, a few of the equipotential lines are drawn (dashed green lines) 
for the electric field (red lines) between two parallel plates at a potential 
difference of 20 V. The negative plate is arbitrarily chosen to be zero volts and 
the potential of each equipotential line is indicated. Note that E points toward 
lower values of V.

FIGURE 23-17 Example 23-10. 
Electric field lines and equipotential 
surfaces for a point charge.

EXAMPLE 23-10 Point charge equipotential surfaces. For a single point 
charge with Q = 4.0 X 10-9 C, sketch the equipotential surfaces (or lines in a 
plane containing the charge) corresponding to Vx = 10 V, V2 = 20 V, and 
y3 = 30 V.

APPROACH The electric potential V  depends on the distance r from the charge 
(Eq. 23-5).
SOLUTION The electric field for a positive point charge is directed radially 
outward. Since the equipotential surfaces must be perpendicular to the 
lines of electric field, they will be spherical in shape, centered on 
the point charge, Fig. 23-17. From Eq. 23-5 we have r = (1/47re0)(Q/V), so 
that for Vi = 10 V, rx = (9.0 X 109 N • m2/C 2)(4.0 X Hn9C)/(10V) = 3.6 m, 
for V2 = 20 V, r2 = 1.8 m, and for V3 = 30 V, r3 = 1.2 m, as shown.
NOTE The equipotential surface with the largest potential is closest to the positive 
charge. How would this change if Q were negative?

FIGURE 23-18 Equipotential lines 
(green, dashed) are always 
perpendicular to the electric field lines 
(solid red) shown here for two equal 
but oppositely charged particles.

The equipotential lines for the case of two equal but oppositely charged 
particles are shown in Fig. 23-18 as green dashed lines. Equipotential lines and 
surfaces, unlike field lines, are always continuous and never end, and so continue 
beyond the borders of Figs. 23-16 and 23-18.

We saw in Section 21-9 that there can be no electric field within a conductor 
in the static case, for otherwise the free electrons would feel a force and 
would move. Indeed, the entire volume of a conductor must be entirely at the 
same potential in the static case, and the surface of a conductor is then an 
equipotential surface. (If it weren’t, the free electrons at the surface would 
move, since whenever there is a potential difference between two points, free 
charges will move.) This is fully consistent with our result, discussed earlier, 
that the electric field at the surface of a conductor must be perpendicular to



A useful analogy for equipotential lines is a topographic map: the contour 
lines are essentially gravitational equipotential lines (Fig. 23-19).

JStit'ilr U ik t

FIGURE 23-19 A topographic map (here, a 
portion of the Sierra Nevada in California) shows 
continuous contour lines, each of which is at a fixed 
height above sea level. Here they are at 80 ft 
(25 m) intervals. If you walk along one contour 
line, you neither climb nor descend. If you cross 
lines, and especially if you climb perpendicular to 
the lines, you will be changing your gravitational 
potential (rapidly, if the lines are close together).

23—6 Electric Dipole Potential
Two equal point charges Q, of opposite sign, separated by a distance i, are called 
an electric dipole, as we saw in Section 21-11. Also, the two charges we saw in 
Figs. 23-12 and 23-18 constitute an electric dipole, and the latter shows the 
electric field lines and equipotential surfaces for a dipole. Because electric dipoles 
occur often in physics, as well as in other fields, it is useful to examine them 
more closely.

The electric potential at an arbitrary point P due to a dipole, Fig. 23-20, 
is the sum of the potentials due to each of the two charges (we take V = 0 
at r = oo):

1 0 ,  1 (-Q) 1 Jl  1 \  Q A rV = 47reo r 47T€0 (r + Ar) 47T€0 ® \r r + Ar 47T€0 r(r + Ar)
where r is the distance from P to the positive charge and r + Ar is the distance to 
the negative charge. This equation becomes simpler if we consider points P whose 
distance from the dipole is much larger than the separation of the two charges— 
that is, for r »  t  From Fig. 23-20 we see that Ar «  i  cos 0; since 
r »  Ar = i  cos 0, we can neglect Ar in the denominator as compared to r. 
Therefore, we obtain

1 Qi cos 6 1 p  cos 0
V = - ---- [dipole; r »  I] (23-7)

47T€o r 4776 o r
where p = Qi is called the dipole moment. We see that the potential decreases as 
the square of the distance from the dipole, whereas for a single point charge the 
potential decreases with the first power of the distance (Eq. 23-5). It is not 
surprising that the potential should fall off faster for a dipole; for when you are far 
from a dipole, the two equal but opposite charges appear so close together as to 
tend to neutralize each other.

Table 23-2 gives the dipole moments for several molecules. The + and -  signs 
indicate on which atoms these charges lie. The last two entries are a part of many 
organic molecules and play an important role in molecular biology. A dipole 
moment has units of coulomb-meters (C-m), although for molecules a smaller 
unit called a debye is sometimes used: 1 debye =  3.33 X IO-30 C • m.

23—7 E Determined from V
We can use Eq. 23-4a, Vb — Va = — E • di, to determine the difference in 
potential between two points if the electric field is known in the region between 
those two points. By inverting Eq. 23-4a, we can write the electric field in terms of 
the Dotential. Then the electric field can be determined from a knowledge of V.

FIGURE 23-20 Electric dipole. 
Calculation of potential V  at point P.

TABLE 23-2 Dipole Moments 
of Selected Molecules

Molecule
D ipole Moment 

(C m)

H2(+)o (“) 6.1 X 10'-30

H<+>C1<“> 3.4 X 10'-30

N(-)h 3(+) 5.0 X 10“-30

>N<“> — H<+> W3.01, X 10“-30

> C (+) =  Q(-) W8.01, X 10“-30

1 These groups often appear on larger 
molecules; hence the value for the 
dipole moment will vary somewhat, 
depending on the rest of the molecule.



We write Eq. 23-4a in differential form as 
dV  = -E  • dl = -E ,d i ,  

where dV  is the infinitesimal difference in potential between two points a distance 
di apart, and Et is the component of the electric field in the direction of the 
infinitesimal displacement di. We can then write 

dV
£ , =  - - ■  (23-8)

Thus the component o f the electric field in any direction is equal to the negative o f 
the rate o f change o f the electric potential with distance in that direction. The 
quantity dV/di is called the gradient of V  in a particular direction. If the direction 
is not specified, the term gradient refers to that direction in which V  changes most 
rapidly; this would be the direction of E at that point, so we can write

E = ~ ~  [if d?||E]

If E is written as a function of x, y, and z, and we let i  refer to the x, y, and z axes, 
then Eq. 23-8 becomes

dV dV dVEx = ------ > Ev = -------> Ez = -------- (23-9)
* dx y dy z dz

Here, dV/ dx is the “partial derivative” of V  with respect to x, with y and z held constant.1
For example, if V (x ,y ,z )  = (2V/m2)x2 + (8V/m3)^2z + (2V/m2)z2, then

Ex = -dV /dx  = - (4 V /m 2)x,
Ey = -dV /dy  = —(16 V/m 3)yz,

and
Ez = -dV /dz  = - (8 V /m 3)y2 -  (4V/m2)z.

U 5 E E I H H H  E for ring and disk. Use electric potential to determine 
the electric field at point P on the axis of (a) a circular ring of charge (Fig. 23-14) 
and (b) a uniformly charged disk (Fig. 23-15).
APPROACH We obtained V  as a function of x in Examples 23-8 and 23-9, so we 
find E  by taking derivatives (Eqs. 23-9).
SOLUTION (a) From Example 23-8,

V = Q
4^6 o (jc2 + R2)i 

Then
_ d V  = 1 Qx 

dx 47re0 {x2 + R2)l

This is the same result we obtained in Example 21-9.
(b) From Example 23-9,

v -  +
so

dV Q
dx 2ire 0Rq [ (x2 +

For points very close to the disk, x «  R0, this can be approximated by

E  «  6  =
2ire0i?o 2e0

where a  = Q /ttRq is the surface charge density. We also obtained these results 
in Chapter 21, Example 21-12 and Eq. 21-7.

Equation 23-9 can be written as a vector equation,



If we compare this last Example with Examples 21-9 and 21-12, we see that here, 
as for many charge distributions, it is easier to calculate V  first, and then E from 
Eq. 23-9, rather than to calculate E due to each charge from Coulomb’s law. This is 
because V  due to many charges is a scalar sum, whereas E is a vector sum.

2 3 —8 Electrostatic Potential Energy; 
the Electron Volt

Suppose a point charge q is moved between two points in space, a and b, where the 
electric potential due to other charges is Va and Vb, respectively. The change in electro­
static potential energy of q in the field of these other charges is, according to Eq. 23-2b,

A U = Ub - U ,  = q{Vb -  V̂ ).
Now suppose we have a system of several point charges. What is the electrostatic 

potential energy of the system? It is most convenient to choose the electric potential 
energy to be zero when the charges are very far (ideally infinitely far) apart. A single 
point charge, Q1, in isolation, has no potential energy, because if there are no other 
charges around, no electric force can be exerted on it. If a second point charge Q2 is 
brought close to Q1, the potential due to Q1 at the position of this second charge is

4ire0 rn
where r12 is the distance between the two. The potential energy of the two charges, 
relative to V  = 0 at r = oo, is

u  = Q2V  = ------(23-10)4 ire0 r12
This represents the work that needs to be done by an external force to bring Q2 
from infinity (V = 0) to a distance r12 from Qx. It is also the negative of the work 
needed to separate them to infinity.

If the system consists of three charges, the total potential energy will be the 
work needed to bring all three together. Equation 23-10 represents the work 
needed to bring Q2 close to Qx; to bring a third charge Q3 so that it is a distance r13 
from Qx and r23 from Q2 requires work equal to

1 Q 1 Q 3 1 Q 2 Q 3

4/7T€0 r13 4/7T€0 r23 
So the potential energy of a system of three point charges is

T J  1  (  Q l Q 2  Q l Q 3  Q l Q 3 \  r-r j  n  nU = ------------------1----------- 1--------- I. \V = 0 at r = 001
47760 V r 1 2  r13 r23 J

For a system of four charges, the potential energy would contain six such terms, 
and so on. (Caution must be used when making such sums to avoid double 
counting of the different pairs.)

The Electron Volt Unit
The joule is a very large unit for dealing with energies of electrons, atoms, or molecules 
(see Example 23-2), and for this purpose, the unit electron volt (eV) is used. One 
electron volt is defined as the energy acquired by a particle carrying a charge whose 
magnitude equals that on the electron (q = e) as a result of moving through a 
potential difference of 1V. Since e = 1.6 X 10-19 C, and since the change in potential 
energy equals qV, 1 eV is equal to (1.6 X 10-19 C)(1.0 V) = 1.6 X 10-19 J: 

leV  = 1.6 X 10_19J.
An electron that accelerates through a potential difference of 1000 V will lose 
1000 eV of potential energy and will thus gain 1000 eV or 1 keV (kiloelectron volt) 
of kinetic energy. On the other hand, if a particle with a charge equal to twice the 
magnitude of the charge on the electron (= 2e = 3.2 X 10-19C) moves through a



FIGURE 23-21 If the cathode 
inside the evacuated glass tube is 
heated to glowing, negatively charged 
“cathode rays” (electrons) are “boiled 
off” and flow across to the anode (+ )  
to which they are attracted.

Cathode Anode

nr

Although the electron volt is handy for stating the energies of molecules and 
elementary particles, it is not a proper SI unit. For calculations it should be 
converted to joules using the conversion factor given above. In Example 23-2, for 
example, the electron acquired a kinetic energy of 8.0 X 10-16J. We normally 
would quote this energy as 5000 eV (= 8.0 X 10_16J/1.6 X 10_19J/eV). But when 
determining the speed of a particle in SI units, we must use the kinetic energy in J.

I EXERCISE E What is the kinetic energy of a He2+ ion released from rest and accelerated through 
a potential difference of 1.0 kV? {a) 1000 eV, (b) 500 eV, (c) 2000 eV, (d) 4000 eV, (e) 250 eV.

Disassembling a hydrogen atom. Calculate the work needed 
to “disassemble” a hydrogen atom. Assume that the proton and electron are initially 
separated by a distance equal to the “average” radius of the hydrogen atom in its ground 
state, 0.529 X 10 10 m, and that they end up an infinite distance apart from each other. 
APPROACH The work necessary will be equal to the total energy, kinetic plus 
potential, of the electron and proton as an atom, compared to their total energy 
when infinitely far apart.
SOLUTION From Eq. 23-10 we have initially

1 Q\Qi _  1 (e)(-« )  _  ~ (8-99 x  109N • m2/C 2)(l.60 X 1(T19C)2 
u  47T£0 r  4ire„ r  (0.529 X 10“10m) 

= -27.2(1.60 X 10“19) J = -27.2 eV.
This represents the potential energy. The total energy must include also the kinetic 
energy of the electron moving in an orbit of radius r = 0.529 X 10_10m. From 
F = ma for centripetal acceleration, we have

1 / e2\  _ mv2 
47760 \ r 2J r

Then
K  = \m v2 = \

which equals -  \U  (as calculated above), so K = +13.6eV. The total energy initially is 
E = K  + U = 13.6 eV -  27.2 eV = -13.6 eV. To separate a stable hydrogen atom 
into a proton and an electron at rest very far apart (U = 0 at r = oo, K  = 0 because 
v = 0) requires +13.6 eV. This is, in fact, the measured ionization energy for hydrogen. 
NOTE To treat atoms properly, we need to use quantum theory (Chapters 37 to 39). 
But our “classical” calculation does give the correct answer here.

I EXERCISE F The kinetic energy of a 1000-kg automobile traveling 20 m /s (70 km/h) 
| would be about (a) 100 GeV, (b) 1000 TeV, (c) 106TeV, (d) 1012TeV, (e) 1018TeV.

* 2 3 -9  Cathode Ray Tube: IV and Computer 
Monitors, Oscilloscope

An important device that makes use of voltage, and that allows us to “visualize” 
how a voltage changes in time, is the cathode ray tube (CRT). A CRT used in this 
way is an oscilloscope. The CRT has also been used for many years as the picture 
tube of television sets and computer monitors, but LCD (Chapter 35) and other 
screens are now common.

The operation of a CRT depends on the phenomenon of thermionic emission 
discovered by Thomas Edison (1847-1931). Consider two small plates (electrodes) 
inside an evacuated “bulb” or “tube” as shown in Fig. 23-21, to which is applied a 
potential difference. The negative electrode is called the cathode, the positive 
one the anode. If the negative cathode is heated (usually by an electric current, 
as in a lightbulb) so that it becomes hot and glowing, it is found that negative 
charge leaves the cathode and flows to the positive anode. These negative charges 
are now called electrons, but originally they were called cathode rays since

EXAMPLE 23-12



deflection
plates

FIGURE 23-22 A cathode ray 
tube. Magnetic deflection coils are 
often used in place of the electric 
deflection plates shown here. The 
relative positions of the elements 
have been exaggerated for clarity.

The cathode ray tube (CRT) derives its name from the fact that inside an 
evacuated glass tube, a beam of cathode rays (electrons) is directed to various 
parts of a screen to produce a “picture.” A simple CRT is diagrammed in 
Fig. 23-22. Electrons emitted by the heated cathode are accelerated by a high 
voltage (5000-50,000 V) applied between the anode and cathode. The electrons 
pass out of this “electron gun” through a small hole in the anode. The inside of the 
tube face is coated with a fluorescent material that glows when struck by electrons. 
A tiny bright spot is thus visible where the electron beam strikes the screen. Two 
horizontal and two vertical plates can deflect the beam of electrons when a voltage 
is applied to them. The electrons are deflected toward whichever plate is positive. 
By varying the voltage on the deflection plates, the bright spot can be placed at 
any point on the screen. Many CRTs use magnetic deflection coils (Chapter 27) 
instead of electric plates.

In the picture tube or monitor for a computer or television set, the electron 
beam is made to sweep over the screen in the manner shown in Fig. 23-23 by 
changing voltages applied to the deflection plates. For standard television in 
the United States, 525 lines constitutes a complete sweep in ^  s, over the entire 
screen. High-definition TV provides more than double this number of lines (1080), 
giving greater picture sharpness. We see a picture because the image is retained by the 
fluorescent screen and by our eyes for about ^  s. The picture we see consists of 
the varied brightness of the spots on the screen, controlled by the grid (a “porous” 
electrode, such as a wire grid, that allows passage of electrons). The grid limits 
the flow of electrons by means of the voltage (the “video signal”) applied to it: the 
more negative this voltage, the more electrons are repelled and the fewer pass 
through. This video signal sent out by the TV station, and received by the TV set, 
is accompanied by signals that synchronize the grid voltage to the horizontal and 
vertical sweeps. (More in Chapter 31.)

An oscilloscope is a device for amplifying, measuring, and visually observing 
an electrical signal as a function of time on the screen of a CRT (a “signal” is 
usually a time-varying voltage). The electron beam is swept horizontally at a 
uniform rate in time by the horizontal deflection plates. The signal to be 
displayed is applied (after amplification) to the vertical deflection plates. The 
visible “trace” on the screen, which could be an electrocardiogram (Fig. 23-24), 
or a signal from an experiment on nerve conduction, is a plot of the signal 
voltage (vertically) versus time (horizontally).

( ^ P H Y S I C S  A P P L I E D
CRT, TV  and computer monitors

FIGURE 23-23 Electron beam 
sweeps across a television screen in 
a succession of horizontal lines.
Each horizontal sweep is made by 
varying the voltage on the horizontal 
deflection plates. Then the electron 
beam is moved down a short 
distance by a change in voltage on 
the vertical deflection plates, and the 
process is repeated.

P H Y S I C S  A P P L I E D
Oscilloscope

FIGURE 23-24 An
electrocardiogram (ECG) trace 
displayed on a CRT.



Summary
Electric potential is defined as electric potential energy per unit 
charge. That is, the electric potential difference between any two 
points in space is defined as the difference in potential energy 
of a test charge q placed at those two points, divided by the 
charge q:

Uh -  Ua
Vba = (23-2b)

Potential difference is measured in volts (IV  = 1J/C) 
and is sometimes referred to as voltage.

The change in potential energy of a charge q when it moves 
through a potential difference Vj,a is

A U = qVha. (23-3)

The potential difference Vba between two points, a and b, is 
given by the relation

Vba = Vb -  Va = - j  E - d l (23-4a)

Thus Vba can he found in any region where E is known. If 
the electric field is uniform, the integral is easy: Vba = —Ed,

where d is the distance (parallel to the field lines) between the 
two points.

An equipotential line or surface is all at the same potential, 
and is perpendicular to the electric field at all points.

The electric potential due to a single point charge Q, 
relative to zero potential at infinity, is given by

V = - 1— - •  (23-5)4-7760 r
The potential due to any charge distribution can be obtained by 
summing (or integrating) over the potentials for all the charges.

The potential due to an electric dipole drops off as 1/r2. 
The dipole moment is p = Qi, where i  is the distance between 
the two equal but opposite charges of magnitude Q.

When V is known, the components of E can be found from 
the inverse of Eq. 23-4a, namely

Ex = - ^ 7 ’ Ey = Ez = (23-9)dx y dy * dz
[*Television and computer monitors traditionally use a cathode ray 
tube (CRT) that accelerates electrons by high voltage, and sweeps 
them across the screen in a regular way using deflection plates.]

Questions
1. If two points are at the same potential, does this mean that no 

work is done in moving a test charge from one point to the 
other? Does this imply that no force must be exerted? Explain.

2. If a negative charge is initially at rest in an electric field, will 
it move toward a region of higher potential or lower poten­
tial? What about a positive charge? How does the potential 
energy of the charge change in each instance?

3. State clearly the difference (a) between electric potential 
and electric field, (b) between electric potential and electric 
potential energy.

4. An electron is accelerated by a potential difference of, say,
0.10 V. How much greater would its final speed be if it is 
accelerated with four times as much voltage? Explain.

5. Can a particle ever move from a region of low electric 
potential to one of high potential and yet have its electric 
potential energy decrease? Explain.

6. If V = 0 at a point in space, must E = 0? If E = 0 at 
some point, must V = 0 at that point? Explain. Give exam­
ples for each.

7. When dealing with practical devices, we often take the 
ground (the Earth) to be 0 V. (a) If instead we said the 
ground was —10 V, how would this affect V and E at other 
points? (b) Does the fact that the Earth carries a net charge 
affect the choice of V at its surface?

8. Can two equipotential lines cross? Explain.

9. Draw in a few equipotential lines in Fig. 21-34b and c.

10. What can you say about the electric field in a region of 
space that has the same potential throughout?

11. A satellite orbits the Earth alona a gravitational enuinoten-

12. Suppose the charged ring of Example 23-8 was not 
uniformly charged, so that the density of charge was twice 
as great near the top as near the bottom. Assuming 
the total charge Q is unchanged, would this affect the 
potential at point P on the axis (Fig. 23-14)? Would it 
affect the value of E at that point? Is there a discrepancy 
here? Explain.

13. Consider a metal conductor in the shape of a football. If it 
carries a total charge Q, where would you expect the charge 
density cr to be greatest, at the ends or along the flatter sides? 
Explain. [Hint. Near the surface of a conductor, E  = o-/e0.]

14. If you know V at a point in space, can you calculate E 
at that point? If you know E at a point can you calculate V 
at that point? If not, what else must be known in each case?

15. A conducting sphere carries a charge Q and a second iden­
tical conducting sphere is neutral. The two are initially 
isolated, but then they are placed in contact, (a) What can 
you say about the potential of each when they are in 
contact? (b) Will charge flow from one to the other? If so, 
how much? (c) If the spheres do not have the same radius, 
how are your answers to parts (a) and (b) altered?

16. At a particular location, the electric field points due north. 
In what direction(s) will the rate of change of potential be
(a) greatest, (b) least, and (c) zero?

17. Equipotential lines are spaced 1.00 V apart. Does the 
distance between the lines in different regions of space tell 
you anything about the relative strengths of E in those 
regions? If so, what?

18. If the electric field E is uniform in a region, what can you 
infer about the electric potential V? If V is uniform in a 
region of space, what can you infer about E?

19. Is the electric potential energy of two unlike charges posi­
tive or negative? W hat about two like charges? W hat is the



| Problems
2 3 -1  Electric Potential
1. (I) What potential difference is needed to stop an electron 

that has an initial velocity v = 5.0 X 105 m/s?
2. (I) How much work does the electric field do in moving a 

proton from a point with a potential of +185 V to a point 
where it is -55  V?

3. (I) An electron acquires 5.25 X IO-16 J of kinetic energy 
when it is accelerated by an electric field from plate A to 
plate B. What is the potential difference between the plates, 
and which plate is at the higher potential?

4. (II) The work done by an external force to move a 
-9 .10 /aC charge from point a to point b is 7.00 X 10-4 J. If 
the charge was started from rest and had 2.10 X 10_4J of 
kinetic energy when it reached point b, what must be the 
potential difference between a and b?

2 3 -2  Potential Related to Electric Field
5. (I) Thunderclouds typically develop voltage differences of 

about 1 X 108V. Given that an electric field of 
3 X 106V/m is required to produce an electrical spark 
within a volume of air, estimate the length of a thunder­
cloud lightning bolt. [Can you see why, when lightning 
strikes from a cloud to the ground, the bolt actually has to 
propagate as a sequence of steps?]

6. (I) The electric field between two parallel plates connected 
to a 45-V battery is 1300 V/m. How far apart are the plates?

7. (I) What is the maximum amount of charge that a spherical 
conductor of radius 6.5 cm can hold in air?

8. (I) What is the magnitude of the electric field between two 
parallel plates 4.0 mm apart if the potential difference 
between them is 110 V?

9. (I) What minimum radius must a large conducting sphere of 
an electrostatic generating machine have if it is to be at
35,000 V without discharge into the air? How much charge 
will it carry?

10. (II) A manufacturer claims that a carpet will not generate 
more than 5.0 kV of static electricity. What magnitude of 
charge would have to be transferred between a carpet and a 
shoe for there to be a 5.0-kV potential difference between the 
shoe and the carpet, approximating the shoe and the carpet as 
large sheets of charge separated by a distance d = 1.0 mm?

11. (II) A uniform electric field E = —■4.20 N/Ci points in the 
negative x  direction as shown in Fig. 23-25. The x and y 
coordinates of points A, B, and C are given on the diagram (in 
meters). Determine
the differences in ^
potential (a) VBA, C(-3.00 ,4.00)
(b)V{cb, and (c)yCA- --------<----

B(4.00, 4.00)

A(4.00, 1.00) 
------^x

FIGURE 23-25 *
Problem 11.

12. (II) The electric potential of a very large isolated flat metal 
plate is Vq. It carries a uniform distribution of charge 
of surface density a  (C/m2), or o-/2 on each surface. 
Determine V  at a distance x  from the plate. Consider the
noint r to he far from the erlaes and assume r is mnr.h

13. (II) The Earth produces an inwardly directed electric field 
of magnitude 150 V/m near its surface, (a) What is the 
potential of the Earth’s surface relative to V = 0 at 
r = oo? (b) If the potential of the Earth is chosen to be 
zero, what is the potential at infinity? (Ignore the fact 
that positive charge in the ionosphere approximately 
cancels the Earth’s net charge; how would this affect 
your answer?)

14. (II) A 32-cm-diameter conducting sphere is charged to 
680 V relative to V  = 0 at r = oo. (a) What is the surface 
charge density crl (b) At what distance will the potential 
due to the sphere be only 25 V?

15. (II) An insulated spherical conductor of radius rx carries a 
charge Q. A second conducting sphere of radius r2 and 
initially uncharged is then connected to the first by a long 
conducting wire, (a) After the connection, what can you say 
about the electric potential of each sphere? (b) How much 
charge is transferred to the second sphere? Assume the 
connected spheres are far apart compared to their radii. 
(Why make this assumption?)

16. (II) Determine the difference in potential between two points 
that are distances Ra and Rb from a very long ( »  Raor Rb) 
straight wire carrying a uniform charge per unit length A.

17. (II) Suppose the end of your finger is charged, (a) Estimate 
the breakdown voltage in air for your finger. (b) About 
what surface charge density would have to be on your finger 
at this voltage?

18. (II) Estimate the electric field in the membrane wall of a 
living cell. Assume the wall is 10 nm thick and has a poten­
tial of 0.10 V across it.

19. (II) A nonconducting sphere of radius r0 carries a total 
charge Q distributed uniformly throughout its volume. 
Determine the electric potential as a function of the distance r 
from the center of the sphere for (a) r > r0 and (b) r < r0. 
Take V = 0 at r = oo. (c) Plot V  versus r and E  versus r.

20. (Ill) Repeat Problem 19 assuming the charge density pE 
increases as the square of the distance from the center of 
the sphere, and pE = 0 at the center.

21. (Ill) The volume charge density pE within a sphere of radius rQ 
is distributed in accordance with the following spherically 
symmetric relation

PE(r) = Po[l -

where r is measured from the center of the sphere and p0 is a 
constant. For a point P inside the sphere (r < r0), determine 
the electric potential V. Let V  = 0 at infinity.

22. (Ill) A hollow spherical conductor, carrying a net charge +Q, 
has inner radius r\ and outer radius r2 = 2 (Fig. 23-26). 
At the center of the sphere is a point charge +<2/2.
(a) Write the electric field strength E  in all three regions as 
a function of r. Then determine the potential as a function 
of r, the distance from the center, 
for (b) r > r2, (c) ri <  r < r2, and
(d) 0 < r < r1. (e) Plot both V  and E 
as a function of r from r = 0 to 
r = 2r2.

FIGURE 23-26



23. (Ill) A very long conducting cylinder (length £) of radius R0 
(Rq «  t) carries a uniform surface charge density cr (C/m2). 
The cylinder is at an electric potential VQ. What is the poten­
tial, at points far from the end, at a distance R  from the 
center of the cylinder? Determine for (a) R > R0 and
(b) R < R0. (c) Is V = 0 at R = oo (assume £ = oo)? 
Explain.

23-3 Potential Due to Point Charges
24. (I) A point charge Q creates an electric potential of +185 V 

at a distance of 15 cm. What is Q (let V  = 0 at r = oo) ?
25. (I) (a) What is the electric potential 0.50 X 10-10 m from a 

proton (charge +e)l Let V = 0 at r = oo. (b) What is the 
potential energy of an electron at this point?

26. (II) Two point charges, 3.4/iC and — 2.0/iC, are placed
5.0 cm apart on the x axis. At what points along the x axis is
(a) the electric field zero and (b) the potential zero? Let
V = 0 at r = oo.

27. (II) A +25 /jlC point charge is placed 6.0 cm from an iden­
tical +25 /jlC  point charge. How much work would be 
required by an external force to move a +0.18 /iC test 
charge from a point midway between them to a point 1.0 cm 
closer to either of the charges?

28. (II) Point a is 26 cm north of a -3.8 /jlC  point charge, and 
point b is 36 cm west of the charge (Fig. 23-27). Determine
(a) Vi, -  Va, and (b) Eb -  Ea
(magnitude and direction).

26 cm
FIGURE 23-27 b__
Problem 28. 36 cm Q = -3.8 /iC

29. (II) How much voltage must be used to accelerate a proton 
(radius 1.2 X 10-15 m) so that it has sufficient energy to just 
“touch” a silicon nucleus? A silicon nucleus has a charge 
of +14e and its radius is about 3.6 X 10-15m. Assume the 
potential is that for point charges.

30. (II) Two identical +5.5 /jlC  point charges are initially spaced
6.5 cm from each other. If they are released at the same 
instant from rest, how fast will they be moving when they 
are very far away from each other? Assume they have iden­
tical masses of 1.0 mg.

31. (II) An electron starts from rest 42.5 cm from a fixed point 
charge with Q = -0.125 nC. How fast will the electron be 
moving when it is very far away?

32. (II) Two equal but opposite charges are separated by a 
distance d, as shown in Fig. 23-28. Determine a formula for 
Vba = Vb _ Va for points B and A on the line between the 
charges situated as shown.

h H
FIGURE 23-28
Problem 32. +q B

23-4 Potential Due to Charge Distribution
33. (II) A thin circular ring of radius R  (as in Fig. 23-14) has 

charge +Q/2 uniformly distributed on the top half, and 
—Ql2 on the bottom half, (a) What is the value of the 
electric potential at a point a distance x along the axis 
through the center of the circle? (b) What can you say about 
the electric field F, at a distance r alnna the axis? Let V  =  0

34. (II) Three point charges are arranged at the comers of a square 
of side £ as shown in Fig. 23-29.
What is the potential at the fourth 
comer (point A), taking V = 0 at 
a great distance?

FIGURE 23-29
Problem 34.

-2Q

+3Q

j/?2

35. (II) A flat ring of inner radius Ri and outer radius R2, 
Fig. 23-30, carries a uniform surface 
charge density a. Determine the elec­
tric potential at points along the axis *
(the x axis). [Hint: Try substituting
variables.] ['  ̂ ;_____ v

I 1 1

FIGURE 23-30
Problem 35.

36. (II) A total charge Q is uniformly distributed on a thread of 
length £. The thread forms a semicircle. What is the potential 
at the center? (Assume V  = 0 at large distances.)

37. (II) A 12.0-cm-radius thin ring carries a uniformly distributed
15.0 /jlC  charge. A small 7.5-g sphere with a charge of 3.0 /jlC  
is placed exactly at the center of the ring and given a very 
small push so it moves along the ring axis (+x axis). How 
fast will the sphere be moving when it is 2.0 m from the 
center of the ring (ignore gravity)?

38. (II) A thin rod of length 2£ is centered on the x axis as 
shown in Fig. 23-31. The rod carries a uniformly distributed 
charge Q. Determine the potential V  as
a function of y for points along the 
y axis. Let V  = 0 at infinity.

FIGURE 23-31
Problems 38,39,40, and 53.

f
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39. (II) Determine the potential V(x) for points along the 
x  axis outside the rod of Fig. 23-31 (Problem 38).

40. (Ill) The charge on the rod of Fig. 23-31 has a nonuni­
form linear charge distribution, A = ax. Determine the 
potential V  for (a) points along the y axis and (b) points 
along the x axis outside the rod.

41. (Ill) Suppose the flat circular disk of Fig. 23-15 (Example 23-9) 
has a nonuniform surface charge density a  = ar2, where r is 
measured from the center of the disk. Find the potential V(x) 
at points along the x axis, relative to V  = 0 at x = oo.

23-5 Equipotentials
42. (I) Draw a conductor in the shape of a football. This 

conductor carries a net negative charge, —Q. Draw in a 
dozen or so electric field lines and equipotential lines.

43. (II) Equipotential surfaces are to be drawn 100 V apart near 
a very large uniformly charged metal plate carrying a 
surface charge density cr = 0.75 /jlC/ui2. H o w  far apart (in 
space) are the equipotential surfaces?

44. (II) A metal sphere of radius r0 = 0.44 m carries a charge 
Q = 0.50 fxC. Equipotential surfaces are to be drawn for 
100-V intervals outside the sphere. Determine the radius r of
(n\ the first (hi\ the tenth and (r \  the 100th enninntential



45. (II) Calculate the electric potential due to a tiny dipole whose 
dipole moment is 4.8 X IO-30 C • m at a point 4.1 X IO-9 m 
away if this point is (a) along the axis of the dipole nearer 
the positive charge; (b) 45° above the axis but nearer the 
positive charge; (c) 45° above the axis but nearer the 
negative charge. Let V  = 0 at r = oo.

46. (Ill) The dipole moment, considered as a vector, points 
from the negative to the positive charge. The water 
molecule, Fig. 23-32, has a dipole moment p which can be 
considered as the vector sum of the two dipole moments p! 
and P2 as shown. The distance between each H and the O 
is about 0.96 X 10-10m; the lines joining the center of 
the O atom with each H atom make an angle of 104° 
as shown, and the net dipole moment has been measured to 
be p = 6.1 X 10_30C-m. (a) Determine the effective 
charge q on each H atom, (b) Determine the electric poten­
tial, far from the molecule, due to each dipole, pi and p2, 
and show that

1 p cos 0
V  = ------ ---------,

47760 r2
where p  is the magnitude 
of the net dipole moment, 
p = pi + p2 , and V  is the 
total potential due to both 
P) and p2. Take V  = 0 at 
r = oo.

FIGURE 23-32
Problem 46.

23-7 E  Determined from V
47. (I) Show that the electric field of a single point charge 

(Eq. 21-4) follows from Eq. 23-5, V  = (l/4i7e0)(g /r) .
48. (I) What is the potential gradient just outside the surface of 

a uranium nucleus (Q = +92e) whose diameter is about 
15 X 10-15 m?

49. (II) The electric potential between two parallel plates is 
given by V (x ) = (8.0 V /m )* + 5.0 V, with x = 0 taken 
at one of the plates and x  positive in the direction toward 
the other plate. What is the charge density on the plates?

50. (II) The electric potential in a region of space varies as
V  = by /(a2 + y2). Determine E.

51. (II) In a certain region of space, the electric potential is 
given by V  = y2 + 2.5xy -  3.5jcyz. Determine the electric 
field vector, E, in this region.

52. (II) A dust particle with mass of 0.050 g and a charge of
2.0 X 10-6 C is in a region of space where the potential is 
given by V(x) = (2.0 V /m 2)*2 -  (3.0 V /m 3)*3. If the 
particle starts at x  = 2.0 m, what is the initial acceleration 
of the charge?

53. (Ill) Use the results of Problems 38 and 39 to determine the 
electric field due to the uniformly charged rod of Fig. 23-31 
for points (a) along the y  axis and (b) along the x  axis.

23-8 Electrostatic Potential Energy; Electron Volt
54. (I) How much work must be done to bring three electrons 

from a great distance apart to within 1.0 X 10-10m from 
one another (at the corners of an equilateral triangle)?

5 5 . W hat notential difference is needed  to  aive a helium

23-6 Dipoles 56. (I) What is the speed of (a) a 1.5-keV (kinetic energy) 
electron and (b) a 1.5-keV proton?

57. (II) Many chemical reactions release energy. Suppose that 
at the beginning of a reaction, an electron and proton are 
separated by 0.110 nm, and their final separation is 0.100 nm. 
How much electric potential energy was lost in this reaction 
(in units of eV)?

58. (II) An alpha particle (which is a helium nucleus, Q = +2e, 
m  = 6.64 X 10-27 kg) is emitted in a radioactive decay with 
kinetic energy 5.53 MeV. What is its speed?

59. (II) Write the total electrostatic potential energy, U, for
(a) four point charges and (b) five point charges. Draw a 
diagram defining all quantities.

60. (II) Four equal point charges, Q, are fixed at the corners of 
a square of side b. (a) What is their total electrostatic poten­
tial energy? (b) How much potential energy will a fifth 
charge, Q, have at the center of the square (relative to V = 0 
at r = oo)? (c) If constrained to remain in that plane, is the 
fifth charge in stable or unstable equilibrium? If unstable, 
what maximum kinetic energy could it acquire? (d) If a nega­
tive ( - Q )  charge is at the center, is it in stable equilibrium?

61. (II) An electron starting from rest acquires 1.33 keV of 
kinetic energy in moving from point A to point B. (a) How 
much kinetic energy would a proton acquire, starting from 
rest at B and moving to point A? (b) Determine the ratio of 
their speeds at the end of their respective trajectories.

62. (II) Determine the total electrostatic potential energy of a 
conducting sphere of radius r0 that carries a total charge Q 
distributed uniformly on its surface.

63. (II) The liquid-drop model of the nucleus suggests that high- 
energy oscillations of certain nuclei can split (“fission”) a large 
nucleus into two unequal fragments plus a few neutrons. 
Using this model, consider the case of a uranium nucleus 
fissioning into two spherical fragments, one with a charge 
qi = +38e and radius r\ = 5.5 X 10-15m, the other with 
q2 = +54e and r2 = 6.2 X 10-15m. Calculate the electric 
potential energy (MeV) of these fragments, assuming that the 
charge is uniformly distributed throughout the volume of each 
spherical nucleus and that their surfaces are initially in contact 
at rest. The electrons surrounding the nuclei can be neglected. 
This electric potential energy will then be entirely converted 
to kinetic energy as the fragments repel each other. How does 
your predicted kinetic energy of the fragments agree with the 
observed value associated with uranium fission (approxi­
mately 200 MeV total)? [l MeV = 106eV.]

64. (Ill) Determine the total electrostatic potential energy of a 
nonconducting sphere of radius r0 carrying a total charge Q 
distributed uniformly throughout its volume.

*23-9 CRT
*65. (I) Use the ideal gas as a model to estimate the rms speed 

of a free electron in a metal at 273 K, and at 2700 K 
(a typical temperature of the cathode in a CRT).

* 66. (Ill) Electrons are accelerated by 6.0 kV in a CRT. The screen
is 28 cm wide and is 34 cm from the 2.6-cm-long deflection 
plates. Over what range must the horizontally deflecting elec­
tric field vary to sweep the beam fully across the screen?

* 67. (Ill) In a given CRT, electrons are accelerated horizontally
by 7.2 kV. They then pass through a uniform electric field E  
for a distance of 2.8 cm which deflects them upward so they 
reach the tnn n f the screen cm awav. 11 cm abnve the



| General Problems
68. If the electrons in a single raindrop, 3.5 mm in diameter, could 

be removed from the Earth (without removing the atomic 
nuclei), by how much would the potential of the Earth increase?

69. By rubbing a nonconducting material, a charge of 10-8 C 
can readily be produced. If this is done to a sphere of radius 
15 cm, estimate the potential produced at the surface. Let 
V = 0 at r = oo.

70. Sketch the electric field and equipotential lines for two charges 
of the same sign and magnitude separated by a distance d.
A +33 fxC point charge is placed 36 cm from an identical 
+33 fxC charge. A —1.5 /xC charge is moved from point a to 
point b, Fig. 23-33. ^
What is the change •

71

in potential energy?

FIGURE 23-33
Problem 71.

33 iiC( 12 cm
14 cm 

24 cm
a

+33 [xC

72. At each corner of a cube of side £ there is a point charge Q, 
Fig. 23-34. (a) What is the potential 
at the center of the cube (V = 0 at 
r = oo)? (b) What is the potential 
at each corner due to the other 
seven charges? (c) What is the total 
potential energy of this system?

FIGURE 23-34
Problem 72.

73. In a television picture tube (CRT), electrons are accelerated 
by thousands of volts through a vacuum. If a television set is 
laid on its back, would electrons be able to move upward 
against the force of gravity? What potential difference, 
acting over a distance of 3.5 cm, would be needed to balance 
the downward force of gravity so that an electron would 
remain stationary? Assume that the electric field is uniform.

74. Four point charges are located at the corners of a square 
that is 8.0 cm on a side. The charges, going in rotation 
around the square, are Q, 2Q, —3Q, and 2Q, where 
Q = 3.1 ixC (Fig. 23-35). What is the 
total electric potential energy stored in 
the system, relative to U = 0 at infinite 
separation?

FIGURE 23-35
Problem 74. 2Q

75. In a photocell, ultraviolet (UV) light provides enough 
energy to some electrons in barium metal to eject them 
from the surface at high speed. See Fig. 23-36. To measure 
the maximum energy of the electrons, another plate above 
the barium surface is kept at a negative enough potential 
that the emitted electrons are slowed down and stopped, 
and return to the barium surface. If the plate voltage is 
-3.02 V (compared to the barium) when the fastest elec­
trons are stopped, what 
was the speed of these 
electrons when they were 
emitted?

Plate

UV

FIGURE 2 3 -3 6

■y =-3.02 V

76. An electron is accelerated horizontally from rest in a televi­
sion picture tube by a potential difference of 5500 V. It then 
passes between two horizontal plates 6.5 cm long and 1.3 cm 
apart that have a potential difference of 250 V (Fig. 23-37). 
At what angle 0 will the electron be traveling after it passes 
between the plates?

FIGURE 23-37
Problem 76.

] 0

77. Three charges are at the corners of an equilateral triangle 
(side £) as shown in Fig. 23-38.
Determine the potential at the y
midpoint of each of the sides. Let 
V  = 0 at r = oo.

FIGURE 23-38
Problem 77.

78. Near the surface of the Earth there is an electric field of 
about 150 V/m which points downward. Two identical balls 
with mass m = 0.340 kg are dropped from a height of 
2.00 m, but one of the balls is positively charged with 
qi = 450 fxC, and the second is negatively charged with 
q2 = —450/xC . Use conservation of energy to determine 
the difference in the speeds of the two balls when they hit 
the ground. (Neglect air resistance.)

79. A lightning flash transfers 4.0 C of charge and 4.8 MJ of 
energy to the Earth, (a) Between what potential difference 
did it travel? (b) How much water could this energy boil, 
starting from room temperature? [Hint: See Chapter 19.]

80. Determine the components of the electric field, Ex and Ey , as 
a function of x and y in
the xy plane due to a 
dipole, Fig. 23-39, starting 
with Eq. 23-7. Assume 
r = (x2 + y2)l »  I

FIGURE 23-39
Problem 80. Q h^£-H +Q

V=0

81. A nonconducting sphere of radius r2 contains a concentric 
spherical cavity of radius r\ . The material between r\ and r2 
carries a uniform charge density pE (C/m3). Determine the 
electric potential V, relative to V = 0 at r = oo, as a 
function of the distance r from the center for (a) r > r2, 
(P) r\ <  r <  r2> and (c) 0 < r < ri. Is V  continuous at rx 
and r2l

82. A thin flat nonconducting disk, with radius R0 and charge 
Q, has a hole with a radius R0/2 in its center. Find the elec­
tric potential V  (*) at points along the symmetry (*) axis of 
the disk fa line nernendicular to the disk, nassinp through its



83. A Geiger counter is used to detect charged particles emitted 
by radioactive nuclei. It consists of a thin, positively charged 
central wire of radius Ra surrounded by a concentric 
conducting cylinder of radius Rb with an equal negative charge 
(Fig. 23-40). The charge per unit length on the inner wire is A 
(units C/m). The interior space between wire and cylinder is 
filled with low-pressure inert gas. Charged particles ionize 
some of these gas atoms; the resulting free electrons are 
attracted toward the positive central wire. If the radial electric 
field is strong enough, the freed electrons gain enough energy 
to ionize other atoms, causing an “avalanche” of electrons to 
strike the central wire, generating an electric “signal.” Find the 
expression for the electric field between the wire and the 
cylinder, and show that the potential difference between Ra 
and Rb is

Va ~ Vh = (  A
V 2'77€<

1 I Rb 
ln ' ^

-"h

FIGURE 23-40
Problem 83.

Central wire, 
radius !<.

84. A Van de Graaff generator (Fig. 23-41) can develop a very 
large potential difference, even millions of volts. Electrons 
are pulled off the belt by the high voltage pointed electrode 
at A, leaving the belt positively charged. (Recall Example 
23-5 where we saw that near sharp points the electric field 
is high and ionization can occur.) The belt carries the positive 
charge up inside the spherical shell where electrons from 
the large conducting sphere are attracted over to the pointed 
conductor at B, leaving the outer surface of the conducting 
sphere positively charged. As more charge is brought up, the 
sphere reaches extremely high voltage. Consider a Van de 
Graaff generator with a
sphere of radius 0.20 m. 
(a) What is the electric 
potential on the surface 
of the sphere when 
electrical breakdown 
occurs? (Assume V  = 0 
at r = oo.) (b) What is 
the charge on the 
sphere for the poten­
tial found in part (a)?

GENERATOR
+ + + Conductor

V+(___ tu
t __+ (^PuUev

I
+ P  

+ 1

FIGURE 23-41
Problem 84.
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85. The potential in a region of space is given by 
V = B/(x2 + R2)2 where b  = 150 V • m4 and R = 0.20 m. 
(a) Find V  at x = 0.20 m. (b) Find E as a function of x. 
(c) Find E at x = 0.20 m.

86. A charge — q\ of mass m rests on the y axis at a distance b 
above the x axis. Two positive charges of magnitude +q2 are 
fixed on the x axis at x = +a and x = — a, respectively 
(Fig. 23-42). If the —qi charge is given an initial velocity vQ 
in the positive y direction, what is the minimum value 
of v0 such that the charge
escapes to a point infi­
nitely far away from 
the two positive 
charges?

+b

FIGURE 23-42
Problem 86.

+#2

-q i ,  m

+<l2
-a 0 +a

* Numerical/Computer
*87. (II) A dipole is composed of a —1.0 nC charge at 

x  = -1.0 cm and a +1.0 nC charge at x = +1.0 cm. 
(a) Make a plot of V  along the x axis from x = 2.0 cm to 
x = 15 cm. (b) On the same graph, plot the approximate V  
using Eq. 23-7 from x = 2.0 cm to x = 15 cm. Let V = 0 
at x = oo.

* 88. (II) A thin flat disk of radius R0 carries a total charge Q that
is distributed uniformly over its surface. The electric poten­
tial at a distance x on the x axis is given by

QV(x) = [(*2 + R i f  -  4
2lT€0i?0

(See Example 23-9.) Show that the electric field at a 
distance x on the x axis is given by

QE(x) =
2ire0Rt

1 -

(x2 + R H

Make graphs of V(x) and E(x) as a function of x /R 0 for 
x /R 0 = 0 to 4. (Do the calculations in steps of 0.1.) Use 
Q = 5.0 fxC and R0 = 10 cm for the calculation and graphs.

*89. (Ill) You are trying to determine an unknown amount of 
charge using only a voltmeter and a ruler, knowing that it is 
either a single sheet of charge or a point charge that is 
creating it. You determine the direction of greatest change 
of potential, and then measure potentials along a line in that 
direction. The potential versus position (note that the zero 
of position is arbitrary, and the potential is measured rela­
tive to ground) is measured as follows:

x (cm) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
V (volts) 3.9 3.0 2.5 2.0 1.7 1.5 1.4 1.4 1.2 1.1

(a) Graph V versus position. Do you think the field is 
caused by a sheet or a point charge? (b) Graph the data in 
such a way that you can determine the magnitude of the 
charge and determine that value, (c) Is it possible to 
determine where the charge is from this data? If so, give the 
position of the charge.

Answers to Exercises

A: (b). D: (a) iii, (b) i, (c) i.
B: (d). E: (c).



Capacitors come in a wide range of 
sizes and shapes, only a few of which 
are shown here. A  capacitor is 
basically two conductors that do not 
touch, and which therefore can store 
charge of opposite sign on its two 
conductors. Capacitors are used in a 
wide variety of circuits, as we shall 
see in this and later Chapters.

** T ** 
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Electric Energy Storage
CHAPTER-OPENING QUESTION—Guess now!
A fixed potential difference V  exists between a pair of close parallel plates carrying 
opposite charges +Q and —Q. Which of the following would not increase the 
magnitude of charge that you could put on the plates?

(a) Increase the size of the plates.
(b) Move the plates farther apart.
(c) Fill the space between the plates with paper.
(d) Increase the fixed potential difference V.
(e) None of the above.

This Chapter will complete our study of electrostatics. It deals first of all 
with an important device, the capacitor, which is used in many electronic 
circuits. We will also discuss electric energy storage and the effects of an 
insulator, or dielectric, on electric fields and potential differences.

24—1 Capacitors
A capacitor is a device that can store electric charge, and normally consists of two 

@  P H Y S I C S  A P P L I E D  conducting objects (usually plates or sheets) placed near each other but not 
Uses o f  capacitors touching. Capacitors are widely used in electronic circuits. They store charge for 

later use. such as in a camera flash, and as enerev backuo in comrmters if the



(a) — d (b)

FIGURE 24-1 Capacitors: diagrams of 
(a) parallel plate, (b) cylindrical (rolled 
up parallel plate).

Very tiny capacitors serve as memory for the “ones” and “zeros” of the binary 
code in the random access memory (RAM) of computers. Capacitors serve many 
other applications, some of which we will discuss.

A simple capacitor consists of a pair of parallel plates of area A  separated by 
a small distance d  (Fig. 2 4 -la). Often the two plates are rolled into the form of a 
cylinder with plastic, paper, or other insulator separating the plates, Fig. 24-lb . In 
a diagram, the symbol

or [capacitor symbol]

represents a capacitor. A battery, which is a source of voltage, is indicated by the 
symbol:

♦-It [battery symbol]

with unequal arms.
If a voltage is applied across a capacitor by connecting the capacitor to a 

battery with conducting wires as in Fig. 24-2, the two plates quickly become 
charged: one plate acquires a negative charge, the other an equal amount of 
positive charge. Each battery terminal and the plate of the capacitor connected to 
it are at the same potential; hence the full battery voltage appears across the 
capacitor. For a given capacitor, it is found that the amount of charge Q acquired 
by each plate is proportional to the magnitude of the potential difference V  
between them:

Q = CV. (24-1)

The constant of proportionality, C, in the above relation is called the capacitance 
of the capacitor. The unit of capacitance is coulombs per volt and this unit is 
called a farad (F). Common capacitors have capacitance in the range of 1 pF 
(picofarad = 1CT12F) to 103 /jlF  (microfarad = 1CT6F). The relation, Eq. 24-1, 
was first suggested by Volta in the late eighteenth century. The capacitance C 
does not in general depend on Q or V. Its value depends only on the size, 
shape, and relative position of the two conductors, and also on the material that 
separates them.

In Eq. 24-1, and from now on, we use simply V  (in italics) to represent a 
potential difference, rather than Vba, AV, or Vb — Va, as previously. (Be sure not to 
confuse italic V  and C which stand for voltage and capacitance, with non-italic V 
and C which stand for the units volts and coulombs).

+Q -Q

H hc

^ |p j
V  

(b)
FIGURE 24-2  (a) Parallel-plate 
capacitor connected to a battery.
(b) Same circuit shown using symbols.

FIGURE 24-3  Exercise A.

/ | \  CAUTION
V = potential difference from here on

I EX ER C IS E  A  G ranhs for charge versus voltage are shown in Fio. 94—3 for three canaritors.



24—2 Determination of Capacitance

FIGURE 24-4 Parallel-plate 
capacitor, each of whose plates has 
area A . Fringing of the field is 
ignored.

The capacitance of a given capacitor can be determined experimentally directly 
from Eq. 24-1, by measuring the charge Q on either conductor for a given 
potential difference V.

For capacitors whose geometry is simple, we can determine C analytically, and 
in this Section we assume the conductors are separated by a vacuum or air. First, 
we determine C for a parallel-plate capacitor, Fig. 24-4. Each plate has area A  and 
the two plates are separated by a distance d. We assume d is small compared to the 
dimensions of each plate so that the electric field E is uniform between them and 
we can ignore fringing (lines of E not straight) at the edges. We saw earlier 
(Example 21-13) that the electric field between two closely spaced parallel plates 
has magnitude E = cr/e0 and its direction is perpendicular to the plates. Since a  
is the charge per unit area, a = QlA, then the field between the plates is 

E  = ~ ~  e0A
The relation between electric field and electric potential, as given by Eq. 23-4a, is

v = Vba = H -  K = -  pE-dl.
J a

We can take the line integral along a path antiparallel to the field lines, from 
plate a to plate b; then 6 = 180° and cos 180° = -1 , so

V = Vi, “ K  = -  E dl cos 180° = f** ■ 4  fJa 0̂A  Jae0A  Ja e0A
This relates Q to V, and from it we can get the capacitance C in terms of the 
geometry of the plates:

A
[parallel-plate capacitor] (24-2)

Note from Eq. 24-2 that the value of C does not depend on Q or V, so Q is 
predicted to be proportional to V  as is found experimentally.

EXAMPLE 24-1 Capacitor calculations, (a) Calculate the capacitance of a 
parallel-plate capacitor whose plates are 20 cm X 3.0 cm and are separated by a 
1.0-mm air gap. (b) What is the charge on each plate if a 12-V battery is connected 
across the two plates? (c) What is the electric field between the plates? (d) Estimate 
the area of the plates needed to achieve a capacitance of 1F, given the same air gap d. 
APPROACH The capacitance is found by using Eq. 24-2, C = e0A/d.  The 
charge on each plate is obtained from the definition of capacitance, Eq. 24-1, 
Q = CV. The electric field is uniform, so we can use Eq. 23-4b for the 
magnitude E = V/d. In (d) we use Eq. 24-2 again.
SOLUTION (a) The area A = (20 X 10-2 m)(3.0 X 10-2 m) = 6.0 X 10“3 m2. The 
capacitance C is then

C = e0— = (8.85 X 10" C2/N  • m2
1.0 X 10-3 m

= 53 pF.

(b) The charge on each plate is
Q = CV = (53 X 10_12F)(12V) = 6.4 X K r10C.

(c) From Eq. 23-4b for a uniform electric field, the magnitude of E  is
V = 12 V 
d ~ 1.0 X 10_3m

E = — = = 1.2 X 104 V/m.

(d) We solve for A  in Eq. 24-2 and substitute C 
find that we need plates with an area

Cd (lF)(l.O  x  10_3m)
A = (q v  1 n-12 r*2/m . m2̂

1.0 F and d = 1.0 mm to

108m2



EXERCISE B Two circular plates of radius 5.0 cm are separated by a 0.10-mm air gap. What 
is the magnitude of the charge on each plate when connected to a 12-V battery?

Not long ago, a capacitance greater than a few mF was unusual. Today 
capacitors are available that are 1 or 2 F, yet they are just a few cm on a side. Such 
capacitors are used as power backups, for example, in computer memory and 
electronics where the time and date can be maintained through tiny charge flow. 
[Capacitors are superior to rechargable batteries for this purpose because they can 
be recharged more than 105 times with no degradation.] Such high-capacitance 
capacitors can be made of “activated” carbon which has very high porosity, so that 
the surface area is very large; one tenth of a gram of activated carbon can have a 
surface area of 100 m2. Furthermore, the equal and opposite charges exist in an 
electric “double layer” about 10-9 m thick. Thus, the capacitance of 0.1 g of 
activated carbon, whose internal area can be 102 m2, is equivalent to a parallel-plate 
capacitor with C «  z0A /d  = (8.85 X 10-12C2/N • m2)(l02m2)/(l0 -9m) «  IF .

One type of computer keyboard operates by capacitance. As shown in Fig. 24-5, 
each key is connected to the upper plate of a capacitor. The upper plate moves down 
when the key is pressed, reducing the spacing between the capacitor plates, and 
increasing the capacitance (Eq. 24-2: smaller d, larger C). The change in capacitance 
results in an electric signal that is detected by an electronic circuit.

The proportionality, C oc A /d  in Eq. 24-2, is valid also for a parallel-plate 
capacitor that is rolled up into a spiral cylinder, as in Fig. 24-lb. However, the constant 
factor, e0, must be replaced if an insulator such as paper separates the plates, as is usual, 
and this is discussed in Section 24-5. For a true cylindrical capacitor—consisting of two 
long coaxial cylinders—the result is somewhat different as the next Example shows.
M B r M  Cylindrical capacitor. A cylindrical capacitor consists of a 

cylinder (or wire) of radius Rb surrounded by a coaxial cylindrical shell of inner radius 
Ra, Fig. 24-6a. Both cylinders have length £ which we assume is much greater than the 
separation of the cylinders, Ra — Rb, so we can neglect end effects. The capacitor is 
charged (by connecting it to a battery) so that one cylinder has a charge +Q (say, the 
inner one) and the other one a charge —Q. Determine a formula for the capacitance. 
APPROACH To obtain C = Q/V, we need to determine the potential difference V  
between the cylinders in terms of Q. We can use our earlier result (Example 21-11 
or 22-6) that the electric field outside a long wire is directed radially outward and 
has magnitude E = (l/27re0)(A/R), where R is the distance from the axis and A is 
the charge per unit length, Q/i. Then E = ( l /h re 0)(Q/£R) for points between 
the cylinders.
SOLUTION To obtain the potential difference V  in terms of Q, we use this result 
for E  in Eq. 23-4a, V = Vb — Va = —f S - d l ,  and write the line integral from 
the outer cylinder to the inner one (so V  > 0) along a radial line:1

V  = Vb -  K  = -  E - d t  = - 2t7€
Q

- [  0* J#
R*dR 

R

2ire ,
Q and V  are proportional, and the capacitance C is

1 Rb
=

Q Ra

< = i  =
2'jre0£

[cylindrical capacitor]
ln ( j? a / i? b)

NOTE If the space between cylinders, Ra — Rb = AR is small, we have ln(i?a/i?b) = 
ln[(i?b + Ai?)/i?b] = ln[l + Ai?/i?b] «  AR /R b (see Appendix A-3) so 
C ~ 27re0iR b/A R  = e0A / AR  because the area of cylinder b is A  = 2TrRb£. This 
is just Eq. 24-2 (d = AR),  a nice check.

EXERCISE C What is the capacitance per unit length of a cylindrical capacitor with radii 
R a = 2.5 mm and R b = 0.40 mm? (a) 30 pF/m; (b) -3 0  pF/m; (c) 56 pF/m; (d) -5 6  pF/m; 
(e) lOOpF/m; ( /)  -lOOpF/m.

P H Y S I C S  A P P L I E D
Very high capacitance

Key

Movable
plate

Insulator — : 
< flexible)

Capacitor

FIGURE 24-5 Key on a computer 
keyboard. Pressing the key reduces 
the capacitor spacing thus increasing 
the capacitance which can be 
detected electronically.

0 P H Y S I C S  A P P L I E D
Computer key

FIGURE 24-6 (a) Cylindrical 
capacitor consists of two coaxial 
cylindrical conductors, (b) The 
electric field lines are shown in 
cross-sectional view.

<b)



FIGURE 24-7 Cross section 
through the center of a spherical 
capacitor. The thin inner shell has 
radius and the thin outer shell has 
radius ra.

P R O B L E M  S O L V I N G
Checking with a limiting case

EXAMPLE 24-3 Spherical capacitor. A spherical capacitor consists of two 
thin concentric spherical conducting shells, of radius ra and rh as shown in 
Fig. 24-7. The inner shell carries a uniformly distributed charge Q on its surface, 
and the outer shell an equal but opposite charge —Q. Determine the capacitance 
of the two shells.
APPROACH In Example 22-3 we used Gauss’s law to show that the electric field 
outside a uniformly charged conducting sphere is E = Q/Air^Qr2 as if all the 
charge were concentrated at the center. Now we use Eq. 23-4a, V = — 
SOLUTION We integrate Eq. 23-4a along a radial line to obtain the potential 
difference between the two conducting shells:

e
Ha =

- I
E dl  = -

4ire

Q
- r u
o k  r2

Finally,

Ha
47761

47T€(

rarh

47T€f
rb

r*rh

/ a  -  rb.

NOTE If the separation A r = ra — rb is very small, then C = 47re0 r 2/A r  
(since A = 4ttr2), which is the parallel-plate formula, Eq. 24-2.

e0A/A r

A single isolated conductor can also be said to have a capacitance, C. In this 
case, C can still be defined as the ratio of the charge to absolute potential V  on the 
conductor (relative to V = 0 at r = oo), so that the relation

Q = CV
remains valid. For example, the potential of a single conducting sphere of radius rb 
can be obtained from our results in Example 24-3 by letting ra become infinitely 
large. As ra —> oo, then

L )  = 1 Q
raV =

47re
1_

0 \ rb 47T€o rb
so its capacitance is

C = — = 4tre0rb.

In practical cases, a single conductor may be near other conductors or the Earth 
(which can be thought of as the other “plate” of a capacitor), and these will affect 
the value of the capacitance.

FIGURE 24-8 Example 24-4. 

a b

+ Q

EXAMPLE 24-4 Capacitance of two long parallel wires. Estimate the 
capacitance per unit length of two very long straight parallel wires, each of 
radius R, carrying uniform charges +Q and —Q, and separated by a distance d 
which is large compared to R (d »  R), Fig. 24-8.
APPROACH We calculate the potential difference between the wires by treating 
the electric field at any point between them as the superposition of the two fields 
created by each wire. (The electric field inside each wire conductor is zero.) 
SOLUTION The electric field outside of a long straight conductor was found in 
Examples 21-11 and 22-6 to be radial and given by E = \/(27re0x) where A 
is the charge per unit length, A = Q/L The total electric field at distance x from 
the left-hand wire in Fig. 24-8 has magnitude

„  A A
27T€0X 27r€0( d  — X)



between the two wires using Eq. 23-4a and integrating along the straight line 
from the surface of the negative wire to the surface of the positive wire, noting 
that E and di point in opposite directions (E • di < 0):

v  = vb- v a

27T€o

2tt€o

[ln(x) -  \n(d -  jc)]
d -R

[in(d -  R) -  In R -  In R + In(d -  /?)]

We are given that d^>  R, so
Q

7re0i h i * ]
The capacitance from Eq. 24-1 is C  = Q /V  ~ (ire0l ) / \n .(d /R ) ,  so the 
capacitance per unit length is given approximately by

C  _  776 q

£ ~  In( d /R )  '

2 4 -3  Capacitors in Series and Parallel
Capacitors are found in many electric circuits. By electric circuit we mean a 
closed path of conductors, usually wires connecting capacitors and/or other 
devices, in which charge can flow and which includes a source of voltage such 
as a battery. The battery voltage is usually given the symbol V, which means 
that V  represents a potential difference. Capacitors can be connected together 
in various ways. Two common ways are in series, or in parallel, and we now 
discuss both.

A circuit containing three capacitors connected in parallel is shown in 
Fig. 24-9. They are in “parallel” because when a battery of voltage V  is connected 
to points a and b, this voltage V = Vab exists across each of the capacitors. That is, 
since the left-hand plates of all the capacitors are connected by conductors, they all 
reach the same potential Va when connected to the battery; and the right-hand 
plates each reach potential Vb. Each capacitor plate acquires a charge given by 
Qi = CiV, Q2 = C2V, and Q3 = C3V. The total charge Q that must leave 
the battery is then

Q = Qi + Qi + £3 = cxv  + c2v  + c3v.
Let us try to find a single equivalent capacitor that will hold the same charge Q at 
the same voltage V = Vab. It will have a capacitance Ceq given by

Q = QqV.
Combining the two previous equations, we have

Ce qV  = CXV  + C2V  + C3V  = (Cj + c 2 + c 3)v
or

Ceq = C\ + C2 + C3. [parallel] (24—3)

The net effect of connecting capacitors in parallel is thus to increase the capaci­
tance. This makes sense because we are essentiallv increasing the area of the elates
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v=v,ab

FIGURE 24-10
1

Capacitors in series:

'eq
JL JL JL 
Q c2 c3

Capacitors can also be connected in series: that is, end to end as shown in 
Fig. 24-10. A charge +Q flows from the battery to one plate of C1? and —Q 
flows to one plate of C3. The regions A and B between the capacitors were 
originally neutral; so the net charge there must still be zero. The +Q on the 
left plate of Q  attracts a charge of —Q on the opposite plate. Because region A 
must have a zero net charge, there is thus +Q on the left plate of C2. The same 
considerations apply to the other capacitors, so we see the charge on each 
capacitor is the same value Q. A single capacitor that could replace these three 
in series without affecting the circuit (that is, Q and V  the same) would have a 
capacitance Ceq where

Q  = CeqF.

Now the total voltage V  across the three capacitors in series must equal the sum of 
the voltages across each capacitor:

V = Vx + V2 + V3.

We also have for each capacitor Q = CXVX, Q = C2V2, and 
we substitute for V, V1,V2, and V3 into the last equation and get

Q  ~  C 3 V3 > s o

-g -  = £  + £  + £  = e ( l  + 1 + 1

or
'eq

'eq
= — + — + —

Ci c2 a

[series] (24-4)

Notice that the equivalent capacitance Ceq is smaller than the smallest contributing 
capacitance.

EXERCISE D Consider two identical capacitors C\ = C2 = 10 /j lF . What are the minimum 
and maximum capacitances that can be obtained by connecting these in series or parallel 
combinations? (a) 0.2 /x F , 5 jitF; ( b )  0.2 fX F , 10 /j lF ; ( c )  0.2 /x F , 20 /j lF ; ( d )  5 f i F ,  10 jitF;

(e) 5 fjF, 20 f i F ;  ( / )  10 /jlF ,  20 f i F .

FIGURE 24-11 Examples 24-5  
and 24-6.

(a)

a
----- II------

i || ii

— Il­
V ea
Ii

Other connections of capacitors can be analyzed similarly using charge 
conservation, and often simply in terms of series and parallel connections.

EXAMPLE 24-5 Equivalent capacitance. Determine the capacitance of a 
single capacitor that will have the same effect as the combination shown in 
Fig. 24-11 a. Take Cx = C2 = C3 = C.

APPROACH First we find the equivalent capacitance of C2 and C3 in parallel, and 
then consider that capacitance in series with Cx.
SOLUTION Capacitors C2 and C3 are connected in parallel, so they are equivalent 
to a single capacitor having capacitance

C23 = C2 + C3 = 2 C.

This C23 is in series with Q , Fig. 24-llb , so the equivalent capacitance of the 
entire circuit, Ceq, is given by

'eq Ci c23 2C 2C

Hence the equivalent capacitance of the entire combination is Ceq = 3C, and it11__ i.1_____



EXAMPLE 24-6 Charge and voltage on capacitors. Determine the charge 
on each capacitor in Fig. 2 4 - l la  of Example 24-5 and the voltage across each, 
assuming C = 3.0 ^F and the battery voltage is V  = 4.0 V.
APPROACH We have to work “backward” through Example 24-5. That is, we 
find the charge Q that leaves the battery, using the equivalent capacitance. Then 
we find the charge on each separate capacitor and the voltage across each. Each 
step uses Eq. 24-1, Q = CV.
SOLUTION The 4.0-V battery behaves as if it is connected to a capacitance 
Ceq = |  C = f (3.0/iF) = 2.0 /jlF. Therefore the charge Q that leaves the battery, 
by Eq. 24-1, is

Q = CV = (2.0/lF) (4.0 V) = 8.0 /jlC .

From Fig. 2 4 -lla , this charge arrives at the negative plate of C1, so Q 1 = 8.0 /jlC. 
The charge Q that leaves the positive plate of the battery is split evenly 
between C2 and C3 (symmetry: C2 =  C3 ) and is Q2 = Q3 =  \Q  =  4.0 /jlC. 
Next, the voltages across C2 and C3 have to be the same. The voltage across 
each capacitor is obtained using V  = Q/C. So

V! = Q i/C i = (8.0 /iC )/(3.0 /jlF )  = 2.7 V 
V2 = Q2/C 2 = (4 .0MC )/(3.0^F) = 1.3 V 
V3 = Q3/C 3 = (4.0/iC)/(3.0/*F) = 1.3 V.

EXAMPLE 24-7 Capacitors reconnected. Two capacitors, Cx = 2.2 and 
C2 = 1.2 /jlF , are connected in parallel to a 24-V source as shown in Fig. 24-12a. 
After they are charged they are disconnected from the source and from each 
other, and then reconnected directly to each other with plates of opposite sign 
connected together (see Fig. 24-12b). Find the charge on each capacitor and the 
potential across each after equilibrium is established.
APPROACH We find the charge Q = CV  on each capacitor initially. Charge is 
conserved, although rearranged after the switch. The two new voltages will have 
to be equal.
SOLUTION First we calculate how much charge has been placed on each capacitor 
after the power source has charged them fully, using Eq. 24-1:

Q i = Q V  = (2 .2/aF) (24 V) = 52.8/iC,
Q 2 = C2V  = (1.2 juF)(24 V) = 28.8 ^C.

Next the capacitors are connected in parallel, Fig. 24-12b, and the potential 
difference across each must quickly equalize. Thus, the charge cannot remain as 
shown in Fig. 24-12b, but the charge must rearrange itself so that the upper 
plates at least have the same sign of charge, with the lower plates having the 
opposite charge as shown in Fig. 2 4 -12c. Equation 24-1 applies for each:

qx = CXV ' and q2 = C2V \

where V ' is the voltage across each capacitor after the charges have rearranged 
themselves. We don’t know q\,q2, or V ', so we need a third equation. This is 
provided by charge conservation. The charges have rearranged themselves 
between Figs. 2 4 -12b and c. The total charge on the upper plates in those two 
Figures must be the same, so we have

<7i + <?2 = Q i ~  Q i  =  24.0 fiC.
Combining the last three equations we find:

v  = (?1 + q2)/{Ci + C2) = 24.0/xC/3.4ju,F = 7.06 V »  7.1V  
<li = CLV  = (2.2/tF)(7.06V) = 15.5/xC ~  16/xC 
q2 = C2V ' = (1.2ju,F)(7.06 V) = 8.5juC

r
24 V

(a) Initial configuration.

+Q iC, dpC 2
V - Q i + Q l

(b) At the instant of reconnection only.

(c) A short time later. 

FIGURE 24-12 Example 24-7.



24—4  Electric Energy Storage

@ P H Y S I C S  A P P L I E D
Camera flash

FIGURE 2 4-13  A  camera flash unit.

A charged capacitor stores electrical energy. The energy stored in a capacitor will 
be equal to the work done to charge it. The net effect of charging a capacitor is to 
remove charge from one plate and add it to the other plate. This is what a battery 
does when it is connected to a capacitor. A capacitor does not become charged 
instantly. It takes time (Section 26-4). Initially, when the capacitor is uncharged, it 
requires no work to move the first bit of charge over. When some charge is on 
each plate, it requires work to add more charge of the same sign because of the 
electric repulsion. The more charge already on a plate, the more work required to 
add additional charge. The work needed to add a small amount of charge dq, when 
a potential difference V  is across the plates, is dW = V dq. Since V = q/C  at 
any moment (Eq. 24-1), where C is the capacitance, the work needed to store a 
total charge Q is

[Q 1 ffi i Q2
w = l V d q  = c [ qdq i c

Thus we can say that the energy “stored” in a capacitor is

i Q2
U = 2 V

when the capacitor C carries charges +Q and —Q on its two conductors. 
Since Q = CV, where V  is the potential difference across the capacitor, we can 
also write

U = \ %  = \ cy l = \Q V- (24- 5)

Energy stored in a capacitor. A camera flash unit (Fig. 24-13) 
stores energy in a 150-^tF capacitor at 200 V. (a) How much electric energy can 
be stored? (b) What is the power output if nearly all this energy is released 
in 1.0 ms?

APPROACH We use Eq. 24-5 in the form U = \ CV2 because we are given C 
and V.
SOLUTION The energy stored is

U = l e v 2 = 1(150 X 10“6F)(200V)2 = 3.0J.

If this energy is released in ^  °f a second, the power output is 
P = U/t = (3.0 J)/(l.O X 10-3 s) = 3000 W.

EXAMPLE 24-8

CONCEPTUAL EXAMPLE 24-91  Capacitor plate separation increased. A
parallel-plate capacitor carries charge Q and is then disconnected from a battery. 
The two plates are initially separated by a distance d. Suppose the plates are 
pulled apart until the separation is 2d. How has the energy stored in this 
capacitor changed?

RESPONSE If we increase the plate separation d, we decrease the capacitance 
according to Eq. 24-2, C = t 0A/d,  by a factor of 2. The charge Q hasn’t 
changed. So according to Eq. 24-5, where we choose the form U = %Q2/C  
because we know Q is the same and C has been halved, the reduced C means the 
potential energy stored increases by a factor of 2.
NOTE We can see why the energy stored increases from a physical point of view: 
the two plates are charged equal and opposite, so they attract each other. If we



EXAMPLE 24-10 Moving parallel capacitor plates. The plates of a parallel- 
plate capacitor have area A, separation x, and are connected to a battery with 
voltage V. While connected to the battery, the plates are pulled apart until they 
are separated by 3x. (a) What are the initial and final energies stored in the 
capacitor? (b) How much work is required to pull the plates apart (assume 
constant speed)? (c) How much energy is exchanged with the battery? 
APPROACH The stored energy is given by Eq. 24-5: U = \ CV2, where 
C = e0 A/x.  Unlike Example 24-9, here the capacitor remains connected to the 
battery. Hence charge and energy can flow to or from the battery, and we can not set 
the work W = AU. Instead, the work can be calculated from Eq. 7-7, W = J F • dl. 
SOLUTION (a) When the separation is x, the capacitance is Cx = e0 A /x  and the 
energy stored is

Vi =

When the separation is 3x, C2 = e0A/3x  and

Then

1 - 
u2 = v 2.2 3x

e0AV2
ALt.p = U2 -  U, =

The potential energy decreases as the oppositely charged plates are pulled apart, which 
makes sense. The plates remain connected to the battery, so V  does not change and C 
decreases; hence some charge leaves each plate (Q = CV), causing U to decrease.
(b) The work done in pulling the plates apart is W = dl = fx*QE dl, 
where Q is the charge on one plate at a given moment when the plates are a 
distance I apart, and E  is the field due to the other plate at that instant. You might 
think we could use E = V /l  where I is the separation of the plates (Eq. 23-4b). 
But we want the force on one plate (of charge Q) due to the electric field of the 
other plate only—which is half by symmetry: so we take E = V/2l. The charge at 
any separation I is given by Q = CV, where C = e0A /l. Substituting, the work is

e=3x

Z = J

I2 21
t=3x enA V 2 ( - 1  l \  e0A V 2
£=x 2 \ 3 x  x ) 3x

As you might expect, the work required to pull these oppositely charged plates 
apart is positive.
(c) Even though the work done is positive, the potential energy decreased, which 
tells us that energy must have gone into the battery (as if charging it). Conservation 
of energy tells us that the work W  done on the system must equal the change in 
potential energy of the capacitor plus that of the battery (kinetic energy can be 
assumed to be essentially zero):

W = A £/cap + A f/batt.

Thus the battery experiences a change in energy of

e0A V 2 e0A V 2 2 e0A V 2
batt -  + ^  = - J * r -

Thus charge flows back into the battery, raising its stored energy. In fact, the 
battery energy increase is double the work we do.

It is useful to think of the energy stored in a capacitor as being stored in the 
electric field between the plates. As an example let us calculate the energv stored



Shocks, burns, defibrillators

FIGURE 24-14 Heart defibrillator.

TABLE 24--1
Dielectric Constants (at 20°C)

Dielectric Dielectric
constant strength

Material K (V /m )

Vacuum 1.0000
Air (1 atm) 1.0006 3 X 10(
Paraffin 2.2 10 X 10(
Polystyrene 2.6 24 X 10(
Vinyl (plastic) 2-4 50 X 10(
Paper 3.7 15 X 10(
Quartz 4.3 8 X 10(
Oil 4 12 X 10(
Glass, Pyrex 5 14 X 10(
Porcelain 6-8 5 X 10(
Mica 7 150 X 10(
Water (liquid) 80
Strontium

We have seen (Eq. 23-4b) that the electric field E between two close parallel 
plates is (approximately) uniform and its magnitude is related to the potential 
difference by V = Ed where d is the plate separation. Also, Eq. 24-2 tells us 
C = e0A /d  for a parallel-plate capacitor. Thus 

u =
= h o E 2Ad.

The quantity Ad  is the volume between the plates in which the electric field E  
exists. If we divide both sides by the volume, we obtain an expression for the 
energy per unit volume or energy density, u:

u = energy density = \ e 0E 2. (24-6)
The electric energy stored per unit volume in any region o f space is proportional to 
the square o f the electric field in that region. We derived Eq. 24-6 for the special 
case of a parallel-plate capacitor. But it can be shown to be true for any region of 
space where there is an electric field. Note that the units check: for (e0E 2) we 
have (C2/N -m 2)(N/C)2 = N/m2 = (N-m)/m3 = J/m 3.

Health Effects
The energy stored in a large capacitance can do harm, giving you a burn or a 
shock. One reason you are warned not to touch a circuit, or the inside of electronic 
devices, is because capacitors may still be carrying charge even if the external 
power has been turned off.

On the other hand, the basis of a heart defibrillator is a capacitor charged to a 
high voltage. A heart attack can be characterized by fast irregular beating of the 
heart, known as ventricular (or cardiac) fibrillation. The heart then does not 
pump blood to the rest of the body properly, and if it lasts for long, death 
results. A sudden, brief jolt of charge through the heart from a defibrillator can cause 
complete heart stoppage, sometimes followed by a resumption of normal beating. The 
defibrillator capacitor is charged to a high voltage, typically a few thousand volts, and 
is allowed to discharge very rapidly through the heart via a pair of wide contacts 
known as “paddles” that spread out the current over the chest (Fig. 24-14).

24—5 Dielectrics
In most capacitors there is an insulating sheet of material, such as paper or plastic, 
called a dielectric between the plates. This serves several purposes. First of all, 
dielectrics break down (allowing electric charge to flow) less readily than air, so 
higher voltages can be applied without charge passing across the gap. Furthermore, 
a dielectric allows the plates to be placed closer together without touching, thus 
allowing an increased capacitance because d is smaller in Eq. 24-2. Finally, it 
is found experimentally that if the dielectric fills the space between the two 
conductors, it increases the capacitance by a factor K  which is known as the 
dielectric constant. Thus

C = KC0, (24-7)
where C0 is the capacitance when the space between the two conductors of the 
capacitor is a vacuum, and C is the capacitance when the space is filled with a 
material whose dielectric constant is K.

The values of the dielectric constant for various materials are given in 
Table 24-1. Also shown in Table 24-1 is the dielectric strength, the maximum 
electric field before breakdown (charge flow) occurs.

For a parallel-plate capacitor (see Eq. 24-2),

C = Ke0— [parallel-plate capacitor] (24-8)
d

when the space between the plates is completely filled with a dielectric whose



often in formulas that we define a new quantity
e = Ke0 (24-9)

called the permittivity of a material. Then the capacitance of a parallel-plate 
capacitor becomes

Note that e0 represents the permittivity of free space (a vacuum), as in Section 21-5.
The energy density stored in an electric field E  (Section 24-4) in a dielectric is 

given by (see Eq. 24-6)
bKenE2 = U E 2. [E in a dielectric]

I
 EXERCISE E Return to the Chapter-Opening Question, page 628, and answer it again now. 

Try to explain why you may have answered differently the first time.

Two simple experiments illustrate the effect of a dielectric. In the first, 
Fig. 24-15a, a battery of voltage V0 is kept connected to a capacitor as a dielectric 
is inserted between the plates. If the charge on the plates without dielectric is Q0, 
then when the dielectric is inserted, it is found experimentally (first by Faraday) 
that the charge Q on the plates is increased by a factor K,

Q = KQ0. [voltage constant]
The capacitance has increased to C = Q/V0 = KQ0/V0 = KC0, which is Eq. 24-7. 
In a second experiment, Fig. 24-15b, a battery is connected to a capacitor C0 
which then holds a charge Q0 = C0VQ. The battery is then disconnected, leaving the 
capacitor isolated with charge Q0 and still at voltage VQ. Next a dielectric is inserted 
between the plates of the capacitor. The charge remains Q0 (there is nowhere for the 
charge to go) but the voltage is found experimentally to drop by a factor K:

K [charge constant]

Note that the capacitance changes to C = Q J V  = QJ{VJK) = KQ0/V0 = KC0 
so this experiment too confirms Eq. 24-7.

no dielectric

-Qo u

(a) Voltage constant

Vo
+Q =+KQ0

Q = -K Q 0
C= —  =KCn

with dielectric

Qo
Vo

Vn, Cq =_ Qo

no dielectric

+e0J_
- e o j 1,0’
battery disconnected

+Qo_ i 
-Qo c

VJV K
Qo\ c = k c 0

dielectric inserted
(b) Charge constant

The electric field when a dielectric is inserted is also altered. When no dielectric 
is present, the electric field between the plates of a parallel-plate capacitor is given 
by Eq. 23-4b:

F ~  F°
Eo ~ T

where VQ is the potential difference between the plates and d is their separation. If 
the capacitor is isolated so that the charge remains fixed on the plates when a 
dielectric is inserted, filling the space between the plates, the potential difference 
drops to V = Vq/K. So the electric field in the dielectric is

A
Kd

E =
* - 5

[in a dielectric] (24-10)

FIGURE 24-15 Two experiments 
with a capacitor. Dielectric inserted 
with (a) voltage held constant,
(b) charge held constant.
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FIGURE 24-16 Example 24-11.

EXAMPLE 24-11 Dielectric removal. A parallel-plate capacitor, filled with a 
dielectric with K = 3.4, is connected to a 100-V battery (Fig. 24-16a). After the 
capacitor is fully charged, the battery is disconnected. The plates have area 
A  = 4.0 m2, and are separated by d = 4.0 mm. {a) Find the capacitance, the 
charge on the capacitor, the electric field strength, and the energy stored in the 
capacitor, (b) The dielectric is carefully removed, without changing the plate 
separation nor does any charge leave the capacitor (Fig. 24-16b). Find the new 
values of capacitance, electric field strength, voltage between the plates, and the 
energy stored in the capacitor.

APPROACH We use the formulas for parallel-plate capacitance and electric field 
with and without a dielectric.
SOLUTION (a) First we find the capacitance, with dielectric:

C =
Ke0A  3.4(8.85 X 10-12C7N -m 2)(4.0m2

4.0 X 10“3 m 
= 3.0 X HT8F.

The charge Q on the plates is

Q = CV = (3.0 X 10“8F)(100V) = 3.0 X 10“6C. 

The electric field between the plates is

100 V
d 4.0 X 10“3 m

= 25 kV/m.

Finally, the total energy stored in the capacitor is

U = \C V 2 = 1(3.0 X KT8F)(100V)2 = 1.5 X 10-4J.

(b) The capacitance without dielectric decreases by a factor K  = 3.4: 

(3.0 X 10“8F)
Co “ K 3.4

= 8.8 X 10“9F

Because the battery has been disconnected, the charge Q can not change; when 
the dielectric is removed, V = Q/C  increases by a factor K = 3.4 to 340 V. 
The electric field is

* - 7 -

The energy stored is

u = IcV2

340 V
4.0 X 10~3m

= 85 kV/m.

|(8.8 X 10-9F)(340 V)2 

5.1 X 10“4J.

NOTE Where did all this extra energy come from? The energy increased because 
work had to be done to remove the dielectric. The work required was 
W = (5.1 x  10"4J) -  (1.5 x  10_4J) = 3.6 X 10"4J. (We will see in the next 
Section that work is required because of the force of attraction between induced 
charge on the dielectric and the charges on the plates, Fig. 24-17c.)

*24—6 Molecular Description of Dielectrics
Let us examine, from the molecular point of view, why the capacitance of a 
capacitor should be larger when a dielectric is between the plates. A capacitor



the other (Fig. 24-17a). Assume it is isolated (not connected to a battery) so 
charge cannot flow to or from the plates. The potential difference between the 
plates, V0, is given by Eq. 24-1:

Q = C0V0,
where the subscripts refer to air between the plates. Now we insert a dielectric 
between the plates (Fig. 24-17b). Because of the electric field between the 
capacitor plates, the dielectric molecules will tend to become oriented as shown in 
Fig. 24-17b. If the dielectric molecules are polar, the positive end is attracted to 
the negative plate and vice versa. Even if the dielectric molecules are not polar, 
electrons within them will tend to move slightly toward the positive capacitor 
plate, so the effect is the same. The net effect of the aligned dipoles is a net 
negative charge on the outer edge of the dielectric facing the positive plate, and a 
net positive charge on the opposite side, as shown in Fig. 24-17c.

Some of the electric field lines, then, do not pass through the dielectric but 
instead end on charges induced on the surface of the dielectric as shown in 
Fig. 24-17c. Hence the electric field within the dielectric is less than in air. That 
is, the electric field between the capacitor plates, assumed filled by the dielectric, 
has been reduced by some factor K. The voltage across the capacitor is 
reduced by the same factor K  because V = Ed (Eq. 23-4b) and hence, by 
Eq. 24-1, Q = CV, the capacitance C must increase by that same factor K  to 
keep Q constant.

As shown in Fig. 24-17d, the electric field within the dielectric ED can be 
considered as the vector sum of the electric field E0 due to the “free” charges on 
the conducting plates, and the field Eind due to the induced charge on the 
surfaces of the dielectric. Since these two fields are in opposite directions, the net 
field within the dielectric, E0 — E^d, is less than E0. The precise relationship 
is given by Eq. 24-10, even if the dielectric does not fill the gap between 
the plates:

E0
E j }  — E q — -E in d  — i s  ’

+Q -Q

K
so

-Emd =  E0\ 1 -  —  |.

The electric field between two parallel plates is related to the surface charge 
density, a, by E = o-/e0 (Example 21-13 or 22-8). Thus

Eq = o-/e0

where cr = Q /A  is the surface charge density on the conductor; Q is the net 
charge on the conductor and is often called the free charge (since charge is free to 
move in a conductor). Similarly, we define an equivalent induced surface charge 
density crind on the dielectric; then

^ind — °"ind/e 0

where Em& is the electric field due to the induced charge Qm& = o-m&A on the 
surface of the dielectric, Fig. 24-17d. Qind is often called the bound charge, since it 
is on an insulator and is not free to move. Since ■Eind = E0 (1 — 1/K) as shown 
above, we now have

(a) 

@0@ 
@ 0 0  
000 
000 
000 
0 0 0  
000

(b)

(c)

— +
E0

— t ind+

— +

(d)

FIGURE 24 -1 7  Molecular view 
the effects of a dielectric.

and

(24-lla) 

(24-lib )

Since K  is alwavs greater than 1. we see that the charse induced on the dielectric is



d = 2.00 mm
+ Q -Q

K = 3.50

£ = 1.00 mm 

FIGURE 2 4 -1 8  Example 24-12.

EXAMPLE 24-12 Dielectric partially fills capacitor. A parallel-plate capacitor 
has plates of area A  = 250 cm2 and separation d = 2.00 mm. The capacitor is 
charged to a potential difference V0 = 150 V. Then the battery is disconnected 
(the charge Q on the plates then won’t change), and a dielectric sheet 
(K = 3.50) of the same area A  but thickness £ = 1.00 mm is placed between 
the plates as shown in Fig. 24-18. Determine (a) the initial capacitance of the 
air-filled capacitor, (b) the charge on each plate before the dielectric is inserted,
(c) the charge induced on each face of the dielectric after it is inserted, (d) the 
electric field in the space between each plate and the dielectric, (e) the electric 
field in the dielectric, (/) the potential difference between the plates after the 
dielectric is added, and (g) the capacitance after the dielectric is in place.
APPROACH We use the expressions for capacitance and charge developed in 
this Section plus (part e), Eq. 23-4a, V = -  J E -di.
SOLUTION (a) Before the dielectric is in place, the capacitance is

Co = e04  = (8.85 X 10~12C2/N -m 2) f ^ *  ^ , 3™ ) = l l lp F .
2.00 X 10“3m

(b) The charge on each plate is
Q = C0V0 = ( l . l l  X 10_10F)(150V) = 1.66 X 10-8C.

(c) Equations 24-10 and 24-11 are valid even when the dielectric does not fill 
the gap, so (Eq. 24-1 lb)

Gind = e (  1 -  = (1-66 X 10-8C )(l -  j T j  = 1.19 X 10-8C.

(d) The electric field in the gaps between the plates and the dielectric 
(see Fig. 24-17c) is the same as in the absence of the dielectric since the charge 
on the plates has not been altered. The result of Example 21-13 can be used here, 
which gives E0 = o-/e0. [Or we can note that, in the absence of the dielectric, 
E0 = V jd  = Q/C0d (since VQ = Q/Cq) = Q l^ A  (since C0 = e0A /d) which 
is the same result.] Thus

E° ~  €0>1 _  (8.85 X 10-12 C2/N ■ m2)(2.50 x  10“’ ,x _  ?'5° X 10  V^m'
(ie) In the dielectric the electric field is (Eq. 24-10)

E0 7.50 X 104 V/m 
K ~ 3.50

(j) To obtain the potential difference in the presence of the dielectric we use 
Eq. 23-4a, and integrate from the surface of one plate to the other along a 
straight line parallel to the field lines:

V = - J f i - d i  = Ea(d -  I) + EDl,

which can be simplified to

~2 m2)

En = = 2.14 X 104 V/m.

V = Er d ~ l + K

= (7.50 X 104 V/m)^1.00 X 10“3m + 

= 96.4 V.
(g) In the presence of the dielectric, the capacitance is 

1.66 X 10“8C

1.00 X 10~3m
3.50

= 172 pF.
96.4 V

NOTE If the dielectric filled the space between the plates, the answers to (J) and
.1 /*> nn



Summary
A capacitor is a device used to store charge (and electric 
energy), and consists of two nontouching conductors. The two 
conductors generally hold equal and opposite charges of magni­
tude Q. The ratio of this charge Q to the potential difference V  
between the conductors is called the capacitance, C:

c = ® or Q = CV. (24-1)

The capacitance of a parallel-plate capacitor is proportional 
to the area A  of each plate and inversely proportional to their 
separation d:

C = e0f  • (24-2)

When capacitors are connected in parallel, the equivalent 
capacitance is the sum of the individual capacitances:

Qq = C\ + C2 + (24-3)

When capacitors are connected in series, the reciprocal of 
the equivalent capacitance equals the sum of the reciprocals of 
the individual capacitances:

A charged capacitor stores an amount of electric energy 
given by

O2V = iQV = l e v 1 = (24-5)

This energy can be thought of as stored in the electric field 
between the plates. In any electric field E in free space the 
energy density u (energy per unit volume) is

u = §e0£ 2. (24-6)

The space between the conductors contains a noncon­
ducting material such as air, paper, or plastic. These materials 
are referred to as dielectrics, and the capacitance is proportional 
to a property of dielectrics called the dielectric constant, K  
(nearly equal to 1 for air). For a parallel-plate capacitor

C = K*0j -  = <ij- (24-8)

where e = K e0 is called the permittivity of the dielectric material. 
When a dielectric is present, the energy density is

u = lK<i0E2 = \ i E 2.

Questions
1. Suppose two nearby conductors carry the same negative 

charge. Can there be a potential difference between them? 
If so, can the definition of capacitance, C = Q/V, be used 
here?

2. Suppose the separation of plates d in a parallel-plate capac­
itor is not very small compared to the dimensions of the 
plates. Would you expect Eq. 24-2 to give an overestimate 
or underestimate of the true capacitance? Explain.

3. Suppose one of the plates of a parallel-plate capacitor was 
moved so that the area of overlap was reduced by half, 
but they are still parallel. How would this affect the 
capacitance?

4. When a battery is connected to a capacitor, why do the two 
plates acquire charges of the same magnitude? Will this be 
true if the two conductors are different sizes or shapes?

5. Describe a simple method of measuring e0 using a capacitor.
6. Suppose three identical capacitors are connected to a 

battery. Will they store more energy if connected in series or 
in parallel?

7. A large copper sheet of thickness I is placed between the 
parallel plates of a capacitor, but does not touch the plates. 
How will this affect the capacitance?

8. The parallel plates of an isolated capacitor carry opposite 
charges, Q. If the separation of the plates is increased, is a 
force required to do so? Is the potential difference changed? 
What happens to the work done in the pulling process?

9. How does the energy in a capacitor change if (a) the poten­
tial difference is doubled, (b) the charge on each plate is 
doubled, and (n} the senaration o f the nlates is doubled, as

10. If the voltage across a capacitor is doubled, the amount of 
energy it can store (a) doubles; (b) is halved; (c) is quadru­
pled; (d) is unaffected; (e) none of these.

11. An isolated charged capacitor has horizontal plates. If a thin 
dielectric is inserted a short way between the
plates, Fig. 24-19, will it move left or right 
when it is released? Dielectric

FIGURE 24-19
Question 11.

12. Suppose a battery remains connected to the capacitor in Ques­
tion 11. What then will happen when the dielectric is released?

13. How does the energy stored in a capacitor change when a 
dielectric is inserted if (a) the capacitor is isolated so Q does 
not change; (b) the capacitor remains connected to a battery 
so V  does not change?

14. For dielectrics consisting of polar molecules, how would you 
expect the dielectric constant to change with temperature?

15. A dielectric is pulled out from between the plates of a 
capacitor which remains connected to a battery. What 
changes occur to the capacitance, charge on the plates, 
potential difference, energy stored in the capacitor, and 
electric field?

16. We have seen that the capacitance C depends on the size, 
shape, and position of the two conductors, as well as on the 
dielectric constant K. What then did we mean when we said 
that C is a constant in Eq. 24-1?

17. W hat value mipht w e assign to the dielectric constant for a



| Problems
2 4 -1  Capacitors
1. (I) The two plates of a capacitor hold +2800/aC and 

—2800 /xC of charge, respectively, when the potential differ­
ence is 930 V. What is the capacitance?

2. (I) How much charge flows from a 12.0-V battery when it is 
connected to a 12.6-piF capacitor?

3. (I) The potential difference between two short sections of 
parallel wire in air is 24.0 V. They carry equal and opposite 
charge of magnitude 75 pC. What is the capacitance of the 
two wires?

4. (I) The charge on a capacitor increases by 26 /xC when the 
voltage across it increases from 28 V to 78 V. What is the 
capacitance of the capacitor?

5. (II) A 7.7-/xF capacitor is charged by a 125-V battery 
(Fig. 24-20a) and then is disconnected from the battery. 
When this capacitor (Q) is then connected (Fig. 24-20b) to 
a second (initially uncharged) capacitor, C2, the final 
voltage on each capacitor is 15 V. What is the value of C2? 
[Hint: Charge is conserved.]

(b)

FIGURE 24-20 Problems 5 and 48.

6. (II) An isolated capacitor Ct carries a charge Q0. Its wires 
are then connected to those of a second capacitor C2, previ­
ously uncharged. What charge will each carry now? What 
will be the potential difference across each?

7. (II) It takes 15 J of energy to move a 0.20-mC charge from 
one plate of a 15-jxF capacitor to the other. How much 
charge is on each plate?

8. (II) A 2.70-/zF capacitor is charged to 475 V and a 4.00-/zF 
capacitor is charged to 525 V. (a) These capacitors are then 
disconnected from their batteries, and the positive plates are 
now connected to each other and the negative plates 
are connected to each other. What will be the potential 
difference across each capacitor and the charge on each?
(b) What is the voltage and charge for each capacitor if 
plates of opposite sign are connected?

9. (II) Compact “ultracapacitors” with capacitance values up 
to several thousand farads are now commercially available. 
One application for ultracapacitors is in providing power for 
electrical circuits when other sources (such as a battery) are 
turned off. To get an idea of how much charge can be stored 
in such a component, assume a 1200-F ultracapacitor is 
initially charged to 12.0 V by a battery and is then discon­
nected from the battery. If charge is then drawn off the 
plates of this capacitor at a rate of l.OmC/s, say, to power 
the backup memory of some electrical gadget, how long (in 
days') will it take for the notential difference across this

10. (II) In a dynamic random access memory (DRAM)
computer chip, each memory cell chiefly consists of a capac­
itor for charge storage. Each of these cells represents a 
single binary-bit value of 1 when its 35-fF capacitor 
(l fF = 10-15 F) is charged at 1.5 V, or 0 when uncharged at
0 V. (a) When it is fully charged, how many excess electrons 
are on a cell capacitor’s negative plate? (b) After charge has 
been placed on a cell capacitor’s plate, it slowly “leaks” off 
(through a variety of mechanisms) at a constant rate of 
0.30 fC/s. How long does it take for the potential difference 
across this capacitor to decrease by 1 .0% from its fully 
charged value? (Because of this leakage effect, the charge on 
a DRAM capacitor is “refreshed” many times per second.)

2 4 -2  Determination of Capacitance
11. (I) To make a 0.40-/iF capacitor, what area must the plates 

have if they are to be separated by a 2 .8-mm air gap?
12. (I) What is the capacitance per unit length (F/m) of a 

coaxial cable whose inner conductor has a 1 .0-mm diameter 
and the outer cylindrical sheath has a 5.0-mm diameter? 
Assume the space between is filled with air.

13. (I) Determine the capacitance of the Earth, assuming it to 
be a spherical conductor.

14. (II) Use Gauss’s law to show that E = 0 inside the inner 
conductor of a cylindrical capacitor (see Fig. 24-6 and 
Example 24-2) as well as outside the outer cylinder.

15. (II) Dry air will break down if the electric field exceeds 
about 3.0 X 106 V/m. What amount of charge can be placed 
on a capacitor if the area of each plate is 6.8 cm2?

16. (II) An electric field of 4.80 X 105V/m is desired 
between two parallel plates, each of area 21.0  cm2 and 
separated by 0.250 cm of air. What charge must be on 
each plate?

17. (II) How strong is the electric field between the plates of a 
0.S0-fxF  air-gap capacitor if they are 2.0 mm apart and each 
has a charge of 92 fxC?

18. (II) A large metal sheet of thickness £ is placed 
between, and parallel to, the plates of the parallel-plate 
capacitor of Fig. 24-4. It does not touch the plates, 
and extends beyond their edges, (a) What is now the net 
capacitance in terms of A, d, and £1 (b) If £ = 0.40 d, by 
what factor does the capacitance change when the sheet is 
inserted?

19. (Ill) Small distances are commonly measured capacitively. 
Consider an air-filled parallel-plate capacitor with fixed plate 
area A  = 25 mm2 and a variable plate-separation distance x. 
Assume this capacitor is attached to a capacitance-measuring 
instrument which can measure capacitance C in the range
1.0 pF to 1000.0 pF with an accuracy of AC = 0.1 pF.
(a) If C is measured while x is varied, over what range 
(*min ^  x  < xmax) can the plate-separation distance (in /xm) 
be determined by this setup? (b) Define Ax to be the 
accuracy (magnitude) to which x can be determined, and deter­
mine a formula for Ax. (c) Determine the percent accuracy to



20. (Ill) In an electrostatic air cleaner (“precipitator”), the
strong nonuniform electric field in the central region of a 
cylindrical capacitor (with outer and inner cylindrical radii 
Ra and Rb) is used to create ionized air molecules for use 
in charging dust and soot particles (Fig. 24-21). Under 
standard atmospheric conditions, if air is subjected to an 
electric field magnitude that exceeds its dielectric strength 
Es = 2.7 X 106N/C, air molecules will dissociate into 
positively charged ions and free electrons. In a precipitator, 
the region within which air is ionized (the corona discharge 
region) occupies a cylindrical volume of radius R  that is 
typically five times that of the inner cylinder. Assume a 
particular precipitator is constructed with Rb = 0.10 mm 
and Ra = 10.0 cm. In order to create a corona discharge 
region with radius R = 5.0 Rb , what potential difference V 
should be applied between the precipitator’s inner and outer 
conducting cylinders? [Besides dissociating air, the charged 
inner cylinder repels the resulting positive ions from the 
corona discharge region, where they are put to use in 
charging dust particles, which are then “collected” on the 
negatively charged outer cylinder.]

FIGURE 24-21 Problem 20.

24-3 Capacitors in Series and Parallel
21. (I) The capacitance of a portion of a circuit is to be reduced 

from 2900 pF to 1600 pF. What capacitance can be added to 
the circuit to produce this effect without removing existing 
circuit elements? Must any existing connections be broken 
to accomplish this?

22. (I) (a) Six 3.8-/xF capacitors are connected in parallel. What 
is the equivalent capacitance? (b) What is their equivalent 
capacitance if connected in series?

23. (II) Given three capacitors, C1 = 2.0 juF, C2 = 1.5 /xF, and 
C3 = 3.0 fjF, what arrangement of parallel and series 
connections with a 12-V battery will give the minimum 
voltage drop across the 2.0-juF capacitor? What is the 
minimum voltage drop?
(II) Suppose three parallel-plate capacitors, whose plates 
have areas A 1,A 2, and A 3 and separations d i,d i,  and d3, 
are connected in parallel. Show, using only Eq. 24-2, that 
Eq. 24-3 is valid.
(II) An electric circuit was accidentally constructed using a
5.0-jnF capacitor instead of the required 16-jnF value. 
W ithout rem oving the 5 0-//F eanaeitor. what can a techni-

24,

25,

26. (II) Three conducting plates, each of area A, are connected 
as shown in Fig. 24-22. (a) Are the two capacitors thus 
formed connected in series or in parallel? (b) Determine C 
as a function of d i,d 2, and A. Assume d\ + d2 is much less 
than the dimensions of the plates, (c) The middle plate can 
be moved (changing the values of d1 and d2), so as to vary 
the capacitance. What are the minimum and maximum 
values of the net capacitance?

FIGURE 24-22
Problem 26.

27. (II) Consider three capacitors, of capacitance 3600 pF, 
5800 pF, and 0.0100 /jlF .  What maximum and minimum 
capacitance can you form from these? How do you make 
the connection in each case?

28. (II) A 0.50-/xF and a 0.80-/xF capacitor are connected in 
series to a 9.0-V battery. Calculate (a) the potential 
difference across each capacitor and (b) the charge on each,
(c) Repeat parts (a) and (b) assuming the two capacitors are 
in parallel.

29. (II) In Fig. 24-23, suppose
(a) Determine the equivalent 
capacitance between points a 
and b. (b) Determine the charge 
on each capacitor and the poten­
tial difference across each in 
terms of V.

Ci — Cn — Cq — Ca — C.

FIGURE 24-23
Problems 29 and 30.

30. (II) Suppose in Fig. 24-23 that C\ = C2 = C3 = 16.0 /jlF 
and C4 =  28.5 /jlF . If the charge on C2 is Q2 = 12.4 fiC , 
determine the charge on each of the other capacitors, the 
voltage across each capacitor, and the voltage Vab across the 
entire combination.

31. (II) The switch S in Fig. 24-24 is connected downward so 
that capacitor C2 becomes fully charged by the battery of 
voltage V0- If the switch is then
connected upward, determine the 
charge on each capacitor after 
the switching.

FIGURE 24-24



32. (II) (a) Determine the equivalent capacitance between 
points a and b for the combination of capacitors shown in 
Fig. 24-25. (b) Determine the charge on each capacitor and 
the voltage across each if Vba = V.

39. (Ill) Suppose one plate of a parallel-plate capacitor is tilted 
so it makes a small angle 6 with the other plate, as shown in

C2 C4

FIGURE 24-25 Problems 32 and 33.

33. (II) Suppose in Problem 32, Fig. 24-25, that Q  = C3 = 8.0 juF, 
C2 = C4 =  16 p F ,  and Q3 =  23 fxC. Determine (a) the 
charge on each of the other capacitors, (b) the voltage 
across each capacitor, and (c) the voltage Vba across the 
combination.

34. (II) Two capacitors connected in parallel produce an equiva­
lent capacitance of 35.0 /xF but when connected in series the 
equivalent capacitance is only 5.5 /xF. What is the individual 
capacitance of each capacitor?

35. (II) In the capacitance bridge shown in Fig. 24-26, a voltage 
V q  is applied and the variable capacitor Q  is adjusted until 
there is zero voltage between points a and b as measured on 
the voltmeter (•—(v)—•). Determine the unknown capaci­
tance Cx if Ci =  8.9 fxF and the fixed capacitors have 
C2 = 18.0 fiF and C3 = 4.8 fiF.
Assume no charge flows 
through the voltmeter.

FIGURE 24-26
Problem 35.

36. (II) Two capacitors, C\ = 3200 pF and C2 = 1800 pF, are 
connected in series to a 12.0-V battery. The capacitors are 
later disconnected from the battery and connected directly 
to each other, positive plate to positive plate, and negative 
plate to negative plate. What then will be the charge on each 
capacitor?

37. (II) (a) Determine the equivalent capacitance of the circuit 
shown in Fig. 24-27. (b) If Q  = C2 = 2C3 = 24.0/xF, 
how much charge is stored on each q  
capacitor when V = 35.0 V?

FIGURE 24-27
Problems 37,38, and 45.

Fig. 24-28. Determine a formula for 
the capacitance C in terms of A, d, and 
6, where A  is the area of each plate and 
6 is small. Assume the plates are 
square. [Hint: Imagine the capacitor as 
many infinitesimal capacitors in 
parallel.]

FIGURE 24-28
Problem 39.

40. (Ill) A voltage V is applied to the capacitor network shown 
in Fig. 24-29. (a) What is the equivalent capacitance? 
[Hint: Assume a potential difference Vab exists across the 
network as shown; write potential differences for various 
pathways through the network from a to b in terms 
of the charges on the
capacitors and the capac­
itances.] (b) Determine 
the equivalent capacitance 
if C2 = C4 = 8.0 ixF and 
Ci C3 = C5 4.5 /xF.

FIGURE 24-29
Problem 40.

38. (II) In Fig. 24-27, 
C.n =  4.00 11F . and

let Ci = 2.00 /xF, C2 = 3.00 /xF, 
V  =  7.4.0 V. W hat is the not.ent.ial

24-4 Electric Energy Storage
41. (I) 2200 V is applied to a 2800-pF capacitor. How much 

electric energy is stored?
42. (I) There is an electric field near the Earth’s surface whose 

intensity is about 150 V/m. How much energy is stored per 
cubic meter in this field?

43. (I) How much energy is stored by the electric field between 
two square plates, 8.0 cm on a side, separated by a 1.3-mm 
air gap? The charges on the plates are equal and opposite 
and of magnitude 420 /iC .

44. (II) A parallel-plate capacitor has fixed charges +Q and —Q. 
The separation of the plates is then tripled, (a) By what 
factor does the energy stored in the electric field change? 
(b) How much work must be done to increase the separation 
of the plates from d to 3.0dl The area of each plate is A.

45. (II) In Fig. 24-27, let V = 10.0 V and Cx = C2 = C3 = 22.6 jxF. 
How much energy is stored in the capacitor network?

46. (II) How much energy must a 28-V battery expend to 
charge a 0.45-/xF and a 0.20-juF capacitor fully when they 
are placed (a) in parallel, (b) in series? (c) How much 
charge flowed from the battery in each case?

47. (II) (a) Suppose the outer radius Ra of a cylindrical capacitor was 
tripled, but the charge was kept constant. By what factor would 
the stored energy change? Where would the energy come from? 
(b) Repeat part (a), assuming the voltage remains constant.

48. (II) A 2.20-/aF capacitor is charged by a 12.0-V battery. It is 
disconnected from the battery and then connected to an 
uncharged 3.50-juF capacitor (Fig. 24-20). Determine the total 
stored enerov (n\ before the two canacitors are connected, and



49. (II) How much work would be required to remove a 
metal sheet from between the plates of a capacitor (as in 
Problem 18a), assuming: (a) the battery remains connected so 
the voltage remains constant; (b) the battery is disconnected 
so the charge remains constant?

50. (II) (a) Show that each plate of a parallel-plate capacitor 
exerts a force

p  = i - t f  
2 e0A

on the other, by calculating dWIdx where dW  is the work 
needed to increase the separation by dx. (b) Why does using 
F = QE, with E  being the electric field between the plates, 
give the wrong answer?

51. (II) Show that the electrostatic energy stored in the electric 
field outside an isolated spherical conductor of radius r0 
carrying a net charge Q is

U = 1 Q2
87760 r0

Do this in three ways: (a) Use Eq. 24-6 for the energy 
density in an electric field [Hint: Consider spherical shells of 
thickness dr]', (b) use Eq. 24-5 together with the capacitance 
of an isolated sphere (Section 24-2); (c) by calculating the 
work needed to bring all the charge Q up from infinity in 
infinitesimal bits dq.

52. (II) When two capacitors are connected in parallel and then 
connected to a battery, the total stored energy is 5.0 times 
greater than when they are connected in series and then 
connected to the same battery. What is the ratio of the two 
capacitances? (Before the battery is connected in each case, 
the capacitors are fully discharged.)

53. (II) For commonly used CMOS (complementary metal 
oxide semiconductor) digital circuits, the charging of the 
component capacitors C to their working potential differ­
ence V  accounts for the major contribution of its energy 
input requirements. Thus, if a given logical operation 
requires such circuitry to charge its capacitors N  times, we 
can assume that the operation requires an energy of 
N($CV2). In the past 20 years, the capacitance in digital 
circuits has been reduced by a factor of about 20 and the 
voltage to which these capacitors are charged has been 
reduced from 5.0 V to 1.5 V. Also, present-day alkaline 
batteries hold about five times the energy of older batteries. 
Two present-day AA alkaline cells, each of which measures 
1 cm diameter by 4 cm long, can power the logic circuitry of 
a hand-held personal digital assistant (PDA) with its display 
turned off for about two months. If an attempt was made to 
construct a similar PDA (i.e., same digital capabilities so N  
remains constant) 20 years ago, how many (older) AA 
batteries would have been required to power its digital 
circuitry for two months? Would this PDA fit in a pocket or 
purse?

24-5 Dielectrics
54. (I) What is the capacitance of two square parallel plates

4.2 cm on a side that are separated by 1.8 mm of paraffin?
55. (II) Suppose the capacitor in Example 24-11 remains

rnrmerterl to the hatterv as the dielertrir. is removed. What

56. (II) How much energy would be stored in the capacitor of 
Problem 43 if a mica dielectric is placed between the plates? 
Assume the mica is 1.3 mm thick (and therefore fills the 
space between the plates).

57. (II) In the DRAM computer chip of Problem 10, the cell 
capacitor’s two conducting parallel plates are separated by a
2 .0-nm thick insulating material with dielectric constant 
K  = 25. (a) Determine the area A  (in /Lim2) of the cell 
capacitor’s plates. (b) In (older) “planar” designs, the capac­
itor was mounted on a silicon-wafer surface with its plates 
parallel to the plane of the wafer. Assuming the plate area 
A  accounts for half of the area of each cell, estimate how 
many megabytes of memory can be placed on a 3.0-cm2 
silicon wafer with the planar design? (1 byte = 8 bits.)

58. (II) A 3500-pF air-gap capacitor is connected to a 32-V 
battery. If a piece of mica fills the space between the plates, 
how much charge will flow from the battery?

59. (II) Two different dielectrics each fill half the space between 
the plates of a parallel-plate capacitor as shown in Fig. 24-30. 
Determine a formula for the capacitance in terms of K i,K 2, 
the area A  of the plates, and the separation d. [Hint. Can you 
consider this capacitor as two capacitors in series or in 
parallel?]

K■>
FIGURE 24-30
Problem 59.

60. (II) Two different dielectrics fill the space between the plates 
of a parallel-plate capacitor as shown in Fig. 24-31. Deter­
mine a formula for the capacitance in terms of K i ,K 2, the 
area A, of the plates, and the separation di = d2 = d/2. 
[Hint: Can you consider this capacitor as two capacitors in 
series or in parallel?]

> 1

d2
FIGURE 24-31
Problems 60 and 61.

61. (II) Repeat Problem 60 (Fig. 24-31) but assume the separa­
tion di d2.

62. (II) Two identical capacitors are connected in parallel and each 
acquires a charge Q0 when connected to a source of voltage V0. 
The voltage source is disconnected and then a dielectric 
(K = 3.2) is inserted to fill the space between the plates of 
one of the capacitors. Determine (a) the charge now on each 
capacitor, and (b) the voltage now across each capacitor.

63. (Ill) A slab of width d and dielectric constant K  is inserted 
a distance x into the space between the square parallel 
plates (of side £) of a capacitor as shown in Fig. 24-32. 
Determine, as a function of x, (a) the capacitance, (b) the 
energy stored if the potential difference is V0, and (c) the 
magnitude and direction of the force exerted on the slab 
(assume V0 is constant).

h t  H___________
i ■ ts
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64. (Ill) The quantity of liquid (such as cryogenic liquid 
nitrogen) available in its storage tank is often monitored by 
a capacitive level sensor. This sensor is a vertically aligned 
cylindrical capacitor with outer and inner conductor radii Ra 
and Rb, whose length £ spans the height of the tank. When a 
nonconducting liquid fills the tank to a height h (<  £) from 
the tank’s bottom, the dielectric in the lower and upper 
region between the cylindrical conductors is the liquid (^liq) 
and its vapor (-Kv), respectively (Fig. 24-33). (a) Determine 
a formula for the fraction F of the tank filled by liquid in 
terms of the level-sensor capacitance C. [Hint: Consider 
the sensor as a combination of two capacitors.] (b) By 
connecting a capacitance-measuring instrument to the level 
sensor, F can be monitored. Assume the sensor dimensions 
are £ = 2.0 m, Ra = 5.0 mm, and Rb = 4.5 mm. For 
liquid nitrogen ( K \ iq  = 1.4, K y  = 1.0), what values of C 
(in pF) will correspond to the tank being completely full 
and completely empty?

I t_ _13
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* 2 4 - 6  M olecular Description of Dielectrics
*65. (II) Show that the capacitor in Example 24-12 with 

dielectric inserted can be considered as equivalent to three 
capacitors in series, and using this assumption show that the 
same value for the capacitance is obtained as was obtained 
in part (g) of the Example.

*66. (II) Repeat Example 24-12 assuming the battery remains 
connected when the dielectric is inserted. Also, what is the 
free charge on the plates after the dielectric is added (let 
this be part (h) of this Problem)?

*67. (II) Using Example 24-12 as a model, derive a formula 
for the capacitance of a parallel-plate capacitor whose 
plates have area A, separation d, with a dielectric of dielec­
tric constant K  and thickness £ (£ < d) placed between 
the plates.

*68. (II) In Example 24-12 what percent of the stored energy is 
stored in the electric field in the dielectric?

*69. (Ill) The capacitor shown in Fig. 24-34 is connected to a
90.0-V battery. Calculate (and sketch) the electric field 
everywhere between the capacitor plates. Find both the free 
charge on the capacitor plate and the induced charge on the 
faces of the glass dielectric plate.

FIGURE 24-33
Problem 64.

FIGURE 24-34
Problem 69.

A = 1.45 m2
90.0 V  J __________________

a  -  5.00 mm Air

h -  2,00 mm! I cla“  *  = 5.80

General Problems__________
70. (a) A general rule for estimating the capacitance C of an 

isolated conducting sphere with radius r is C (in pF) «  r (in cm). 
That is, the numerical value of C in pF is about the same as 
the numerical value of the sphere’s radius in cm. Justify this 
rule. (b) Modeling the human body as a 1-m-radius 
conducting sphere, use the given rule to estimate your 
body’s capacitance. (c) While walking across a carpet, you 
acquire an excess “static electricity” charge Q and produce a 
0.5-cm spark when reaching out to touch a metallic door­
knob. The dielectric strength of air is 30kV/cm. Use this 
information to estimate Q (in fxC).

71. A cardiac defibrillator is used to shock a heart that is 
beating erratically. A capacitor in this device is charged to
7.5 kV and stores 1200 J of energy. What is its capacitance?

72. A homemade capacitor is assembled by placing two 9-in. pie 
pans 5.0 cm apart and connecting them to the opposite 
terminals of a 9-V battery. Estimate (a) the capacitance, 
(b) the charge on each plate, (c) the electric field halfway 
between the plates, and (d) the work done by the battery to 
charge the plates. (e) Which of the above values change if a 
dielectric is inserted?

73. An uncharged capacitor is connected to a 34.0-V battery 
until it is fully charged, after which it is disconnected 
from the battery. A slab of paraffin is then inserted 
between the plates. What will now be the voltage between 
the plates?

74. It takes 18.5 J of energy to move a 13.0-mC charge from one 
nlate o f a 17.0-u.F ranar.itnr to the other. H ow  rrmeh r.harae

75. A huge 3.0-F capacitor has enough stored energy to heat
3.5 kg of water from 22°C to 95°C. What is the potential 
difference across the plates?

76. A coaxial cable, Fig. 24-35, consists of an inner cylindrical 
conducting wire of radius Rb surrounded by a dielectric 
insulator. Surrounding the dielectric insulator is an outer 
conducting sheath of radius Ra, which is usually “grounded.”
(a) Determine an expression for the capacitance per unit 
length of a cable whose insulator has dielectric constant K.
(b) For a given cable, Rb = 2.5 mm and Ra = 9.0 mm. 
The dielectric constant of the dielectric insulator is K = 2.6. 
Suppose that there is a potential of 1.0 kV between the inner 
conducting wire and the outer conducting sheath. Find the 
capacitance per meter of the cable.

FIGURE 24-35
Problem 76.

77. The electric field between the plates of a paper-separated 
(K = 3.75) capacitor is 9.21 X 104V/m. The plates are 
1.95 mm apart and the charge on each plate is 0.675 /aC.
D eterm ine the r.anaritanr.e o f this r.anar.itor and the area of

Outer conducting sheath, radius fi3 
Dielectric

Radius Rb 
inner 

conductor



78. Capacitors can be used as “electric charge counters.” 
Consider an initially uncharged capacitor of capacitance C 
with its bottom plate grounded and its top plate connected 
to a source of electrons, (a) If N  electrons flow onto the 
capacitor’s top plate, show that the resulting potential 
difference V across the capacitor is directly proportional 
to N. (b) Assume the voltage-measuring device can 
accurately resolve voltage changes of about 1 mV. What 
value of C would be necessary to detect each new 
collected electron? (c) Using modern semiconductor 
technology, a micron-size capacitor can be constructed with 
parallel conducting plates separated by an insulating oxide 
of dielectric constant K = 3 and thickness d = 100 nm. 
To resolve the arrival of an individual electron on the plate 
of such a capacitor, determine the required value of 
i  (in pm) assuming square plates of side length L

79. A parallel-plate capacitor is isolated with a charge ± Q on 
each plate. If the separation of the plates is halved and a 
dielectric (constant K) is inserted in place of air, by what 
factor does the energy storage change? To what do you 
attribute the change in stored potential energy? How does 
the new value of the electric field between the plates 
compare with the original value?

80. In lightning storms, the potential difference between the 
Earth and the bottom of the thunderclouds can be as high 
as 35,000,000 V. The bottoms of thunderclouds are typically 
1500 m above the Earth, and may have an area of 
120 km2. Modeling the Earth-cloud system as a huge 
capacitor, calculate (a) the capacitance of the Earth-cloud 
system, (b) the charge stored in the “capacitor,” and (c) the 
energy stored in the “capacitor.”

81. A multilayer film capacitor has a maximum voltage rating 
of 100 V and a capacitance of 1.0 /iF. It is made from alter­
nating sheets of metal foil connected together, separated by 
films of polyester dielectric. The sheets are 12.0 mm by
14.0 mm and the total thickness of the capacitor is 6.0 mm 
(not counting the thickness of the insulator on the outside). 
The metal foil is actually a very thin layer of metal 
deposited directly on the dielectric, so most of the thickness 
of the capacitor is due to the dielectric. The dielectric 
strength of the polyester is about 30 X 106V/m. Estimate 
the dielectric constant of the polyester material in the 
capacitor.

82. A 3.5-/iF capacitor is charged by a 12.4-V battery and then 
is disconnected from the battery. When this capacitor (Ci) is 
then connected to a second (initially uncharged) capacitor, 
C2, the voltage on the first drops to 5.9 V. What is the value 
of C2?

83. The power supply for a pulsed nitrogen laser has a 0.080-jitF 
capacitor with a maximum voltage rating of 25 kV. (a) Esti­
mate how much energy could be stored in this capacitor. 
(b) If 15% of this stored electrical energy is converted to 
light energy in a pulse that is 4.0-jits long, what is the power 
of the laser pulse?

84. A parallel-plate capacitor has square plates 12 cm on a side 
separated by 0.10 mm of plastic with a dielectric constant of 
K  = 3.1. The plates are connected to a battery, causing them 
to become oppositely charged. Since the oppositely charged 
plates attract each other, they exert a pressure on the dielec­
tric. Tf this nressnre is 40.0 Pa. what is the hatterv voltage?

Y

85. The variable capacitance of an old radio tuner consists of four 
plates connected together placed alternately between four 
other plates, also connected together 
(Fig. 24-36). Each plate is separated 
from its neighbor by 1.6 mm of air.
One set of plates can move so that r— v  
the area of overlap of each plate I  r 
varies from 2.0 cm2 to 9.0 cm2.
(a) Are these seven capacitors 
connected in series or in parallel?
(b) Determine the range of capaci­
tance values. \ \

FIGURE 24-36
Problems 85 and 86.

86. A high-voltage supply can be constructed from a variable 
capacitor with interleaving plates which can be rotated as in 
Fig. 24-36. A version of this type of capacitor with more 
plates has a capacitance which can be varied from 10 pF to 
lpF. (a) Initially, this capacitor is charged by a 7500-V 
power supply when the capacitance is 8.0 pF. It is then 
disconnected from the power supply and the capacitance 
reduced to 1.0 pF by rotating the plates. What is the voltage 
across the capacitor now? (b) What is a major disadvantage 
of this as a high-voltage power supply?

87. A 175-pF capacitor is connected in series with an unknown 
capacitor, and as a series combination they are connected to 
a 25.0-V battery. If the 175-pF capacitor stores 125 pC of 
charge on its plates, what is the unknown capacitance?

88. A parallel-plate capacitor with plate area 2.0 cm2 and air- 
gap separation 0.50 mm is connected to a 12-V battery, and 
fully charged. The battery is then disconnected, (a) What is 
the charge on the capacitor? (b) The plates are now pulled 
to a separation of 0.75 mm. What is the charge on the capac­
itor now? (c) What is the potential difference across the 
plates now? (d) How much work was required to pull the 
plates to their new separation?

89. In the circuit shown in Fig. 24-37, C\ = 1.0 fxF, C2 = 2.0 fx¥, 
C3 = 2.4 juF, and a voltage Vab = 24 V is applied across 
points a and b. After C\ is fully charged the switch is thrown 
to the right. What is the final charge and potential difference 
on each capacitor?

FIGURE 24-37
Problem 89.

c  \  L l - r

90. The long cylindrical capacitor shown in Fig. 24-38 consists of 
four concentric cylinders, with respective radii Ra, Rb, Rc, 
and Rd. The cylinders b and c are joined by metal strips. 
Determine the capacitance per unit length of this 
arrangement. (Assume equal and opposite charges are placed 
on the innermost and 
outermost cylinders.)



91. A parallel-plate capacitor has plate area A, plate separation x, 
and has a charge Q stored on its plates (Fig. 24-39). Find 
the amount of work required to double the plate separation 
to 2x, assuming the charge remains constant at Q. Show that 
your answer is consistent with the change in energy stored 
by the capacitor. (Hint: See Example 24-10.)

a + e  A\  
+8 \

FIGURE 24-39 * j
Problem 91. ~Q ~Q

2x

92. Consider the use of capacitors as memory cells. A charged 
capacitor would represent a one and an uncharged capacitor 
a zero. Suppose these capacitors were fabricated on a silicon 
chip and each has a capacitance of 30 femto-farads 
(l fF = 10-15 F.) The dielectric filling the space between 
the parallel plates has dielectric constant K = 25 and a 
dielectric strength of 1.0 X 109V/m. (a) If the operating 
voltage is 1.5 V, how many electrons would be stored on one 
of these capacitors when charged? (b) If no safety factor is 
allowed, how thin a dielectric layer could we use for opera­
tion at 1.5 V? (c) Using the layer thickness from your answer 
to part (b), what would be the area of the capacitor plates?

93. To get an idea how big a farad is, suppose you want to make 
a 1-F air-filled parallel-plate capacitor for a circuit you are 
building. To make it a reasonable size, suppose you limit the 
plate area to 1.0 cm2. What would the gap have to be 
between the plates? Is this practically achievable?

94. A student wearing shoes with thin insulating soles is 
standing on a grounded metal floor when he puts his hand 
flat against the screen of a CRT computer monitor. The 
voltage inside the monitor screen, 6.3 mm from his hand, is 
25,000 V. The student’s hand and the monitor form a capac­
itor; the student is a conductor, and there is another capac­
itor between the floor and his feet. Using reasonable 
numbers for hand and foot areas, estimate the student’s voltage 
relative to the floor. Assume vinyl-soled shoes 1 cm thick.

95. A parallel-plate capacitor with plate area A  = 2.0 m2 and 
plate separation d = 3.0 mm is connected to a 45-V 
battery (Fig. 24-40a). (a) Determine the charge on the capac­
itor, the electric field, the capacitance, and the energy stored 
in the capacitor. (b) With the capacitor still connected to the 
battery, a slab of plastic with dielectric strength K = 3.2 is 
placed between the plates of the capacitor, so that the gap is 
completely filled with the dielectric. What are the new 
values of charge, electric field, capacitance, and the energy 
U stored in the capacitor?

A = 2.0 m2

(a)
t n
- i

_

45 V I d = 3.0 mm

FIGURE 24-40
Problem 95.

45 V 
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K = 3.2 3.0 mm

96. Let us try to estimate the maximum “static electricity” 
charge that might result during each walking step across an 
insulating floor. Assume the sole of a person’s shoe has area 
A  ~ 150 cm2, and when the foot is lifted from the ground 
during each step, the sole acquires an excess charge Q from 
rubbing contact with the floor, (a) Model the sole as a plane 
conducting surface with Q uniformly distributed across it as the 
foot is lifted from the ground. If the dielectric strength of the 
air between the sole and floor as the foot is lifted is 
E$ = 3 X 106N/C, determine Qmax, the maximum possible 
excess charge that can be transferred to the sole during each 
step. (b) Modeling a person as an isolated conducting sphere of 
radius r «  1 m, estimate a person’s capacitance, (c) After 
lifting the foot from the floor, assume the excess charge Q 
quickly redistributes itself over the entire surface area of the 
person. Estimate the maximum potential difference that the 
person can develop with respect to the floor.

97. Paper has a dielectric constant K  = 3.7 and a dielectric 
strength of 15 X 106V/m. Suppose that a typical sheet of 
paper has a thickness of 0.030 mm. You make a “homemade” 
capacitor by placing a sheet of 21 X 14 cm paper between 
two aluminum foil sheets (Fig. 24-41). The thickness of the 
aluminum foil is 0.040 mm. (a) What is the capacitance C0 of 
your device? (b) About how much charge could you store on 
your capacitor before it would break down? (c) Show in a 
sketch how you could overlay sheets of paper and aluminum 
for a parallel combination. If you made 100 such capacitors, 
and connected the edges of the sheets in parallel so that you 
have a single large capacitor of capacitance 100 Q , how thick 
would your new large capacitor be? (d) What is the maximum 
voltage you can apply to this 100 C0 capacitor without break­
down?

Aluminum
-V

Paper
FIGURE 24-41
Problem 97. Aluminum'

* Numerical/Computer
* 98. (II) Six physics students were each given an air filled capacitor.

Although the areas were different, the spacing between the 
plates, d, was the same for all six capacitors, but was 
unknown. Each student made a measurement of the area A  
and capacitance C of their capacitor. Below is a Table for 
their data. Using the combined data and a graphing 
program or spreadsheet, determine the spacing d between 
the plates.

Area (m2) Capacitance (pF)

0.01 90
0.03 250
0.04 340
0.06 450
0.09 800
0.12 1050

A nsw ers to Exercises

A: A. D: (e).
B: 8.3 X 10“ 9 C. E: (b).



The glow of the thin wire filament of a lightbulb is 
caused by the electric current passing through it. 
Electric energy is transformed to thermal energy (via 
collisions between moving electrons and atoms of the 
wire), which causes the wire’s temperature to become 
so high that it glows. Electric current and electric 
power in electric circuits are of basic importance in 
everyday life. We examine both dc and ac in this 
Chapter, and include the microscopic analysis of 
electric current.

Electric 
ft Currents 

and Resistance

T £

CHAPTER-OPENING QUESTION—Guess now!
The conductors shown are all made of copper and are at the same temperature. 
Which conductor would have the greatest resistance to the flow of charge entering 
from the left? Which would offer the least resistance?

Cumn i

Current

Current

C urrent

I n the previous four Chapters we have been studying static electricity: electric 
charges at rest. In this Chapter we begin our study of charges in motion, and 
we call a flow of charge an electric current.

In everyday life we are familiar with electric currents in wires and other 
conductors. Indeed, most practical electrical devices depend on electric current: 
current through a lightbulb, current in the heating element of a stove or electric 
heater, and currents in electronic devices. Electric currents can exist in conductors 
such as wires, and also in other devices such as the CRT of a television or computer
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FIGURE 25-1 Alessandro Volta. In 
this portrait, Volta exhibits his 
battery to Napoleon in 1801.

In electrostatic situations, we saw in Sections 21-9 and 22-3 that the electric 
field must be zero inside a conductor (if it weren’t, the charges would move). But 
when charges are moving in a conductor, there usually is an electric field in the 
conductor. Indeed, an electric field is needed to set charges into motion, and to 
keep them in motion in any normal conductor. We can control the flow of charge 
using electric fields and electric potential (voltage), concepts we have just been 
discussing. In order to have a current in a wire, a potential difference is needed, 
which can be provided by a battery.

We first look at electric current from a macroscopic point of view: that 
is, current as measured in a laboratory. Later in the Chapter we look at 
currents from a microscopic (theoretical) point of view as a flow of electrons in 
a wire.

Until the year 1800, the technical development of electricity consisted 
mainly of producing a static charge by friction. It all changed in 1800 when 
Alessandro Volta (1745-1827; Fig. 25-1) invented the electric battery, and 
with it produced the first steady flow of electric charge—that is, a steady 
electric current.

2 5 —1 The Electric Battery
The events that led to the discovery of the battery are interesting. For not only was 
this an important discovery, but it also gave rise to a famous scientific debate.

In the 1780s, Luigi Galvani (1737-1798), professor at the University of 
Bologna, carried out a series of experiments on the contraction of a frog’s leg 
muscle through electricity produced by static electricity. Galvani found that the 
muscle also contracted when dissimilar metals were inserted into the frog. Galvani 
believed that the source of the electric charge was in the frog muscle or nerve 
itself, and that the metal merely transmitted the charge to the proper points. 
When he published his work in 1791, he termed this charge “animal electricity.” 
Many wondered, including Galvani himself, if he had discovered the long-sought 
“life-force.”

Volta, at the University of Pavia 200 km away, was skeptical of Galvani’s 
results, and came to believe that the source of the electricity was not in the animal 
itself, but rather in the contact between the dissimilar metals. Volta realized that a 
moist conductor, such as a frog muscle or moisture at the contact point of two 
dissimilar metals, was necessary in the circuit if it was to be effective. He also saw 
that the contracting frog muscle was a sensitive instrument for detecting electric 
“tension” or “electromotive force” (his words for what we now call potential), 
in fact more sensitive than the best available electroscopes (Section 21-4) that he 
and others had developed. *

FIGURE 25-2 A voltaic battery Volta’s research found that certain combinations of metals produced a greater
from Volta’s original publication * effect than others, and, using his measurements, he listed them in order of

effectiveness. (This “electrochemical series” is still used by chemists today.) He 
also found that carbon could be used in place of one of the metals.

Volta then conceived his greatest contribution to science. Between a disc 
of zinc and one of silver, he placed a piece of cloth or paper soaked in salt 
solution or dilute acid and piled a “battery” of such couplings, one on top 
of another, as shown in Fig. 25-2. This “pile” or “battery” produced a much 
increased potential difference. Indeed, when strips of metal connected to 
the two ends of the pile were brought close, a spark was produced. Volta 
had designed and built the first electric battery; he published his discovery 
in 1800.

Volta’s most sensitive electroscope measured about 40 V per degree (angle of leaf separation).



A battery produces electricity by transforming chemical energy into electrical energy 
Today a great variety of electric cells and batteries are available, from flashlight 
batteries to the storage battery of a car. The simplest batteries contain two plates 
or rods made of dissimilar metals (one can be carbon) called electrodes. The 
electrodes are immersed in a solution, such as a dilute acid, called the electrolyte. 
Such a device is properly called an electric cell, and several cells connected 
together is a battery, although today even a single cell is called a battery. The 
chemical reactions involved in most electric cells are quite complicated. Here we 
describe how one very simple cell works, emphasizing the physical aspects.

The cell shown in Fig. 25-3 uses dilute sulfuric acid as the electrolyte. One of 
the electrodes is made of carbon, the other of zinc. That part of each electrode 
outside the solution is called the terminal, and connections to wires and circuits are 
made here. The acid tends to dissolve the zinc electrode. Each zinc atom leaves two 
electrons behind on the electrode and enters the solution as a positive ion. The zinc 
electrode thus acquires a negative charge. As the electrolyte becomes positively 
charged, electrons are pulled off the carbon electrode by the electrolyte. Thus the 
carbon electrode becomes positively charged. Because there is an opposite charge 
on the two electrodes, there is a potential difference between the two terminals.

In a cell whose terminals are not connected, only a small amount of the zinc is 
dissolved, for as the zinc electrode becomes increasingly negative, any new positive 
zinc ions produced are attracted back to the electrode. Thus, a particular potential 
difference (or voltage) is maintained between the two terminals. If charge is 
allowed to flow between the terminals, say, through a wire (or a lightbulb), then 
more zinc can be dissolved. After a time, one or the other electrode is used up and 
the cell becomes “dead.”

The voltage that exists between the terminals of a battery depends on what the 
electrodes are made of and their relative ability to be dissolved or give up electrons.

When two or more cells are connected so that the positive terminal of one is 
connected to the negative terminal of the next, they are said to be connected in 
series and their voltages add up. Thus, the voltage between the ends of two 1.5-V 
flashlight batteries connected in series is 3.0 V, whereas the six 2-V cells of an auto­
mobile storage battery give 12 V. Figure 25-4a shows a diagram of a common “dry 
cell” or “flashlight battery” used in portable radios and CD players, flashlights, etc., 
and Fig. 25-4b shows two smaller ones in series, connected to a flashlight bulb. A 
lightbulb consists of a thin, coiled wire (filament) inside an evacuated glass bulb, as 
shown in Fig. 25-5 and in the large photo opening this Chapter, page 651. The 
filament gets very hot (3000 K) and glows when charge passes through it.

Electric Cells and Batteries
Terminal Terminal

Carbon
electrode
(+)

Zinc
electrode
(-)

Sulfuric acid

FIGURE 2 5 -3  Simple electric cell.

FIGURE 2 5 -4  (a) Diagram of an ordinary dry cell (like a D-cell 
or AA). The cylindrical zinc cup is covered on the sides; its flat 
bottom is the negative terminal, (b) Two dry cells (AA type) 
connected in series. Note that the positive terminal of one cell 
pushes against the negative terminal of the other.

Insulation

Terminal

+ Term inal 
I top o f carhon 
electrode)

Electrolyte
|j;islc

Negative electrode 
(zinc cop)

*

FIGURE 2 5 -5  A  lightbulb: the fine wire of the 
filament becomes so hot that it glows. This type 
of lightbulb is called an incandescent bulb (as 
compared, say, to a fluorescent bulb).

Filament

Connecting .
wires

External 
connections
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FIG U R E 2 5 -6  (a) A simple electric 
circuit, (b) Schematic drawing of the 
same circuit, consisting of a battery, 
connecting wires (thick gray lines), 
and a lightbulb or other device.

A  CAUT I ON
A battery does not create charge; 

a lightbulb does not destroy charge

2 5 —2  Electric Current
The purpose of a battery is to produce a potential difference, which can then make 
charges move. When a continuous conducting path is connected between the 
terminals of a battery, we have an electric circuit, Fig. 25-6a. On any diagram of a 
circuit, as in Fig. 25-6b, we use the symbol

[battery symbol]

to represent a battery. The device connected to the battery could be a lightbulb, a 
heater, a radio, or whatever. When such a circuit is formed, charge can flow 
through the wires of the circuit, from one terminal of the battery to the other, as 
long as the conducting path is continuous. Any flow of charge such as this is called 
an electric current.

More precisely, the electric current in a wire is defined as the net amount of 
charge that passes through the wire’s full cross section at any point per unit time. 
Thus, the average current I  is defined as

I  = AG
At

(2 5 - la )

where AQ  is the amount of charge that passes through the conductor at any 
location during the time interval At. The instantaneous current is defined by the 
derivative limit

=
dt (2 5 - lb )

Electric current is measured in coulombs per second; this is given a special 
name, the ampere (abbreviated amp or A), after the French physicist Andre 
Ampere (1775-1836). Thus, 1 A = 1 C/s. Smaller units of current are often used, 
such as the milliampere (l mA = IO-3 A) and microampere (l fiA  = IO-6 A).

A current can flow in a circuit only if there is a continuous conducting path. 
We then have a com plete circuit. If there is a break in the circuit, say, a cut wire, 
we call it an open circuit and no current flows. In any single circuit, with only a 
single path for current to follow such as in Fig. 25-6b, a steady current at any 
instant is the same at one point (say, point A) as at any other point (such as B). 
This follows from the conservation of electric charge: charge doesn’t disappear. 
A battery does not create (or destroy) any net charge, nor does a lightbulb absorb 
or destroy charge.

EXAMPLE 25-1 Current is flow of charge. A steady current of 2.5 A exists 
in a wire for 4.0 min. (a) How much total charge passed by a given point in the 
circuit during those 4.0 min? (b) How many electrons would this be?

APPROACH Current is flow of charge per unit time, Eqs. 25-1, so the amount of 
charge passing a point is the product of the current and the time interval. To get the 
number of electrons (b), we divide the total charge by the charge on one electron. 
SOLUTION (a) Since the current was 2.5 A, or 2.5 C/s, then in 4.0 min (= 240 s) 
the total charge that flowed past a given point in the wire was, from Eq. 25- la ,

AQ = I  At = (2.5 C/s)(240 s) = 600 C.

(b) The charge on one electron is 1.60 X 10-19 C, so 600 C would consist of

600 C
1.60 X 10 19 C/electron

= 3.8 X 10Zi electrons.

EXERCISE A Tf 1 millinn electrons ner second nass a noint in a wire, what is the current



CONCEPTUAL EXAMPLE 25-2 | How to connect a battery. What is wrong with
each of the schemes shown in Fig. 25-7 for lighting a flashlight bulb with a flashlight 
battery and a single wire?
RESPONSE (a) There is no closed path for charge to flow around. Charges might 
briefly start to flow from the battery toward the lightbulb, but there they run into 
a “dead end,” and the flow would immediately come to a stop.
(b) Now there is a closed path passing to and from the lightbulb; but the wire 
touches only one battery terminal, so there is no potential difference in the 
circuit to make the charge move.
(c) Nothing is wrong here. This is a complete circuit: charge can flow out from 
one terminal of the battery, through the wire and the bulb, and into the other 
terminal. This scheme will light the bulb.

In many real circuits, wires are connected to a common conductor that 
provides continuity. This common conductor is called ground, usually represented 
as ^  or ^  , and really is connected to the ground in a building or house. In a car, 
one terminal of the battery is called “ground,” but is not connected to the 
ground—it is connected to the frame of the car, as is one connection to each light­
bulb and other devices. Thus the car frame is a conductor in each circuit, ensuring 
a continuous path for charge flow.

We saw in Chapter 21 that conductors contain many free electrons. Thus, if a 
continuous conducting wire is connected to the terminals of a battery, negatively 
charged electrons flow in the wire. When the wire is first connected, the potential 
difference between the terminals of the battery sets up an electric field inside the 
wire* and parallel to it. Free electrons at one end of the wire are attracted into the 
positive terminal, and at the same time other electrons leave the negative terminal 
of the battery and enter the wire at the other end. There is a continuous flow of 
electrons throughout the wire that begins as soon as the wire is connected to both 
terminals. However, when the conventions of positive and negative charge were 
invented two centuries ago, it was assumed that positive charge flowed in a wire. 
For nearly all purposes, positive charge flowing in one direction is exactly 
equivalent to negative charge flowing in the opposite direction,* as shown in 
Fig. 25-8. Today, we still use the historical convention of positive charge flow when 
discussing the direction of a current. So when we speak of the current direction in 
a circuit, we mean the direction positive charge would flow. This is sometimes 
referred to as conventional current. When we want to speak of the direction of 
electron flow, we will specifically state it is the electron current. In liquids and 
gases, both positive and negative charges (ions) can move.

2 5 -3  Ohm's Law: Resistance and Resistors
To produce an electric current in a circuit, a difference in potential is required. 
One way of producing a potential difference along a wire is to connect its ends to 
the opposite terminals of a battery. It was Georg Simon Ohm (1787-1854) who 
established experimentally that the current in a metal wire is proportional to the 
potential difference V  applied to its two ends:

I  oc V.
If, for example, we connect a wire to the two terminals of a 6-V battery, the current 
flow will be twice what it would be if the wire were connected to a 3-V battery. It is 
also found that reversing the sign of the voltage does not affect the magnitude of 
the current.

(a)

&

(1»

(c)

FIGURE 2 5 -7  Example 25-2.

FIGURE 2 5 -8  Conventional current 
from + to -  is equivalent to a 
negative electron flow from -  to +.

Conventional Electron
current flow

Electron current

trThis does not contradict what was said in Section 21-9 that in the static case, there can be no electric 
field within a conductor since otherwise the charges would move. Indeed, when there is an electric field
in a rnnrliirtnr r.harcrp.s rln mnvp and w s apt an pip.r.tric r.nrrp.nt



A useful analogy compares the flow of electric charge in a wire to the flow of 
water in a river, or in a pipe, acted on by gravity. If the river or pipe is nearly 
level, the flow rate is small. But if one end is somewhat higher than the other, the 
flow rate—or current—is greater. The greater the difference in height, the swifter 
the current. We saw in Chapter 23 that electric potential is analogous, in the 
gravitational case, to the height of a cliff. This applies in the present case to the 
height through which the fluid flows. Just as an increase in height can cause a 
greater flow of water, so a greater electric potential difference, or voltage, causes a 
greater electric current.

Exactly how large the current is in a wire depends not only on the voltage but 
also on the resistance the wire offers to the flow of electrons. The walls of a pipe, 
or the banks of a river and rocks in the middle, offer resistance to the water 
current. Similarly, electron flow is impeded because of interactions with the atoms 
of the wire. The higher this resistance, the less the current for a given voltage V. 
We then define electrical resistance so that the current is inversely proportional to 
the resistance: that is,

/ = \  (25-2a)

where R is the resistance of a wire or other device, V  is the potential difference 
applied across the wire or device, and I  is the current through it. Equation 25-2a is 
often written as

OHM’S “LAW’ V = IR. (25-2b)

(a)

(b)

FIGURE 2 5 -9  Graphs of current 
vs. voltage for (a) a metal conductor 
which obeys Ohm’s law, and (b) for 
a nonohmic device, in this case a 
semiconductor diode.

As mentioned above, Ohm found experimentally that in metal conductors R is a 
constant independent of V, a result known as Ohm’s law. Equation 25-2b,
V = IR, is itself sometimes called Ohm’s law, but only when referring to materials or 
devices for which R is a constant independent of V. But R is not a constant for many 
substances other than metals, nor for devices such as diodes, vacuum tubes, 
transistors, and so on. Even for metals, R is not constant if the temperature changes 
much: for a lightbulb filament the measured resistance is low for small currents, but is 
much higher at its normal large operating current that puts it at the high temperature 
needed to make it glow (3000 K). Thus Ohm’s “law” is not a fundamental law, but 
rather a description of a certain class of materials: metal conductors, whose 
temperature does not change much. Materials or devices that do not follow Ohm’s 
law (R = constant) are said to be nonohmic. See Fig. 25-9.

The unit for resistance is called the ohm and is abbreviated O (Greek 
capital letter omega). Because R = V /I , we see that 1.0 ft is equivalent to
1.0 V/A.

FIGURE 2 5 -1 0  Example 25-3.

— •— vw v— •—
A R  B

CONCEPTUAL EXAMPLE 2 T T 1  Current and potential. Current I  enters a 
resistor R as shown in Fig. 25-10. (a) Is the potential higher at point A or at point B? 
(b) Is the current greater at point A or at point B?
RESPONSE (a) Positive charge always flows from + to —, from high potential to 
low potential. Think again of the gravitational analogy: a mass will fall down from 
high gravitational potential to low. So for positive current I, point A is at a higher 
potential than point B.
(b) Conservation of charge requires that whatever charge flows into the resistor 
at point A, an equal amount of charge emerges at point B. Charge or current 
does not get “used up” by a resistor, just as an object that falls through a gravita­
tional potential difference does not gain or lose mass. So the current is the same 
at A and B.

An electric potential decrease, as from Doint A to point B in Example 25-3. is



EXAMPLE 25-4 Flashlight bulb resistance. A small flashlight bulb 
(Fig. 25-11) draws 300 mA from its 1.5-V battery, (a) What is the resistance of 
the bulb? (b) If the battery becomes weak and the voltage drops to 1.2 V, how 
would the current change?

APPROACH We can apply Ohm’s law to the bulb, where the voltage applied 
across it is the battery voltage.
SOLUTION (a) We change 300 mA to 0.30 A and use Eq. 25-2a or b:

V 1.5 V 
IR = — = =  5.o a

0.30 A
(b) If the resistance stays the same, the current would be

1.2 V
= 0.24 A = 240 mA,

or a decrease of 60 mA.
NOTE With the smaller current in part (b), the bulb filament’s temperature 
would be lower and the bulb less bright. Also, resistance does depend on temper­
ature (Section 25-4), so our calculation is only a rough approximation.

EXERCISE B What resistance should be connected across a 9.0-V battery to make a 10-mA 
current? (a) 9 n , (b) 0.9 H, (c) 900 O, (d) 1.1O, (e) 0.110.

All electric devices, from heaters to lightbulbs to stereo amplifiers, offer 
resistance to the flow of current. The filaments of lightbulbs (Fig. 25-5) and electric 
heaters are special types of wires whose resistance results in their becoming very 
hot. Generally, the connecting wires have very low resistance in comparison to the 
resistance of the wire filaments or coils, so the connecting wires usually have a minimal 
effect on the magnitude of the current. In many circuits, particularly in electronic 
devices, resistors are used to control the amount of current. Resistors have resistances 
ranging from less than an ohm to millions of ohms (see Figs. 25-12 and 25-13). The 
main types are “wire-wound” resistors which consist of a coil of fine wire, “composition” 
resistors which are usually made of carbon, and thin carbon or metal films.

When we draw a diagram of a circuit, we use the symbol

J W \ r [resistor symbol]

to indicate a resistance. Wires whose resistance is negligible, however, are shown 
simply as straight lines.

Resistor Color Code

Color Number Multiplier Tolerance

Black 0 1
Brown 1 101 1 %
Red 2 102 2%
Orange 3 103
Yellow 4 104
Green 5 105
Blue 6 106
Violet 7 107
Gray 8 108
White 9 109
Gold 10-1 5%
Silver 10“2 10%

15  V

i i

off

FIGURE 25-11 Flashlight 
(Example 25-4). Note how the circuit 
is completed along the side strip.

First digit 
Sccond digit 
Multiplier 
Tolerancc

T
FIGURE 25-13 The resistance value of a given resistor 
is written on the exterior, or may be given as a color code 
as shown above and in the Table: the first two colors 
represent the first two digits in the value of the resistance, 
the third color represents the power of ten that it must be 
multiplied by, and the fourth is the manufactured 
tolerance. For example, a resistor whose four colors are 
red, green, yellow, and silver has a resistance of 
25 X 104X1 = 250,000 fi = 250 m , plus or minus 10%. 
An alternate examnle of a simnle code is a number such

FIGURE 25-12 Photo of resistors 
(striped), plus other devices on a 
circuit board.



/j\ CAUTION__________
Voltage is applied across a device; 

current passes through a device

/ j \  CAUTI ON
Current is not consumed

Here we briefly summarize some possible misunderstandings and clarifications. Batteries 
do not put out a constant current. Instead, batteries are intended to maintain a constant 
potential difference, or very nearly so. (Details in the next Chapter.) Thus a battery 
should be considered a source of voltage. The voltage is applied across a wire or device.

Electric current passes through a wire or device (connected to a battery), and 
its magnitude depends on that device’s resistance. The resistance is a property of 
the wire or device. The voltage, on the other hand, is external to the wire or device, 
and is applied across the two ends of the wire or device. The current through the 
device might be called the “response”: the current increases if the voltage 
increases or the resistance decreases, as I  = V/R.

In a wire, the direction of the current is always parallel to the wire, no matter 
how the wire curves, just like water in a pipe. Ilie direction of conventional 
(positive) current is from high potential ( + ) toward lower potential ( - ) .

Current and charge do not increase or decrease or get “used up” when going 
through a wire or other device. The amount of charge that goes in at one end 
comes out at the other end.

25—4  Resistivity
It is found experimentally that the resistance R of any wire is directly proportional 
to its length i  and inversely proportional to its cross-sectional area A. That is,

R  =  P - J ’ (25-3)

where p, the constant of proportionality, is called the resistivity and depends on the 
material used. Typical values of p, whose units are ft • m (see Eq. 25-3), are given for 
various materials in the middle column of Table 25-1, which is divided into the 
categories conductors, insulators, and semiconductors (see Section 21-3). The values 
depend somewhat on purity, heat treatment, temperature, and other factors. Notice 
that silver has the lowest resistivity and is thus the best conductor (although it is 
expensive). Copper is close, and much less expensive, which is why most wires are 
made of copper. Aluminum, although it has a higher resistivity, is much less dense than 
copper; it is thus preferable to copper in some situations, such as for transmission 
lines, because its resistance for the same weight is less than that for copper.

TABLE 25-1 Resistivity and Temperature Coefficients (at 20°c)

Resistivity, Temperature
Material p  ( f t  • m) Coefficient, a  (C °)-1

Some Helpful Clarifications

Conductors
Silver 1.59 X 10“8 0.0061
Copper 1.68 X 10“8 0.0068
Gold 2.44 X 10“8 0.0034
Aluminum 2.65 X 1(T8 0.00429
Tungsten 5.6 X 10“8 0.0045
Iron 9.71 X 10“8 0.00651
Platinum 10.6 X 10“8 0.003927
Mercury 98 X 10“8 0.0009
Nichrome (Ni, Fe, Cr alloy) 100 X 10“8 0.0004

Semiconductorst
Carbon (graphite) (3 -6 0 )  X 10“5 -0.0005
Germanium (1 -500) X 10“3 -0.05
Silicon 0.1-60 -0 .07

Insulators
Glass 109-1 0 12



The reciprocal of the resistivity, called the conductivity cr, is

o- = -  (25-4)
P
and has units of (O-m)-1.

EXERCISE C Return to the Chapter-Opening Question, page 651, and answer it again now. 
Try to explain why you may have answered differently the first time.

EXERCISE D A copper wire has a resistance of 10 ft. What will its resistance be if it is only 
half as long? (a) 20 ft, (b) 10 ft, (c) 5 ft, (d) 1 ft, (e) none of these.

EXAMPLE 25-5 Speaker wires. Suppose you want to connect your stereo to 
remote speakers (Fig. 25-14). (a) If each wire must be 20 m long, what diameter 
copper wire should you use to keep the resistance less than 0 .10 0  per wire?
(b) If the current to each speaker is 4.0 A, what is the potential difference, or 
voltage drop, across each wire?
APPROACH We solve Eq. 25-3 to get the area A, from which we can calculate 
the wire’s radius using A  = irr2. The diameter is 2r. In (b) we can use Ohm’s 
law, V = IR.
SOLUTION (a) We solve Eq. 25-3 for the area A  and find p for copper in Table 25-1:

£ (1.68 X 10_8fl-m)(20m) , „
A  = p -  = ± A------ - = 3.4 X 10 m .

h R (0.10 ft)
The cross-sectional area A  of a circular wire is A  =  t t y2. The radius must then 
be at least

Iar = J — = 1.04 X 10 3m = 1.04mm.V TT
The diameter is twice the radius and so must be at least 2r  =  2.1 mm. FIGURE 25 14 Example 25-5.
(b) From V = IR we find that the voltage drop across each wire is

V = IR = (4.0 A) (0.100) = 0.40 V.
NOTE The voltage drop across the wires reduces the voltage that reaches the 
speakers from the stereo amplifier, thus reducing the sound level a bit.

CONCEPTUAL EXAMPLE 25-61 Stretching changes resistance. Suppose a
wire of resistance R could be stretched uniformly until it was twice its original length. 
What would happen to its resistance?
RESPONSE If the length I doubles, then the cross-sectional area A  is halved, 
because the volume (V = AH) of the wire remains the same. From Eq. 25-3 we 
see that the resistance would increase by a factor of four (2 /\ = 4).

I EXERCISE E Copper wires in houses typically have a diameter of about 1.5 mm. How long 
I a wire would have a 1.0-ft resistance?

Temperature Dependence of Resistivity
The resistivity of a material depends somewhat on temperature. The resistance of 
metals generally increases with temperature. This is not surprising, for at higher 
temperatures, the atoms are moving more rapidly and are arranged in a less 
orderly fashion. So they might be expected to interfere more with the flow of 
electrons. If the temperature change is not too great, the resistivity of metals 
usually increases nearly linearly with temperature. That is,

P r  =  Po[ l +  a(T -  T0)] (25-5)
where p0 is the resistivity at some reference temperature T0 (such as 0°C or 20°C), 
pT is the resistivity at a temperature T, and a is the temperature coefficient o f 
resistivity. Values for a are given in Table 25-1. Note that the temperature coefficient 
for semiconductors can be negative. Whv? It seems that at higher temperatures.
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Resistance thermometer

FIGURE 25-15 A thermistor shown 
next to a millimeter ruler for scale.

FIGURE 25-16 Hot electric stove 
burner glows because of energy 
transformed by electric current.

EXAMPLE 25-7 Resistance thermometer. The variation in electrical resistance 
with temperature can be used to make precise temperature measurements. 
Platinum is commonly used since it is relatively free from corrosive effects and 
has a high melting point. Suppose at 20.0°C the resistance of a platinum 
resistance thermometer is 164.2 ft. When placed in a particular solution, the 
resistance is 187.4 ft. What is the temperature of this solution?
APPROACH Since the resistance R is directly proportional to the resistivity p, we 
can combine Eq. 25-3 with Eq. 25-5 to find R as a function of temperature T, 
and then solve that equation for T.
SOLUTION We multiply Eq. 25-5 by (l/A )  to obtain (see also Eq. 25-3)

R = i?0[l + a(T -  ZJ)].
Here R0 = p0£/A  is the resistance of the wire at T0 = 20.0°C. We solve this 
equation for T  and find (see Table 25-1 for a)

T = Tn
aRc

20.0°C
187.4 ft -  164.2 ft

= 56.0°C.
(3.927 X 10-3(C°)-1)(164.2 ft)

NOTE Resistance thermometers have the advantage that they can be used at very 
high or low temperatures where gas or liquid thermometers would be useless. 
NOTE More convenient for some applications is a thermistor (Fig. 25-15), which 
consists of a metal oxide or semiconductor whose resistance also varies in a 
repeatable way with temperature. Thermistors can be made quite small and 
respond very quickly to temperature changes.

EXERCISE F The resistance of the tungsten filament of a common incandescent lightbulb 
is how many times greater at its operating temperature of 3000 K than its resistance at 
room temperature? (a) Less than 1% greater; (b) roughly 10% greater; (c) about 2 times 
greater; (d) roughly 10 times greater; (e) more than 100 times greater.

The value of a in Eq. 25-5 itself can depend on temperature, so it is important 
to check the temperature range of validity of any value (say, in a handbook of 
physical data). If the temperature range is wide, Eq. 25-5 is not adequate and 
terms proportional to the square and cube of the temperature are needed, but they 
are generally very small except when T — T0 is large.

2 5 -5  Electric Power
Electric energy is useful to us because it can be easily transformed into other 
forms of energy. Motors transform electric energy into mechanical energy, and are 
examined in Chapter 27.

In other devices such as electric heaters, stoves, toasters, and hair dryers, 
electric energy is transformed into thermal energy in a wire resistance known as a 
“heating element.” And in an ordinary lightbulb, the tiny wire filament (Fig. 25-5 
and Chapter-opening photo) becomes so hot it glows; only a few percent of the 
energy is transformed into visible light, and the rest, over 90%, into thermal energy. 
Lightbulb filaments and heating elements (Fig. 25-16) in household appliances 
have resistances typically of a few ohms to a few hundred ohms.

Electric energy is transformed into thermal energy or light in such devices, and 
there are many collisions between the moving electrons and the atoms of the wire. 
In each collision, part of the electron’s kinetic energy is transferred to the atom 
with which it collides. As a result, the kinetic energy of the wire’s atoms increases 
and hence the temperature of the wire element increases. The increased thermal 
energy can be transferred as heat by conduction and convection to the air in a 
heater or to food in a pan, by radiation to bread in a toaster, or radiated as light.

To find the power transformed by an electric device, recall that the energy 
transformed when an infinitesimal charge da moves through a Dotential difference V



to move through a potential difference V. Then the power P, which is the rate 
energy is transformed, is

dt dt
The charge that flows per second, dq/dt, is the electric current I. Thus we have

P = IV. (25-6)
This general relation gives us the power transformed by any device, where I  is the 
current passing through it and V  is the potential difference across it. It also gives 
the power delivered by a source such as a battery. The SI unit of electric power is 
the same as for any kind of power, the watt (1W = 1 J/s).

The rate of energy transformation in a resistance R can be written in two other 
ways, starting with the general relation P = IV  and substituting in V = IR :

P = IV  = I(IR) = I 2R (25-7a)

F - ‘v -  { l ) v  - T  ®-7bl
Equations 25-7a and b apply only to resistors, whereas Eq. 25-6, P = IV, is 
more general and applies to any device, including a resistor.

EXAMPLE 25-8 Headlights. Calculate the resistance of a 40-W automobile 
headlight designed for 12 V (Fig. 25-17).
APPROACH We solve Eq. 25-7b for R.
SOLUTION From Eq. 25-7b,

V 2 (12 V )2

*  -  T  =  W )  " 3-6 a
NOTE This is the resistance when the bulb is burning brightly at 40 W. When the 
bulb is cold, the resistance is much lower, as we saw in Eq. 25-5. Since the 
current is high when the resistance is low, lightbulbs burn out most often when 
first turned on.

It is energy, not power, that you pay for on your electric bill. Since power is the 
rate energy is transformed, the total energy used by any device is simply its power 
consumption multiplied by the time it is on. If the power is in watts and the time is 
in seconds, the energy will be in joules since 1W = 1 J/s. Electric companies 
usually specify the energy with a much larger unit, the kilowatt-hour (kWh). 
One kWh = (1000 W) (3600 s) = 3.60 X 106J.

EXAMPLE 25-9 Electric heater. An electric heater draws a steady 15.0 A on 
a 120-V line. How much power does it require and how much does it cost per 
month (30 days) if it operates 3.0 h per day and the electric company charges
9.2 cents per kWh?
APPROACH We use Eq. 25-6, P = IV, to find the power. We multiply the 
power (in kW) by the time (h) used in a month and by the cost per energy unit, 
$0,092 per kWh, to get the cost per month.
SOLUTION The power is

P = IV  = (15.0 A) (120 V) = 1800 W
or 1.80kW. The time (in hours) the heater is used per month is (3.0 h/d) (30 d) = 90 h, 
which at 9.2^/kWh would cost (1.80kW)(90h)($0.092/kWh) = $15.
NOTE Household current is actually alternating (ac), but our solution is still valid 
assuming the given values for V  and I  are the proper averages (rms) as we

FIGURE 25-17 Example 25-8.

0 P H Y S I C S  A P P L I E D
Why lightbulbs bum  out when 
first turned on

/9\ CAUTION________
You pay for energy, which 
is power X time, not for power
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Lightning

FIGURE 25-18 Example 25-10. 
A lightning bolt.

(^ P H Y S I C S  A P P L I E D
Safety—wires getting hot

FIGURE 25-19 (a) Fuses. When the 
current exceeds a certain value, the 
metallic ribbon melts and the circuit 
opens. Then the fuse must be 
replaced, (b) One type of circuit 
breaker. The electric current passes 
through a bimetallic strip. When the 
current exceeds a safe level, the 
heating of the bimetallic strip causes 
the strip to bend so far to the left that 
the notch in the spring-loaded metal 
strip drops down over the end of the 
bimetallic strip; (c) the circuit then 
opens at the contact points (one is 
attached to the metal strip) and the 
outside switch is also flipped. As soon 
as the bimetallic strip cools down, it 
can be reset using the outside switch.
Maorip.tir-tvnp. rirrnit hrp.akprs are

EXAMPLE 25-10 ESTIMATE"! Lightning bolt. Lightning is a spectacular 
example of electric current in a natural phenomenon (Fig. 25-18). There is much 
variability to lightning bolts, but a typical event can transfer 109 J of energy across 
a potential difference of perhaps 5 X 107 V during a time interval of about 0.2 s. 
Use this information to estimate (a) the total amount of charge transferred 
between cloud and ground, (b) the current in the lightning bolt, and (c) the 
average power delivered over the 0.2 s.

APPROACH We estimate the charge Q, recalling that potential energy change 
equals the potential difference AV  times the charge Q, Eq. 23-3. We equate AU  
with the energy transferred, AU  ~ 109 J. Next, the current I  is Q /t (Eq. 25-la) 
and the power P  is energy/time.
SOLUTION (a) From Eq. 23-3, the energy transformed is A U = Q AV. We solve 
for Q:

AU  109J _  t t
Q = —— «  -----  = 20 coulombs.

Ay 5 X 107V

(b) The current during the 0.2 s is about

Q 20 C 
/  = — «  = 100A. 

t 0.2 s

(c) The average power delivered is

energy 109 J 
P = . = = 5 X 109W = 5 GW.

time 0.2 s

We can also use Eq. 25-6:

P  = IV  = (100A)(5 X 10 7v )  = 5 GW.

NOTE Since most lightning bolts consist of several stages, it is possible that 
individual parts could carry currents much higher than the 100 A calculated above.

2 5 —6 Power in Household Circuits
The electric wires that carry electricity to lights and other electric appliances 
have some resistance, although usually it is quite small. Nonetheless, if the 
current is large enough, the wires will heat up and produce thermal energy at a 
rate equal to I 2R, where R  is the wire’s resistance. One possible hazard is that 
the current-carrying wires in the wall of a building may become so hot as to start 
a fire. Thicker wires have less resistance (see Eq. 25-3) and thus can carry more 
current without becoming too hot. When a wire carries more current than is 
safe, it is said to be “overloaded.” To prevent overloading, fuses or circuit 
breakers are installed in circuits. They are basically switches (Fig. 25-19)

Compressed 
spring \ __

Outside vB P  I" 
switch

Bimetallic
Mlrip

Contact
points CnntaeLs npen

Metal 
strip

To electric 
circuit

i I Tvrv»s ill' rirniil hnviLi>r



that open the circuit when the current exceeds some particular value. A 20-A 
fuse or circuit breaker, for example, opens when the current passing through it 
exceeds 20 A. If a circuit repeatedly burns out a fuse or opens a circuit breaker, 
there are two possibilities: there may be too many devices drawing current 
in that circuit; or there is a fault somewhere, such as a “short.” A short, or 
“short circuit,” means that two wires have touched that should not have 
(perhaps because the insulation has worn through) so the resistance is much 
reduced and the current becomes very large. Short circuits should be 
remedied immediately.

Household circuits are designed with the various devices connected so 
that each receives the standard voltage (usually 120 V in the United States) 
from the electric company (Fig. 25-20). Circuits with the devices arranged as 
in Fig. 25-20 are called parallel circuits, as we will discuss in the next Chapter. 
When a fuse blows or circuit breaker opens, it is important to check the 
total current being drawn on that circuit, which is the sum of the currents in 
each device.

0 P H Y S I C S  A P P L I E D
Fuses and circuit breakers

EXAMPLE 25-11 Will a fuse blow? Determine the total current drawn by all 
the devices in the circuit of Fig. 25-20.

APPROACH Each device has the same 120-V voltage across it. The current each 
draws from the source is found from I  = P /V , Eq. 25-6.
SOLUTION The circuit in Fig. 25-20 draws the following currents: the lightbulb draws 
I  = P /V  = 100 W/120 V = 0.8 A; the heater draws 1800W/120V = 15.0 A; 
the stereo draws a maximum of 350 W/120 V = 2.9 A; and the hair dryer draws 
1200 W/120 V = 10.0 A. The total current drawn, if all devices are used at the 
same time, is

0.8 A + 15.0 A + 2.9 A + 10.0 A = 28.7 A.

NOTE The heater draws as much current as 18 100-W lightbulbs. For safety, the 
heater should probably be on a circuit by itself.

FIGURE 25-20 Connection of 
household appliances.

If the circuit in Fig. 25-20 is designed for a 20-A fuse, the fuse should blow, 
and we hope it will, to prevent overloaded wires from getting hot enough to start a 
fire. Something will have to be turned off to get this circuit below 20 A. (Houses 
and apartments usually have several circuits, each with its own fuse or circuit 
breaker; try moving one of the devices to another circuit.) If the circuit is designed 
with heavier wire and a 30-A fuse, the fuse shouldn’t blow—if it does, a short may 
be the problem. (The most likely place for a short is in the cord of one of the 
devices.) Proper fuse size is selected according to the wire used to supply the 
current. A properly rated fuse should never be replaced by a higher-rated one. A 
fuse blowing or a circuit breaker opening is acting like a switch, making an “open 
circuit.” By an open circuit, we mean that there is no longer a complete conducting 
path, so no current can flow; it is as if R = oo.

0 P H Y S I C S  A P P L I E D
Proper fuses and shorts

CONCEPTUAL EXAMPLE 25-12 I A dangerous extension cord. Your 1800-W
portable electric heater is too far from your desk to warm your feet. Its cord 
is too short, so you plug it into an extension cord rated at 11 A. Why is this 
dangerous?

RESPONSE 1800 W at 120 V draws a 15-A current. The wires in the extension 
cord rated at 1 1 A could become hot enough to melt the insulation and cause 
a fire.

0 P H Y S I C S  A P P L I E D
Extension cords and possible danger

Fuse or
circuit
breaker

12(1 V
(t'nxii electric uuiTlpuhy)

Hiiir ilryer 
1200 W

Switch
L ieh thu lb  
J00 W

I EXERCISE G How many 60-W 120-V lightbulbs can operate on a 20-A line? (a) 2; (b) 3;
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Time 
(a) DC

FIGURE 25-21 (a) Direct current, 
(b) Alternating current.

FIGURE 2 5 -2 2  Power transformed 
in a resistor in an ac circuit.

2 5 —7 Alternating Current
When a battery is connected to a circuit, the current moves steadily in one 
direction. This is called a direct current, or dc. Electric generators at electric power 
plants, however, produce alternating current, or ac. (Sometimes capital letters are 
used, DC and AC.) An alternating current reverses direction many times per 
second and is commonly sinusoidal, as shown in Fig. 25-21. The electrons in a wire 
first move in one direction and then in the other. The current supplied to homes 
and businesses by electric companies is ac throughout virtually the entire world. 
We will discuss and analyze ac circuits in detail in Chapter 30. But because ac 
circuits are so common in real life, we will discuss some of their basic aspects here.

The voltage produced by an ac electric generator is sinusoidal, as we shall see 
later. The current it produces is thus sinusoidal (Fig. 25-21b). We can write the 
voltage as a function of time as

V = V0sin2irft = VQ sin cot.
The potential V  oscillates between +V0 and —VQ, and is referred to as the peak 
voltage. The frequency /  is the number of complete oscillations made per second, 
and co = 2irf. In most areas of the United States and Canada,/is 60 Hz (the unit 
“hertz,” as we saw in Chapters 10 and 14, means cycles per second). In many other 
countries, 50 Hz is used.

Equation 25-2, V = IR, works also for ac: if a voltage V  exists across a 
resistance R, then the current I  through the resistance is

' - 5
— sin cot 
R

= L  sin cot. (25-8)

The quantity I0 = V jR  is the peak current. The current is considered positive 
when the electrons flow in one direction and negative when they flow in the 
opposite direction. It is clear from Fig. 25-21b that an alternating current is as 
often positive as it is negative. Thus, the average current is zero. This does not 
mean, however, that no power is needed or that no heat is produced in a resistor. 
Electrons do move back and forth, and do produce heat. Indeed, the power 
transformed in a resistance R at any instant is

P = I 2R = I q R sin2 cot.
Because the current is squared, we see that the power is always positive, as 
graphed in Fig. 25-22. The quantity sin2 cot varies between 0 and 1; and it is not too 
difficult to show1- that its average value is as indicated in Fig. 25-22. Thus, the 
average power transformed, P, is

P = \ I 2R.
Since power can also be written P = V 2/R  = (Vq/R) sin2 cot, we also have that 
the average power is

p  -  1Y1
F ~ 1 R

The average or mean value of the square of. the current or_voltage is thus what is
important for calculating average power: 12 = j, and V = jV q . The square 
root of each of these is the rms (root-mean-square) value of the current or voltage:

= V /2 = = 0.707To, 
V 2

= V W  = -^7= = 0.707V0. 
V 2

(25-9a)

(25-9b)

The rms values of V  and I  are sometimes called the effective values.

1A graph of cos2 out versus t is identical to that for sin2 cut in Fig. 25-22, except that the points are shifted 
(by 1 cycle) on the time axis. Hence the average value of sin2 and cos2, averaged over one or more full cycles,



They are useful because they can be substituted directly into the power formulas, 
Eqs. 25-6 and 25-7, to get the average power:

P = I V1 r̂ms yrms (25-10a)

P = \ I I R  = Pm R (25-10b)

-5 _ ! v 2o _  y?ms
2 R R (25-10c)

Thus, a direct current whose values of I  and V  equal the rms values of I  and V  for an 
alternating current will produce the same power. Hence it is usually the rms value of 
current and voltage that is specified or measured. For example, in the United States and 
Canada, standard line voltage1 is 120-V ac. The 120 V is Vrms; the peak voltage V0 is

^0 = V 2 V tms = 1 7 0  V .

In much of the world (Europe, Australia, Asia) the rms voltage is 240 V, so the 
peak voltage is 340 V.

EXAMPLE 25-13 Hair dryer, (a) Calculate the resistance and the peak 
current in a 1000-W hair dryer (Fig. 25-23) connected to a 120-V line. (b) What 
happens if it is connected to a 240-V line in Britain?

APPROACH We are given P and V ^ , so / rms = P/Vxm,s (Eq. 25-10a or 25-6), 
and I0 = V2 / rms. Then we find R from V  = IR.
SOLUTION (a) We solve Eq. 25-10a for the rms current:

P 1000w  
rmS “  r̂ms "  120V “  • •

Then
Ia = V 2 /ms = 11.8 A.

The resistance is

120V = 14.40.
/rms 8 .3 3  A

The resistance could equally well be calculated using peak values:

*  _ *  _  w o v  _
/(, 11.8 A

(b) When connected to a 240-V line, more current would flow and the resistance 
would change with the increased temperature (Section 25-4). But let us make an 
estimate of the power transformed based on the same 14.4-0 resistance. The 
average power would be

_  V 2ms (240 V )2

p  -  - f  = f e u i  = 4000 W-

This is four times the dryer’s power rating and would undoubtedly melt the 
heating element or the wire coils of the motor.

EXERCISE H Each channel of a stereo receiver is capable of an average power output of 
100 W into an 8-fl loudspeaker (see Fig. 25-14). What are the rms voltage and the rms 
current fed to the speaker (a) at the maximum power of 100 W, and (b) at 1.0 W when the 
volume is turned down?

Motor

Coid

FIGURE 25-23 A hair dryer. Most 
of the current goes through the 
heating coils, a pure resistance; a 
small part goes to the motor to turn 
the fan. Example 25-13.



2 5 —8 Microscopic View of Electric Current 
Current Density and Drift Velocity

Q T  - J -
FIGURE 25-24 Electric field E in 
a uniform wire of cross-sectional 
area A  carrying a current I. The 
current density j  = I /A .

FIGURE 25-25 Electric field E in 
a wire gives electrons in random 
motion a drift velocity v .

-

\i

FIGURE 25-26 Electrons in the 
volume A l  will all pass through the 
cross section indicated in a time At, 
where £ = vd At.

f = Af

Up to now in this Chapter we have dealt mainly with a macroscopic view of 
electric current. We saw, however, that according to atomic theory, the electric 
current in metal wires is carried by negatively charged electrons, and that in liquid 
solutions current can also be carried by positive and/or negative ions. Let us now 
look at this microscopic picture in more detail.

When a potential difference is applied to the two ends of a wire of uniform 
cross section, the direction of the electric field E is parallel to the walls of the wire 
(Fig. 25-24). The existence of E within the conducting wire does not contradict our 
earlier result that E = 0 inside a conductor in the electrostatic case, as we are no 
longer dealing with the static case. Charges are free to move in a conductor, and 
hence can move under the action of the electric field. If all the charges are at rest, 
then E must be zero (electrostatics).

We now define a new microscopic quantity, the current density, j. It is defined 
as the electric current per unit cross-sectional area at any point in space. If the 
current density j in a wire of cross-sectional area A  is uniform over the cross 
section, then j  is related to the electric current by

; = 4  or /  = jA . (25-11)

If the current density is not uniform, then the general relation is

I  = Jj-rfA , (25-12)

where dA  is an element of surface and I  is the current through the surface over 
which the integration is taken. The direction of the current density at any point is 
the direction that a positive charge would move when placed at that point—that 
is, the direction of j at any point is generally the same as the direction of E, 
Fig. 25-24. The current density exists for any point in space. The current I, on the 
other hand, refers to a conductor as a whole, and hence is a macroscopic quantity.

The direction of j is chosen to represent the direction of net flow of positive 
charge. In a conductor, it is negatively charged electrons that move, so they move in the 
direction of -  j, or — E (to the left in Fig. 25-24). We can imagine the free electrons as 
moving about randomly at high speeds, bouncing off the atoms of the wire (somewhat 
like the molecules of a gas—Chapter 18). When an electric field exists in the wire, 
Fig. 25-25, the electrons feel a force and initially begin to accelerate. But they soon 
reach a more or less steady average velocity in the direction of E, known as their drift 
velocity, vd (collisions with atoms in the wire keep them from accelerating further). The 
drift velocity is normally very much smaller than the electrons’ average random speed.

We can relate the drift velocity vd to the macroscopic current I  in the wire. In a 
time At, the electrons will travel a distance £ = vd At on average. Suppose the wire 
has cross-sectional area A. Then in time At, electrons in a volume V  = A£ = Avd At 
will pass through the cross section A  of wire, as shown in Fig. 25-26. If there are n free 
electrons (each of charge —e) per unit volume (n = N /V ), then the total charge AQ 
that passes through the area A  in a time At is

AQ = (no. of charges, N) X (charge per particle)
= (nV )(—e) = ~{nAvdAt)(e).

The current I  in the wire is thus 
AQ

I  = = -n eA vd. (25-13)

The current density, j  = I /A ,  is
j  = -n evd. (25-14)

In vector form, this is written



We can generalize Eq. 25-15 to any type of charge flow, such as flow of ions in 
an electrolyte. If there are several types of ions (which can include free electrons), 
each of density nt (number per unit volume), charge qt (qt = —e for electrons) and 
drift velocity vdi, then the net current density at any point is

J = (25-16)
i

The total current I  passing through an area A  perpendicular to a uniform j is then

I  = 2  ni qt Vdi A.
i

■ * : f J I ■ Electron speeds in a wire. A copper wire 3.2mm in 
diameter carries a 5.0-A current. Determine (a) the current density in the wire, 
and (b) the drift velocity of the free electrons, (c) Estimate the rms speed of 
electrons assuming they behave like an ideal gas at 20°C. Assume that one 
electron per Cu atom is free to move (the others remain bound to the atom).
APPROACH For (<a) j  = I /A  = I/tty1. For (b) we can apply Eq. 25-14 to find 
vd if we can determine the number n of free electrons per unit volume. Since we 
assume there is one free electron per atom, the density of free electrons, n, is the 
same as the density of Cu atoms. The atomic mass of Cu is 63.5 u (see Periodic 
Table inside the back cover), so 63.5 g of Cu contains one mole or 6.02 X 1023 free 
electrons. The mass density of copper (Table 13-1) is pD = 8.9 X 103kg/m3, 
where pD = m /V. (We use pD to distinguish it here from p for resistivity.) In
(c) we use K = \kT, Eq. 18-4. (Do not confuse V  for volume with V  for voltage.) 
SOLUTION (a) The current density is (with r = |  (3.2 mm) = 1-6 X 10_3m)

I  I  5.0 A - . 9
j = — = — r = —------------ -—-y = 6.2 X 105 A /m 2.

A  irr 77(1.6 X 10 m)
(b) The number of free electrons per unit volume, n = N /V  (where V = m/pD),

N  _ N  _ N(1 mole) 
V m /pD m( 1 mole)

6.02 X 1023 electrons
63.5 X 10 kg

)(8.9 X 103 kg/m3) = 8.4 x  1028m“3.

Then, by Eq. 25-14, the drift velocity has magnitude
j  6.2 X 105A/m 2 .

vd = —  = 7-----------rr----—------------ ——- = 4.6 X 10 5 m/s «  0.05 mm/s.
d ne (8.4 X 10 m )(l.6 X 10 C)

(c) If we model the free electrons as an ideal gas (a rather rough approximation), we 
use Eq. 18-5 to estimate the random rms speed of an electron as it darts around:

/ 3 * r  /3 ( 1 .3 8  X 1 < T * J /K ) ( 2 9 3 K )  , 

^  = V ^ r  = V --------9.11 X 10 -31 kg-------- = L2  X 10  m/S-
The drift velocity (average speed in the direction of the current) is very much less 
than the rms thermal speed of the electrons, by a factor of about 10 9.
NOTE The result in (c) is an underestimate. Quantum theory calculations, and 
experiments, give the rms speed in copper to be about 1.6 X 106m/s.

The drift velocity of electrons in a wire is very slow, only about 0.05 mm/s 
(Example 25-14 above), which means it takes an electron 20 X 103 s, or 5^h, to 
travel only 1 m. This is not, of course, how fast “electricity travels”: when you flip a 
light switch, the light—even if many meters away—goes on nearly instantaneously. 
Why? Because electric fields travel essentially at the speed of light (3 X 108m/s). 
We can think of electrons in a wire as being like a pipe full of water: when a little

o n p n H  n f  ninr> a lm n c t  comr> w a tp r  rom r>c o u t  a t  tV>p*



* Electric Field Inside a Wire

FIGURE 25-27 A  superconducting 
material has zero resistivity when its 
temperature is below T q  , its “critical 
temperature.” At Tq , the resistivity 
jumps to a “normal” nonzero value 
and increases with temperature as 
most materials do (Eq. 25-5).

Equation 25-2b, V = IR, can be written in terms of microscopic quantities as 
follows. We write the resistance R in terms of the resistivity p:

and we write V  and I  as
I  = ]A  and V = EL 

The last relation follows from Eqs. 23-4, where we assume the electric 
field is uniform within the wire and £ is the length of the wire (or a 
portion of the wire) between whose ends the potential difference is V. 
Thus, from V = IR, we have

Ei jp?
SO

= - E  
P

crE, (25-17)

where a = 1/p is the conductivity (Eq. 25-4). For a metal conductor, p and a  do 
not depend on V  (and hence not on E). Therefore the current density j is 
proportional to the electrical field E in the conductor. This is the “microscopic” 
statement of Ohm’s law. Equation 25-17, which can be written in vector form as 

1  -j = crE = — E, 

is sometimes taken as the definition of conductivity a  and resistivity p.

wire. What is the electric fieldEXAMPLE 25-15 Electric field inside a
inside the wire of Example 25-14?
APPROACH We use Eq. 25-17 and p = 1.68 X 10_8fl-m  for copper. 
SOLUTION Example 25-14 gives j  = 6.2 X 105A/m 2, so

E = pj = (1.68 X 10-8n-m)(6.2 X 105A/m2) = 1.0 X l(T2V/m.
NOTE For comparison, the electric field between the plates of a capacitor is often 
much larger; in Example 24-1, for example, E  is on the order of 104 V/m. Thus we 
see that only a modest electric field is needed for current flow in practical cases.

2 5 —9 Superconductivity
At very low temperatures, well below 0°C, the resistivity (Section 25-4) of certain 
metals and certain compounds or alloys becomes zero as measured by the highest- 
precision techniques. Materials in such a state are said to be superconducting. It 
was first observed by H. K. Onnes (1853-1926) in 1911 when he cooled mercury 
below 4.2 K (-269°C) and found that the resistance of mercury suddenly dropped 
to zero. In general, superconductors become superconducting only below a certain 
transition temperature or critical temperature, Tc , which is usually within a few 
degrees of absolute zero. Current in a ring-shaped superconducting material has 
been observed to flow for years in the absence of a potential difference, with no 
measurable decrease. Measurements show that the resistivity p of superconductors 
is less than 4 X IO-25 fi • m, which is over 1016 times smaller than that for copper, 
and is considered to be zero in practice. See Fig. 25-27.

Before 1986 the highest temperature at which a material was found to super­
conduct was 23 K, which required liquid helium to keep the material cold. In 1987, 
a compound of yttrium, barium, copper, and oxygen (YBCO) was developed that 
can be superconducting at 90 K. This was an important breakthrough since liquid 
nitrogen, which boils at 77 K (sufficiently cold to keep the material superconducting), 
is m ore easilv and cheanlv obtained than the liauid helium needed for conventional



Most applications today use a bismuth-strontium-calcium-copper oxide, known 
(for short) as BSCCO. A major challenge is how to make a useable, bendable wire 
out of the BSCCO, which is very brittle. (One solution is to embed tiny filaments 
of the high-rc superconductor in a metal alloy, which is not resistanceless, but the 
resistance is much less than that of a conventional copper cable.)

*25—10 Electrical Conduction in the 
Nervous System

The flow of electric charge in the human nervous system provides us the 
means for being aware of the world. Although the detailed functioning is not well 
understood, we do have a reasonable understanding of how messages are trans­
mitted within the nervous system: they are electrical signals passing along the basic 
element of the nervous system, the neuron.

Neurons are living cells of unusual shape (Fig. 25-28). Attached to the main 
cell body are several small appendages known as dendrites and a long tail called 
the axon. Signals are received by the dendrites and are propagated along the axon. 
When a signal reaches the nerve endings, it is transmitted to the next neuron or to 
a muscle at a connection called a synapse.

A neuron, before transmitting an electrical signal, is in the so-called “resting 
state.” Like nearly all living cells, neurons have a net positive charge on the outer 
surface of the cell membrane and a negative charge on the inner surface. This 
difference in charge, or “dipole layer,” means that a potential difference exists 
across the cell membrane. When a neuron is not transmitting a signal, this “resting 
potential,” normally stated as

Mnside ^outside ?

is typically -60m V  to -90m V, depending on the type of organism. The most 
common ions in a cell are K+, Na+, and CP. There are large differences in the 
concentrations of these ions inside and outside a cell, as indicated by the typical 
values given in Table 25-2. Other ions are also present, so the fluids both inside and 
outside the axon are electrically neutral. Because of the differences in concentration, 
there is a tendency for ions to diffuse across the membrane (see Section 18-7 on 
diffusion). However, in the resting state the cell membrane prevents any net flow of 
Na+ (through a mechanism of “active pumping” of Na+ out of the cell). But it does 
allow the flow of Cl“ ions, and less so of K+ ions, and it is these two ions that 
produce the dipole charge layer on the membrane. Because there is a greater 
concentration of K+ inside the cell than outside, more K+ions tend to diffuse 
outward across the membrane than diffuse inward. A K+ ion that passes through 
the membrane becomes attached to the outer surface of the membrane, and leaves 
behind an equal negative charge that lies on the inner surface of the membrane 
(Fig. 25-29). Independently, Cl- ions tend to diffuse into the cell since their 
concentration outside is higher. Both K+ and Cl- diffusion tends to charge the 
interior surface of the membrane negatively and the outside positively. As charge 
accumulates on the membrane surface, it becomes increasingly difficult for more 
ions to diffuse: K+ ions trying to move outward, for example, are repelled by the 
positive charge already there. Equilibrium is reached when the tendency to diffuse 
because of the concentration difference is just balanced by the electrical potential 
difference across the membrane. The greater the concentration difference, the 
greater the potential difference across the membrane (-60m V  to -90mV).

The most important aspect of a neuron is not that it has a resting potential (most 
cells do), but rather that it can respond to a stimulus and conduct an electrical signal 
along its length. The stimulus could be thermal (when you touch a hot stove) or chem­
ical (as in taste buds); it could be pressure (as on the skin or at the eardrum), or light 
(as in the eye); or it could be the electric stimulus of a signal coming from the brain or 
another neuron. In the laboratory, the stimulus is usually electrical and is applied bv

Signal from another neuron 

Synapse 

Dendrites

Nucleus^I Cell body

—̂ Axon 
"I—  Myelin sheath 
i—  Node of Ranvier

Synapse

Another neuron 
or a muscle

FIGURE 25-28 A simplified 
sketch of a typical neuron.

TABLE 25-2
Concentrations of Ions Inside 
and Outside a Typical Axon

Concentration 
inside axon 

(m ol/m 3)

Concentration 
outside axon 

(m ol/m 3)

K+ 140 5
Na+ 15 140
cr 9 125

FIGURE 25-29 How a dipole layer 
of charge forms on a cell membrane.

FIGURE 25-30 Measuring the 
potential difference between the 
inside and outside of a nerve cell.

c p
outside

Axon
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FIGURE 25-31 Action potential.

FIGURE 25-32 Propagation of an 
action potential along an axon 
membrane.
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This voltage pulse has the shape shown in Fig. 25-31, and is called an action 
potential. As can be seen, the potential increases from a resting potential of about 
-70  mV and becomes a positive 30 mV or 40 mV. The action potential lasts for 
about 1 ms and travels down an axon with a speed of 30 m/s to 150 m/s. When an 
action potential is stimulated, the nerve is said to have “fired.”

What causes the action potential? Apparently, the cell membrane has the ability to 
alter its permeability properties. At the point where the stimulus occurs, the membrane 
suddenly becomes much more permeable to Na+ than to K+ and Cl- ions. Thus, 
Na+ ions rush into the cell and the inner surface of the wall becomes positively 
charged, and the potential difference quickly swings positive (~ +35 mV in Fig. 25-31). 
Just as suddenly, the membrane returns to its original characteristics: it becomes imper­
meable to Na+ and in fact pumps out Na+ ions. The diffusion of Cl- and K+ ions again 
predominates and the original resting potential is restored (-70  mV in Fig. 25-31).

What causes the action potential to travel along the axon? The action potential 
occurs at the point of stimulation, as shown in Fig. 25-32a. The membrane 
momentarily is positive on the inside and negative on the outside at this point. 
Nearby charges are attracted toward this region, as shown in Fig. 25-32b. The 
potential in these adjacent regions then drops, causing an action potential there. Thus, 
as the membrane returns to normal at the original point, nearby it experiences an 
action potential, so the action potential moves down the axon (Figs. 25-32c and d).

You may wonder if the number of ions that pass through the membrane would 
significantly alter the concentrations. The answer is no; and we can show why by 
treating the axon as a capacitor in the following Example.

EXAMPLE 25-16 ESTIMATE-!  Capacitance of an axon, (a) Do an order-of- 
magnitude estimate for the capacitance of an axon 10  cm long of radius 10  fim. 
The thickness of the membrane is about 10_8m, and the dielectric constant is 
about 3. (b) By what factor does the concentration (number of ions per volume) 
of Na+ ions in the cell change as a result of one action potential?
APPROACH We model the membrane of an axon as a cylindrically shaped 
parallel-plate capacitor, with opposite charges on each side. The separation of the 
“plates” is the thickness of the membrane, d ~ 10-8 m. We first calculate the area 
of the cylinder and then can use Eq. 24-8, C = K e0A /d, to find the capacitance. 
In (b), we use the voltage change during one action potential to find the amount 
of charge moved across the membrane.
SOLUTION (a) The area A  is the area of a cylinder of radius r and length i\

A  = 2ttri «  (6.28)(l0-5 m)(0.1 m) «  6 x 10“6m2.
From Eq. 24-8, we have

A  (3)(8.85 X 10-12C2/N -m 2) 6 X 10  6m2 10  F -10 m
(b) Since the voltage changes from -70  mV to about +30 mV, the total change is 
about 100 mV. The amount of charge that moves is then

Q = CV ~  (10“8F)(0.1 V) = 10“9C.
Each ion carries a charge e = 1.6 X 10“ 19 C, so the number of ions that flow per 
action potential is Q/e = (lO_9C )/(l.6 X 10- 19C) « 1010. The volume of our 
cylindrical axon is

(3)(l0-5 m) (0.1 m) =
and the concentration of Na+ions inside the cell (Table 25-2) is 
15mol/m3 = 15 X 6.02 X 1023 ions/m3 «  1025 ions/m3. Thus, the cell contains 
(1025 ions/m3) X (3 X 10- 1 1m3) «  3 X 1014Na+ions. One action potential, then, 
will change the concentration of Na+ ions by about 1010/(3 X 1014) =  \  X 10-4, 
or 1 part in 30,000. This tiny change would not be measurable.

Thus, even 1000 action potentials will not alter the concentration sienificantlv.



Summary
An electric battery serves as a source of nearly constant 
potential difference by transforming chemical energy into 
electric energy. A simple battery consists of two electrodes made 
of different metals immersed in a solution or paste known as an 
electrolyte.

Electric current, I, refers to the rate of flow of electric 
charge and is measured in amperes (A): 1 A equals a flow of
1 C/s past a given point.

The direction of conventional current is that of positive 
charge flow. In a wire, it is actually negatively charged electrons 
that move, so they flow in a direction opposite to the conven­
tional current. A positive charge flow in one direction is almost 
always equivalent to a negative charge flow in the opposite 
direction. Positive conventional current always flows from a 
high potential to a low potential.

The resistance R  of a device is defined by the relation

V = IR, (25-2)
where I  is the current in the device when a potential difference V  
is applied across it. For materials such as metals, R  is a constant 
independent of V  (thus I  oc V), a result known as Ohm’s law. 
Thus, the current I  coming from a battery of voltage V  depends 
on the resistance R  of the circuit connected to it.

Voltage is applied across a device or between the ends of a 
wire. Current passes through a wire or device. Resistance is a 
property o f  the wire or device.

The unit of resistance is the ohm (Cl), where 1 0  = 1 V /A. 
See Table 25-3.

TABLE 25-3 Summary of Units

Current
Potential difference
Power
Resistance

1 A = 1 C/s 
1 V = 1 J/C  
1 W = 1 J/s 
1 0  = 1 V /A

The resistance R  of a wire is inversely proportional to its 
cross-sectional area A, and directly proportional to its length I 
and to a property of the material called its resistivity:

pi
r - t

(25 -3 )

The resistivity, p, increases with temperature for metals, but for 
semiconductors it may decrease.

The rate at which energy is transformed in a resistance R 
from electric to other forms of energy (such as heat and light) is 
equal to the product of current and voltage. That is, the power 
transformed, measured in watts, is given by

P  = IV , (25-6)
which for resistors can be written as

(25 -7 )

The SI unit of power is the watt (1 W = 1 J/s).
The total electric energy transformed in any device equals 

the product of the power and the time during which the device 
is operated. In SI units, energy is given in joules (1 J = 1 W • s), 
but electric companies use a larger unit, the kilowatt-hour 
( l  kWh =  3.6 X 106J).

Electric current can be direct current (dc), in which the 
current is steady in one direction; or it can be alternating 
current (ac), in which the current reverses direction at a 
particular frequency / ,  typically 60 Hz. Alternating currents are 
typically sinusoidal in time,

I  = I0 sin tot, (25-8)
where oj = 2ttf ,  and are produced by an alternating voltage.

The rms values of sinusoidally alternating currents and 
voltages are given by

Jo_  , T. _
/ -  and Kms — r~ ’

V 2 V 2
ims (25-9)

respectively, where /0 and Vq are the peak values. The power rela­
tionship, P = IV  = I 2R = V 2/R , is valid for the average power 
in alternating currents when the rms values of V  and I  are used.

Current density j is the current per cross-sectional area. 
From a microscopic point of view, the current density is related 
to the number of charge carriers per unit volume, n, their 
charge, q, and their drift velocity, Vd, by

J = nqvd . (25-16)

The electric field within a wire is related to j by j = crE where 
a  = 1 /p  is the conductivity.

[*At very low temperatures certain materials become 
superconducting, which means their electrical resistance 
becomes zero.]

[*The human nervous system operates via electrical 
conduction: when a nerve “fires,” an electrical signal travels as a 
voltage pulse known as an action potential.]

Questions
1. What quantity is measured by a battery rating given in 

ampere-hours (A-h)?
2. When an electric cell is connected to a circuit, electrons flow 

away from the negative terminal in the circuit. But within 
the cell, electrons flow to the negative terminal. Explain.

3. When a flashlight is operated, what is being used up: battery 
current, battery voltage, battery energy, battery power, or 
battery resistance? Explain.

4. One terminal of a car battery is said to be connected to 
“around.” Since it is not reallv connected  to  the around.

5. When you turn on a water faucet, the water usually flows 
immediately. You don’t have to wait for water to flow from 
the faucet valve to the spout. Why not? Is the same thing 
true when you connect a wire to the terminals of a battery?

6. Can a copper wire and an aluminum wire of the same length 
have the same resistance? Explain.

7. The equation P = V 2/R  indicates that the power dissi­
pated in a resistor decreases if the resistance is increased, 
whereas the equation P  = I 2R  implies the opposite. Is 
there a contradiction here? Explain.



9. If the resistance of a small immersion heater (to heat water 
for tea or soup, Fig. 25-33) 
was increased, would it speed 
up or slow down the heating 
process? Explain.

FIGURE 25-33
Question 9.

10. If a rectangular solid made of carbon has sides of lengths a, 2a, 
and 3a, how would you connect the wires from a battery so as 
to obtain (a) the least resistance, (b) the greatest resistance?

11. Explain why lightbulbs almost always burn out just as they 
are turned on and not after they have been on for some time.

12. Which draws more current, a 100-W lightbulb or a 75-W 
bulb? Which has the higher resistance?

13. Electric power is transferred over large distances at very 
high voltages. Explain how the high voltage reduces power 
losses in the transmission lines.

14. A 15-A fuse blows repeatedly. Why is it dangerous to 
replace this fuse with a 25-A fuse?

15. When electric lights are operated on low-frequency ac (say, 
5 Hz), they flicker noticeably. Why?

16. Driven by ac power, the same electrons pass back and forth 
through your reading lamp over and over again. Explain 
why the light stays lit instead of going out after the first pass 
of electrons.

17. The heating element in a toaster is made of Nichrome wire. 
Immediately after the toaster is turned on, is the current 
( / rms) in the wire increasing, decreasing, or staying constant? 
Explain.

18. Is current used up in a resistor? Explain.
19. Compare the drift velocities and electric currents in two 

wires that are geometrically identical and the density of 
atoms is similar, but the number of free electrons per atom 
in the material of one wire is twice that in the other.

20. A voltage V  is connected across a wire of length £ and 
radius r. How is the electron drift velocity affected if (a) £ is 
doubled, (b) r is doubled, (c) V  is doubled?

21. Why is it more dangerous to turn on an electric appliance 
when you are standing outside in bare feet than when you 
are inside wearing shoes with thick soles?

| Problems
25-2 and 25-3 Electric Current, Resistance, Ohm's Law
(Note:The charge on one electron is 1.60 X 10-19 C.)
1. (I) A current of 1.30 A flows in a wire. How many electrons 

are flowing past any point in the wire per second?
2. (I) A service station charges a battery using a current of 6.7-A 

for 5.0 h. How much charge passes through the battery?
3. (I) What is the current in amperes if 1200 Na+ ions flow 

across a cell membrane in 3.5 /as? The charge on the sodium 
is the same as on an electron, but positive.

4. (I) What is the resistance of a toaster if 120 V produces a 
current of 4.2 A?

5. (II) An electric clothes dryer has a heating element with a 
resistance of 8.6 fi. (a) What is the current in the element 
when it is connected to 240 V? (b) How much charge passes 
through the element in 50 min? (Assume direct current.)

6. (II) A hair dryer draws 9.5 A when plugged into a 120-V 
line, (a) What is its resistance? (b) How much charge passes 
through it in 15 min? (Assume direct current.)

7. (II) A 4.5-V battery is connected to a bulb whose resistance 
is 1.6 H. How many electrons leave the battery per minute?

8. (II) A bird stands on a dc electric transmission line carrying 
3100 A (Fig. 25-34). The line has 2.5 X 10_5X1 resistance 
per meter, and the bird’s feet are 4.0 cm apart. What is the 
potential differ­
ence between 
the bird’s feet?

9. (II) A 12-V battery causes a current of 0.60 A through a 
resistor, (a) What is its resistance, and (b) how many joules 
of energy does the battery lose in a minute?

10. (II) An electric device draws 6.50 A at 240 V. (a) If the 
voltage drops by 15%, what will be the current, assuming 
nothing else changes? (b) If the resistance of the device were 
reduced by 15%, what current would be drawn at 240 V?

25-4  Resistivity
11. (I) What is the diameter of a 1.00-m length of tungsten wire 

whose resistance is 0.32 fl?
12. (I) What is the resistance of a 4.5-m length of copper wire 

1.5 mm in diameter?
13. (II) Calculate the ratio of the resistance of 10.0 m of 

aluminum wire 2.0 mm in diameter, to 20.0 m of copper wire 
1.8  mm in diameter.

14. (II) Can a 2.2-mm-diameter copper wire have the same 
resistance as a tungsten wire of the same length? Give 
numerical details.

15. (II) A sequence of potential differences V  is applied across 
a wire (diameter = 0.32 mm, length = 11cm) and the 
resulting currents I  are measured as follows:

FIGURE 25-34

V(V)
7(mA)

0.100
72

0.200
144

0.300
216

0.400
288

0.500
360

(a) If this wire obeys Ohm’s law, graphing I  vs. V  will result 
in a straight-line plot. Explain why this is so and determine 
the theoretical predictions for the straight line’s slope and 
^-intercept, (b) Plot I  vs. V. Based on this plot, can you 
conclude that the wire obeys Ohm’s law (i.e., did you obtain 
a straight line with the expected ̂ -intercept)? If so, determine 
the wire’s resistance R. (c) Calculate the wire’s resistivity 
and use Table 2 5 —1 tn identifv  the solid m aterial frnm which



16.

17.

18.

(II) How much would you have to raise the temperature of 
a copper wire (originally at 20° C) to increase its resistance 
by 15%?
(II) A certain copper wire has a resistance of 10.00. At 
what point along its length must the wire be cut so that the 
resistance of one piece is 4.0 times the resistance of the 
other? What is the resistance of each piece?
(II) Determine at what temperature aluminum will have 
the same resistivity as tungsten does at 20° C.

19. (II) A 100-W lightbulb has a resistance of about 12 fl when 
cold (20°C) and 140 fl when on (hot). Estimate the temper­
ature of the filament when hot assuming an average 
temperature coefficient of resistivity a = 0.0045 (C0)-1.

20. (II) Compute the voltage drop along a 26-m length of 
household no. 14 copper wire (used in 15-A circuits). The 
wire has diameter 1.628 mm and carries a 12 -A current.

21. (II) Two aluminum wires have the same resistance. If one has 
twice the length of the other, what is the ratio of the diam­
eter of the longer wire to the diameter of the shorter wire?

22. (II) A rectangular solid made of carbon has sides of lengths
1.0 cm, 2.0 cm, and 4.0 cm, lying v
along the x, y, and z axes, 
respectively (Fig. 25-35).
Determine the resistance for 
current that passes through 
the solid in (a) the x  direc­
tion, (b) the y  direction, 
and (c) the z direction. 
Assume the resistivity is 
p = 3.0 X 10_5 n-m .

FIGURE 25-35
Problem 22.

, 2.0 cm

1.0 cm

23. (II) A length of aluminum wire is connected to a precision
10.00-V power supply, and a current of 0.4212 A is precisely 
measured at 20.0° C. The wire is placed in a new environ­
ment of unknown temperature where the measured current 
is 0.3818 A. What is the unknown temperature?

24. (II) Small changes in the length of an object can be 
measured using a strain gauge sensor, which is a wire with 
undeformed length £0, cross-sectional area A 0, and 
resistance Rq. This sensor is rigidly affixed to the object’s 
surface, aligning its length in the direction in which length 
changes are to be measured. As the object deforms, the 
length of the wire sensor changes by A£, and the resulting 
change AR  in the sensor’s resistance is measured. Assuming 
that as the solid wire is deformed to a length i, its density 
(and volume) remains constant (only approximately valid), 
show that the strain (= A£/£0) of the wire sensor, and thus 
of the object to which it is attached, is AR/2R0.

25. (II) A length of wire is cut in half and the two lengths are 
wrapped together side by side to make a thicker wire. How 
does the resistance of this new combination compare to the 
resistance of the original wire?

26. (Ill) For some applications, it is important that the value of 
a resistance not change with temperature. For example, 
suppose you made a 3.70-kfl resistor from a carbon resistor 
and a Nichrome wire-wound resistor connected together so 
the total resistance is the sum of their separate resistances.
W hat value should ear.h o f these  resistors have fat 0°C^ so

27. (Ill) Determine a formula for the total resistance of a 
spherical shell made of material whose conductivity is a  and 
whose inner and outer radii are r\ and r2. Assume the 
current flows radially outward.

28. (Ill) The filament of a lightbulb has a resistance of 12 O at 
20°C and 140X1 when hot (as in Problem 19). (a) Calculate 
the temperature of the filament when it is hot, and take into 
account the change in length and area of the filament due to 
thermal expansion (assume tungsten for which the thermal 
expansion coefficient is ~ 5.5 X 10-6 C0-1). (b) In this temper­
ature range, what is the percentage change in resistance due 
to thermal expansion, and what is the percentage change in 
resistance due solely to the change in p? Use Eq. 25-5.

29. (Ill) A 10.0-m length of wire consists of 5.0 m of copper 
followed by 5.0 m of aluminum, both of diameter 1.4 mm. 
A voltage difference of 85 mV is placed across the composite 
wire, (a) What is the total resistance (sum) of the two wires?
(b) What is the current through the wire? (c) What are the 
voltages across the aluminum part and across the copper part?

30. (Ill) A hollow cylindrical resistor with inner radius and 
outer radius r2, and length £, is made of a material whose resis­
tivity is p (Fig. 25-36). (a) Show that the resistance is given by

R = i r2 :ln —
2,77"£ r\

for current that flows radially outward. [Hint. Divide the 
resistor into concentric cylindrical shells and integrate.]
(b) Evaluate the resistance R  for such a resistor made of 
carbon whose inner and outer radii are 1.0  mm and 1.8  mm 
and whose length is 2.4 cm. (Choose p = 15 X 10-5 Q, • m.)
(c) What is the resistance in _ ___ ^ _______ _
part (b) for current flowing xrrr 
parallel to the axis? /

FIGURE 25-36
Problem 30.

25-5  and 2 5-6  Electric Power
31. (I) What is the maximum power consumption of a 3.0-V 

portable CD player that draws a maximum of 270 mA of 
current?

32. (I) The heating element of an electric oven is designed to 
produce 3.3 kW of heat when connected to a 240-V source. 
What must be the resistance of the element?

33. (I) What is the maximum voltage that can be applied across 
a 3.3-kfl resistor rated at \  watt?

34. (I) (a) Determine the resistance of, and current through, a 
75-W lightbulb connected to its proper source voltage of 
110 V. (b) Repeat for a 440-W bulb.

35. (II) An electric power plant can produce electricity at a 
fixed power P, but the plant operator is free to choose the 
voltage V  at which it is produced. This electricity is carried 
as an electric current I  through a transmission line (resis­
tance R) from the plant to the user, where it provides the 
user with electric power P ’. (a) Show that the reduction in 
power AP = P -  P ' due to transmission losses is given by 
AP  = P2R /V 2. (b) In order to reduce power losses during 
transmission, should the operator choose V  to be as large or 
as small as possible?

36. (II) A 120-V hair dryer has two settings: 850 W and 1250 W.
(a) At which setting do you expect the resistance to be 
higher? A fter m aking a jniess. determ ine the resistance at



37. (II) A 115-V fish-tank heater is rated at 95 W. Calculate
(a) the current through the heater when it is operating, and
(b) its resistance.

38. (II) You buy a 75-W lightbulb in Europe, where electricity is 
delivered to homes at 240 V. If you use the lightbulb in the 
United States at 120 V (assume its resistance does not 
change), how bright will it be relative to 75-W 120-V bulbs? 
[Hint: Assume roughly that brightness is proportional to 
power consumed.]

39. (II) How many kWh of energy does a 550-W toaster use in 
the morning if it is in operation for a total of 6.0 min? At a 
cost of 9.0 cents/kWh, estimate how much this would add to 
your monthly electric energy bill if you made toast four 
mornings per week.

40. (II) At $0.095/kWh, what does it cost to leave a 25-W porch 
light on day and night for a year?

41. (II) What is the total amount of energy stored in a 12-V, 
75-A • h car battery when it is fully charged?

42. (II) An ordinary flashlight uses two D-cell 1.5-V batteries 
connected in series as in Fig. 25-4b (Fig. 25-37). The bulb 
draws 380 mA when turned on. (a) Calculate the resistance 
of the bulb and the power dissipated. (b) By what factor 
would the power increase if four D-cells in series were used 
with the same bulb? (Neglect heating effects of the filament.) 
Why shouldn’t you try this?

FIGURE 25-37 Problem 42.

43. (II) How many 75-W lightbulbs, connected to 120 V as in 
Fig. 25-20, can be used without blowing a 15-A fuse?

44. (II) An extension cord made of two wires of diameter
0.129 cm (no. 16 copper wire) and of length 2.7 m (9 ft) is 
connected to an electric heater which draws 15.0 A on a 
120-V line. How much power is dissipated in the cord?

45. (II) A power station delivers 750 kW of power at 12,000 V 
to a factory through wires with total resistance 3.0 O. How 
much less power is wasted if the electricity is delivered at
50,000 V rather than 12,000 V?

46. (Ill) A small immersion heater can be used in a car to heat 
a cup of water for coffee or tea. If the heater can heat 
120 mL of water from 25°C to 95°C in 8.0 min, (a) approxi­
mately how much current does it draw from the car’s 12-V 
battery, and (b) what is its resistance? Assume the manufac­
turer’s claim of 75% efficiency.

47. (Ill) The current in an electromagnet connected to a 240-V line 
is 17.5 A. At what rate must cooling water pass over the coils 
if the water temperature is to rise by no more than 6.50 C°?

48. (Ill) A 1.0-m-long round tungsten wire is to reach a 
temperature of 3100 K when a current of 15.0 A flows 
through it. What diameter should the wire be? Assume the 
w ire loses enerpv onlv  hv radiation (em issivitv e = 1 . 0 .

2 5-7  Alternating Current
49. (I) Calculate the peak current in a 2.7-kO resistor 

connected to a 220-V rms ac source.
50. (I) An ac voltage, whose peak value is 180 V, is across a 380-0 

resistor. What are the rms and peak currents in the resistor?
51. (II) Estimate the resistance of the 120-Vrms circuits in your 

house as seen by the power company, when (a) everything 
electrical is unplugged, and (b) there are two 75-W light­
bulbs burning.

52. (II) The peak value of an alternating current in a 1500-W 
device is 5.4 A. What is the rms voltage across it?

53. (II) An 1800-W arc welder is connected to a 660-Vrms ac line. 
Calculate (a) the peak voltage and (b) the peak current.

54. (II) (a) What is the maximum instantaneous power dissipated 
by a 2.5-hp pump connected to a 240-Vrms ac power source?
(b) What is the maximum current passing through the pump?

55. (II) A heater coil connected to a 240-Vrms ac line has a resis­
tance of 44 O. (a) What is the average power used? (b) What are 
the maximum and minimum values of the instantaneous power?

56. (II) For a time-dependent voltage V (t), which is periodic 
with period T, the rms voltage is defined to be 
T'rms = [f f0 V 2 dt]2 . Use this definition to determine Krms 
(in terms of the peak voltage Vq) for (a) a sinusoidal voltage,
i.e., V (t) = V0sin(27rt/T) for 0 <  t <  T; and (b) a positive 
square-wave voltage, i.e.,

V{t) =
0

T
0 < t <  —

2
T— < t < T
2

2 5-8  Microscopic View of Electric Current
57. (II) A 0.65-mm-diameter copper wire carries a tiny current 

of 2.3 fx A. Estimate (a) the electron drift velocity, (b) the 
current density, and (c) the electric field in the wire.

58. (II) A 5.80-m length of 2.0-mm-diameter wire carries a 
750-mA current when 22.0 mV is applied to its ends. If the 
drift velocity is 1.7 X 10-5 m/s, determine (a) the resistance R 
of the wire, (b) the resistivity p, (c) the current density j, 
(id) the electric field inside the wire, and (e) the number n of 
free electrons per unit volume.

59. (II) At a point high in the Earth’s atmosphere, He2+ ions in 
a concentration of 2.8 X 1012/m 3 are moving due north at a 
speed of 2.0 X 106 m/s. Also, a 7.0 X 1011/m 3 concentration 
of O2 ions is moving due south at a speed of 6.2 X 106 m/s. 
Determine the magnitude and direction of the current 
density j at this point.

*25-10 Nerve Conduction
*60. (I) What is the magnitude of the electric field across an 

axon membrane 1.0 X 10-8 m thick if the resting potential 
is -7 0  mV?

* 61. (II) A neuron is stimulated with an electric pulse. The action 
potential is detected at a point 3.40 cm down the axon 
0.0052 s later. When the action potential is detected 7.20 cm 
from the point of stimulation, the time required is 0.0063 s. 
What is the speed of the electric pulse along the axon? 
(Why are two measurements needed instead of only one?)

*62. (Ill) During an action potential, Na+ ions move into the cell 
at a rate of about 3 X 10-7 mol/m2 -s. How much power 
must be produced by the “active Na+ pumping” system to
nrodur.e this flow  aaainst a -1-30-mV notential difference?



| General Problems
63. A person accidentally leaves a car with the lights on. If each 

of the two headlights uses 40 W and each of the two tail- 
lights 6 W, for a total of 92 W, how long will a fresh 12-V 
battery last if it is rated at 85 A • h? Assume the full 12 V 
appears across each bulb.

64. How many coulombs are there in 1.00 ampere-hour?
65. You want to design a portable electric blanket that runs on 

a 1.5-V battery. If you use copper wire with a 0.50-mm diam­
eter as the heating element, how long should the wire be if 
you want to generate 15 W of heating power? What happens 
if you accidentally connect the blanket to a 9.0-V battery?

66. What is the average current drawn by a 1.0-hp 120-V 
motor? ( lh p  = 746 W.)

67. The conductance G of an object is defined as the reciprocal 
of the resistance R; that is, G = 1/R. The unit of conductance 
is a mho (= ohm-1), which is also called the siemens (S). 
What is the conductance (in siemens) of an object that 
draws 480 mA of current at 3.0 V?

68. The heating element of a 110-V, 1500-W heater is 3.5 m 
long. If it is made of iron, what must its diameter be?

69. (a) A particular household uses a 1.8-kW heater 2.0h/day 
(“on” time), four 100-W lightbulbs 6.0 h/day, a 3.0-kW electric 
stove element for a total of 1.0  h/day, and miscellaneous 
power amounting to 2.0 kWh/day. If electricity costs $0,105 
per kWh, what will be their monthly bill (30 d)? (b) How 
much coal (which produces 7500kcal/kg) must be burned 
by a 35%-efficient power plant to provide the yearly needs 
of this household?

70. A small city requires about 15 MW of power. Suppose that 
instead of using high-voltage lines to supply the power, the 
power is delivered at 120 V. Assuming a two-wire line of
0.50-cm-diameter copper wire, estimate the cost of the 
energy lost to heat per hour per meter. Assume the cost of 
electricity is about 9.0 cents per kWh.

71. A 1400-W hair dryer is designed for 117 V. (a) What will be 
the percentage change in power output if the voltage drops to 
105 V? Assume no change in resistance. (b) How would the 
actual change in resistivity with temperature affect your answer?

72. The wiring in a house must be thick enough so it does not 
become so hot as to start a fire. What diameter must a copper 
wire be if it is to carry a maximum current of 35 A and 
produce no more than 1.5 W of heat per meter of length?

73. Determine the resistance of the tungsten filament in a 75-W 
120-V incandescent lightbulb (a) at its operating tempera­
ture of about 3000 K, (b) at room temperature.

74. Suppose a current is given by the equation I  = 1.80 sin 210?, 
where I  is in amperes and t in seconds, (a) What is the 
frequency? (b) What is the rms value of the current? (c) If 
this is the current through a 24.0-0 resistor, write the 
equation that describes the voltage as a function of time.

75. A microwave oven running at 65% efficiency delivers 950 W 
of energy per second to the interior. Find (a) the power 
drawn from the source, and (b) the current drawn. Assume a 
source voltage of 120 V.

76. A 1.00-fl wire is stretched uniformly to 1.20 times its orig­
inal length. What is its resistance now?

77. 220 V is applied to two different conductors made of the 
same material. One conductor is twice as long and twice the
diam eter nf the ser.nnd. W hat is the ratin n f the nnwer trans-

78. An electric heater is used to heat a room of volume 54 m3. 
Air is brought into the room at 5°C and is completely 
replaced twice per hour. Heat loss through the walls 
amounts to approximately 850kcal/h. If the air is to be 
maintained at 20° C, what minimum wattage must the heater 
have? (The specific heat of air is about 0.17 kcal/kg • C°.)

79. A 2800-W oven is connected to a 240-V source, (a) What is the 
resistance of the oven? (b) How long will it take to bring 
120 mL of 15°C water to 100°C assuming 75% efficiency?
(c) How much will this cost at 11 cents/kWh?

80. A proposed electric vehicle makes use of storage batteries 
as its source of energy. Its mass is 1560 kg and it is powered 
by 24 batteries, each 12 V, 95 A • h. Assume that the car is 
driven on level roads at an average speed of 45 km/h, and 
the average friction force is 240 N. Assume 100% efficiency 
and neglect energy used for acceleration. No energy is 
consumed when the vehicle is stopped, since the engine 
doesn’t need to idle, (a) Determine the horsepower 
required. (b) After approximately how many kilometers 
must the batteries be recharged?

81. A 12.5-11 resistor is made from a coil of copper wire whose 
total mass is 15.5 g. What is the diameter of the wire, and 
how long is it?

82. A fish-tank heater is rated at 95 W when connected to 
120 V. The heating element is a coil of Nichrome wire. When 
uncoiled, the wire has a total length of 3.8 m. What is the 
diameter of the wire?

83. A 100-W, 120-V lightbulb has a resistance of 12 fl when cold 
(20°C) and 140 fl when on (hot). Calculate its power 
consumption (a) at the instant it is turned on, and (b) after a 
few moments when it is hot.

84. In an automobile, the system voltage varies from about 12 V 
when the car is off to about 13.8 V when the car is on and 
the charging system is in operation, a difference of 15%. By 
what percentage does the power delivered to the headlights 
vary as the voltage changes from 12 V to 13.8 V? Assume 
the headlight resistance remains constant.

85. The Tevatron accelerator at Fermilab (Illinois) is designed 
to carry an 1 1 -mA beam of protons traveling at very nearly 
the speed of light (3.0 X 108m/s) around a ring 6300 m in 
circumference. How many protons are in the beam?

86. Lightbulb A is rated at 120 V and 40 W for household 
applications. Lightbulb B is rated at 12 V and 40 W for 
automotive applications, (a) What is the current through 
each bulb? (b) What is the resistance of each bulb? (c) In 
one hour, how much charge passes through each bulb?
(d) In one hour, how much energy does each bulb use?
(e) Which bulb requires larger diameter wires to connect its 
power source and the bulb?

87. An air conditioner draws 14 A at 220-V ac. The connecting 
cord is copper wire with a diameter of 1.628 mm. (a) How 
much power does the air conditioner draw? (b) If the total 
length of wire is 15 m, how much power is dissipated in the 
wiring? (c) If no. 12 wire, with a diameter of 2.053 mm, was 
used instead, how much power would be dissipated in the 
wiring? (d) Assuming that the air conditioner is run 12 h per 
day, how much money per month (30 days) would be saved
hv lisina nn. 19. wire? A ssum e that the r.nst n f eler.trir.itv is



Copper wire of diameter 0.259 cm is used to connect a set of 
appliances at 120 V, which draw 1750 W of power total.
(a) What power is wasted in 25.0 m of this wire? (b) What is 
your answer if wire of diameter 0.412 cm is used? 
Battery-powered electricity is very expensive compared with 
that available from a wall receptacle. Estimate the cost per 
kWh of (a) an alkaline D-cell (cost $1.70) and (b) an alkaline 
AA-cell (cost $1.25). These batteries can provide a continuous 
current of 25 mA for 820 h and 120 h, respectively, at 1.5 V. 
Compare to normal 120-V ac house current at $0.10/kWh. 
How far does an average electron move along the wires of a 
550-W toaster during an alternating current cycle? The 
power cord has copper wires of diameter 1.7 mm and is 
plugged into a standard 60-Hz 120-V ac outlet. [Hint: The 
maximum current in the cycle is related to the maximum 
drift velocity. The maximum velocity in an oscillation is 
related to the maximum displacement; see Chapter 14.]
A copper pipe has an inside diameter of 3.00 cm and an 
outside diameter of 5.00 cm (Fig. 25-38). What is the resis­
tance of a 10 .0-m 
length of this pipe?

5;

FIGURE 25-38
Problem 91.

FIGURE 25-39
Problems 92 and 93.

93. The cross section of a portion of wire increases uniformly as 
shown in Fig. 25-39 so it has the shape of a truncated cone. 
The diameter at one end is a and at the other it is b, and the 
total length along the axis is t  If the material has resistivity p, 
determine the resistance R  between the two ends in terms of
a,b ,i, and p. Assume that the current flows uniformly through 
each section, and that the taper is small, i.e., (b — a) «  t

94. A tungsten filament used in a flashlight bulb operates at
0.20 A and 3.2 V. If its resistance at 20°C is 1.5 fi, what is the 
temperature of the filament when the flashlight is on?

95. The level of liquid helium (temperature <  4 K) in its 
storage tank can be monitored using a vertically aligned 
niobium-titanium (NbTi) wire, whose length £ spans 
the height of the tank. In this level-sensing setup, an 
electronic circuit maintains a constant electrical current I  at 
all times in the NbTi wire and a voltmeter monitors the 
voltage difference V  across this wire. Since the supercon­
ducting transition temperature for NbTi is 10 K, the portion 
of the wire immersed in the liquid helium is in the super­
conducting state, while the portion above the liquid (in 
helium vapor with temperature above 10 K) is in the normal 
state. Define /  = x / i  to be the fraction of the tank filled 
with liquid helium 
(Fig. 25-40) and 
V q to be the value 
of V  when the 
tank is empty 
( /  = 0). Deter­
mine the relation 
between /  and V  
(in terms of V0)-

FIGURE 25-40
Problem 95.

* Numerical/ Computer
* 96. (II) The resistance, R, of a particular thermistor as a function

of temperature T  is shown in this Table:

J (°C ) f l ( f t ) J (°C ) f l ( f t )

20 126,740 36 60,743
22 115,190 38 55,658
24 104,800 40 51,048
26 95,447 42 46,863
28 87,022 44 43,602
30 79,422 46 39,605
32 72,560 48 36,458
34 66,356 50 33,591

Determine what type of best-fit equation (linear, quadratic,
exponential, other) describes the variation of R  with T. 
The resistance of the thermistor is 57,641 XI when embedded 
in a substance whose temperature is unknown. Based on 
your equation, what is the unknown temperature?

Constant /

Helium 
vjptir 
<> I 0 K )

Liquid
helium

4K)

T f

Answers to Exercises

A: 1.6 X IO-13  A. E: 110 m.
B: (c). F: (d).
C : (b ) ,(c ) . G :(e).

92. For the wire in Fig. 25-39, whose diameter varies uniformly 
from a to b as shown, suppose a current I  = 2.0 A enters 
at a. If a = 2.5 mm and b = 4.0 mm, what is the current 
density (assume uniform)
at each end? u________ 9 __________



These MP3 players contain circuits that are dc, at 
least in part. (The audio signal is ac.) The circuit 
diagram below shows a possible amplifier circuit 
for each stereo channel. We have already met two 
of the circuit elements shown: resistors and 
capacitors, and we discuss them in circuits in this 
Chapter. (The large triangle is an amplifier chip 
containing transistors, discussed in Chapter 40.) 
We also discuss voltmeters and ammeters, and 
how they are built and used to make measurements.

DC Circuits

T £

CHAPTER-OPENING QUESTION—Guess now! 
The automobile headlight bulbs 
shown in the circuits here are 
identical. The connection 
which produces more light is 

(a) circuit 1.
(b) circuit 2.
(c) both the same.
(d) not enough information.

r

Circuit 1

3 ,___ £
+■

Circuit 2

Electric circuits are basic parts of all electronic devices from radio and TV 
sets to computers and automobiles. Scientific measurements, from physics 
to biology and medicine, make use of electric circuits. In Chapter 25, we 
discussed the basic principles of electric current. Now we will apply these 

principles to analyze dc circuits involving combinations of batteries, resistors, and 
capacitors. We also study the operation of some useful instruments.*

CONTENTS
26-1 EMF and Terminal Voltage
26-2 Resistors in Series and in 

Parallel
26-3 Kirchhoff’s Rules
26-4 Series and Parallel EMFs; 

Battery Charging
26-5 Circuits Containing Resistor 

and Capacitor (RC Circuits)
26-6 Electric Hazards

* 26-7 Ammeters and Voltmeters

f AC circuits that contain only a voltage source and resistors can be analyzed like the dc circuits in this
PliontAr o/' tViat ^nntoin panapitnrc anrl ntliAr r»irr»nit arp mnrp



TABLE 26-1 Symbols for 
Circuit Elements

Symbol Device

"I1"

-W \r

Battery
Capacitor

Resistor
Wire with negligible 

resistance
Switch

Ground

A  CAUTI ON
Why battery voltage isn’t perfectly 

constant

FIGURE 26-1 Diagram for an 
electric cell or battery.

FIGURE 26-2 Example 26-1. 

R = 65.0 Q
— vwv-----

When we draw a diagram for a circuit, we represent batteries, capacitors, and 
resistors by the symbols shown in Table 26-1. Wires whose resistance is negligible 
compared with other resistance in the circuit are drawn simply as straight lines. 
Some circuit diagrams show a ground symbol ( i  or which may mean a real 
connection to the ground, perhaps via a metal pipe, or it may simply mean a 
common connection, such as the frame of a car.

For the most part in this Chapter, except in Section 26-5 on RC circuits, we will be 
interested in circuits operating in their steady state. That is, we won’t be looking at a circuit 
at the moment a change is made in it, such as when a battery or resistor is connected 
or disconnected, but rather later when the currents have reached their steady values.

26—1 EMF and Terminal Voltage
To have current in an electric circuit, we need a device such as a battery or an electric 
generator that transforms one type of energy (chemical, mechanical, or light, for 
example) into electric energy. Such a device is called a source of electromotive force 
or of emf. (The term “electromotive force” is a misnomer since it does not refer to a 
“force” that is measured in newtons. Hence, to avoid confusion, we prefer to use the 
abbreviation, emf.) The potential difference between the terminals of such a source, when 
no current flows to an external circuit, is called the emf of the source. The symbol % 
is usually used for emf (don’t confuse it with E  for electric field), and its unit is volts.

A battery is not a source of constant current—the current out of a battery 
varies according to the resistance in the circuit. A battery is, however, a nearly 
constant voltage source, but not perfectly constant as we now discuss. You may 
have noticed in your own experience that when a current is drawn from a battery, 
the potential difference (voltage) across its terminals drops below its rated emf. 
For example, if you start a car with the headlights on, you may notice the headlights 
dim. This happens because the starter draws a large current, and the battery voltage 
drops as a result. The voltage drop occurs because the chemical reactions in a battery 
(Section 25-1) cannot supply charge fast enough to maintain the full emf. For one 
thing, charge must move (within the electrolyte) between the electrodes of the battery, 
and there is always some hindrance to completely free flow. Thus, a battery itself has 
some resistance, which is called its internal resistance; it is usually designated r.

A real battery is modeled as if it were a perfect emf % in series with a resistor r, 
as shown in Fig. 26-1. Since this resistance r is inside the battery, we can never 
separate it from the battery. The two points a and b in the diagram represent the 
two terminals of the battery. What we measure is the terminal voltage 
Kb = Va ~ Vb' When no current is drawn from the battery, the terminal voltage 
equals the emf, which is determined by the chemical reactions in the battery: 
Vah = %. However, when a current I  flows naturally from the battery there is an 
internal drop in voltage equal to Ir. Thus the terminal voltage (the actual voltage) isf 

Vah = % ~ Ir. (26-1)
For example, if a 12-V battery has an internal resistance of 0.1 fl, then when 10 A 
flows from the battery, the terminal voltage is 12 V -  (10 A) (0.1 fl) = 11 V. The 
internal resistance of a battery is usually small. For example, an ordinary flashlight 
battery when fresh may have an internal resistance of perhaps 0.05 fl. (However, 
as it ages and the electrolyte dries out, the internal resistance increases to many 
ohms.) Car batteries have lower internal resistance.

Battery with internal resistance. A 65.0-0 resistor is 
connected to the terminals of a battery whose emf is 12.0 V and whose internal 
resistance is 0.5 0 , Fig. 26-2. Calculate (a) the current in the circuit, (b) the 
terminal voltage of the battery, K b, and (c) the power dissipated in the resistor R 
and in the battery’s internal resistance r.
APPROACH We first consider the battery as a whole, which is shown in Fig. 26-2 
as an emf % and internal resistance r between points a and b. Then we apply
V = IR to the circuit itself.



SOLUTION (a) From Eq. 26-1, we have 
Vab = % -  Ir.

We apply Ohm’s law (Eqs. 25-2) to this battery and the resistance R  of the 
circuit: Vab = IR. Hence IR  = % — Ir or % = I(R  + r), and so 

= % = 12‘0 Y  = 12,0  V 
R + r 65.0 ft + 0.5ft 65.5ft

(b) The terminal voltage is
Vah = % -  Ir = 12.0 V -  (0.183 A) (0.5 ft) = 11.9 V.

(c) The power dissipated (Eq. 25-7) in R  is
PR = I 2R = (0.183 A )2(65.0 ft) = 2.18 W,

and in r is
Pr = I 2r = (0.183 A )2(0.5 ft) = 0.02 W.

I EXERCISE A Repeat Example 26-1 assuming now that the resistance R = 10.0 ft, 
I whereas % and r remain as before.
In much of what follows, unless stated otherwise, we assume that the battery’s 
internal resistance is negligible, and that the battery voltage given is its terminal 
voltage, which we will usually write simply as V rather than Kb- Be careful not to 
confuse V (italic) for voltage and V (not italic) for the volt unit.

2 6 —2  Resistors in Series and in Parallel
When two or more resistors are connected end to end along a single path as shown 
in Fig. 26-3a, they are said to be connected in series. The resistors could be simple 
resistors as were pictured in Fig. 25-12, or they could be lightbulbs (Fig. 26-3b), or 
heating elements, or other resistive devices. Any charge that passes through R t in 
Fig. 26-3a will also pass through R2 and then R3. Hence the same current I  passes 
through each resistor. (If it did not, this would imply that either charge was not 
conserved, or that charge was accumulating at some point in the circuit, which 
does not happen in the steady state.)

We let V  represent the potential difference (voltage) across all three resistors 
in Fig. 26-3a. We assume all other resistance in the circuit can be ignored, so V  
equals the terminal voltage supplied by the battery. We let Vl f V2f and V3 be the 
potential differences across each of the resistors, R1,R 2, and R3, respectively. 
From Ohm’s law, V  = IR, we can write Vx = IR X, V2 = IR2, and V3 = IR3. 
Because the resistors are connected end to end, energy conservation tells us that 
the total voltage V  is equal to the sum of the voltages* across each resistor:

v  = Vi + v2 + V3 = IR X + IR2 + IR3. [series] (26-2)
Now let us determine the equivalent single resistance Req that would draw the 

same current I  as our combination of three resistors in series; see Fig. 26-3c. Such 
a single resistance Req would be related to V by

V = IReq.
We equate this expression with Eq. 26-2, V = l(R 1 + R2 + R3), and find

Req = R t + R2 + R3. [series] (26-3)

This is, in fact, what we expect. When we put several resistances in series, the total or 
equivalent resistance is the sum of the separate resistances. (Sometimes we may also 
call it the “net resistance.”) This sum applies to any number of resistances in series. 
Note that when you add more resistance to the circuit, the current through the circuit 
will decrease. For example, if a 12-V battery is connected to a 4-ft resistor, the current 
will be 3 A. But if the 12-V battery is connected to three 4-ft resistors in series, the 
total resistance is 12 ft and the current through the entire circuit will be only 1 A.

tTo see in more detail why this is true, note that an electric charge q passing through Rj loses an

FIGURE 26-3 (a) Resistances 
connected in series, (b) Resistances 
could be lightbulbs, or any other type 
of resistance, (c) Equivalent single 
resistance Req that draws the same 
current: Req = Ri + R2 + R3.

i _____f t  f t

Batlery
(b)
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FIGURE 2 6 -4  (a) Resistances 
connected in parallel, (b) The 
resistances could be lightbulbs.
(c) The equivalent circuit with R eq 
obtained from Eq. 26-4:
1
R,eq

JL jl JL
R i  R 2 R 3

FIGURE 2 6 -5  Water pipes in 
parallel— analogy to electric 
currents in parallel.

Another simple way to connect resistors is in parallel so that the current from 
the source splits into separate branches or paths, as shown in Fig. 26-4a and b. 
The wiring in houses and buildings is arranged so all electric devices are in 
parallel, as we already saw in Chapter 25, Fig. 25-20. With parallel wiring, if you 
disconnect one device (say, in Fig. 26-4a), the current to the other devices is 
not interrupted. Compare to a series circuit, where if one device (say, Rt in 
Fig. 26-3a) is disconnected, the current is stopped to all the others.

In a parallel circuit, Fig. 26-4a, the total current I  that leaves the battery 
splits into three separate paths. We let Ix, I2, and I3 be the currents through each 
of the resistors, RX,R 2, and R3, respectively. Because electric charge is conserved, 
the current I  flowing into junction A (where the different wires or conductors 
meet, Fig. 26-4a) must equal the current flowing out of the junction. Thus 

I  = Ix + I2 + I3. [parallel]
When resistors are connected in parallel, each has the same voltage across it. 
(Indeed, any two points in a circuit connected by a wire of negligible resistance 
are at the same potential.) Hence the full voltage of the battery is applied to 
each resistor in Fig. 26-4a. Applying Ohm’s law to each resistor, we have

and

Let us now determine what single resistor Req (Fig. 26-4c) will draw the same 
current I  as these three resistances in parallel. This equivalent resistance Req must 
satisfy Ohm’s law too:

i - k  
We now combine the equations above:

I  = h  + I2 + I3,
V_
RP

V V V  — —  + —  + — ■ 
R i  R n  R q■-eq

When we divide out the V  from each term, we have 
1  
Req

1  1  1---  + ---  + ---
i?i R2 R3

[parallel] (26-4)

For example, suppose you connect two 4-H loudspeakers to a single set of output 
terminals of your stereo amplifier or receiver. (Ignore the other channel for a 
moment—our two speakers are both connected to the left channel, say.) The 
equivalent resistance of the two 4-H “resistors” in parallel is

J _  -  J _  1  -  2 _ 1
4 a  + 4 a“■eq 4 0 20,

and so Req = 2 0 . Thus the net (or equivalent) resistance is less than each single 
resistance. This may at first seem surprising. But remember that when you connect 
resistors in parallel, you are giving the current additional paths to follow. Hence 
the net resistance will be less.

Equations 26-3 and 26-4 make good sense. Recalling Eq. 25-3 for resistivity, 
R = pl/A, we see that placing resistors in series increases the length and therefore 
the resistance; putting resistors in parallel increases the area through which current 
flows, thus reducing the overall resistance.

An analogy may help here. Consider two identical pipes taking in water near the 
top of a dam and releasing it below as shown in Fig. 26-5. The gravitational potential 
difference, proportional to the height h, is the same for both pipes, just as the voltage 
is the same for parallel resistors. If both pipes are open, rather than only one, twice as 
much water will flow through. That is, with two equal pipes open, the net resistance 
to the flow of water will be reduced, by half, just as for electrical resistors in parallel. 
Note that if both pipes are closed, the dam offers infinite resistance to the flow of 
water. This corresponds in the electrical case to an open circuit—when the path is



CONCEPTUAL EXAMPLE 26-2 I Series or parallel? (a)ThelightbulbsinFig.26-6 
are identical. Which configuration produces more light? (ft) Which way do you think the 
headlights of a car are wired? Ignore change of filament resistance R with current. 
RESPONSE (a) The equivalent resistance of the parallel circuit is found from Eq. 26-4, 
1 /R eq = 1/R  + 1/R = 2/R. Thus Req = R/2. The parallel combination then has 
lower resistance (= R/2) than the series combination (Req = R + R = 2R). There 
will be more total current in the parallel configuration (2), since I  = V /R eq and V  is 
the same for both circuits. The total power transformed, which is related to the light 
produced, is P = IV, so the greater current in (2) means more light produced. 
(b) Headlights are wired in parallel (2), because if one bulb goes out, the other bulb can 
stay lit. If they were in series (1), when one bulb burned out (the filament broke), the 
circuit would be open and no current would flow, so neither bulb would light.
NOTE When you answered the Chapter-Opening Question on page 677, was 
your answer circuit 2? Can you express any misconceptions you might have had?

CONCEPTUAL EXAMPLE 26-3 I An illuminating surprise. A 100-W. 120-V 
lightbulb and a 60-W, 120-V lightbulb are connected in two different ways as shown 
in Fig. 26-7. In each case, which bulb glows more brightly? Ignore change of filament 
resistance with current (and temperature).
RESPONSE (a) These are normal lightbulbs with their power rating given for 
120 V. They both receive 120 V, so the 100-W bulb is naturally brighter.
(b) The resistance of the 100-W bulb is less than that of the 60-W bulb (calculated 
from P = V 2/R  at constant 120 V). Here they are connected in series and receive 
the same current. Hence, from P = I 2R ( /  = constant) the higher-resistance 
“60-W” bulb will transform more power and thus be brighter.
NOTE When connected in series as in (b), the two bulbs do not dissipate 60 W 
and 100 W because neither bulb receives 120 V.

Note that whenever a group of resistors is replaced by the equivalent resistance, 
current and voltage and power in the rest of the circuit are unaffected.

Circuit with series and parallel resistors. How much 
current is drawn from the battery shown in Fig. 26-8a?
APPROACH The current I  that flows out of the battery all passes through the 
400-0 resistor, but then it splits into Ix and I2 passing through the 500-0 and 
700-0 resistors. The latter two resistors are in parallel with each other. We look 
for something that we already know how to treat. So let’s start by finding the 
equivalent resistance, Rp, of the parallel resistors, 500 O and 700 O. Then we can 
consider this Rp to be in series with the 400-0 resistor.
SOLUTION The equivalent resistance, Rp, of the 500-0 and 700-0 resistors in 
parallel is given by

JL _ 1
Rf ~ 5000

1
7000

= 0.0020 O 1 + 0.0014 O 1 = 0.00340

This is l/i?P, so we take the reciprocal to find RP. It is a common mistake to forget to 
take this reciprocal. Notice that the units of reciprocal ohms, O-1, are a reminder. Thus

RP = „ * „  , = 2900.
0.0034 r r '

This 290 O is the equivalent resistance of the two parallel resistors, and is in series 
with the 400-0 resistor as shown in the equivalent circuit of Fig. 26-8b. To find 
the total equivalent resistance Req, we add the 400-0 and 290-0 resistances 
together, since they are in series, and find

Req = 4000 + 2900 = 6900.
The total current flowing from the battery is then 

V  12.0 V/  =
Leq 6900

= 0.0174 A 17 mA.

St
St

(1) Series (2) Parallel
FIGURE 26-6 Example 26-2.

FIGURE 26-7 Example 26-3.
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FIGURE 26-8 (a) Circuit for 
Examples 26-4 and 26-5.
(b) Equivalent circuit, showing the 
equivalent resistance of 290 O for 
the two parallel resistors in (a).

a 400 Q b
H /W V ^ 1

500 0  7l
— V W V ^

700 0  72

12.0 V 
(a)

a 400 O I3 290 O q
— vwv— •— v w w -r

12.0 V 
(b)

A CAUTI ON
Kinrc Ti-ii Remember to take the reciprocal



jj 400 £2 I3
f-VWV-*-11

500 Q 7l
— V W V ^

700 Q
— v w v

12.0 V
(a)

a 400 Q
— v w v

Rp =
290 Q c

AAAA/—

12.0 Y
(b)

FIGURE 26-8 (repeated)
(a) Circuit for Examples 26-4 and 
26-5. (b) Equivalent circuit, showing 
the equivalent resistance of 290 O 
for the two parallel resistors in (a).

FIGURE 26-9 Example 26-6, 
three identical lightbulbs. Each 
yellow circle with -WAr- inside 
represents a lightbulb and its 
resistance.

EXAMPLE 26-5 Current in one branch. What is the current through the 
500-0 resistor in Fig. 26-8a?
APPROACH We need to find the voltage across the 500-0 resistor, which is the 
voltage between points b and c in Fig. 26-8a, and we call it V̂ c- Once Vbc is 
known, we can apply Ohm’s law, V = IR, to get the current. First we find the 
voltage across the 400-0 resistor, Vab, since we know that 17.4 mA passes through it 
(Example 26-4).
SOLUTION Vah can be found using V  = IR:

Vab = (0.0174 A) (4000) = 7.0 V.
Since the total voltage across the network of resistors is Vac = 12.0 V, then Vbc 
must be 12.0 V -  7.0 V = 5.0 V. Then Ohm’s law applied to the 500-0 resistor 
tells us that the current Ix through that resistor is 

5.0V
h  ~ = 1-0 X 10 A = 10 mA.5000

This is the answer we wanted. We can also calculate the current I2 through the 
700-0 resistor since the voltage across it is also 5.0 V:

_  5.0V 
h  ~ 7000

= 7 mA.

NOTE When Ix combines with I2 to form the total current I  (at point c in 
Fig. 26-8a), their sum is 10 mA + 7 mA = 17 mA. This equals the total current I  
as calculated in Example 26-4, as it should.

CONCEPTUAL EXAMPLE 26-6  I Bulb brightness in a circuit The circuit shown 
in Fig. 26-9 has three identical lightbulbs, each of resistance R. (a) When switch S is 
closed, how will the brightness of bulbs A and B compare with that of bulb C? (b) What 
happens when switch S is opened? Use a minimum of mathematics in your answers.
RESPONSE (a) With switch S closed, the current that passes through bulb C must 
split into two equal parts when it reaches the junction leading to bulbs A and B. It 
splits into equal parts because the resistance of bulb A equals that of B. Thus, bulbs 
A and B each receive half of C’s current; A and B will be equally bright, but they will 
be less bright than bulb C (P = I 2R). (b) When the switch S is open, no current can 
flow through bulb A, so it will be dark. We now have a simple one-loop series circuit, 
and we expect bulbs B and C to be equally bright. However, the equivalent resistance 
of this circuit (= R  + R) is greater than that of the circuit with the switch closed. 
When we open the switch, we increase the resistance and reduce the current leaving 
the battery. Thus, bulb C will be dimmer when we open the switch. Bulb B gets more 
current when the switch is open (you may have to use some mathematics here), and 
so it will be brighter than with the switch closed; and B will be as bright as C.

ESTIMATE I A two-speed fan. One way a multiple-speedEXAMPLE 26-7
ventilation fan for a car can be designed is to put resistors in series with the fan 
motor. The resistors reduce the current through the motor and make it run more 
slowly. Suppose the current in the motor is 5.0 A when it is connected directly 
across a 12-V battery, (a) What series resistor should be used to reduce the current 
to 2.0 A for low-speed operation? (b) What power rating should the resistor have? 
APPROACH An electric motor in series with a resistor can be treated as two 
resistors in series. The power comes from P = IV.
SOLUTION (a) When the motor is connected to 12 V and drawing 5.0 A, its 
resistance is R = V /I  = (12V)/(5.0A) = 2.4 0 . We will assume that this 
is the motor’s resistance for all speeds. (This is an approximation because the 
current through the motor depends on its speed.) Then, when a current of 2.0 A is 
flowing, the voltage across the motor is (2.0 A) (2.40) = 4.8 V. The remaining
12.0 V -  4.8 V = 7.2 V must appear across the series resistor. When 2.0 A flows 
through the resistor, its resistance must be R = (7.2 W f 2.0 A) = 3.6 0 . (b) The



EXAMPLE 26-8 Analyzing a circuit. A 9.0-V battery whose internal resis­
tance r is 0.50 O is connected in the circuit shown in Fig. 26-10a. (a) How much 
current is drawn from the battery? (b) What is the terminal voltage of the 
battery? (c) What is the current in the 6.0-0 resistor?
APPROACH To find the current out of the battery, we first need to determine the 
equivalent resistance Req of the entire circuit, including r, which we do by identi­
fying and isolating simple series or parallel combinations of resistors. Once we 
find I  from Ohm’s law, I  = %/Req, we get the terminal voltage using 
^ab = « -  Ir. For (c) we apply Ohm’s law to the 6.0-0 resistor.
SOLUTION (a) We want to determine the equivalent resistance of the circuit. But 
where do we start? We note that the 4.0-0 and 8.0-0 resistors are in parallel, and 
so have an equivalent resistance Reql given by

1 1 1 3

10.0 0

leql .0 0  + 4 .0 0 .0 0

so i?eql = 2.7 O. This 2.7 O is in series with the 6.0-0 resistor, as shown in 
the equivalent circuit of Fig. 26-10b. The net resistance of the lower arm of the 
circuit is then

leq2 6.0 O + 2.7 O — 8.7 O,
as shown in Fig. 26-10c. The equivalent resistance R eq3 of the 8.7-0 and 10.0-0 
resistances in parallel is given by

1  1  1

Leq3 10.00 8.7 0
= 0 .2 1 0 -l

so Req3 = (1/0.210 -1) = 4.8 O. This 4.8 O is in series with the 5.0-0 resistor and 
the 0.50-0 internal resistance of the battery (Fig. 26-10d), so the total equivalent 
resistance Req of the circuit is R eq = 4.8 O + 5.0 O + 0.50 O = 10.3 O. Hence 
the current drawn is

9.0 V
I  =

Req 10.3 O
= 0.87 A.

(b) The terminal voltage of the battery is
Vab = % - l r  = 9.0 V -  (0.87 A) (0.50 0 )  = 8.6 V.

(c) Now we can work back and get the current in the 6.0-0 resistor. It must be 
the same as the current through the 8.7 O shown in Fig. 26-10c (why?). The 
voltage across that 8.7 O will be the emf of the battery minus the voltage drops 
across r and the 5.0-0 resistor: V8J = 9.0 V -  (0.87 A )(0.500 + 5.0 0 ) . 
Applying Ohm’s law, we get the current (call it / ')

9.0 V -  (0.87 A) (0.500 + 5 .00)
r  =

5.7 0
= 0.48 A.

This is the current through the 6.0-0 resistor.

2 6 —3 Kirchhoffs Rules
In the last few Examples we have been able to find the currents in circuits by 
combining resistances in series and parallel, and using Ohm’s law. This technique 
can be used for many circuits. However, some circuits are too complicated for that 
analysis. For example, we cannot find the currents in each part of the circuit shown 
in Fig. 26-11 simply by combining resistances as we did before.

To deal with such complicated circuits, we use Kirchhoff’s rules, devised by 
G. R. Kirchhoff (1824-1887) in the mid-nineteenth century. There are two rules, 
and they are simply convenient applications of the laws of conservation of charge 
and energy.

10.0 0

10.0 0  
■AAAAr

- i  Re q2=8.7 0  H
------ VWV------

5.0 0

(c)

r = 0.50 0
-AAAAr-

= 9.0 V

FIGURE 26-10 Circuit for 
Example 26-8, where r is the 
internal resistance of the battery.

FIGURE 26-11 Currents can be 
calculated using Kirchhoff s rules.
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Kirchhoff’s first rule or junction rule is based on the conservation of electric 
charge that we already used to derive the rule for parallel resistors. It states that

Junction rule 
(conservation o f  charge)

Loop rule 
(conservation o f  energy)

a 400 Q 
— VW\r

290 Q P
-vwv—

e 12.0 V d
(a)

(b)

FIGURE 2 6-12  Changes in 
potential around the circuit in (a) 
are plotted in (b).

P R O B L E M  S O L V I N G
Be consistent with signs when 

applying the loop rule

at any junction point, the sum of all currents entering the junction must equal 
the sum of all currents leaving the junction.

That is, whatever charge goes in must come out. We already saw an instance of this 
in the n o te  at the end of Example 26-5.

Kirchhoff’s second rule or loop rule is based on the conservation of energy. 
It states that

the sum of the changes in potential around any closed loop of a circuit must 
be zero.

To see why this rule should hold, consider a rough analogy with the potential 
energy of a roller coaster on its track. When the roller coaster starts from the 
station, it has a particular potential energy. As it climbs the first hill, its potential 
energy increases and reaches a maximum at the top. As it descends the other side, 
its potential energy decreases and reaches a local minimum at the bottom of the 
hill. As the roller coaster continues on its path, its potential energy goes through 
more changes. But when it arrives back at the starting point, it has exactly as much 
potential energy as it had when it started at this point. Another way of saying this 
is that there was as much uphill as there was downhill.

Similar reasoning can be applied to an electric circuit. We will analyze the 
circuit of Fig. 26-11 shortly but first we consider the simpler circuit in Fig. 26-12. 
We have chosen it to be the same as the equivalent circuit of Fig. 26-8b already 
discussed. The current in this circuit is I  = (12.0 V)/(690fl) = 0.0174 A, as we 
calculated in Example 26-4. (We keep an extra digit in I  to reduce rounding 
errors.) The positive side of the battery, point e in Fig. 26-12a, is at a high 
potential compared to point d at the negative side of the battery. That is, point e 
is like the top of a hill for a roller coaster. We follow the current around the 
circuit starting at any point. We choose to start at point d and follow a positive 
test charge completely around this circuit. As we go, we note all changes in 
potential. When the test charge returns to point d, the potential will be the same 
as when we started (total change in potential around the circuit is zero). We plot 
the changes in potential around the circuit in Fig. 26-12b; point d is arbitrarily 
taken as zero.

As our positive test charge goes from point d, which is the negative or low 
potential side of the battery, to point e, which is the positive terminal (high potential 
side) of the battery, the potential increases by 12.0 V. (This is like the roller coaster 
being pulled up the first hill.) That is,

Ved = + 12.0 V.
When our test charge moves from point e to point a, there is no change in potential 
since there is no source of emf and we assume negligible resistance in the 
connecting wires. Next, as the charge passes through the 400-0 resistor to get to 
point b, there is a decrease in potential of V = IR = (0.0174 A )(400 fl) = 7.0 V. 
The positive test charge is flowing “downhill” since it is heading toward the 
negative terminal of the battery, as indicated in the graph of Fig. 26-12b. Because 
this is a decrease in potential, we use a negative sign:

Vba = Vb -  V* = -7.0 V.
As the charge proceeds from b to c there is another potential decrease (a 
“voltage drop”) of (0.0174 A) X (2900) = 5.0 V, and this too is a decrease 
in potential:

Vcb = -5.0 V.
There is no change in potential as our test charge moves from c to d as we 
assume negligible resistance in the wires.
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t Kirchhoff s Rules

1. Label the current in each separate branch of the 
given circuit with a different subscript, such as 
/ i , I2,h  (see Fig- 26-11 or 26-13). Each current 
refers to a segment between two junctions. Choose 
the direction of each current, using an arrow. The 
direction can be chosen arbitrarily: if the current is 
actually in the opposite direction, it will come out 
with a minus sign in the solution.

2. Identify the unknowns. You will need as many inde­
pendent equations as there are unknowns. You may 
write down more equations than this, but you will find 
that some of the equations will be redundant (that is, 
not be independent in the sense of providing new 
information). You may use V = IR for each resistor, 
which sometimes will reduce the number of unknowns.

3. Apply Kirchhoff’s junction rule at one or more 
junctions.

4. Apply Kirchhoff’s loop rule for one or more loops: 
follow each loop in one direction only. Pay careful 
attention to subscripts, and to signs:
(a) For a resistor, apply Ohm’s law; the potential differ­

ence is negative (a decrease) if your chosen loop 
direction is the same as the chosen current direc­
tion through that resistor; the potential difference is 
positive (an increase) if your chosen loop direction 
is opposite to the chosen current direction.

(b) For a battery, the potential difference is positive if 
your chosen loop direction is from the negative 
terminal toward the positive terminal; the potential 
difference is negative if the loop direction is from 
the positive terminal toward the negative terminal.

5. Solve the equations algebraically for the unknowns. Be 
careful when manipulating equations not to err with 
signs. At the end, check your answers by plugging them 
into the original equations, or even by using any addi­
tional loop or junction rule equations not used previously

EXAMPLE 26-9 Using Kirchhoff's rules. Calculate the currents Ix, I2, and I3
in the three branches of the circuit in Fig. 26-13 (which is the same as Fig. 26-11).
APPROACH AND SOLUTION
1. Label the currents and their directions. Figure 26-13 uses the labels Ix, I2, and 

I3 for the current in the three separate branches. Since (positive) current tends 
to move away from the positive terminal of a battery, we choose I2 and I3 to 
have the directions shown in Fig. 26-13. The direction of Ix is not obvious in 
advance, so we arbitrarily chose the direction indicated. If the current actually 
flows in the opposite direction, our answer will have a negative sign.

2. Identify the unknowns. We have three unknowns and therefore we need three 
equations, which we get by applying Kirchhoff’s junction and loop rules.

3. Junction rule: We apply Kirchhoff’s junction rule to the currents at point a, 
where /3 enters and I2 and It leave:

h  = h  + h- (a) 
This same equation holds at point d, so we get no new information by writing 
an equation for point d.

4. Loop rule: We apply Kirchhoff’s loop rule to two different closed loops. First 
we apply it to the upper loop ahdcba. We start (and end) at point a. From 
a to h we have a potential decrease Vha = - ( / 1)(30 fl). From h to d there is no 
change, but from d to c the potential increases by 45 V: that is, Vcd = +45 V. 
From c to a the potential decreases through the two resistances by an amount 
Vac = - ( / 3)(40n + l f l )  = - (4 1 f l) /3. Thus we have yha + V* + Vac = 0, or

-30 /i + 45 -  41/3 = 0, (b)
where we have omitted the units (volts and amps) so we can more easily do 
the algebra. For our second loop, we take the outer loop ahdefga. (We could 
have chosen the lower loop abcdefga instead.) Again we start at point a and 
have Vha = ~(/i)(3Ofl), and = 0. But when we take our positive test 
charge from d to e, it actually is going uphill, against the current—or at least 
against the assumed direction of the current, which is what counts in this 
calculation. Thus Ved = I2(20 fi) has a positive sign. Similarly, Vfe = I2( 1 fl). 
From f to g there is a decrease in potential of 80 V since we go from the high 
potential terminal of the battery to the low. Thus VPf = -80  V. Finally,

i P R O B L E M  S O L V I N G
Choose current directions arbitrarily

20 Q

FIGURE 26-13 Currents can be 
calculated using Kirchhoff’s rules. 
See Example 26-9.
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5. Solve the equations. We have three equations—labeled (a), (b), and (c)—and 
three unknowns. From Eq. (c) we have 

80 + 30/i
21

= 3. 1.4/!

From Eq. (b) we have
45 -  30/i 

h  ~ A \~
We substitute Eqs. (d) and (e) into Eq. (a):

= 1 . 1  -  0.73/!.

id)

(*)

h  = h  ~ 12 = 1-1 -  0.73/! -  3.8 -  1 .4 /j.

We solve for / i , collecting terms:
3.1/i = -2.7 

/1 = -0.87 A.
The negative sign indicates that the direction of Ix is actually opposite to that 
initially assumed and shown in Fig. 26-13. The answer automatically comes out 
in amperes because all values were in volts and ohms. From Eq. (d) we have 

/2 = 3.8 + 1.4/i = 3.8 + 1.4(—0.87) = 2.6 A, 
and from Eq. (e)

/3 = 1.1 -  0.73/i = 1.1 -  0.73(—0.87) = 1.7A.
This completes the solution.

NOTE The unknowns in different situations are not necessarily currents. It might 
be that the currents are given and we have to solve for unknown resistance or 
voltage. The variables are then different, but the technique is the same.

EXERCISE C Write the equation for the lower loop abcdefga of Example 26-9 and show, 
assuming the currents calculated in this Example, that the potentials add to zero for this 
lower loop.

2 6 —4  Series and Parallel EMFs; 
Battery Charging

When two or more sources of emf, such as batteries, are arranged in series as in 
Fig. 26-14a, the total voltage is the algebraic sum of their respective voltages. On 
the other hand, when a 20-V and a 12-V battery are connected oppositely, as 
shown in Fig. 26-14b, the net voltage VCSL is 8 V (ignoring voltage drop across 
internal resistances). That is, a positive test charge moved from a to b gains in 
potential by 20 V, but when it passes from b to c it drops by 12 V. So the net change 
is 20 V — 12 V = 8 V. You might think that connecting batteries in reverse like 
this would be wasteful. For most purposes that would be true. But such a reverse 
arrangement is precisely how a battery charger works. In Fig. 26-14b, the 20-V 
source is charging up the 12-V battery. Because of its greater voltage, the 20-V 
source is forcing charge back into the 12-V battery: electrons are being forced into 
its negative terminal and removed from its positive terminal.

An automobile alternator keeps the car battery charged in the same way. A 
voltmeter placed across the terminals of a (12-V) car battery with the engine running 
fairly fast can tell you whether or not the alternator is charging the battery. If it is, the 
voltmeter reads 13 or 14 V. If the battery is not being charged, the voltage will be 
12 V, or less if the battery is discharging. Car batteries can be recharged, but other 
batteries may not be rechargeable, since the chemical reactions in many cannot be 
reversed. In such cases, the arrangement of Fig. 26-14b would simply waste energy.

Sources of emf can also be arranged in parallel, Fig. 26-14c. With equal emfs, 
a parallel arrangement can provide more energy when large currents are needed. 
Each of the cells in parallel has to produce only a fraction of the total current, so 
the enerev loss due to internal resistance is less than for a sinele cell: and the



EXAMPLE 26-10 Jump starting a car. A good car battery is being used to 
jump start a car with a weak battery. The good battery has an emf of 12.5 V and 
internal resistance 0.020 fl. Suppose the weak battery has an emf of 10.1 V and 
internal resistance 0.10 fl. Each copper jumper cable is 3.0 m long and 0.50 cm in 
diameter, and can be attached as shown in Fig. 26-15. Assume the starter motor 
can be represented as a resistor Rs = 0.15 fl. Determine the current through the 
starter motor (a) if only the weak battery is connected to it, and (b) if the good 
battery is also connected, as shown in Fig. 26-15.
APPROACH We apply Kirchhoff’s rules, but in (b) we will first need to determine 
the resistance of the jumper cables using their dimensions and the resistivity 
(p = 1.68 X 10 8fl*m for copper) as discussed in Section 25-4.
SOLUTION (a) The circuit with only the weak battery and no jumper cables is 
simple: an emf of 10.1 V connected to two resistances in series, 0.10 fl + 0.15 fl = 
0.25 0 . Hence the current is I  = V /R  = (10.1 V)/(0.25 fl) = 40 A.
(b) We need to find the resistance of the jumper cables that connect 
the good battery. From Eq. 25-3, each has resistance Rj = p i/A  = 
(1.68 X 10_8fl-m)(3.0m)/(7r)(0.25 X 10-2 m)2 = 0.0026 fl. Kirchhoffs loop rule 
for the full outside loop gives

12.5 V -  /i(2 i? j + r j  -  I3Rs = 0
12.5 V -  / i (0.025 fl) -  J3(0.15 fl) = 0 (a) 

since (2Rj + r) = (0.0052 fl + 0.020 fl) = 0.025 fl.
The loop rule for the lower loop, including the weak battery and the starter, gives

10.1 V -  73(0.15 fl) -  J2 (0.100) = 0. (b)
The junction rule at point B gives

h  + h  =  h - (c)

We have three equations in three unknowns. From Eq. (c), = I3 -  I2 and we 
substitute this into Eq. (a):

12.5 V -  (J3 -  /2)(0.025 fl) -  /3(0.15 fl) = 0,
12.5 V -  /3(0.175 fl) + /2(0.025 fl) = 0.

Combining this last equation with (b) gives I3 = 71 A, quite a bit better than 
in (fl).The other currents are I2 = - 5  A and Ix = 76 A. Note that I2 = —5 A  
is in the opposite direction from that assumed in Fig. 26-15. The terminal voltage 
of the weak 10.1-V battery is now VBA = 10.1 V -  ( -5  A)(0.10fl) = 10.6 V. 
NOTE The circuit shown in Fig. 26-15, without the starter motor, is how a battery 
can be charged. The stronger battery pushes charge back into the weaker battery.

EXERCISE D If the jumper cables of Example 26-10 were mistakenly connected in 
reverse, the positive terminal of each battery would be connected to the negative terminal 
of the other battery (Fig. 26-16). What would be the current I  even before the starter 
motor is engaged (the switch S in Fig. 26-16 is open)? Why could this cause the batteries 
to explode?

26—5 Circuits Containing Resistor 
and Capacitor Circuits)

Our study of circuits in this Chapter has, until now, dealt with steady currents that 
do not change in time. Now we examine circuits that contain both resistance and 
capacitance. Such a circuit is called an R C  circuit. RC circuits are common in 
everyday life: they are used to control the speed of a car’s windshield wiper, and 
the timing of the change of traffic lights. They are used in camera flashes, in heart 
pacemakers, and in many other electronic devices. In RC circuits, we are not so 
interested in the final “steady state” voltage and charge on the capacitor, but

FIGURE 26-15
a jump start.

Example 26-10,

FIGURE 26-16 Exercise D.
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(a)
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FIGURE 2 6 -1 7  After the switch S 
closes in the R C  circuit shown in (a), 
the voltage across the capacitor 
increases with time as shown in (b), 
and the current through the resistor 
decreases with time as shown in (c).

Let us now examine the RC  circuit shown in Fig. 26-17a. When the switch S is 
closed, current immediately begins to flow through the circuit. Electrons will flow 
out from the negative terminal of the battery, through the resistor R, and accumulate 
on the upper plate of the capacitor. And electrons will flow into the positive 
terminal of the battery, leaving a positive charge on the other plate of the capacitor. 
As charge accumulates on the capacitor, the potential difference across it increases 
(Vc = QIC ), and the current is reduced until eventually the voltage across the 
capacitor equals the emf of the battery, %. There is then no potential difference 
across the resistor, and no further current flows. Potential difference Vc across the 
capacitor thus increases in time as shown in Fig. 26-17b. The mathematical form of 
this curve—that is, Vc as a function of time—can be derived using conservation 
of energy (or Kirchhoff’s loop rule). The emf % of the battery will equal the sum of 
the voltage drops across the resistor (IR) and the capacitor (Q/C):

% = IR (26-5)

The resistance R  includes all resistance in the circuit, including the internal 
resistance of the battery; I  is the current in the circuit at any instant, and Q is the 
charge on the capacitor at that same instant. Although % R, and C are constants, 
both Q and I  are functions of time. The rate at which charge flows through the 
resistor (I  = dQ /dt) is equal to the rate at which charge accumulates on the 
capacitor. Thus we can write

dQ 1
= R

dt + c Q-
This equation can be solved by rearranging it: 

dQ dt
“  ~RC'C% — Q 

We now integrate from 
capacitor:

t = 0, when <2 = 0, to time t when a charge Q is on the 

[Q dQ 1
RC 
t

RC

•ln(C8 -  Q) -  ( - I n C%) =

Jo C% -  Q 

- I n (C% -  Q)

[d t
Jo

In(C* -  Q) ~  In{C%) = ~ j g

In
1 - ^ 1 = -

t
RC

We take the exponential of both sides
Q _ 
c%

=  ~ -t/R C

or
(26-6a)Q = C%( 1 -  e~t,RC).

The potential difference across the capacitor is Vc = Q IC , so
Vc = « (1  -  e~t/RC). (26-6b)

From Eqs. 26-6 we see that the charge Q on the capacitor, and the voltage Vc 
across it, increase from zero at t = 0 to maximum values Qmax = C% and 
Vc = % after a very long time. The quantity RC  that appears in the exponent is 
called the time constant r  of the circuit:

t  = RC. (26-7)
It represents the time^ required for the capacitor to reach (l -  e~x) = 0.63 or 63% of 
its full charge and voltage. Thus the product RC  is a measure of how quickly the



capacitor gets charged. In a circuit, for example, where R = 200 kO and 
C = 3.0 jiF, the time constant is (2.0 X 105 fl)(3.0 X 10-6F) = 0.60 s. If the 
resistance is much lower, the time constant is much smaller. This makes sense, since 
a lower resistance will retard the flow of charge less. All circuits contain some 
resistance (if only in the connecting wires), so a capacitor never can be charged 
instantaneously when connected to a battery.

From Eqs. 26-6, it appears that Q and Vc never quite reach their maximum values 
within a finite time. However, they reach 86% of maximum in 2RC, 95% in 3RC, 
98% in 4RC, and so on. Q and Vc approach their maximum values asymptoti­
cally. For example, if R = 20 kO and C = 0.30 /xF, the time constant is 
(2.0 X 104 n)(3.0 X 10-7 F) = 6.0 X 10-3 s. So the capacitor is more than 98% 
charged in less than ^  of a second.

The current I  through the circuit of Fig. 26-17a at any time t can be obtained 
by differentiating Eq. 26-6a:

= dG = l e-,/RC (26_8)
dt R

Thus, at t = 0, the current is I  = %/R, as expected for a circuit containing only 
a resistor (there is not yet a potential difference across the capacitor). The current 
then drops exponentially in time with a time constant equal to RC, as the voltage 
across the capacitor increases. This is shown in Fig. 26-17c. The time constant RC  
represents the time required for the current to drop to 1/e «  0.37 of its initial value.

EXAMPLE 26-11 RC  circuit, with emf. The capacitance in the circuit of 
Fig. 26-17a is C = 0.30 /jlF, the total resistance is 20 kft, and the battery emf is 
12 V. Determine (a) the time constant, (b) the maximum charge the capacitor 
could acquire, (c) the time it takes for the charge to reach 99% of 
this value, (d) the current I  when the charge Q is half its maximum value,
(e) the maximum current, and (f) the charge Q when the current I  is 0.20 its 
maximum value.
APPROACH We use Fig. 26-17 and Eqs. 26-5, 6,7, and 8.
SOLUTION (a) The time constant is RC =  (2.0 x  104fl)(3.0 x  1 (T7F) = 6.0 x  10“3s.
(b) The maximum charge would be Q = C% = (3.0 X 10-7 F)(12V) = 3.6 ji.C.
(c) In Eq. 26-6a, we set Q = 0.99C%\

0.99C% = C%( 1 -  e~'/RC),
or

Then

so

, - t /R C  =  l  _  a99 =  0 .0 L

= —ln(O.Ol) = 4.6

t = 4.6RC = 28 X 10“ 3 s 
or 28 ms (less than ^s).
(d) From part (b) the maximum charge is 3.6 /jlC.  When the charge is half this 
value, 1.8 /jlC,  the current I  in the circuit can be found using the original differential 
equation, or Eq. 26-5:

1 ( Q \  1 /  1.8 X 10-6C \
I  = N  -  -77 = ----------- T ~  12 V ----------------- t -  = 300 fiA .R \  CJ  2.0 X 104n  V 0.30 X 10“6F /  ^

(e) The current is a maximum when there is no charge on the capacitor (Q = 0):
12 V

R  2 .0 X 1 0 4H 
if) Again using Eq. 26-5, now with I  = 0.20/max = 120 /jlA ,  we have
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FIGURE 26-18 For the RC  circuit 
shown in (a), the voltage Vc across 
the capacitor decreases with time, as 
shown in (b), after the switch S is 
closed at t = 0. The charge on the 
capacitor follows the same curve 
since Vc oc Q.

The circuit just discussed involved the charging of a capacitor by a battery 
through a resistance. Now let us look at another situation: when a capacitor is 
already charged (say to a voltage V0), and it is then allowed to discharge through a 
resistance R as shown in Fig. 26-18a. (In this case there is no battery.) When the 
switch S is closed, charge begins to flow through resistor R from one side of the 
capacitor toward the other side, until the capacitor is fully discharged. The voltage 
across the resistor at any instant equals that across the capacitor:

The rate at which charge leaves the capacitor equals the negative of the current in 
the resistor, I  = - dQ /dt, because the capacitor is discharging (Q is decreasing). 
So we write the above equation as

- W - R  = Q .
dt C

We rearrange this to

dQ = dt 
Q RC

and integrate it from t = 0 when the charge on the capacitor is Q0, to some time t 
later when the charge is Q:

i Q- -  _ _ L
n Go RC

or
Q = Q0e-,,RC.

The voltage across the capacitor (Vc

Vc = V0e ^ RC,

QIC) as a function of time is

(26-9a)

(26-9b)

where the initial voltage V0 = QJC. Thus the charge on the capacitor, and the 
voltage across it, decrease exponentially in time with a time constant RC. This is 
shown in Fig. 26-18b. The current is

/  = = 
dt

Q ° _ e - t /R C  _  ,

RC V
-t/R C (26-10)

and it too is seen to decrease exponentially in time with the same time constant RC. 
The charge on the capacitor, the voltage across it, and the current in the resistor all 
decrease to 37% of their original value in one time constant t = r  = RC.

EXERCISE E In 10 time constants, the charge on the capacitor in Fig. 26-18 will be about
(a) Qo/20,000, (b) Q0/ 5000, (c) Q0/1000, (d) Q J 10, (e) Q J 3?

FIGURE 26-19 Example 26-12.
EXAMPLE 26-12 Discharging RC  circuit. In the RC circuit shown in 
Fig. 26-19, the battery has fully charged the capacitor, so Q0 = C%. Then at 
t = 0 the switch is thrown from position a to b. The battery emf is 20.0 V, and the 
capacitance C =  1.02 / jlF .  The current I  is observed to decrease to 0.50 of its 
initial value in 40 /jls. (a) What is the value of Q, the charge on the capacitor, at 
t = 0? (b) What is the value of R ? (c) What is Q at t = 60 ̂ ts?

APPROACH At t = 0, the capacitor has charge Q0 = C%, and then the battery 
is removed from the circuit and the capacitor begins discharging through the 
resistor, as in Fig. 26-18. At any time t later (Eq. 26-9a) we have

Q = Qoe~t/RC = C%e~t/RC.



SOLUTION (a) At t = 0,

Q = Q0 = C% = (1.02 X 1(T6F)(20.0V) = 2.04 X 10“5 C = 20.4 ^C.

(b) To find R, we are given that at t = 40 /j l s , I  = 0.5010. Hence 

0.50 IQ = I0e~t/RC.

Taking natural logs on both sides (In 0.50 = -0.693): 

t0.693 =

so
RC

t (40 X 10“ 6 s)
(0.693)C (0.693)(1.02 X KT6F)

= 57 a

(c) At t  = 60 /j l s ,

60xl0~6 s
Q = Q0e~,/RC = (20.4 X 10-6C)e (57“Xi-02xio-‘f) = 7 3

CONCEPTUAL EXAMPLE 26-13 I Bulb in ffC circuit In the circuit of Fig. 26-20, 
the capacitor is originally uncharged. Describe the behavior of the lightbulb from the 
instant switch S is closed until a long time later.

RESPONSE When the switch is first closed, the current in the circuit is high and 
the lightbulb burns brightly. As the capacitor charges, the voltage across the 
capacitor increases causing the current to be reduced, and the lightbulb dims. As 
the potential difference across the capacitor approaches the same voltage as the 
battery, the current decreases toward zero and the lightbulb goes out.

1
FIGURE 2 6 -2 0  Example 26-13.

* Applications of RC Circuits
The charging and discharging in an RC circuit can be used to produce voltage 
pulses at a regular frequency. The charge on the capacitor increases to a particular 
voltage, and then discharges. One way of initiating the discharge of the capacitor is 
by the use of a gas-filled tube which has an electrical breakdown when the voltage 
across it reaches a certain value V0. After the discharge is finished, the tube no 
longer conducts current and the recharging process repeats itself, starting at a 
lower voltage V'0. Figure 26-21 shows a possible circuit, and the “sawtooth” 
voltage it produces.

A simple blinking light can be an application of a sawtooth oscillator circuit. 
Here the emf is supplied by a battery; the neon bulb flashes on at a rate of perhaps
1 cycle per second. The main component of a “flasher unit” is a moderately large 
capacitor.

The intermittent windshield wipers of a car can also use an RC circuit. 
The RC  time constant, which can be changed using a multi-positioned switch 
for different values of R with fixed C, determines the rate at which the wipers 
come on.

EXAMPLE 26-14 ESTIMATE! Resistor in a turn signal. Estimate the order 
of magnitude of the resistor in a turn-signal circuit.

APPROACH A typical turn signal flashes perhaps twice per second, so the time 
constant is on the order of 0.5 s. A moderate capacitor might have C = 1 [jlF .  

SOLUTION Setting r  = RC = 0.5 s, we find

0.5 s

( j p P H Y S I C S  A P P L I E D
Sawtooth, blinkers, windshield wipers

FIGURE 26-21 (a) An R C  circuit, 
coupled with a gas-filled tube as a 
switch, can produce a repeating 
“sawtooth” voltage, as shown in (b).

R = — 500 kO.
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Heart pacemaker

FIGURE 26-22 Electronic battery- 
powered pacemaker can be seen on 
the rib cage in this X-ray.

^ P H Y S I C S  A P P L I E D
Dangers of electricity

FIGURE 26-23 A person receives 
an electric shock when the circuit is 
completed.

An interesting medical use of an RC  circuit is the electronic heart pacemaker, 
which can make a stopped heart start beating again by applying an electric 
stimulus through electrodes attached to the chest. The stimulus can be repeated 
at the normal heartbeat rate if necessary. The heart itself contains pacemaker 
cells, which send out tiny electric pulses at a rate of 60 to 80 per minute. These 
signals induce the start of each heartbeat. In some forms of heart disease, the 
natural pacemaker fails to function properly, and the heart loses its beat. Such 
patients use electronic pacemakers which produce a regular voltage pulse that 
starts and controls the frequency of the heartbeat. The electrodes are implanted 
in or near the heart (Fig. 26-22), and the circuit contains a capacitor and a 
resistor. The charge on the capacitor increases to a certain point and then 
discharges a pulse to the heart. Then it starts charging again. The pulsing rate 
depends on the values of R  and C.

2 6 —6 Electric Hazards
Excess electric current can heat wires in buildings and cause fires, as discussed in 
Section 25-6. Electric current can also damage the human body or even be fatal. 
Electric current through the human body can cause damage in two ways: (1) Electric 
current heats tissue and can cause burns; (2 ) electric current stimulates nerves and 
muscles, and we feel a “shock.” The severity of a shock depends on the magnitude 
of the current, how long it acts, and through what part of the body it passes. A 
current passing through vital organs such as the heart or brain is especially serious 
for it can interfere with their operation.

Most people can “feel” a current of about 1 mA. Currents of a few mA cause 
pain but rarely cause much damage in a healthy person. Currents above 10 mA 
cause severe contraction of the muscles, and a person may not be able to 
let go of the source of the current (say, a faulty appliance or wire). Death 
from paralysis of the respiratory system can occur. Artificial respiration, 
however, can sometimes revive a victim. If a current above about 80 to 100 mA 
passes across the torso, so that a portion passes through the heart for more than 
a second or two, the heart muscles will begin to contract irregularly and blood 
will not be properly pumped. This condition is called ventricular fibrillation. 
If it lasts for long, death results. Strangely enough, if the current is much larger, 
on the order of 1 A, death by heart failure may be less likely,* but such currents 
can cause serious burns, especially if concentrated through a small area of 
the body.

The seriousness of a shock depends on the applied voltage and on the 
effective resistance of the body. Living tissue has low resistance since the fluid of 
cells contains ions that can conduct quite well. However, the outer layer of skin, 
when dry, offers high resistance and is thus protective. The effective resistance 
between two points on opposite sides of the body when the skin is dry is in the 
range of 104 to 106 ft. But when the skin is wet, the resistance may be 103 O or less. 
A person who is barefoot or wearing thin-soled shoes will be in good contact with 
the ground, and touching a 120-V line with a wet hand can result in a current

120 V
I  = = 120mA.iooo a

As we saw, this could be lethal.
A person who has received a shock has become part of a complete circuit. 

Figure 26-23 shows two ways the circuit might be completed when a person

1 Larger currents apparently bring the entire heart to a standstill. Upon release of the current, the heart 
returns to its normal rhythm. This may not happen when fibrillation occurs because, once started, it can 
be hard to stop. Fibrillation may also occur as a result of a heart attack or during heart surgery. A
HaviVa tnmim oo a  A n t s w  ^HAcmKAH in QAMmn OA_A\  nan onnlu a Kripf ViirtVi MirrAnt t n  tliA liAart
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FIGURE 26-24 (a) An electric oven operating normally with a 2-prong plug.
(b) Short to the case with ungrounded case: shock, (c) Short to the case with the case 
grounded by a 3-prong plug.

accidentally touches a “hot” electric wire—“hot” meaning a high potential such 
as 120 V (normal U.S. household voltage) relative to ground. The other wire of 
building wiring is connected to ground—either by a wire connected to a buried 
conductor, or via a metal water pipe into the ground. In Fig. 26-23a, the current passes 
from the high-voltage wire, through the person, to the ground through his bare 
feet, and back along the ground (a fair conductor) to the ground terminal of the 
source. If the person stands on a good insulator—thick rubber-soled shoes or a 
dry wood floor—there will be much more resistance in the circuit and conse­
quently much less current through the person. If the person stands with bare feet 
on the ground, or is in a bathtub, there is lethal danger because the resistance is 
much less and the current greater. In a bathtub (or swimming pool), not only are 
you wet, which reduces your resistance, but the water is in contact with the drain 
pipe (typically metal) that leads to the ground. It is strongly recommended that 
you not touch anything electrical when wet or in bare feet. Building codes that 
require the use of non-metal pipes would be protective.

In Fig. 26-23b, a person touches a faulty “hot” wire with one hand, and the 
other hand touches a sink faucet (connected to ground via the pipe). The current is 
particularly dangerous because it passes across the chest, through the heart and 
lungs. A useful rule: if one hand is touching something electrical, keep your other 
hand in your pocket (don’t use it!), and wear thick rubber-soled shoes. It is also a 
good idea to remove metal jewelry, especially rings (your finger is usually moist 
under a ring).

You can come into contact with a hot wire by touching a bare wire whose 
insulation has worn off, or from a bare wire inside an appliance when you’re 
tinkering with it. (Always unplug an electrical device before investigating1" its 
insides!) Another possibility is that a wire inside a device may break or lose 
its insulation and come in contact with the case. If the case is metal, it will 
conduct electricity. A person could then suffer a severe shock merely by touching 
the case, as shown in Fig. 26-24b. To prevent an accident, metal cases are 
supposed to be connected directly to ground by a separate ground wire. Then if a 
“hot” wire touches the grounded case, a short circuit to ground immediately 
occurs internally, as shown in Fig. 26-24c, and most of the current passes through 
the low-resistance ground wire rather than through the person. Furthermore, 
the high current should open the fuse or circuit breaker. Grounding a metal 
case is done by a separate ground wire connected to the third (round) 
prong of a 3-prong plug. Never cut off the third prong of a plug—it could save your life.

ttM rnL _ J ^ _  J_120 V
Current

(c)

/ j \  CAUTI ON________
Keep one hand in your pocket 
when other touches electricity

0 P H Y S I C S  A P P L I E D
Grounding and shocks



FIGURE 2 6 -2 5  (a) A 3-prong plug, 
and (b) an adapter (gray) for 
old-fashioned 2-prong outlets— 
be sure to screw down the ground 
tab. (c) A polarized 2-prong plug.

FIGURE 2 6 -2 6  Four wires 
entering a typical house. The color 
codes for wires are not always as 
shown here—be careful!

____  Black (or red) Hot± 120 V;--------  i  ----T ^ ± 120V
From
electric \ \  white 
company; U
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120 v n 
Black {

Neutral,

—  + 120 V

Green
Ground at - L  Ground at

A three-prong plug, and an adapter, are shown in Figs. 26-25a and b.
Why is a third wire needed? The 120 V is carried by the other two wires—one 

hot (120 V ac), the other neutral, which is itself grounded. The third “dedicated” 
ground wire with the round prong may seem redundant. But it is protection for 
two reasons: (1 ) it protects against internal wiring that may have been done 
incorrectly; (2) the neutral wire carries normal current (“return” current from 
the 120 V) and it does have resistance; so there can be a voltage drop along 
it—normally small, but if connections are poor or corroded, or the plug is loose, 
the resistance could be large enough that you might feel that voltage if you 
touched the neutral wire some distance from its grounding point.

Some electrical devices come with only two wires, and the plug’s two prongs 
are of different widths; the plug can be inserted only one way into the outlet so 
that the intended neutral (wider prong) in the device is connected to neutral in 
the wiring (Fig. 26-25c). For example, the screw threads of a lightbulb are meant 
to be connected to neutral (and the base contact to hot), to avoid shocks when 
changing a bulb in a possibly protruding socket. Devices with 2-prong plugs do not 
have their cases grounded; they are supposed to have double electric insulation. 
Take extra care anyway.

The insulation on a wire may be color coded. Hand-held meters may have red 
(hot) and black (ground) lead wires. But in a house, black is usually hot (or it may 
be red), whereas white is neutral and green is the dedicated ground, Fig. 26-26. But 
beware: these color codes cannot always be trusted. [In the U.S., three wires 
normally enter a house: two hot wires at 120 V each (which add together to 240 V 
for appliances or devices that run on 240 V) plus the grounded neutral (carrying 
return current for the two hots). See Fig. 26-26. The “dedicated” ground wire 
(non-current carrying) is a fourth wire that does not come from the electric 
company but enters the house from a nearby heavy stake in the ground or a buried 
metal pipe. The two hot wires can feed separate 120-V circuits in the house, so 
each 120-V circuit inside the house has only three wires, including ground.]

Normal circuit breakers (Sections 25-6 and 28-8) protect equipment and 
buildings from overload and fires. They protect humans only in some circumstances, 
such as the very high currents that result from a short, if they respond quickly 
enough. Ground fault circuit interrupters (GFCI), described in Section 29-8, are 
designed to protect people from the much lower currents (10 mA to 100 mA) that 
are lethal but would not throw a 15-A circuit breaker or blow a 20-A fuse.

It is current that harms, but it is voltage that drives the current. 30 volts is 
sometimes said to be the threshhold for danger. But even a 12-V car battery 
(which can supply large currents) can cause nasty burns and shock.

Another danger is leakage current, by which we mean a current along an 
unintended path. Leakage currents are often “capacitively coupled.” For example, 
a wire in a lamp forms a capacitor with the metal case; charges moving in one 
conductor attract or repel charge in the other, so there is a current. Typical 
electrical codes limit leakage currents to 1 mA for any device. A 1-mA leakage 
current is usually harmless. It can be very dangerous, however, to a hospital patient 
with implanted electrodes connected to ground through the apparatus. This is due 
to the absence of the protective skin layer and because the current can pass 
directly through the heart as compared to the usual situation where the current 
enters at the hands and spreads out through the body. Although 100 mA may be 
needed to cause heart fibrillation when entering through the hands (very little 
of it actually passes through the heart), as little as 0.02 mA has been known to 
cause fibrillation when passing directly to the heart. Thus, a “wired” patient 
is in considerable danger from leakage current even from as simple an act as 
touching a lamp.

Finally, don’t touch a downed power line (lethal!) or even get near it. A hot power 
line is at thousands of volts. A huge current can flow along the ground or pavement, 
from where the high-voltage wire touches the ground along its path to the grounding

4-1______



*26—7 Ammeters and Voltmeters
An ammeter is used to measure current, and a voltmeter measures potential differ- P H Y S I C S  A P P L I E D
ence or voltage. Measurements of current and voltage are made with meters that j ) c  meters
are of two types: (1 ) analog meters, which display numerical values by the position 1
of a pointer that can move across a scale (Fig. 26-27a); and (2) digital meters, t  w
which display the numerical value in numbers (Fig. 26-27b). We now discuss the
meters themselves and how they work, then how they are connected to circuits to
make measurements. Finally we will discuss how using meters affects the circuit ■
being measured, possibly causing erroneous results—and what to do about it. g  J

* Analog Ammeters and Voltmeters
The crucial part of an analog ammeter or voltmeter, in which the reading is by a 
pointer on a scale (Fig. 26-27a), is a galvanometer. The galvanometer works on the
principle of the force between a magnetic field and a current-carrying coil of wire, ^
and will be discussed in Chapter 27. For now, we merely need to know that the 
deflection of the needle of a galvanometer is proportional to the current flowing 
through it. The full-scale current sensitivity of a galvanometer, /m, is the electric 
current needed to make the needle deflect full scale.

A galvanometer can be used directly to measure small dc currents. For example, 
a galvanometer whose sensitivity Im is 50 /jlA  can measure currents from about 1 jjlA  
(currents smaller than this would be hard to read on the scale) up to 50 /jlA. To 
measure larger currents, a resistor is placed in parallel with the galvanometer. Thus, 
an analog ammeter, represented by the symbol consists of a galvanometer 
(•-©-•) in parallel with a resistor called the shunt resistor, as shown in Fig. 26-28.
(“Shunt” is a synonym for “in parallel”) The shunt resistance is Rsh, and the resistance 
of the galvanometer coil, through which current passes, is r. The value of i?sh is chosen 
according to the full-scale deflection desired; R&h is normally very small—giving an 
ammeter a very small net resistance—so most of the current passes through Rsh and 
very little (^  50 /iA )  passes through the galvanometer to deflect the needle.

Ammeter
/_ ^ - © _ = 7.

FIGURE 26-28 An ammeter is a 
galvanometer in parallel with a (shunt) 

V\M— *----- •  resistor with low resistance, Rsh.
I r

EXAMPLE 26-15 Ammeter design. Design an ammeter to read 1.0 A at full 
scale using a galvanometer with a full-scale sensitivity of 50 /jlA and a resistance 
r = 30 fl. Check if the scale is linear.
APPROACH Only 50/jlA (= Ig = 0.000050 A) of the 1.0-A current must pass 
through the galvanometer to give full-scale deflection. The rest of the current 
(.IR = 0.999950 A) passes through the small shunt resistor, R sh, Fig. 26-28. The 
potential difference across the galvanometer equals that across the shunt resistor 
(they are in parallel). We apply Ohm’s law to find Rsh.
SOLUTION Because I  = IG + IR, when I  = 1.0 A flows into the meter, we want 
IR through the shunt resistor to be IR = 0.999950 A. The potential difference 
across the shunt is the same as across the galvanometer, so Ohm’s law tells us

Ir R%h = Ig r\
then

= (5.0 x  10~5 A )(30tl) 
sh IR (0.999950 A)

or 0.0015 ft. The shunt resistor must thus have a very low resistance and most of 
the current passes through it.

1  \  (b)
FIGURE 26-27 (a) An analog 
multimeter being used as a voltmeter, 
(b) An electronic digital meter.



An analog voltmeter («-©-) also consists of a galvanometer and a resistor. But 
the resistor R &er is connected in series, Fig. 26-29, and it is usually large, giving a 
voltmeter a high internal resistance.

FIGURE 2 6 -2 9  A  voltmeter is a 
galvanometer in series with a resistor 
with high resistance, R ser.

^  ser y
•A^A/V

•—
measured 

FIGURE 2 6 -3 0  An ohmmeter.

FIGURE 2 6-31  Measuring current 
and voltage.
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EXAMPLE 26-16 Voltmeter design. Using a galvanometer with internal 
resistance r = 3011 and full-scale current sensitivity of 50 /jlA, design a volt­
meter that reads from 0 to 15 V. Is the scale linear?
APPROACH When a potential difference of 15 V exists across the terminals of our 
voltmeter, we want 50 /jlA  to be passing through it so as to give a full-scale deflection. 
SOLUTION From Ohm’s law, V  = IR, we have (see Fig. 26-29)

15 V = (50 M X ' + *ser),
SO

15 V
5.0 X 10“ 5 A

= 300 kO -  30II = 300 k a

Notice that r = 3011 is so small compared to the value of 2?ser that it doesn’t 
influence the calculation significantly. The scale will again be linear: if the voltage 
to be measured is 6.0 V, the current passing through the voltmeter will be 
(6.0 V)/(3.0 X 105 fi) = 2.0 X 10“5 A, or 20 /jlA. This will produce two-fifths of 
full-scale deflection, as required (6.0V/15.0V = 2/5).

The meters just described are for direct current. A dc meter can be modified 
to measure ac (alternating current, Section 25-7) with the addition of diodes 
(Chapter 40), which allow current to flow in one direction only. An ac meter can 
be calibrated to read rms or peak values.

Voltmeters and ammeters can have several series or shunt resistors to offer a 
choice of range. Multimeters can measure voltage, current, and resistance. Sometimes 
a multimeter is called a VOM (Volt-Ohm-Meter or Volt-Ohm-Milliammeter).

An ohmmeter measures resistance, and must contain a battery of known 
voltage connected in series to a resistor (i?ser) and to an ammeter (Fig. 26-30). The 
resistor whose resistance is to be measured completes the circuit. The needle 
deflection is inversely proportional to the resistance. The scale calibration depends 
on the value of the series resistor. Because an ohmmeter sends a current through 
the device whose resistance is to be measured, it should not be used on very deli­
cate devices that could be damaged by the current.

The sensitivity of a meter is generally specified on the face. It may be given as 
so many ohms per volt, which indicates how many ohms of resistance there are in 
the meter per volt of full-scale reading. For example, if the sensitivity is 30,000 H/V, 
this means that on the 10-V scale the meter has a resistance of 300,000 O, whereas 
on a 100-V scale the meter resistance is 3 MO. The full-scale current sensitivity, Im, 
discussed earlier, is just the reciprocal of the sensitivity in 1 1 / V.

* H owto Connect Meters
Suppose you wish to determine the current I  in the circuit shown in Fig. 26-31a, 
and the voltage V  across the resistor R t . How exactly are ammeters and volt­
meters connected to the circuit being measured?

Because an ammeter is used to measure the current flowing in the circuit, it 
must be inserted directly into the circuit, in series with the other elements, as shown 
in Fig. 26-31b. The smaller its internal resistance, the less it affects the circuit.

A voltmeter, on the other hand, is connected “externally,” in parallel with the 
circuit element across which the voltage is to be measured. It is used to measure 
the potential difference between two points. Its two wire leads (connecting wires) 
are connected to the two points, as shown in Fig. 26-31c, where the voltage across 
Ri is beine measured. The larger its internal resistance. (R*„ + r) in Fie. 26-29. the



* Effects o f Meter Resistance
It is important to know the sensitivity of a meter, for in many cases the resistance 
of the meter can seriously affect your results. Take the following Example.

Voltage reading versus true voltage. Suppose you are testing 
an electronic circuit which has two resistors, R1 and R2, each 15 kfi, connected in 
series as shown in Fig. 26-32a. The battery maintains 8.0 V across them and has 
negligible internal resistance. A voltmeter whose sensitivity is 10,000 ft/V  is put 
on the 5.0-V scale. What voltage does the meter read when connected across Rx, 
Fig. 26-32b, and what error is caused by the finite resistance of the meter? 
APPROACH The meter acts as a resistor in parallel with R1. We use parallel and 
series resistor analyses and Ohm’s law to find currents and voltages.
SOLUTION On the 5.0-V scale, the voltmeter has an internal resistance of 
(5.0 V) (10,000 fi/V ) = 50,000 H. When connected across R1, as in Fig. 26-32b, we 
have this 50 kfi in parallel with R1 
given by  ̂ l  ^

+

15 kfi. The net resistance Req of these two is 

13
50 m,veq 15 kO 150 kfi

so Req = 11.5 kfi. This Req = 11.5 kfi is in series with R2 = 15 kfi, so the 
total resistance of the circuit is now 26.5 kfi (instead of the original 30 kfi). 
Hence the current from the battery is

I  = = 3.0 x  10-4 A  = 0.30mA.26.5 kfi
Then the voltage drop across R1, which is the same as that across the voltmeter, 
is (3.0 X 10“4A )(ll.5  X 103 Xl) = 3.5 V. [The voltage drop across R2 is 
(3.0 X 10“ 4 A)(l5 X 103 fi) = 4.5 V, for a total of 8.0 V.] If we assume the meter 
is precise, it will read 3.5 V. In the original circuit, without the meter, R1 = R2 so the 
voltage across R 1 is half that of the battery, or 4.0 V. Thus the voltmeter, because of its 
internal resistance, gives a low reading. In this case it is off by 0.5 V, or more than 10%.

Example 26-17 illustrates how seriously a meter can affect a circuit and give a 
misleading reading. If the resistance of a voltmeter is much higher than the resistance 
of the circuit, however, it will have little effect and its readings can be trusted, at least 
to the manufactured precision of the meter, which for ordinary analog meters is 
typically 3% to 4% of full-scale deflection. An ammeter also can interfere with a 
circuit, but the effect is minimal if its resistance is much less than that of the circuit as 
a whole. For both voltmeters and ammeters, the more sensitive the galvanometer, the 
less effect it will have. A 50,000-fl/V meter is far better than a 1000-fl/V meter.

* Digital Meters
Digital meters (see Fig. 26-27b) are used in the same way as analog meters: they are 
inserted directly into the circuit, in series, to measure current (Fig. 26-31b), and 
connected “outside,” in parallel with the circuit, to measure voltage (Fig. 26-31c).

The internal construction of digital meters, however, is different from that of 
analog meters in that digital meters do not use a galvanometer. The electronic circuitry 
and digital readout are more sensitive than a galvanometer, and have less effect on the 
circuit to be measured. When we measure dc voltages, a digital meter’s resistance is 
very high, commonly on the order of 10 to 100 Mfl (107-108 fi), and doesn’t change 
significantly when different voltage scales are selected. A 100-Mfl digital meter draws 
off very little current when connected across even a 1-Mfi resistance.

The precision of digital meters is exceptional, often one part in 104 (=0.01%) or 
better. This precision is not the same as accuracy, however. A precise meter of internal 
resistance 10 8 fi will not give accurate results if used to measure a voltage across a 10 8-fi 
resistor—in which case it is necessary to do a calculation like that in Example 26-17.

Whenever we make a measurement on a circuit, to some degree we affect that 
circuit (Example 26-17). This is true for other types of measurement as well: when 
we make a measurement on a svstem. we affect that svstem in some wav. On a

0 P H Y S I C S  A P P L I E D
Correcting for meter resistance
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(a)

FIGURE 26-32 Example 26-17.



Summary
A device that transforms another type of energy into electrical 
energy is called a source of emf. A battery behaves like a source 
of emf in series with an internal resistance. The emf is the 
potential difference determined by the chemical reactions in 
the battery and equals the terminal voltage when no current is 
drawn. When a current is drawn, the voltage at the battery’s 
terminals is less than its emf by an amount equal to the 
potential decrease Ir across the internal resistance.

When resistances are connected in series (end to end in a 
single linear path), the equivalent resistance is the sum of the 
individual resistances:

Re q = Ri + R2 + •••. (26-3)

In a series combination, Req is greater than any component 
resistance.

When resistors are connected in parallel, the reciprocal of 
the equivalent resistance equals the sum of the reciprocals of 
the individual resistances:

In a parallel connection, the net resistance is less than any of the 
individual resistances.

Kirchhoff’s rules are helpful in determining the currents 
and voltages in circuits. Kirchhoff’s junction rule is based on 
conservation of electric charge and states that the sum of all 
currents entering any junction equals the sum of all currents 
leaving that junction. The second, or loop rule, is based on 
conservation of energy and states that the algebraic sum of the

changes in potential around any closed path of the circuit must 
be zero.

When an R C  circuit containing a resistor R  in series with a 
capacitance C is connected to a dc source of emf, the voltage 
across the capacitor rises gradually in time characterized by an 
exponential of the form (l -  e~t/RC), where the time constant,

t  = RC, (26-7)

is the time it takes for the voltage to reach 63 percent of its maximum 
value. The current through the resistor decreases as e~t/RC.

A capacitor discharging through a resistor is characterized 
by the same time constant: in a time r  = RC, the voltage 
across the capacitor drops to 37 percent of its initial value. 
The charge on the capacitor, and voltage across it, decreases 
as e~t/RC, as does the current.

Electric shocks are caused by current passing through the 
body. To avoid shocks, the body must not become part of a 
complete circuit by allowing different parts of the body to touch 
objects at different potentials. Commonly, shocks are caused by 
one part of the body touching ground and another part touching 
a high electric potential.

[*An ammeter measures current. An analog ammeter 
consists of a galvanometer and a parallel shunt resistor that 
carries most of the current. An analog voltmeter consists of a 
galvanometer and a series resistor. An ammeter is inserted into 
the circuit whose current is to be measured. A voltmeter is 
external, being connected in parallel to the element whose 
voltage is to be measured. Digital voltmeters have greater internal 
resistance and affect the circuit to be measured less than do 
analog meters.]

Questions
1. Explain why birds can sit on power lines safely, whereas 

leaning a metal ladder up against a power line to fetch a 
stuck kite is extremely dangerous.

2. Discuss the advantages and disadvantages of Christmas 
tree lights connected in parallel versus those connected 
in series.

3. If all you have is a 120-V line, would it be possible to light 
several 6-V lamps without burning them out? How?

4. Two lightbulbs of resistance Ri and R2 (R2 > R\) and a 
battery are all connected in series. Which bulb is brighter? 
What if they are connected in parallel? Explain.

5. Household outlets are often double outlets. Are these 
connected in series or parallel? How do you know?

6. With two identical lightbulbs and two identical batteries, 
how would you arrange the bulbs and batteries in a circuit 
to get the maximum possible total power to the lightbulbs? 
(Assume the batteries have negligible internal resistance.)

7. If two identical resistors are connected in series to a 
battery, does the battery have to supply more power or less 
power than when only one of the resistors is connected? 
Explain.

8. You have a single 60-W bulb on in your room. How does 
the overall resistance n f vonr rnnm ’s electric circuit change

9. When applying Kirchhoff’s loop rule (such as in Fig. 26-33), 
does the sign (or direction) of a battery’s emf depend on 
the direction of current through the battery? What about the 
terminal voltage?

r = 1.0  Q

FIGURE 26-33
Question 9. □r

<9 = 12 V

10. Compare and discuss the formulas for resistors and for 
capacitors when connected in series and in parallel.

11. For what use are batteries connected in series? For what use 
are they connected in parallel? Does it matter if the 
batteries are nearly identical or not in either case?

12. Can the terminal voltage of a battery ever exceed its emf? 
Explain.

13. Explain in detail how you could measure the internal resis­
tance of a battery.

14. In an RC  circuit, current flows from the battery until the 
capacitor is completely charged. Is the total energy supplied
hv the hatterv ennal to  the total enerav stored hv the canac-



15. Given the circuit shown in Fig. 26-34, use the words 
“increases,” “decreases,” or “stays the same” to complete the 
following statements:
(a) If R7 increases, the potential difference between A and

E ____ . Assume no resistance in ®  and %.
(ib) If R7 increases, the potential difference between A and

E ____ . Assume @ and % have resistance.
(c) If R7 increases, the voltage drop across RA_________ .
(id) If R2 decreases, the current through _________ .
(e) If R2 decreases, the current through R$_________ .
( /)  If R2 decreases, the current 

through R3____ .
(g) If Rs increases, the voltage 

drop across R2 ____ .
(h) If R5 increases, the voltage 

drop across R4____ .
(i) If R2,R 5, and R7 increase,

% (r = 0) ____ .

FIGURE 26-34
Question 15. R2,R s, 
and Rj are variable 
resistors (you can 
change their resistance), 
given the symbol .

16. Figure 26-35 is a diagram of a capacitor (or condenser) 
microphone. The changing air pressure in a sound wave 
causes one plate of the 
capacitor C to move back 
and forth. Explain how a 
current of the same 
frequency as the sound 
wave is produced.

FIGURE 26-35 Diagram 
of a capacitor microphone. 
Question 16.
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17. Design a circuit in which two different switches of the type 
shown in Fig. 26-36 can be used to operate the same light­
bulb from opposite sides of a room.

FIGURE 26-36
Question 17.

*18. What is the main difference between an analog voltmeter 
and an analog ammeter?

*19. What would happen if you mistakenly used an ammeter 
where you needed to use a voltmeter?

*20. Explain why an ideal ammeter would have zero resistance 
and an ideal voltmeter infinite resistance.

*21. A voltmeter connected across a resistor always reads less 
than the actual voltage across the resistor when the meter is 
not present. Explain.

*22. A small battery-operated flashlight requires a single 1.5-V 
battery. The bulb is barely glowing, but when you take the 
battery out and check it with a voltmeter, it registers 1.5 V. 
How would you explain this?

23. Different lamps might have batteries connected in either of 
the two arrangements shown in Fig. 26-37. What would be 
the advantages of each scheme?

outpui
-vl

(diaphragm I
FIGURE 26-37
Question 23.

| Problems
26-1 Emf and Terminal Voltage
1. (I) Calculate the terminal voltage for a battery with an 

internal resistance of 0.900 fi and an emf of 6.00 V when the 
battery is connected in series with (a) an 81.0-0 resistor, and 
(ib) an 810-0 resistor.

2. (I) Four 1.50-V cells are connected in series to a 12-0 light­
bulb. If the resulting current is 0.45 A, what is the internal 
resistance of each cell, assuming they are identical and 
neglecting the resistance of the wires?

3. (II) A 1.5-V dry cell can be tested by connecting it to a low- 
resistance ammeter. It should be able to supply at least 
25 A. What is the internal resistance of the cell in this case, 
assuming it is much greater than that of the ammeter?

4. (II) What is the internal resistance of a 12.0-V car battery 
w h ose  term inal voltage drons to 8 .4 V  when the starter

2 6-2  Resistors in Series and Parallel
In these Problems neglect the internal resistance of a battery unless 
the Problem refers to it.
5. (I) A 650-0 and a 2200-0 resistor are connected in series with 

a 12-V battery. What is the voltage across the 2200-0 resistor?
6. (I) Three 45-0 lightbulbs and three 65-0 lightbulbs are 

connected in series, (a) What is the total resistance of the 
circuit? (b) What is the total resistance if all six are wired in 
parallel?

7. (I) Suppose that you have a 680-0, a 720-0, and a 1.20-k0 
resistor. What is (a) the maximum, and (b) the minimum 
resistance you can obtain by combining these?

8. (I) How many 10-0 resistors must be connected in series to 
give an equivalent resistance to five 10 0 -0  resistors 
connected in oarallel?



9. (II) Suppose that you have a 9.0-V battery and you wish to 
apply a voltage of only 4.0 V. Given an unlimited supply of
1 .0-0  resistors, how could you connect them so as to make a 
“voltage divider” that produces a 4.0-V output for a 9.0-V 
input?

10. (II) Three 1.70-k0 resistors can be connected together in 
four different ways, making combinations of series and/or 
parallel circuits. What are these four ways, and what is the 
net resistance in each case?

11. (II) A battery with an emf of 12.0 V shows a terminal 
voltage of 11.8 V when operating in a circuit with two light­
bulbs, each rated at 4.0 W (at 12.0 V), which are connected 
in parallel. What is the battery’s internal resistance?

12. (II) Eight identical bulbs are connected in series across a 
110-V line, (a) What is the voltage across each bulb? (b) If 
the current is 0.42 A, what is the resistance of each bulb, and 
what is the power dissipated in each?

13. (II) Eight bulbs are connected in parallel to a 110-V source 
by two long leads of total resistance 1.4 0 . If 240 mA flows 
through each bulb, what is the resistance of each, and what 
fraction of the total power is wasted in the leads?

14. (II) The performance of the starter circuit in an automobile 
can be significantly degraded by a small amount of 
corrosion on a battery terminal. Figure 26-38a depicts a 
properly functioning circuit with a battery (12.5-V emf, 
0.02-0  internal resistance)
attached via corrosion-free 
cables to a starter motor of 
resistance R$ = 0.15 O. 
Suppose that later, corro­
sion between a battery 
terminal and a starter 
cable introduces an extra 
series resistance of just 
R c = 0.100 into the 
circuit as suggested in 
Fig. 26-38b. Let P0 be the 
power delivered to the 
starter in the circuit free of 
corrosion, and let P  be the 
power delivered to the 
circuit with corrosion. 
Determine the ratio P /P q-

FIGURE 26-38
Problem 14.

(a)
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15. (II) A close inspection of an electric circuit reveals that a 
480-0 resistor was inadvertently soldered in the place where 
a 370-0 resistor is needed. How can this be fixed without 
removing anything from the existing circuit?

16. (II) Determine (a) the equivalent resistance of the circuit 
shown in Fig. 26-39, and (b) the voltage across each 
resistor.

820 Q 680 Q ► 960 £2

17.

18.

19.

20.

s \

(II) A 75-W, 110-V bulb is connected in parallel with a 
25-W, 110-V bulb. What is the net resistance?
(II) (a) Determine the equivalent resistance of the 
“ladder” of equal 125-0 resistors shown in Fig. 26-40. In 
other words, what resistance would an ohmmeter read if 
connected between points A and B? (b) What is the 
current through each of the three resistors on the left if a
50.0-V battery is connected between points A and B?

FIGURE 26-40
Problem 18.

(II) What is the net resistance of the circuit connected to the 
battery in Fig. 26-41?

R

FIGURE 26-41
Problems 19 and 20.

(II) Calculate the current through each resistor in Fig. 26-41 
if each resistance R = 1.20 kO and V  = 12.0 V. What is 
the potential difference between points A and B?

21. (II) The two terminals of a voltage source with emf % and 
internal resistance r are connected to the two sides of a load 
resistance R. For what value of R  will the maximum power 
be delivered from the source to the load?

22. (II) Two resistors when connected in series to a 110-V line 
use one-fourth the power that is used when they are 
connected in parallel. If one resistor is 3.8 kO, what is the 
resistance of the other?

23. (Ill) Three equal resistors (R) are connected to a battery as 
shown in Fig. 26-42. Qualitatively, what happens to (a) the 
voltage drop across each of these resistors, (b) the current 
flow through each, and (c) the terminal voltage of the 
battery, when the switch S is opened, after having been 
closed for a long time? (d) If the emf of the battery is
9.0 V, what is its terminal voltage when the switch is closed 
if the internal resistance r is 0.50 0  and R = 5.500?
(e) What is the terminal ^
voltage when the switch 
is open?

FIGURE 26-42
Problem 23. fv ■

FIGURE 26-39

24. (Ill) A 2.8-kO and a 3.7-kO resistor are connected in 
parallel; this combination is connected in series with a 
1.8-kO resistor. If each resistor is rated at |W  (maximum
w ithout nvp.rhpntino^ what is the maYirrmm vnltaap that ran



25. (Ill) Consider the network of resistors shown in Fig. 26-43. 
Answer qualitatively: (a) What happens to the voltage across 
each resistor when the switch S is closed? (b) What happens 
to the current through each when the switch is closed?
(c) What happens to the power output of the battery when 
the switch is closed? (d) Let R 1 = R2 = R3 = R4 = 125 D, 
and V  =  22.0 V. Determine the current through each 
resistor before and after closing the switch. Are your qualita­
tive predictions confirmed?

*1

Ra

26. (Ill) You are designing a wire resistance heater to heat an 
enclosed volum e of gas. For the apparatus to function prop­
erly, this heater must transfer heat to the gas at a very 
constant rate. While in operation, the resistance of the 
heater will always be close to the value R = R 0 , but may 
fluctuate slightly causing its resistance to vary a small 
amount AR  ( «  R 0). To maintain the heater at constant 
power, you design the circuit shown in Fig. 26-44 , which 
includes two resistors, each of resistance r. D eterm ine the 
value for r so that the heater power will remain constant 
even if its resistance R  fluctuates by a small amount. [Hint: 
If A/? «  Rq , then \ P  «

R

29. (II) For the circuit shown in Fig. 26-47 , find the potential 
difference between points a 
and b. Each resistor has 
R  = 130 XI and each battery 
is 1.5 V.

FIGURE 26-47
Problem 29.

30. (II) (a) A  network of five equal resistors R  is connected to a 
battery % as shown in Fig. 26-48 . D eterm ine the current I  
that flows out of the battery, (b) U se the value determined 
for I  to find the single resistor i?eq that is equivalent to the 
five-resistor network.

R

31. (II) (a) What is the potential difference between points a and 
d in Fig. 26 -49  (similar to Fig. 26-13, Example 26-9), 
and (b) what is the

34 Q h
f P ------------ v w v — —

terminal voltage of 
each battery?

FIGURE 26-49
Problem 31.

*1 ,  r=  § 2 =
4 7  Q  3 I Q  4 5  V

a f—v w v —f — v w v H H  d
b c

I t
<§1 = r =
75 V IQ

-H h H W W -

26-3 Kirchhoffs Rules
27. (I) Calculate the current in the circuit o f Fig. 26-45 , and 

show that the sum of all the
voltage changes around the ____ 11 r Jw V~~̂
circuit is zero.

9.0 V
9 .5 Q ‘

FIGURE 26-45
Problem 27.

-V W \r
12.0 £2

28. (II) Determ ine the terminal voltage of each battery in 
Fig. 26-46.

r2 = 2.0 Q

FIGURE

<9 1= 18
R = 6.6 Q

rx = 1.0

32. (II) Calculate the currents in each resistor of Fig. 26-50.

58 V

“ O

25 Q
- N m -

:64Q

82 Q

FIGURE 26-50 Problem 32.

33. (II) D eterm ine the magnitudes and directions of the 
currents through R x and R 2 in

Fig-26"51- 1 HI-------W\A/—

FIGURE 26-51

Z?2 = 1 8 Q
- J W \A r-

V3 = 6.0V



34. (II) D eterm ine the magnitudes and directions of the 
currents in each resistor shown in Fig. 26-52 . The batteries 
have emfs of %\ =  9.0 V  and %i =  12.0 V  and the 
resistors have values of R j =  25 fl,
R 2 = 4 8  fl, and R 3 = 35 fl.
(a) Ignore internal resistance of the 
batteries. (b) Assum e each battery 
has internal resistance r =  1.0 fl.

FIGURE 26-52
Problem 34.

35. (II) A voltage V  is applied to n  identical resistors connected  
in parallel. If the resistors are instead all connected in series 
with the applied voltage, show that the power transformed 
is decreased by a factor n2

36. (I ll)  (a) Determ ine the currents I \ , I 2, and / 3 in Fig. 26-53 . 
Assum e the internal resistance of each battery is r =  1.0 fl.
(b) What is the terminal voltage of the 6.0-V battery?

h
\K

22 Q

15 Q

12 Q

18 Q

FIGURE 26-53
Problems 36 and 37.

37. (I ll)  What would the current Ii be in Fig. 26-53  if the 12-fl 
resistor is shorted out (resistance =  0)? Let r =  1.0 fl.

38. (I ll)  Determ ine the current through each of the resistors in 
Fig. 26-54.

FIGURE 26-54
Problems 38 and 39.

39. (I ll)  If the 25-ft resistor in Fig. 26 -54  is shorted out 
(resistance =  0), what then would be the current through 
the 15-fl resistor?

40. (I ll)  Twelve resistors, each of resistance R, are connected as 
the edges of a cube as shown in Fig. 26-55. Determ ine the 
equivalent resistance (a) between points a and b, the ends of 
a side; (b) between points a and c, the ends of a face 
diagonal; (c) between  
points a and d, the ends 
of the volume diagonal.
[Hint: Apply an em f and 
determine currents; use 
symmetry at junctions.]

41. (I ll)  D eterm ine the net resistance in Fig. 26 -56  (a) between  
points a and c, and (b) between points a and b. Assume 
R ' ^  R. [Hint: Apply an em f and 
determine currents; use symmetry at 
junctions.]

FIGURE 26-56
Problem 41.

26-4 Emfs Combined, Battery Charging
42. (II) Suppose two batteries, with unequal emfs of 2.00 V  and

3.00 V, are connected as shown in Fig. 26-57. If each internal 
resistance is r = 0.450 f l, and i? = 4 00 Q
R  =  4.00 fl , what is the ________ V W \r
voltage across the resistor R?

<§= 2.00 V

FIGURE 26-57
Problem 42.

- W i—
r

H p \ M -------
<§ = 3 .00V  r

26-5 RC  Circuits
43. (I) Estimate the range of resistance needed to make a variable 

timer for typical intermittent windshield wipers if the capacitor 
used is on the order of 1 pF.

44. (II) In Fig. 26 -58  (same as Fig. 26-17a), the total resistance 
is 15.0 k fl, and the battery’s em f is 24.0 V. If the time 
constant is measured to be 24.0 ps,
calculate (a) the total capacitance of the r
circuit and (b ) the time it takes for the — —  
voltage across the resistor to reach
16.0 V  after the switch is closed.

FIGURE 26-58
Problems 44 and 46.

45. (II) Two 3.8-pF capacitors, two 2.2-kft resistors, and a 12.0-V 
source are connected in series. Starting from the uncharged 
state, how long does it take for the current to drop from its 
initial value to 1.50 mA?

46. (II) How long does it take for the energy stored in a capac­
itor in a series R C  circuit (Fig. 26 -58) to reach 75% of its 
maximum value? Express answer in terms of the time 
constant r =  RC.

47. (II) A  parallel-plate capacitor is filled with a dielectric of 
dielectric constant K  and high resistivity p (it conducts very 
slightly). This capacitor can be m odeled as a pure capaci­
tance C in parallel with a resistance R. Assum e a battery 
places a charge +Q  and —Q on the capacitor’s opposing 
plates and is then disconnected. Show that the capacitor 
discharges with a time constant r =  K e0p (known as the 
dielectric relaxation time). Evaluate r if the dielectric is glass 
with p =  1.0 X 1012fl-m  and K  =  5.0.

48. (II) The R C  circuit o f Fig. 26 -59  (same as Fig. 26-18a) has 
R = 8.7 k fl and C =  3.0 pF. The capacitor is at voltage V0 
at t = 0, when the switch is closed.
H ow  long does it take the capacitor



49. (II) Consider the circuit shown in Fig. 26-60 , where all 
resistors have the same resistance R. A t t = 0, with the 
capacitor C uncharged, the switch is closed, (a) A t t =  0, 
the three currents can be determined by analyzing a 
simpler, but equivalent, circuit. Identify this simpler circuit 
and use it to find the values of I \ , I 2, and / 3 at t = 0.
(b) A t t =  oo, the currents can be determined by analyzing 
a simpler, equivalent circuit. Identify this simpler circuit and 
implement it in finding the values o f I \ , I 2, and / 3 at t = oo.
(c) A t t = oo, what is the potential difference across the 
capacitor?

^  R
<  — m -

51.

<g-
FIGURE 26-60
Problem 49.

50. (I ll)  D eterm ine the time constant for charging the capacitor 
in the circuit o f Fig. 26-61 . [Hint: U se K irchhoff s rules.] 
(b) What is the maximum  
charge on the capacitor?

FIGURE 26-61
Problem 50.

(I ll)  Two resistors and two uncharged capacitors are 
arranged as shown in Fig. 26-62 . Then a potential difference 
of 24 V  is applied across the combination as shown. 
(a) What is the potential at point a with switch S open? (Let 
V  =  0 at the negative terminal of the source.) (b) What is 
the potential at point b with the switch open? (c) W hen the 
switch is closed, what is the final potential o f 
point b? (d) How much charge flows through the switch S 
after it is closed?

FIGURE 26-62
Problems 51 and 52.

52. (I ll)  Suppose the switch S in Fig. 26 -62  is closed. What is 
the time constant (or time constants) for charging the 
capacitors after the 24 V  is applied?

26-7 Ammeters and Voltmeters
53. (I) A n ammeter has a sensitivity o f 35,000 f t /V . What 

current in the galvanometer produces full-scale deflection?
54. (I) What is the resistance of a voltmeter on the 250-V scale 

if the meter sensitivity is 35,000 ft /V ?
55. (II) A  galvanometer has a sensitivity o f 45 k ft /V  and 

internal resistance 20.0 ft. H ow  could you make this into 
(d\ an ammeter that reads 2.0 A full scale, or (H\ a voltmeter

* 56. (II) A  galvanometer has an internal resistance of 32 ft and
deflects full scale for a 55-juA current. Describe how to use 
this galvanometer to make (a) an ammeter to read currents 
up to 25 A , and (b) a voltmeter to give a full scale deflection  
of 250 V.

* 57. (II) A  particular digital meter is based on an electronic module
that has an internal resistance of 100 M ft and a full-scale 
sensitivity o f 400 mV. Two resistors connected as shown in 
Fig. 26 -63  can be used to change the voltage range. Assume 
R i = 10 M ft. Find the

, Meter module 
r =  100 MQ

value of R 2 that will 
result in a voltmeter 
with a full-scale range 
of 40 V.

FIGURE 26-63
Problem 57.

- V W H
R  i

* 58. (II) A  milliammeter reads 25 m A  full scale. It consists of a
0.20-ft resistor in parallel with a 33-ft galvanometer. How  
can you change this ammeter to a voltmeter giving a full 
scale reading of 25 V  without taking the ammeter apart? 
What will be the sensitivity ( f t /V )  of your voltmeter?

*59. (II) A  45-V battery of negligible internal resistance is 
connected to a 44-kft and a 27-kft resistor in series. What 
reading will a voltmeter, o f internal resistance 95 kft, give 
when used to measure the voltage across each resistor? 
What is the percent inaccuracy due to meter resistance for 
each case?

*60. (II) A n  ammeter whose internal resistance is 53 ft  reads 
5.25 m A  when connected in a circuit containing a battery 
and two resistors in series whose values are 650 ft  and 
480 ft. What is the actual current when the ammeter is 
absent?

*61. (II) A  battery with % =  12.0 V  and internal resistance 
r =  1.0 ft is connected to two 7.5-kft resistors in series. A n  
ammeter of internal resistance 0.50 ft measures the current, 
and at the same time a voltmeter with internal resistance 
15 kft measures the voltage across one of the 7.5-kft resistors 
in the circuit. What do the ammeter and voltmeter read?

* 62. (II) A  12.0-V battery (assume the internal resistance =  0)
is connected to two resistors in series. A  voltmeter whose 
internal resistance is 18.0 kft measures 5.5 V  and 4.0 V, 
respectively, when connected across each of the resistors. 
What is the resistance of each resistor?

*63. (I ll)  Two 9.4-kft resistors are placed in series and connected  
to a battery. A  voltmeter of sensitivity 1000 f t /V  is on the 
3.0-V scale and reads 2.3 V  when placed across either 
resistor. What is the em f of the battery? (Ignore its internal 
resistance.)

*64. (I ll)  W hen the resistor R  in Fig. 26 -64  is 35 ft, the 
high-resistance voltmeter reads 9.7 V. W hen R  is replaced by 
a 14.0-ft resistor, the voltmeter reading drops to 8.1 V. 
What are the em f and internal resistance of the battery?

FIGURE 26-64

- e -

-V W W -
R



| General Problems
65. Suppose that you wish to apply a 0.25-V potential differ­

ence between two points on the human body. The resistance 
is about 1800 O, and you only have a 1.5-V battery. How can 
you connect up one or more resistors to produce the desired 
voltage?

66. A  three-way lightbulb can produce 50 W, 100 W, or 150 W, 
at 120 V. Such a bulb contains two filaments that can 
be connected to the 120 V  individually or in parallel.
(a) Describe how the connections to the two filaments are 
made to give each of the three wattages. (b) What must be 
the resistance of each filament?

67. Suppose you want to run som e apparatus that is 65 m from 
an electric outlet. Each of the wires connecting your appa­
ratus to the 120-V source has a resistance per unit length of
0.0065 n /m . If your apparatus draws 3.0 A , what will be the 
voltage drop across the connecting wires and what voltage 
will be applied to your apparatus?

68. For the circuit shown in Fig. 26-18a, show that the decrease 
in energy stored in the capacitor from t = 0 until one time 
constant has elapsed equals the energy dissipated as heat in 
the resistor.

69. A  heart pacemaker is designed to operate at 72beats/m in  
using a 6.5-/xF capacitor in a simple RC  circuit. What value of 
resistance should be used if the pacemaker is to fire (capac­
itor discharge) when the voltage reaches 75% of maximum?

70. Suppose that a person’s body resistance is 950 fi. (a) What 
current passes through the body when the person accidentally 
is connected to 110 V? (b) If there is an alternative path to 
ground whose resistance is 35 O, what current passes through 
the person? (c) If the voltage source can produce at most 1.5 A, 
how much current passes through the person in case (b)l

71. A  Wheatstone bridge is a type of “bridge circuit” used to 
make measurements of resistance. The unknown resistance to 
be measured, R x , is placed in the circuit with accurately 
known resistances R i ,R 2, and R 3 (Fig. 26-65). One of these,

, is a variable resistor which is adjusted so that when the
switch is closed momentarily, the ammeter 
current flow, (a) Determine 
R x in terms of R± , R 2 , and 
R 3. (b) If a Wheatstone 
bridge is “balanced” when 
R \ = 6300 , #2  =  9 7 2 0 , 
and R 3 =  78.6 fi, what 
is the value of the 
unknown resistance?

FIGURE 26-65
Problems 71 and 72. 
W heatstone bridge.

shows zero

72. A n unknown length of platinum wire 1.22 mm in diameter is 
placed as the unknown resistance in a W heatstone bridge 
(see Problem 71, Fig. 26-65). Arms 1 and 2 have resistance 
of 38.0 f i  and 29.2 f i , respectively. Balance is achieved when 
R 3 is 3.48 f i . How long is the platinum wire?

73. The internal resistance of a 1.35-V mercury cell is 0.030 fi, 
whereas that of a 1.5-V dry cell is 0.35 fi. Explain why three
m p .rr.n rv  r.p.lls ra n  m n rp  p ffp .rtivp .lv  n n w p r  a 9 S -W  hp .arino

74. H ow many §-W resistors, each of the same resistance, must 
be used to produce an equivalent 3.2-kfl, 3.5-W resistor? 
What is the resistance of each, and how must they be
connected? D o  not exceed P  = \  W in each resistor.

75. A  solar cell, 3.0 cm square, has an output of 350 m A  at
0.80 V  when exposed to full sunlight. A  solar panel that 
delivers close to 1.3 A  of current at an em f of 120 V  to an 
external load is needed. H ow  many cells will you need to 
create the panel? H ow  big a panel will you need, and how  
should you connect the cells to one another? H ow  can you  
optimize the output o f your solar panel?

76. A  power supply has a fixed output voltage of 12.0 V, but you  
needV x =  3.0 V  output for an experiment, (a) Using the 
voltage divider shown in Fig. 26-66 , what should R 2 be if Ri 
is 14.5 O? (b) What 
will the terminal 
voltage Vt be if you 
connect a load to 
the 3.0-V output, 
assuming the load 
has a resistance of
7.0 fi?

FIGURE 26-66
Problem 76.

77. The current through the 4.0-kfl resistor in Fig. 26 -67  
is 3.10 m A. What is the
terminal voltage V â of 4.0 kQ
the “unknown” battery? v ba 5 o kO
(There are two answers.
Why?)

FIGURE 26-67
Problem 77.

12.0 V t

12.0 V

78. A  battery produces 40.8 V  when 7.40 A  is drawn from it, 
and 47.3 V  when 2.80 A  is drawn. What are the em f and 
internal resistance of the battery?

79. In the circuit shown in Fig. 26-68 , the 33 -0  resistor 
dissipates 0.80 W. What is
the battery voltage? 68 Q

3 3 Q  f------V W V ------
H V W V —

FIGURE 26-68
Problem 79.

—vwv—1
75 a

80. The current through the 2 0 -0  resistor in Fig. 26 -69  does not 
change whether the

20 0two switches Si and S2 
are both open or both 
closed. U se this clue to 
determine the value of 
the unknown resis­
tance R.

FIGURE 7R-RQ



* 81. (a) A  voltmeter and an ammeter can be connected as shown 
in Fig. 26 -70a  to measure a resistance R .  If V  is the volt­
meter reading, and I  is the ammeter reading, the value of R  
will not quite be V / I  (as in Ohm ’s law) because some of the 
current actually goes through the voltmeter. Show that the 
actual value of R  is given by

1  _ L  _  J _
R  ~  V  R y ’ 

where R y  is the voltmeter resistance. N ote that R  ~  V / I  if 
R y  »  R . (b ) A  voltmeter and an ammeter can also be 
connected as shown in Fig. 26-70b  to measure a resistance 
R .  Show in this case that

where V  and I  are the voltmeter and ammeter readings and 
R a  is the resistance of the ammeter. N ote that R  ~  V / I  if
R a  <s c  R .

(a)

FIGURE 26-70
(b)

Problem 81.

82. (a) What is the equivalent resistance of the circuit shown in 
Fig. 26-71? (b )  What is the current in the 18-11 resistor? 
(c) What is the current in the 1 2 -0  resistor? (d) What 
is the power
dissipation in 
the 4.5-11 
resistor? 12 Q

FIGURE 26-71
Problem 82.

-± -6 .0 V

■ vw v^
4.5 Q

83. A  flashlight bulb rated at 2.0 W and 3.0 V  is operated by a 
9.0-V battery. To light the 
bulb at its rated voltage 
and power, a resistor R  is 
connected in series as shown 
in Fig. 26-72 . What value I- V W V 1 
should the resistor have? R

FIGURE 26-72
Problem 83.

A
9.0 V

84. Some light-dimmer switches use a variable resistor as shown 
in Fig. 26-73 . The slide moves from position x  = 0 to 
x  =  1, and the resistance up to slide position x  is propor­
tional to x  (the total resistance is R war = 150 XI at x  = 1). 
What is the power expended in the lightbulb if 
(d) x  = 1.00, (b ) x  = 0.65, (c) * =  0.35?

120 V ± -

FIGURE 26-73

R yar= 150Q

85. A  potentiometer is a device to precisely measure potential 
differences or emf, using a “null” technique. In the simple 
potentiometer circuit shown in Fig. 26-74 , R ' represents the 
total resistance of the resistor from A  to B (which could be 
a long uniform “slide” wire), whereas R  represents the resis­
tance of only the part from A  to the movable contact at C. 
W hen the unknown em f to be measured, %x , is placed into 
the circuit as shown, the movable contact C is moved until 
the galvanometer G gives a null reading (i.e., zero) when 
the switch S is closed. The resistance between A  and C for 
this situation we call R x . Next, a standard emf, % , which is 
known precisely, is inserted into the circuit in place of %x 
and again the contact C is m oved until zero current flows 
through the galvanometer when the switch S is closed. The 
resistance between A  and C now is called R s . (a) Show that 
the unknown em f is given by

•- ■ ( f  h
where R X, R S, and %  are all precisely known. The working 
battery is assumed to be fresh and to give a constant voltage. 
(b ) A  slide-wire potentiometer is balanced against a 
1.0182-V standard cell when the slide wire is set at 33.6 cm 
out of a total length of 100.0 cm. For an unknown source, the 
setting is 45.8 cm. What is the em f of the unknown? (c) The 
galvanometer of a

Working 
battery

— H i-------------— |

---------- R ---------- *\

potentiometer has an 
internal resistance of 
35 O and can detect a 
current as small as 
0.012 mA. What is the 
minimum uncertainty 
possible in measuring 
an unknown voltage?  ̂
(id) Explain the advan­
tage of using this 
“null” method of 
measuring emf.

FIGURE 26-74
Potentiometer circuit.
Problem 85.

86. Electronic devices often use an R C  circuit to protect against 
power outages as shown in Fig. 26-75 . (a) If the protector 
circuit is supposed to keep the supply voltage at least 75% 
of full voltage for as long as 0.20 s, how big a resistance R  is 
needed? The capacitor is 8.5 / j lF . Assum e the attached 
“electronics” draws negligible current. (b) Betw een which 
two terminals should the device be connected, a and b, b and c, 
or a and c?

Protector R 
circuit Electronic

device

Power Power outage FIGURE 26-75



87. The circuit shown in Fig. 26 -76  is a primitive 4-bit digital- 
to-analog converter (DAC). In this circuit, to represent each 
digit (2n) of a binary number, a “1” has the nth switch closed 
whereas zero (“0”) has the switch open. For example, 0010 
is represented by closing switch n  =  1, while all other 
switches are open. Show that the voltage V  across the 1 .0 -0  
resistor for the binary numbers 0001, 0010, 0100, and 1010 
(w hichrepresent i^Q kn
1, 2, 4, 10) 
follows the 
pattern that 
you expect 
for a 4-bit 
DAC.

FIGURE 26-76
Problem 87.

1.0 Q 
“VWV”

n= 1 ✓ 8.0 kQ
S . — VA\—

4.0 kQ
• — vwv—

2.0 kQ
•—vwv—

h— V—H

FIGURE 26-77
Problem 88. 6.80 Q

3.0% of
initial
charge?

its

12.0 V -± -

FIGURE 26-78
Problem 89.

5.0 Q

FIGURE 26-79
Problem 90.

100.0 V -=F
33.0 kQ 

C = 4.00 fiF

* 91. Measurements made on circuits that contain large resistances 
can be confusing. Consider a circuit powered by a battery 
% =  15.000 V  with a 10.00-MH resistor in series with an 
unknown resistor R .  A s shown in Fig. 26-80 , a particular 
voltmeter reads V\ =  366 mV when connected across the 
10.00-M fl resistor, and this meter reads V2 = 7.317 V  when 
connected across R .  Determine the value of R . [Hint. Define 
R y  as the voltmeter’s internal resistance.]

88. D eterm ine the current in each resistor of the circuit shown 
in Fig. 26-77 . 8_00 y

^-4.00 V

89. In the circuit shown in Fig. 26-78 , switch S is closed at time 
t = 0. {a) A fter the capacitor is fully charged, what is the 
voltage across it? H ow  much charge is on it? (b) Switch S is 
now opened. How long does it now take for the capacitor 
to discharge until 
it has only

^ : l o q  ^ 1 0 .0  Q

FIGURE 26-80 Problem 91.

*92. A  typical voltmeter has an internal resistance of 10 M il and 
can only measure voltage differences of up to several 
hundred volts. Figure 26-81  shows the design of a probe to 
measure a very large voltage difference V  using a voltmeter. 
If you want the voltmeter to read 50 V  when V  = 50 kV, 
what value R  should be used in this probe?

90. Figure 26-79 shows the circuit for a simple sawtooth oscil­
lator. A t time t = 0, its switch S is closed. The neon bulb has 
initially infinite resistance until the voltage across it reaches 
90.0 V, and then it begins to conduct with very little resistance 
(essentially zero). It stops conducting (its resistance becomes 
essentially infinite) when the voltage drops down to 65.0 V. 
(a) A t what time t\ does the neon bulb reach 90.0 V  and start 
conducting? (b) A t what time t2 does the bulb reach 90.0 V  
for a second time and again become conducting? (c) Sketch 
the sawtooth waveform between t = 0 and t =  0.70 s.

* Numerical/Computer
* 93. (II) A n R C  series circuit contains a resistor R  = 15 kO, a

capacitor C =  0.30 /j l F ,  and a battery of emf % =  9.0 V. 
Starting at t =  0, when the battery is connected, determine the 
charge Q on the capacitor and the current I  in the circuit from 
t = 0 to t = 10.0 ms (at 0.1-ms intervals). Make graphs 
showing how the charge Q and the current I  change with time 
within this time interval. From the graphs find the time at 
which the charge attains 63% of its final value, C%  and the 
current drops to 37% of its initial value, %/R.

Answers to Exercises

A: {a) 1.14 A; (b) 11.4 V; (c) PR = 13.1 W, Pr = 0.65 W. 

B: 6 O and 25 O.

D: 180 A; this high current through the batteries could cause 
them to becom e very hot: the power dissipated in the weak 
battery would be P  = I 2r = (180 A )2(0.10X1) =  3200 W!



Magnets produce magnetic fields, but so do electric currents. An electric current flowing in this 
straight wire produces a magnetic field which causes the tiny pieces of iron (iron “filings”) to 

align in the field. We shall see in this Chapter how magnetic field is defined, and 
that the magnetic field direction is along the iron filings. The magnetic field 

lines due to the electric current in this long wire are in the shape of 
circles around the wire.

We also discuss how magnetic fields exert forces on electric 
currents and on charged particles, as well as useful applications of 
the interaction between magnetic fields and electric currents and 
moving electric charges.

Magnetism
CHAPTER-OPENING QUESTION— Guess now!
Which of the following can experience a force when placed in the magnetic field of 
a magnet?

(a) An electric charge at rest.
(b) An electric charge moving.
(c) An electric current in a wire.
(d) Another magnet.

T he history of magnetism begins thousands of years ago. In a region of Asia 
Minor known as Magnesia, rocks were found that could attract each 
other. These rocks were called “magnets” after their place of discovery. 

Not until the nineteenth century, however, was it seen that magnetism 
and electricity are closely related. A  crucial discovery was that electric currents 
produce magnetic effects (we will say “magnetic fields”) like magnets do. All 
kinds of practical devices depend on magnetism, from compasses to motors, 
loudspeakers, computer memory, and electric generators.

2 7 —1 Magnets and Magnetic Fields
We have all observed a magnet attract paper clips, nails, and other objects made of 
iron, Fig. 27-1. Any magnet, whether it is in the shape of a bar or a horseshoe, has 
two ends or faces, called poles, which is where the magnetic effect is strongest. If a 
bar magnet is suspended from a fine thread, it is found that one pole of the magnet 
will always point toward the north. It is not known for sure when this fact was 
discovered, but it is known that the Chinese were making use of it as an aid to navi­
gation by the eleventh century and perhaps earlier. This is the principle of a compass.
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FIGURE 27-1 A horseshoe magnet
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FIGURE 2 7 -2  Like poles of a 
magnet repel; unlike poles attract. 
Red arrows indicate force direction.

FIGURE 2 7 -3  If you split a 
magnet, you won’t get isolated north 
and south poles; instead, two new 
magnets are produced, each with a 
north and a south pole.
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A  compass needle is simply a bar magnet which is supported at its center 
of gravity so that it can rotate freely. The pole of a freely suspended magnet that 
points toward geographic north is called the north pole of the magnet. The other 
pole points toward the south and is called the south pole.

It is a familiar observation that when two magnets are brought near one 
another, each exerts a force on the other. The force can be either attractive or 
repulsive and can be felt even when the magnets don’t touch. If the north 
pole of one bar magnet is brought near the north pole of a second magnet, the 
force is repulsive. Similarly, if the south poles of two magnets are brought close, 
the force is repulsive. But when a north pole is brought near the south pole of 
another magnet, the force is attractive. These results are shown in Fig. 27-2 , and 
are reminiscent of the forces between electric charges: like poles repel, and unlike 
poles attract. But do not confuse magnetic poles with electric charge. They are very 
different. One important difference is that a positive or negative electric charge can 
easily be isolated. But an isolated single magnetic pole has never been observed. If a 
bar magnet is cut in half, you do not obtain isolated north and south poles. 
Instead, two new magnets are produced, Fig. 27-3 , each with north (N) and 
south (S) poles. If the cutting operation is repeated, more magnets are 
produced, each with a north and a south pole. Physicists have searched for 
isolated single magnetic poles (monopoles), but no magnetic monopole has ever 
been observed.

Only iron and a few other materials, such as cobalt, nickel, gadolinium, 
and some of their oxides and alloys, show strong magnetic effects. They are said 
to be ferromagnetic (from the Latin word ferrum  for iron). Other materials 
show some slight magnetic effect, but it is very weak and can be detected only 
with delicate instruments. We will look in more detail at ferromagnetism in 
Section 28-7 .

In Chapter 21, we used the concept of an electric field surrounding an electric 
charge. In a similar way, we can picture a magnetic field surrounding a magnet. The 
force one magnet exerts on another can then be described as the interaction 
between one magnet and the magnetic field of the other. Just as we drew electric 
field lines, we can also draw magnetic field lines. They can be drawn, as for electric 
field lines, so that (1) the direction of the magnetic field is tangent to a field line at 
any point, and (2) the number of lines per unit area is proportional to the strength 
of the magnetic field.

FIGURE 2 7 -4  (a) Visualizing 
magnetic field lines around a bar 
magnet, using iron filings and 
compass needles. The red end of 
the bar magnet is its north pole. 
The N pole of a nearby compass 
needle points away from the north 
pole of the magnet, (b) Magnetic 
field lines for a bar magnet.
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(a)
The direction of the magnetic field at a given point can be defined as the direction 

that the north pole of a compass needle would point if placed at that point. (A  
more precise definition will be given in Section 27-3.) Figure 27-4a shows how 
thin iron filings (acting like tiny magnets) reveal the magnetic field lines by lining 
up like the compass needles. The magnetic field determined in this way for the 
field surrounding a bar magnet is shown in Fig. 27-4b. Notice that because of our 
definition, the lines always point out from the north pole and in toward the south 
pole of a magnet (the north pole of a magnetic compass needle is attracted to the 
south pole of the magnet).

Magnetic field lines continue inside a magnet, as indicated in Fig. 27-4b.



The Earth’s magnetic field is shown in Fig. 27-5 . The pattern of field lines is as if 
there were an imaginary bar magnet inside the Earth. Since the north pole (N) of 
a compass needle points north, the Earth’s magnetic pole which is in the 
geographic north is magnetically a south pole, as indicated in Fig. 27-5  by the S 
on the schematic bar magnet inside the Earth. Remember that the north pole of 
one magnet is attracted to the south pole of another magnet. Nonetheless, Earth’s 
pole in the north is still often called the “north magnetic pole,” or “geomagnetic 
north,” simply because it is in the north. Similarly, the Earth’s southern magnetic 
pole, which is near the geographic south pole, is magnetically a north pole (N). 
The Earth’s magnetic poles do not coincide with the geographic poles, which are 
on the Earth’s axis of rotation. The north magnetic pole, for example, is in the 
Canadian Arctic,f about 900 km from the geographic north pole, or “true north.” 
This difference must be taken into account when you use a compass (Fig. 27-6). 
The angular difference between magnetic north and true (geographical) north is 
called the magnetic declination. In the U.S. it varies from 0° to about 20°, 
depending on location.

Notice in Fig. 27-5  that the Earth’s magnetic field at most locations is not 
tangent to the Earth’s surface. The angle that the Earth’s magnetic field makes 
with the horizontal at any point is referred to as the angle of dip.

EXERCISE A Does the Earth’s magnetic field have a greater magnitude near the poles or
near the equator? [Hint: Note the field lines in Fig. 27-5.]

Earth's Magnetic Field

0 P H Y S I C S  A P P L I E D
Use of a compass

FIGURE 2 7 -6  Using a map and compass in 
the wilderness. First you align the compass 
case so the needle points away from true 
north (N) exactly the number of degrees of 
declination as stated on the map (15° for the 
place shown on this topographic map of a part 
of California). Then align the map with true 
north, as shown, not with the compass needle.

Uniform Magnetic Field
The simplest magnetic field is one that is uniform— it doesn’t change in magnitude 
or direction from one point to another. A  perfectly uniform field over a large area 
is not easy to produce. But the field between two flat parallel pole pieces of a 
magnet is nearly uniform if the area of the pole faces is large compared to their 
separation, as shown in Fig. 27-7. A t the edges, the field “fringes” out somewhat: 
the magnetic field lines are no longer quite parallel and uniform. The parallel 
evenly spaced field lines in the central region of the gap indicate that the field is 
uniform at points not too near the edges, much like the electric field between two 
parallel plates (Fig. 23-16).

tMagnetic north is moving many kilometers a year at present. Magnetism in rocks suggests that the

FIGURE 2 7 -7  Magnetic field 
between two wide poles of a magnet is 
nearly uniform, except near the edges.
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FIGURE 2 7 -5  The Earth acts like 
a huge magnet; but its magnetic 
poles are not at the geographic 
poles, which are on the Earth’s 
rotation axis.
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FIGURE 2 7 -8  (a) Deflection of 
compass needles near a current- 
carrying wire, showing the presence 
and direction of the magnetic field.
(b) Magnetic field lines around an 
electric current in a straight wire.
See also the Chapter-Opening photo.
(c) Right-hand rule for remembering 
the direction of the magnetic field: 
when the thumb points in the 
direction of the conventional 
current, the fingers wrapped around 
the wire point in the direction of the 
magnetic field. (a)
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t f

Magnetic
field

2 7 —2 Electric Currents Produce 
Magnetic Fields

During the eighteenth century, many scientists sought to find a connection 
between electricity and magnetism. A  stationary electric charge and a magnet 
were shown to have no influence on each other. But in 1820, Hans Christian 
Oersted (1777-1851) found that when a compass needle is placed near a wire, the 
needle deflects as soon as the two ends of the wire are connected to the terminals of a 
battery and the wire carries an electric current. As we have seen, a compass needle is 
deflected by a magnetic field. So Oersted’s experiment showed that an electric 
current produces a magnetic field. He had found a connection between electricity 
and magnetism.

A  compass needle placed near a straight section of current-carrying wire 
experiences a force, causing the needle to align tangent to a circle around the 
wire, Fig. 27-8a. Thus, the magnetic field lines produced by a current in a straight 
wire are in the form of circles with the wire at their center, Fig. 2 7 -8b. The 
direction of these lines is indicated by the north pole of the compasses in 
Fig. 27-8a. There is a simple way to remember the direction of the magnetic field 
lines in this case. It is called a right-hand rule: grasp the wire with your right 
hand so that your thumb points in the direction of the conventional (positive) 
current; then your fingers will encircle the wire in the direction of the magnetic 
field, Fig. 27-8c.

The magnetic field lines due to a circular loop of current-carrying wire can 
be determined in a similar way using a compass. The result is shown in Fig. 27-9 . 
Again the right-hand rule can be used, as shown in Fig. 27-10. Unlike the 
uniform field shown in Fig. 27-7 , the magnetic fields shown in Figs. 2 7 -8  and
27-9  are not uniform— the fields are different in magnitude and direction at 
different points.

EXERCISE B A straight wire carries a current directly toward you. In what direction are 
the magnetic field lines surrounding the wire?

27—3 Force on an Electric Current in a 
Magnetic Field; Definition of B

In Section 2 7 -2  we saw that an electric current exerts a force on a magnet, such 
as a compass needle. By Newton’s third law, we might expect the reverse to be 
true as well: we should expect that a magnet exerts a force on a current-carrying 
wire. Exoeriments indeed confirm this effect, and it too was first observed

FIGURE 2 7 -9  Magnetic field lines 
due to a circular loop of wire.

Right-hand-rule 1: 
magnetic field  direction 

produced by electric current

FIGURE 27 -1 0  Right-hand rule for 
determining the direction of the 
magnetic field relative to the current.



Suppose a straight wire is placed in the magnetic field between the poles of a 
horseshoe magnet as shown in Fig. 27-11. When a current flows in the wire, experiment 
shows that a force is exerted on the wire. But this force is not toward one or the other 
pole of the magnet. Instead, the force is directed at right angles to the magnetic field 
direction, downward in Fig. 2 7 - l la . If the current is reversed in direction, the force 
is in the opposite direction, upward as shown in Fig. 2 7 - l lb . Experiments show that 
the direction o f the force is always perpendicular to the direction o f the current and 
also perpendicular to the direction o f the magnetic field, B.

The direction of the force is given by another right-hand rule, as illustrated in 
Fig. 2 7 - l lc .  Orient your right hand until your outstretched fingers can point in the 
direction of the conventional current /, and when you bend your fingers they point 
in the direction of the magnetic field lines, B. Then your outstretched thumb will 
point in the direction of the force F on the wire.

This right-hand rule describes the direction of the force. What about the 
magnitude of the force on the wire? It is found experimentally that the magnitude 
of the force is directly proportional to the current I in the wire, and to the length i 
of wire exposed to the magnetic field (assumed uniform). Furthermore, if the 
magnetic field B  is made stronger, the force is found to be proportionally greater. 
The force also depends on the angle 6 between the current direction and the 
magnetic field (Fig. 27-12), being proportional to sin 0. Thus, the force on a wire 
carrying a current I  with length £ in a uniform magnetic field B  is given by 

F  oc I£B sin 0.
When the current is perpendicular to the field lines (0 = 90°), the force is strongest. 
When the wire is parallel to the magnetic field lines (0 = 0°), there is no force at all.

Up to now we have not defined the magnetic field strength precisely. In fact, 
the magnetic field B  can be conveniently defined in terms of the above proportion 
so that the proportionality constant is precisely 1. Thus we have

F = I£B sin 0. (27-1)

If the direction of the current is perpendicular to the field B (0 = 90°), then the force is

Fmax = I£B. [current! 6 ]  (27-2)

If the current is parallel to the field (0 = 0°), the force is zero. The magnitude of B can 
be defined using Eq. 27-2 as B = Fmax/1i, where Fmax is the magnitude of the force 
on a straight length £ of wire carrying a current I  when the wire is perpendicular to B.

The relation between the force F on a wire carrying current I, and the 
magnetic field B that causes the force, can be written as a vector equation. To do 
so, we recall that the direction of F is given by the right-hand rule (Fig. 2 7 - l lc ) ,  
and the magnitude by Eq. 27-1. This is consistent with the definition of the vector 
cross product (see Section 11-2), so we can write

F = I I  X B; (27-3)

here, £ is a vector whose magnitude is the length of the wire and its direction is along

i-

e

b
(c) Right-hand rule

FIGURE 27-11 (a) Force on a 
current-carrying wire placed in a 
magnetic field B; (b) same, but 
current reversed; (c) right-hand rule 
for setup in (b).

Right-hand-rule 2:
force on current exerted by B

FIGURE 27-12 Current-carrying 
wire in a magnetic field. Force on the 
wire is directed into the page.

/



Equation 27-3  applies if the magnetic field is uniform and the wire is 
straight. If B is not uniform, or if the wire does not everywhere make the same 
angle 6 with B, then Eq. 27-3  can be written more generally as

FIGURE 27-12  (Repeated for 
Example 27-1.) Current-carrying 
wire in a magnetic field. Force on the 
wire is directed into the page.

d i  =  I  d l x  B, (27-4)

where d i  is the infinitesimal force acting on a differential length d l  of the wire. 
The total force on the wire is then found by integrating.

Equation 27-4  can serve (just as well as Eq. 27 -2  or 27-3) as a practical 
definition of B. An equivalent way to define B, in terms of the force on a moving 
electric charge, is discussed in the next Section.

EXERCISE C A wire carrying current I  is perpendicular to a magnetic field of strength B. 
Assuming a fixed length of wire, which of the following changes will result in decreasing 
the force on the wire by a factor of 2? (a) Decrease the angle from 90° to 45°; (b) decrease 
the angle from 90° to 30°; (c) decrease the current in the wire to 1/2; (<d) decrease the 
magnetic field strength to B/2; (e) none of these will do it.

The SI unit for magnetic field B  is the tesla (T). From Eqs. 2 7 -1 ,2 ,3 , or 4, we 
see that I T  = 1N /A *m . An older name for the tesla is the “weber per meter 
squared” ( l  W b/m 2 = 1 T). Another unit sometimes used to specify magnetic 
field is a cgs unit, the gauss (G): 1 G = 10_4T. A  field given in gauss should 
always be changed to teslas before using with other SI units. To get a “feel” for 
these units, we note that the magnetic field of the Earth at its surface is about \  G 
or 0.5 X 10_4T. On the other hand, the field near a small magnet attached to 
your refrigerator may be 100 G (0.01 T) whereas strong electromagnets can 
produce fields on the order of 2 T  and superconducting magnets can produce 
over 10 T.

Magnetic force on a current-carrying wire. A  wire 
carrying a 30-A current has a length £ = 12 cm between the pole faces of a 
magnet at an angle 6 = 60° (Fig. 27-12). The magnetic field is approximately 
uniform at 0.90 T. We ignore the field beyond the pole pieces. What is the 
magnitude of the force on the wire?

APPROACH We use Eq. 27-1 , F = U B  sin0.
SOLUTION The force F  on the 12-cm length of wire within the uniform field B  is 

F = I£B sin 6 = (30 A ) (0.12 m) (0.90 T) (0.866) = 2.8 N.

EXERCISE D A straight power line carries 30 A and is perpendicular to the Earth’s 
magnetic field of 0.50 X 10_4T. What magnitude force is exerted on 100 m of this 
power line?

On a diagram, when we want to represent an electric current or a magnetic 
field that is pointing out of the page (toward us) or into the page, we use O or X , 
respectively. The O is meant to resemble the tip of an arrow pointing directly 
toward the reader, whereas the X or (x) resembles the tail of an arrow moving away. 
(See Figs. 27-13 and 27-14.)

EXAMPLE 27-2 Measuring a magnetic field. A  rectangular loop of wire 
hangs vertically as shown in Fig. 27-13. A  magnetic field B is directed horizontally, 
perpendicular to the wire, and points out of the page at all points as represented 
by the symbol O. The magnetic field B is very nearly uniform along the 
horizontal portion of wire ab (length £ = 10.0 cm) which is near the center of 
the gap of a large magnet producing the field. The top portion of the wire loop is 
free of the field. The loop hangs from a balance which measures a downward 
magnetic force (in addition to the gravitational force) of F = 3.48 X 10-2 N
w h p n  th p  w ir p  p n rr ip s  a p n r rp n t  T =  0  A  W h n t  is  th p  m a o n it i ir lp  n f  th p



APPROACH Three straight sections of the wire loop are in the magnetic field: a 
horizontal section and two vertical sections. We apply Eq. 27-1 to each section 
and use the right-hand rule.
SOLUTION The magnetic force on the left vertical section of wire points to the 
left; the force on the vertical section on the right points to the right. These two 
forces are equal and in opposite directions and so add up to zero. Hence, the net 
magnetic force on the loop is that on the horizontal section ab, whose length is 
i  = 0.100 m. The angle 6 between B and the wire is 6 = 90°, so sin 6 = 1. Thus 
Eq. 27-1 gives

F  3.48 X 10“2N 
I i  ~  (0.245 A )(0.100 m)

B = —  = = 1.42 T.

NOTE This technique can be a precise means of determining magnetic field 
strength.

EXAMPLE 27-3 Magnetic force on a semicircular wire. A  rigid wire, 
carrying a current I, consists of a semicircle of radius R  and two straight portions 
as shown in Fig. 27-14. The wire lies in a plane perpendicular to a uniform 
magnetic field B0. Note choice of x  and y axis. The straight portions each have 
length i  within the field. Determine the net force on the wire due to the magnetic 
field B0.

APPROACH The forces on the two straight sections are equal (= IiB 0) and in 
opposite directions, so they cancel. Hence the net force is that on the semicircular 
portion.

L

SOLUTION We divide the semicircle into short lengths di = R  
in Fig. 27-14, and use Eq. 27-4 , dF = I  d l X B, to find

as indicated

o  o  
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10.0 cm
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B (toward viewer)
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FIGURE 27-13  Measuring a 
magnetic field B. Example 27-2.

dF = IBnR

where dF  is the force on the length di = R d<f>, and the angle between d l  and B0 
is 90° (so sin 6 = 1 in the cross product). The x  component of the force dF on 
the segment d l  shown, and the x  component of dF for a symmetrically located 
d l  on the other side of the semicircle, will cancel each other. Thus for the entire 
semicircle there will be no x  component of force. Hence we need be concerned 
only with the y  components, each equal to dF  sin <£, and the total force will 
have magnitude

dF  sin <p = IB 0R  sin cf> d<f> = —IB 0R  cos <f> = 2IB0R,



2 7 —4  Force on an Electric Charge 
Moving in a Magnetic Field

Right-hand rule 
F

+ q \

N
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FIGURE 27-15  Force on charged 
particles due to a magnetic field is 
perpendicular to the magnetic field 
direction. If v is horizontal, then F 
is vertical.

Right-hand-rule 3: 
force on moving charge exerted by B

FIGURE 2 7 -1 6  Example 27-5. 

1 y (up)

F
(west)

0  Moving into 
page (north)

(a) (b)

We have seen that a current-carrying wire experiences a force when placed in a 
magnetic field. Since a current in a wire consists of moving electric charges, we 
might expect that freely moving charged particles (not in a wire) would also 
experience a force when passing through a magnetic field. Indeed, this is the case.

From what we already know we can predict the force on a single moving 
electric charge. If N  such particles of charge q pass by a given point in time t, they 
constitute a current I  = N q/t. We let t be the time for a charge q to travel a 
distance £ in a magnetic field B; then I  = yt where v is the velocity of the 
particle. Thus, the force on these N  particles is, by Eq. 27-3 , F = I i  X B = 
(N q/t)(y t)  X B = Nqy  X B. The force on one of the N  particles is then

F = qy X B. (27-5a)

This basic and important result can be considered as an alternative way of defining 
the magnetic field B, in place of Eq. 27 -4  or 27-3. The magnitude of the force in 
Eq. 27-5a is

F = qvB  sin 0. (27-5b)
This gives the magnitude of the force on a particle of charge q moving with velocity v 
at a point where the magnetic field has magnitude B. The angle between v and B is 0. 
The force is greatest when the particle moves perpendicular to B (0 = 90°):

m̂ax = qvB. [v -L S]
The force is zero if the particle moves parallel to the field lines (0 = 0°). The 
direction of the force is perpendicular to the magnetic field B and to the velocity v 
of the particle. It is given again by a right-hand rule (as for any cross product): you 
orient your right hand so that your outstretched fingers point along the direction 
of the particle’s velocity (v), and when you bend your fingers they must point 
along the direction of B. Then your thumb will point in the direction of the force. 
This is true only for positively charged particles, and will be “up” for the positive 
particle shown in Fig. 27-15. For negatively charged particles, the force is in exactly 
the opposite direction, “down” in Fig. 27-15.

CONCEPTUAL EXAMPLE 27-41 Negative charge near a magnet. A  negative
charge —Q is placed at rest near a magnet. Will the charge begin to move? Will it feel 
a force? What if the charge were positive, +Q1
RESPONSE No to all questions. A  charge at rest has velocity equal to zero. 
Magnetic fields exert a force only on moving electric charges (Eqs. 27-5).

EXERCISE E Return to the Chapter-Opening Question, page 707, and answer it again now. 
Try to explain why you may have answered differently the first time.

■ IJ Magnetic force on a proton. A  magnetic field exerts a
force of 8.0 X 10 14 N toward the west on a proton moving vertically upward at a 
speed of 5.0 X 106m /s (Fig. 27-16a). When moving horizontally in a northerly 
direction, the force on the proton is zero (Fig. 27-16b). Determine the magnitude 
and direction of the magnetic field in this region. (The charge on a proton is 
q =  +e = 1.6 X 10_19C .)
APPROACH Since the force on the proton is zero when moving north, the field must 
be in a north-south direction. In order to produce a force to the west when the proton 
moves upward, the right-hand rule tells us that B must point toward the north. (Your 
thumb points west and the outstretched fingers of your right hand point upward only 
when your bent fingers point north.) The magnitude of B is found using Eq. 27-5b. 
SOLUTION Equation 27-5b with 0 = 90° gives



EXAMPLE 27-6 ESTIMATE"! Magnetic force on ions during a nerve pulse.
Estimate the magnetic force due to the Earth’s magnetic field on ions crossing a 
cell membrane during an action potential. Assume the speed of the ions is 
10“2m /s (Section 25-10).
APPROACH Using F = qvB, set the magnetic field of the Earth to be roughly 
B  «  IO-4 T, and the charge q «  e «  IO-19 C.
SOLUTION F  ~  (lO-19 C )(l0-2 m /s)( l0 -4 T) = 1(T25N.
NOTE This is an extremely small force. Yet it is thought migrating animals do 
somehow detect the Earth’s magnetic field, and this is an area of active research.

The path of a charged particle moving in a plane perpendicular to a uniform 
magnetic field is a circle as we shall now show. In Fig. 27-17 the magnetic field is 
directed into the paper, as represented by X’s. An electron at point P is moving to the 
right, and the force on it at this point is downward as shown (use the right-hand rule 
and reverse the direction for negative charge). The electron is thus deflected toward 
the page bottom. A  moment later, say, when it reaches point Q, the force is still 
perpendicular to the velocity and is in the direction shown. Because the force is 
always perpendicular to v, the magnitude of v does not change— the electron moves 
at constant speed. We saw in Chapter 5 that if the force on a particle is always 
perpendicular to its velocity v, the particle moves in a circle and has a centripetal 
acceleration a = v2/r  (Eq. 5-1). Thus a charged particle moves in a circular path with 
constant centripetal acceleration in a uniform magnetic field (see Example 27-7). The 
electron moves clockwise in Fig. 27-17. A  positive particle in this field would feel a 
force in the opposite direction and would thus move counterclockwise.
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Path of electron B is into the page
FIGURE 27-17  Force exerted by a 
uniform magnetic field on a moving 
charged particle (in this case, an 
electron) produces a circular path.

EXAMPLE 27-7 Electron's path in a uniform magnetic field. An electron 
travels at 2.0 X 107m /s in a plane perpendicular to a uniform 0.010-T magnetic 
field. Describe its path quantitatively.
APPROACH The electron moves at speed v  in a curved path and so must have a 
centripetal acceleration a = v2/r  (Eq. 5-1). We find the radius of curvature using 
Newton’s second law. The force is given by Eq. 27-5b with sin 6 = 1: F = qvB. 
SOLUTION We insert F  and a into Newton’s second law:

'EF = ma

qvB  ----------
mv 

r
We solve for r and find

mv
r ~ W

Since F is perpendicular to v, the magnitude of v doesn’t change. From this 
equation we see that if B = constant, then r = constant, and the curve must be 
a circle as we claimed above. To get r we put in the numbers:

(9.1 X IO-31 kg)(2.0 X 107m /s)

(1.6 X 10-19 C)(0.010 T)
= 1.1 x  10 m = 1.1cm.

FIGURE 2 7 -1 8  The blue ring 
inside the glass tube is the glow of a 
beam of electrons that ionize the gas 
molecules. The red coils of current- 
carrying wire produce a nearly 
uniform magnetic field, illustrating 
the circular path of charged particles 
in a uniform magnetic field.

NOTE See Fig. 27-18.

The time T required for a particle of charge q moving with constant speed v to
make one circular revolution in a uniform magnetic field B (_L v) is T = 2irr/v, where
lirr  is the circumference of its circular path. From Example 27-7, r = mv/qB, so

™ 2irm T = — — ■qB
Since T is the period of rotation, the frequency of rotation is

1 qB
(27-6)



CONCEPTUAL EXAMPLE 27-8 I Stopping charged particles. Can a magnetic 
field be used to stop a single charged particle, as an electric field can?
RESPONSE No, because the force is always perpendicular to the velocity of the 
particle and thus cannot change the magnitude of its velocity. It also means the 
magnetic force cannot do work on the particle and so cannot change the kinetic 

^ T T energy of the particle.
s O L %  i—

o ----------------------------------------------
Magnetic Fields
Magnetic fields are somewhat analogous to the electric 

p* fields of Chapter 21, but there are several important 
differences to recall:
1. The force experienced by a charged particle moving 

in a magnetic field is perpendicular to the direction 
of the magnetic field (and to the direction of the 
velocity of the particle), whereas the force exerted

TABLE 27-1 Summary of Right-hand Rules (=  RHR)

Physical Situation Example How to Orient Right Hand Result

1. Magnetic field produced by 
current 
(RHR-1) ti

d > Fig. 27-Mi-

Wrap fingers around wire 
with thumb pointing in 
direction of current I

Fingers point in direction of B

2. Force on electric current I 
due to magnetic field 
(RHR-2)

f

I

B

Fingers point straight along 
current I, then bend along 
magnetic field B

Thumb points in direction 
of the force F

Fig. 27-11c

3. Force on electric charge +q 
due to magnetic field 
(RHR-3)

F

V

» Fig. 27-15

Fingers point along particle’s 
velocity v, then along B

Thumb points in direction 
of the force F

CONCEPTUAL EXAMPLE 27-9 I A helical path. What is the path of a charged 
particle in a uniform magnetic field if its velocity is not perpendicular to the magnetic 
field?
RESPONSE The velocity vector can be broken down into components parallel 
and perpendicular to the field. The velocity component parallel to the field lines 
experiences no force (d = 0), so this component remains constant. The velocity 
component perpendicular to the field results in circular motion about the field 
lines. Putting these two motions together produces a helical (spiral) motion 
around the field lines as shown in Fig. 27-19.

EXERCISE F What is the sign of the charge in Fig. 27-19? How would you modify the

TlA"' a n r> fY Y Y \
1 1II I 1 1

\l V

FIGURE 27-19 Example 27-9.

by an electric field is parallel to the direction of 
the field (and unaffected by the velocity of the 
particle).

2 . The right-hand rule, in its different forms, is intended 
to help you determine the directions of magnetic 
field, and the forces they exert, and/or the directions 
of electric current or charged particle velocity. The 
right-hand rules (Table 27-1) are designed to deal 
with the “perpendicular” nature of these quantities.



* Aurora Borealis
Charged ions approach the Earth from the Sun (the “solar wind”) and enter the 
atmosphere mainly near the poles, sometimes causing a phenomenon called 
the aurora borealis or “northern lights” in northern latitudes. To see why, 
consider Example 2 7 -9  and Fig. 27-20 (see also Fig. 27-19). In Fig. 27-20  we 
imagine a stream of charged particles approaching the Earth. The velocity 
component perpendicular to the field for each particle becomes a circular orbit 
around the field lines, whereas the velocity component parallel to the field 
carries the particle along the field lines toward the poles. As a particle 
approaches the N pole, the magnetic field is stronger and the radius of the helical 
path becomes smaller.

A  high concentration of charged particles ionizes the air, and as the electrons 
recombine with atoms, light is emitted (Chapter 37) which is the aurora. Auroras 
are especially spectacular during periods of high sunspot activity when the solar 
wind brings more charged particles toward Earth.

Lorentz Equation
If a particle of charge q moves with velocity v in the presence of both a magnetic 
field B and an electric field E, it will feel a force

F = q(E +  \ X  B) (27-7)

where we have made use of Eqs. 21-3  and 27-5a. Equation 27-7  is often 
called the Lorentz equation and is considered one of the basic equations 
in physics.

CONCEPTUAL EXAMPLE 27-10 I Velocity selector, or filter: Crossed E  and B 
fields. Some electronic devices and experiments need a beam of charged particles 
all moving at nearly the same velocity. This can be achieved using both a uniform 
electric field and a uniform magnetic field, arranged so they are at right angles 
to each other. As shown in Fig. 27-21 a, particles of charge q pass through slit S1 
and enter the region where B points into the page and E points down from the positive 
plate toward the negative plate. If the particles enter with different velocities, 
show how this device “selects” a particular velocity, and determine what this 
velocity is.

RESPONSE After passing through slit S i , each particle is subject to two forces as 
shown in Fig. 27-21b. If q is positive, the magnetic force is upwards and the 
electric force downwards. (Vice versa if q is negative.) The exit slit, S2, is assumed 
to be directly in line with Si and the particles’ velocity v. Depending on the 
magnitude of v, some particles will be bent upwards and some downwards. 
The only ones to make it through the slit S2 will be those for which the net 
force is zero: 2 F  =  qvB — qE = 0. Hence this device selects particles whose 
velocity is

V =  f  ■ (27-8)

This result does not depend on the sign of the charge q.

EXERCISE G A particle in a velocity selector as diagrammed in Fig. 27-21 hits below the 
exit hole, S2. This means that the particle (a) is going faster than the selected speed; (b) is 
going slower than the selected speed; (c) answer a is true if q > 0, b is true if q < 0;

0 P H Y S I C S  A P P L I E D
The aurora borealis

Charged particle

(b)
FIGURE 27-20 (a) Diagram 
showing a negatively charged particle 
that approaches the Earth and is 
“captured” by the magnetic field of 
the Earth. Such particles follow the 
field lines toward the poles as shown, 
(b) Photo of aurora borealis (here, in 
Kansas, where it is a rare sight).

FIGURE 27-21 A velocity selector: 
if v = E/B, the particles passing 
through Si make it through S2.

B (into page)



Axis of rotation

(b)

ii = NIA

FIGURE 27-22 Calculating the 
torque on a current loop in a 
magnetic field B. (a) Loop face 
parallel to B field lines; (b) top view; 
(c) loop makes an angle to B, 
reducing the torque since the lever 
arm is reduced.

2 7 —5 Torque on a Current Loop; 
Magnetic Dipole Moment

When an electric current flows in a closed loop of wire placed in an external 
magnetic field, as shown in Fig. 27-22, the magnetic force on the current can 
produce a torque. This is the principle behind a number of important practical 
devices, including motors and analog voltmeters and ammeters, which we discuss in 
the next Section. The interaction between a current and a magnetic field is important 
in other areas as well, including atomic physics.

Current flows through the rectangular loop in Fig. 27-22a, whose face we 
assume is parallel to B. B exerts no force and no torque on the horizontal 
segments of wire because they are parallel to the field and sin0 = 0 in Eq. 27-1. 
But the magnetic field does exert a force on each of the vertical sections of wire 
as shown, and F2 (see also top view, Fig. 27-22b). By right-hand-rule 2 
(Fig. 2 7 - l lc  or Table 27-1) the direction of the force on the upward current on the 
left is in the opposite direction from the equal magnitude force F2 on the downward 
current on the right. These forces give rise to a net torque that acts to rotate the coil 
about its vertical axis.

Let us calculate the magnitude of this torque. From Eq. 27 -2  (current _L B), 
the force F = IaB, where a is the length of the vertical arm of the coil. The lever 
arm for each force is b/2, where b is the width of the coil and the “axis” is at the 
midpoint. The torques produced by F̂  and F2 act in the same direction, so the total 
torque is the sum of the two torques:

b b 
t  = IaB — + IaB — = labB = IAB,

2 2

where A = ab is the area of the coil. If the coil consists of N  loops of wire, the 
current is then NI, so the torque becomes

t  =  NIAB.

If the coil makes an angle 6 with the magnetic field, as shown in Fig. 27-22c, the 
forces are unchanged, but each lever arm is reduced from \  b to \  b sin 6. Note that 
the angle 6 is taken to be the angle between B and the perpendicular to the face of 
the coil, Fig. 21-22c. So the torque becomes

r = NIAB sind. (27-9)

This formula, derived here for a rectangular coil, is valid for any shape of flat coil.
The quantity NIA is called the magnetic dipole moment of the coil and is 

considered a vector:

pL = NIA, (27-10)

where the direction of A (and therefore of jl) is perpendicular to the plane of the 
coil (the green arrow in Fig. 21-22c) consistent with the right-hand rule (cup your 
right hand so your fingers wrap around the loop in the direction of current flow, 
then your thumb points in the direction of jl and A). With this definition of jx, we 
can rewrite Eq. 27-9  in vector form:

f  = N lA  X B
or

f  = j i x g ,  (27-11)

which gives the correct magnitude and direction for the torque f .
Equation 27-11 has the same form as Eq. 21-9b  for an electric dipole 

(with electric dipole moment p) in an electric field E, which is f  = p X E. 
And just as an electric dipole has potential energy given by U = —p E 
when in an electric field, we expect a similar form for a magnetic dipole 
in a magnetic field. In order to rotate a current loot) (Fie. 27-22) so as to



Hence the potential energy depends on angle (see Eq. 10-22, the work-energy 
principle for rotational motion) as

U = |  r dd = |  N IAB  sin 6 dd =  - 1xB  cos 0

If we choose U = 0 at 0 = tt/2, then the arbitrary constant C is zero and the 
potential energy is

U = \juB cos 6 = - j i - B ,  (27-12)
as expected (compare Eq. 21-10). Bar magnets and compass needles, as well as current 
loops, can be considered as magnetic dipoles. Note the striking similarities of the 
fields produced by a bar magnet and a current loop, Figs. 27-4b and 27-9.

Torque on a coil. A  circular coil of wire has a diameter of
20.0 cm and contains 10 loops. The current in each loop is 3.00 A, and the coil is 
placed in a 2.00-T external magnetic field. Determine the maximum and 
minimum torque exerted on the coil by the field.

APPROACH Equation 27-9  is valid for any shape of coil, including circular loops. 
Maximum and minimum torque are determined by the angle 6 the coil makes 
with the magnetic field.
SOLUTION The area of one loop of the coil is

A  = irr2 = Tr(O.lOOm)2 =  3.14 X 10“2m2.
The maximum torque occurs when the coil’s face is parallel to the magnetic field, 
so 8 = 90° in Fig. 27-22c, and sin 6 = 1 in Eq. 27-9:

t  =  N IA B sin6>  =  (10)(3.00 A)(3.14 X 10“2m2)(2 .0 0 T )(l)  =  1.88N -m .

The minimum torque occurs if sin0 = 0, for which 0 = 0°, and then t  = 0 
from Eq. 27-9.
NOTE If the coil is free to turn, it will rotate toward the orientation with 6 = 0°.

EXAMPLE 27-12 Magnetic moment of a hydrogen atom. Determine the 
magnetic dipole moment of the electron orbiting the proton of a hydrogen atom 
at a given instant, assuming (in the Bohr model) it is in its ground state with a 
circular orbit of radius 0.529 X 10-10m. [This is a very rough picture of atomic 
structure, but nonetheless gives an accurate result.]

APPROACH We start by setting the electrostatic force on the electron due to the 
proton equal to ma = m v2/r  since the electron’s acceleration is centripetal. 
SOLUTION The electron is held in its orbit by the coulomb force, so Newton’s 
second law, F = ma, gives

so
4tre0r2

v =

(8.99 X 109 N • m2/C 2)(l.60 X 10"19c y  

(9.11 X 10“31 kg)(0.529 X 10-10 m)
2.19 X 106 m /s.

Since current is the electric charge that passes a given point per unit time, the 
revolving electron is equivalent to a current

t _ e _ ev
T ~  2tit’

where T = 2irrlv  is the time required for one orbit. Since the area of the orbit 
is A  = irr2, the magnetic dipole moment is

T A ( 2\ 1\l = IA  = 2^7 (’’’H  = 2 evr 

=  1(1.60 X 10"l9 rV 2 .1 Q  X 106m /sV 0..‘>29 X 1O-l0 m'l =  9 27 X  U P 24 A - m 2



* 2 7 -6  Applications: Motors, 
Loudspeakers, Galvanometers

© - P H Y S I C S  A P P L I E D
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FIGURE 27-23 Diagram of a 
simple dc motor.

* Electric Motors
A n electric motor changes electric energy into (rotational) mechanical energy A  
motor works on the principle that a torque is exerted on a coil of current-carrying 
wire suspended in the magnetic field of a magnet, described in Section 27-5 . The coil 
is mounted on a large cylinder called the rotor or armature, Fig. 27-23, so that it can 
rotate continuously in one direction. Actually, there are several coils, although only 
one is indicated in the Figure. The armature is mounted on a shaft or axle. When the 
armature is in the position shown in Fig. 27-23, the magnetic field exerts forces on 
the current in the loop as shown (perpendicular to B and to the current direction). 
However, when the coil, which is rotating clockwise in Fig. 27-23, passes beyond 
the vertical position, the forces would then act to return the coil back to vertical if the 
current remained the same. But if the current could somehow be reversed at that crit­
ical moment, the forces would reverse, and the coil would continue rotating in the same 
direction. Thus, alternation of the current is necessary if a motor is to turn continuously 
in one direction. This can be achieved in a dc motor with the use of commutators and 
brushes: as shown in Fig. 27-24, input current passes through stationary brushes that 
mb against the conducting commutators mounted on the motor shaft. A t every half 
revolution, each commutator changes its connection over to the other brush. Thus the 
current in the coil reverses every half revolution as required for continuous rotation.

Lend wires lo armature coil

FIGURE 27-25 Motor with 
many windings.

FIGURE 27-26 Loudspeaker.

J1

Rigid I  
metal If 

Coil of wire frame j . j  
(attached to 
speaker cone ) / j

s  /"

Magnet \ \  p  
\

II \Lcud'in ^  Cone A

FIGURE 27-24 The commutator-brush 
arrangement in a dc motor ensures alternation of 
the current in the armature to keep rotation 
continuous. The commutators are attached to the 
motor shaft and turn with it, whereas the brushes 
remain stationary.

Most motors contain several coils, called windings, each located in a different place 
on the armature, Fig. 27-25. Current flows through each coil only during a small part of 
a revolution, at the time when its orientation results in the maximum torque. In this 
way, a motor produces a much steadier torque than can be obtained from a single coil.

A n ac motor, with ac current as input, can work without commutators since the 
current itself alternates. Many motors use wire coils to produce the magnetic field 
(electromagnets) instead of a permanent magnet. Indeed the design of most motors 
is more complex than described here, but the general principles remain the same.

* Loudspeakers
A  loudspeaker also works on the principle that a magnet exerts a force on a 
current-carrying wire. The electrical output of a stereo or TV set is connected to the 
wire leads of the speaker. The speaker leads are connected internally to a coil of 
wire, which is itself attached to the speaker cone, Fig. 27-26. The speaker cone is 
usually made of stiffened cardboard and is mounted so that it can move back and 
forth freelv. A  oermanent maenet is mounted directlv in line with the coil of wire.



As the current alternates at the frequency of the audio signal, the coil and attached 
speaker cone move back and forth at the same frequency, causing alternate compres­
sions and rarefactions of the adjacent air, and sound waves are produced. A  speaker 
thus changes electrical energy into sound energy, and the frequencies and intensities 
of the emitted sound waves can be an accurate reproduction of the electrical input.

* Galvanometer
The basic component of analog meters (those with pointer and dial), including 
analog ammeters, voltmeters, and ohmmeters, is a galvanometer. We have already 
seen how these meters are designed (Section 26-7), and now we can examine how 
the crucial element, a galvanometer, works. As shown in Fig. 27-27, a 
galvanometer consists of a coil of wire (with attached pointer) suspended in the 
magnetic field of a permanent magnet. When current flows through the loop of 
wire, the magnetic field exerts a torque on the loop, as given by Eq. 27-9,

r = N IA B  sin 6.

This torque is opposed by a spring which exerts a torque t s approximately 
proportional to the angle <f> through which it is turned (H ooke’s law). That is,

rs = k(j),

where k  is the stiffness constant of the spring. The coil and attached pointer rotate 
to the angle where the torques balance. When the needle is in equilibrium at rest, 
the torques are equal: k(f> = N IA B  sin 0, or

N IAB  sin 0

The deflection of the pointer, 0 , is directly proportional to the current I  flowing in 
the coil, but also depends on the angle 0 the coil makes with B. For a useful meter 
we need (f> to depend only on the current I, independent of 0. To solve this problem, 
magnets with curved pole pieces are used and the galvanometer coil is wrapped 
around a cylindrical iron core as shown in Fig. 27-28. The iron tends to concentrate 
the magnetic field lines so that B always points parallel to the face of the coil at the 
wire outside the core. The force is then always perpendicular to the face of the coil, 
and the torque will not vary with angle. Thus (f> will be proportional to I  as required.

FIGURE 27-27 Galvanometer.

FIGURE 27-28 Galvanometer coil 
wrapped on an iron core.
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2 7 -7  Discovery and Properties of 
the Electron

The electron plays a basic role in our understanding of electricity and magnetism 
today. But its existence was not suggested until the 1890s. We discuss it here 
because magnetic fields were crucial for measuring its properties.

Toward the end of the nineteenth century, studies were being done on the 
discharge of electricity through rarefied gases. One apparatus, diagrammed in 
Fig. 27-29, was a glass tube fitted with electrodes and evacuated so only a small 
amount of gas remained inside. When a very high voltage was applied to the 
electrodes, a dark space seemed to extend outward from the cathode (negative 
electrode) toward the opposite end of the tube; and that far end of the tube would 
glow. If one or more screens containing a small hole was inserted as shown, the 
glow was restricted to a tiny spot on the end of the tube. It seemed as though 
something being emitted by the cathode traveled to the opposite end of the tube. 
These “somethings” were named cathode rays.

There was much discussion at the time about what these rays might be. Some 
scientists thought they might resemble light. But the observation that the bright 
spot at the end of the tube could be deflected to one side by an electric or 
magnetic field suggested that cathode ravs could be charged particles: and the

FIGURE 27-29 Discharge tube.
In some models, one of the screens is 
the anode (positive plate).
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FIGURE 27-30 Cathode rays 
deflected by electric and magnetic 
fields.

magnetic field

Estimates of the charge e of the (assumed) cathode-ray particles, as well as of 
their charge-to-mass ratio e/m , had been made by 1897. But in that year, J. J. Thomson 
(1856-1940) was able to measure e/m  directly, using the apparatus shown in 
Fig. 27-30. Cathode rays are accelerated by a high voltage and then pass between a 
pair of parallel plates built into the tube. The voltage applied to the plates produces an 
electric field, and a pair of coils produces a magnetic field. When only the electric field 
is present, say with the upper plate positive, the cathode rays are deflected upward as 
in path a in Fig. 27-30. If only a magnetic field exists, say inward, the rays are deflected 
downward along path c. These observations are just what is expected for a negatively 
charged particle. The force on the rays due to the magnetic field is F = evB, where e 
is the charge and v is the velocity of the cathode rays. In the absence of an electric 
field, the rays are bent into a curved path, so we have, from F = ma,

evB = m  — : r
and thus

ra Br
The radius of curvature r can be measured and so can B. The velocity v  can be 
found by applying an electric field in addition to the magnetic field. The electric 
field E  is adjusted so that the cathode rays are undeflected and follow path b in 
Fig. 27-30. This is just like the velocity selector of Example 27-10 where the force 
due to the electric field, F = eE, is balanced by the force due to the magnetic 
field, F  = evB. Thus eE  = evB  and v = E /B . Combining this with the above 
equation we have

e E
-  = (27-13)m BLr

The quantities on the right side can all be measured so that although e and m  
could not be determined separately, the ratio e/m  could be determined. The 
accepted value today is e/m  = 1.76 X 1011 C/kg. Cathode rays soon came to be 
called electrons.

It is worth noting that the “discovery” of the electron, like many others in 
science, is not quite so obvious as discovering gold or oil. Should the discovery of 
the electron be credited to the person who first saw a glow in the tube? Or to the 
person who first called them cathode rays? Perhaps neither one, for they had no 
conception of the electron as we know it today. In fact, the credit for the discovery 
is generally given to Thomson, but not because he was the first to see the glow in the 
tube. Rather it is because he believed that this phenomenon was due to tiny 
negatively charged particles and made careful measurements on them. Furthermore 
he argued that these particles were constituents of atoms, and not ions or atoms 
themselves as many thought, and he developed an electron theory of matter. His 
view is close to what we accept today, and this is why Thomson is credited with the 
“discovery.” Note, however, that neither he nor anvone else ever actuallv saw an



Thomson believed that an electron was not an atom, but rather a constituent, 
or part, of an atom. Convincing evidence for this came soon with the determination 
of the charge and the mass of the cathode rays. Thomson’s student J. S. Townsend 
made the first direct (but rough) measurements of e in 1897. But it was the more 
refined oil-drop experiment of Robert A. Millikan (1868-1953) that yielded a 
precise value for the charge on the electron and showed that charge comes in 
discrete amounts. In this experiment, tiny droplets of mineral oil carrying an electric 
charge were allowed to fall under gravity between two parallel plates, Fig. 27-31. 
The electric field E  between the plates was adjusted until the drop was suspended 
in midair. The downward pull of gravity, mg, was then just balanced by the upward 
force due to the electric field. Thus qE = mg, so the charge q = m g/E . The mass 
of the droplet was determined by measuring its terminal velocity in the absence of 
the electric field. Sometimes the drop was charged negatively, and sometimes 
positively, suggesting that the drop had acquired or lost electrons (by friction, 
leaving the atomizer). Millikan’s painstaking observations and analysis presented 
convincing evidence that any charge was an integral multiple of a smallest charge, 
e, that was ascribed to the electron, and that the value of e was 1.6 X 10“19C. 
This value of e, combined with the measurement of e/m , gives the mass of the electron 
to be (1.6 X 10“19C )/(l.76  X 10n C/kg) = 9.1 X 10“31kg. This mass is less than a 
thousandth the mass of the smallest atom, and thus confirmed the idea that the 
electron is only a part of an atom. The accepted value today for the mass of the 
electron is rae =  9.11 X 10-31 kg.

CRT, Revisited
The cathode ray tube (CRT), which can serve as the picture tube of TV sets, 
oscilloscopes, and computer monitors, was discussed in Chapter 23. There, in 
Fig. 23-22, we saw a design using electric deflection plates to maneuver the electron 
beam. Many CRTs, however, make use of the magnetic field produced by coils to 
maneuver the electron beam. They operate much like the coils shown in Fig. 27-30.

Atnmi/er
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FIGURE 27-31 Millikan’s oil-drop 
experiment.

* 2 7 -8  The Hall Effect
When a current-carrying conductor is held fixed in a magnetic field, the field exerts a 
sideways force on the charges moving in the conductor. For example, if electrons 
move to the right in the rectangular conductor shown in Fig. 27-32a, the inward 
magnetic field will exert a downward force on the electrons FB = - e v d X B, where 
vd is the drift velocity of the electrons (Section 25-8). Thus the electrons will tend to 
move nearer to face D than face C. There will thus be a potential difference between 
faces C and D of the conductor. This potential difference builds up until the electric 
field E h that it produces exerts a force, eEH, on the moving charges that is equal and 
opposite to the magnetic force. This effect is called the Hall effect after E. H. Hall, 
who discovered it in 1879. The difference of potential produced is called the Hall emf.

The electric field due to the separation of charge is called the Hall field, E H, 
and points downward in Fig. 27-32a, as shown. In equilibrium, the force due to this 
electric field is balanced by the magnetic force ev$ B, so 

eEH =  ev&B.
Hence = v& B. The Hall emf is then (Eq. 23—4b, assuming the conductor is long 
and thin so is uniform)

= EHd = vdBd, (27-14)
where d is the width of the conductor.

A  current of negative charges moving to the right is equivalent to positive 
charges moving to the left, at least for most purposes. But the Hall effect can 
distinguish these two. As can be seen in Fig. 27-32b, positive particles moving to the 
left are deflected downward, so that the bottom surface is positive relative to the top 
surface. This is the reverse of nart (a). Tndeed. the direction of the emf in the Hall

FIGURE 27-32 The Hall effect, 
(a) Negative charges moving to the 
right as the current, (b) Positive 
charges moving to the left as the 
current.
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FIGURE 27-32a (Repeated here 
for Example 27-13.)
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The mass spectrometer

FIGURE 27-33 Bainbridge-type 
mass spectrometer. The magnetic 
fields B and B' point out of the 
paper (indicated by the dots), for 
positive ions.

The magnitude of the Hall emf is proportional to the strength of the magnetic 
field. The Hall effect can thus be used to measure magnetic field strengths. First 
the conductor, called a Hall probe, is calibrated with known magnetic fields. Then, 
for the same current, its emf output will be a measure of B. Hall probes can be 
made very small and are convenient and accurate to use.

The Hall effect can also be used to measure the drift velocity of charge 
carriers when the external magnetic field B  is known. Such a measurement also 
allows us to determine the density of charge carriers in the material.

EXAMPLE 27-13 Drift velocity using the Hall effect. A  long copper strip
1.8 cm wide and 1.0 mm thick is placed in a 1.2-T magnetic field as in Fig. 27-32a. 
When a steady current of 15 A  passes through it, the Hall emf is measured to be 
1.02 pN. Determine the drift velocity of the electrons and the density of free 
(conducting) electrons (number per unit volume) in the copper.

APPROACH We use Eq. 27-14 to obtain the drift velocity, and Eq. 25-13 of 
Chapter 25 to find the density of conducting electrons.
SOLUTION The drift velocity (Eq. 27-14) is

1.02 X 10-6 V ,
vd =  —-  =  --------- -7--------------- -— r =  4.7 X 10 5 m /s.

d Bd  (1 .2T )(l.8  X 10 m)

The density of charge carriers n is obtained from Eq. 25-13, I  = nevdA , where 
A  is the cross-sectional area through which the current I  flows. Then

/  15 A
n =

evdA  (1.6 X 10-19 C)(4.7 X 10-5m /s)(l.8  X 10“2m )(l.0 X 10“3m

This value for the density of free electrons in copper, n = 11 X 1028perm 3, is 
the experimentally measured value. It represents more than one free electron per 
atom, which as we saw in Example 25-14 is

*2 7 —9 Mass Spectrometer
A  mass spectrometer is a device to measure masses of atoms. It is used today 
not only in physics but also in chemistry, geology, and medicine, often to 
identify atoms (and their concentration) in given samples. As shown in 
Fig. 27-33, ions are produced by heating, or by an electric current, in the source 
or sample S. The particles, of mass m  and electric charge q, pass through slit S1 
and enter crossed electric and magnetic fields. Ions follow a straight-line 
path in this “velocity selector” (as in Example 27-10) if the electric force qE  is 
balanced by the magnetic force qvB : that is, if qE = qvB, or v = E /B .  Thus 
only those ions whose speed is v = E /B  will pass through undeflected and 
emerge through slit S2. In the semicircular region, after S2, there is only a 
magnetic field, B', so the ions follow a circular path. The radius of the circular 
path is found from their mark on film (or detectors) if B' is fixed; or else r is 
fixed by the position of a detector and B' is varied until detection occurs. 
Newton’s second law, 'ZF = ma, applied to an ion moving in a circle under the 
influence only of the magnetic field B' gives qvB' = m v2/r. Since v = E /B , 
we have

qB'r qBB'r
m  = ------- = — - —

v E

All the Quantities on the right side are known or can be measured, and thus m can



Historically, the masses of many atoms were measured this w ay W hen a 
pure substance was used, it was som etim es found that two or more closely 
spaced marks would appear on the film. For example, neon produced two marks 
whose radii corresponded to atoms of mass 20 and 22 atomic mass units (u). 
Impurities were ruled out and it was concluded that there must be two types 
of neon with different masses. These different forms were called isotopes. 
It was soon found that most elem ents are mixtures of isotopes, and the 
difference in mass is due to different numbers of neutrons (discussed in 
Chapter 41).

EXAMPLE 27-14 Mass spectrometry. Carbon atoms of atomic mass 12.0 u 
are found to be mixed with another, unknown, element. In a mass spectrometer 
with fixed B ', the carbon traverses a path of radius 22.4 cm and the unknown’s 
path has a 26.2-cm radius. What is the unknown element? Assum e the ions of 
both elem ents have the same charge.

APPROACH The carbon and unknown atoms pass through the same electric 
and magnetic fields. H ence their masses are proportional to the radius of their 
respective paths (see equation on previous page).
SOLUTION We write a ratio for the masses, using the equation at the bottom of 
the previous page:

=  q B B 'r J E  =  26.2 cm 
m c qB B 'rc/E  22.4 cm 

Thus m x =  1.17 X 12.0 u =  14.0 u. The other elem ent is probably nitrogen
(see the Periodic Table, inside the back cover).
NOTE The unknown could also be an isotope such as carbon-14 (^C). See 
A ppendix F. Further physical or chemical analysis would be needed.

Summary
A magnet has two poles, north and south. The north pole is that 
end which points toward geographic north when the magnet is 
freely suspended. Like poles of two magnets repel each other, 
whereas unlike poles attract.

We can picture that a magnetic field surrounds every 
magnet. The SI unit for magnetic field is the tesla (T).

Electric currents produce magnetic fields. For example, the 
lines of magnetic field due to a current in a straight wire form 
circles around the wire, and the field exerts a force on magnets 
(or currents) near it.

A magnetic field exerts a force on an electric current. The 
force on an infinitesimal length of wire dt carrying a current I  in 
a magnetic field B is

d f  = I  d l x  B. (27-4)
If the field B is uniform over a straight length 1 of wire, then the 
force is

f  = i t  X B  (27-3)
which has magnitude

The path of a charged particle moving perpendicular to a 
uniform magnetic field is a circle.

If both electric and magnetic fields (E and B) are present, 
the force on a charge q moving with velocity v is

F = qE + qv X B. (27-7)

F = IiB  sin 6 (27-1)
where 6 is the angle between magnetic field B and the wire. 
The direction of the force is perpendicular to the wire and to the 
magnetic field, and is given by the right-hand rule. This relation 
serves as the definition of magnetic field B.

Similarly, a magnetic field B exerts a force on a charge q 
moving with velocity v given by

F =  qv X B. (2 7 -5 a )

The torque on a current loop in a magnetic field B is

f  = pi X B, (27-11)

where [I is the magnetic dipole moment of the loop:

£ = MA. (27-10)

Here N  is the number of coils carrying current I  in the loop 
and A is a vector perpendicular to the plane of the loop (use 
right-hand rule, fingers along current in loop) and has magnitude 
equal to the area of the loop.

The measurement of the charge-to-mass ratio (e/m) of the 
electron was done using magnetic and electric fields. The charge e 
on the electron was first measured in the Millikan oil-drop 
experiment and then its mass was obtained from the measured 
value of the e/m  ratio.

[*In the Hall effect, moving charges in a conductor placed 
in a magnetic field are forced to one side, producing an emf



Questions
1. A  compass needle is not always balanced parallel to the 

Earth’s surface, but one end may dip downward. Explain.
2. Draw the magnetic field lines around a straight section of 

wire carrying a current horizontally to the left.
3. A  horseshoe magnet is held vertically with the north pole 

on the left and south pole on the right. A  wire passing 
between the poles, equidistant from them, carries a current 
directly away from you. In what direction is the force on the 
wire?

4. In the relation F = I i  X B, which pairs of the vectors 
(F, 1, B) are always at 90°? Which can be at other angles?

5. The magnetic field due to current in wires in your home can 
affect a compass. Discuss the effect in terms of currents, 
including if they are ac or dc.

6. If a negatively charged particle enters a region of uniform 
magnetic field which is perpendicular to the particle’s 
velocity, will the kinetic energy of the particle increase, 
decrease, or stay the same? Explain your answer. (Neglect 
gravity and assume there is no electric field.)

7. In Fig. 27-34, charged particles move in the vicinity of a 
current-carrying wire. For each charged particle, the arrow 
indicates the direction of motion of the particle, and 
the + or — indicates the sign of the charge. For each of 
the particles, indicate the
direction of the magnetic
force due to the magnetic 
field produced by the 
wire.

FIGURE 27-34
Question 7.

I

t

8. A  positively charged particle in a nonuniform magnetic field 
follows the trajectory shown in Fig. 27-35. Indicate the 
direction of the magnetic field at points near the path, 
assuming the path is always in the plane of the page, and 
indicate the relative magnitudes of the field in each region.

FIGURE 27-35 v
Question 8. &  r V .-/

9. Note that the pattern of magnetic field lines surrounding a 
bar magnet is similar to that of the electric field around an 
electric dipole. From this fact, predict how the magnetic 
field will change with distance (a) when near one pole of a 
very long bar magnet, and (b) when far from a magnet as a 
whole.

10. Explain why a strong magnet held near a CRT television 
screen causes the picture to become distorted. Also, explain 
why the picture sometimes goes completely black where the 
field is the strongest. [But don’t risk damage to your TV by 
trying this.]

11. Describe the trajectory of a negatively charged particle in 
the velocity selector of Fig. 27-21 if its speed exceeds E /B . 
What is its trajectory if v < E /B l  Would it make any differ­
ence if the particle were positively charged?

1 2 .  C a n  vo n  set a re stin g  e le c tro n  in to  m o tio n  w ith  a ste ad v

13. A  charged particle is moving in a circle under the influence 
of a uniform magnetic field. If an electric field that points in 
the same direction as the magnetic field is turned on, 
describe the path the charged particle will take.

14. The force on a particle in a magnetic field is the idea behind 
electromagnetic pumping. It is used to pump metallic fluids 
(such as sodium) and to pump blood in artificial heart 
machines. The basic design is shown in Fig. 27-36. An electric 
field is applied perpendicular to a blood vessel and to a 
magnetic field. Explain how ions are caused to move. Do 
positive and negative ions
feel a force in the same
direction? \  (----------------

^ ,  i t , —

FIGURE 27-36
Electromagnetic pumping 
in a blood vessel. 
Question 14. L

15. A  beam of electrons is directed toward a horizontal wire 
carrying a current from left to right (Fig. 27-37). In what 
direction is the beam deflected?

FIGURE 27-37
Question 15. Electron direction

16. A  charged particle moves in a straight line through a partic­
ular region of space. Could there be a nonzero magnetic 
field in this region? If so, give two possible situations.

17. If a moving charged particle is deflected sideways in some 
region of space, can we conclude, for certain, that B ^ 0 in 
that region? Explain.

18. How could you tell whether moving electrons in a certain 
region of space are being deflected by an electric field or by 
a magnetic field (or by both)?

19. How can you make a compass without using iron or other 
ferromagnetic material?

20. Describe how you could determine the dipole moment of a 
bar magnet or compass needle.

21. In what positions (if any) will a current loop placed in a 
uniform magnetic field be in (a) stable equilibrium, and
(b) unstable equilibrium?
A  rectangular piece of semiconductor is inserted in a 
magnetic field and a battery is connected to its ends as 
shown in Fig. 27-38. When a sensitive voltmeter is 
connected between points a and b, 
it is found that point a is at a 
higher potential than b. What is 
the sign of the charge carriers in 
this semiconductor material?

*22,

J i-iDt jI--*. |1 11 '1 T

FIGURE 27-38
Question 22.

*23. Two ions have the same mass, but one is singly ionized and
th e  o th e r is  d o n b lv  io n ize d . H o w  w il l th e ir  n o s it io n s  on th e



| Problems
27-3 Force on Electric Current in Magnetic Field

1. (I) (a) What is the force per meter of length on a straight 
wire carrying a 9.40-A current when perpendicular to a 
0.90-T uniform magnetic field? (b) What if the angle 
between the wire and field is 35.0°?

2. (I) Calculate the magnitude of the magnetic force on 
a 240-m length of wire stretched between two towers and 
carrying a 150-A current. The Earth’s magnetic field of
5.0 X 10-5 T makes an angle of 68° with the wire.

3. (I) A  1.6-m length of wire carrying 4.5 A  of current toward 
the south is oriented horizontally. A t that point on the 
Earth’s surface, the dip angle of the Earth’s magnetic field 
makes an angle of 41° to the wire. Estimate the magnitude 
of the magnetic force on the wire due to the Earth’s 
magnetic field of 5.5 X 10 5 T at this point.

4. (II) The magnetic force per meter on a wire is measured 
to be only 25 percent of its maximum possible value. Sketch 
the relationship of the wire and the field if the force 
had been a maximum, and sketch the relationship as it 
actually is, calculating the angle between the wire and the 
magnetic field.

5. (II) The force on a wire is a maximum of 7.50 X 10-2 N  when 
placed between the pole faces of a magnet. The current flows 
horizontally to the right and the magnetic field is vertical. The 
wire is observed to “jump” toward the observer when the 
current is turned on. (a) What type of magnetic pole is the 
top pole face? (b) If the pole faces have a diameter of
10.0 cm, estimate the current in the wire if the field is 0.220 T. 
(c) If the wire is tipped so that it makes an angle o f 10.0° with 
the horizontal, what force will it now feel?

6. (II) Suppose a straight 1.00-mm-diameter copper wire could 
just “float” horizontally in air because of the force due to 
the Earth’s magnetic field B, which is horizontal, perpendic­
ular to the wire, and of magnitude 5.0 X 10_5T. What 
current would the wire carry? D oes the answer seem  
feasible? Explain briefly.

7. (II) A  stiff wire 50.0 cm long is bent at a right angle in the 
middle. One section lies along the z  axis and the other is 
along the line y  = 2x in the xy  plane. A  current of 20.0 A  
flows in the wire— down the z axis and out the line in the 
xy  plane. The wire passes through a uniform magnetic field  
given by B =  (0.318i)T. D eterm ine the magnitude and 
direction of the total force on the wire.

8. (II) A  long wire stretches along the x  axis and carries a 3.0-A  
current to the right (+ x). The wire is in a uniform  
magnetic field B =  (0.20i -  0.36j +  0.25k) T. Determine 
the components of the force on the wire per cm of length.

9. (II) A  current-carrying circular loop of wire (radius r, 
current I) is partially immersed in a magnetic field of constant 
magnitude B0 directed out of the page as shown in Fig. 27-39. 
Determine the net force 
on the loop due to the 
field in terms of 0O.
(Note that 0O points to 
the dashed line, above 
which B = 0.)

10. (II) A  2.0-m-long wire carries a current o f 8.2 A  and is 
immersed within a uniform magnetic field B. When this wire 
lies along the + x  axis, a magnetic force F =  ( -2 .5 j )  N  acts 
on the wire, and when it lies on the + y  axis, the force is 
F =  (2.5i -  5.0k) N. Find B.

11. (I ll)  A  curved wire, connecting two points a and b, lies in a 
plane perpendicular to a uniform magnetic field B and 
carries a current I. Show that the resultant magnetic force 
on the wire, no matter what its 
shape, is the same as that on a 
straight wire connecting the two 
points carrying the same current I.
See Fig. 27-40.

FIGURE 27-40
Problem 11.

12. (I ll)  A  circular loop of wire, of radius r, carries current I. 
It is placed in a magnetic 
field whose straight lines 
seem to diverge from a point 
a distance d  below the loop  
on its axis. (That is, the field  
makes an angle 0 with the 
loop at all points, Fig. 27-41 , 
where tan0 =  r /d . )  D eter­
mine the force on the loop.

FIGURE 27-41
Problem 12.

27-4 Force on Charge Moving in Magnetic Field
13. (I) D eterm ine the magnitude and direction of the force on 

an electron traveling 8.75 X 105 m /s horizontally to the east 
in a vertically upward magnetic field of strength 0.45 T.

14. (I) A n  electron is projected vertically upward with a speed  
of 1.70 X 106m /s into a uniform magnetic field of 0.480 T 
that is directed horizontally away from the observer. 
Describe the electron’s path in this field.

15. (I) A lpha particles o f charge q =  +2e and mass 
m  = 6.6 X 10-27 kg are emitted from a radioactive source 
at a speed of 1.6 X 107 m /s. What magnetic field strength 
would be required to bend them into a circular path of 
radius r =  0.18 m?

16. (I) Find the direction of the force on a negative charge for 
each diagram shown in Fig. 27-42 , where v (green) is the 
velocity o f the charge and B (blue) is the direction of the 
magnetic field. (®  means the vector points inward. O means 
it points outward, toward you.)

►
v B

(a) (b) (c)
L v
(d)

R



17. (I) Determine the direction of B for each case in 
Fig. 27-43, where F represents the maximum magnetic 
force on a positively charged particle moving with 
velocity v.

FIGURE 27-43
Problem 17. (a)

L  I

(b) (c)

28. (II) An electron enters a uniform magnetic field B  =  0.28 T 
at a 45° angle to B. Determine the radius r and 
pitch p  (distance between loops) of the electron’s helical
path assuming 
Fig. 27-44.

its speed 3.0 X 10° m /s. See

FIGURE 27-44
Problem 28.

/ X X )
4  V 'i n ) T

18. (II) What is the velocity of a beam of electrons that goes 
undeflected when passing through perpendicular electric 
and magnetic fields of magnitude 8.8 X 103V /m  and
7.5 X 10-3 T, respectively? What is the radius of the elec­
tron orbit if the electric field is turned off?

19. (II) A  doubly charged helium atom whose mass is
6.6 X 10-27kg is accelerated by a voltage of 2700 V.
(a) What will be its radius of curvature if it moves in a plane 
perpendicular to a uniform 0.340-T field? (b) What is its 
period of revolution?

20. (II) A  proton (mass rap), a deuteron (ra = 2rap ,Q  = e), 
and an alpha particle (ra = 4rap , Q = 2e) are accelerated 
by the same potential difference V  and then enter a uniform 
magnetic field B, where they move in circular paths 
perpendicular to B. Determine the radius of the paths 
for the deuteron and alpha particle in terms of that for 
the proton.

21. (II) For a particle of mass ra and charge q moving in a 
circular path in a magnetic field B, (a) show that its 
kinetic energy is proportional to r2, the square of the 
radius of curvature of its path, and (b) show that its 
angular momentum is L  =  qBr2, about the center of the 
circle.

22. (II) An electron moves with velocity v = (7.0i — 6.0j) X 104m /s  
in a magnetic field B = ( —0.80i + 0.60j)T. Determine the 
magnitude and direction of the force on the electron.

23. (II) A  6.0-MeV (kinetic energy) proton enters a 0.20-T 
field, in a plane perpendicular to the field. What is the 
radius of its path? See Section 23-8.

24. (II) An electron experiences the greatest force as it travels
2.8 X 106m /s in a magnetic field when it is moving north­
ward. The force is vertically upward and of magnitude
8.2 X 1 0 13 N. What is the magnitude and direction of the 
magnetic field?

25. (II) A  proton moves through a region of space where there 
is a magnetic field B = (0.45i +  0.38j)T and an electric 
field E = (3.0i -  4.2j) X 103V /m . A t a given instant, 
the proton’s velocity is v = (6.0i +  3.0j -  5.0k) X 103m /s. 
Determine the components of the total force on the 
proton.

26. (II) An electron experiences a force F = (3.8i -  2.7j) X 10-13N 
when passing through a magnetic field B =  (0.85 T)k. 
Determine the electron’s velocity.

27. (II) A  particle of charge q moves in a circular path of 
radius r in a uniform magnetic field B. If the magnitude 
of the magnetic field is doubled, and the kinetic energy of 
the particle remains constant, what happens to the angular

29. (II) A  particle with charge q and momentum p, initially 
moving along the x  axis, enters a region where a uniform 
magnetic field B = 2?0k extends over a width x = £ as 
shown in Fig. 27-45.
The particle is deflected 
a distance d in the +y 
direction as it traverses 
the field. Determine
(a) whether q is posi­
tive or negative, and
(b) the magnitude of 
its momentum p.
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0FIGURE 27-45

Problem 29.

30. (II) The path of protons emerging from an accelerator must 
be bent by 90° by a “bending magnet” so as not to strike a 
barrier in their path a distance d from their exit hole in the 
accelerator. Show that the field B in the bending magnet, 
which we assume is uniform and can extend over an area 
d X d, must have magnitude B  >  (2m K /e2d2)2, where ra is 
the mass of a proton and K  is its kinetic energy.

31. (Ill) Suppose the Earth’s magnetic field at the equator has 
magnitude 0.50 X 10_4T and a northerly direction at all 
points. Estimate the speed a singly ionized uranium ion 
(ra = 238 u, q = e) would need to circle the Earth 5.0 km 
above the equator. Can you ignore gravity? [Ignore relativity.]

32. (Ill) A  3.40-g bullet moves with a speed of 155 m /s perpen­
dicular to the Earth’s magnetic field of 5.00 X 10 5 T. If the 
bullet possesses a net charge of 18.5 X 10_9C, by what 
distance will it be deflected from its path due to the Earth’s 
magnetic field after it has traveled 1.00 km?

33. (Ill) A  proton moving with speed v = 1.3 X 105m /s in a 
field-free region abruptly enters an essentially uniform 
magnetic field B = 0.850 T (B ±  v). If the proton enters the 
magnetic field region at a 45° angle as 
shown in Fig. 27-46, (a) at what angle x  x  x  x  
does it leave, and (b) at what distance x  
does it exit the field? ^  x

X X X X

X X X X

X X X X

X X X X

X X X XFIGURE 27-46 /



34. (Ill) A  particle with charge +q and mass m  travels in a 
uniform magnetic field B  = B0k. A t time t = 0, the 
particle’s speed is v0 and its velocity vector lies in the xy plane 
directed at an angle of 30° with respect to the y  axis as 
shown in Fig. 27-47. A t a later time t = ta, the particle 
will cross the x  axis at x  = a. In terms of q, m, v0, and B0, 
determine (a) a, and (b) ta .

27-5 Torque on a Current Loop; Magnetic Moment
35. (I) How much work is required to rotate the current 

loop (Fig. 27-22) in a uniform magnetic field B from
(a) 6 = 0° (jx||B) to 6 = 180°, (b) Q = 90° to 6 = -90°?

36. (I) A  13.0-cm-diameter circular loop of wire is placed with 
the plane of the loop parallel to the uniform magnetic field 
between the pole pieces of a large magnet. When 4.20 A  
flows in the coil, the torque on it is 0.185 m • N. What is the 
magnetic field strength?

37. (II) A  circular coil 18.0 cm in diameter and containing 
twelve loops lies flat on the ground. The Earth’s magnetic 
field at this location has magnitude 5.50 X 10“5 T and 
points into the Earth at an angle of 66.0° below a line 
pointing due north. If a 7.10-A clockwise current passes 
through the coil, determine (a) the torque on the coil, 
and (b) which edge of the coil rises up, north, east, south, 
or west.

38. (II) Show that the magnetic dipole moment |x of an electron 
orbiting the proton nucleus of a hydrogen atom is related to 
the orbital momentum L  of the electron by

« Ta  = - — L.
2m

39. (II) A  15-loop circular coil 22 cm in diameter lies in the xy 
plane. The current in each loop of the coil is 7.6 A  clockwise, 
and an external magnetic field B = (0.55i + 0.60j -  0.65k) T 
passes through the coil. Determine (a) the magnetic 
moment of the coil, jl; (b) the torque on the coil due to the 
external magnetic field; (c) the potential energy U of the 
coil in the field (take the same zero for U as we did in our 
discussion of Fig. 27-22).

40. (Ill) Suppose a nonconducting rod of length d carries a 
uniformly distributed charge Q. It is rotated with angular 
velocity <a about an axis perpendicular to the rod at one 
end, Fig. 27-48. Show that the magnetic dipole moment of 
this rod is \Q(od2. [Hint: Consider the motion of each infini­
tesimal length of the rod.]

FIGURE 27-48
Problem 40. A xis^^u

* 27- 6 Motors, Galvanometers
*41. (I) If the current to a motor drops by 12%, by what factor 

does the output torque change?
*42. (I) A  galvanometer needle deflects full scale for a 63.0-/iA  

current. What current will give full-scale deflection if the 
magnetic field weakens to 0.800 of its original value?

*43. (I) If the restoring spring of a galvanometer weakens by 
15% over the years, what current will give full-scale deflection 
if it originally required 46 /iA?

27-7 Discovery of Electron
44. (I) What is the value of q /m  for a particle that moves in a 

circle of radius 8.0 mm in a 0.46-T magnetic field if a crossed 
260-V/m electric field will make the path straight?

45. (II) An oil drop whose mass is determined to be
3.3 X 10-15 kg is held at rest between two large plates sepa­
rated by 1.0 cm as in Fig. 27-31. If the potential difference 
between the plates is 340 V, how many excess electrons does 
this drop have?

*27-8 Hall Effect
*46. (II) A  Hall probe, consisting of a rectangular slab of 

current-carrying material, is calibrated by placing it in a 
known magnetic field of magnitude 0.10 T. When the field is 
oriented normal to the slab’s rectangular face, a Hall emf of 
12 mV is measured across the slab’s width. The probe is then 
placed in a magnetic field of unknown magnitude B, and a 
Hall emf of 63 mV is measured. Determine B  assuming that 
the angle 6 between the unknown field and the plane of the 
slab’s rectangular face is (a) 6 = 90°, and (b) 6 = 60°.

* 47. (II) A  Hall probe used to measure magnetic field strengths
consists of a rectangular slab of material (free-electron 
density n) with width d and thickness t, carrying a current I  
along its length L The slab is immersed in a magnetic field 
of magnitude B  oriented perpendicular to its rectangular 
face (of area Id), so that a Hall emf is produced across 
its width d. The probe’s magnetic sensitivity, defined as 
K h = %H/IB ,  indicates the magnitude of the Hall emf 
achieved for a given applied magnetic field and current. 
A  slab with a large K H is a good candidate for 
use as a Hall probe, (a) Show that = 1 lent. Thus, a 
good Hall probe has small values for both n and t. (b) As 
possible candidates for the material used in a Hall probe, 
consider (i) a typical metal {n «  1 X 1029/m 3) and 
(ii) a (doped) semiconductor (n «  3 X 1022/m 3). Given that 
a semiconductor slab can be manufactured with a thickness 
of 0.15 mm, how thin (nm) should a metal slab be to 
yield a value equal to that of the semiconductor slab? 
Compare this metal slab thickness with the 0.3-nm size of a 
typical metal atom, (c) For the typical semiconductor slab 
described in part (b), what is the expected value for 
when I  = 100 mA and B = 0.1 T?

*48. (II) A  rectangular sample of a metal is 3.0 cm wide and 
680 [xm thick. When it carries a 42-A current and is placed 
in a 0.80-T magnetic field it produces a 6.5-/jlV Hall emf. 
Determine: (a) the Hall field in the conductor; (b) the drift 
speed of the conduction electrons; (c) the density of free 
electrons in the metal.



49. (II) In a probe that uses the Hall effect to measure magnetic 
fields, a 12.0-A  current passes through a 1.50-cm-wide 
1.30-mm-thick strip of sodium metal. If the Hall em f is 
1.86 /xV, what is the magnitude of the magnetic field (take it 
perpendicular to the flat face of the strip)? Assum e one 
free electron per atom of Na, and take its specific gravity to 
be 0.971.

50. (II) The Hall effect can be used to measure blood flow rate 
because the blood contains ions that constitute an electric 
current, (a) D oes the sign of the ions influence the emf?
(b) Determ ine the flow velocity in an artery 3.3 mm in 
diameter if the measured em f is 0.13 mV and B  is 0.070 T. 
(In actual practice, an alternating magnetic field is used.)

27-9 Mass Spectrometer
51. (I) In a mass spectrometer, germanium atoms have radii of 

curvature equal to 21.0, 21.6, 21.9, 22.2, and 22.8 cm. The 
largest radius corresponds to an atomic mass of 76 u. What 
are the atomic masses of the other isotopes?

52. (II) One form of mass spectrometer accelerates ions by a 
voltage V  before they enter a magnetic field B. The ions are 
assumed to start from rest. Show that the mass of an ion is 
m  =  qB2R 2/2V , where R  is the radius of the ions’ path in 
the magnetic field and q is their charge.

* 53. (II) Suppose the electric field between the electric plates in 
the mass spectrometer of Fig. 27-33  is 2.48 X  104 V /m  and 
the magnetic fields are B = B ' =  0.58 T. The source contains 
carbon isotopes o f mass numbers 12,13, and 14 from a long 
dead piece of a tree. (To estimate atomic masses, multiply by 
1.66 X  10-27 kg.) H ow  far apart are the lines formed by the 
singly charged ions of each type on the photographic film? 
What if the ions were doubly charged?

*54. (II) A  mass spectrometer is being used to monitor air 
pollutants. It is difficult, however, to separate molecules 
with nearly equal mass such as CO (28.0106 u) and 
N2 (28.0134 u). H ow  large a radius of curvature must a spec­
trometer have if these two m olecules are to be separated at 
the film or detectors by 0.65 mm?

*55. (II) A n unknown particle m oves in a straight line through 
crossed electric and magnetic fields with E  =  1.5 kV /m  
and B  =  0.034 T. If the electric field is turned off, the 
particle moves in a circular path of radius r =  2.7 cm. 
What might the particle be?

| General Problems
56. Protons m ove in a circle of radius 5.10 cm in a 0.625-T  

magnetic field. What value of electric field could make their 
paths straight? In what direction must the electric field 
point?

57. Protons with momentum 3.8 X 10_16k g -m /s  are magneti­
cally steered clockwise in a circular path 2.0 km in diameter 
at Fermi National Accelerator Laboratory in Illinois. D eter­
mine the magnitude and direction of the field in the 
magnets surrounding the beam pipe.

58. A  proton and an electron have the same kinetic energy 
upon entering a region of constant magnetic field. What is 
the ratio of the radii o f their circular paths?

59. Two stiff parallel wires a distance d  apart in a horizontal 
plane act as rails to support a light metal rod of mass m  
(perpendicular to each rail), Fig. 27-49 . A  magnetic field B, 
directed vertically upward (outward in diagram), acts 
throughout. A t t = 0, a constant current I  begins to flow  
through the system. Determ ine the speed of the rod, which 
starts from rest at t = 0, as a function of time (a) assuming 
no friction between the rod and the rails, and (b) if the coef­
ficient o f friction is . (c) In which direction does the rod 
move, east or west, if the current through it heads north?

North
B o o o o o o  © o o o o o B

West
G O O O O O
o o o o o o

] O O 0 0  O O -  
j o O Q Q O G

d East

I  g O O O O O O O O O O O O nB
South

FIGURE 27-49 Looking down on a rod sliding on 
rails. Problems 59 and 60.

60. Suppose the rod in Fig. 27 -49  (Problem 59) has mass 
m  =  0.40 kg and length 22 cm and the current through 
it is I  = 36 A . If the coefficient of static friction is 
fxs = 0.50, determine the minimum magnetic field B 
(not necessarily vertical) that will just cause the rod to 
slide. Give the magnitude of B and its direction relative 
to the vertical (outwards towards us).

61. Near the equator, the Earth’s magnetic field points 
almost horizontally to the north and has magnitude 
B = 0.50 X 10_4T. What should be the magnitude and 
direction for the velocity of an electron if its weight is to be 
exactly balanced by the magnetic force?

62. Calculate the magnetic force on an airplane which has acquired 
a net charge of 1850 jjlC and moves with a speed of 120 m /s  
perpendicular to the Earth’s magnetic field of 5.0 X  10-5 T.

63. A  motor run by a 9.0-V battery has a 20 turn square coil 
with sides of length 5.0 cm and total resistance 24 fl. When 
spinning, the magnetic field felt by the wire in the coil is 
0.020 T. What is the maximum torque on the motor?

64. Estimate the approximate maximum deflection of the elec­
tron beam near the center of a CRT television screen due to 
the Earth’s 5.0 X 10-5 T field. Assum e the screen is 18 cm 
from the electron gun, where the electrons are accelerated 
(a) by 2.0 kV, or (b) by 28 kV. N ote that in color TV sets, the 
beam must be directed accurately to within less than 1 mm 
in order to strike the correct phosphor. Because the Earth’s 
field is significant here, mu-metal shields are used to reduce 
the Earth’s field in the CRT. (See Section 23-9 .)

65. The rectangular loop of wire shown in Fig. 27-22 has mass m  
and carries current I. Show that if the loop is oriented at an 
angle 0 «  1 (in radians), then when it is released it will 
e x e c u te  s irn n le  h a rm o n ic  m o tio n  a b o u t 0 =  0 . C a lc u la te



66. The cyclotron (Fig. 27-50) is a device used to accelerate 
elementary particles such as protons to high speeds. Parti­
cles starting at point A  with some initial velocity travel in 
circular orbits in the magnetic field B. The particles are 
accelerated to higher speeds each time they pass in the 
gap between the metal “dees,” where there is an electric 
field E. (There is no electric field within the hollow metal 
dees.) The electric field changes direction each half-cycle, 
due to an ac voltage V  = V0 sin 2irft, so that the particles 
are increased in speed at each passage through the gap.
(a) Show that the frequency /  of the voltage must be 
/  =  Bq/2'irm , where q is the charge on the particles and m  
their mass, (b) Show that the kinetic energy of the particles 
increases by 2qVQ each revolution, assuming that the gap is 
small, (c) If the radius of the cyclotron is 0.50 m and 
the magnetic field 
strength is 0.60 T, 
what will be the 
maximum kinetic 
energy of acceler­
ated protons in 
MeV?

FIGURE 27-50
A  cyclotron. 
Problem 66.

67. Magnetic fields are very useful in particle accelerators for 
“beam steering”; that is, magnetic fields can be used to 
change the beam’s direction without altering its speed 
(Fig. 27-51). Show how this could work with a beam of 
protons. What happens to protons that are not moving with 
the speed that the magnetic field is designed for? If the field 
extends over a region 5.0 cm wide and has a magnitude of
0.38 T, by approximately 
what angle will a 
beam of protons 
traveling at
0.85 X 107 m /s 
be bent?

69.

Magnet

, . o _ _  o

0  0
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FIGURE 27-51
Problem 67.

Evacuated tubes, inside 
of which I he protons move 
with vclodty indicated by 
ihe green arrows

68. A  square loop of aluminum wire is 20.0 cm on a side. It is to 
carry 15.0 A  and rotate in a uniform 1.35-T magnetic field as 
shown in Fig. 27-52. (a) Deter­
mine the minimum diameter of 
the wire so that it will not 
fracture from tension or shear.
Assume a safety factor of 10. — *■
(See Table 12-2.) (b) What is 
the resistance of a single loop 
of this wire?

FIGURE 2 7 -5 2

It

A  sort of “projectile launcher” is shown in Fig. 27-53. A  
large current moves in a closed loop composed of fixed rails, 
a power supply, and a very light, almost frictionless bar 
touching the rails. A  1.8 T magnetic field is perpendicular to 
the plane of the circuit. If the rails are a distance d =  24 cm 
apart, and the bar has a mass of 1.5 g, what constant current 
flow is needed to accelerate the bar from rest to 25 m /s in a 
distance of 1.0 m? In what direction must the field point?

70. (a) What value of magnetic field would make a beam of 
electrons, traveling to the right at a speed of 4.8 X 106m /s, 
go undeflected through a region where there is a uniform 
electric field of 8400 V /m  pointing vertically up? (b) What 
is the direction of the magnetic field if it is known to be 
perpendicular to the electric field? (c) What is the frequency 
of the circular orbit of the electrons if the electric field is 
turned off?

71. In a certain cathode ray tube, electrons are accelerated 
horizontally by 25 kV. They then pass through a uniform 
magnetic field B  for a distance of 3.5 cm, which deflects 
them upward so they reach the top of the screen 22 cm 
away, 11 cm above the center. Estimate the value of B.

72. Zeeman effect. In the Bohr model of the hydrogen atom, 
the electron is held in its circular orbit of radius r about its 
proton nucleus by electrostatic attraction. If the atoms are 
placed in a weak magnetic field B, the rotation frequency of 
electrons rotating in a plane perpendicular to B is changed 
by an amount

A f  = ±
eB

Airm

where e and m  are the charge and mass of an electron.
(a) Derive this result, assuming the force due to B is much 
less than that due to electrostatic attraction of the nucleus.
(b) What does the ±  sign indicate?

73. A  proton follows a spiral path through a gas in a magnetic 
field of 0.018 T, perpendicular to the plane of the spiral, as 
shown in Fig. 27-54. In two successive loops, at points P and 
Q, the radii are 10.0 mm and 8.5 mm, respectively. Calculate 
the change in the kinetic energy of the proton as it travels 
from P to Q.

/  ------ ‘V \

'  ' /1 1 * 1 *
1 t t



74. The net force on a current loop whose face is perpendicular 
to a uniform magnetic field is zero, since contributions to 
the net force from opposite sides of the loop cancel. 
However, if the field varies in magnitude from one side of 
the loop to the other, then there can be a net force on the 
loop. Consider a square loop with sides whose length is a, 
located with one side at x  = b in the xy plane 
(Fig. 27-55). A  magnetic field is directed along z, with a 
magnitude that varies with x  according to

B = B0 [ l

If the current in the loop circulates counterclockwise (that 
is, the magnetic dipole 
moment of the loop is v 
along the z axis), find 
an expression for the 
net force on the loop.

FIGURE 27-55
Problem 74. b

75. The power cable for an electric trolley (Fig. 27-56) carries a 
horizontal current of 330 A  toward the east. The Earth’s 
magnetic field has a strength 5.0 X 10-5 T and makes an 
angle of dip of 22° at this location. Calculate the magnitude 
and direction of the magnetic force on a 5.0-m length of this 
cable.

/ = ^ 0 A

FIGURE 27-56
Problem 75.

76. A  uniform conducting rod of length d and mass m  sits 
atop a fulcrum, which is placed a distance d/4  from the 
rod’s left-hand end and is immersed in a uniform magnetic 
field of magnitude B  directed into the page (Fig. 27-57). An  
object whose mass M  is 8.0 times greater than the rod’s 
mass is hung from the rod’s left-hand end. What current 
(direction and magnitude) should flow through the rod in 
order for it to be “balanced” (i.e., be at rest horizontally) on 
the fulcrum? (Flexible

I----------------d --------------Hconnecting wires which 
exert negligible force 
on the rod are not 
shown.)

FIGURE 27-57
Problem 76.
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77.

Answers to Exercises

E: (b),(c),(d).
F: Negative; the direction of the helical path would be reversed 

(still going to the right), 
r:- (A\

A: Near the poles, where the field lines are closer together. 

B: Counterclockwise.

C: 0b),(c),(d).

In a simple device for measuring the magnitude B  of a 
magnetic field, a conducting rod (length d = 1.0 m, mass 
m  =  150 g) hangs from a friction-free pivot and is oriented 
so that its axis of rotation is aligned with the direction of the 
magnetic field to be measured. Thin flexible wires (which 
exert negligible force on the rod) carry a current I  = 12 A, 
which causes the rod to deflect an angle 0 with respect to 
the vertical, where it remains at rest (Fig. 27-58). (a) Is 
the current flowing 
upward (toward the 
pivot) or downward 
in Fig. 27-58? (b) If O
6 = 13°, determine B. K ^  f B 
(c) What is the largest / f m \ 
magnetic field magni­
tude that can be Ml  =  12 A j V. 
measured using this t ----- -

device? o  ?  ©  o ( o

FIGURE 27-58
Problem 77.



A long coil of wire with many 
closely spaced loops is called a 
solenoid. When a long solenoid 
carries an electric current, a nearly 
uniform magnetic field is produced 
within the loops as suggested by 
the alignment of the iron filings 
in this photo. The magnitude of 
the field inside a solenoid is 
readily found using Ampere’s law, 
one of the great general laws of 
electromagnetism, relating magnetic 
fields and electric currents. We 
examine these connections in detail 
in this Chapter, as well as other 
means for producing magnetic fields.

T £

Sources of Magnetic Field
CHAPTER-OPENING QUESTIOI — Guess now!
Which of the following will produce a magnetic field?

(a) An electric charge at rest.
(b) A  moving electric charge.
(c) An electric current.
(d) The voltage of a battery not connected to anything.
(e) Any piece of iron.
(f) A  piece of any metal.

I n the previous Chapter, we discussed the effects (forces and torques) that a 
magnetic field has on electric currents and on moving electric charges. We 
also saw that magnetic fields are produced not only by magnets but also by 
electric currents (Oersted’s great discovery). It is this aspect of magnetism, 

the production of magnetic fields, that we discuss in this Chapter. We will now see 
how magnetic field strengths are determined for some simple situations, and 
discuss some general relations between magnetic fields and their sources, electric 
current. Most elegant is Ampere’s law. We also study the Biot-Savart Law, which 
can be very helpful for solving practical problems.
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2 8 —1 Magnetic Field Due to a Straight Wire

FIGURE 28-1 Same as Fig. 27-8b. 
Magnetic field lines around a long 
straight wire carrying an electric 
current I.

FIGURE 28-2 Example 28-1.

— 10 cm

A  C A U T I O N
A  compass, near a current, 

may not po in t north

We saw in Section 27-2  that the magnetic field due to the electric current in a long 
straight wire is such that the field lines are circles with the wire at the center 
(Fig. 28-1). You might expect that the field strength at a given point would be 
greater if the current flowing in the wire were greater; and that the field would 
be less at points farther from the wire. This is indeed the case. Careful experiments 
show that the magnetic field B  due to a long straight wire at a point near it is 
directly proportional to the current I  in the wire and inversely proportional to the 
distance r from the wire:

B

This relation B  oc I / r  is valid as long as r, the perpendicular distance to the wire, 
is much less than the distance to the ends of the wire (i.e., the wire is long).

The proportionality constant is written1 as ijlq/2 tt\ thus,

R =  t ± L
2 tt r

[near a long straight wire] (28-1)

The value of the constant fi0, which is called the permeability of free space, is 
Air X 10-7 T*m /A .Mo

EXAMPLE 28-1 Calculation of B near a wire. An electric wire in the wall 
of a building carries a dc current of 25 A  vertically upward. What is the magnetic 
field due to this current at a point P, 10 cm due north of the wire (Fig. 28-2)?

APPROACH We assume the wire is much longer than the 10-cm distance to the 
point P so we can apply Eq. 28-1.
SOLUTION According to Eq. 28-1:

Hoi _  (4tt X 10"7T -m /A )(25  A ) 
lirr

B =
(2ir)(0.10m )

= 5.0 X 10“5T,

or 0.50 G. By the right-hand rule (Table 27-1, page 716), the field due to the 
current points to the west (into the page in Fig. 28-2) at point P.
NOTE The wire’s field has about the same magnitude as Earth’s magnetic field, 
so a compass at P would not point north but in a northwesterly direction.
NOTE Most electrical wiring in buildings consists of cables with two wires in each 
cable. Since the two wires carry current in opposite directions, their magnetic 
fields cancel to a large extent, but may still affect sensitive electronic devices.

EXERCISE A In Example 25-10 we saw that a typical lightning bolt produces a 100-A 
current for 0.2 s. Estimate the magnetic field 10 m from a lightning bolt. Would it have a 
significant effect on a compass?

FIGURE 28-3 Example 28-2.
Wire 1 carrying current I\ out towards 
us, and wire 2 carrying current I2 into 
the page, produce magnetic fields 
whose lines are circles around their 
respective wires.

EXAMPLE 28-2 Magnetic field midway between two currents. Two parallel 
straight wires 10.0 cm apart carry currents in opposite directions (Fig. 28-3).
Current Ix = 5.0 A  is out of the page, and I2 = 7.0 A  is into the page. Determine 
the magnitude and direction of the magnetic field halfway between the two wires.

APPROACH The magnitude of the field produced by each wire is calculated from 
Eq. 28-1. The direction of each wire’s field is determined with the right-hand 
rule. The total field is the vector sum of the two fields at the midway point. 
SOLUTION The magnetic field lines due to current Ix form circles around the wire of 
Ix, and right-hand-rule-1 (Fig. 27-8c) tells us they point counterclockwise around the 
wire. The field lines due to I2 form circles around the wire of I2 and point clockwise, 
Fig. 28-3. At the midpoint, both fields point upward as shown, and so add together.



The midpoint is 0.050 m from each wire, and from Eq. 28-1 the magnitudes of Bx 
and B2 are

_ H 0Il _  (4ir X l(T 7T -m /A )(5 .0 A )
Bl ~  2 ^  ~ ~

Bo = Moh  
2irr

2 ir ( 0 .0 5 0 m )

(4ir X 10-7 T • m /A )(7 .0  A )

=  2.0 X 1(T5T; 

= 2.8 X 10“5T.
2 ir (0 .0 5 0  m )

The total field is up with a magnitude of

B = Bx +  B2 = 4.8 X 10“5T.

EXERCISE B Suppose both I\ and I2 point into the page in Fig. 28-3. What then is the field 
midway between the two wires?

CONCEPTUAL EXAMPLE 28-5~| Magnetic field due to four wires. Figure 28-4
shows four long parallel wires which carry equal currents into or out of the page as 
shown. In which configuration, (a) or (b), is the magnetic field greater at the center 
of the square?

RESPONSE It is greater in (a). The arrows illustrate the directions of the field 
produced by each wire; check it out, using the right-hand rule to confirm these 
results. The net field at the center is the superposition of the four fields, which 
will point to the left in (a) and is zero in (b).

28—2  Force between Two Parallel Wires
We have seen that a wire carrying a current produces a magnetic field (magnitude 
given by Eq. 28-1 for a long straight wire). Also, a current-carrying wire feels a 
force when placed in a magnetic field (Section 27-3 , Eq. 27-1). Thus, we expect 
that two current-carrying wires will exert a force on each other.

Consider two long parallel wires separated by a distance d, as in Fig. 28-5a. 
They carry currents Ix and I2, respectively. Each current produces a magnetic field 
that is “felt” by the other, so each must exert a force on the other. For example, 
the magnetic field B1 produced by in Fig. 28-5  is given by Eq. 28-1 , which at the 
location of wire 2 is

R = B . L
1 2tt d

See Fig. 28-5b, where the field due only to Ix is shown. According to Eq. 27-2 , the 
force F2 exerted by B1 on a length i2 of wire 2, carrying current I2, is

Fi = h  Bi l 2 •

Note that the force on I2 is due only to the field produced by Ix. Of course, I2 also 
produces a field, but it does not exert a force on itself. We substitute B1 into the 
formula for F2 and find that the force on a length i2 of wire 2 is

_ Mo hh p
Fl ~ 2TT~d~

[parallel wires] (2 8 -2 )

If we use right-hand-rule-1 of Fig. 27-8c, we see that the lines of B1 are as shown 
in Fig. 28-5b. Then using right-hand-rule-2 of Fig. 2 7 - l lc ,  we see that the force 
exerted on I2 will be to the left in Fig. 28-5b. That is, Ix exerts an attractive force 
on I2 (Fig. 28-6a). This is true as long as the currents are in the same direction. If 
I2 is in the opposite direction, the right-hand rule indicates that the force is in the 
opposite direction. That is, Ix exerts a repulsive force on I2 (Fig. 28-6b).

Reasoning similar to that above shows that the magnetic field produced by I2 
exerts an equal but opposite force on Ix. We expect this to be true also from Newton’s 
th ird  la w  T h u s , as show n  in  F ia . 2 8 - f i . n a ra lle l cu rre n ts  in  th e  sam e d ire c tio n  attract

®  j
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j

(a)
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© '  2 ®  
3 4

(b)

FIGURE 28-4 Example 28-3.

k-t/—

Wire I Wire 2
(a) <b)

FIGURE 28-5 (a) Two parallel 
conductors carrying currents I\ and I2. 
(b) Magnetic field Bi produced by I i . 
(Field produced by I2 is not shown.)
Bj points into page at position of I2.

FIGURE 28-6 (a) Parallel currents in 
the same direction exert an attractive 
force on each other, (b) Antiparallel 
currents (in opposite directions) exert 
a repulsive force on each other.

h  h

F F F



d = 20 cm

mg} / ,  = ?

FIGURE 28-7 Example 28-5.

EXAMPLE 28-4 Force between two current-carrying wires. The two wires 
of a 2.0-m-long appliance cord are 3.0 mm apart and carry a current of 8.0 A  dc. 
Calculate the force one wire exerts on the other.
APPROACH Each wire is in the magnetic field of the other when the current is 
on, so we can apply Eq. 28-2.
SOLUTION Equation 28-2  gives

F =
(4ir X IO-7 T • m /A )(8 .0  A )2(2.0 m) 

(2ir)(3.0 X 10-3 m)
=  8.5 X 10“3N.

The currents are in opposite directions (one toward the appliance, the other away 
from it), so the force would be repulsive and tend to spread the wires apart.

■ Suspending a wire with a current. A  horizontal wire
carries a current Ix = 80 A  dc. A  second parallel wire 20 cm below it (Fig. 28-7) 
must carry how much current I2 so that it doesn’t fall due to gravity? The lower 
wire has a mass of 0.12 g per meter of length.
APPROACH If wire 2 is not to fall under gravity, which acts downward, the 
magnetic force on it must be upward. This means that the current in the two wires 
must be in the same direction (Fig. 28-6). We can find the current I2 by equating 
the magnitudes of the magnetic force and the gravitational force on the wire. 
SOLUTION The force of gravity on wire 2 is downward. For each 1.0 m of wire 
length, the gravitational force has magnitude

F = mg = (0.12 x  l ( r 3kg/m )(1 .0m )(9 .8m /s2) =  1.18 X 10 3N.

The magnetic force on wire 2 must be upward, and Eq. 28 -2  gives

p  = Mo A h  f
277 d

where d = 0.20 m and Ix = 80 A. We solve this for I2 and set the two force 
magnitudes equal (letting £ = 1.0 m):

2 i r d ( F \ _  2ir(0.20m ) (1.18 X 10“3N /m )

i x o l A t J  ~  (4ir X K r7T -m /A )(8 0 A ) (1.0m )
=  15 A.

2 8 -3  Definitions of the Ampere and 
the Coulomb

You may have wondered how the constant jjl q  in Eq. 28-1  could be exactly 
47t  X 10_7T -m /A . Here is how it happened. With an older definition of the 
ampere, jjl0  was measured experimentally to be very close to this value. Today, 
/jlq is defined to be exactly 477 X 10_7T -m /A . This could not be done 
if the ampere were defined independently. The ampere, the unit of current, is 
now defined in terms of the magnetic field B  it produces using the defined 
value of /jl0  .

In particular, we use the force between two parallel current-carrying wires, 
Eq. 28-2 , to define the ampere precisely. If Ix = I2 = 1 A  exactly, and the two 
wires are exactly 1 m apart, then

Mo h h  
2tt d

(4tt X 10_7T -m /A ) (1 A ) ( l  A )
( 2  i t ) (lm)

= 2 X 10“7N /m .

Thus, one ampere is defined as that current flowing in each o f  two long parallel 
wires 1 m apart, which results in a force o f  exactly 2 X 10~7 N  per meter o f length



This is the precise definition of the ampere. The coulomb is then defined as 
being exactly one ampere-second: 1C  = 1 A -s. The value of k  or e 0 in Coulomb’s 
law (Section 21-5) is obtained from experiment.

This may seem a rather roundabout way of defining quantities. The reason 
behind it is the desire for operational definitions of quantities— that is, definitions 
of quantities that can actually be measured given a definite set of operations 
to carry out. For example, the unit of charge, the coulomb, could be defined 
in terms of the force between two equal charges after defining a value for 
e0 or k  in Eqs. 21 -1  or 21-2 . However, to carry out an actual experiment to 
measure the force between two charges is very difficult. For one thing, any 
desired amount of charge is not easily obtained precisely; and charge tends to 
leak from objects into the air. The amount of current in a wire, on the other 
hand, can be varied accurately and continuously (by putting a variable resistor 
in a circuit). Thus the force between two current-carrying conductors is far 
easier to measure precisely. This is why we first define the ampere, and 
then define the coulomb in terms of the ampere. At the National Institute of 
Standards and Technology in Maryland, precise measurement of current is made 
using circular coils of wire rather than straight lengths because it is more convenient 
and accurate.

Electric and magnetic field strengths are also defined operationally: the elec­
tric field in terms of the measurable force on a charge, via Eq. 21-3; and the 
magnetic field in terms of the force per unit length on a current-carrying wire, via 
Eq. 27-2.

2 8 —4  Ampere's Law
In Section 28-1  we saw that Eq. 28-1  gives the relation between the current in a 
long straight wire and the magnetic field it produces. This equation is valid only 
for a long straight wire. Is there a general relation between a current in a wire of 
any shape and the magnetic field around it? The answer is yes: the French scien­
tist Andre Marie Ampere (1775-1836) proposed such a relation shortly after 
Oersted’s discovery. Consider an arbitrary closed path around a current as shown 
in Fig. 28 -8 , and imagine this path as being made up of short segments each of 
length AL First, we take the product of the length of each segment times the 
component of B parallel to that segment (call this component 5||). If we now sum 
all these terms, according to Ampere, the result will be equal to /u0 times the net 
current / encl that passes through the surface enclosed by the path:

2 B \ \ = Mo/encl.

The lengths A t are chosen so that is essentially constant along each length. 
The sum must be made over a closed path; and / encl is the net current passing 
through the surface bounded by this closed path (orange in Fig. 28-8). In the 
limit A£ —> 0, this relation becomes

FIGURE 28-8 Arbitrary path 
enclosing a current, for Ampere’s 
law. The path is broken down into 
segments of equal length M.

B • d l = ilqI{end: (28-3)

where d l is an infinitesimal length vector and the vector dot product assures 
that the parallel component of B is taken. Equation 28-3  is known as 
Ampere’s law. The integrand in Eq. 2 8 -3  is taken around a closed path, 
and / encl is the current passing through the space enclosed by the chosen 
path or loop.

AMPERE’S LAW

Closed 
up of segments of 
length M

enclosed 
by the path

/



FIGURE 28-9 Circular path of 
radius r.

To understand A m pere’s law better, let us apply it to the simple case of a 
single long straight wire carrying a current I  which w e’ve already examined, 
and which served as an inspiration for Ampere himself. Suppose we want to 
find the magnitude of B at some point A  which is a distance r from the wire 
(Fig. 28 -9 ). We know the magnetic field lines are circles with the wire at their 
center. So to apply Eq. 2 8 -3  we choose as our path of integration a circle of 
radius r. The choice of path is ours, so we choose one that will be convenient: at 
any point on this circular path, B will be tangent to the circle. Furthermore, 
since all points on the path are the same distance from the wire, by symmetry 
we expect B  to have the same magnitude at each point. Thus for any 
short segment of the circle (Fig. 2 8 -9 ), B will be parallel to that segment, 
and (setting / encl =  I)

/lqI  =  CpB • d t

= cp B d t = B& dt = B(2irr),

FIGURE 28-10 Magnetic field 
lines around two long parallel wires 
whose equal currents, /* and I2, 
are coming out of the paper toward 
the viewer.

where <f> dl = 2irr, the circumference of the circle. We solve for B  and obtain 

Mo IB =
lirr

This is just Eq. 28-1 for the field near a long straight wire as discussed earlier.
Ampere’s law thus works for this simple case. A  great many experiments 

indicate that Ampere’s law is valid in general. However, as with Gauss’s law for 
the electric field, its practical value as a means to calculate the magnetic field is 
limited mainly to simple or symmetric situations. Its importance is that it relates 
the magnetic field to the current in a direct and mathematically elegant way. 
Ampere’s law is thus considered one of the basic laws of electricity and 
magnetism. It is valid for any situation where the currents and fields are steady 
and not changing in time, and no magnetic materials are present.

We now can see why the constant in Eq. 28-1 is written f i J 2 tt. This is done 
so that only fi0 appears in Eq. 28-3 , rather than, say, 2irk if we had used k  in 
Eq. 28-1. In this way, the more fundamental equation, Ampere’s law, has the 
simpler form.

It should be noted that the B in Am pere’s law is not necessarily due only to 
the current / encl. Am pere’s law, like Gauss’s law for the electric field, is valid in 
general. B is the field at each point in space along the chosen path due to all 
sources— including the current I  enclosed by the path, but also due to any other 
sources. For example, the field surrounding two parallel current-carrying wires is 
the vector sum of the fields produced by each, and the field lines are shown in 
Fig. 28-10. If the path chosen for the integral (Eq. 28 -3 ) is a circle centered 
on one of the wires with radius less than the distance between the wires (the 
dashed line in Fig. 28-10), only the current (Z^ in the encircled wire is included 
on the right side of Eq. 28-3 . B on the left side of the equation must be the 
total B at each point due to both wires. N ote also that <J>B‘ d t for the path 
shown in Fig. 28 -10  is the same whether the second wire is present or not (in 
both cases, it equals /iq/j according to Am pere’s law). How can this be? It can be 
so because the fields due to the two wires partially cancel one another at some 
points between them, such as point C in the diagram (B = 0 at a point midway 
between the wires if Ix = I2); at other points, such as D in Fig. 28-10, the fields 
add together to produce a larger field. In the sum , <j>B* dt, these effects just 
balance so that <pB •d t = /jl0I l , whether the second wire is there or not. The 
integral <j>B • d t will be the same in each case, even though B will not be the 
same at every point for each of the two cases.



EXAMPLE 28-6 Field inside and outside a wire. A  long straight cylindrical 
wire conductor of radius R  carries a current I  of uniform current density in 
the conductor. Determine the magnetic field due to this current at (a) points 
outside the conductor (r > R), and (b) points inside the conductor (r < R). 
See Fig. 28-11. Assume that r, the radial distance from the axis, is much less 
than the length of the wire, (c) If R = 2.0 mm and I  = 60 A , what is B  at 
r = 1.0 mm, r = 2.0 mm, and r = 3.0 mm?

APPROACH We can use symmetry: Because the wire is long, straight, and cylin­
drical, we expect from symmetry that the magnetic field must be the same at all 
points that are the same distance from the center of the conductor. There is no 
reason why any such point should have preference over others at the same 
distance from the wire (they are physically equivalent). So B  must have the same 
value at all points the same distance from the center. We also expect B to be 
tangent to circles around the wire (Fig. 28-1), so we choose a circular path of 
integration as we did in Fig. 28-9.
SOLUTION (a) We apply Ampere’s law, integrating around a circle (r > R) 
centered on the wire (Fig. 28-11 a), and then / encl =  I:

B -d i  = B(2vr) = fi0Ienc\

B  = [r > R]
lirr  L J

which is the same result as for a thin wire.
(b) Inside the wire (r < R), we again choose a circular path concentric with the 
cylinder; we expect B to be tangential to this path, and again, because of the 
symmetry, it will have the same magnitude at all points on the circle. The current 
enclosed in this case is less than I  by a factor of the ratio of the areas:

So Ampere’s law gives

„2irr

B *di =  /x0/ encl 

B (2 ir r ) = fju0I
7TR

so

The field is zero at the center of the conductor and increases linearly with r until 
r = R; beyond r = R, B  decreases as 1/r. This is shown in Fig. 2 8 - l lb . Note 
that these results are valid only for points close to the center of the conductor as 
compared to its length. For a current to flow, there must be connecting wires (to 
a battery, say), and the field due to these conducting wires, if not very far away, 
will destroy the assumed symmetry.
(c) A t r = 2.0 mm, the surface of the wire, r = R, so

M  ,  ( 4 , x i , - T . m / A ) ( 6 0 A )  _
2ttR  (2tt)(2.0 X 10 m )

We saw in (b) that inside the wire B is linear in r. So at r = 1.0 mm, B will 
be half what it is at r = 2.0 mm or 3.0 X 10“3 T. Outside the wire, B  falls off 
as 1/r, so at r = 3.0 mm it will be two-thirds as great as at r = 2.0 mm, or 
B =  4.0 X 10 3T. To check, we use our result in (a), B =  /jl01 / 2 irr, which gives

FIGURE 28-11 Magnetic field 
inside and outside a cylindrical 
conductor (Example 28-6).

A  CAUTI ON_______
Connecting wires can destroy 
assumed sym metry
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FIGURE 28-12 Coaxial cable. 
Example 28-7.

FIGURE 28-13 Exercise C.

FIGURE 28-14 Example 28
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CONCEPTUAL EXAMPLE 28-7 | Coaxial cable. A  coaxial cable is a single wire 
surrounded by a cylindrical metallic braid, as shown in Fig. 28-12. The two 
conductors are separated by an insulator. The central wire carries current to the 
other end of the cable, and the outer braid carries the return current and is usually 
considered ground. Describe the magnetic field (a) in the space between the 
conductors, and (b) outside the cable.

RESPONSE (a) In the space between the conductors, we can apply Ampere’s law 
for a circular path around the center wire, just as we did for the case shown in 
Figs. 28-9  and 28-11. The magnetic field lines will be concentric circles centered 
on the center of the wire, and the magnitude is given by Eq. 28-1. The current in 
the outer conductor has no bearing on this result. (Ampere’s law uses only the 
current enclosed inside the path; as long as the currents outside the path don’t 
affect the symmetry of the field, they do not contribute to the field along the path 
at all), (b) Outside the cable, we can draw a similar circular path, for we expect the 
field to have the same cylindrical symmetry. Now, however, there are two currents 
enclosed by the path, and they add up to zero. The field outside the cable is zero.

The nice feature of coaxial cables is that they are self-shielding: no stray 
magnetic fields exist outside the cable. The outer cylindrical conductor also 
shields external electric fields from coming in (see also Example 21-14). This makes 
them ideal for carrying signals near sensitive equipment. Audiophiles use coaxial 
cables between stereo equipment components and even to the loudspeakers.

EXERCISE C In Fig. 28-13, A and B are wires each carrying a 3.0-A current but in 
opposite directions. On the circle C, which statement is true? (a) B = 0; (b) <f>B • di = 0;
(c) B = 3/x0; (d) B = —3//,0; (e) <|>B-di = 6/i0-

EXAMPLE 28-8 A nice use for Ampere's law. U se Ampere’s law to show 
that in any region of space where there are no currents the magnetic field cannot 
be both unidirectional and nonuniform as shown in Fig. 2 8 -14a.

APPROACH The wider spacing of lines near the top of Fig. 28-14a indicates the 
field B has a smaller magnitude at the top than it does lower down. We apply 
A m pere’s law to the rectangular path abed shown dashed in Fig. 28-14a. 
SOLUTION Because no current is enclosed by the chosen path, Ampere’s law gives

B -d l = 0.

The integral along sections ab and cd is zero, since B _L dl. Thus 

>B*dI = Bbc£ — Bdai  =  (Bbc -  Bda)i,

which is not zero since the field ^bc along the path be is less than the field Bda along 
path da. Hence we have a contradiction: <J)B • d l cannot be both zero (since 1 = 0) 
and nonzero. Thus we have shown that a nonuniform unidirectional field is not 
consistent with Ampere’s law. A  nonuniform field whose direction also changes, as 
in Fig. 28-14b, is consistent with Ampere’s law (convince yourself this is so), and 
possible. The fringing of a permanent magnet’s field (Fig. 27-7) has this shape.

Ampere's Law
1. Ampere’s law, like Gauss’s law, is always a valid state­

ment. But as a calculation tool it is limited mainly to 
systems with a high degree of symmetry. The first step 
in applying Ampere’s law is to identify useful symmetry.

2. Choose an integration path that reflects the symmetry 
(see the Examples). Search for paths where B  has 
constant magnitude along the entire path or along segments 
of the path. Make sure your integration path passes through

3. U se symmetry to determine the direction of B along 
the integration path. With a smart choice of path, B 
will be either parallel or perpendicular to the path.

4. Determine the enclosed current, / encl. Be careful with 
signs. Let the fingers of your right hand curl along the 
direction of B so that your thumb shows the direction 
of positive current. If you have a solid conductor and 
your integration path does not enclose the full current, 
you can use the current density (current per unit area)
mnltinlip.H h v  th e  p.nrlnse.rl area fa s  in P .vam nle. 9 8 —M



2 8 —5 Magnetic Field of a Solenoid 
and a Toroid

A  long coil of wire consisting of many loops is called a solenoid. Each loop produces 
a magnetic field as was shown in Fig. 27-9. In Fig. 28-15a, we see the field due to a 
solenoid when the coils are far apart. Near each wire, the field lines are very nearly 
circles as for a straight wire (that is, at distances that are small compared to the 
curvature of the wire). Between any two wires, the fields due to each loop tend to 
cancel. Toward the center of the solenoid, the fields add up to give a field that can be 
fairly large and fairly uniform. For a long solenoid with closely packed coils, the field 
is nearly uniform and parallel to the solenoid axis within the entire cross section, as 
shown in Fig. 28-15b. The field outside the solenoid is very small compared to the 
field inside, except near the ends. Note that the same number of field lines that are 
concentrated inside the solenoid, spread out into the vast open space outside.

We now use Ampere’s law to determine the magnetic field inside a very long 
(ideally, infinitely long) closely packed solenoid. We choose the path abed shown in 
Fig. 28-16, far from either end, for applying Ampere’s law. We will consider this 
path as made up of four segments, the sides of the rectangle: ab, be, cd, da. Then 
the left side of Eq. 28-3 , Ampere’s law, becomes

>B-dl = J B-di + J B-dl + |  Bdl + j  B■ dl
The field outside the solenoid is so small as to be negligible compared to the field inside. 
Thus the first term in this sum will be zero. Furthermore, B is perpendicular to the 
segments be and da inside the solenoid, and is nearly zero between and outside the coils,

(b)

FIGURE 28-15 Magnetic field due 
to a solenoid: (a) loosely spaced 
turns, (b) closely spaced turns.
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FIGURE 28-16 Cross-sectional 
view into a solenoid. The magnetic 
field inside is straight except at the 
ends. Red dashed lines indicate the 
path chosen for use in Ampere’s law.
O and ® are electric current 
direction (in the wire loops) out of 
the page and into the page.

so these terms too are zero. Therefore we have reduced the integral to the segment cd 
where B is the nearly uniform field inside the solenoid, and is parallel to dl, so

>B-dl = J B-dl = B l,

where I is the length cd. Now we determine the current enclosed by this loop for 
the right side of Ampere’s law, Eq. 28-3. If a current I  flows in the wire of the sole­
noid, the total current enclosed by our path abed is N I  where N  is the number of 
loops our path encircles (five in Fig. 28-16). Thus Ampere’s law gives us

B l = hqN I.
If we let n = N / l  be the number o f  loops per unit length, then

B = /jb0n l. [solenoid] (28-4)
This is the magnitude of the magnetic field within a solenoid. Note that B  depends only 
on the number of loops per unit length, n, and the current I. The field does not depend 
on position within the solenoid, so B  is uniform. This is strictly true only for an infinite 
solenoid, but it is a good approximation for real ones for points not close to the ends.

EXAMPLE 28-9 Field inside a solenoid. A  thin 10-cm-long solenoid used 
for fast electromechanical switching has a total of 400 turns of wire and carries a 
current of 2.0 A. Calculate the field inside near the center.
APPROACH We use Eq. 28-4 , where the number of turns per unit length is
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(b)

FIGURE 28-17 (a) A toroid.
(b) A section of the toroid showing 
direction of the current for three 
loops: O means current toward you, 
(x) means current away from you.

A  close look at Fig. 28-15 shows that the field outside of a solenoid is much 
like that of a bar magnet (Fig. 27-4). Indeed, a solenoid acts like a magnet, 
with one end acting as a north pole and the other as south pole, depending on 
the direction of the current in the loops. Since magnetic field lines leave the 
north pole of a magnet, the north poles of the solenoids in Fig. 28-15 are on 
the right.

Solenoids have many practical applications, and we discuss some of them later 
in the Chapter, in Section 28-8.

EXAMPLE 28-10 Toroid. U se Ampere’s law to determine the magnetic field
(a) inside and (b) outside a toroid, which is like a solenoid bent into the shape of 
a circle as shown in Fig. 28-17a.
APPROACH The magnetic field lines inside the toroid will be circles concentric 
with the toroid. (If you think of the toroid as a solenoid bent into a circle, 
the field lines bend along with the solenoid.) The direction of B is clockwise. 
We choose as our path of integration one of these field lines of radius r 
inside the toroid as shown by the dashed line labeled “path 1” in Fig. 28-17a. 
We make this choice to use the symmetry of the situation, so B  will be 
tangent to the path and will have the same magnitude at all points along the 
path (although it is not necessarily the same across the whole cross section of 
the toroid). This chosen path encloses all the coils; if there are N  coils, each 
carrying current /, then / encl = N I.
SOLUTION (a) Ampere’s law applied along this path gives

B  - d i  =  /Xq / encl

B(2irr) = ^ N I ,

where N  is the total number of coils and I  is the current in each of the coils. 
Thus

Mo N IB =
2irr

The magnetic field B  is not uniform within the toroid: it is largest along the 
inner edge (where r is smallest) and smallest at the outer edge. However, if 
the toroid is large, but thin (so that the difference between the inner and 
outer radii is small compared to the average radius), the field will be 
essentially uniform within the toroid. In this case, the formula for B  reduces 
to that for a straight solenoid B = fi0n l  where n = N/(27rr) is the number 
of coils per unit length. (b) Outside the toroid, we choose as our path of 
integration a circle concentric with the toroid, “path 2” in Fig. 28-17a. This 
path encloses N  loops carrying current I  in one direction and N  loops 
carrying the same current in the opposite direction. (Figure 2 8 -17b shows 
the directions of the current for the parts of the loop on the inside and outside 
of the toroid.) Thus the net current enclosed by path 2 is zero. For a very 
tightly packed toroid, all points on path 2 are equidistant from the toroid 
and equivalent, so we expect B  to be the same at all points along the path. 
Hence, A m pere’s law gives

B ' d l  =  M-o/encl 

B(2wr) = 0
or

B = 0.
The same is true for a path taken at a radius smaller than that of the toroid. 
So there is no field exterior to a very tightly wound toroid. It is all inside the



2 8 —6 Biot-Savart Law
The usefulness of Ampere’s law for determining the magnetic field B due to 
particular electric currents is restricted to situations where the symmetry of the 
given currents allows us to evaluate $B  • dl readily. This does not, of course, 
invalidate Ampere’s law nor does it reduce its fundamental importance. Recall the 
electric case, where Gauss’s law is considered fundamental but is limited in its use 
for actually calculating E. We must often determine the electric field E by another 
method summing over contributions due to infinitesimal charge elements dq via 
Coulomb’s law: dE = (l/47reQ)(dq/r2). A  magnetic equivalent to this infinitesimal 
form of Coulomb’s law would be helpful for currents that do not have great 
symmetry. Such a law was developed by Jean Baptiste Biot (1774-1862) and Felix 
Savart (1791-1841) shortly after Oersted’s discovery in 1820 that a current 
produces a magnetic field.

According to Biot and Savart, a current I  flowing in any path can be 
considered as many tiny (infinitesimal) current elements, such as in the wire of 
Fig. 28-18. If d l represents any infinitesimal length along which the current is 
flowing, then the magnetic field, dB, at any point P in space, due to this element of 
current, is given by

llqI  d l X r
dB = —--------z— 5 (28-5) Biot-Savart law

477 r

where r is the displacement vector from the element d l  to the point P, and 
r = f / r  is the unit vector (magnitude = 1) in the direction of ? (see Fig. 28-18).

dB (out)

FIGURE 28-18 Biot-Savart law: 
the field at P due to current element 
Idl is dB = (fjL0I/4Tr)(dl X r/r2).

Equation 28-5  is known as the Biot-Savart law. The magnitude of dB  is 

Lin Id i  sin 6
dB = — A— =---- > (28-6)

47rr/

where 6 is the angle between d l and r (Fig. 28-18). The total magnetic field at 
point P is then found by summing (integrating) over all current elements:

B = \ d *  = 1X01 [ d l X iJ - - S J
Note that this is a vector sum. The Biot-Savart law is the magnetic equivalent of 
Coulomb’s law in its infinitesimal form. It is even an inverse square law, like 
Coulomb’s law.

An important difference between the Biot-Savart law and Am pere’s law 
(Eq. 28 -3 ) is that in Am pere’s law [§ B -d l -  Mo4ncl]>8 is not necessarily 
due only to the current enclosed by the path of integration. But in the 
Biot-Savart law the field dB  in Eq. 28-5  is due only, and entirely, to the current 
element Id l. To find the total B at anv ooint in soace. it is necessary to include
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FIGURE 28-19 Determining B 
due to a long straight wire using the 
Biot-Savart law.

FIGURE 28-20 Determining B 
due to a current loop.

►r c/b,

EXAMPLE 28-11 B due to current /  in straight wire. For the field near a 
long straight wire carrying a current I, show that the Biot-Savart law gives the 
same result as Eq. 28-1 , B = [IqI / I itt.
APPROACH We calculate the magnetic field in Fig. 28-19 at point P, which is a 
perpendicular distance R  from an infinitely long wire. The current is moving upwards, 
and both d l  and r, which appear in the cross product of Eq. 28-5, are in the plane of 
the page. Hence the direction of the field dB  due to each element of current must be 
directed into the plane of the page as shown (right-hand rule for the cross product 
d l X r). Thus all the dB  have the same direction at point P, and add up to give B the 
same direction consistent with our previous results (Figs. 28-1 and 28-11). 
SOLUTION The magnitude of B will be

B = Mo I  
4tt

dy sin 6
I y = —oo 

,2 _where dy = dt and r — R + y  . Note that we are integrating over y  (the 
length of the wire) so R  is considered constant. Both y and 0 are variables, but they 
are not independent. In fact, y = —R/tanO. Note that we measure y  as positive 
upward from point 0, so for the current element we are considering y  <  0. Then

dy = + R  csc2 6 dd
R dd 
sin20

Rdd
(R /r)1

r2 dd

From Fig. 28-19 we can see that y = — oo corresponds to 6 = 0 and that 
y = +oo corresponds to 6 = ir radians. So our integral becomes

c  ^ °7 1 T • aAa ^ °7 aB  =  —-----— sin 6 dO = -  - —— cos 0
477 R L-n 4ttR

Mo I  
2,it R

This is just Eq. 28-1 for the field near a long wire, where R  has been used instead of r.

EXAMPLE 28-12 Current loop. Determine B for points on the axis of a 
circular loop of wire of radius R  carrying a current I, Fig. 28-20.

APPROACH For an element of current at the top of the loop, the magnetic field dB  
at point P on the axis is perpendicular to r as shown, and has magnitude (Eq. 28-5)

/n07 dl
dB =

4Trr7
since d l is perpendicular to r so \dl X r| = dt. We can break dB  down into 
components dB\\ and dB±, which are parallel and perpendicular to the axis as shown. 
SOLUTION When we sum over all the elements of the loop, symmetry tells us 
that the perpendicular components will cancel on opposite sides, so B± = 0. 
Hence, the total B will point along the axis, and will have magnitude

= |  dB cos <j) = |  d B ^  = |B = B, = dB
(R2 + x 2)i

where x  is the distance of P from the center of the ring, and r -  R  + x  . Now  
we put in dB  from the equation above and integrate around the current loop, 
noting that all segments d l of current are the same distance, (R2 + x 2)i? from 
point P:

Mô  R [ Mo IR 2B = dl
4 7T ( R 2  +  x 2)f j 2(R2 +  X 2f

since j d l  = 2itR, the circumference of the loop.
NOTE At the very center of the loop (where x  = 0 )  the field has its maximum value 

MôB = [at center of current loop]



Recall from Section 27-5  that a current loop, such as that just discussed 
(Fig. 28-20), is considered a magnetic dipole. We saw there that a current loop has 
a magnetic dipole moment

jjl =  N IA,

where A  is the area of the loop and N  is the number of coils in the loop, each 
carrying current I. We also saw in Chapter 27 that a magnetic dipole placed in an 
external magnetic field experiences a torque and possesses potential energy, just 
like an electric dipole. In Example 28-12, we looked at another aspect of a 
magnetic dipole: the magnetic field produced by a magnetic dipole has magnitude, 
along the dipole axis, of

P-glR2
2 (R2 + x 2)l

We can write this in terms of the magnetic dipole moment jjl =  I A  = IirR 2 (for a 
single loop N  = 1):

U j n IJL
B = [magnetic dipole] (28-7a)

Z7T +  X  J2

(Be careful to distinguish |x for dipole moment from /ul0 , the magnetic permeability 
constant.) For distances far from the loop, x  »  R, this becomes

D Mo
B  ~  w

on axis, 1 n fi_7k\
[magnetic dipole, x  »  R ]  ' '

The magnetic field on the axis of a magnetic dipole decreases with the cube 
of the distance, just as the electric field does for an electric dipole. B  decreases 
as the cube of the distance also for points not on the axis, although the 
multiplying factor is not the same. The magnetic field due to a current loop can 
be determined at various points using the Biot-Savart law and the results are 
in accord with experiment. The field lines around a current loop are shown in 
Fig. 28-21.

® due a wire segm ent. One quarter of a circular loop 
of wire carries a current I  as shown in Fig. 28-22. The current I  enters and leaves 
on straight segments of wire, as shown; the straight wires are along the radial 
direction from the center C of the circular portion. Find the magnetic field at 
point C.

APPROACH The current in the straight sections produces no magnetic field at 
point C because d l and r in the Biot-Savart law (Eq. 28-5) are parallel and 
therefore d l X r = 0. Each piece d l of the curved section of wire produces a 
field dB  that points into the page at C (right-hand rule).
SOLUTION The magnitude of each dB  due to each d i of the circular portion of 
wire is (Eq. 28-6)

dB = 1 ^ 4 4irR

where r = R  is the radius of the curved section, and sin0 in Eq. 28 -6  is 
sin 90° =  1. With r = R  for all pieces di, we integrate over a quarter of a circle.

B  = [ dB  =  [ dt =  - ^ 1 ( \ 2 i r R \  =

FIGURE 28-21 Magnetic field due 
to a circular loop of wire. (Same as 
Fig. 27-9.)

FIGURE 28-22 Example 28-13. 
1\
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FIGURE 28-23 (a) An
unmagnetized piece of iron is made 
up of domains that are randomly 
arranged. Each domain is like a tiny 
magnet; the arrows represent the 
magnetization direction, with the 
arrowhead being the N pole.
(b) In a magnet, the domains are 
preferentially aligned in one 
direction (down in this case), and 
may be altered in size by the 
magnetization process.

FIGURE 28-24 Iron filings line up 
along magnetic field lines due to a 
permanent magnet.

A  CAUTI ON_______
^ B lines form  closed loops, 
E start on and end on 0

2 8 —7 Magnetic Materials—Ferromagnetism
Magnetic fields can be produced (1) by magnetic materials (magnets) and (2) by 
electric currents. Common magnetic materials include ordinary magnets, iron cores 
in motors and electromagnets, recording tape, computer hard drives and magnetic 
stripes on credit cards. We saw in Section 27-1 that iron (and a few other materials) 
can be made into strong magnets. These materials are said to be ferromagnetic. We 
now look into the sources of ferromagnetism.

A  bar magnet, with its two opposite poles near either end, resembles an 
electric dipole (equal-magnitude positive and negative charges separated by a 
distance). Indeed, a bar magnet is sometimes referred to as a “magnetic dipole.” 
There are opposite “poles” separated by a distance. And the magnetic field lines of 
a bar magnet form a pattern much like that for the electric field of an electric 
dipole: compare Fig. 21-34a with Fig. 27 -4  (or 28-24).

Microscopic examination reveals that a piece of iron is made up of tiny 
regions known as domains, less than 1 mm in length or width. Each domain behaves 
like a tiny magnet with a north and a south pole. In an unmagnetized piece of iron, 
these domains are arranged randomly, as shown in Fig. 28-23a. The magnetic 
effects of the domains cancel each other out, so this piece of iron is not a magnet. In a 
magnet, the domains are preferentially aligned in one direction as shown in Fig.
28-23b (downward in this case). A  magnet can be made from an unmagnetized 
piece of iron by placing it in a strong magnetic field. (You can make a needle 
magnetic, for example, by stroking it with one pole of a strong magnet.) The magne­
tization direction of domains may actually rotate slightly to be more nearly parallel to 
the external field, and the borders of domains may move so domains with magnetic 
orientation parallel to the external field grow larger (compare Figs. 28-23a and b).

We can now explain how a magnet can pick up unmagnetized pieces of iron like 
paper clips. The field of the magnet’s south pole (say) causes a slight realignment of 
the domains in the unmagnetized object, which then becomes a temporary magnet 
with its north pole facing the south pole of the permanent magnet; thus, attraction 
results. Similarly, elongated iron filings in a magnetic field acquire aligned domains and 
align themselves to reveal the shape of the magnetic field, Fig. 28-24.

An iron magnet can remain magnetized for a long time, and is referred to as a 
“permanent magnet.” But if you drop a magnet on the floor or strike it with a 
hammer, you can jar the domains into randomness and the magnet loses some or 
all of its magnetism. Heating a permanent magnet can also cause loss of magnetism, 
for raising the temperature increases the random thermal motion of atoms, which 
tends to randomize the domains. Above a certain temperature known as the 
Curie temperature (1043 K for iron), a magnet cannot be made at all. Iron, nickel, 
cobalt, gadolinium, and certain alloys are ferromagnetic at room temperature; 
several other elements and alloys have low Curie temperature and thus are ferro­
magnetic only at low temperatures. Most other metals, such as aluminum and 
copper, do not show any noticeable magnetic effect (but see Section 28-10).

The striking similarity between the fields produced by a bar magnet and 
by a loop of electric current (Figs. 27-4b and 28-21) offers a clue that perhaps 
magnetic fields produced by electric currents may have something to do with 
ferromagnetism. According to modern atomic theory, atoms can be visualized as 
having electrons that orbit around a central nucleus. The electrons are charged, 
and so constitute an electric current and therefore produce a magnetic field; but 
the fields due to orbiting electrons generally all add up to zero. Electrons them­
selves produce an additional magnetic field, as if they and their electric charge 
were spinning about their own axes. It is the magnetic field due to electron spint 
that is believed to produce ferromagnetism in most ferromagnetic materials.

It is believed today that all magnetic fields are caused by electric currents. This 
means that magnetic field lines always form closed loops, unlike electric field lines 
which begin on positive charges and end on negative charges.



EXERCISE D Return to the Chapter-Opening Question, page 733, and answer it again now. 
Try to explain why you may have answered differently the first time.

*28—8 Electromagnets and 
Solenoids—Applications

A  long coil of wire consisting of many loops of wire, as discussed in Section 28-5, 
is called a solenoid. The magnetic field within a solenoid can be fairly large since it 
will be the sum of the fields due to the current in each loop (see Fig. 28-25). The 
solenoid acts like a magnet; one end can be considered the north pole and the 
other the south pole, depending on the direction of the current in the loops (use 
the right-hand rule). Since the magnetic field lines leave the north pole of a 
magnet, the north pole of the solenoid in Fig. 28-25 is on the right.

If a piece of iron is placed inside a solenoid, the magnetic field is increased 
greatly because the domains of the iron are aligned by the magnetic field produced 
by the current. The resulting magnetic field is the sum of that due to the current and 
that due to the iron, and can be hundreds or thousands of times larger than that due 
to the current alone (see Section 28-9). This arrangement is called an electromagnet. 
The alloys of iron used in electromagnets acquire and lose their magnetism quite 
readily when the current is turned on or off, and so are referred to as “soft iron.” (It 
is “soft” only in a magnetic sense.) Iron that holds its magnetism even when there is 
no externally applied field is called “hard iron.” Hard iron is used in permanent 
magnets. Soft iron is usually used in electromagnets so that the field can be turned 
on and off readily. Whether iron is hard or soft depends on heat treatment, type of 
alloy, and other factors.

Electromagnets have many practical applications, from use in motors and 
generators to producing large magnetic fields for research. Sometimes an iron core 
is not present— the magnetic field comes only from the current in the wire coils. 
When the current flows continuously in a normal electromagnet, a great deal of 
waste heat (I 2R  power) can be produced. Cooling coils, which are tubes carrying 
water, are needed to absorb the heat in larger installations.

For some applications, the current-carrying wires are made of superconducting 
material kept below the transition temperature (Section 25-9). Very high fields 
can be produced with superconducting wire without an iron core. No electric 
power is needed to maintain large current in the superconducting coils, which 
means large savings of electricity; nor must huge amounts of heat be dissipated. It 
is not a free ride, though, because energy is needed to keep the superconducting 
coils at the necessary low temperature.

Another useful device consists of a solenoid into which a rod of iron is partially 
inserted. This combination is also referred to as a solenoid. One simple use is as a 
doorbell (Fig. 28-26). When the circuit is closed by pushing the button, the coil 
effectively becomes a magnet and exerts a force on the iron rod. The rod is pulled 
into the coil and strikes the bell. A  large solenoid is used in the starters of cars; 
when you engage the starter, you are closing a circuit that not only turns the starter 
motor, but activates a solenoid that first moves the starter into direct contact with 
the gears on the engine’s flywheel. Solenoids are used as switches in many devices. 
They have the advantage of moving mechanical parts quickly and accurately.

* Magnetic Circuit Breakers
Modern circuit breakers that protect houses and buildings from overload and fire 
contain not only a “thermal” part (bimetallic strip as described in Section 25-6, 
Fig. 25-19) but also a magnetic sensor. If the current is above a certain level, 
the magnetic field it produces pulls an iron plate that breaks the same contact 
points as in Fig. 2 5 -19b and c. In more sophisticated circuit breakers, including 
ground fault circuit interrupters (GFCIs— discussed in Section 29-8), a solenoid is
u s p H TT-ip* i r o n  Tnia 9 8 —9 6  c t r iU r m  q q r»c»ir

FIGURE 28-25 Magnetic field of a 
solenoid. The north pole of this 
solenoid, thought of as a magnet, is 
on the right, and the south pole is on 
the left.
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FIGURE 28-26 Solenoid used as a 
doorbell.
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FIGURE 28-27 Iron -core toroid.

FIGURE 28-28 Total magnetic 
field B in an iron-core toroid as a 
function of the external field B0 (B0 is 
caused by the current I in the coil).

X10-3 X10-3 X10-3

FIGURE 28-29 Hysteresis curve.

*28—9 Magnetic Fields in Magnetic 
Materials; Hysteresis

The field of a long solenoid is directly proportional to the current. Indeed, Eq. 28-4  
tells us that the field B0 inside a solenoid is given by

B0 = fi0n l.

This is valid if there is only air inside the coil. If we put a piece of iron or other 
ferromagnetic material inside the solenoid, the field will be greatly increased, often 
by hundreds or thousands of times. This occurs because the domains in the iron 
become preferentially aligned by the external field. The resulting magnetic field 
is the sum of that due to the current and that due to the iron. It is sometimes 
convenient to write the total field in this case as a sum of two terms:

S  = S 0 + S M. (28-8)

Here, B0 refers to the field due only to the current in the wire (the “external 
field”). It is the field that would be present in the absence of a ferromagnetic 
material. Then BM represents the additional field due to the ferromagnetic material 
itself; often BM »  B0.

The total field inside a solenoid in such a case can also be written by replacing 
the constant Mo in Eq. 28 -4  by another constant, /jl, characteristic of the material 
inside the coil:

B = fjunl; (28-9)

M is called the magnetic permeability of the material (do not confuse it with jul 
for magnetic dipole moment). For ferromagnetic materials, /jl is much greater than 
Mo • For all other materials, its value is very close to mo (Section 28-10). The value 
of m, however, is not constant for ferromagnetic materials; it depends on the value 
of the external field B0, as the following experiment shows.

Measurements on magnetic materials are generally done using a toroid, which 
is essentially a long solenoid bent into the shape of a circle (Fig. 28-27), so that 
practically all the lines of B remain within the toroid. Suppose the toroid has an 
iron core that is initially unmagnetized and there is no current in the windings of 
the toroid. Then the current I  is slowly increased, and B0 increases linearly with I. 
The total field B  also increases, but follows the curved line shown in the graph of 
Fig. 28-28. (Note the different scales: B »  B0.) Initially, point a, the domains 
(Section 28-7) are randomly oriented. As B0 increases, the domains become more 
and more aligned until at point b, nearly all are aligned. The iron is said to be 
approaching saturation. Point b is typically 70% of full saturation. (If B0 is 
increased further, the curve continues to rise very slowly, and reaches 98% saturation 
only when B0 reaches a value about a thousandfold above that at point b; the last 
few domains are very difficult to align.) Next, suppose the external field B0 is 
reduced by decreasing the current in the toroid coils. As the current is reduced to 
zero, shown as point c in Fig. 28-29, the domains do not become completely 
random. Some permanent magnetism remains. If the current is then reversed in 
direction, enough domains can be turned around so B = 0 (point d). As the 
reverse current is increased further, the iron approaches saturation in the opposite 
direction (point e). Finally, if the current is again reduced to zero and then 
increased in the original direction, the total field follows the path efgb, again 
approaching saturation at point b.

Notice that the field did not pass through the origin (point a) in this cycle. The 
fact that the curves do not retrace themselves on the same path is called hysteresis. 
The curve bcdefgb is called a hysteresis loop. In such a cycle, much energy is 
transformed to thermal energy (friction) due to realigning of the domains. It can 
be shown that the enerev dissioated in this wav is Drooortional to the area of the
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At points c and f, the iron core is magnetized even though there is no current 
in the coils. These points correspond to a permanent magnet. For a permanent 
magnet, it is desired that ac and af be as large as possible. Materials for which this 
is true are said to have high retentivity.

Materials with a broad hysteresis curve as in Fig. 28-29 are said to be magnetically 
“hard” and make good permanent magnets. On the other hand, a hysteresis curve 
such as that in Fig. 28-30 occurs for “soft” iron, which is preferred for electromagnets 
and transformers (Section 29-6) since the field can be more readily switched off, and 
the field can be reversed with less loss of energy.

A ferromagnetic material can be demagnetized—that is, made unmagnetized. 
This can be done by reversing the magnetizing current repeatedly while decreasing 
its magnitude. This results in the curve of Fig. 28-31. The heads of a tape recorder 
are demagnetized in this way. The alternating magnetic field acting at the heads 
due to a handheld demagnetizer is strong when the demagnetizer is placed near 
the heads and decreases as it is moved slowly away. Video and audio tapes them­
selves can be erased and ruined by a magnetic field, as can computer hard disks, 
other magnetic storage devices, and the magnetic stripes on credit cards.

28—10 Paramagnetism and Diamagnetism
All materials are magnetic to at least a tiny extent. Nonferromagnetic materials fall 
into two principal classes: paramagnetic, in which the magnetic permeability /jl is 
very slightly greater than /jl0 ; and diamagnetic, in which /jl is very slightly less than 
Ijl0 . The ratio of /jl to /jl0 for any material is called the relative permeability Km:

MKm = — •
Mo

Another useful parameter is the magnetic susceptibility Xm defined as 
Xm = Km -  1.

Paramagnetic substances have Km > 1 and Xm > 0, whereas diamagnetic 
substances have Km < 1 and Xm < 0. See Table 28-1, and note how small the 
effect is.

TABLE 28-1 Paramagnetism and Diamagnetism: Magnetic Susceptibilities

Paramagnetic substance Diamagnetic substance

Aluminum 2.3 X  IO-5 Copper -9 .8  X 10-6
Calcium 1.9 X  1(T5 Diamond -2 .2  X  1(T5
Magnesium 1.2 X  10“5 Gold -3 .6  X  10“5
Oxygen (STP) 2.1 X  10“6 Lead -1 .7  X 10“5
Platinum 2.9 X  1(T4 Nitrogen (STP) -5 .0  X  10“9
Tungsten 6.8 X  IO-5 Silicon -4 .2  X 10“6

The difference between paramagnetic and diamagnetic materials can be under­
stood theoretically at the molecular level on the basis of whether or not the molecules 
have a permanent magnetic dipole moment. One type of paramagnetism occurs in 
materials whose molecules (or ions) have a permanent magnetic dipole moment.* In 
the absence of an external field, the molecules are randomly oriented and no 
magnetic effects are observed. However, when an external magnetic field is applied, 
say, by putting the material in a solenoid, the applied field exerts a torque on the 
magnetic dipoles (Section 27-5), tending to align them parallel to the field. The total 
magnetic field (external plus that due to aligned magnetic dipoles) will be slightly 
greater than B0. The thermal motion of the molecules reduces the alignment, however.

B

FIGURE 28-30 Hysteresis curve 
for soft iron.

FIGURE 28-31 Successive 
hysteresis loops during 
demagnetization.

B



A  useful quantity is the magnetization vector, M, defined as the magnetic dipole 
moment per unit volume,

where [X is the magnetic dipole moment of the sample and V  its volume. It is 
found experimentally that M  is directly proportional to the external magnetic 
field (tending to align the dipoles) and inversely proportional to the kelvin 
temperature T  (tending to randomize dipole directions). This is called Curie’s 
law, after Pierre Curie (1859-1906), who first noted it:

M  = C ^<T
where C is a constant. If the ratio B /T  is very large (B  very large or T  very small) 
Curie’s law is no longer accurate; as B  is increased (or T  decreased), the magnetization 
approaches some maximum value, Mmax. This makes sense, of course, since Mmax 
corresponds to complete alignment of all the permanent magnetic dipoles. 
However, even for very large magnetic fields, ~  2.0 T, deviations from Curie’s law 
are normally noted only at very low temperatures, on the order of a few kelvins.

Ferromagnetic materials, as mentioned in Section 28-7 , are no longer ferro­
magnetic above a characteristic temperature called the Curie temperature (1043 K 
for iron). Above this Curie temperature, they generally are paramagnetic.

Diamagnetic materials (for which fjbm  is slightly less than jjl0)  are made up of 
molecules that have no permanent magnetic dipole moment. When an external 
magnetic field is applied, magnetic dipoles are induced, but the induced magnetic 
dipole moment is in the direction opposite to that of the field. Hence the total field 
will be slightly less than the external field. The effect of the external field— in the 
crude model of electrons orbiting nuclei— is to increase the “orbital” speed of 
electrons revolving in one direction, and to decrease the speed of electrons 
revolving in the other direction; the net result is a net dipole moment opposing the 
external field. Diamagnetism is present in all materials, but is weaker even than 
paramagnetism and so is overwhelmed by paramagnetic and ferromagnetic effects 
in materials that display these other forms of magnetism.

Summary
The magnetic field B at a distance r from a long straight wire is 
directly proportional to the current I  in the wire and inversely 
proportional to r:

B = ^  2-77 r (28-1)

The magnetic field lines are circles centered at the wire.
The force that one long current-carrying wire exerts on a 

second parallel current-carrying wire lm away serves as the 
definition of the ampere unit, and ultimately of the coulomb as 
well.

Ampere’s law states that the line integral of the magnetic 
field B around any closed loop is equal to /jl0  times the total net 
current /enci enclosed by the loop:

B * di — (Aq / encl • (28-3)

The magnetic field inside a long tightly wound solenoid is 
B = no nl (28-4)

where n is the number of coils oer unit leneth and I  is the

The Biot-Savart law is useful for determining the magnetic 
field due to a known arrangement of currents. It states 
that

fJLol di X rdB =
477

(28-5)

where dB is the contribution to the total field at some point P due 
to a current I along an infinitesimal length di of its path, and r is 
the unit vector along the direction of the displacement vector r 
from di to P. The total field B will be the integral over all dB.

Iron and a few other materials can be made into strong 
permanent magnets. They are said to be ferromagnetic. Ferro­
magnetic materials are made up of tiny domains—each a tiny 
magnet—which are preferentially aligned in a permanent 
magnet, but randomly aligned in a nonmagnetized sample.

[*When a ferromagnetic material is placed in a magnetic 
field Bq due to a current, say inside a solenoid or toroid, the mate­
rial becomes magnetized. When the current is turned off, 
however, the material remains magnetized, and when the current 
is increased in the opposite direction (and then again reversed), a 
graph of the total field B versus B0 is a hysteresis loop, and the 
fact that the curves Hn nnt retrace themselves is called hvsteresis/l



Questions
1. The magnetic field due to current in wires in your hom e can 

affect a compass. Discuss the problem in terms of currents, 
depending on whether they are ac or dc, and their distance 
away.

2. Compare and contrast the magnetic field due to a long 
straight current and the electric field due to a long straight 
line of electric charge at rest (Section 21 -7 ).

3. Two insulated long wires carrying equal currents I  cross at 
right angles to each other. Describe the magnetic force one 
exerts on the other.

4. A  horizontal wire carries a large current. A  second wire 
carrying a current in the same direction is suspended below  
it. Can the current in the upper wire hold the lower wire in 
suspension against gravity? Under what conditions will the 
lower wire be in equilibrium?

5. A  horizontal current-carrying wire, free to m ove in Earth’s 
gravitational field, is suspended directly above a second, 
parallel, current-carrying wire, (a) In what direction is the 
current in the lower wire? (b) Can the upper wire be held in 
stable equilibrium due to the magnetic force of the lower 
wire? Explain.

6. (a) Write A m pere’s law for a path that surrounds both  
conductors in Fig. 28-10 . (b) Repeat, assuming the lower 
current, / 2 , is in the opposite direction (l2 = - / i ) .

7. Suppose the cylindrical conductor of Fig. 2 8 - l l a  has a 
concentric cylindrical hollow cavity inside it (so it looks like 
a pipe). What can you say about B in the cavity?

8. Explain why a field such as that shown in Fig. 28-14b  is 
consistent with A m pere’s law. Could the lines curve upward 
instead of downward?

9. What would be the effect on B  inside a long solenoid if
(a) the diameter of all the loops was doubled, or (b) the 
spacing between loops was doubled, or (c) the solenoid’s 
length was doubled along with a doubling in the total 
number of loops.

10. U se the Biot-Savart law to show that the field of the current 
loop in Fig. 28-21  is correct as shown for points off the axis.

11. D o  you think B will be the same for all points in the plane 
of the current loop of Fig. 28-21? Explain.

12. Why does twisting the lead-in wires to electrical devices 
reduce the magnetic effects o f the leads?

13. Compare the Biot-Savart law with Coulomb’s law. What are 
the similarities and differences?

14. How might you define or determine the magnetic pole 
strength (the magnetic equivalent o f a single electric 
charge) for (a) a bar magnet, (b) a current loop?

15. How might you measure the magnetic dipole mom ent of the 
Earth?

Problems__________________
28-1 and 28-2 Straight Wires, Magnetic Field, and Force

1. (I) Jumper cables used to start a stalled vehicle often 
carry a 65-A current. H ow  strong is the magnetic field 
.15 cm frnm one. cable? Corrmare to the Earth’s magnetic

16. A  type of magnetic switch similar to a solenoid is a relay 
(Fig. 28-32). A  relay is an electromagnet (the iron rod inside 
the coil does not move) which, when activated, attracts a piece 
of iron on a pivot. Design a relay to close an electrical switch. 
A  relay is used when you need to switch on a circuit carrying 
a very large current but you do not want that large current 
flowing through the main switch. For example, the starter 
switch of a car is connected to a relay so that the large current 
needed for the starter doesn’t pass to the dashboard switch.

FIGURE 28-32
Question 16.

17. A  heavy magnet attracts, from rest, a heavy block of iron. 
Before striking the magnet the block has acquired consider­
able kinetic energy, (a) What is the source of this kinetic 
energy? (b) When the block strikes the magnet, som e of the 
latter’s domains may be jarred into randomness; describe 
the energy transformations.

18. Will a magnet attract any metallic object, such as those 
made of aluminum, or only those made o f iron? (Try it and 
see.) Why is this so?

19. A n unmagnetized nail will not attract an unmagnetized 
paper clip. However, if one end of the nail is in contact with 
a magnet, the other end will attract a paper clip. Explain.

20. Can an iron rod attract a magnet? Can a magnet attract an 
iron rod? What must you consider to answer these questions?

21. How do you suppose the first magnets found in Magnesia 
were formed?

22. Why will either pole of a magnet attract an unmagnetized 
piece of iron?

23. Suppose you have three iron rods, two of which are magne­
tized but the third is not. H ow would you determine which 
two are the magnets without using any additional objects?

24. Two iron bars attract each other no matter which ends are 
placed close together. A re both magnets? Explain.

*25. Describe the magnetization curve for (a) a paramagnetic 
substance and (b) a diamagnetic substance, and compare to 
that for a ferromagnetic substance (Fig. 28-29).

*26. Can all materials be considered (a) diamagnetic, (b) para­
magnetic, (c) ferromagnetic? Explain.

2. (I) If an electric wire is allowed to produce a magnetic field 
no larger than that of the Earth (0.50 X 10_4T) at a 
Hi s ta n c e  o f  15 cm  fro m  th e  w ir e , w h a t  is  th e  m a x im u m



3. (I) D eterm ine the magnitude and direction of the force 
between two parallel wires 25 m long and 4.0 cm apart, each 
carrying 35 A  in the same direction.

4. (I) A  vertical straight wire carrying an upward 28-A  current 
exerts an attractive force per unit length of 7.8 X 10- 4 N /m  
on a second parallel wire 7.0 cm away. What current (magni­
tude and direction) flows in the second wire?

5. (I) In Fig. 28-33 , a long straight wire carries current I  out of 
the page toward the viewer. Indicate, with appropriate 
arrows, the direction of B at each of the points C, D, 
and E in the plane of
the page.

O
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FIGURE 28-33
Problem 5.

13. (II) Two long straight wires each carry a current I  out of 
the page toward the viewer, Fig. 28-35 . Indicate, with appro­
priate arrows, the direction of B at each
of the points 1 to 6 in the plane of the /  0  * ^
page. State if the field is zero at any of
the points. a ;

* 2 # 5

■ 3

FIGURE 28-35
Problem 13. 1 ©  # 6

14. (II) A  long pair of insulated wires serves to conduct 28.0 A  
of dc current to and from an instrument. If the wires are 
of negligible diameter but are 2.8 mm apart, what is 
the magnetic field 10.0 cm from their midpoint, in their 
plane (Fig. 28-36)?  Compare to the magnetic field of 
the Earth.

6. (II) A n experiment on the Earth’s magnetic field is being 
carried out 1.00 m from an electric cable. What is the 
maximum allowable current in the cable if the experiment is 
to be accurate to ±  2.0%?

7. (II) Two long thin parallel wires 13.0 cm apart carry 35-A  
currents in the same direction. D eterm ine the magnetic 
field vector at a point
10.0 cm from one wire 
and 6.0 cm from the 
other (Fig. 28-34).

%

FIGURE 28-34 ^ 1
Problem 7.

8. (II) A  horizontal compass is placed 18 cm due south from a 
straight vertical wire carrying a 43-A  current downward. In 
what direction does the compass needle point at this 
location? A ssum e the horizontal component of the Earth’s 
field at this point is 0.45 X 10_4T and the magnetic 
declination is 0°.

9. (II) A  long horizontal wire carries 24.0 A  of current due 
north. What is the net magnetic field 20.0 cm due west of the 
wire if the Earth’s field there points downward, 44° below  
the horizontal, and has magnitude 5.0 X 10-5 T?

10. (II) A  straight stream of protons passes a given point in 
space at a rate of 2.5 X 109 protons/s. What magnetic field 
do they produce 2.0 m from the beam?

11. (II) Determ ine the magnetic field midway between two long 
straight wires 2.0 cm apart in terms of the current I  in one 
when the other carries 25 A . A ssum e these currents are 
{a) in the same direction, and (b) in opposite directions.

12. (II) Two straight parallel wires are separated by 6.0 cm. 
There is a 2.0-A  current flowing in the first wire. If the 
magnetic field strength is found to be zero between the two 
w ire s  a t a d is ta n c e  o f  2.7. r.m f rn m  th e  f ir s t  w ir e , w h a t  is  th e

II
] 0.0 cm

2.8 mm

FIGURE 28-36 Problems 14 and 15.

15. (II) A  third wire is placed in the plane of the two wires 
shown in Fig. 28 -36  parallel and just to the right. If it carries
25.0 A  upward, what force per meter of length does it exert 
on each of the other two wires? Assum e it is 2.8 mm from  
the nearest wire, center to center.

16. (II) A  power line carries a current of 95 A  west along the 
tops of 8.5-m-high poles, (a) What is the magnitude and 
direction of the magnetic field produced by this wire at the 
ground directly below? H ow does this compare with the 
Earth’s field of about \  G? (b) Where would the line’s field  
cancel the Earth’s?

17. (II) A  compass needle points 28° E  of N outdoors. 
However, when it is placed 12.0 cm to the east of a vertical 
wire inside a building, it points 55° E of N. What is the 
magnitude and direction of the current in the wire? The 
Earth’s field there is 0.50 X 10-4 T and is horizontal.

18. (II) A  rectangular loop of wire is placed next to a straight 
wire, as shown in Fig. 28-37 . There is a current of 3.5 A  in 
both wires. Determ ine  ̂ ^
the magnitude and ——*-
direction of the net
force on the loop. 3-5 A

5.0 cm 

FIGURE 28—37 1



19. (II) Let two long parallel wires, a distance d  apart, carry 
equal currents I  in the same direction. One wire is at x  =  0, 
the other at x  = d, Fig. 28-38 . D eterm ine B along the 
x  axis between the wires as a function of x.

FIGURE 28-38
Problems 19 and 20.

20. (II) Repeat Problem 19 if the wire at x  =  0 carries twice 
the current (21) as the other wire, and in the opposite 
direction.

21. (II) Two long wires are oriented so that they are perpendic­
ular to each other. A t their closest, they are 20.0 cm apart 
(Fig. 28-39). What is the magnitude of the magnetic field at 
a point midway between them if the top one carries a 
current of 20.0 A  and
the bottom one carries
12.0 A? ® / t  = 2Q,OA

FIGURE 28-39
Problem 21.

10,(1 cm 

« = ?  $

10.0 cm 
t

Rollom wire

22. (II) Two long parallel wires 8.20 cm apart carry 16.5-A  
currents in the same direction. Determ ine the magnetic field 
vector at a point P, 12.0 cm from one wire and 13.0 cm 
from the other. See Fig. 28-40.
[Hint. U se the law of cosines.]

IJ
A

12.0 cm 13.0 cm

8.20 cm ^
FIGURE 28-40
Problem 22.

23. (I ll)  A  very long flat conducting strip of width d  and negli­
gible thickness lies in a horizontal plane and carries a 
uniform current I  across its cross section, (a) Show that at 
points a distance y  directly above its center, the field is 
given by

B = Po1
ird

assuming the strip is infinitely long. [Hint: D ivide the strip 
into many thin “wires,” and sum (integrate) over these.] 
(K\  W h a t  v a lu e  d o es 7? a n n rn a c h  fn r  v  >̂> d l  D o e s  th is

24. (I ll)  A  triangular loop of side length a carries a current /  
(Fig. 28 -41). If this loop is placed a distance d  away from a 
very long straight wire 
carrying a current
determine the force a

on the loop.

FIGURE 28-41
Problem 24.

28-4 and 28-5 Ampere's Law, Solenoids and Toroids
25. (I) A  40.0-cm-long solenoid 1.35 cm in diameter is to produce 

a field of 0.385 mT at its center. How much current should 
the solenoid carry if it has 765 turns of wire?

26. (I) A  32-cm-long solenoid, 1.8 cm in diameter, is to produce 
a 0.30-T magnetic field at its center. If the maximum current 
is 4.5 A , how many turns must the solenoid have?

27. (I) A  2.5-mm-diameter copper wire carries a 33-A current 
(uniform across its cross section). Determine the magnetic 
field: (a) at the surface of the wire; (b) inside the wire, 0.50 mm 
below the surface; (c) outside the wire 2.5 mm from the surface.

28. (II) A  toroid (Fig. 28-17) has a 50.0-cm inner diameter and a 
54.0-cm outer diameter. It carries a 25.0 A  current in its 
687 coils. Determine the range of values for B  inside the toroid.

29. (II) A  20.0-m-long copper wire, 2.00 mm in diameter including 
insulation, is tightly wrapped in a single layer with adjacent 
coils touching, to form a solenoid of diameter 2.50 cm (outer 
edge). What is (a) the length of the solenoid and (b) the field 
at the center when the current in the wire is 16.7 A?

30. (II) (a) U se Eq. 28 -1 , and the vector nature of B, to show  
that the magnetic field lines around two long parallel wires 
carrying equal currents I\ =  I2 are as shown in Fig. 28-10.
(b) Draw the equipotential lines around two stationary posi­
tive electric charges, (c) A re these two diagrams similar? 
Identical? Why or why not?
(II) A  coaxial cable consists of a solid inner conductor of 
radius R lt  surrounded by a concentric cylindrical tube of 
inner radius R 2 and outer radius R 3 (Fig. 28-42). The conduc­
tors carry equal and opposite currents / 0 distributed uniformly 
across their cross sections. D eterm ine the magnetic field at a 
distance R  from the axis for:
(fl) R  < R i;  (b) R± < R  < R2;
(c) R2 < R <  R 3; (d) R  > R 3.
(e) Let /„ = 1.50 A , =  1.00 cm, f  \  0

31.

R 2 =  2.00 cm, and R 3 = 2.50 cm. 
Graph B  from R = 0 to R  = 3.00 cm.

FIGURE 28-42
Problems 31 and 32.

in

32. (I ll)  Suppose the current in the coaxial cable of Problem 31, 
Fig. 28-42 , is not uniformly distributed, but instead the 
current density j  varies linearly with distance from the 
center: ji = C \R  for the inner conductor and j2 = C2R  
for the outer conductor. Each conductor still carries the 
same total current / 0, in opposite directions. Determ ine the
m a g n e t ic  f ie ld  in  te rm s  o f  Tn in  th e  sa m e  fo u r  re g io n s  n f



28-6 Biot-Savart Law
33. (I) The Earth’s magnetic field is essentially that of a 

magnetic dipole. If the field near the North Pole is about
1.0 X 10_4T, what will it be (approximately) 13,000 km  
above the surface at the North Pole?

34. (II) A  wire, in a plane, has the shape shown in Fig. 28-43 , 
two arcs o f a circle connected by radial lengths of wire. 
D eterm ine B at point C in terms j 
of R i , R 2 , 6, and the current I.

FIGURE 28-43
Problem 34.

35. (II) A  circular conducting ring of radius R  is connected  
to two exterior straight wires at two ends of a diameter 
(Fig. 28-44). The current I  splits 
into unequal portions (as 0 .65 /
shown) while passing through 
the ring. What is B at the center 
of the ring?

FIGURE 28-44 0 .35 /
Problem 35.

36. (II) A  small loop of wire of radius 1.8 cm is placed at the 
center of a wire loop with radius 25.0 cm. The planes of the 
loops are perpendicular to each other, and a 7.0-A  current 
flows in each. Estimate the torque the large loop exerts on  
the smaller one. What simplifying assumption did you  
make?

37. (II) A  wire is formed into the shape of two half circles 
connected by equal-length straight sections as shown in 
Fig. 28-45. A  current I  flows in the circuit clockwise as 
shown. D eterm ine (a) the magnitude and direction of the 
magnetic field at the center, C,
and (b ) the magnetic dipole 
mom ent of the circuit. /

FIGURE 28-45
Problem 37.

38. (II) A  single point charge q is moving with velocity v. U se  
the Biot-Savart law to show that the magnetic field B it 
produces at a point P, whose position vector relative to the 
charge is r (Fig. 28 -46), is given by

ix0 qv X r
B =

4tt

(Assum e v  is much less than the 
speed of light.)

39. (II) A  nonconducting circular disk, o f radius R, carries a 
uniformly distributed electric charge Q. The plate is set 
spinning with angular velocity o) about an axis perpendicular 
to the plate through its center (Fig. 28-47). Determ ine
(a) its magnetic dipole mom ent and (b) the magnetic 
field at points on its axis a 
distance x  from its center; (c) does 
Eq. 28 -7b  apply in this case for 
x »  R I

FIGURE 28-47
Problem 39.

40. (II) Consider a straight section of wire of length d, as in 
Fig. 28-48 , which carries a current I. (a) Show that the 
magnetic field at a point P a 
distance R  from the wire along 
its perpendicular bisector is

Mo I  dB  =
2ttR  [d2 +  4R 2)\

(b) Show that this is consistent 
with Example 28-11  for an infi­
nite wire.

FIGURE 28-48
Problem 40.

41. (II) A  segment of wire of length d  carries a current I  as 
shown in Fig. 28-49 . (a) Show that for points along the posi­
tive x  axis (the axis of the wire), 
such as point Q, the magnetic 
field B is zero. (b) Determ ine a 
formula for the field at points 
along the y  axis, such as point P.

FIGURE 1 8 - 4 6

FIGURE 28-49
Problem 41.

42. (Ill) U se the result of Problem 41 to find the magnetic field at 
point P in Fig. 28-50 due to the current in the square loop.

T r — '

FIGURE 28-50
Problem 42.

43. (I ll)  A  wire is bent into the shape of a regular polygon with 
n sides whose vertices are a distance R  from the center. 
(See Fig. 28-51 , which shows the special case o f n  =  6.) 
If the wire carries a current 70 ,
{a) determine the magnetic field 
at the center; (b) if n  is allowed 
to becom e very large (n —> oo), 
show that the formula in part (a) 
reduces to that for a circular loop  
(Example 28-12).

FIGURE 28-51
Problem 43.

44. (I ll)  Start with the result of Example 28-12  for the 
magnetic field along the axis of a single loop to obtain 
the field inside a verv Innp solenoid with n turns ner meter



45. (I ll)  A  single rectangular loop of wire, with sides a and b, 
carries a current / . A n xy  coordinate system has its origin at 
the lower left corner of the
rectangle with the x  axis 
parallel to side b (Fig. 28-52) 
and the y  axis parallel to side a.
Determine the magnetic field B  
at all points (x, y) within the 
loop.

FIGURE 28-52
Problem 45.

46. (I ll)  A  square loop of wire, o f side d, carries a current I.
(a) Determine the magnetic field B  at points on a line perpen­
dicular to the plane of the square which passes through the 
center of the square (Fig. 28-53). Express B  as a function of x, 
the distance along the line from 
the center of the square, (b) For 
x  »  d, does the square appear 
to be a magnetic dipole? If so, 
what is its dipole moment?

'P

FIGURE 28-53
Problem 46.

*28-9 Magnetic Materials; Hysteresis
*48. (I) The following are som e values of B  and B0 for a piece 

of annealed iron as it is being magnetized:

£ 0(io-
B(  T)

"4 T) 0.0
0.0

0.13
0.0042

0.25
0.010

0.50
0.028

0.63
0.043

0.78
0.095

1.0 1.3 

0.45 0.67

^ ( l o ­
s t  T)

-4 t ) 1.9
1.01

2.5

1.18

6.3
1.44

13.0

1.58

130
1.72

1300

2.26

10,000

3.15

Determ ine the magnetic permeability (jl for each value and 
plot a graph of {jl versus B0 .

* 49. (I) A  large thin toroid has 285 loops of wire per meter, and 
a 3.0-A  current flows through the wire. If the relative 
permeability o f the iron is h /h q  = 2200, what is the total 
field B  inside the toroid?

*50. (II) A n iron-core solenoid is 38 cm long and 1.8 cm in 
diameter, and has 640 turns of wire. The magnetic field 
inside the solenoid is 2.2 T when 48 A  flows in the wire. 
What is the permeability /jl at this high field strength?

28-7 Magnetic Materials—Ferromagnetism
47. (II) A n iron atom has a magnetic dipole moment of about

1.8 X 10-23 A -m 2. (a) D eterm ine the dipole mom ent of an 
iron bar 9.0 cm long, 1.2 cm wide, and 1.0 cm thick, if it is 
100 percent saturated. (b) What torque would be exerted on  
this bar when placed in a 0.80-T field acting at right angles to 
the bar?

| General Problems
51. Three long parallel wires are 3.5 cm from one another. 

(Looking along them, they are at three corners of an 
equilateral triangle.) The current in each wire is 8.00 A , but 
its direction in wire M is opposite to that in wires N and P 
(Fig. 28-54). Determine the magnetic force per unit length 
on each wire due to the
other two. M

FIGURE 28-54
Problems 51,52, and 53. N 3.3 cm HP

52. In Fig. 28-54 , determine the magnitude and direction of the 
magnetic field midway between points M and N.

53. In Fig. 28 -54  the top wire is 1.00-mm-diameter copper wire 
and is suspended in air due to the two magnetic forces from  
the bottom two wires. The current is 40.0 A  in each of the 
two bottom wires. Calculate the required current flow in the 
suspended wire.

54. A n electron enters a large solenoid at a 7.0° angle to the 
axis. If the field is a uniform 3.3 X 10_2T, determine the 
ra d iu s  an d  n itr .h  f  d is ta n c e  b e tw e e n  lo o n s '! o f  th e  e le c t ro n ’s

55. Two long straight parallel wires are 15 cm apart. Wire A  
carries 2.0-A  current. Wire B ’s current is 4.0 A  in the 
same direction, (a) D eterm ine the magnetic field due to 
wire A  at the position of wire B. (b) Determ ine 
the magnetic field due to wire B at the position of 
wire A . (c) A re these two magnetic fields equal and 
opposite? Why or why not? (d) D eterm ine the force per 
unit length on wire A  due to wire B, and that on wire B due 
to wire A . A re these two forces equal and opposite? Why or 
why not?

56. A  rectangular loop of wire carries a 2.0-A  current and lies 
in a plane which also contains a very long straight wire 
carrying a 10.0-A current as shown in Fig. 28-55 . Determ ine
(a) the net force and
(b) the net torque on the 'H.Ochi| 
loop due to the straight 
wire.

I0J) A

2.0 A
2j0 A 26 cm

FIGURE 28-55



57. A  very large flat conducting sheet o f thickness t carries a 
uniform current density j throughout (Fig. 28-56). D eter­
mine the magnetic field (magnitude and direction) at a 
distance y  above the plane.
(Assum e the plane is infinitely *
long and wide.) _______ y____________

FIGURE 28-56 t
Problem 57. J

58. A  long horizontal wire carries a current of 48 A . A  second 
wire, made of 1.00-mm-diameter copper wire and parallel to 
the first, is kept in suspension magnetically 5.0 cm below  
(Fig. 28-57). (a) Determ ine the magnitude and direction of 
the current in the lower wire. (b) Is the lower wire in stable 
equilibrium? (c) Repeat parts (a) and (b) if the second  
wire is suspended 5.0 cm above 
the first due to the first’s 
magnetic field.

/  = 48 A
T

FIGURE 28-57
Problem 58.

1 =  1

5.0 tin

-L

63. Near the Earth’s poles the magnetic field is about 1 G 
( l  X 10- 4 T). Imagine a simple m odel in which the Earth’s 
field is produced by a single current loop around the 
equator. Estimate roughly the current this loop would carry.

64. A  175-g m odel airplane charged to 18.0 mC and traveling at
2.8 m /s passes within 8.6 cm of a wire, nearly parallel to its 
path, carrying a 25-A current. What acceleration (in g ’s) 
does this interaction give the airplane?

65. Suppose that an electromagnet uses a coil 2.0 m in diameter 
made from square copper wire 2.0 mm on a side; the power 
supply produces 35 V  at a maximum power output of
1.0 kW. (a) H ow  many turns are needed to run the power 
supply at maximum power? (b) What is the magnetic field  
strength at the center of the coil? (c) If you use a greater 
number of turns and this same power supply, will a greater 
magnetic field result? Explain.

66. Four long straight parallel wires located at the corners of a 
square of side d carry equal currents / 0 perpendicular to the 
page as shown in Fig. 28-59. D eterm ine the magnitude and 
direction of B at the center C of the square.

59. A  square loop of wire, of side d, carries a current I. Show  
that the magnetic field at the center of the square is 

2V 2 fjL01

ft

B  =
ird

[Hint: Determ ine B for each segment of length d.]
60. In Problem 59, if you reshaped the square wire into a circle, 

would B  increase or decrease at the center? Explain.
61. Helmholtz coils are two identical circular coils having the 

same radius R  and the same number of turns N, separated 
by a distance equal to the radius R  and carrying the same 
current I  in the same direction. (See Fig. 28-58.) They are 
used in scientific instruments to generate nearly uniform  
magnetic fields.(They can be seen in the photo, Fig. 27-18.)
(a) Determine the magnetic field B  at points x  along the line 
joining their centers. Let x  = 0 at the center of one coil, and 
x  = R  at the center of the other, (b) Show that the field 
midway between the coils is particularly uniform by

dB  d2B
showing that =  0 and — -  =  0 at the midpoint between 

dx d x2
the coils, (c) If R  =  10.0 cm, N  =  250 turns and I  =  2.0 A , 
what is the field at the v
midpoint between the 
coils, x  = R / 2? y

7

FIGURE 28-58
Problem 61. »

62. For two long parallel wires separated by a distance d, 
carrying currents I\ and / 2 as in Fig. 28-10 , show directly 
(Eq. 28-1) that Am pere’s law is valid (but do not use 
Am pere’s law) for a circular path of radius r (r < d) 
centered on I^:

X n  jo _ 1

FIGURE 28-59 -------- d -------- -
Problem 66.

67. Determ ine the magnetic field at the point P due to a very 
long wire with a square bend as shown in Fig. 28-60 . The 
point P is halfway between the two corners. [Hint: You can 
use the results o f Problems 40 and 41.1

< __^ ■r

a

p
•

c)

FIGURE 28-60
Problem 67. f

68. A  thin 12-cm-long solenoid has a total o f 420 turns of wire 
and carries a current of 2.0 A . Calculate the field inside the 
solenoid near the center.

69. A  550-turn solenoid is 15 cm long. The current into it is 
33 A . A  3.0-cm-long straight wire cuts through the center of 
the solenoid, along a diameter. This wire carries a 22-A  
current downward (and is connected by other wires that 
don’t concern us). What is the force on this wire assuming 
the solenoid’s field points due east?

70. You have 1.0 kg of copper and want to make a practical 
solenoid that produces the greatest possible magnetic 
field for a given voltage. Should you make your copper 
wire long and thin, short and fat, or something else? 
Consider other variables, such as solenoid diameter, leneth.



71. A  small solenoid (radius ra) is inside a larger solenoid  
(radius rb > ra). They are coaxial with n a and nb turns per 
unit length, respectively. The solenoids carry the same 
current, but in opposite directions. Let r be the radial 
distance from the common axis of the solenoids. If the 
magnetic field inside the inner solenoid (r <  ra) is to be in 
the opposite direction as the field between the solenoids 
(ra <  r <  rb), but have half the magnitude, determine the 
required ratio nb/ n a.

72. Find B  at the center of the 4.0-cm-radius semicircle in 
Fig. 28-61 . The straight wires extend a great distance 
outward to the left and carry a current I  =  6.0A

FIGURE 28-61
Problem 72.

73. The design of a magneto-optical atom trap requires a magnetic 
field B  that is directly proportional to position x  along an axis. 
Such a field perturbs the absorption of laser light by atoms in 
the manner needed to spatially confine atoms in the trap. Let 
us demonstrate that “anti-Helmholtz” coils will provide the 
required field B = Cx, where C is a constant. Anti- 
Helmholtz coils consist of two identical circular wire coils, each 
with radius R  and N  turns, carrying current I  in opposite direc­
tions (Fig. 28-62). The coils share a common axis (defined as 
the x  axis with x  =  0 at the midpoint (0) between the coils). 
Assume that the centers o f the coils are separated by a 
distance equal to the radius R  o f the coils, (a) Show that the 
magnetic field at position x  along the x  axis is given by

(b) For small excursions from the origin where \x\ «  R, 
show that the magnetic field is given by B  ~  Cx, where the 
constant C =  4 8 ijlqN I/2 5 ^ /5  R 2. (c) For optimal atom  
trapping, d B /d x  should be about 0.15 T /m . Assum e an atom  
trap uses anti-Helmholtz coils with R  = 4.0 cm and 
N  = 150. What current should flow through the coils? 
[Coil separation equal to coil radius, as assumed in this 
problem, is not a strict 
requirement for anti- 
Helmholtz coils.]

FIGURE 28-62
Problem 75.

74. You want to get an idea of the magnitude of magnetic fields 
produced by overhead power lines. You estimate that a 
transmission wire is about 12 m above the ground. The local 
power company tells you that the line operates at 15 kV and 
provide a maximum of 45 MW to the local area. Estimate 
the maximum magnetic field you might experience walking 
under such a power line, and compare to the Earth’s field. 
[For an ac current, values are rms, and the magnetic field 
will be changing.]

* Numerical/Computer
* 75. (II) A  circular current loop of radius 15 cm containing 250

turns carries a current of 2.0 A . Its center is at the origin 
and its axis lies along the x  axis. Calculate the magnetic 
field B  at a point x  on the x  axis for jc = — 40 cm to 
+ 40  cm in steps of 2 cm and make a graph of B  as a 
function of jc.

* 76. (I ll)  A  set o f Helmholtz coils (see Problem 61, Fig. 28-58)
have a radius R  = 10.0 cm and are separated by a distance 
R  = 10.0 cm. Each coil has 250 loops carrying a current 
I  = 2.0 A . (a) Determ ine the total magnetic field B  along 
the x  axis (the center line for the two coils) in steps of 
0.2 cm from the center of one coil (jc =  0) to the center of 
the other (jc =  R). (b) Graph B  as a function of jc. ( c )  By 
what % does B  vary from jc =  5.0 cm to jc = 6.0 cm?

Answers to Exercises

A: 2 X 10 6 T; not at this distance, and then only briefly. C: (b).



One of the great laws of physics is 
Faraday’s law of induction, which 
says that a changing magnetic flux 
produces an induced emf. This 
photo shows a bar magnet moving 
inside a coil of wire, and the 
galvanometer registers an induced 
current. This phenomenon of 
electromagnetic induction is the 
basis for many practical devices, 
including generators, alternators, 
transformers, tape recording, and 
computer memory.

T £
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and Faraday's Law
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CHAPTER-OPENING QUESTION— Guess now!
In the photograph above, the bar magnet is inserted into the coil of wire, and is left 
there for 1 minute; then it is removed from the coil. What would an observer 
watching the galvanometer see?

(a) No change; without a battery there is no current to detect.
(b) A  small current flows while the magnet is inside the coil of wire.
(c) A  current spike as the magnet enters the coil, and then nothing.
(d) A  current spike as the magnet enters the coil, and then a steady small current.
(e) A  current spike as the magnet enters the coil, then nothing, and then a 

current spike in the opposite direction as the magnet leaves the coil.

I n Chapter 27, we discussed two ways in which electricity and magnetism are 
related: (1) an electric current produces a magnetic field; and (2) a magnetic 
field exerts a force on an electric current or moving electric charge. These 
discoveries were made in 1820-1821. Scientists then began to wonder: if electric 

currents produce a magnetic field, is it possible that a magnetic field can produce an 
electric current? Ten years later the American Joseph Henry (1797-1878) and the 
Englishman Michael Faraday (1791-1867) independently found that it was possible. 
Henry actually made the discovery first. But Faraday published his results earlier and 
investigated the subiect in more detail. We now discuss this Dhenomenon and some



2 9 -1  Induced EMF
In his attempt to produce an electric current from a magnetic field, Faraday used an 
apparatus like that shown in Fig. 29-1. A  coil of wire, X, was connected to a battery. 
The current that flowed through X produced a magnetic field that was intensified 
by the ring-shaped iron core around which the wire was wrapped. Faraday hoped 
that a strong steady current in X would produce a great enough magnetic field to 
produce a current in a second coil Y wrapped on the same iron ring. This second 
circuit, Y, contained a galvanometer to detect any current but contained no battery.

Galvanometer

jf V

« °  <

FIGURE 29-1 Faraday’s experiment 
to induce an emf.

He met no success with constant currents. But the long-sought effect was finally 
observed when Faraday noticed the galvanometer in circuit Y deflect strongly at the 
moment he closed the switch in circuit X. And the galvanometer deflected strongly 
in the opposite direction when he opened the switch in X. A  constant current in X  
produced a constant magnetic field which produced no current in Y. Only when the 
current in X was starting or stopping was a current produced in Y.

Faraday concluded that although a constant magnetic field produces no current in 
a conductor, a changing magnetic field can produce an electric current. Such a current 
is called an induced current. When the magnetic field through coil Y changes, a 
current occurs in Y as if there were a source of emf in circuit Y. We therefore say that

a changing magnetic field induces an emf.
Faraday did further experiments on electromagnetic induction, as this 

phenomenon is called. For example, Fig. 29 -2  shows that if a magnet is moved 
quickly into a coil of wire, a current is induced in the wire. If the magnet is quickly 
removed, a current is induced in the opposite direction (B through the coil 
decreases). Furthermore, if the magnet is held steady and the coil of wire is moved 
toward or away from the magnet, again an emf is induced and a current flows. 
Motion or change is required to induce an emf. It doesn’t matter whether the 
magnet or the coil moves. It is their relative motion that counts.

/9 \  C A U T I O N
Changing B, not B itself, 
induces current

/ ?\  C A U T I O N
Relative motion—magnet 
or coil moving induces current

FIGURE 29-2 (a) A current is induced when a magnet is moved toward a coil, momentarily increasing the magnetic 
field through the coil, (b) The induced current is opposite when the magnet is moved away from the coil (B decreases). 
Note that the galvanometer zero is at the center of the scale and the needle deflects left or right, depending on the 
direction of the current. In (c), no current is induced if the magnet does not move relative to the coil. It is the 
relative motion that counts here: the magnet can be held steady and the coil moved, which also induces an emf.

Switch

Magnet 
moves ap 

toward coil Magnet movement 
i B  in coil



FIGURE 29-3 Determining the flux 
through a flat loop of wire. This loop 
is square, of side £ and area A = £2.

FIGURE 29-4 Magnetic flux 0 B 
is proportional to the number of 
lines of B that pass through the loop.

I EXERCISE A Return to the Chapter-Opening Question, page 758, and answer it again now. 
Try to explain why you may have answered differently the first time.

2 9 -2  Faraday's Law of Induction; 
Lenz's Law

Faraday investigated quantitatively what factors influence the magnitude of the 
emf induced. He found first of all that the more rapidly the magnetic field changes, 
the greater the induced emf. He also found that the induced emf depends on the 
area of the circuit loop. Thus we say that the emf is proportional to the rate of 
change of the magnetic flux, <E>S , passing through the circuit or loop of area A. 
Magnetic flux for a uniform magnetic field is defined in the same way we did for 
electric flux in Chapter 22, namely as

<E>« =  B \A  = B A  cos 6 =  B A. [B uniform] (2 9 -la )

Here B± is the component of the magnetic field B perpendicular to the face of the 
loop, and 0 is the angle between B and the vector A  (representing the area) 
whose direction is perpendicular to the face of the loop. These quantities are 
shown in Fig. 29-3  for a square loop of side £ whose area is A  = £2. If the area is 
of some other shape, or B is not uniform, the magnetic flux can be written1

= B -dA . (2 9 -lb )

0 = 90° 0 = 45° 0 = 0° 
<5 = 0 <$>b = BA cos45° ®b = BA 
(a) (b) (c)

FIGURE 29-5 Example 29-1.

Wire 
loop.

Area
Ai.

[®

1® , ® | 

Area
a 2

A s we saw in Chapter 27, the lines of B (like lines of E) can be drawn such that 
the number of lines per unit area is proportional to the field strength. Then the 
flux can be thought of as being proportional to the total number o f  lines 
passing through the area enclosed by the loop. This is illustrated in Fig. 29-4 , 
where the loop is viewed from the side (on edge). For 0 = 90°, no magnetic 
field lines pass through the loop and 4>5 = 0, whereas is a maximum when
0 =  0°. The unit of magnetic flux is the tesla-meter2; this is called a weber:
1 Wb = lT -m 2.

CONCEPTUAL EXAMPLE 29-1 I Determining flux. A  square loop of wire
encloses area A 1 as shown in Fig. 29-5. A  uniform magnetic field B perpendicular to 
the loop extends over the area A 2. What is the magnetic flux through the loop A {!
RESPONSE We assume that the magnetic field is zero outside the area A 2. The total 
magnetic flux through area A 1 is the flux through area A 2, which by Eq. 2 9 -la  for a 
uniform field is B A 2, plus the flux through the remaining area (= A 1 -  A 2), which 
is zero because B = 0. So the total flux is = B A 2 + 0(A 1 — A 2) = B A 2. It 
is not equal to B A X because B is not uniform over A 1.

With our definition of flux, Eqs. 29-1 , we can now write down the results of 
Faraday’s investigations: The emf induced in a circuit is equal to the rate of change 
of magnetic flux through the circuit:

FARADAY’S LAW  
OF INDUCTION

d®B
dt (29-2a)

This fundamental result is known as Faraday’s law of induction, and is one of the 
basic laws of electromagnetism.

trrhe integral is taken over an open surface—that is, one bounded by a closed curve such as a circle or



I f  the circuit contains N  loops that are closely wrapped so the same flux passes 
through each, the emfs induced in each loop add together, so

=  [TVloops] (29-2b)
dt

EXAMPLE 29-2 A loop of wire in a magnetic field. A  square loop of 
wire of side I =  5.0 cm is in a uniform magnetic field B =  0.16 T. What 
is the magnetic flux in the loop (a) when B is perpendicular to the face 
of the loop and (b) when B is at an angle of 30° to the area A of the 
loop? (c) What is the magnitude of the average current in the loop if  it 
has a resistance of 0.012 0  and it is rotated from position (b ) to position (a) 
in 0.14 s?

APPROACH We use the definition <E>5 = B A  to calculate the magnetic flux. 
Then we use Faraday’s law of induction to find the induced emf in the coil, and 
from that the induced current (I  =  % /R ).
SOLUTION The area_ of the coil is A  =  f  =  (5 .0  X 1 0 - 2 m )2 =  2 .5  X 1 0 - 3 m 2, 
and the direction of A  is perpendicular to the face of the loop (Fig. 29-3).
(«)B  is perpendicular to the coil’s face, and thus parallel to A  (Fig. 29-3), so

0>5 = B A

= B A  cos 0° = (0.16T)(2.5 X 10-3m2) ( l)  = 4.0 X 10“4Wb.

(b) The angle between B and A  is 30°, so

= B A  cos d =  (0.16T)(2.5 X 10“3 m2) cos 30° = 3.5 X 10“4Wb.

(c) The magnitude of the induced emf is

(4.0 X 10“4 Wb) -  (3.5 X 10“4 Wb)

At 0.14 s

The current is then

£ 3.6 X 10“4V
I  =  R =  (X012n = 0030A = 30mA-

= 3.6 x  10“4V.

The minus signs in Eqs. 29-2a and b are there to remind us in which direction 
the induced emf acts. Experiments show that

a current produced by an induced emf moves in a direction so that 
the magnetic field created by that current opposes the original change 
in flux.

This is known as Lenz’s law. Be aware that we are now discussing two distinct 
magnetic fields: (1) the changing magnetic field or flux that induces the current, 
and (2) the magnetic field produced by the induced current (all currents produce a 
field). The second field opposes the change in the first.

Lenz’s law can be said another way, valid even if no current can flow (as when 
a circuit is not complete):

An induced emf is always in a direction that opposes the original change in

FARADAY’S LAW  
OF INDUCTION

/? \ C A U T I O N
Distinguish two different 
magnetic fields



Let us apply Lenz’s law to the relative motion between a magnet and a coil, 
Fig. 29-2. The changing flux through the coil induces an emf in the coil, producing 
a current. This induced current produces its own magnetic field. In  Fig. 29-2a 
the distance between the coil and the magnet decreases. The magnet’s magnetic 
field (and number of fie ld lines) through the coil increases, and therefore the 
flux increases. The magnetic field of the magnet points upward. To oppose the 
upward increase, the magnetic field inside the coil produced by the induced 
current needs to point dow nw ard. Thus, Lenz’s law tells us that the current moves 
as shown (use the right-hand rule). In  Fig. 29-2b, the flux decreases (because 
the magnet is moved away and B  decreases), so the induced current in the coil 
produces an upw ard  magnetic field through the coil that is “ trying” to maintain 

FIGURE 29-2 (repeated). ^  status qUO Thus the current in Fig. 29-2b is in the opposite direction from
Fig. 29-2a.

It  is important to note that an emf is induced whenever there is a change in 
flux through the coil, and we now consider some more possibilities.

FIGURE 29-6 A current can be 
induced by changing the area of the 
coil, even though B doesn’t change. 
Here the area is reduced by pulling 
on its sides: the flux through the 
coil is reduced as we go from (a) 
to (b). Here the brief induced 
current acts in the direction shown 
so as to try to maintain the original 
flux (O = BA) by producing its 
own magnetic field into the page. 
That is, as the area A  decreases, the 
current acts to increase B in the 
original (inward) direction.

K
(inward)

X X X
X X X
X X X

X X 
X X 
X X 
X X

X

X

X
X
X

(b)

flux
through
coil is 
decreased 
because A 
decreased

Since magnetic flux 4>5 = JB  • d A  = JB  cos 0 dA , we see that an emf can be 
induced in three ways: (1) by a changing magnetic field B; (2) by changing the 
area A  of the loop in the field; or (3) by changing the loop’s orientation 0 with 
respect to the field. Figures 29-1 and 29-2 illustrated case 1. Examples of cases 2 
and 3 are illustrated in Figs. 29-6 and 29-7, respectively.

FIGURE 29-7 A current can be induced 
by rotating a coil in a magnetic field. The 
flux through the coil changes from (a) to (b) 
because 0 (in Eq. 29-la, O = BA cos 0) 
went from 0° (cos0 = 1) to 90° (cos0 = 0).

X X x  x x  x X X
X X X X X X X x X X
X X x X X
X X X X
X X iff  x  x  x  x  1 1 X X
X X Bl X X X X jf jI x X
X X X X X X
X X X X
X X X X X X X X X
X X

XXXXX

X X

II
(inwimi)

X X X X X 
X X X X X

Flux
decreasing x

x

x  x  x  x  i
x  x  X X
x  X x  x

x  x
X X
X X

X x  x ^ ^ S  
X X  X "X X

(a) Maximum flux (b) Zero flux

FIGURE 29-8 Example 29-3: An 
induction stove.

CONCEPTUAL EXAMPLE 29-5 I Induction stove. In  an induction stove 
(Fig. 29-8), an ac current exists in a coil that is the “ burner” (a burner that never 
gets hot). Why w ill it heat a metal pan but not a glass container?

RESPONSE The ac current sets up a changing magnetic field that passes through 
the pan bottom. This changing magnetic fie ld induces a current in the pan 
bottom, and since the pan offers resistance, electric energy is transformed to 
thermal energy which heats the pot and its contents. A  glass container offers such 
high resistance that little  current is induced and little  energy is transferred
(T> — 1/2 /



*
O

B
t

Lenz's Law

Lenz’s law is used to determine the direction 
^  of the (conventional) electric current induced in 

a loop due to a change in magnetic flux inside 
the loop. To produce an induced current you need
(a) a closed conducting loop, and
(b) an external magnetic flux through the loop that is 

changing in time.
1. Determine whether the magnetic flux (4>fl = B A  cos 0) 

inside the loop is decreasing, increasing, or 
unchanged.

2. The magnetic field due to the induced current:
(a) points in the same direction as the external

field if the flux is decreasing; (b) points in the 
opposite direction from the external field if the 
flux is increasing; or (c) is zero if the flux is not 
changing.

3. Once you know the direction of the induced 
magnetic field, use the right-hand rule to find the 
direction of the induced current.

4. Always keep in mind that there are two magnetic 
fields: (1) an external field whose flux must be 
changing if it is to induce an electric current, 
and (2) a magnetic field produced by the induced 
current.

(c)
S magnetic pole

moving I'nitTi he low* 
up toward the loop

(J)
N magnetic pole 

miiving kiwiinJ loop 
in ihc plane 
t if the page

Rotating the loop by pulling 
the left side toward 

us and pushing the right 
side in: the magnetic Held 

points from  right to left

FIGURE 29-9 Example 29-4.

(a) (b)
Pulling a rinmd loop tn Shrinking a loop

Nil: right out o f u magnetic in a magnetic
field which points out field pointing

of the page into the page

CONCEPTUAL EXAMPLE 29-41 Practice with Lenz's law. In which direction is 
the current induced in the circular loop for each situation in Fig. 29-9?

RESPONSE (a) Initially, the magnetic field pointing out of the page passes through 
the loop. I f  you pull the loop out of the field, magnetic flux through the loop 
decreases; so the induced current w ill be in a direction to maintain the 
decreasing flux through the loop: the current w ill be counterclockwise to 
produce a magnetic field outward (toward the reader).
(b) The external field is into the page. The coil area gets smaller, so the flux w ill 
decrease; hence the induced current w ill be clockwise, producing its own field 
into the page to make up for the flux decrease.
(c) Magnetic field lines point into the S pole of a magnet, so as the magnet 
moves toward us and the loop, the magnet’s field points into the page and is getting 
stronger. The current in the loop w ill be induced in the counterclockwise 
direction in order to produce a field B out of the page.
(d) The field is in the plane of the loop, so no magnetic field lines pass through 
the loop and the flux through the loop is zero throughout the process; hence 
there is no change in external magnetic flux with time, and there w ill be no 
induced emf or current in the loop.
(e) In itia lly  there is no flux through the loop. When you start to rotate the loop, 
the external field through the loop begins increasing to the left. To counteract 
this change in flux, the loop w ill have current induced in a counterclockwise

A  C A U T I O N
Magnetic field created by induced 
current opposes change in external 
flux, not necessarily opposing 
the external field

m n  c  r\ o



B = 0.600 T 
X X X X X X X X X j
X X X X X X X X X i
X  X
X X X

5 = 0

X X X X X X X X X i  
h----5.00 cm---- H

FIGURE 29-10 Example 29-5. 
The square coil in a magnetic field 
B = 0.600 T is pulled abruptly to 
the right to a region where 5 = 0.

FIGURE 29-11 Exercise B.o
I increasing

(a)

O

O

■/ decreasing

I constant

(c)

I  increasing o
(d)

EXAMPLE 29-5 Pulling a coil from a magnetic field. A  100-loop square 
coil of wire, with side i  =  5.00 cm and total resistance 100 O, is positioned 
perpendicular to a uniform 0.600-T magnetic field, as shown in Fig. 29-10. It is 
quickly pulled from the field at constant speed (moving perpendicular to B) to a 
region where B drops abruptly to zero. A t t =  0, the right edge of the coil is at 
the edge of the field. It takes 0.100 s for the whole coil to reach the field-free 
region. Find (a) the rate of change in flux through the coil, and (b ) the emf and 
current induced, (c) How much energy is dissipated in the coil? (d) What was the 
average force required (Fext)?

APPROACH We start by finding how the magnetic flux, 4>5 = B A, changes 
during the time interval At =  0.100 s. Faraday’s law then gives the induced emf 
and Ohm’s law gives the current.
SOLUTION (a) The area of the coil is A  = i 2 =  (5.00 X  10“2m)2 = 2.50 X  10“3m2. 
The flux through one loop is in itia lly <E>S = B A  = (0.600 T)(2.50 X  10_3m2) =
1.50 X  10_3Wb. A fter 0.100 s, the flux is zero. The rate of change in flux is 
constant (because the coil is square), equal to

A t

0 -  (1.50 X  10-3 Wb)

0.100 s
= -1.50 X  10-2Wb/s

(b) The emf induced (Eq. 29-2) in the 100-loop coil during this 0.100-s interval is

% = —N = — (100)(-1.50 X  10-2Wb/s) = 1.50V.

The current is found by applying Ohm’s law to the 100-0 coil:

% 1.50 V
1 =  r  =  Totm  = 1-50 x  = 15.° m A.

By Lenz’s law, the current must be clockwise to produce more B into the page 
and thus oppose the decreasing flux into the page.
(c) The total energy dissipated in the coil is the product of the power (= I 2R) and 
the time:

P t I 2R t =  (1.50 X  10“2A )2(100n) (0.100 s) = 2.25 X  10_3J.

(d) We can use the result of part (c) and apply the work-energy principle: the 
energy dissipated E  is equal to the work W  needed to pull the coil out of the field 
(Chapters 7 and 8). Because W  = Fd where d =  5.00 cm, then

-  _ W_ 2.25 X  10~3J 
d  5.00 X  10_2m

0.0450 N.

Alternate Solution (d) We can also calculate the force directly using F = I i  X  B,  

Eq. 27-3, which here for constant B is F = IiB . The force the magnetic field 
exerts on the top and bottom sections of the square coil of Fig. 29-10 are in 
opposite directions and cancel each other. The magnetic force Fm exerted on 
the left vertical section of the square coil acts to the left as shown because the 
current is up (clockwise). The right side of the loop is in the region where B = 0. 
Hence the external force, to the right, needed to just overcome the magnetic 
force to the left (on N  =  100 loops) is

Fext = NUB =  (100) (0.0150 A ) (0.0500 m) (0.600 T) = 0.0450 N,

which is the same answer, confirming our use of energy conservation above.

EXERCISE B What is the direction of the induced current in the circular loop due to the
r»nrra«t in nf Ihirr OQ 110



= B lv. (29-3)

2 9 - 3  EMF Induced in a Moving Conductor
Another way to induce an emf is shown in Fig. 29-12a, and this situation helps 
illuminate the nature of the induced emf. Assume that a uniform magnetic field B is 
perpendicular to the area bounded by the U-shaped conductor and the movable rod 
resting on it. If the rod is made to move at a speed v, it travels a distance dx = v  dt in 
a time dt. Therefore, the area of the loop increases by an amount dA = i  dx = iv  dt 
in a time dt. By Faraday’s law there is an induced emf % whose magnitude is given by 

_ d$>B _  B dA _  B iv d t  
dt dt dt 

Equation 29-3 is valid as long as B, i, and v  are mutually perpendicular. (If they 
are not, we use only the components of each that are mutually perpendicular.) An emf 
induced on a conductor moving in a magnetic field is sometimes called motional emf.

We can also obtain Eq. 29-3 without using Faraday’s law. We saw in Chapter 27 
that a charged particle moving perpendicular to a magnetic field B with speed v  
experiences a force F = q \  X B (Eq. 27-5a). When the rod of Fig. 29-12a moves to 
the right with speed v, the electrons in the rod also move with this speed. Therefore, 
since v lB ,  each electron feels a force F = qvB, which acts up the page as shown 
in Fig. 29-12b. If  the rod was not in contact with the U-shaped conductor, electrons 
would collect at the upper end of the rod, leaving the lower end positive (see signs 
in Fig. 29-12b). There must thus be an induced emf. If the rod is in contact with the 
U-shaped conductor (Fig. 29-12a), the electrons w ill flow into the U. There w ill 
then be a clockwise (conventional) current in the loop. To calculate the emf, we 
determine the work W  needed to move a charge q from one end of the rod to the 
other against this potential difference: W  =  force X distance = (q v B )( i). The emf 
equals the work done per unit charge, so % = W fq  = q vB l/q  = B iv, the same 
result as from Faraday’s law above, Eq. 29-3.

I EXERCISE C In what direction will the electrons flow in Fig. 29-12 if the rod moves to the 
| left, decreasing the area of the current loop?

ESTIMATE 1 Does a moving airplane develop a large emf?
An airplane travels 1000 km /h in a region where the Earth’s magnetic field is 
about 5 X 10_5T and is nearly vertical (Fig. 29-13). What is the potential 
difference induced between the wing tips that are 70 m apart?

APPROACH We consider the wings to be a 70-m-long conductor moving through 
the Earth’s magnetic field. We use Eq. 29-3 to get the emf.
SOLUTION Since v =  1000 km /h = 280 m/s, and v _L B, we have 

% =  B lv  =  (5 x  10“5T)(70m )(280m/s) « IV .
NOTE Not much to worry about.

EXAMPLE 29-7 Electromagnetic blood-flow measurement. The rate of 
blood flow in our body’s vessels can be measured using the apparatus shown in 
Fig. 29-14, since blood contains charged ions. Suppose that the blood vessel is
2.0 mm in diameter, the magnetic field is 0.080 T, and the measured emf is
0.10 mV. What is the flow velocity v  of the blood?
APPROACH The magnetic field B points horizontally from left to right (N pole
toward S pole). The induced emf acts over the width i  = 2.0 mm of the blood
vessel, perpendicular to B and v (Fig. 29-14), just as in Fig. 29-12. We can then
use Eq. 29-3 to get v. (v in Fig. 29-14 corresponds to v in Fig. 29-12.)
SOLUTION We solve for v  in Eq. 29-3:

% (1.0 X 10“4V)
v  = —  = ------------ t--------------— r = 0.63 m/s.

B i (0.080 T)(2.0 X 10“3m)
NOTE In actual practice, an alternating current is used to produce an alternating
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FIGURE 29 -12 (a) A conducting
rod is moved to the right on a 
U-shaped conductor in a uniform 
magnetic field B that points out of 
the page. The induced current is 
clockwise, (b) Upward force on an 
electron in the metal rod (moving to 
the right) due to B pointing out of 
the page.

FIGURE 29-13 Example 29-6.
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Blood-flow measurement

FIGURE 29-14 Measurement of 
blood velocity from the induced emf. 
Example 29-7.
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FIGURE 29-12 (repeated)
(a) A conducting rod is moved to the 
right on a U-shaped conductor in a 
uniform magnetic field B that points 
out of the page. The induced current 
is clockwise, (b) Upward force on an 
electron in the metal rod (moving to 
the right) due to B pointing out of 
the page.

EXAMPLE 29-8 Force on the rod. To make the rod of Fig. 29-12a move to 
the right at constant speed v, you need to apply an external force on the rod to 
the right, (a) Explain and determine the magnitude of the required force. (b ) What 
external power is needed to move the rod? (Do not confuse this external force 
on the rod with the upward force on the electrons shown in Fig. 29-12b.)

APPROACH When the rod moves to the right, electrons flow upward in the rod 
according to the right-hand rule. So the conventional current is downward in 
the rod. We can see this also from  Lenz’s law: the outward magnetic flux 
through the loop is increasing, so the induced current must oppose the increase. 
Thus the current is clockwise so as to produce a magnetic fie ld  into the page 
(right-hand rule). The magnetic force on the moving rod is F = I i  X B fo r a 
constant B (Eq. 27-3). The right-hand rule tells us this magnetic force is 
to the le ft, and is thus a “ drag force” opposing our e ffort to move the rod to 
the right.
SOLUTION (a) The magnitude of the external force, to the right, needs to balance 
the magnetic force F  = I  IB, to the left. The current I  =  %/R =  Blv/R  (see 
Eq. 29-3), and the resistance R is that of the whole circuit: the rod and the 
U-shaped conductor. The force F  required to move the rod is thus

'  - - ( f ) » -  ¥ *
I f  B, I, and R  are constant, then a constant speed v  is produced by a 
constant external force. (Constant R  implies that the parallel rails have negligible 
resistance.)
(b) The external power needed to move the rod for constant R is

Pext = FV =
B2£2v2

The power dissipated in the resistance is P  =  I 2R. W ith I  

f l ,  .  P R  ,

=  B tv /R ,

so the power input equals the power dissipated in the resistance at any moment.

2 9 —4  Electric Generators
We discussed alternating currents (ac) briefly in Section 25-7. Now we examine 
how ac is generated: by an electric generator or dynamo, one of the most 
im portant practical results of Faraday’s great discovery. A  generator transforms 
mechanical energy into electric energy, just the opposite o f what a motor 
does. A  sim plified diagram of an ac generator is shown in Fig. 29-15. A  
generator consists of many loops o f wire (only one is shown) wound on an 
armature that can rotate in a magnetic field. The axle is turned by some 
mechanical means (falling water, steam turbine, car motor belt), and an emf 
is induced in the rotating coil. An electric current is thus the output o f a 
generator. Suppose in Fig. 29-15 that the armature is rotating clockwise; 
then F = qy  X B applied to charged particles in the wire (or Lenz’s law) tells 
us that the (conventional) current in the wire labeled b on the armature is 
outward, toward us; therefore the current is outward from  brush b. (Each brush 
is fixed and presses against a continuous slip ring that rotates w ith the armature.) 
A fte r one-half revolution, wire b w ill be where wire a is now in the drawing, 
and the current then at brush b w ill be inward. Thus the current oroduced is

FIGURE 29-15 An ac generator.



Let us assume the loop is being made to rotate in a uniform magnetic field B 
with constant angular velocity co. From Faraday’s law (Eq. 29-2a), the induced 
emf is

= [BA  cos 0]
dt d t )  d t 1 J

where A  is the area of the loop and 0 is the angle between B and A. Since 
co =  dd /d t, then 0 = 0O + cot. We arbitrarily take 0O = 0, so

% = - B A  —  (cos cot) 
dt

I f  the rotating coil contains N  loops,

% = NBAco sin cot 
= %(\ sin cot.

BAco sin cot.

(29-4)

Thus the output emf is sinusoidal (Fig. 29-16) with amplitude % = NBAco. 
Such a rotating coil in a magnetic field is the basic operating principle of an 
ac generator.

The frequency /  ( = co/2 tt) is 60 Hz for general use in the United States and 
Canada, whereas 50 Hz is used in many countries. Most of the power generated in 
the United States is done at steam plants, where the burning of fossil fuels (coal, 
oil, natural gas) boils water to produce high-pressure steam that turns a turbine 
connected to the generator axle. Falling water from the top of a dam (hydroelectric) 
is also common (Fig. 29-17). A t nuclear power plants, the nuclear energy released 
is used to produce steam to turn turbines. Indeed, a heat engine (Chapter 20) 
connected to a generator is the principal means of generating electric power. The 
frequency of 60 Hz or 50 Hz is maintained very precisely by power companies, and 
in doing Problems, we w ill assume it is at least as precise as other numbers given.

I An ac generator. The armature of a 60-Hz ac generator
rotates in a 0.15-T magnetic field. I f  the area of the coil is 2.0 X 10-2m2, how 
many loops must the coil contain if the peak output is to be % = 170 V? 
APPROACH From Eq. 29-4 we see that the maximum emf is % = NBAco. 
SOLUTION We solve Eq. 29-4 for N  with w = 2 irf =  (6.28)(60 s_1) = 377 s-1:

170 V
N  =

BAco (0.15 T)(2.0 X 10-2 m2)(377 s"
= 150 turns.

FIGURE 29-16 An ac generator 
produces an alternating current. The 
output emf g = % sin cot, where 
%o = NABco (Eq. 29-4).
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Power plants
FIGURE 29-17 Water-driven 
generators at the base of Bonneville 
Dam, Oregon.

A dc generator is much like an ac generator, except the slip rings are replaced 
by split-ring commutators, Fig. 29-18a, just as in a dc motor (Section 27-6). 
H ie output of such a generator is as shown and can be smoothed out by placing 
a capacitor in parallel with the output (Section 26-5). More common is the use 
of many armature windings, as in Fig. 29-18b, which produces a smoother 
output.

FIGURE 29-18 (a) A dc generator 
with one set of commutators, and 
(b) a dc generator with many sets of 
commutators and windings.

DC generator



FIGURE 29-19 (a) Simplified schematic diagram of an alternator. The input current to the rotor from the battery is 
connected through continuous slip rings. Sometimes the rotor electromagnet is replaced by a permanent magnet.
(b) Actual shape of an alternator. The rotor is made to turn by a belt from the engine. The current in the wire coil of 
the rotor produces a magnetic field inside it on its axis that points horizontally from left to right, thus making north 
and south poles of the plates attached at either end. These end plates are made with triangular fingers that are bent 
over the coil—hence there are alternating N and S poles quite close to one another, with magnetic field lines 
between them as shown by the blue lines. As the rotor turns, these field lines pass through the fixed stator coils 
(shown on the right for clarity, but in operation the rotor rotates within the stator), inducing a current in them, which 
is the output.

Stator coil (emf induced in)

(Rotating 
electromagnet)

Current to 
produce 
B field

Stator coil (emf induced in)

(a)

fb)

© P H Y S I C S  A P P L I E D  Automobiles used to use dc generators. Today they mainly use alternators,
Alternators which avoid the problems of wear and electrical arcing (sparks) across the 

split-ring commutators of dc generators. Alternators differ from generators in that 
an electromagnet, called the rotor, is fed by current from the battery and is made 
to rotate by a belt from the engine. The magnetic field of the turning rotor passes 
through a surrounding set of stationary coils called the stator (Fig. 29-19), 
inducing an alternating current in the stator coils, which is the output. This ac 
output is changed to dc for charging the battery by the use of semiconductor 
diodes, which allow current flow in one direction only.

*29—5 Back EMF and Counter Torque; 
Eddy Currents

* Back EMF, in a Motor
A  motor turns and produces mechanical energy when a current is made to flow in 
it. From our description in Section 27-6 of a simple dc motor, you might expect 
that the armature would accelerate indefinitely due to the torque on it. However, 
as the armature of the motor turns, the magnetic flux through the coil changes and 
an emf is generated. This induced emf acts to oppose the motion (Lenz’s law) and 
is called the back emf or counter emf. The greater the speed of the motor, the 
greater the back emf. A  motor normally turns and does work on something, but if 
there were no load, the motor’s speed would increase until the back emf equaled 
the input voltage. When there is a mechanical load, the speed of the motor may be 
limited also by the load. The back emf w ill then be less than the external applied 
voltase. The greater the mechanical load, the slower the motor rotates and the

Output
current
(induced)

Input South 
current

Loops of wire 
(in which current 

is induced)

Stator assembly

rings 

Coil
(produces B)

Rotor



EXAMPLE 29-10 Back emf in a motor. The armature windings of a dc motor 
have a resistance of 5.0 ft. The motor is connected to a 120-V line, and when the 
motor reaches fu ll speed against its normal load, the back emf is 108 V. Calculate
(a) the current into the motor when it is just starting up, and (b) the current when 
the motor reaches fu ll speed.

APPROACH As the motor is just starting up, it is turning very slowly, so there is 
no induced back emf. The only voltage is the 120-V line. The current is given 
by Ohm’s law with R =  5.0 ft. A t fu ll speed, we must include as emfs both 
the 120-V applied emf and the opposing back emf.
SOLUTION (a) A t start up, the current is controlled by the 120 V applied to the 
coil’s 5.0-ft resistance. By Ohm’s law,

120 V
= 24 A.

5.o n
(b) When the motor is at fu ll speed, the back emf must be included in the 
equivalent circuit shown in Fig. 29-20. In this case, Ohm’s law (or Kirchhoff’s 
rule) gives

120 V -1 0 8  V = 7(5.0 ft) .
Therefore

12 V
7 =

5.0 ft = 2.4 A.

NOTE This result shows that the current can be very high when a motor first starts 
up. This is why the lights in your house may dim when the motor of the refrigerator 
(or other large motor) starts up. The large initial current causes the voltage to the 
lights and at the outlets to drop, since the house wiring has resistance and there is 
some voltage drop across it when large currents are drawn.

Windings 
of motor

rV W -5.0 Q

Back emf 
induced in 
armature winding

’ induced = 108 V

S= 120 V
FIGURE 29-20 Circuit of a motor 
showing induced back emf. 
Example 29-10.

CONCEPTUAL EXAMPLE 29-11 I Motor overload. When using an appliance 
such as a blender, electric drill, or sewing machine, if the appliance is overloaded or 
jammed so that the motor slows appreciably or stops while the power is still 
connected, the device can burn out and be ruined. Explain why this happens.

RESPONSE The motors are designed to run at a certain speed for a given applied 
voltage, and the designer must take the expected back emf into account. I f  the 
rotation speed is reduced, the back emf w ill not be as high as expected (W oc (o, 
Eq. 29-4), and the current w ill increase, and may become large enough that the 
windings of the motor heat up to the point of ruining the motor.

* CounterTorque
In a generator, the situation is the reverse of that for a motor. As we saw, the 
mechanical turning of the armature induces an emf in the loops, which is the 
output. I f  the generator is not connected to an external circuit, the emf exists at 
the terminals but there is no current. In this case, it takes little  effort to turn the 
armature. But if the generator is connected to a device that draws current, then a 
current flows in the coils of the armature. Because this current-carrying coil is in 
an external magnetic field, there w ill be a torque exerted on it (as in a motor), and 
this torque opposes the motion (use the right-hand rule for the force on a wire in 
Fig. 29-15). This is called a counter torque. The greater the electrical load— that is, 
the more current that is drawn— the greater w ill be the counter torque. Hence the 
external applied torque w ill have to be greater to keep the generator turning. This 
makes sense from the conservation of energy principle. More mechanical-energy 
input is needed to produce more electrical-energy output.

P H Y S I C S  A P P L I E D
Burning out a motor

EXERCISE D A bicycle headlight is powered by a generator that is turned by the bicycle 
wheel, (a) If you pedal faster, how does the power to the light change? (b) Does the
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FIGURE 29-21 Production of eddy 
currents in a rotating wheel. The grey 
lines in (b) indicate induced current.

FIGURE 29-22 Airport metal 
detector.
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Airport metal detector

FIGURE 29-23 Repairing a step- 
down transformer on a utility pole.

* Eddy Currents
Induced currents are not always confined to well-defined paths such as in wires. 
Consider, for example, the rotating metal wheel in Fig. 29-21 a. An external 
magnetic field is applied to a limited area of the wheel as shown and points into the 
page. The section of wheel in the magnetic field has an emf induced in it because the 
conductor is moving, carrying electrons with it. The flow of induced (conventional) 
current in the wheel is upward in the region of the magnetic field (Fig. 29-21b), 
and the current follows a downward return path outside that region. Why? 
According to Lenz’s law, the induced currents oppose the change that causes them. 
Consider the part of the wheel labeled c in Fig. 29-21b, where the magnetic field is 
zero but is just about to enter a region where B points into the page. To oppose 
this inward increase in magnetic field, the induced current is counterclockwise to 
produce a field pointing out of the page (right-hand-rule 1). Similarly, region d is 
about to move to e, where B is zero; hence the current is clockwise to produce an 
inward field opposed to this decreasing flux inward. These currents are referred to 
as eddy currents. They can be present in any conductor that is moving across a 
magnetic field or through which the magnetic flux is changing.

In Fig. 29-21b, the magnetic field exerts a force F on the induced currents it has 
created, and that force opposes the rotational motion. Eddy currents can be used in 
this way as a smooth braking device on, say, a rapid-transit car. In order to stop the 
car, an electromagnet can be turned on that applies its field either to the wheels or 
to the moving steel rail below. Eddy currents can also be used to dampen (reduce) 
the oscillation of a vibrating system. Eddy currents, however, can be a problem. For 
example, eddy currents induced in the armature of a motor or generator produce 
heat (P  =  IT) and waste energy. To reduce the eddy currents, the armatures are 
laminated; that is, they are made of very thin sheets of iron that are well insulated from 
one another. The total path length of the eddy currents is confined to each slab, which 
increases the total resistance; hence the current is less and there is less wasted energy.

Walk-through metal detectors at airports (Fig. 29-22) detect metal objects using 
electromagnetic induction and eddy currents. Several coils are situated in the walls 
of the walk-through at different heights. In a technique called “pulse induction,” 
the coils are given repeated brief pulses of current (on the order of microseconds), 
hundreds or thousands of times a second. Each pulse in a coil produces a magnetic 
field for a very brief period of time. When a passenger passes through the 
walk-through, any metal object being carried w ill have eddy currents induced in it. 
The eddy currents persist briefly after each input pulse, and the small magnetic 
field produced by the persisting eddy current (before the next external pulse) can 
be detected, setting o ff an alert or alarm. Stores and libraries sometimes use 
similar systems to discourage theft.

29—6 Transformers and Transmission 
of Power

A  transformer is a device for increasing or decreasing an ac voltage. Transformers 
are found everywhere: on utility poles (Fig. 29-23) to reduce the high voltage from 
the electric company to a usable voltage in houses (120 V or 240 V), in chargers for 
cell phones, laptops, and other electronic devices, in CRT monitors and in your car to 
give the needed high voltage (to the spark plugs), and in many other applications. A  
transformer consists of two coils of wire known as the primary and secondary coils. 
The two coils can be interwoven (with insulated wire); or they can be linked by an iron 
core which is laminated to minimize eddy-current losses (Section 29-5), as shown in 
Fig. 29-24. Transformers are designed so that (nearly) all the magnetic flux 
produced by the current in the primary coil also passes through the secondary 
coil, and we assume this is true in what follows. We also assume that energy losses 
(in resistance and hvsteresis') can be ignored— a good aooroximation for real



When an ac voltage is applied to the primary coil, the changing magnetic field 
it produces w ill induce an ac voltage of the same frequency in the secondary coil. 
However, the voltage w ill be different according to the number of loops in each 
coil. From Faraday’s law, the voltage or emf induced in the secondary coil is 

d® B
V* = Ne

dt
where Ns is the number of turns in the secondary coil, and d<t>B/d t  is the rate at 
which the magnetic flux changes.

The input primary voltage, VF, is related to the rate at which the flux changes 
through it,

Vp =  No
d<j>!
dt

where NF is the number of turns in the primary coil. This follows because the 
changing flux produces a back emf, NPd$>B/d t, in the primary that exactly balances 
the applied voltage Vp if  the resistance of the primary can be ignored (Kirchhoff’s 
rules). We divide these two equations, assuming little  or no flux is lost, to find

Vs N s

i  - 1  ( 2 9 - 5 )

This transformer equation tells how the secondary (output) voltage is related to the 
primary (input) voltage; Vs and VP in Eq. 29-5 can be the rms values (Section 25-7) 
for both, or peak values for both. DC voltages don’t work in a transformer because 
there would be no changing magnetic flux.

If  the secondary coil contains more loops than the primary coil (Ns >  NP), we 
have a step-up transformer. The secondary voltage is greater than the primary 
voltage. For example, if the secondary coil has twice as many turns as the primary 
coil, then the secondary voltage w ill be twice that of the primary voltage. I f  Ns is 
less than Np, we have a step-down transformer.

Although ac voltage can be increased (or decreased) with a transformer, we 
don’t get something for nothing. Energy conservation tells us that the power 
output can be no greater than the power input. A  well-designed transformer can 
be greater than 99% efficient, so little  energy is lost to heat. Hie power output thus 
essentially equals the power input. Since power P  = IV  (Eq. 25-6), we have 

h V F = IsVs ,

r r j ,
Cell phone charger. The charger for a cell phone contains a 

transformer that reduces 120-V (or 240-V)ac to 5.0-Vac to charge the 3.7-V 
battery (Section 26-4). (It also contains diodes to change the 5.0-Vac to 5.0-Vdc.) 
Suppose the secondary coil contains 30 turns and the charger supplies 700 mA. 
Calculate (a) the number of turns in the primary coil, (b) the current in the 
primary, and (c) the power transformed.

APPROACH We assume the transformer is ideal, with no flux loss, so we can use 
Eq. 29-5 and then Eq. 29-6.
SOLUTION (a) This is a step-down transformer, and from Eq. 29-5 we have 

i r FP (30) (120 V ) _

Np = NsVs =  (5.0 V ) = 72° tUmS-
(b) From Eq. 29-6

/P = / s|  = (0.70 A ) g  | = 29mA.

(c) The power transformed is

P  = ISVS =  (0.70 A ) (5.0 V)

Secondary
coil

FIGURE 29-24 Step-up 
transformer (Np = 4, Ns = 12).

3.5 W.
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FIGURE 29-25 A dc voltage 
turned on and off as shown in (a) 
produces voltage pulses in the 
secondary (b). Voltage scales in (a) 
and (b) are not the same.
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Transformers help power transmission

A  transformer operates only on ac. A  dc current in the primary coil does not 
produce a changing flux and therefore induces no emf in the secondary. 
However, if  a dc voltage is applied to the primary through a switch, at the instant 
the switch is opened or closed there w ill be an induced voltage in the secondary. 
For example, if the dc is turned on and o ff as shown in Fig. 29-25a, the voltage 
induced in the secondary is as shown in Fig. 29-25b. Notice that the secondary 
voltage drops to zero when the dc voltage is steady. This is basically how, in 
the ignition system of an automobile, the high voltage is created to produce the 
spark across the gap of a spark plug that ignites the gas-air mixture. The trans­
former is referred to simply as an “ ignition coil,” and transforms the 12 V of the 
battery (when switched o ff in the primary) into a spike of as much as 30 kV in 
the secondary.

Transformers play an important role in the transmission of electricity. Power 
plants are often situated some distance from metropolitan areas, so electricity 
must then be transmitted over long distances (Fig. 29-26). There is always 
some power loss in the transmission lines, and this loss can be minimized if  the 
power is transmitted at high voltage, using transformers, as the following 
Example shows.

High voltage 
transmission tint1

Power
Step-down
transform er Step-down 

transform er

] 2.000 V 240.000 V 24CKJV 240 V

FIGURE 29-26 The transmission of electric power from power plants to homes makes use of transformers at 
various stages.

EXAMPLE 29-13 Transmission lines. An average of 120 kW of electric 
power is sent to a small town from a power plant 10 km away. The transmission 
lines have a total resistance of 0.400. Calculate the power loss if the power is 
transmitted at (a) 240 V and (b) 24,000 V.

APPROACH We cannot use P  = V 2/R  because if  R is the resistance of the 
transmission lines, we don’t know the voltage drop along them; the given voltages 
are applied across the lines plus the load (the town). But we can determine the 
current I  in the lines (= P /V ) , and then find the power loss from PL = I 2R, for 
both cases (a) and (b).
SOLUTION (a) I f  120 kW is sent at 240 V, the total current w ill be

P  1.2 X 105W
V  ~  2.4 X 102V

The power loss in the lines, PL, is then

PL = I2R = (500A)2(0.40n) = 100 kW.



(b) I f  120 kW is sent at 24,000 V, the total current w ill be 
P  1.2 X 105W
V ~  2.4 X 104V  

The power loss in the lines is then
PL = I 2R =  (5.0 A )2(0.40fl) = 10W, 

which is less than ^  of 1%: a far better efficiency!
NOTE We see that the higher voltage results in less current, and thus less power 
is wasted as heat in the transmission lines. It is for this reason that power is 
usually transmitted at very high voltages, as high as 700 kV.

The great advantage of ac, and a major reason it is in nearly universal use, is that 
the voltage can easily be stepped up or down by a transformer. The output voltage of 
an electric generating plant is stepped up prior to transmission. Upon arrival in a city, it 
is stepped down in stages at electric substations prior to distribution. The voltage in 
lines along city streets is typically 2400 V or 7200 V (but sometimes less), and is stepped 
down to 240 V  or 120 V for home use by transformers (Figs. 29-23 and 29-26).

Fluorescent lights require a very high voltage initia lly to ionize the gas inside 
the bulb. The high voltage is obtained using a step-up transformer, called a ballast, 
and can be replaced independently of the bulb in many fluorescent light fixtures. 
When the ballast starts to fail, the tube is slow to light. Replacing the bulb w ill 
not solve the problem. In newer compact fluorescent bulbs designed to replace 
incandescent bulbs, the ballast (transformer) is part of the bulb, and is very small.

2 9 —7 A Changing Magnetic Flux 
Produces an Electric Field

We have seen in earlier Chapters (especially Chapter 25, Section 25-8) that when 
an electric current flows in a wire, there is an electric field in the wire that does the 
work of moving the electrons in the wire. In this Chapter we have seen that a 
changing magnetic flux induces a current in the wire, which implies that there is an 
electric field in the wire induced by the changing magnetic flux. Thus we come to 
the important conclusion that

a changing magnetic flux produces an electric field.
This result applies not only to wires and other conductors, but is actually a general 
result that applies to any region in space. Indeed, an electric field w ill be produced 
at any point in space where there is a changing magnetic field.

Faraday's Law—General Form
We can put these ideas into mathematical form by generalizing our relation 
between an electric field and the potential difference between two points a and b: 
yab = Ja E • d l  (Eq. 23-4a) where d i  is an element of displacement along the path of 
integration. The emf % induced in a circuit is equal to the work done per unit charge 
by the electric field, which equals the integral of E • d i around the closed path:

% = cbE -d t  (29-7)

We combine this with Eq. 29-2a, to obtain a more elegant and general form of 
Faraday’s law

E'di = J - (29-8)
dt

0 P H Y S I C S  A P P L I E D
Fluorescent lightbulb ballast

FARADAY’S LAW  
(general form)

which relates the changing magnetic flux to the electric field it produces. The integral 
on the left is taken around a path enclosing the area through which the magnetic flux 
4>d is changing. This more elegant statement of Faradav’s law (Ea. 29-8) is valid not



FIGURE 29-27 Example 29-14.
(a) Side view of nearly constant B.
(b) Top view, for determining the 
electric field E at point P. (c) Lines of 
E  produced by increasing B (pointing 
outward), (d) Graph of E vs. r.
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EXAMPLE 29-14 E produced by changing B. A  magnetic field B between 
the pole faces of an electromagnet is nearly uniform at any instant over a circular 
area of radius r0 as shown in Figs. 29-27a and b. The current in the windings of 
the electromagnet is increasing in time so that B changes in time at a constant 
rate d B /d t at each point. Beyond the circular region (r >  r0), we assume B = 0 
at all times. Determine the electric field E at any point P a distance r from the 
center of the circular area due to the changing B.
APPROACH The changing magnetic flux through a circle of radius r, shown 
dashed in Fig. 29-27b, w ill produce an emf around this circle. Because all points 
on the dashed circle are equivalent physically, the electric field too w ill show this 
symmetry and w ill be in the plane perpendicular to B. Thus we can expect E to 
be perpendicular to B and to be tangent to the circle of radius r. The direction of 
E w ill be as shown in Fig. 29-27b and c, since by Lenz’s law the induced E needs 
to be capable of producing a current that generates a magnetic field opposing the 
original change in B. By symmetry, we also expect E to have the same magnitude 
at all points on the circle of radius r.
SOLUTION We take the circle shown in Fig 29-27b as our path of integration in 
Eq. 29-8. We ignore the minus sign so we can concentrate on magnitude since we 
already found the direction of E from Lenz’s law, and obtain

E (2irr) =  (vrr2) ^ .  [r <  r0]

since = B A  = B(irr2) at any instant. We solve for E  and obtain

E - h f '  [ ' < * ]
This expression is valid up to the edge of the circle (r ^  r0), beyond which 
B = 0. I f  we now consider a point where r >  r0, the flux through a circle of 
radius r is <E>S = irrlB. Then Eq. 29-8 gives

E(2irr) =  V  >  r0]

or
r\ dB  r >  1

E  ~  T r d F  [r >  roJ

Thus the magnitude of the induced electric field increases linearly from zero at the 
center of the magnet to E  = (d B /d t)(r J 2) at the edge, and then decreases inversely 
with distance in the region beyond the edge of the magnetic field. The electric field 
lines are circles as shown in Fig. 29-27c. A  graph of E  vs. r is shown in Fig. 29-27d.

EXERCISE E Consider the magnet shown in Fig. 29-27 with a radius r0 = 6.0 cm. If the 
magnetic field changes uniformly from 0.040 T to 0.090 T in 0.18 s, what is the magnitude 
of the resulting electric field at (a) r = 3.0 cm and (b) r = 9.0 cm?

* Forces Due to Changing B are Nonconservative
Example 29-14 illustrates an important difference between electric fields 
produced by changing magnetic fields and electric fields produced by electric 
charges at rest (electrostatic fields). Electric field lines produced in the electro­
static case (Chapters 21 to 24) start and stop on electric charges. But the electric 
field lines produced by a changing magnetic field are continuous; they form closed 
loops. This distinction goes even further and is an important one. In the electro­
static case, the potential difference between two points is given by (Eq. 23-4a)

Vba =  Vb ~ K  =  - p E - d l .



Hence the integral of E • d l  around a closed path is zero:

cpE-d l =  0. [electrostatic field]

This followed from the fact that the electrostatic force (Coulomb’s law) is a 
conservative force, and so a potential energy function could be defined. Indeed, the 
relation above, <fE • d t =  0, tells us that the work done per unit charge around any 
closed path is zero (or the work done between any two points is independent of 
path— see Chapter 8), which is a property only of a conservative force. But in the 
nonelectrostatic case, when the electric field is produced by a changing magnetic 
field, the integral around a closed path is not zero, but is given by Eq. 29-8:

I - *  - dt

We thus come to the conclusion that the forces due to changing magnetic fields are 
nonconservative. We are not able therefore to define a potential energy, or poten­
tial function, at a given point in space for the nonelectrostatic case. Although static 
electric fields are conservative fields, the electric field produced by a changing 
magnetic field is a nonconservative field.

* 2 9 -8  Applications of Induction: 
Sound Systems, Computer 
Memory, Seismograph, GFCI

* Microphone
There are various types of microphones, and many operate on the principle of induc­
tion. In one form, a microphone is just the inverse of a loudspeaker (Section 27-6). 
A  small coil connected to a membrane is suspended close to a small permanent 
magnet, as shown in Fig. 29-28. The coil moves in the magnetic field when sound 
waves strike the membrane and this motion induces an emf. The frequency of 
the induced emf w ill be just that of the impinging sound waves, and this emf is the 
“ signal” that can be amplified and sent to loudspeakers, or sent to a recorder.

* Read/Write on Tape and Disks
Recording and playback on tape or disks is done by magnetic heads. Recording 
tapes for use in audio and video tape recorders contain a thin layer of magnetic 
oxide on a thin plastic tape. During recording, the audio and/or video signal voltage 
is sent to the recording head, which acts as a tiny electromagnet (Fig. 29-29) that 
magnetizes the tiny section of tape passing over the narrow gap in the head at each 
instant. In playback, the changing magnetism of the moving tape at the gap causes 
corresponding changes in the magnetic field within the soft-iron head, which in turn 
induces an emf in the coil (Faraday’s law). This induced emf is the output signal that 
can be amplified and sent to a loudspeaker (audio) or to the picture tube (video). 
In audio and video recorders, the signals may be analog— they vary continuously in 
amplitude over time. The variation in degree of magnetization of the tape at any 
point reflects the variation in amplitude and frequency of the audio or video signal.

Digital information, such as used on computer hard drives or on magnetic 
computer tape and some types of digital tape recorders, is read and written 
using heads that are basically the same as just described (Fig. 29-29). The essential 
difference is in the signals, which are not analog, but are digital, and in particular binary, 
meaning that only two values are possible for each of the extremely high number of 
predetermined spaces on the tape or disk. The two possible values are usually referred 
to as 1 and 0. The signal voltage does not vary continuously but rather takes on only 
two values. +5 V and 0 V. for examole. corresDondine to the 1 or O.Thus. information is

FIGURE 29-28 Diagram of a 
microphone that works by induction.

FIGURE 29-29 (a) Read/Write 
(playback/recording) head for tape or 
disk. In writing or recording, the 
electric input signal to the head, which 
acts as an electromagnet, magnetizes 
the passing tape or disk. In reading or 
playback, the changing magnetic field 
of the passing tape or disk induces a 
changing magnetic field in the head, 
which in turn induces in the coil an 
emf that is the output signal.
(b) Photo of a hard drive showing 
several platters and read/write heads 
that can quickly move from the edge 
of the disk to the center.

Small coil of wire

M agnet

recp rd c ro rn n ip lilic r

Electric signal 
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FIGURE 29-30 One type of 
seismograph, in which the coil is fixed 
to the case and moves with the Earth. 
The magnet, suspended by springs, 
has inertia and does not move 
instantaneously with the coil (and 
case), so there is relative motion 
between magnet and coil.

* Credit Card Swipe
When you swipe your credit card at a store or gas station, the magnetic stripe on 
the back of the card passes over a read head just as in a tape recorder or 
computer. The magnetic stripe contains personal information about your account 
and connects by telephone line for approval if your account is in order.

* Seismograph
In geophysics, a seismograph measures the intensity of earthquake waves using a 
magnet and a coil of wire. Either the magnet or the coil is fixed to the case, and the 
other is inertial (suspended by a spring; Fig. 29-30). The relative motion of magnet 
and coil when the Earth shakes induces an emf output.

* Ground Fault Circuit Interrupter (GFCI)
Fuses and circuit breakers (Sections 25-6 and 28-8) protect buildings from fire, 
and apparatus from damage, due to undesired high currents. But they do not turn 
off the current until it is very much greater than that which causes permanent 
damage to humans or death (~100 m A). I f  fast enough, they may protect in case 
of a short. A  ground fault circuit interrupter (GFCI) is meant to protect humans; 
GFCIs can react to currents as small as 5 mA.

FIGURE 29-31 A ground fault 
circuit interrupter (GFCI).

FIGURE 29-32 (a) A GFCI wall 
outlet. GFCIs can be recognized 
because they have “test” and “reset” 
buttons, (b) Add-on GFCI that plugs 
into outlet.

m

Electromagnetic induction is the physical basis of a GFCI. As shown in 
Fig. 29-31, the two conductors of a power line leading to an electrical circuit or device 
(red) pass through a small iron ring. Around the ring are many loops of thin wire 
that serve as a sensing coil. Under normal conditions (no ground fault), the current 
moving in the hot wire is exactly balanced by the returning current in the neutral 
wire. If  something goes wrong and the hot wire touches the ungrounded metal case 
of the device or appliance, some of the entering current can pass through a person 
who touches the case and then to ground (a ground fault). Then the return current 
in the neutral wire w ill be less than the entering current in the hot wire, so there is 
a net current passing through the GFCI’s iron ring. Because the current is ac, it is 
changing and the current difference produces a changing magnetic field in the iron, thus 
inducing an emf in the sensing coil wrapped around the iron. For example, if a device 
draws 8.0 A, and there is a ground fault through a person of 100 mA (= 0.1 A ), then 
7.9 A  w ill appear in the neutral wire. The emf induced in the sensing coil by this 
100-mA difference is amplified by a simple transistor circuit and sent to its own 
solenoid circuit breaker that opens the circuit at the switch S, thus protecting your life.

I f  the case of the faulty device is grounded, the current difference is even 
higher when there is a fault, and the GFCI trips immediately.

GFCIs can sense currents as low as 5 mA and react in 1 msec, saving lives. 
They can be small enough to fit as a wall outlet (Fig. 29-32a), or as a plug-in unit 
into which you plug a hair dryer or toaster (Fig. 29-32b). It is especially important to 
have GFCIs installed in kitchens, bathrooms, outdoors, and near swimming pools, 
where oeoole are most in danger of touching ground. GFCIs alwavs have a “ test”

Simple electronic circuil

Sensing
coil

Solenoid 
circuil breaker

Hut

Neutral

Electric circuit with 
one or more devices 
(possible sources 
ol trouble]



Summary
The magnetic flux passing through a loop is equal to the product 
of the area of the loop times the perpendicular component of 
the (uniform) magnetic field: <S>B = B± A  = B A  cos 6. I f  B is 
not uniform, then

Oo — J8-dA. (29-lb)

I f  the magnetic flux through a coil of wire changes in time, 
an emf is induced in the coil. The magnitude of the induced emf 
equals the time rate of change of the magnetic flux through the 
loop times the number N  of loops in the coil:

= - N
dt

(29-2b)

This is Faraday’s law of induction.
The induced emf can produce a current whose magnetic 

field opposes the original change in flux (Lenz’s law).
We can also see from Faraday’s law that a straight wire of 

length £ moving with speed v  perpendicular to a magnetic field 
of strength B has an emf induced between its ends equal to:

= B£v. (29-3)

Faraday’s law also tells us that a changing magnetic field  
produces an electric field. The mathematical relation is

E -d i =  -
d<$>}
dt

(29-8)

and is the general form of Faraday’s law. The integral on the left 
is taken around the loop through which the magnetic flux is 
changing.

An electric generator changes mechanical energy into 
electrical energy. Its operation is based on Faraday’s law: 
a coil of wire is made to rotate uniformly by mechanical 
means in a magnetic field, and the changing flux through 
the coil induces a sinusoidal current, which is the output of the 
generator.

[*A  motor, which operates in the reverse of a generator, 
acts like a generator in that a back emf is induced in its rotating 
coil; since this counter emf opposes the input voltage, it can act 
to lim it the current in a motor coil. Similarly, a generator acts 
somewhat like a motor in that a counter torque acts on its 
rotating coil.]

A  transformer, which is a device to change the magnitude 
of an ac voltage, consists of a primary coil and a secondary coil. 
The changing flux due to an ac voltage in the primary coil 
induces an ac voltage in the secondary coil. In a 100% efficient 
transformer, the ratio of output to input voltages (VS/VP) equals 
the ratio of the number of turns Ns in the secondary to the 
number NP in the primary:

Vs

Vp
Ns
Nj,

(29-5)

The ratio of secondary to primary current is in the inverse ratio 
of turns:

Np
Ns

(29-6)

[*Microphones, ground fault circuit interrupters, seismo­
graphs, and read/write heads for computer drives and tape 
recorders are applications of electromagnetic induction.]

Questions
1. What would be the advantage, in Faraday’s experiments 

(Fig. 29-1), of using coils with many turns?

2. What is the difference between magnetic flux and magnetic 
field?

3. Suppose you are holding a circular ring of wire and 
suddenly thrust a magnet, south pole first, away from you 
toward the center of the circle. Is a current induced in the 
wire? Is a current induced when the magnet is held steady 
within the ring? Is a current induced when you withdraw 
the magnet? In each case, if  your answer is yes, specify the 
direction.

4. Two loops of wire are moving in the vicinity of a very long
straight wire carrying a steady 
current as shown in Fig. 29-33. 
Find the direction of the induced 
current in each loop.

FIGURE 29-33
Questions 4 and 5.

5. Ts there, a forrp between the two loons HisriisseH in

i O -'

6. Suppose you are looking along a line through the centers of 
two circular (but separate) wire loops, one behind the other. 
A  battery is suddenly connected to the front loop, estab­
lishing a clockwise current, (a) W ill a current be induced in 
the second loop? (b) I f  so, when does this current start? 
(c) When does it stop? (d) In what direction is this current? 
(ie) Is there a force between the two loops? ( /)  I f  so, in what 
direction?

7. The battery mentioned in Question 6 is disconnected. W ill a 
current be induced in the second loop? If  so, when does it 
start and stop? In what direction is this current?

8. In what direction w ill the current flow in Fig. 29-12a if  the 
rod moves to the left, which decreases the area of the loop 
to the left?

9. In Fig. 29-34, determine the direction of the induced 
current in resistor RA (a) when coil B is moved toward 
coil A, (b) when coil B
is moved away from A , Coil B Coil A
(c) when the resistance /omnonovrx s*
Rb is increased.

FIGURE 29-34 '-AAAA— 11—I --- \AAA----



10. In situations where a small signal must travel over a 
distance, a shielded cable is used in which the signal wire 
is surrounded by an insulator and then enclosed by a 
cylindrical conductor carrying the return current (Fig. 28-12). 
Why is a “ shield” necessary?

11. What is the advantage of placing the two insulated electric 
wires carrying ac close together or even twisted about each 
other?

12. Which object w ill fa ll faster in a nonuniform magnetic field, 
a conducting loop with radius £ or a straight wire of length 
1 /2?

13. A  region where no magnetic field is desired is surrounded 
by a sheet of low-resistivity metal, (a) W ill this sheet shield 
the interior from a rapidly changing magnetic field outside? 
Explain. (b) W ill it act as a shield to a static magnetic field?
(c) What if the sheet is superconducting (resistivity = 0)?

14. A  cell phone charger contains a transformer. Why can’t you 
just buy one universal charger to charge your old cell 
phone, your new cell phone, your drill, and your toy electric 
train?

15. An enclosed transformer has four wire leads coming from 
it. How could you determine the ratio of turns on the two 
coils without taking the transformer apart? How would you 
know which wires paired with which?

16. The use of higher-voltage lines in homes— say, 600 V or 
1200 V — would reduce energy waste. Why are they not 
used?

17. A  transformer designed for a 120-V ac input w ill often 
“burn out” if  connected to a 120-V dc source. Explain. 
[Hint: The resistance of the primary coil is usually very low.]

18. Explain why, exactly, the lights may dim briefly when a 
refrigerator motor starts up. When an electric heater is 
turned on, the lights may stay dimmed as long as the heater 
is on. Explain the difference.

19. Use Fig. 29-15 plus the right-hand rules to show why the 
counter torque in a generator opposes the motion.

*20. W ill an eddy current brake (Fig. 29-21) work on a copper 
or aluminum wheel, or must the wheel be ferromagnetic? 
Explain.

*21. It has been proposed that eddy currents be used to help sort 
solid waste for recycling. The waste is first ground into tiny 
pieces and iron removed with a dc magnet. The waste then 
is allowed to slide down an incline over permanent magnets. 
How w ill this aid in the separation of nonferrous metals 
(A l, Cu, Pb, brass) from nonmetallic materials?

*22. The pivoted metal bar with slots in Fig. 29-35 falls much 
more quickly through 
a magnetic field than 
does a solid bar.
Explain.

FIGURE 29-35
Question 22.

*23. I f  an aluminum sheet is held between the poles of a large 
bar magnet, it requires some force to pull it out of the 
magnetic field even though the sheet is not ferromagnetic 
and does not touch the pole faces. Explain.

*24. A  bar magnet falling inside a vertical metal tube reaches a 
terminal velocity even if the tube is evacuated so that there 
is no air resistance. Explain.

*25. A  metal bar, pivoted at one end, oscillates freely in the 
absence of a magnetic field; but in a magnetic field, its oscil­
lations are quickly damped out. Explain. (This magnetic 
damping is used in a number of practical devices.)

* 26. Since a magnetic microphone is basically like a loudspeaker, 
could a loudspeaker (Section 27-6) actually serve as a 
microphone? That is, could you speak into a loudspeaker 
and obtain an output signal that could be amplified? 
Explain. Discuss, in light of your response, how a micro­
phone and loudspeaker differ in construction.

Problems
29-1 and 29-2 Faraday's Law of Induction
1. (I) The magnetic flux through a coil of wire containing two 

loops changes at a constant rate from — 58 Wb to +38 Wb in 
0.42 s. What is the emf induced in the coil?

2. (I) The north pole of the magnet in Fig. 29-36 is being 
inserted into the coil. In which direction is the induced 
current flowing through the
resistor RI

fs  n P

FIGURE 29-36
Problem 2. R

3. (I) The rectangular loop shown in Fig. 29-37 is pushed into 
the magnetic field which points inward. In what direction is 
the induced current?

FIGURE 2 9 -3 7 X XIX X

4. (I) A  22.0-cm-diameter loop of wire is initia lly oriented 
perpendicular to a 1.5-T magnetic field. The loop is rotated 
so that its plane is parallel to the field direction in 0.20 s. 
What is the average induced emf in the loop?

5. (II) A  circular wire loop of radius r = 12 cm is immersed in a 
uniform magnetic field B = 0.500 T with its plane normal to 
the direction of the field. I f  the field magnitude then decreases 
at a constant rate of — 0.010 T/s, at what rate should r increase 
so that the induced emf within the loop is zero?

6. (II) A  10.8-cm-diameter wire coil is initia lly oriented so that 
its plane is perpendicular to a magnetic field of 0.68 T 
pointing up. During the course of 0.16 s, the field is changed 
to one of 0.25 T pointing down. What is the average induced 
emf in the coil?

7. (II) A  16-cm-diameter circular loop of wire is placed in a 
0.50-T magnetic field, (a) When the plane of the loop is 
perpendicular to the field lines, what is the magnetic flux 
through the loop? (b) The plane of the loop is rotated until 
it makes a 35° angle with the field lines. What is the angle 6 
in F,n. 29—1a for this situation? fr )  What is the magnetic flux



8. ( II)  (a) I f  the resistance o f the resistor in  Fig. 29-38 is 
slowly increased, what is the direction of the current 
induced in the small circular 
loop inside the larger loop?
(b) What would it be if  the small 
loop were placed outside the 
larger one, to the left?

FIGURE 29-38
Problem 8.

9. ( II)  I f  the solenoid in Fig. 29-39 is being pulled away from 
the loop shown, in what direction is the induced current in

10. ( II)  The magnetic field perpendicular to a circular wire loop
8.0 cm in diameter is changed from  +0.52 T to -0.45 T in 
180 ms, where + means the field points away from an 
observer and — toward the observer, (a) Calculate the 
induced emf. (b) In  what direction does the induced 
current flow?

11. ( II)  A  circular loop in the plane of the paper lies in  a
0.75-T magnetic fie ld pointing into the paper. I f  the 
loop’s diameter changes from 20.0 cm to 6.0 cm in 0.50 s,
(a) what is the direction o f the induced current, (b ) what 
is the magnitude of the average induced emf, and (c) if  
the coil resistance is 2.5 f l,  what is the average induced 
current?

12. ( II)  Part o f a single rectangular loop of wire w ith dimen­
sions shown in Fig. 29-40 is situated inside a region o f 
uniform  magnetic fie ld of 0.650 T. The total resistance of the 
loop is 0.280 f l.  Calculate the force required to pull the loop 
from the field (to the right) at a constant velocity o f 
3.40 m/s. Neglect gravity.

T
350

1

X X X X X 1

X X X X x !
X X X X x ! 1
X X X X

x
X X X X x  1

h--------- 0.750 m---------- H

FIGURE 29-40 Problem 12.

13. (II)  W hile demonstrating Faraday’s law to her class, a 
physics professor inadvertently moves the gold ring on her 
finger from a location where a 0.80-T magnetic field 
points along her finger to a zero-field location in 45 ms. The 
1.5-cm-diameter ring has a resistance and mass of 55 /Lift 
and 15 g, respectively, (a) Estimate the thermal energy 
produced in the ring due to the flow o f induced current.
(b) Find the temperature rise of the ring, assuming all of the
thermal p.nfirov nrodur.ed ones into innreasina the rina’s

16.

14. ( II)  A  420-turn solenoid, 25 cm long, has a diameter of
2.5 cm. A  15-turn coil is wound tightly around the center of 
the solenoid. I f  the current in the solenoid increases 
uniform ly from 0 to 5.0 A  in 0.60 s, what w ill be the induced 
emf in the short coil during this time?

15. ( II)  A  22.0-cm-diameter coil consists of 28 turns o f circular 
copper wire 2.6 mm in diameter. A  uniform  magnetic field, 
perpendicular to the plane o f the coil, changes at a rate of 
8.65 X 1 0 _ 3 T / s .  Determine (a) the current in the loop, and 
(b) the rate at which thermal energy is produced.

(II)  A  power line carrying a sinusoidally varying current 
w ith frequency /  = 60 Hz and peak value /0 = 55 kA  
runs at a height of 7.0 m across a farmer’s land (Fig. 29-41). 
The farmer constructs a vertically oriented 2.0-m-high 
10-turn rectangular wire coil below the power line. The 
farmer hopes to use the induced voltage in this coil to 
power 120-Volt electrical equipment, which requires a 
sinusoidally varying voltage w ith frequency /  = 60 Hz 
and peak value Vq =  170 V. What should the length £ of 
the coil be? Would this be unethical?

/0 -  55 kA
f -  60 Hz

FIGURE 29-41 Problem 16.

17. ( II)  The magnetic field perpendicular to a single 18.2-cm- 
diameter circular loop of copper wire decreases uniform ly 
from 0.750 T to zero. I f  the wire is 2.35 mm in diameter, how 
much charge moves past a point in the coil during this 
operation?

18. ( II)  The magnetic flux through each loop of a 75-loop coil is 
given by (8.81 — 0.5l£3) X  10_2T-m 2, where the time t is 
in seconds, (a) Determine the emf % as a function of time, 
(ft) What is ^ a t t = 1.0 s and t = 4.0 s?

19. ( II)  A  25-cm-diameter circular loop o f wire has a resistance 
of 150 f l.  I t  is in itia lly  in  a 0.40-T magnetic field, w ith its 
plane perpendicular to B, but is removed from the fie ld in 
120 ms. Calculate the electric energy dissipated in this 
process.

20. ( II)  The area of an elastic circular loop decreases at a 
constant rate, d A /d t = — 3.50 X 10_2m2/s. The loop is in a 
magnetic fie ld B  = 0.28 T whose direction is perpendicular 
to the plane o f the loop. A t t =  0, the loop has area 
A  = 0.285 m2. Determine the induced emf at t =  0, and 
at t =  2.00 s.

21. ( II)  Suppose the radius o f the elastic loop in Problem 20 
increases at a constant rate, d r /d t = 4.30 cm/s. Deter­
mine the em f induced in the loon at t = 0 and at



22. ( II)  A  single circular loop o f wire is placed inside a long 
solenoid w ith its plane perpendicular to the axis of 
the solenoid. The area o f the loop is A x and that of the 
solenoid, which has n turns per unit length, is A 2. A  current 
I  =  Iqcoscot flows in the solenoid turns. What is the 
induced emf in the small loop?

23. (II)  We are looking down on an elastic conducting loop with 
resistance R  = 2.0 H, immersed in a magnetic field. The 
fie ld ’s magnitude is uniform spatially, but varies w ith time t 
according to B (t)  =  a t, where a  =  0.60 T/s. The area A  
of the loop also increases at a constant rate, according to 
A ( t)  =  A 0 +  p t, where A q = 0.50 m2 and /3 = 0.70 m2/s. 
Find the magnitude and direction (clockwise or counter­
clockwise, when viewed from above the page) of the induced 
current w ithin the loop at time t = 2.0 s if  the magnetic 
field (a) is parallel to the plane o f the loop to the right; (b) is 
perpendicular to the plane of the loop, down.

24. ( II)  Inductive battery chargers, which allow transfer o f 
electrical power w ithout the need fo r exposed electrical 
contacts, are commonly used in appliances that need to be 
safely immersed in water, such as electric toothbrushes. 
Consider the follow ing simple model fo r the power 
transfer in  an inductive charger (Fig. 29-42). W ithin the 
charger’s plastic base, a prim ary coil o f diameter d  w ith nF 
turns per unit length is connected to a home’s ac wall 
outlet so that a current I  = Iq sin^Tr/Y) flows within it. 
When the toothbrush is
seated on the base, an 
iV-turn secondary coil inside 
the toothbrush has a 
diameter only slightly 
greater than d  and is 
centered on the primary.
Find an expression fo r the 
emf induced in the 
secondary coil. [This y
induced emf recharges 
the battery.]
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FIGURE 29-42
Problem 24.

25. ( I l l)  (a) Determine the magnetic flux through a square 
loop o f side a (Fig. 29-43) if  one side is parallel to, and a 
distance b from , a straight wire that carries a current I.
(b) I f  the loop is pulled away from  the wire at speed v, 
what emf is induced in it? (c) Does the induced current 
flow clockwise or counterclockwise? (d) Determine the 
force F  required to pull the loop away. ^

FIGURE 29-43
Problems 25 and 26.

26. ( I ll)  Determine the emf induced in the square loop in 
Fig. 29-43 if  the loop stays at rest and the current in the 
straight wire is given by I { t ) = (15.0 A ) sin(2500?) where t 
is in seconds. The distance a is 12.0 cm, and b is 15.0 cm.

-3 Motional EMF
(I) The moving rod in Fig. 29-12b is 13.2 cm long and generates 
an emf of 120 mV while moving in a 0.90-T magnetic field. 
What is its speed?
(I) The moving rod in Fig. 29-12b is 12.0 cm long and is 
pulled at a speed of 15.0 cm/s. I f  the magnetic fie ld is
0.800 T, calculate the emf developed.
(II) In Fig. 29-12a, the rod moves to the right with a speed of
1.3 m/s and has a resistance of 2.5 f l.  The rail separation is 
£ = 25.0 cm. The magnetic field is 0.35 T, and the resistance of 
the U-shaped conductor is 25.0 XI at a given instant. Calculate
(a) the induced emf, (b) the current in the U-shaped 
conductor, and (c) the external force needed to keep the rod’s 
velocity constant at that instant.

30. (II) I f  the U-shaped conductor in Fig. 29-12a has resistivity p, 
whereas that o f the moving rod is negligible, derive a 
formula for the current I  as a function of time. Assume the 
rod starts at the bottom of the U at t = 0, and moves with 
uniform speed v  in the magnetic field B. The cross-sectional 
area of the rod and all parts o f the U is A .

31. (II)  Suppose that the U-shaped conductor and connecting 
rod in Fig. 29-12a are oriented vertically (but still in contact) 
so that the rod is falling due to the gravitational force. Find 
the terminal speed of the rod if  it has mass m  = 3.6 grams, 
length i  = 18 cm, and resistance R  = 0.001312. It is falling 
in a uniform horizontal field B  = 0.060 T. Neglect the 
resistance of the U-shaped conductor.

32. (II) When a car drives through the Earth’s magnetic field, an 
emf is induced in its vertical 75.0-cm-long radio antenna. I f  the 
Earth’s field (5.0 X 10-5 T) points north w ith a dip angle o f 
45°, what is the maximum emf induced in the antenna and 
which direction(s) w ill the car be moving to produce this 
maximum value? The car’s speed is 30.0 m/s on a 
horizontal road.

33. ( II)  A  conducting rod rests on two long frictionless parallel 
rails in a magnetic field B (_L to the rails and rod) as in 
Fig. 29-44. (a) I f  the rails are horizontal and the rod is given 
an in itia l push, w ill the rod travel at constant speed even 
though a magnetic fie ld is present? (b ) Suppose at t = 0, 
when the rod has speed v  =  v0 , the two rails are 
connected electrically by a wire from point a to point b. 
Assuming the rod has resistance R  and the rails have 
negligible resistance, determine the speed of the rod as a 
function o f time. Discuss your answer.
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FIGURE 29-44 Problems 33 and 34.



34. ( I ll)  Suppose a conducting rod (mass ra, resistance R ) rests 
on two frictionless and resistanceless parallel rails a distance I 
apart in a uniform  magnetic fie ld B (_L to the rails and to the 
rod) as in Fig. 29-44. A t t =  0, the rod is at rest and a 
source of emf is connected to the points a and b. Determine 
the speed of the rod as a function o f time if  (a) the source 
puts out a constant current I, (b) the source puts out a 
constant emf %. (c) Does the rod reach a term inal speed in 
either case? I f  so, what is it?

35. ( I ll)  A  short section o f wire, of length a, is moving w ith 
velocity v, parallel to a very long wire carrying a current I  as 
shown in Fig. 29-45. The near end o f the wire section 
is a distance b from the long wire.
Assuming the vertical wire is very 
long compared to a +  b, determine 
the emf between the ends o f the 
short section. Assume v is (a) in 
the same direction as I, (b ) in the 
opposite direction to I.

r

FIGURE 29-45
Problem 35.

29-4 Generators
36. (I) The generator o f a car idling at 875-rpm produces 12.4 V. 

What w ill the output be at a rotation speed o f 1550 rpm 
assuming nothing else changes?

37. (I) A  simple generator is used to generate a peak output 
voltage of 24.0 V. The square armature consists of windings 
that are 5.15 cm on a side and rotates in a field o f 0.420 T at 
a rate o f 60.0 rev/s. How many loops o f wire should be 
wound on the square armature?

38. ( II)  A  simple generator has a 480-loop square coil 22.0 cm 
on a side. How fast must it turn in a 0.550-T field to produce 
a 120-V peak output?

39. ( II)  Show that the rms output of an ac generator is 
Vrms = N A B a ) / \ / l  where w = l i r f .

40. ( II)  A  250-loop circular armature coil w ith a diameter o f
10.0 cm rotates at 120 rev/s in a uniform  magnetic field 
of strength 0.45 T. What is the rms voltage output o f the 
generator? What would you do to the rotation frequency in 
order to double the rms voltage output?

29-5 Back EMF, Counter Torque; Eddy Current
41. (I) The back emf in a motor is 72 V  when operating at 

1200 rpm. What would be the back emf at 2500 rpm if  the 
magnetic fie ld is unchanged?

42. (I) A  motor has an armature resistance of 3.05 f i.  I f  it draws 
7.20 A  when running at fu ll speed and connected to a 120-V 
line, how large is the back emf?

43. ( II)  What w ill be the current in the motor o f Example 29-10 
if  the load causes it  to run at half speed?

44. ( II)  The back emf in a motor is 85 V  when the motor is 
operating at 1100 rpm. How would you change the m otor’s 
magnetic fie ld if  you wanted to reduce the back emf to 75 V

H 45. ( II)  A  dc generator is rated at 16 kW, 250 V, and 64 A  when 
it rotates at 1000 rpm. The resistance of the armature 
windings is 0.400. (a) Calculate the “ no-load” voltage at 
1000 rpm (when there is no circuit hooked up to the 
generator). (b ) Calculate the full-load voltage (i.e. at 64 A ) 
when the generator is run at 750 rpm. Assume that the 
magnitude o f the magnetic fie ld remains constant.

29-6 Transformers
[Assume 100% efficiency, unless stated otherwise.]

46. (I) A  transformer has 620 turns in the primary coil and 85 in 
the secondary coil. What kind of transformer is this, and by 
what factor does it change the voltage? By what factor does 
it change the current?

47. (I) Neon signs require 12 kV  for their operation. To 
operate from a 240-V line, what must be the ratio of 
secondary to primary turns of the transformer? What would 
the voltage output be if  the transformer were connected 
backward?

48. ( II)  A  model-train transformer plugs into 120-V ac and 
draws 0.35 A  while supplying 7.5 A  to the train, (a) What 
voltage is present across the tracks? (b ) Is the transformer 
step-up or step-down?

49. ( II)  The output voltage o f a 75-W transformer is 12 V, 
and the input current is 22 A . (a) Is this a step-up or a 
step-down transformer? (b ) By what factor is the voltage 
multiplied?

50. ( II)  I f  65 MW  of power at 45 kV  (rms) arrives at a 
town from a generator via 3.0-fl transmission lines, 
calculate (a) the emf at the generator end o f the lines, and
(b) the fraction of the power generated that is wasted in 
the lines.

51. ( II)  Assume a voltage source supplies an ac voltage of 
amplitude V0 between its output terminals. I f  the output 
terminals are connected to an external circuit, and an ac 
current o f amplitude /0 flows out o f the terminals, then the 
equivalent resistance of the external circuit is R eq =  Vq/ I 0.
(a) I f  a resistor R  is connected directly to the output 
terminals, what is R eq? (b) I f  a transformer w ith Np and N$ 
turns in its primary and secondary, respectively, is placed 
between the source and the resistor as shown in Fig. 29-46, 
what is Req? [Transformers can be used in ac circuits to alter 
the apparent resistance o f circuit elements, such as loud 
speakers, in order to maximize transfer of power.]



52. ( I ll)  Design a dc transmission line that can transmit 
225 MW of electricity 185 km with only a 2.0% loss. 
The wires are to be made of aluminum and the voltage is 
660 kV.

53. ( I ll)  Suppose 85 kW is to be transmitted over two 0.100-ft 
lines. Estimate how much power is saved if  the voltage is 
stepped up from 120 V to 1200 V and then down again, 
rather than simply transmitting at 120 V. Assume the trans­
formers are each 99% efficient.

29-7 Changing Produces E
54. (II) In a circular region, there is a uniform magnetic field B 

pointing into the page (Fig. 29-47). An xy coordinate 
system has its origin at the circular region’s center. A  free 
positive point charge +<2 = 1.0 juC is initia lly at rest at a 
position x  = +10 cm on the x  axis. I f  the magnitude of the 
magnetic field is now decreased at a rate of -0.10 T/s, what 
force (magnitude and direction) w ill act on +Q7

55. (II) The betatron, a device used to accelerate electrons to 
high energy, consists of a circular vacuum tube placed in a 
magnetic field (Fig. 29-48), into which electrons are 
injected. The electromagnet produces a field that (1) keeps 
the electrons in their circular orbit inside the tube, and 
(2) increases the speed of the electrons when B changes. 
(a) Explain how the electrons are accelerated. (See 
Fig. 29-48.) (b) In what direction are the electrons moving 
in Fig. 29-48 (give directions as if  looking down from 
above)? (c) Should B increase or decrease to accelerate the 
electrons? (d) The magnetic field is actually 60 Hz ac; show 
that the electrons can be accelerated only during \  of a cycle 
(asos)- (During this 
time they make 
hundreds of thou­
sands of revolutions

N

aouua u i icv u iu u u n a  -  # 7 I I I I I I
and acquire very 
high energy.)
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FIGURE 29-47
Problem 54.

FIGURE 29-48
Problems 55 and 56.
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56. ( Ill)  Show that the electrons in a betatron, Problem 55 and 
Fig. 29-48, are accelerated at constant radius if the magnetic 
field B0 at the position of the electron orbit in the tube is equal 
to half the average value of the magnetic field (i?avg) over the 
area of the circular orbit at each moment: B0 =  |i? avg. (This 
is the reason the pole faces have a rather odd shape, as 
indicated in Fig. 29-48.)

57. ( Ill)  Find a formula for the net electric field in the moving rod 
of Problem 34 as a function of time for each case, (a) and (b).

| General Problems
58. Suppose you are looking at two current loops in the plane 

of the page as shown in Fig. 29-49. When the switch S is 
closed in the left-hand coil, (a) what is the direction of the 
induced current in the other loop? (b) What is the situation 
after a “ long” time? (c) What is the direction of the induced 
current in the right-hand loop if  that loop is quickly pulled 
horizontally to the right 
(S having been closed for a 
long time)?

FIGURE 29-49
Problem 58.

OO
59. A  square loop 27.0 cm on a side has a resistance of 7.50 fi. 

It is initia lly in a 0.755-T magnetic field, with its plane 
perpendicular to B, but is removed from the field in 40.0 ms. 
Calculate the electric energy dissipated in this process.

60. Power is generated at 24 kV at a generating plant located 
85 km from a town that requires 65 MW of power at 12 kV. 
Two transmission lines from the plant to the town each have a 
resistance of 0.10 ft/km . What should the output voltage of 
the transformer at the generating plant be for an overall trans­
mission efficiency of 98.5%, assuming a perfect transformer?

61. A  circular loop of area 12 m2 encloses a magnetic field 
perpendicular to the plane of the loop; its magnitude is 
B (t) = (10T/s)£. The loop is connected to a 7.5-ft resistor

62. The primary windings of a transformer which has an 85% 
efficiency are connected to 110-V ac. The secondary 
windings are connected across a 2.4-ft, 75-W lightbulb.
(a) Calculate the current through the primary windings of the 
transformer, (b) Calculate the ratio of the number of primary 
windings of the transformer to the number of secondary 
windings of the transformer.

63. A  pair of power transmission lines each have a 0.80-ft resis­
tance and carry 740 A  over 9.0 km. If  the rms input voltage is 
42 kV, calculate (a) the voltage at the other end, (b) the power 
input, (c) power loss in the lines, and (d) the power output.

64. Show that the power loss in transmission lines, PL , is given 
by Pl = {Pj )2Rl/V 2, where PT is the power transmitted to 
the user, V  is the delivered voltage, and RL is the resistance 
of the power lines.

65. A  high-intensity desk lamp is rated at 35 W but requires 
only 12 V. It contains a transformer that converts 120-V 
household voltage, (a) Is the transformer step-up or step- 
down? (b) What is the current in the secondary coil when 
the lamp is on? (c) What is the current in the primary coil?
(d) What is the resistance of the bulb when on?

66. Two resistanceless rails rest 32 cm apart on a 6.0° ramp. 
They are joined at the bottom by a 0.60-ft resistor. A t the 
top a copper bar of mass 0.040 kg (ignore its resistance) is 
laid across the rails. The whole apparatus is immersed in a



67.

FIGURE 29-50
Problem 67.

68. A  search coil fo r measuring B  (also called a flip coil) is a 
small coil w ith N  turns, each o f cross-sectional area A . I t  is 
connected to a so-called ballistic galvanometer, which is a 
device to measure the total charge Q  that passes through it 
in a short time. The flip  coil is placed in the magnetic fie ld to 
be measured w ith its face perpendicular to the field. I t  is 
then quickly rotated 180° about a diameter. Show that 
the total charge Q  that flows in the induced current during 
this short “ flip ” time is proportional to the magnetic field B. 
In  particular, show that B  is given by

B = Q R
2N A

where R  is the total resistance o f the circuit, including that 
of the coil and that of the ballistic galvanometer which 
measures the charge Q.

69. A  ring w ith a radius of 3.0 cm and a resistance o f 0.025 f l  is 
rotated about an axis through its diameter by 90° in a 
magnetic fie ld of 0.23 T perpendicular to that axis. What is 
the largest number o f electrons that would flow past a fixed 
point in the ring as this process is accomplished?

70. A  flashlight can be made that is powered by the induced 
current from a magnet moving through a coil o f wire. The 
coil and magnet are inside a plastic tube that can be shaken 
causing the magnet to move back and forth through the coil. 
Assume the magnet has a maximum field strength of 0.05 T. 
Make reasonable assumptions and specify the size o f the 
coil and the number o f turns necessary to ligh t a standard 
1-watt, 3-V flashlight bulb.

*71. A  small electric car overcomes a 250-N friction force when 
traveling 35 km /h. The electric motor is powered by ten 12-V 
batteries connected in series and is coupled directly to the 
wheels whose diameters are 58 cm. The 270 armature coils 
are rectangular, 12 cm by 15 cm, and rotate in a 0.60-T 
magnetic field, (a) How much current does the motor draw 
to produce the required torque? (b ) What is the back emf?
(c) How much power is dissipated in the coils? (d) What 
percent o f the input power is used to drive the car?

72. What is the energy dissipated as a function o f time in a 
circular loop of 18 turns of wire having a radius of 10.0 cm 
and a resistance of 2.0 XI if  the plane of the loop is perpen­
dicular to a magnetic fie ld given by

*74. The magnetic fie ld of a “ shunt-wound” dc motor is 
produced by fie ld coils placed in parallel w ith the armature 
coils. Suppose that the field coils have a resistance o f 36.0 O 
and the armature coils 3.00 Cl. The back emf at fu ll speed is 
105 V  when the motor is connected to 115 V  dc. (a) Draw 
the equivalent circuit fo r the situations when the motor is 
just starting and when it is running fu ll speed, (b) What is 
the total current drawn by the motor at start up? (c) What is 
the total current drawn when the motor runs at fu ll speed?

75. Apply Faraday’s law, in the form of Eq. 29-8, to show that 
the static electric fie ld between 
the plates o f a parallel-plate r ” — 1
capacitor cannot drop abruptly to 
zero at the edges, but must, in fact, 
fringe. Use the path shown dashed 
in Fig. 29-52.

FIGURE 29-52
Problem 75.

78.

76. A  circular metal disk of radius R  rotates w ith angular 
velocity co about an axis through its center perpendicular to 
its face. The disk rotates in a uniform  magnetic field B  
whose direction is parallel to the rotation axis. Determine 
the emf induced between the center and the edges.

77. What is the magnitude and direction o f the electric field at 
each point in the rotating disk of Problem 76?
A  circular-shaped circuit o f radius r, containing a 
resistance R  and capacitance C, is situated w ith its plane 
perpendicular to a spatially uniform  magnetic field B 
directed into the page (Fig. 29-53). Starting at time t =  0, the 
voltage difference V\>a =  — Va across the capacitor 
plates is observed to increase w ith time t according to

= K)(l -  e~t/T), where V0 and t  are positive constants. 
Determine d B /d t, the 
rate at which the 
magnetic field magni­
tude changes with 
time. Is B  becoming 
larger or smaller as 
time increases?

B (t) -  B 0e,-t/r

X X X X X ii x

X X
V/

X

\vb
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A  thin metal rod o f length £ rotates w ith angular velocity (o 
about an axis through one end (Fig. 29-51). The rotation 
axis is perpendicular to the 
rod and is parallel to a 
uniform  magnetic field B.
Determine the emf developed 
between the ends of the rod.

FIGURE 29-51
Problem 73.
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A  coil w ith 150 turns, a radius o f 5.0 cm, and a resistance o f 
12 O surrounds a solenoid w ith 230 turns/cm and a radius o f
4.5 cm; see Fig. 29-50. The current in  the solenoid changes 
at a constant rate from 0 
to 2.0 A  in 0.10 s. Calcu­
late the magnitude and 
direction of the induced 
current in the 150-turn 
coil.

73.

FIGURE 29-53



79. In  a certain region of space near Earth’s surface, a uniform  
horizontal magnetic field o f magnitude B  exists above a 
level defined to be y  =  0. Below y  = 0, the fie ld abruptly 
becomes zero (Fig. 29-54). A  vertical square wire loop has 
resistivity p, mass density pm, diameter d, and side length t  It 
is in itia lly  at rest w ith its lower horizontal side at y  =  0 
and is then allowed to fa ll under gravity, w ith its plane 
perpendicular to the direction o f the magnetic field.
(a) While the loop is s till partially immersed in the magnetic 
field (as it falls into the zero-field region), determine the 
magnetic “ drag” force that acts on it at the moment when its 
speed is v. (b) Assume that the loop achieves a terminal 
velocity vT before its upper horizontal side exits the field. 
Determine a formula for v^. (c) I f  the loop is made of 
copper and B  = 0.80 T, find v j .

* Numerical/Computer
* 80. ( I ll)  In an experiment, a coil was mounted on a low-friction

cart that moved through the magnetic field B  o f a permanent 
magnet. The speed o f the cart v  and the induced voltage V  
were simultaneously measured, as the cart moved through 
the magnetic field, using a computer-interfaced motion sensor 
and a voltmeter. The Table below shows the collected data:

Speed, v  (m /s) 0.367 0.379 0.465 0.623 0.630
Induced voltage, V  (V) 0.128 0.135 0.164 0.221 0.222

(a) Make a graph o f the induced voltage, V, vs. the speed, v. 
Determine a best-fit linear equation for the data. Theoreti­
cally, the relationship between V  and v  is given by
V  = B N lv  where N  is the number of turns of the coil, B  is 
the magnetic field, and £ is the average of the inside and 
outside widths of the coil. In  the experiment, 
B =  0.126 T, N  =  50, and £ =  0.0561 m. (b) Find the % 
error between the slope of the experimental graph and the 
theoretical value for the slope, (c) For each o f the measured 
speeds v, determine the theoretical value o f V  and find the 
% error o f each.

x x x x x x x x

FIGURE 29-54
Problem 79.

Answers to Exercises

A : (e). D: (a) increases; (b ) yes; increases (counter torque).

B: (a) Counterclockwise; (b ) clockwise; (c) zero; E: (a) 4.2 X 10-3 V /m ; (b) 5.6 X 10-3 V /m .
(d) counterclockwise.

C: Electrons flow  clockwise (conventional current counter-



A spark plug in a car receives a high 
voltage, which produces a high 
enough electric field in the air across 
its gap to pull electrons off the 
atoms in the air-gasoline mixture 
and form a spark. The high voltage is 
produced, from the basic 12 V of the 
car battery, by an induction coil 
which is basically a transformer or 
mutual inductance. Any coil of wire 
has a self-inductance, and a changing 
current in it causes an emf to be 
induced. Such inductors are useful in 
many circuits.
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Inductance, Electromagnetic ° 
Oscillations, and AC Circuits
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CHAPTER-OPENING QUESTION—Guess now!
Consider a circuit with only a capacitor C and a coil of many loops of wire (called 
an inductor, L ) as shown. I f  the capacitor is in itia lly charged (Q =  <20), what w ill 
happen when the switch S is closed?

(a) Nothing w ill happen— the capacitor w ill remain 
charged with charge Q = Q0.

(b) The capacitor w ill quickly discharge and remain 
discharged (Q =  0).

(c) Current w ill flow until the positive charge is on 
the opposite plate of the capacitor, and then w ill - o - 
reverse— back and forth.

(d) The energy initia lly in the capacitor (UE = \Q l/C )  w ill all transfer to the coil 
and then remain that way.

(e) The system w ill quickly transfer half of the capacitor energy to the coil and 
then remain that way.

W e discussed in the last Chapter how a changing magnetic flux through 
a circuit induces an emf in that circuit. Before that we saw that an 
electric current produces a magnetic field. Combining these two 
ideas, we could predict that a changing current in one circuit ought to 

induce an emf and a current in a second nearby circuit, and even induce an emf in 
itself. We already saw an example in the previous Chapter (transformers), but now 
we w ill treat this effect in a more general way in terms of what we w ill call mutual 
inductance and self-inductance. The concept of inductance also gives us a springboard 
to treat energy storage in a magnetic field. This Chapter concludes with an analysis 
of circuits that contain inductance as well as resistance and/or capacitance.
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3 0 - 1  Mutual Inductance
Coil 1 Coil 2

h  .___.
(o2

(induced)
FIGURE 30-1 A changing current 
in one coil will induce a current in 
the second coil.

I f  two coils of wire are placed near each other, as in Fig. 30-1, a changing current 
in one w ill induce an emf in the other. According to Faraday’s law, the emf ^  
induced in coil 2 is proportional to the rate of change of magnetic flux passing through it. 
This flux is due to the current Ix in coil 1, and it is often convenient to express the 
emf in coil 2 in terms of the current in coil 1.

We let $ 2i be the magnetic flux in each loop of coil 2 created by the current in 
coil 1. If  coil 2 contains N2 closely wrapped loops, then N2<b2i is the total flux 
passing through coil 2. If  the two coils are fixed in space, N2 $21 is proportional to 
the current Ix in coil 1; the proportionality constant is called the mutual inductance, 
M21, defined by

No $21
M21 = (30-1)

h

The emf ^  induced in coil 2 due to a changing current in coil 1 is, by Faraday’s law,

*  "  - * 4 T '

We combine this with Eq. 30-1 rewritten as $ 2i = M2i h /N 2 (and take its derivative) 
and obtain

dli
% = (3«-2)

This relates the change in current in coil 1 to the emf it induces in coil 2. The 
mutual inductance of coil 2 with respect to coil 1, M21, is a “ constant” in that it 
does not depend on Ix; Af21 depends on “geometric” factors such as the size, shape, 
number of turns, and relative positions of the two coils, and also on whether iron 
(or some other ferromagnetic material) is present. For example, if the two coils in 
Fig. 30-1 are farther apart, fewer lines of flux can pass through coil 2, so M21 w ill 
be less. For some arrangements, the mutual inductance can be calculated (see 
Example 30-1). More often it is determined experimentally.

Suppose, now, we consider the reverse situation: when a changing current in 
coil 2 induces an emf in coil 1. In this case,

dl2
*  = - M n - £

where Mn  is the mutual inductance of coil 1 with respect to coil 2. It is possible to 
show, although we w ill not prove it here, that Mn = Mn . Hence, for a given 
arrangement we do not need the subscripts and we can let

M. = M-i2 = -^215

so that

dl2
% = - M - 1  (30-3a)

dt
and

dli
% =  - M ~  ( 3 0 - 3 b )

dt

The SI unit for mutual inductance is the henry (H), where 1H = lV -s /A  = lf i- s .

EXERCISE A Two coils which are close together have a mutual inductance of 330 mH.
(a) If the emf in coil 1 is 120 V, what is the rate of change of the current in coil 2? (b) If the 
rate of change of current in coil 1 is 36 A/s, what is the emf in coil 2?

786 CHAPTER 30 Inductance, Electromagnetic Oscillations, and AC Circuits



EXAMPLE 30-1 Solenoid and coil. A  long thin solenoid of length £ and 
cross-sectional area A  contains Nx closely packed turns of wire. Wrapped around 
it is an insulated coil of N2 turns, Fig. 30-2. Assume all the flux from coil 1 (the 
solenoid) passes through coil 2, and calculate the mutual inductance.

APPROACH We first determine the flux produced by the solenoid, all of which passes 
uniformly through coil N2, using Eq. 28-4 for the magnetic field inside the solenoid:

Ni
B — Vo A >

where n =  N j l  is the number of loops in the solenoid per unit length, and is 
the current in the solenoid.
SOLUTION The solenoid is closely packed, so we assume that all the flux in the 
solenoid stays inside the secondary coil. Then the flux <E>2i through coil 2 is

Nx
<l>2i — BA — fi0 —  Ii A.

Then the mutual inductance is

_ -^2^21 _ VO M  N2 A  
h  t

NOTE We calculated M21; if we had tried to calculate M12, it would have been 
difficult. Given M12 = M21 =  M , we did the simpler calculation to obtain M. 
Note again that M  depends only on geometric factors, and not on the currents.

FIGURE 30-2 Example 30-1.

CONCEPTUAL EXAMPLE 50-2 I Reversing the coils. How would Example 30-1 
change if the coil with N2 turns was inside the solenoid rather than outside the solenoid?

RESPONSE The magnetic field inside the solenoid would be unchanged. The flux 
through the coil would be BA where A  is the area of the coil, not of the solenoid 
as in Example 30-1. Solving for M  would give the same formula except that A  
would refer to the coil, and would be smaller.

EXERCISE B Which solenoid and coil combination shown in Fig. 30-3 has the largest 
mutual inductance? Assume each solenoid is the same.

/TOPPW} /WWSHffil (ISfflWJW)
(a) (b) (c) (d) (e)

FIGURE 30-3 Exercise B.

A  transformer is an example of mutual inductance in which the coupling is 
maximized so that nearly all flux lines pass through both coils. Mutual inductance P H Y S I C S  A P P L I E D
has other uses as well, including some types of pacemakers used to maintain blood Pacemaker 
flow in heart patients (Section 26-5). Power in an external coil is transmitted via 
mutual inductance to a second coil in the pacemaker at the heart. This type has the 
advantage over battery-powered pacemakers in that surgery is not needed to 
replace a battery when it wears out.

Mutual inductance can sometimes be a problem, however. Any changing 
current in a circuit can induce an emf in another part of the same circuit or in a 
different circuit even though the conductors are not in the shape of a coil. The 
mutual inductance M  is usually small unless coils with many turns and/or iron 
cores are involved. However, in situations where small voltages are being used, 
problems due to mutual inductance often arise. Shielded cable, in which an inner 
conductor is surrounded by a cylindrical grounded conductor (Fig. 28-12), is often 
used to reduce the problem.

SECTION 30-1 Mutual Inductance 787



3 0 - 2  Self-Inductance

788 CHAPTER 30

The concept of inductance applies also to a single isolated coil of N  turns. When a 
changing current passes through a coil (or solenoid), a changing magnetic flux is 
produced inside the coil, and this in turn induces an emf in that same coil. This 
induced emf opposes the change in flux (Lenz’s law). For example, if the current 
through the coil is increasing, the increasing magnetic flux induces an emf that 
opposes the original current and tends to retard its increase. I f  the current is 
decreasing in the coil, the decreasing flux induces an emf in the same direction as 
the current, thus tending to maintain the original current.

The magnetic flux <E>5 passing through the N  turns of a coil is proportional to 
the current I  in the coil, so we define the self-inductance L  (in analogy to mutual 
inductance, Eq. 30-1) as

L  =  (30-4)

Then the emf % induced in a coil of self-inductance L  is, from Faraday’s law,

*  ■ - " f 1  ■ - L f  <” -=» 
Like mutual inductance, self-inductance is measured in henrys. The magnitude 
of L  depends on the geometry and on the presence of a ferromagnetic material. 
Self-inductance (inductance, for short) can be defined, as above, for any circuit or 
part of a circuit.

Circuits always contain some inductance, but often it is quite small unless the 
circuit contains a coil of many turns. A  coil that has significant self-inductance L  is 
called an inductor. Inductance is shown on circuit diagrams by the symbol

-nnnnp-; [inductor symbol]

any resistance an inductor has should also be shown separately. Inductance can serve 
a useful purpose in certain circuits. Often, however, inductance is to be avoided in a 
circuit. Precision resistors are normally wire wound and thus would have inductance 
as well as resistance. The inductance can be minimized by winding the insulated wire 
back on itself in the opposite sense so that the current going in opposite directions 
produces little  net magnetic flux; this is called a noninductive winding.

If  an inductor has negligible resistance, it is the inductance (or induced emf) 
that controls a changing current. I f  a source of changing or alternating voltage is 
applied to the coil, this applied voltage w ill just be balanced by the induced emf of 
the coil (Eq. 30-5). Thus we can see from Eq. 30-5 that, for a given % if  the 
inductance L  is large, the change in the current w ill be small, and therefore 
the current itself if  it is ac w ill be small. The greater the inductance, the less the ac 
current. An inductance thus acts something like a resistance to impede the flow of 
alternating current. We use the term reactance or impedance for this quality of an 
inductor. We w ill discuss reactance and impedance more fully in Sections 30-7 
and 30-8. We shall see that reactance depends not only on the inductance L, but also 
on the frequency. Here we mention one example of its importance. The resistance 
of the primary in a transformer is usually quite small, perhaps less than 1 ft. If  
resistance alone limited the current in a transformer, tremendous currents would 
flow when a high voltage was applied. Indeed, a dc voltage applied to a transformer 
can burn it out. It is the induced emf (or reactance) of the coil that limits the 
current to a reasonable value.

Common inductors have inductances in the range from about 1 fiR  to about 
1H (where 1 H = 1 henry = 1 f l  • s ).

"E H E H S E iS B  Solenoid inductance, (a) Determine a formula for the self­
inductance L  of a tightly wrapped and long solenoid containing N  turns of wire in 
its length £ and whose cross-sectional area is A . (b) Calculate the value of L  if 
N  = 100, £ =  5.0 cm, A  =  0.30 cm2 and the solenoid is air filled.

APPROACH To determine the inductance L, it is usually simplest to start with 
Eq. 30-4, so we need to first determine the flux.



SOLUTION (a) According to Eq. 28-4, the magnetic field inside a solenoid 
(ignoring end effects) is constant: B = fjb0n l where n = N /l .  The flux is 

= BA =  hqN IA/1, s o

_ N ® b _  Mo N 2A
I  I

(ft) Since fi0 =  477 X 10_7T -m /A , then
(4tt X 10_7T-m /A)(100)2(3.0 X 10“

L =
5 m2)

(5.0 X 10-2 m )
7.5 fiH.

NOTE Magnetic field lines “ stray” out of the solenoid (see Fig. 28-15), especially 
near the ends, so our formula is only an approximation.

CONCEPTUAL EXAMPLE 50-41 Direction of emf in inductor. Current passes 
through the coil in Fig. 30-4 from left to right as shown, (a) I f  the current is increasing 
with time, in which direction is the induced emf? (b) I f  the current is decreasing in 
time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose the 
change in magnetic flux. I f  the current is increasing, so is the magnetic flux. The 
induced emf acts to oppose the increasing flux, which means it acts like a source 
of emf that opposes the outside source of emf driving the current. So the induced 
emf in the coil acts to oppose I  in Fig. 30-4a. In other words, the inductor might 
be thought of as a battery with a positive terminal at point A  (tending to block 
the current entering at A ), and negative at point B. (b) I f  the current is 
decreasing, then by Lenz’s law the induced emf acts to bolster the flux— like a 
source of emf reinforcing the external emf. The induced emf acts to increase I  in 
Fig. 30-4b, so in this situation you can think of the induced emf as a battery with 
its negative terminal at point A  to attract more (+ ) current to move to the right.

1 - r - 'r n n n n n n rincreasing +
(a)

, - ^ n n n n n n p - S -decreasing -  +
(b)

FIGURE 30-4 Example 30-4.
The + and -  signs refer to the 
induced emf due to the changing 
current, as if points A and B were 
the terminals of a battery (and 
the coiled loops were the inside of 
the battery).

EXAMPLE 30-5 Coaxial cable inductance. Determine the inductance per 
unit length of a coaxial cable whose inner conductor has a radius rx and the outer 
conductor has a radius r2, Fig. 30-5. Assume the conductors are thin hollow 
tubes so there is no magnetic field within the inner conductor, and the magnetic 
field inside both thin conductors can be ignored. The conductors carry equal 
currents I  in opposite directions.
APPROACH We need to find the magnetic flux, <E>5 = jB -d A , between 
the conductors. The lines of B are circles surrounding the inner conductor 
(only one is shown in Fig. 30-5a). From Ampere’s law, <J>B‘d l  = 
the magnitude of the field along the circle at a distance r from the center, when 
the inner conductor carries a current /, is (Example 28-6):

Mo I  
2irr

The magnetic flux through a rectangle of width dr and length I (along the cable, 
Fig. 30-5b), a distance r from the center, is

B =

B(Ur) =d® B =

SOLUTION The total flux in a length I of cable is
l i0I l  [ r2 dr f io ll  

k  r
= I d<$n = In —  1

h2tt }Tl r 2tt

Since the current I  all flows in one direction in the inner conductor, and the same 
current I  all flows in the opposite direction in the outer conductor, we have only 
one turn, so iV = 1 in Eq. 30-4. Hence the self-inductance for a length I is

The inductance per unit length is 
L _  Po r2
l  2-ir “ r /

Note that L  depends only on geometric factors and not on the current /.

Mo^t r2
—— In —  
277 7i

FIGURE 30-5 Example 30-5. 
Coaxial cable: (a) end view, (b) side 
view (cross section).

X X X  X X X X  X  X  X  X X
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3 0 —3 Energy Stored in a Magnetic Field
When an inductor of inductance L  is carrying a current I  which is changing at a 
rate d i/d t, energy is being supplied to the inductor at a rate

P  = 1% = L I ^ -  
dt

where P  stands for power and we usedf Eq. 30-5. Let us calculate the work needed 
to increase the current in an inductor from zero to some value I. Using this last 
equation, the work dW  done in a time dt is

dW  = P d t  = L I dl.

Then the total work done to increase the current from zero to I  is

■ h  -  I '1
W  =  I dW  =  I L I  d l  =  \ L I \

This work done is equal to the energy U stored in the inductor when it is carrying 
a current I  (and we take U =  0 when I  =  0):

U =  \ L I 2. (30-6)

This can be compared to the energy stored in a capacitor, C, when the potential 
difference across it is V  (see Section 24-4):

u  =  \ c v 2.

EXERCISE C What is the inductance of an inductor if it has a stored energy of 1.5 J when 
there is a current of 2.5 A in it? (a) 0.48 H, (b) 1.2 H, (c) 2.1 H, (d) 4.7 H, (e) 19 H.

Just as the energy stored in a capacitor can be considered to reside in the 
electric field between its plates, so the energy in an inductor can be considered to 
be stored in its magnetic field. To write the energy in terms of the magnetic field, 
let us use the result of Example 30-3, that the inductance of an ideal solenoid (end 
effects ignored) is L = fi0N 2A/£. Because the magnetic field B in a solenoid is 
related to the current /  by B = fi0NI/£, we have

U = \ L I 2 =  -

= \  —  AL2 Vo

1 f y 0N 2A \ f  B l V

2 \ * ) \ voNj

We can think of this energy as residing in the volume enclosed by the windings, 
which is A t  Then the energy per unit volume or energy density is

1 B2
u = energy density = — ----  (30-7)

2 Vo

This formula, which was derived for the special case of a solenoid, can be shown to 
be valid for any region of space where a magnetic field exists. I f  a ferromagnetic 
material is present, /jl0 is replaced by p .  This equation is analogous to that for an 
electric field , \ e 0E 2, Eq. 24-6.

3 0 - 4  LR  Circuits
Any inductor w ill have some resistance. We represent this situation by drawing its 
inductance L  and its resistance R separately, as in Fig. 30-6a. The resistance R could 
also include any other resistance present in the circuit. Now we ask, what happens when 
a battery or other source of dc voltage V0 is connected in series to such an LR  circuit?
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A t the instant the switch connecting the battery is closed, the current starts to flow. 
It  is opposed by the induced emf in the inductor which means point B in Fig. 30-6a 
is positive relative to point C. However, as soon as current starts to flow, there is 
also a voltage drop of magnitude IR  across the resistance. Hence the voltage 
applied across the inductance is reduced and the current increases less rapidly. The 
current thus rises gradually as shown in Fig. 30-6b, and approaches the steady value 
Anax = V0/R 0, f° r which all the voltage drop is across the resistance.

We can show this analytically by applying K irchhoff’s loop rule to the circuit 
of Fig. 30-6a. The emfs in the circuit are the battery voltage V 0 and the emf 
% = —L (d l /d t )  in the inductor opposing the increasing current. Hence the sum of 
the potential changes around the loop is

Vo — IR — L t -d t
0,

where I  is the current in the circuit at any instant. We rearrange this to obtain

(30-8)
dt

+ R I =  Vn

This is a linear differential equation and can be integrated in the same way we did 
in Section 26-5 for an R C  circuit. We rewrite Eq. 30-8 and then integrate:

d l  [* d t 
T '

Then

or

where

f = f J /=0 V0 -  IR  Jo

~ b n
V0 ~  IR

I  = -*/r) (30-9)

(30-10)

is the time constant of the L R  circuit. The symbol r  represents the time required 
for the current I  to reach (1 -  1 /e )  =  0.63 or 63% of its maximum value (V0/R ). 
Equation 30-9 is plotted in Fig. 30-6b. (Compare to the R C  circuit, Section 26-5.)

| EXERCISE D Show that L /R  does have dimensions of time. (See Section 1-7.)

Now let us flip  the switch in Fig. 30-6a so that the battery is taken out of the 
circuit, and points A  and C are connected together as shown in Fig. 30-7 at 
the moment when the switching occurs (call it t =  0) and the current is I0. Then 
the differential equation (Eq. 30-8) becomes (since V 0 =  0):

+  R I  = 0.
dt
We rearrange this equation and integrate: 

d lV dI f* R j
L t  ■  -[~ L dt

where I  = I0 at t =  0, and 1 =  1 at time t. 
We integrate this last equation to obtain

i 1 R
l n %  = ~ V

or
I  = h e - ' /T (30-11)

where again the time constant is r  = L /R . The current thus decays exponentially 
to zero as shown in Fig. 30-8.

This analysis shows that there is always some “ reaction tim e” when an 
electromagnet, fo r example, is turned on or off. We also see that an L R  circuit has 
properties similar to an R C  circuit (Section 26-5). Unlike the capacitor case, 
however, the time constant here is inversely proportional to R.

r — W V
R

Switch

(a) V0

FIGURE 30-6 (a) LR circuit; 
(b) growth of current when 
connected to battery.

r — W \r
L

V0
FIGURE 30-7 The switch is flipped 
quickly so the battery is removed but 
we still have a circuit. The current at 
this moment (call it t = 0) is /0.

FIGURE 30-8 Decay of the 
current in Fig. 30-7 in time after the 
battery is switched out of the circuit.
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FIGURE 30-9 Example 30-6.

( ^ P H Y S I C S  A P P L I E D
Surge protection

EXAMPLE 30-6 An LR circuit. A t t = 0, a 12.0-V battery is connected in 
series with a 220-mH inductor and a total of 30-fl resistance, as shown in 
Fig. 30-9. (a) What is the current at t =  0? (b) What is the time constant?
(c) What is the maximum current? (d ) How long w ill it take the current to reach 
half its maximum possible value? (e) A t this instant, at what rate is energy being 
delivered by the battery, and ( /)  at what rate is energy being stored in the 
inductor’s magnetic field?

APPROACH We have the situation shown in Figs. 30-6a and b, and we can apply 
the equations we just developed.
SOLUTION (a) The current cannot instantaneously jump from zero to some 
other value when the switch is closed because the inductor opposes the change 
(%L =  - L (d l /d t)). Hence just after the switch is closed, I  is still zero at t =  0 
and then begins to increase.
(b) The time constant is, from Eq. 30-10, r  = L /R  =  (0.22 H )/(30 f l)  = 7.3 ms.
(c) The current reaches its maximum steady value after a long time, when 
d i/d t  =  0 so / max = V JR  =  12.0 V /3 0 fl = 0.40 A.
(d) We set I  =  ^ /max = V J2R  in Eq. 30-9, which gives us

1 -  e*!' =  \

e-'* = i-
We solve for t :

t =  T in 2 = (7.3 X 10“3s)(0.69) = 5.0ms.

(ie) A t this instant, I  =  Imax/2  = 200 mA, so the power being delivered by the 
battery is

P  = IV  = (0.20 A ) (12 V) = 2.4 W.

( /)  From Eq. 30-6, the energy stored in an inductor L  at any instant is 

U = I L I2

where I  is the current in the inductor at that instant. The rate at which the energy 
changes is

dU  = cti 
dt d t'

We can differentiate Eq. 30-9 to obtain d i/d t, or use the differential equation, 
Eq. 30-8, directly:

dU  i ( l % )  =  I(V0 - R I )dt \ dt
=  (0.20 A )[12 V -  (30 f l)  (0.20 A )] = 1.2 W.

Since only part of the battery’s power is feeding the inductor at this instant, 
where is the rest going?

EXERCISE E A resistor in series with an inductor has a time constant of 10 ms. When the 
same resistor is placed in series with a 5-//F capacitor, the time constant is 5 X  10_6s. 
What is the value of the inductor? (a) 5 juH; (b) 10 ̂ iH; (c) 5 mH; (d) 10 mH; (e) not 
enough information to determine it.

An inductor can act as a “surge protector” for sensitive electronic equipment that 
can be damaged by high currents. If equipment is plugged into a standard wall plug, a 
sudden “ surge,” or increase, in voltage w ill normally cause a corresponding large 
change in current and damage the electronics. However, if there is an inductor in 
series with the voltage to the device, the sudden change in current produces an 
opposing emf preventing the current from reaching dangerous levels.
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3 0 - 5  LC  Circuits and Electromagnetic 
Oscillations

In any electric circuit, there can be three basic components: resistance, capacitance, 
and inductance, in addition to a source of emf. (There can also be more complex 
components, such as diodes or transistors.) We have previously discussed both RC  
and LR  circuits. Now we look at an L C  circuit, one that contains only a capaci­
tance C and an inductance, L, Fig. 30-10. This is an idealized circuit in which we 
assume there is no resistance; in the next Section we w ill include resistance. Let us 
suppose the capacitor in Fig. 30-10 is initia lly charged so that one plate has 
charge Q0 and the other plate has charge - Q 0, and the potential difference across 
it is V  = Q /C  (Eq. 24-1). Suppose that at t =  0, the switch is closed. The 
capacitor immediately begins to discharge. As it does so, the current I  through 
the inductor increases. We now apply Kirchhoff’s loop rule (sum of potential 
changes around a loop is zero):

Because charge leaves the positive plate on the capacitor to produce the 
current I  as shown in Fig. 30-10, the charge Q on the (positive) plate of 
the capacitor is decreasing, so I  =  —d Q /d t. We can then rewrite the above 
equation as

d2Q Q 
dt2 LC

2 ■ = 0. (30-12)

This is a familiar differential equation. It has the same form as the equation for 
simple harmonic motion (Chapter 14, Eq. 14-3). The solution of Eq. 30-12 can be 
written as

Q = Q0cos(o)t +  <f>) (30-13)

where Q0 and $  are constants that depend on the in itia l conditions. We insert 
Eq. 30-13 into Eq. 30-12, noting that d2Q /d t2 =  ~(o2Q0 cos (a t + cf>); thus

—a)2Q0cos(o)t + (f>) + — —  Q0cos((ot + </>)= 0
LC

^ -O)2 +  cos((ot + (f>) = 0.

This relation can be true for all times t only if ( - (o 2 + 1/LC) = 0, which tells us that

Equation 30-13 shows that the charge on the capacitor in an L C  circuit oscillates 
sinusoidally. The current in the inductor is

dQ
I  = = o)Q0sin(o)t + (j>)

at

=  /Osin(otf + cf>); (30-15)

so the current too is sinusoidal. The maximum value of I  is I0 = (oQ0 = Q J  \ / L C . 
Equations 30-13 and 30-15 for Q and I  when <£ = 0 are plotted in Fig. 30-11.

Switch

FIGURE 30-10 An LC circuit.

FIGURE 30-11 Charge Q and 
current /  in an LC circuit. The period 
T = j  = = IttV l C.

L

I (after switch 
is closed)
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FIGURE 30-12 Energy UE 
(red line) and UB (blue line) stored 
in the capacitor and the inductor as 
a function of time. Note how the 
energy oscillates between electric 
and magnetic. The dashed line at the 
top is the (constant) total energy 
U = UE + UB.

Now let us look at L C  oscillations from the point of view of energy. The 
energy stored in the electric field of the capacitor at any time t is (see Eq. 24-5):

%  = \ %  = S cos2(wt + *>•
The energy stored in the magnetic field of the inductor at the same instant is (Eq. 30-6)

UB = |  L I2 = L,JlQ° sin2((uf + <f>) = ^ s in 2(<ot +  4>)

where we used Eq. 30-14. I f  we let 0 = 0, then at times t = 0, t = \T , t =  T, 
and so on (where T  is the period = 1 / f  =  2tt/(d ), we have UE = Q I/2C  and 
UB =  0. That is, all the energy is stored in the electric field of the capacitor. But at 
t = \T , \ T ,  and so on, UE =  0 and UB = QI/2C, and so all the energy is stored 
in the magnetic field of the inductor. A t any time t, the total energy is

1 O2 1
u  = UE + UB = 2 f  +  2 L12

=  ^ [c o s  2((*)t + <f>) + sin 2{(x)t + (f))] = ~  (30-16)

Hence the total energy is constant, and energy is conserved.
What we have in this L C  circuit is an LC oscillator or electromagnetic oscillation. 

The charge Q oscillates back and forth, from one plate of the capacitor to the 
other, and repeats this continuously. Likewise, the current oscillates back and forth 
as well. They are also energy oscillations: when Q  is a maximum, the energy is all 
stored in the electric field of the capacitor; but when Q reaches zero, the current I  
is a maximum and all the energy is stored in the magnetic field of the inductor. 
Thus the energy oscillates between being stored in the electric field of the capacitor 
and in the magnetic field of the inductor. See Fig. 30-12.

EXERCISE F Return to the Chapter-Opening Question, page 785, and answer it again now. 
Try to explain why you may have answered differently the first time.

LC circuit. A  1200-pF capacitor is fully charged by a 500-V 
dc power supply. It is disconnected from the power supply and is connected, at 
t =  0, to a 75-mH inductor. Determine: (a) the in itia l charge on the capacitor;
(b) the maximum current; (c) the frequency /  and period T  of oscillation; and
(d) the total energy oscillating in the system.

APPROACH We use the analysis above, and the definition of capacitance Q = CV  
(Chapter 24).
SOLUTION (a) The 500-V power supply, before being disconnected, charged the 
capacitor to a charge of

Q0 = C V  = (1.2 X 1CT9F)(500V) = 6 .0 x l(T 7C.

(b) The maximum current, /max, is (see Eqs. 30-14 and 30-15)

r -  n  -  J 2 o _  _ (6 -0 X l0 -7C) _
-̂ max <*>Qo /------ r ---------------5— r mA.

V  LC V (0.075 H )(l.2  X 10“9 F)

(c) Equation 30-14 gives us the frequency:

f  =  =  7------ ~/—  =  l ^ k H z ,
(IttV l C)

and the period T  is

T  = j  = 6.0 X 10~5 s.

(d ) Finally the total energy (Eq. 30-16) is

Q l (6.0 x  10-7C)2 
U  = ^  = 1.5 x  10-4J.

2C 2(1.2 X  10~9F)
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3 0 - 6  L C  Oscillations with 
Resistance ( L R C  Circuit)

The L C  circuit discussed in the previous Section is an idealization. There is always 
some resistance R  in any circuit, and so we now discuss such a simple L R C  circuit, 
Fig. 30-13.

Suppose again that the capacitor is in itia lly given a charge Q0 and the battery 
or other source is then removed from the circuit. The switch is closed at t =  0. 
Since there is now a resistance in the circuit, we expect some of the energy to be 
converted to thermal energy, and so we don’t expect undamped oscillations 
as in a pure L C  circuit. Indeed, if we use Kirchhoff’s loop rule around this circuit, 
we obtain

dt
Q

which is the same equation we had in Section 30-5 with the addition of the voltage 
drop IR  across the resistor. Since I  = —dQ /d t, as we saw in Section 30-5, this 
equation becomes

d 2Q dQ
dtl ^f  + r ~  +  - q  ~

(30-17)

This second-order differential equation in the variable Q has precisely the same 
form as that for the damped harmonic oscillator, Eq. 14-15:

d 2x , dx 
m — -r- + b —— I- kx  = 0. 

dt2 dt

Hence we can analyze our L R C  circuit in the same way as for damped harmonic 
motion, Section 14-7. Our system may undergo damped oscillations, curve A  in 
Fig. 30-14 (underdamped system), or it may be critically damped (curve B), or 
overdamped (curve C), depending on the relative values of R, L, and C. Using the 
results of Section 14-7, with m replaced by L, b by R, and k  by C-1, we find that 
the system w ill be underdamped when

, 4 L

and overdamped for R 2 >  AL/C. Critical damping (curve B in Fig. 30-14) 
occurs when R2 = AL/C. If R  is smaller than y /A L /C , the angular frequency, a/, 
w ill be

co =
LC

R 2
AL2

(30-18)

(compare to Eq. 14-18). And the charge Q as a function of time w ill be

Q = G0< f^ c o s (a > 'f  + <f>) (30-19)

/  Switch

FIGURE 30-13 An LRC circuit.

FIGURE 30-14 Charge Q on the 
capacitor in an LRC circuit as a 
function of time: curve A is for 
underdamped oscillation 
(R2 < AL/C), curve B is for 
critically damped (R2 = A L/C), 
and curve C is for overdamped 
(R2 > AL/C).

where 0 is a phase constant (compare to Eq. 14-19).
Oscillators are an important element in many electronic devices: radios and 

television sets use them for tuning, tape recorders use them (the “bias frequency” ) 
when recording, and so on. Because some resistance is always present, electrical 
oscillators generally need a periodic input of power to compensate for the energy 
converted to thermal energy in the resistance.
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EXAMPLE 30-8 Damped oscillations. A t t = 0, a 40-mH inductor is placed 
in series with a resistance R =  3.011 and a charged capacitor C = 4.8 /jlF.
(a) Show that this circuit w ill oscillate. (b) Determine the frequency, (c) What is 
the time required for the charge amplitude to drop to half its starting value?
(d) What value of R w ill make the circuit nonoscillating?

APPROACH We first check R 2 vs. 4L /C ; then use Eqs. 30-18 and 30-19. 
SOLUTION (a) In order to oscillate, the circuit must be underdamped, so we must 
have R 2 <  4L /C . Since R 2 =  9.0 D2 and 4L /C  =  4(0.040 H)/(4.8 X 10“6F) =
3.3 X 104 Cl2, this relation is satisfied, so the circuit w ill oscillate.
(b) We use Eq. 30-18:

I 1 R 2
J o_ o_ \ l  T S-* a t 22tt 4 V

=  3.6 X 10 Hz.

(c) From Eq. 30-19, the amplitude w ill be half when

2L
or

= ^ ln 2  = 18ms. 
R

(d) To make the circuit critically damped or overdamped, we must use the criterion 
R2 > 4L /C  =  3.3 X 104f l2. Hence we must have R >  180 ft.

FIGURE 30-15 (a) Resistor 
connected to an ac source.
(b) Current (blue curve) is in phase 
with the voltage (red) across a 
resistor.

■ 0 -
(a)

3 0 -7  AC Circuits with AC Source
We have previously discussed circuits that contain combinations of resistor, capacitor, 
and inductor, but only when they are connected to a dc source of emf or to no source. 
Now we discuss these circuit elements when they are connected to a source of 
alternating voltage that produces an alternating current (ac).

First we examine, one at a time, how a resistor, a capacitor, and an inductor 
behave when connected to a source of alternating voltage, represented by the symbol

• “ (Q - *  [alternating voltage]

which produces a sinusoidal voltage of frequency / .  We assume in each case that 
the emf gives rise to a current

I  = /o cos 2-7r f t = Iq  c o s  (ot (30-20)

where t is time and I0 is the peak current. Remember (Section 25-7) that 
V V 5  (Eqs. 25-9).V U  = V o/y/2  and I,

Resistor
When an ac source is connected to a resistor as in Fig. 30-15a, the current 
increases and decreases with the alternating voltage according to Ohm’s law

V  =  IR =  /(, R cos cot =  V() cos cot

where V0 = I0R  is the peak voltage as a function of time. Figure 30-15b shows 
the voltage (red curve) and the current (blue curve). Because the current is zero 
when the voltage is zero and the current reaches a peak when the voltage does, we 
say that the current and voltage are in phase. Energy is transformed into heat 
(Section 25-7), at an average rate

P  = IV  = V 2mj R .

Inductor
In Fig. 30-16a an inductor of inductance L  (symbol -^nnRP-) is connected to the 
ac source. We ignore any resistance it might have (it is usually small). The voltage 
applied to the inductor w ill be equal to the “back” emf generated in the inductor by the 
changing current as given by Eq. 30-5. This is because the sum of the electric potential 
changes around any closed circuit must add up to zero, according to Kirchhoff s rule.
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Thus

dt
or (inserting Eq. 30-20) 

V  =
d l

L —  = —a)LI0 sin cot. 
dt

(30-21)

(30-22a)

Using the identity sin0 = -cos(0 + 90°) we can write

V  = coLI0cos(cot + 90°) = V0 cos(cot + 90°) 
where

y0 = /0 o)L (30-22b)
is the peak voltage. The current I  and voltage V  as a function of time are graphed 
for the inductor in Fig. 30-16b. It is clear from this graph, as well as from 
Eqs. 30-22, that the current and voltage are out of phase by a quarter cycle, which 
is equivalent to 7r/2 radians or 90°. We see from the graph that 

the current lags the voltage by 90° in an inductor.
That is, the current in an inductor reaches its peaks a quarter cycle later than the 
voltage does. Alternatively, we can say that the voltage leads the current by 90°.

Because the current and voltage in an inductor are out of phase by 90°, the product
IV  (= power) is as often positive as it is negative (Fig. 30-16b). So no energy is trans­
formed in an inductor on the average; and no energy is dissipated as thermal energy.

Just as a resistor impedes the flow of charge, so too an inductor impedes the 
flow of charge in an alternating current due to the back emf produced. For a 
resistor R, the peak current and peak voltage are related by V0 = I0R. We can 
write a similar relation for an inductor:

= [maximum or rms values,] (30_23a)
0 0 L i  not at any instant J v ’

where, from Eq. 30-22b (and using co =  2 irf where /  is the frequency of the ac), 
X L = coL =  l ir fL .  (30-23b)

The term X L is called the inductive reactance of the inductor, and has units of ohms. 
The greater X L is, the more it impedes the flow of charge and the smaller the current. 
X L is larger for higher frequencies /  and larger inductance L.

Equation 30-23a is valid for peak values 70 and V0; it is also valid for rms 
values, = ITmsX L. Because the peak values of current and voltage are not 
reached at the same time, Eq. 30-23a is not valid at a particular instant, as is the 
case for a resistor (V  = IR ).

Note from Eq. 30-23b that if co = 2 irf =  0 (so the current is dc), there is no 
back emf and no impedance to the flow of charge.

Reactance of a coil. A  coil has a resistance R =  1.00 f i  
and an inductance of 0.300 H. Determine the current in the coil if  (a) 120-V dc is 
applied to it, (b) 120-V ac (rms) at 60.0 Hz is applied.

APPROACH When the voltage is dc, there is no inductive reactance 
(X L = 2ir fL  = 0 since /  = 0), so we apply Ohm’s law for the resistance. When 
the voltage is ac, we calculate the reactance X L and then use Eq. 30-23a. 
SOLUTION (a) With dc, we have no X L so we simply apply Ohm’s law:

120 V
= 120 A.1.00 ft

(b) The inductive reactance is
X L = 2 ir fL  =  (6.283)(60.0 s_1)(0.300 H) = 113 ft. 

In comparison to this, the resistance can be ignored. Thus,
120 V

I  rms. =  1.06 A.
x L 113 ft

NOTE It might be tempting to say that the total impedance is 113 f l  + 1 f l  = 114 ft. 
This might imply that about 1% of the voltage drop is across the resistor, or 
about IV ; and that across the inductance is 119 V. Although the IV  across the 
resistor is correct, the other statements are not true because of the alteration in 
phase in an inductor. This w ill be discussed in the next Section.

— nnnnp—

■ 0 -
(a)

=  Vq cos (cot + 90°)
(b)

FIGURE 30-16 (a) Inductor 
connected to an ac source.
(b) Current (blue curve) lags voltage 
(red curve) by a quarter cycle or 90°.
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(a)

= cos (cot -  90°) 
(b)

FIGURE 30-17 (a) Capacitor 
connected to an ac source.
(b) Current leads voltage by a 
quarter cycle, or 90°.

Capacitor
When a capacitor is connected to a battery, the capacitor plates quickly acquire 
equal and opposite charges; but no steady current flows in the circuit. A  capacitor 
prevents the flow of a dc current. But if a capacitor is connected to an alternating 
source of voltage, as in Fig. 30-17a, an alternating current w ill flow continuously. 
This can happen because when the ac voltage is first turned on, charge begins to 
flow and one plate acquires a negative charge and the other a positive charge. But 
when the voltage reverses itself, the charges flow in the opposite direction. Thus, for 
an alternating applied voltage, an ac current is present in the circuit continuously.

Let us look at this in more detail. By K irchhoff s loop rule, the applied source 
voltage must equal the voltage V  across the capacitor at any moment: 

v - §
where C is the capacitance and Q is the charge on the capacitor plates. The 
current I  at any instant (given as /  = /0 cos cot, Eq. 30-20) is

= * 2 .
dt

I0 cos cot.

Hence the charge Q on the plates at any instant is given by

Q = dQ  = I0 c o s  cot dt 
Jo Jo

Then the voltage across the capacitor is

/o . , —  sin cot. co

coC
sin cot.

Using the trigonometric identity sin0 = cos(90° -  6) =  cos(6 -  90°), we can 
rewrite this as

where

V  = L

Vn =  In

] cos (cot -  90°) =

coC

V0 cos (cot -  90°) (30-24a)

(30-24b)
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is the peak voltage. The current I  (= /0 cos cot) and voltage V  (Eq. 30-24a) across 
the capacitor are graphed in Fig. 30-17b. It is clear from this graph, as well as a 
comparison of Eq. 30-24a with Eq. 30-20, that the current and voltage are out of 
phase by a quarter cycle or 90° (tt/2  radians):

The current leads the voltage across a capacitor by 90°.
Alternatively we can say that the voltage lags the current by 90°. This is the oppo­
site of what happens for an inductor.

Because the current and voltage are out of phase by 90°, the average power 
dissipated is zero, just as for an inductor. Energy from the source is fed to the 
capacitor, where it is stored in the electric field between its plates. As the field 
decreases, the energy returns to the source. Thus only a resistance will dissipate 
energy as thermal energy in an ac circuit.

A  relationship between the applied voltage and the current in a capacitor can 
be written just as for an inductance:

[maximum or rms values, 
not at any instant

where X c is the capacitive reactance of the capacitor, and has units of ohms; X c is 
given by (see Eq. 30-24b):

* c = i  = d f C '  <30- 25b>
When frequency /  and/or capacitance C are smaller, X c is larger and thus impedes 
the flow of charge more. That is, when X c is larger, the current is smaller (Eq. 3(>-25a). 
In the next Section we use the term impedance to represent reactances and resistance.

Equation 30-25a relates the peak values of V  and /, or the rms values 
(̂ rms = A-ms^c)- But it is not valid at a particular instant because I  and V  are not 
in phase.

Vq =  h  X c (30-25a)



Note from Eq. 30-25b that for dc conditions, co = 2 irf = 0 and X c becomes 
infinite. This is as it should be, since a pure capacitor does not pass dc current. 
Also, note that the reactance of an inductor increases with frequency, but that of a 
capacitor decreases with frequency.

EXAMPLE 30-10 Capacitor reactance. What is the rms current in the circuit 
of Fig. 30-17a if C = 1.0 /jlF  and Vrms = 120 V? Calculate (a) for /  = 60 Hz, 
and then (b) for /  = 6.0 X 105 Hz.

APPROACH We find the reactance using Eq. 30-25b, and solve for current in the 
equivalent form of Ohm’s law, Eq. 30-25a.
SOLUTION (a) X c = l /2 ir fC  =  l/(6.28)(60s“1)(l.O X 10“ 6F) = 2 .7m . Therms 
current is (Eq. 30-25a):

Vrms 120 V
2.7 X 103n

= 44 mA.

(b) For f  =  6.0 X 105 Hz, X c w ill be 0.27 I I  and / rms = 440 A, vastly larger! 
NOTE The dependence on /  is dramatic. For high frequencies, the capacitive 
reactance is very small, and the current can be large.

Two common applications of capacitors are illustrated in Fig. 30-18a and b. In 
Fig. 30-18a, circuit A  is said to be capacitively coupled to circuit B. The purpose of 
the capacitor is to prevent a dc voltage from passing from A  to B but allowing an ac 
signal to pass relatively unimpeded (if C is sufficiently large, Eq. 30-25b). The 
capacitor in Fig. 30-18a is called a high-pass filter because it allows high-frequency 
ac to pass easily, but not dc.

In Fig. 30-18b, the capacitor passes ac to ground. In this case, a dc voltage can 
be maintained between circuits A  and B, but an ac signal leaving A  passes to 
ground instead of into B. Thus the capacitor in Fig. 30-18b acts like a low-pass 
filter when a constant dc voltage is required; any high-frequency variation in 
voltage w ill pass to ground instead of into circuit B. (Very low-frequency ac w ill 
also be able to reach circuit B, at least in part.)

Loudspeakers having separate “woofer” (low-frequency speaker) and “ tweeter” 
(high-frequency speaker) may use a simple “ cross-over” that consists of a capacitor 
in the tweeter circuit to impede low-frequency signals, and an inductor in the 
woofer circuit to impede high-frequency signals (X L = 2irfL ). Hence mainly 
low-frequency sounds reach and are emitted by the woofer. See Fig. 30-18c.

EXERCISE G At what frequency is the reactance of a 1.0-/xF capacitor equal to 500 0? 
( a )  320 Hz, (b ) 500 Hz, (c) 640 Hz, ( d )  2000 Hz, ( e )  4000 Hz.

I EXERCISE H At what frequency is the reactance of a 1.0-/xH inductor equal to 500 0? 
| ( a )  80 Hz, ( b )  500 Hz, (c) 80 MHz, ( d )  160 MHz, ( e )  500 MHz.

3 0 —8 LRC  Series AC Circuit
Let us examine a circuit containing all three elements in series: a resistor R, an 
inductor L, and a capacitor C, Fig. 30-19. I f  a given circuit contains only two of 
these elements, we can still use the results of this Section by setting R =  0, 
X L =  0, or X c =  0, as needed. We let VR,V L, and Vc represent the voltage 
across each element at a given instant in time; and Vm ,V LQ, and Vco represent the 
maximum (peak) values of these voltages. The voltage across each of the elements 
w ill follow the phase relations we discussed in the previous Section. A t any instant 
the voltage V  supplied by the source w ill be, by Kirchhoff’s loop rule,

V  = VK + Vj + Vr. (30-26)

Because the various voltages are not in phase, they do not reach their peak 
values at the same time, so the peak voltage of the source V0 w ill not equal
Vro + Vlo + Vco-

j Circuil 
A

Signal
Citvuil

B

(ji) H igh-pass filler 

Signal |—  

± c  B -i-1  ’----i

(b) Low-pass filler

FIGURE 30-18 (a) and (b)Two 
common uses for a capacitor as a filter, 
(c) Simple loudspeaker cross-over.

0 P H Y S I C S  A P P L I E D
C a p a c i t o r s  a s  f i l t e r s

0 P H Y S I C S  A P P L I E D
L o u d s p e a k e r  c r o s s - o v e r

FIGURE 30-19 An L R C  circuit.

&
V

/ j \  C A U T I O N
P e a k  v o l t a g e s  d o  n o t  a d d  t o  y i e l d  

s o u r c e  v o l t a g e
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mVlo=/oXi ,

k  ^

V r o = I o r

Vco=Iox c
(a)

y

Vco
(C)

FIGURE 30-20 Phasor diagram for 
a series LRC circuit at (a) t — 0,
(b) a time t later, (c) Projections on x 
axis reflect Eqs. 30-20,30-22a, and 
30-24a.

FIGURE 30-21 Phasor diagram for 
a series LRC circuit showing the 
sum vector, V0.

y

Let us now find the impedance of an L R C  circuit as a whole (the effect of R, X c , 
and X L), as well as the peak current 70, and the phase relation between V and /.The 
current at any instant must be the same at all points in the circuit. Thus the currents in 
each element are in phase with each other, even though the voltages are not. We choose 
our origin in time (t =  0) so that the current I  at any time t is (as in Eq. 30-20)

I  =  I0 cos cot.

We analyze an L R C  circuit usingf a phasor diagram. Arrows (treated like 
vectors) are drawn in an xy coordinate system to represent each voltage. The length 
o f  each arrow represents the magnitude o f  the peak  voltage across each element:

VRQ =  Iq R, VLq = Iq X l , and Vco = /0 X c .

VR0 is in phase w ith the current and is in itia lly  {t =  0) drawn along the positive 
x  axis, as is the current (Fig. 30-20a). VL0 leads the current by 90°, so it leads Vro t>y 90° 
and is in itia lly drawn along the positive y  axis. Vco lags the current by 90°, so Vco is 
drawn in itia lly along the negative y  axis, Fig. 30-20a.

I f  we let the vector diagram rotate counterclockwise at frequency / ,  we get the 
diagram shown in Fig. 30-20b; after a time, t, each arrow has rotated through an angle 
o)t. Then the projections o f  each arrow on the x axis represent the voltages across each 
element at the instant t (Fig. 30-20c). For example I  =  / 0 cos cot. Compare 
Eqs. 30-22a and 30-24a with Fig. 30-20c to confirm the validity of the phasor diagram.

The sum of the projections of the three voltage vectors represents the 
instantaneous voltage across the whole circuit, V. Therefore, the vector sum of 
these vectors w ill be the vector that represents the peak source voltage, VQ, as 
shown in Fig. 30-21 where it is seen that V0 makes an angle (f) w ith I0 and VR0. As 
time passes, V0 rotates with the other vectors, so the instantaneous voltage V  
(projection of V0 on the x axis) is (see Fig. 30-21)

V  =  V0 cos((ot + cf>).
The voltage V  across the whole circuit must equal the source voltage (Fig. 30-19). 
Thus the voltage from the source is out o f phase* with the current by an angle (f>.

From this analysis we can now determine the total impedance Z  of the circuit, 
which is defined in analogy to resistance and reactance as

V  rms = / n n s Z ,  Or = IqZ. (30-27)

From Fig. 30-21 we see, using the Pythagorean theorem (V[j is the hypotenuse of a 
right triangle), that

Vo =  \ / v \ o  +  {Vu  -  V cof

= /0V «2 + WL - *c)2.
Thus, from Eq. 30-27, the total impedance Z  is

Z  = \ / R 2 + (X L -  X c f  (30-28a)

= A/i?z + | mL -  | . (30-28b)

Also from  Fig. 30-21, we can find the phase angle (j> between voltage and current: 

Vlo -  Vco h { X L ~  X c) X L -  X c 

^  = =  -------h R ------- = — R — ' (3° “ 29a)

tWe could instead do our analysis by rewriting Eq. 30-26 as a differential equation (setting Vc = QIC, 
VR = IR = (dQ/dt)R, and VL = L dl/dt) and trying to solve the differential equation. The differential 
equation we would get would look like Eq. 14-21 in Section 14-8 (on forced vibrations), and would be 
solved in the same way. Phasor diagrams are easier, and at the same time give us some physical insight.
* As a check, note that if R = Xc = 0, then <f> = 90°, and V0 would lead the current by 90°, as it must 
for an inductor alone. Similarly, if R = L = 0, (f> = — 90° and V0 would lag the current by 90°, as it 
must for a capacitor alone.
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EXAMPLE 30-11

We can also write
, Vro IqR R  cos 4, =  —  =  —— =  —  (30-29b)

Vq 1 qZ, Z,

Figure 30-21 was drawn for the case X L >  X c , and the current lags the source 
voltage by <f>. When the reverse is true, X L <  X c , then <£ in Eqs. 30-29 is less than 
zero, and the current leads the source voltage.

We saw earlier that power is dissipated only by a resistance; none is dissipated 
by inductance or capacitance. Therefore, the average power P  =  But from
Eq. 30-29b, R =  Z  cos <f>. Therefore

p  = C O S  = 7rms Vrms C O S  4>. (30-30)

The factor cos (f) is referred to as the power factor of the circuit. For a pure 
resistor, cos <f> =  1 and P  =  / rms r̂ms- For a capacitor or inductor alone, 
(f> =  -90° or +90°, respectively, so cos 4> =  0 and no power is dissipated.

LRC circuit. Suppose R  =  25.0 f l,  L  =  30.0 mH, and 
C = 12.0 [jlF in Fig. 30-19, and they are connected in series to a 90.0-V ac (rms) 
500-Hz source. Calculate (a) the current in the circuit, (b ) the voltmeter readings 
(rms) across each element, (c) the phase angle <£, and (d) the power dissipated in 
the circuit.

APPROACH To obtain the current we need to determine the impedance (Eq. 30-28 
plus Eqs. 30-23b and 30-25b), and then use / rms = Vxmj Z .  Voltage drops across 
each element are found using Ohm’s law or equivalent for each element: 
y* = IR , VL =  I X L , and Vc =  I X C.
SOLUTION (a) First, we find the reactance o f the inductor and capacitor at 
/  = 500 Hz = 500 s-1:

X L = 27r/L = 94.2fi, Xc = — = 26.5 fl.
Z7T/C

Then the total impedance is

Z = \ / R 2 + (XL -  X c f  = V(25-0ft)2 + (94.2a -  26.5a)2 = 72.2a.
From the impedance version of Ohm’s law, Eq. 30-27,

_  r̂ms _ 900V  = 125A
rms z  72.2a

(b) The rms voltage across each element is

f o U  = 4 n s * = (1.25 A )(2 5 .0 a ) = 31.2 V  

(VL)nns = I ™ X L = (1.25 A )(94 .2a ) = 118 V  

(Fc)rms = Im sX c =  (1.25 A )(2 6 .5a ) = 33.1V.

NOTE These voltages do not add up to the source voltage, 90.0 V  (rms). Indeed, 
the rms voltage across the inductance exceeds the source voltage. This can happen 
because the different voltages are out of phase w ith each other, and at any 
instant one voltage can be negative, to compensate fo r a large positive voltage of 
another. The rms voltages, however, are always positive by definition. Although 
the rms voltages need not add up to the source voltage, the instantaneous 
voltages at any time must add up to the source voltage at that instant.
(c) The phase angle is given by Eq. 30-29b,

R  25.0 f l  
cos 0 = —  = = 0.346,

^  Z  72.2 f l

so cf) =  69.7°. Note that (J> is positive because X L >  X c in this case, so Vu  >  Va  
in Fig. 30-21.
(d) P  =  / rms Vrms cos <£ = (1.25 A ) (90.0 V ) (25.0 fl/72 .2  f l)  = 39.0 W.

A  CAUTION__________
Individual peak or rms voltages 
do NOT add up to source voltage 
(due to phase differences)
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3 0 —9 Resonance in AC Circuits
The rms current in an L R C  series circuit is given by (see Eqs. 30-27 and 30-28b): 

Vri
r̂ms

rms

z
vKrms

R z + \(oL - - y(oC J

(30-31)

Because the reactance of inductors and capacitors depends on the frequency /  
(= w/ I tt) of the source, the current in an L R C  circuit w ill depend on frequency. 
From Eq. 30-31 we can see that the current w ill be maximum at a frequency 
that satisfies

o>L -  I = 0 .  
wC

We solve this fo r co and call the solution a)0:

co0 = [resonance] (30-32)

FIGURE 30-22 Current in LRC 
circuit as a function of angular 
frequency, co, showing resonance 
peak at co = co0 = \f \ jL C .

When a) =  o)0, the circuit is in resonance, and / 0 = a)0/2 tt is the resonant 
frequency of the circuit. A t this frequency, X c =  X L , so the impedance is purely 
resistive and cos cf) = 1. A  graph o f / rms versus a> is shown in Fig. 30-22 for 
particular values of R, L , and C. For small R  compared to X L and X c , the 
resonance peak w ill be higher and sharper. When R  is very small, the circuit 
approaches the pure L C  circuit we discussed in Section 30-5. When R  is large 
compared to X L and X c , the resonance curve is relatively fla t— there is little  
frequency dependence.

This electrical resonance is analogous to mechanical resonance, which we 
discussed in Chapter 14. The energy transferred to the system by the source 
is a maximum at resonance whether it  is electrical resonance, the oscillation 
of a spring, or pushing a child on a swing (Section 14-8). That this is true 
in the electrical case can be seen from  Eq. 30-30; at resonance, cos 4> =  1, and 
power P  is a maximum. A  graph of power versus frequency peaks like that for 
the current, Fig. 30-22.

Electric resonance is used in many circuits. Radio and TV sets, fo r example, 
use resonant circuits fo r tuning in a station. Many frequencies reach the circuit, 
but a significant current flows only fo r those at or near the resonant frequency. 
E ither L  or C is variable so that d ifferent stations can be tuned in.

FIGURE 30-23 Output of the 
circuit on the left is input to the 
circuit on the right.

V

Circuit 1 j Circuit 2

3 0 - 1 0  Impedance Matching
It  is common to connect one electric circuit to a second circuit. For example, a 
TV antenna is connected to a TV receiver, an amplifier is connected to a loud­
speaker; electrodes for an electrocardiogram are connected to a recorder. Maximum 
power is transferred from  one to the other, w ith a minimum of loss, when the 
output impedance of the one device matches the input impedance o f the second.

To show why, we consider simple circuits that contain only resistance. In 
Fig. 30-23 the source in circuit 1 could represent the signal from an antenna or a 
laboratory probe, and R 1 represents its resistance including internal resistance of 
the source. R 1 is called the output impedance (or resistance) o f circuit 1. The 
output of circuit 1 is across the terminals a and b which are connected to the input 
of circuit 2 which may be very complicated. We let R 2 be the equivalent “ input 
resistance” of circuit 2.
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The power delivered to circuit 2 is P  = I 2R2 where I  = V /(R 1 + R2). 
Thus

( * i

I f  the resistance of the source is R lt what value should R2 have so that the 
maximum power is transferred to circuit 2? To determine this, we take the derivative 
of P  with respect to R2 and set it equal to zero, which gives

or

1 2 R,

(ft, + R i f  ( fti + ft2
= 0

*

Thus, the maximum power is transmitted when the output impedance of one device 
equals the input impedance of the second. This is called impedance matching.

In an ac circuit that contains capacitors and inductors, the different phases are 
important and the analysis is more complicated. However, the same result holds: to 
maximize power transfer it is important to match impedances (Z2 = Zx).

In addition, it is possible to seriously distort a signal if  impedances do not 
match, and this can lead to meaningless or erroneous experimental results.

3 0 —11 Three-Phase AC
Transmission lines typically consist of four wires, rather than two. One of these 
wires is the ground; the remaining three are used to transmit three-phase ac power 
which is a superposition of three ac voltages 120° out of phase with each other:

Vx = Vq sin cot

V2 = V0sm(o)t + 277-/3)

V3 = VJ)Sin(ftrf + 47t/3).

(See Fig. 30-24.) Why is three-phase power used? We saw in Fig. 25-22 that 
single-phase ac (i.e., the voltage V1 by itself) delivers power to the load in pulses. A  
much smoother flow of power can be delivered using three-phase power. 
Suppose that each of the three voltages making up the three-phase source is 
hooked up to a resistor R. Then the power delivered is:

A  C A U T I O N
Erroneous results can occur if 
impedances don’t match

V (volts)

■t( s)

FIGURE 30-24 The three voltages, 
out of phase by 120° (= \n  radians), 
in a three-phase power line.

F i + V?).

You can show that this power is a constant equal to 3VI/2R , which is three times 
the rms power delivered by a single-phase source. This smooth flow of power 
makes electrical equipment run smoothly. Although houses use single-phase ac 
power, most industrial-grade machinery is wired for three-phase power.

EXAMPLE 30-12 Three-phase circuit. In a three-phase circuit, 266 V rms 
exists between line 1 and ground. What is the rms voltage between lines 2 and 3? 
SOLUTION We are given Vims = V0/ V l  =  266 V. Hence VQ =  376 V. Now 
V3 — V2 =  V[)[sin(fttf + 47t/3) — sin(cot + 27t/3)] = 2y0 s in |(x ) cos^ (2cot) 
where we used the identity: sin A  — sinB = 2 sin \  (A  — B )cos^(A  + B). 
The rms voltage is

't

-  ^2) ™  = ^ 2V° sin J  = V 2(376V )(0.866) = 460V (rm s).
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Summary
A  changing current in a coil o f wire w ill induce an emf in a 
second coil placed nearby. The mutual inductance, M, is defined 
as the proportionality constant between the induced emf 
in the second coil and the time rate o f change o f current in 
the first:

% = - M d IJ d t .  

We can also write M  as

M  = 2^21

(30-3b)

(30-1)

where <J>2i is the magnetic flux through coil 2 w ith N2 loops, 
produced by the current Ix in another coil (coil 1).

W ithin a single coil, a changing current induces an opposing 
emf, % so a coil has a self-inductance L  defined by

= - L d l /d t . (30-5)

This induced emf acts as an impedance to the flow  o f an 
alternating current. We can also write L  as

L  = N - (30-4)

where is the flux through the inductance when a current I  
flows in its N  loops.

When the current in  an inductance L  is I, the energy stored 
in the inductance is given by

U = \ L I 2. (30-6)

This energy can be thought o f as being stored in the magnetic 
fie ld o f the inductor. The energy density u in any magnetic 
fie ld B  is given by

1 B2
u = — —  ’

2 Mo
(30-7)

where /jl0 is replaced by (jl if  a ferromagnetic material is present.
When an inductance L  and resistor R  are connected in 

series to a constant source o f emf, V0, the current rises according 
to an exponential of the form

where
1 =

r = L /R

(30-9)

(30-10)

is the time constant. The current eventually levels out at 
I  = Vq/R. I f  the battery is suddenly switched out of the LR  
circuit, and the circuit remains complete, the current drops 
exponentially, /  = I0 e~^T, w ith the same time constant t.

The current in a pure LC  circuit (or charge on the capacitor) 
would oscillate sinusoidally. The energy too would oscillate back 
and forth between electric and magnetic, from the capacitor to 
the inductor, and back again. I f  such a circuit has resistance 
(LRC), and the capacitor at some instant is charged, it can 
undergo damped oscillations or exhibit critically damped or 
overdamped behavior.

Capacitance and inductance offer impedance to the flow of 
alternating current just as resistance does. This impedance is 
referred to as reactance, X, and is defined (as for resistors) as 
the proportionality constant between voltage and current 
(either the rms or peak values). Across an inductor,

Vb = h X L, 

and across a capacitor,

Vb = h x c .

(30-23a)

(30-25a)

The reactance of an inductor increases w ith frequency:

X L = co L. (30-23b)

where co =  2 ir f  and /  is the frequency o f the ac. The reactance 
of a capacitor decreases w ith frequency:

X c = ~  (30-25b)
GO C

Whereas the current through a resistor is always in phase 
w ith the voltage across it, this is not true for inductors and 
capacitors: in an inductor, the current lags the voltage by 90°, 
and in a capacitor the current leads the voltage by 90°.

In  an ac LRC  series circuit, the total impedance Z  is defined 
by the equivalent o f V  = IR  for resistance: namely V0 = I0Z  
or Vrms = / rms Z. The impedance Z  is related to R, C, and L  by

Z  = V * 2 + {X l -  X c f - (30-28a)

The current in the circuit lags (or leads) the source voltage 
by an angle <f> given by cos <f) =  R /Z . Only the resistor in an 
ac LRC  circuit dissipates energy, and at a rate

P =  / r m S Z  C O S  <f> (30-30)

where the factor cos <f> is referred to as the power factor.
A n LRC  series circuit resonates at a frequency given by

(Oq = h (30-32)

The rms current in the circuit is largest when the applied voltage 
has a frequency equal to /o (=  (o j l i r ) .  The lower the resistance 
R, the higher and sharper the resonance peak.

Questions
1. How would you arrange two fla t circular coils so that their 

mutual inductance was (a) greatest, (b) least (w ithout sepa­
rating them by a great distance)?

2. Suppose the second coil o f N2 turns in Fig. 30-2 were 
moved so it was near the end o f the solenoid. How would 
this affect the mutual inductance?

3. Would two coils w ith mutual inductance also have self­
inductance? Explain.

4. Is the energy density inside a solenoid greatest near the 
ends o f the solenoid or near its center?

5. I f  you are given a fixed length o f wire, how would you shape 
it to obtain the greatest self-inductance? The least?

6. Does the emf of the battery in Fig. 30-6a affect the time 
needed for the LR  circuit to reach (a) a given fraction 
o f its maximum possible current, (b ) a given value of 
current?
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7. A  circuit w ith large inductive time constant carries a 
steady current. I f  a switch is opened, there can be a very 
large (and sometimes dangerous) spark or “ arcing over.” 
Explain.

8. A t the instant the battery is connected into the L R  circuit of 
Fig. 30-6a, the emf in the inductor has its maximum value 
even though the current is zero. Explain.

9. What keeps an L C  circuit oscillating even after the capac­
ito r has discharged completely?

10. Is the ac current in  the inductor always the same as the 
current in the resistor of the L R C  circuit of Fig. 30-13?

11. When an ac generator is connected to an L R C  circuit, 
where does the energy come from  ultimately? Where does it 
go? How do the values o f L , C, and R  affect the energy 
supplied by the generator?

12. In  an ac L R C  circuit, if  X L >  X c , the circuit is said to be 
predominantly “ inductive.” And if  X c >  X L , the circuit is 
said to be predominantly “ capacitive.” Discuss the reasons 
for these terms. In  particular, do they say anything about the 
relative values of L  and C at a given frequency?

13. Do the results o f Section 30-8 approach the proper 
expected results when co approaches zero? What are the 
expected results?

14. Under what conditions is the impedance in an L R C  circuit a 
minimum?

15. Is it possible for the instantaneous power output o f an ac 
generator connected to an L R C  circuit ever to be negative? 
Explain.

16. In  an ac L R C  circuit, does the power factor, cos <fi, depend 
on frequency? Does the power dissipated depend on 
frequency?

17. Describe briefly how the frequency of the source emf 
affects the impedance o f (a) a pure resistance, (b ) a pure 
capacitance, (c) a pure inductance, (d) an L R C  circuit near 
resonance (R  small), (e) an L R C  circuit far from resonance 
(R  small).

18. Discuss the response o f an L R C  circuit as R  —> 0 when the 
frequency is (a) at resonance, (b ) near resonance, (c) far 
from resonance. Is there energy dissipation in each case? 
Discuss the transformations o f energy that occur in each 
case.

19. An L R C  resonant circuit is often called an oscillator circuit. 
What is it that oscillates?

20. Compare the oscillations o f an L R C  circuit to the vibration 
of a mass m  on a spring. What do L  and C correspond to in 
the mechanical system?

Problems
30-1 Mutual Inductance
1. ( II)  A  2.44-m-long coil containing 225 loops is wound 

on an iron core (average [x = 1850fi0) along w ith a second 
coil o f 115 loops. The loops of each coil have a radius 
o f 2.00 cm. I f  the current in the first coil drops uniform ly 
from 12.0 A  to zero in 98.0 ms, determine: (a) the 
mutual inductance M ; (b) the emf induced in the second 
coil.

2. ( II)  Determine the mutual inductance per unit length 
between two long solenoids, one inside the other, whose 
radii are r\ and r2 (r2 <  r\ ) and whose turns per unit length 
are rii and n2.

3. ( II)  A  small thin coil w ith N2 loops, each of area A 2, 
is placed inside a long solenoid, near its center. The 
solenoid has Ni loops in its length £ and has area A 1. 
Determine the mutual inductance as a function of 0, the 
angle between the plane of the small coil and the axis of 
the solenoid.

4. ( I ll)  A  long straight wire and a small rectangular wire 
loop lie in the same plane,
Fig. 30-25. Determine the 
mutual inductance in terms 
o f £ i , £2, and w. Assume the 
wire is very long compared 
to £ \,£ 2 , and w , and that 
the rest o f its circuit is very 
far away compared to £ \,£ 2, 
and w.

FIGURE 30-25
Problem 4.

30-2  Self-Inductance
5. (I) I f  the current in a 280-mH coil changes steadily from

25.0 A  to 10.0 A  in 360 ms, what is the magnitude o f the 
induced emf?

6. (I) How many turns o f wire would be required to make a 
130-mH inductance out o f a 30.0-cm-long air-filled coil w ith 
a diameter of 4.2 cm?

7. (I) What is the inductance of a coil if  the coil produces an 
emf o f 2.50 V  when the current in it changes from -28.0 mA 
to +25.0 m A in 12.0 ms?

8. (II)  An air-filled cylindrical inductor has 2800 turns, and 
it is 2.5 cm in diameter and 21.7 cm long, (a) What is its 
inductance? (b ) How many turns would you need to 
generate the same inductance if  the core were filled with iron 
of magnetic permeability 1200 times that o f free space?

9. (II)  A  coil has 3.25-ft resistance and 440-mH inductance. I f  
the current is 3.00 A  and is increasing at a rate of 3.60 A /s, 
what is the potential difference across the coil at this 
moment?

10. (II)  I f  the outer conductor o f a coaxial cable has radius
3.0 mm, what should be the radius o f the inner conductor so 
that the inductance per unit length does not exceed 55 nH 
per meter?

11. (II)  To demonstrate the large size o f the henry unit, a 
physics professor wants to wind an air-filled solenoid with 
self-inductance o f 1.0 H  on the outside of a 12-cm diameter 
plastic hollow tube using copper wire w ith a 0.81-mm diam­
eter. The solenoid is to be tightly wound w ith each turn 
touching its neighbor (the wire has a thin insulating layer on 
its surface so the neighboring turns are not in electrical 
contact). How long w ill the plastic tube need to be and how 
many kilometers o f copper wire w ill be required? What w ill 
be the resistance o f this solenoid?
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12. ( II)  The wire of a tightly wound solenoid is unwound 
and used to make another tightly wound solenoid of
2.5 times the diameter. By what factor does the inductance 
change?

13. ( II)  A  toroid has a rectangular cross section as shown in 
Fig. 30-26. Show that the self-inductance is

fi0N 2h r2
—----- In —
277 /*!

L  =

where N  is the total number o f turns and , r2, and h are 
the dimensions shown in Fig. 30-26. [Hint. Use Ampere’s 
law to get B  as a function o f r inside the toroid, and 
integrate.]

FIGURE 30-26
Problems 13 and 19.
A  toroid of rectangular 
cross section, w ith 
N  turns carrying a 
current I.

14. ( II)  Ignoring any mutual inductance, what is the equivalent 
inductance o f two inductors connected (a) in series, (b ) in 
parallel?

30-3 Magnetic Energy Storage
15. (I) The magnetic field inside an air-filled solenoid 38.0 cm 

long and 2.10 cm in diameter is 0.600 T. Approximately how 
much energy is stored in this field?

16. (I) Typical large values for electric and magnetic fields 
attained in laboratories are about 1.0 X 104V /m  and 2.0 T.
(a) Determine the energy density fo r each field and 
compare. (b) What magnitude electric field would be 
needed to produce the same energy density as the 2.0-T 
magnetic field?

17. ( II)  What is the energy density at the center of a circular 
loop of wire carrying a 23.0-A current if  the radius o f the 
loop is 28.0 cm?

18. ( II)  Calculate the magnetic and electric energy densities 
at the surface of a 3.0-mm-diameter copper wire carrying a 
15-A current.

19. ( II)  For the toroid of Fig. 30-26, determine the energy 
density in the magnetic fie ld as a function o f r <  r <  r2) 
and integrate this over the volume to obtain the total 
energy stored in the toroid, which carries a current I  in each 
o f its N  loops.

20. ( II)  Determine the total energy stored per unit length in the 
magnetic fie ld between the coaxial cylinders of a coaxial 
cable (Fig. 30-5) by using Eq. 30-7 for the energy density and 
integrating over the volume.

21. ( II)  A  long straight wire of radius R  carries current I  
uniform ly distributed across its cross-sectional area. Find 
the magnetic energy stored per unit length in the interior of 
this wire.

30-4 LR  Circuits
22. ( II)  A fte r how many time constants does the current in 

Fig. 30-6 reach w ithin (a) 5.0%, (b ) 1.0%, and (c) 0.10% of 
its maximum value?

23. (II)  How many time constants does it take fo r the potential 
difference across the resistor in an L R  circuit like that in 
Fig. 30-7 to drop to 3.0% of its original value?

24. (II)  I t  takes 2.56 ms for the current in an L R  circuit to 
increase from  zero to 0.75 its maximum value. Determine
(a) the time constant of the circuit, (b) the resistance of the 
circuit if  L  =  31.0 mH.

25. (II)  (a) Determine the energy stored in the inductor L  as a 
function of time for the L R  circuit o f Fig. 30-6a. (b) A fter 
how many time constants does the stored energy reach 99.9% 
of its maximum value?

26. (II)  In  the circuit o f Fig. 30-27, determine the current in 
each resistor , I2, /3) at the moment (a) the switch is 
closed, (b) a long time
after the switch is ^
closed. A fte r the --------- ------------------- ty\A/----
switch has been closed -«—
for a long time, and ^  ^
then reopened, what is 
each current (c) just 
after it is opened,
(d) after a long time?

FIGURE 30-27
Problem 26.

27. (II)  (a) In  Fig. 30-28a, assume that the switch S has been in 
position A  for sufficient time so that a steady current 
I0 =  V0/R  flows through the resistor R. A t time t = 0, the 
switch is quickly switched to position B and the current 
through R  decays according to I  =  /0 e~^T. Show that the 
maximum emf %nax induced in the inductor during this time 
period equals the battery voltage Vo- (b ) In  Fig. 30-28b, 
assume that the switch has been in position A  for sufficient 
time so that a steady current 70 = V0/R  flows through the 
resistor R. A t time t =  0, the switch is quickly switched to 
position B and the current decays through resistor R' 
(which is much greater 
than R ) according to
I  =  Ioe~t/T'. Show that 
the maximum emf %nax 
induced in the inductor 
during this time period is 
(R '/R )V 0. I f  R ' =  55R  
and V0 =  120 V, deter­
mine ^nax. [When a 
mechanical switch is 
opened, a high-resistance 
air gap is created, which 
is modeled as R r here.
This Problem illustrates 
why high-voltage sparking 
can occur if  a current- 
carrying inductor is 
suddenly cut o ff from its 
power source.]

(a)
L

FIGURE 30-28
Problem 27. (b)

806 CHAPTER 30 Inductance, Electromagnetic Oscillations, and AC Circuits



28. (II) You want to turn on the current through a coil of self­
inductance L  in a controlled manner, so you place it in series 
with a resistor R  = 2200 Cl, a switch, and a dc voltage 
source Vq =  240 V. A fte r closing the switch, you find that 
the current through the coil builds up to its steady-state 
value w ith a time constant r. You are pleased w ith the 
current’s steady-state value, but want r  to be half as long. 
What new values should you use for R  and V0?

29. ( II)  A  12-V battery has been connected to an L R  circuit for 
sufficient time so that a steady current flows through the 
resistor R =  2.2 k ll and inductor L  = 18 mH. A t t =  0, 
the battery is removed from the circuit and the current 
decays exponentially through R. Determine the emf % 
across the inductor as time t increases. A t what time 
is % greatest and what is this maximum value (V)?

30. ( I ll)  Two tightly wound solenoids have the same length and 
circular cross-sectional area. But solenoid 1 uses wire that is
1.5 times as thick as solenoid 2. (a) What is the ratio of their 
inductances? (b) What is the ratio of their inductive time 
constants (assuming no other resistance in the circuits)?

30-5 LC Circuits and Oscillations
31. (I) The variable capacitor in the tuner of an A M  radio has a 

capacitance o f 1350 pF when the radio is tuned to a station 
at 550 kHz. (a) What must be the capacitance for a station at 
1600 kHz? (b) What is the inductance (assumed constant)? 
Ignore resistance.

32. (I) (a) I f  the in itia l conditions of an L C  circuit were I  = 70 
and <2 = 0 at t =  0, write Q  as a function o f time, 
(ib) Practically, how could you set up these in itia l conditions?

33. ( II)  In  some experiments, short distances are measured by 
using capacitance. Consider forming an L C  circuit using a 
parallel-plate capacitor w ith plate area A, and a known 
inductance L. (a) I f  charge is found to oscillate in this circuit 
at frequency /  = o i/lir  when the capacitor plates are 
separated by distance x, show that x  = 4ir2A e 0f 2L.
(b) When the plate separation is changed by Ax, the circuit’s 
oscillation frequency w ill change by A f. Show that 
A x /x  ~ 2(A/ / / ) .  (c) I f  /  is on the order o f 1 MHz and can 
be measured to a precision of A f  = 1 Hz, w ith what 
percent accuracy can x  be determined? Assume fringing 
effects at the capacitor’s edges can be neglected.

34. (II) A  425-pF capacitor is charged to 135 V  and then quickly 
connected to a 175-mH inductor. Determine (a) the frequency 
of oscillation, (b) the peak value of the current, and (c) the 
maximum energy stored in the magnetic field of the inductor.

35. ( II)  A t t =  0, let Q =  Qo, and 1 =  0 in an L C  circuit.
(a) A t the first moment when the energy is shared equally 
by the inductor and the capacitor, what is the charge on the 
capacitor? (b) How much time has elapsed (in terms of the 
period T)1

30-6 LC Oscillations with Resistance
36. ( II)  A  damped L C  circuit loses 3.5% of its electromagnetic 

energy per cycle to thermal energy. I f  L  = 65 mH and 
C = 1.00 /aF, what is the value of R I

37. ( II)  In  an oscillating L R C  circuit, how much time does it 
take for the energy stored in the fields of the capacitor and 
inductor to fa ll to 75% of the in itia l value? (See Fig. 30-13; 
assume R  «  V 4 L /C .)

38. ( I ll)  How much resistance must be added to a pure L C  
circuit (L  = 350 mH, C = 1800 pF) to change the oscil­
lator’s frequency by 0.25%? W ill it be increased or decreased?

30-7 AC Circuits; Reactance
39. (I) A t what frequency w ill a 32.0-mH inductor have a 

reactance of 660 fl?
40. (I) What is the reactance of a 9.2-juF capacitor at a 

frequency of (a) 60.0 Hz, (b) 1.00 MHz?
41. (I) Plot a graph of the reactance o f a 1.0-/xF capacitor as a 

function o f frequency from 10 Hz to 1000 Hz.

42. (I) Calculate the reactance of, and rms current in, a 36.0-mH 
radio coil connected to a 250-V (rms) 33.3-kHz ac line. Ignore 
resistance.

43. (II)  A  resistor R  is in parallel w ith a capacitor C, and this 
parallel combination is in series w ith a resistor R ' . I f  
connected to an ac voltage source of frequency co, what is 
the equivalent impedance o f this circuit at the two extremes 
in frequency (a) co =  0, and (b) a> =  oo?

44. (II)  What is the inductance L  o f the primary o f a trans­
former whose input is 110 V  at 60 Hz and the current drawn 
is 3.1 A? Assume no current in the secondary.

45. (II)  (a) What is the reactance of a 0.086-/xF capacitor 
connected to a 22-kV (rms), 660-Hz line? (b) Determine the 
frequency and the peak value of the current.

46. (II)  A  capacitor is placed in parallel w ith some device, B, 
as in Fig. 30-18b, to filte r out stray high-frequency 
signals, but to allow ordinary 60-Hz ac to pass through 
w ith little  loss. Suppose that circuit B in Fig. 3 0 -18b is a 
resistance R  =  490 H connected to ground, and that 
C = 0.35 /xF. What percent of the incoming current 
w ill pass through C rather than R  if  it is (a) 60 Hz;
(b) 60,000 Hz?

47. (II)  A  current I  =  1.80 cos 3111 (I  in amps, t in seconds, 
and the “ angle” is in radians) flows in a series L R  circuit in 
which L  = 3.85 mH and R  = 1.35 k ft. What is the 
average power dissipation?

30-8 LRC  Series AC Circuit
48. (I) A  10.0-kft resistor is in  series w ith a 26.0-mH inductor 

and an ac source. Calculate the impedance o f the circuit if  
the source frequency is (a) 55.0 Hz; (b ) 55,000 Hz.

49. (I) A  75-0 resistor and a 6.8-juF capacitor are connected 
in series to an ac source. Calculate the impedance of the 
circuit if  the source frequency is (a) 60 Hz; (b) 6.0 MHz.

50. (I) For a 120-V, 60-Hz voltage, a current of 70mA passing 
through the body for 1.0 s could be lethal. What must be the 
impedance o f the body for this to occur?

51. (II)  A  2.5-kft resistor in series w ith a 420-mH inductor is 
driven by an ac power supply. A t what frequency is the 
impedance double that o f the impedance at 60 Hz?

52. (II)  (a) What is the rms current in a series R C  circuit if  
R =  3.8 k ft, C = 0.80 ^iF, and the rms applied voltage is 
120 V  at 60.0 Hz? (b) What is the phase angle between 
voltage and current? (c) What is the power dissipated by the 
circuit? (id) What are the voltmeter readings across R  and C?

53. (II)  An ac voltage source is connected in series w ith a 
1.0-/zF capacitor and a 750-11 resistor. Using a digital ac 
voltmeter, the amplitude o f the voltage source is measured 
to be 4.0 V  rms, while the voltages across the resistor and 
across the capacitor are found to be 3.0 V  rms and 2.7 V  
rms, respectively. Determine the frequency of the ac voltage 
source. Why is the voltage measured across the voltage 
source not equal to the sum of the voltages measured across 
the resistor and across the capacitor?
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54. (II) Determine the total impedance, phase angle, and rms 
current in an LRC  circuit connected to a 10.0-kHz, 
725-V (rms) source if  L  = 32.0 mH, R  = 8.70 kO, and 
C = 6250 pF.

55. ( II)  (a) What is the rms current in a series LR  circuit 
when a 60.0-Hz, 120-V rms ac voltage is applied, where 
R =  965 O and L  =  225 mH? (b) What is the phase 
angle between voltage and current? (c) How much power is 
dissipated? (d ) What are the rms voltage readings across R 
and L?

56. ( II)  A  35-mH inductor w ith 2.0-0 resistance is connected in 
series to a 26-/zF capacitor and a 60-Hz, 45-V (rms) source. 
Calculate (a) the rms current, (b) the phase angle, and (c) the 
power dissipated in this circuit.

57. (II) A  25-mH coil whose resistance is 0.80 0  is connected 
to a capacitor C and a 360-Hz source voltage. I f  the current 
and voltage are to be in phase, what value must C have?

58. ( II)  A  75-W lightbulb is designed to operate w ith an 
applied ac voltage of 120 V  rms. The bulb is placed in series 
w ith an inductor L, and this series combination is then 
connected to a 60-Hz 240-V rms voltage source. For the 
bulb to operate properly, determine the required value 
fo r L . Assume the bulb has resistance R  and negligible 
inductance.

59. ( II)  In  the L R C  circuit o f Fig. 30-19, suppose I  = / 0 sin cot 
and V  =  Vosin(&jf + 4>)- Determine the instantaneous 
power dissipated in the circuit from P  =  IV  using these 
equations and show that on the average, P  = jV 0/0 cos </>, 
which confirms Eq. 30-30.

60. ( II)  An LRC  series circuit w ith R  = 150 O, L  = 25 mH, 
and C = 2.0/zF is powered by an ac voltage source of 
peak voltage V0 =  340 V  and frequency /  = 660 Hz.
(a) Determine the peak current that flows in this circuit.
(b) Determine the phase angle o f the source voltage relative 
to the current, (c) Determine the peak voltage across R  and 
its phase angle relative to the source voltage, (d) Determine 
the peak voltage across L  and its phase angle relative to the 
source voltage. (e) Determine the peak voltage across C and 
its phase angle relative to the source voltage.

61. ( II)  An LR  circuit can be used as a “ phase shifter.” Assume 
that an “ input” source voltage V  = V0 sin(2'irft +  <J>) is 
connected across a series combination of an inductor 
L  = 55 mH and resistor R. The “ output” of this circuit is 
taken across the resistor. I f  V0 =  24 V  and /  = 175 Hz, 
determine the value of R  so that the output voltage VR lags 
the input voltage V  by 25°. Compare (as a ratio) the peak 
output voltage w ith Vq .

30-9 Resonance in AC Circuits
62. (I) A  3800-pF capacitor is connected in series to a 26.0-/aH 

coil o f resistance 2.00 O. What is the resonant frequency of 
this circuit?

63. (I) What is the resonant frequency o f the LRC  circuit of 
Example 30-11? A t what rate is energy taken from the 
generator, on the average, at this frequency?

64. ( II)  An LRC  circuit has L  =  4.15 mH and R =  3.80 kO.
(a) What value must C have to produce resonance at
33.0 kHz? (b) What w ill be the maximum current at reso­
nance if  the peak external voltage is 136 V?

65. (II) The frequency of the ac voltage source (peak voltage Vq) 
in an L R C  circuit is tuned to the circuit’s resonant frequency 
/o = 1 /(2 'ttV lC ) . (a) Show that the peak voltage across 
the capacitor is VCo =  V0 Tq/2 tt t ) ,  where T0(=  l / / 0) is 
the period of the resonant frequency and r  = R C  is the 
time constant for charging the capacitor C through a resistor 
R. (b) Define (3 =  T0/( 2 ttt) s o  that VCQ =  (3Vq. Then /3 is 
the“ amplification” of the source voltage across the capacitor. 
I f  a particular L R C  circuit contains a 2.0-nF capacitor and 
has a resonant frequency of 5.0 kHz, what value of R  w ill 
yield p  =  125?
(II)  Capacitors made from piezoelectric materials are 
commonly used as sound transducers (“ speakers” ). They 
often require a large operating voltage. One method for 
providing the required voltage is to include the speaker as 
part o f an L R C  circuit as shown in Fig. 30-29, where 
the speaker is modeled electrically as the capacitance 
C = 1.0 nF. Take R =  35 0  and L  =  55 mH. (a) What is 
the resonant frequency / 0 for this circuit? (b) I f  the voltage 
source has peak amplitude

66.

V 0 = 2.0 V  at frequency 
f  =  fo , find the peak 
voltage VCo across the 
speaker (i.e., the capac­
itor C). (c) Determine 
the ratio VCo/V q.

Piezoelectric 
speaker

l : = C =  1.0nF

R =  35 Q

L = 55 mH

FIGURE 30-29
Problem 66.

67. (II)  (a) Determine a formula for the average power P  
dissipated in an L R C  circuit in terms of L, R , C, co, and V0.
(b) A t what frequency is the power a maximum? (c) Find an 
approximate formula for the width of the resonance peak in 
average power, A co, which is the difference in the two 
(angular) frequencies where P  has half its maximum value. 
Assume a sharp peak.

68. (II)  (a) Show that oscillation of charge Q  on the capacitor 
o f an L R C  circuit has amplitude

T/_
<2o =

(coR)2 +  [<o2L  -  -

(b) A t what angular frequency, co', w ill Q 0 be a maximum?
(c) Compare to a forced damped harmonic oscillator 
(Chapter 14), and discuss. (See also Question 20 in this 
Chapter.)

69. (II) A  resonant circuit using a 220-nF capacitor is to resonate 
at 18.0 kHz. The air-core inductor is to be a solenoid with 
closely packed coils made from 12.0 m of insulated wire 1.1 mm 
in diameter. How many loops w ill the inductor contain?

*30-10 Impedance Matching
*70. (II)  The output of an electrocardiogram amplifier has an 

impedance of 45 kO. I t  is to be connected to an 8.0-0 loud­
speaker through a transformer. What should be the turns 
ratio o f the transformer?
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| General Problems
71. A  2200-pF capacitor is charged to 120 V  and then quickly 

connected to an inductor. The frequency o f oscillation is 
observed to be 17 kHz. Determine (a) the inductance,
(b) the peak value o f the current, and (c) the maximum 
energy stored in the magnetic fie ld o f the inductor.

72. A t t =  0, the current through a 60.0-mH inductor is 50.0 mA 
and is increasing at the rate of 78.0 m A/s. What is the in itia l 
energy stored in the inductor, and how long does it take for 
the energy to increase by a factor of 5.0 from the initia l value?

73. A t time t  =  0, the switch in the circuit shown in Fig. 30-30 
is closed. A fte r a sufficiently long time, steady currents
I i , I2, and /3 flow  through resistors R l t R 2, and R 3, respec­
tively. Determine these three currents.

S R x = 1.0 kQ
^  -JWV\r-

V0= 1 2 V ^  R2 = 2.0 kQ

FIGURE 30-30 Problem 73.

74. (a) Show that the self-inductance L  o f a toroid (Fig. 30-31) 
o f radius r0 containing N  loops each o f diameter d  is

fiQ N 2d 2
L  «  ------

8/q
if  r0 >5> d. Assume the field is uniform inside the toroid; is this 
actually true? Is this result consistent with L  for a solenoid? 
Should it be? (b) Calculate the inductance L  of a large toroid if  
the diameter of 
the coils is 2.0 cm 
and the diameter 
of the whole ring 
is 66 cm. Assume 
the field inside 
the toroid is 
uniform. There 
are a total of 550 
loops of wire.

FIGURE 30-31
A  toroid. 
Problem 74.

75. A  pair o f straight parallel thin wires, such as a lamp cord, 
each of radius r, are a distance £ apart and carry current to a 
circuit some distance away. Ignoring the field w ithin each 
wire, show that the inductance per unit length is 
( f x j7 r)ln [(f -  r ) /r \ .

76. Assuming the Earth’s magnetic fie ld averages about 
0.50 X 10_4T near the surface o f the Earth, estimate the 
total energy stored in this field in the first 5.0 km above 
the Earth’s surface.

77. (a) For an underdamped L R C  circuit, determine a formula 
for the energy U  =  UE +  UB stored in the electric and 
magnetic fields as a function o f time. Give answer in terms of 
the in itia l charge Q0 on the capacitor, (b) Show how 
d U /d t  is related to the rate energy is transformed in the 
resistor, I 2R.

78. An electronic device needs to be protected against sudden 
surges in current. In  particular, after the power is turned 
on the current should rise to no more than 7.5 mA in 
the first 75 /xs. The device has resistance 15012 and is 
designed to operate at 33 mA. How would you protect 
this device?

79. The circuit shown in Fig. 30-32a can integrate (in the 
calculus sense) the input voltage Vin, if  the time constant 
L /R  is large compared w ith the time during which V\n 
varies. Explain how this integrator works and sketch its 
output for the square wave signal input shown in 
Fig. 30-32b. [Hint: W rite K irchhoff’s loop rule for the 
circuit. M ultip ly each term in this differential equation (in I) 
by a factor eRtlL to make it easier to integrate.]

I—

' R V,out

(a)

FIGURE 30-32
Problem 79. (b)

80. Suppose circuit B in Fig. 30-18a consists o f a resistance 
R =  550 H. The filte r capacitor has capacitance C = 1.2 /xF. 
W ill this capacitor act to eliminate 6.0-Hz ac but pass a 
high-frequency signal o f frequency 6.0 kHz? To check this, 
determine the voltage drop across R  for a 130-mV signal of 
frequency (a) 60 Hz; (b ) 6.0 kHz.

81. An ac voltage source V  =  Vosi11̂  + 90°) is connected 
across an inductor L  and current I  =  70 sin (cot) flows in 
this circuit. Note that the current and source voltage are 90° 
out of phase, (a) D irectly calculate the average power deliv­
ered by the source_over one period T  o f its sinusoidal cycle 
via the integral P  = J ^ V I d t/T . (b) Apply the relation 
P  =  r̂ms Kmscos 4> t°  this circuit and show that the answer 
you obtain is consistent w ith that found in part (a). 
Comment on your results.

82. A  circuit contains two elements, but it is not known if 
they are L , R, or C. The current in this circuit when 
connected to a 120-V 60-Hz source is 5.6 A  and lags the 
voltage by 65°. What are the two elements and what are 
their values?

83. A  3.5-kIl resistor in series w ith a 440-mH inductor is driven 
by an ac power supply. A t what frequency is the impedance 
double that of the impedance at 60 Hz?
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84. (a) What is the rms current in an RC  circuit if  R =  5.70 k ft, 
C = 1.80 /jlF, and the rms applied voltage is 120 V  at
60.0 Hz? (b ) What is the phase angle between voltage and 
current? (c) What is the power dissipated by the circuit?
(d) What are the voltmeter readings across R  and C?

85. An inductance coil draws 2.5 A  dc when connected to a 
45-V battery. When connected to a 60-Hz 120-V (rms) 
source, the current drawn is 3.8 A  (rms). Determine the 
inductance and resistance of the coil.

86. The Q-value of a resonance circuit can be defined as 
the ratio o f the voltage across the capacitor (or inductor) 
to the voltage across the resistor, at resonance. The 
larger the Q  factor, the sharper the resonance curve w ill be 
and the sharper the tuning, (a) Show that the Q factor 
is given by the equation Q =  (1 /R ) 'S /L /C . (b ) A t a 
resonant frequency / 0 = 1.0 MHz, what must be the 
value of L  and R  to produce a Q  factor of 350? Assume 
that C = 0.010 /jlF.

87. Show that the fraction o f electromagnetic energy lost 
(to thermal energy) per cycle in a lightly damped 
(R2 «  4L/C ) LRC  circuit is approximately

A U _ 2ttR _  1tt_
U ~ La) ~  <2 ’

The quantity Q can be defined as Q = Lco/R, and is called 
the Q-value, or quality factor, of the circuit and is a measure of 
the damping present. A  high Q-value means smaller damping 
and less energy input required to maintain oscillations.

88. In  a series LRC  circuit, the inductance is 33 mH, the 
capacitance is 55 nF, and the resistance is 1.50 k ft. A t what 
frequencies is the power factor equal to 0.17?

89. In  our analysis o f a series LRC  circuit, Fig. 30-19, suppose 
we chose V =  Vo sin cot. (a) Construct a phasor diagram, 
like that o f Fig. 30-21, fo r this case, (b) W rite a formula for 
the current /, defining all terms.

90. A  voltage V  =  0.95 sin 754? is applied to an LRC  circuit 
(I is in amperes, t is in seconds, V  is in volts, and the “ angle” 
is in radians) which has L  = 22.0 mH, R  = 23.2 k ft, and 
C = 0.42 fiF. (a) What is the impedance and phase angle?
(b) How much power is dissipated in the circuit? (c) What 
is the rms current and voltage across each element?

91. Filter circuit. Figure 30-33 shows a simple filte r circuit 
designed to pass dc voltages w ith minimal attenuation and 
to remove, as much as possible, any ac components (such 
as 60-Hz line voltage that could cause hum in a stereo 
receiver, fo r example). Assume V[n = V1 + V2 where V1 is 
dc and V2 =  V20 sin cot, and that any resistance is very 
small, (a) Determine the current through the capacitor: 
give amplitude and phase (assume R = 0 and X L > X c).
(b) Show that the ac component o f the output voltage, 
V2out5 equals (Q/C) — V i, where Q is the charge on the 
capacitor at any instant, and determine the amplitude 
and phase of V2 out • (c) Show that the attenuation of the 
ac voltage is greatest when X c «  X L, and calculate 
the ratio of the output to input ac voltage in this case, 
(id) Compare the dc output voltage to input voltage.

FIGURE 30-33
Problems 91 and 92.

1 0000 -------
L

'in

1____________

= c  v0 

_________ 1

92. Show that if  the inductor L  in the filte r circuit of 
Fig. 30-33 (Problem 91) is replaced by a large resistor R, 
there w ill s till be significant attenuation o f the ac voltage 
and little  attenuation o f the dc voltage if  the input dc 
voltage is high and the current (and power) are low.

93. A  resistor R, capacitor C, and inductor L  are connected in 
parallel across an ac generator as shown in Fig. 30-34. The 
source emf is V  = Vq sin cot. Determine the current as a 
function o f time (including amplitude and phase): (a) in the 
resistor, (b ) in the inductor, (c) in the capacitor. (d ) What is 
the total current leaving the source? (Give amplitude Iq 
and phase.) (e) Determine the impedance Z  defined as 
z  =  Vq/ I q. ( / )  What 
is the power factor?

FIGURE 30-34
Problem 93.

94. Suppose a series L R C  circuit has two resistors, R i and R 2, 
two capacitors, C\ and C2 , and two inductors, L i and L 2 , 
all in series. Calculate the total impedance of the circuit.

95. Determine the inductance L  o f the primary o f a trans­
former whose input is 220 V  at 60 Hz when the current 
drawn is 4.3 A . Assume no current in the secondary.

96. In  a plasm a globe, a hollow glass sphere is filled  w ith 
low-pressure gas and a small spherical metal electrode is 
located at its center. Assume an ac voltage source o f peak 
voltage V0 and frequency /  is applied between the metal 
sphere and the ground, and that a person is touching 
the outer surface o f the globe w ith a fingertip, whose 
approximate area is 1.0 cm2. The equivalent circuit fo r this 
situation is shown in Fig. 30-35, where R G and R P are the 
resistances o f the gas and the person, respectively, and C 
is the capacitance formed by the gas, glass, and finger. 
(a) Determine C assuming it  is a parallel-plate capacitor. The 
conductive gas and the person’s fingertip form the opposing 
plates o f area A  = 1.0 cm2. The plates are separated by 
glass (dielectric constant K  =  5.0) of thickness 
d  = 2.0 mm. (b ) In  a typical plasma globe, /  = 12 kHz. 
Determine the reactance X c  of C at this frequency in M ft.
(c) The voltage may be Vq = 2500 V. W ith this high 
voltage, the dielectric strength of the gas is exceeded and 
the gas becomes ionized. In  this “ plasma” state, the gas 
emits light (“ sparks” ) and is highly conductive so that 
R q  «  X c . Assuming also that R P «  X c , estimate the 
peak current that flows in the given circuit. Is this level of 
current dangerous? (d) I f  the plasma globe operated at 
/  = 1.0 MHz, estimate
the peak current that 
would flow in the given

Low-circuit. Is this level of 
current dangerous? pressure 

gas,

FIGURE 30-35
Problem 96.

V =
Vq sin (27Tft +  (fi

—  Ground
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97. You have a small electromagnet that consumes 350 W 
from a residential circuit operating at 120 V  at 60 Hz. 
Using your ac multimeter, you determine that the unit 
draws 4.0 A  rms. What are the values o f the inductance and 
the internal resistance?

98. An inductor L  in series w ith a resistor R, driven by a 
sinusoidal voltage source, responds as described by the 
following differential equation:

Vq sin cot =
d l

L —  + 
dt

RI.

Show that a current o f the form I  =  I0 sin(<*tf -  <f>) flows 
through the circuit by direct substitution into the differen­
tia l equation. Determine the amplitude of the current ( /0) 
and the phase difference (f> between the current and the 
voltage source.

99. In  a certain LRC  series circuit, when the ac voltage source 
has a particular frequency / ,  the peak voltage across 
the inductor is 6.0 times greater than the peak voltage 
across the capacitor. Determine /  in terms o f the resonant 
frequency f Q of this circuit.
For the circuit shown in Fig. 30-36, V =  VQ sin cot. 
Calculate the current in each element of the circuit, as well 
as the total impedance. [Hint: Try a tria l solution of the form 
/  = I0 sin(cot +  <f>) for the current leaving the source.]

100.

- m -
R

FIGURE 30-36
Problem 100.

101. To detect vehicles at traffic lights, wire loops w ith dimen­
sions on the order o f 2 m are often buried horizontally 
under roadways. Assume the self-inductance o f such a 
loop is L  =  5.0 mH and that it is part of an LRC  circuit 
as shown in Fig. 30-37 w ith C = 0.10 /xF and R =  45 O. 
The ac voltage has frequency /  and rms voltage Vrms.
(a) The frequency /  is chosen to match the resonant 
frequency / 0 of the circuit. Find / 0 and determine what the 
rms voltage (VR)Tms across the resistor w ill be when 
/  = / 0. (b) Assume that f, C, and R  never change, but 
that, when a car is located above the buried loop, the 
loop’s self-inductance decreases by 10% (due to induced 
eddy currents in the car’s metal parts). Determine by what 
factor the voltage (VR)Tms decreases in this situation in 
comparison to no car above the loop. [M onitoring (VR)rms 
detects the presence o f a car.]

FIGURE 30-37
Problem 101.

102. For the circuit shown in Fig. 30-38, show that if  the 
condition R \R 2 = L /C  is satisfied then the potential 
difference between points a and b is zero for all 
frequencies.

V ©

FIGURE 30-38
Problem 102.

18 Numerical/Computer

*103. ( II)  The RC  circuit shown in Fig. 30-39 is called 
a low-pass filter because it  passes low-frequency ac 
signals w ith less attenuation than high-frequency 
ac signals, (a) Show that the voltage gain is 
A  =  Vout/Kjn = 1/(47T2f 2R2C2 +  l ) i  (b) Discuss the 
behavior of the gain A  fo r /  —> 0 and /  —» oo. (c) Choose 
R =  8500 and C = 1.0 X 10_6F, and graph log A  versus 
log /  w ith suitable scales to show the behavior of the 
circuit at low and high frequencies.

FIGURE 30-39
Problem 103.

; 104. (II)  The R C  circuit shown in Fig. 30-40 is called a high-pass 
filter because it passes high-frequency ac signals with less 
attenuation than low-frequency ac signals, (a) Show that the 
voltage gain is A  =  Vouj V m = 2TrfRC/(4'jr2f 2R 2C 2 +  l) l.
(b) Discuss the behavior of the gain A  fo r /  —» 0 and 
/  —» oo. (c) Choose R  =  850 0  and C = 1.0 X 10_6F , 
and then graph log A  versus log /  w ith suitable scales 
to show the behavior of the circuit at high and low 
frequencies.

FIGURE 30-40 H
Problem 104.

out

*105. ( I ll)  W rite a computer program or use a spreadsheet 
program to plot / rms for an ac LRC  circuit w ith a 
sinusoidal voltage source (Fig. 30-19) w ith = 0.100 V. 
For L  = 50 /jlH and C = 50 /jlF , plot the / rms graph for
(a) R =  0.10 O, and (b) R =  1.0 O from co =  0.1w0 to 
co =  3.0w0 on the same graph.

Answers to Exercises

A : (a) 360 A /s; (b) 12 V. E: (d).
B: (b). F: (c)

C: (a). G: (a).
D: From Eq. 30-5, L  has dimensions V T /A  so (L /R )  has H: (c). 

dimensions (V T /A ) /(V /A )  = T.
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Wireless technology is all around us: 
in this photo we see a Bluetooth 
earpiece for wireless telephone 
communication and a wi-fi computer. 
The wi-fi antenna is just visible at the 
lower left. All these devices work by 
electromagnetic waves traveling 
through space, based on the great 
work of Maxwell which we 
investigate in this Chapter. Modern 
wireless devices are applications of 
Marconi’s development of long 
distance transmission of information 
a century ago.

We will see in this Chapter that 
Maxwell predicted the existence 
of EM waves from his famous 
equations. Maxwell’s equations them­
selves are a magnificent summary of 
electromagnetism. We will also 
examine how EM waves carry 
energy and momentum.

T £

Maxwell's Equations and 
Electromagnetic Waves

CONTENTS
31-1 Changing Electric Fields 

Produce Magnetic Fields; 
Ampere’s Law and 
Displacement Current 
Gauss’s Law for Magnetism 
Maxwell’s Equations 
Production of Electromagnetic 
Waves
Electromagnetic Waves, and 
Their Speed, Derived from 
Maxwell’s Equations 
Light as an Electromagnetic 
Wave and the Electromagnetic 
Spectrum
Measuring the Speed of Light 
Energy in EM Waves; the 
Poynting Vector 
Radiation Pressure 

31-10 Radio and Television;
Wireless Communication

31-2
31-3
31-4

31-5

31-6

31-7
31-8

31-9

CHAPTER-OPENING QUESTION—Guess now!
Which of the following best describes the difference between radio waves and X-rays?

(a) X -rays are radiation while radio waves are electromagnetic waves.
(b) Both can be thought of as electromagnetic waves. They differ only in wavelength 

and frequency.
(c) X-rays are pure energy. Radio waves are made of fields, not energy.
(d) Radio waves come from electric currents in an antenna. X-rays are not 

related to electric charge.
(e) The fact that X-rays can expose film , and radio waves cannot, means they are 

fundamentally different.

The culmination of electromagnetic theory in the nineteenth century 
was the prediction, and the experimental verification, that waves of 
electromagnetic fields could travel through space. This achievement 
opened a whole new world of communication: first the wireless telegraph, 

then radio and television, and more recently cell phones, remote-control devices, 
w i-fi, and Bluetooth. Most important was the spectacular prediction that visible 
light is an electromagnetic wave.
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The theoretical prediction of electromagnetic waves was the work of the 
Scottish physicist James Clerk Maxwell (1831-1879; Fig. 31-1), who unified, in one 
magnificent theory, all the phenomena of electricity and magnetism.

The development of electromagnetic theory in the early part of the nineteenth 
century by Oersted, Ampere, and others was not actually done in terms of electric 
and magnetic fields. The idea of the field was introduced somewhat later by 
Faraday, and was not generally used until Maxwell showed that all electric and 
magnetic phenomena could be described using only four equations involving 
electric and magnetic fields. These equations, known as Maxwell’s equations, are 
the basic equations for all electromagnetism. They are fundamental in the same 
sense that Newton’s three laws of motion and the law of universal gravitation 
are for mechanics. In a sense, they are even more fundamental, since they are 
consistent with the theory of relativity (Chapter 36), whereas Newton’s laws are 
not. Because all of electromagnetism is contained in this set of four equations, 
Maxwell’s equations are considered one of the great triumphs of human intellect.

Before we discuss Maxwell’s equations and electromagnetic waves, we first 
need to discuss a major new prediction of Maxwell’s, and, in addition, Gauss’s law 
for magnetism.

3 1 -1  Changing Electric Fields Produce 
Magnetic Fields; Ampere's Law 
and Displacement Current

Amperes Law
That a magnetic field is produced by an electric current was discovered by 
Oersted, and the mathematic relation is given by Ampere’s law (Eq. 28-3):

B 'di = flQ -Zencl •

Is it possible that magnetic fields could be produced in another way as well? For if a 
changing magnetic field produces an electric field, as discussed in Section 29-7, then 
perhaps the reverse might be true as well: that a changing electric field will produce 
a magnetic field. I f  this were true, it would signify a beautiful symmetry in nature.

To back up this idea that a changing electric field might produce a magnetic 
field, we use an indirect argument that goes something like this. According to 
Ampere’s law, we divide any chosen closed path into short segments di, take the 
dot product of each di with the magnetic field B at that segment, and sum 
(integrate) all these products over the chosen closed path. That sum w ill equal /jl0 

times the total current I  that passes through a surface bounded by the path of the 
line integral. When we applied Ampere’s law to the field around a straight wire 
(Section 28-4), we imagined the current as passing through the circular area 
enclosed by our circular loop, and that area is the flat surface 1 shown in Fig. 31-2. 
However, we could just as well use the sackshaped surface 2 in Fig. 31-2 as the 
surface for Ampere’s law, since the same current I  passes through it.

Now consider the closed circular path for the situation of Fig. 31-3, where a 
capacitor is being discharged. Ampere’s law works for surface 1 (current I  passes 
through surface 1), but it does not work for surface 2, since no current passes 
through surface 2. There is a magnetic field around the wire, so the left side of 
Ampere’s law ( / B -di) is not zero; yet no current flows through surface 2, so the 
right side of Ampere’s law is zero. We seem to have a contradiction of Ampere’s law.

There is a magnetic field present in Fig. 31-3, however, only if charge is flowing 
to or away from the capacitor plates. The changing charge on the plates means that 
the electric field between the plates is changing in time. Maxwell resolved the 
problem of no current through surface 2 in Fig. 31-3 by proposing that there needs 
to be an extra term on the right in Ampere’s law involving the changing 
electric field.

FIGURE 31-1 James Clerk Maxwell 
(1831-1879).

Surface 2
Closed
path

FIGURE 31-2 Ampere’s law 
applied to two different surfaces 
bounded by the same closed path.

FIGURE 31-3 A capacitor 
discharging. A conduction current 
passes through surface 1, but no 
conduction current passes through 
surface 2. An extra term is needed in 
Ampere’s law.

Surfiice 2

Closed
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Surfacc 2

FIGURE 31-3 (repeated) See text.

Ampere’s law 
(general form)

Let us see what this term should be by determining it for the changing electric 
field between the capacitor plates in Fig. 31-3. The charge Q on a capacitor of 
capacitance C is Q = CV  where V  is the potential difference between the plates 
(Eq. 24-1). Also recall that V  = E d  (Eq. 23^1) where d  is the (small) separation 
of the plates and E  is the (uniform) electric field strength between them, if we 
ignore any fringing of the field. Also, for a parallel-plate capacitor, C = e 0A /d ,  
where A  is the area of each plate (Eq. 24-2). We combine these to obtain:

A
Q = CV = ,AE.

I f  the charge on each plate changes at a rate dQ /d t, the electric field changes at a 
proportional rate. That is, by differentiating this expression for Q, we have:

dQ  _  dE  
dt £° dt '

Now d Q /d t is also the current I  flowing into or out of the capacitor:

d® EdQ _  dE  
dt €° dt dt

where 0>E = E A  is the electric flux through the closed path (surface 2 in Fig. 31-3). 
In order to make Ampere’s law work for surface 2 in Fig. 31-3, as well as for 
surface 1 (where current I  flows), we therefore write:

d<S>E
B 'd i = /Vend + dt

(31-1)

This equation represents the general form of Ampere’s law,f and embodies 
Maxwell’s idea that a magnetic field can be caused not only by an ordinary electric 
current, but also by a changing electric field or changing electric flux. Although we 
arrived at it for a special case, Eq. 31-1 has proved valid in general. The last term on 
the right in Eq. 31-1 is usually very small, and not easy to measure experimentally.

EXAMPLE 31-1 Charging capacitor. A  30-pF air-gap capacitor has circular 
plates of area A  = 100 cm2. It is charged by a 70-V battery through a 2.0-A 
resistor. A t the instant the battery is connected, the electric field between the plates 
is changing most rapidly. A t this instant, calculate (a) the current into the plates, 
and (b) the rate of change of electric field between the plates, (c) Determine the 
magnetic field induced between the plates. Assume E is uniform between the plates 
at any instant and is zero at all points beyond the edges of the plates.
APPROACH In Section 26-5 we discussed R C  circuits and saw that the charge on 
a capacitor being charged, as a function of time, is

Q = CV0( 1 -  e ^ RC),
where VQ is the voltage of the battery. To find the current at t =  0, we differentiate 
this and substitute the values V0 =  70 V, C = 30 pF, R =  2.0 fl.
SOLUTION (a) We take the derivative of Q  and evaluate it at t =  0:

dQ
dt t=o

CVo
RC

- t/R C

t = 0

70 V 
2.0 f l

= 35 A.

This is the rate at which charge accumulates on the capacitor and equals the 
current flowing in the circuit at t = 0.
(ib) The electric field between two closely spaced conductors is given by (Eq. 21-8)

E . ’L . i l A

as we saw in Chapter 21 (see Example 21-13).

Actually, there is a third term on the right for the case when a magnetic field is produced by 
magnetized materials. This can be accounted for by changing ju,0 to /j l, but we will mainly be interested 
in cases where no magnetic material is present. In the presence of a dielectric, e0 is replaced by 
e = Ke o (see Section 24-5).
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Hence

dE  d Q /d t 35 A
dt e0A  (8.85 X 10“12C 7N -m 2)(l.0  X 10 *m

= 4.0 X 1014 V/m -s.

(c) Although we w ill not prove it, we might expect the lines of B, because of 
symmetry, to be circles, and to be perpendicular to E, as shown in Fig. 31-4; 
this is the same symmetry we saw for the inverse situation of a changing 
magnetic field producing an electric field (Section 29-7, see Fig. 29-27). To 
determine the magnitude of B between the plates we apply Ampere’s law, 
Eq. 31-1, with the current /encl = 0:

is ja _B -d l -  ti0e 0 ^  •

We choose our path to be a circle of radius r, centered at the center of the plate, 
and thus following a magnetic field line such as the one shown in Fig. 31-4. For 
r < r0 (the radius of plate) the flux through a circle of radius r is Eiirr2) since E 
is assumed uniform between the plates at any moment. So from Ampere’s law 
we have

B(2irr) =

, dE

Hence

We assume E = 0 for r >  r0, so for points beyond the edge of the plates all the 
flux is contained within the plates (area = tttq) and = E tttq. Thus 
Ampere’s law gives

B(2irr) = ™ \E)

~ dE
= fi0e07Tr0 —

or
fi0e 0r20 dE  r 1

B = ^ ~ W
B has its maximum value at r = r0 which, from either relation above (using 
r0 = \ / A / t t  =  5.6 cm), is

R =  ^ 0€or0 dE
2 dt

=  |(4 tt X 10_7T-m/A)(8.85 X l(T 12C7N-m 2)(5.6 x  10-2m)(4.0 X 1014 V/m -s 

= 1.2 X 10“ 4T.

This is a very small field and lasts only briefly (the time constant RC =  6.0 X 10 11 s) 
and so would be very difficult to measure.

Let us write the magnetic field B outside the capacitor plates of Example 31-1 in 
terms of the current I  that leaves the plates. The electric field between the plates is 
E  = o-/e0 = Q /(e 0A), as we saw in part b, so d E /d t =  I / ( e 0A ). Hence B for 
r >  rQ is,

= ^ 0e0r§ dE  = fi0e 0r20 I  = / V
2 r dt 2 r e^irrl 2irr

This is the same formula for the field that surrounds a wire (Eq. 28-1). Thus the B 
field outside the capacitor is the same as that outside the wire. In other words, 
the magnetic field produced by the changing electric field between the plates is the 
same as that produced by the current in the wire.

A (face of

FIGURE 31-4 Frontal view of a 
circular plate of a parallel-plate 
capacitor. E between plates points 
out toward viewer; lines of B are 
circles. (Example 31-1.)
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Displacement current

Displacement Current
Maxwell interpreted the second term on the right in Eq. 31-1 as being equivalent 
to an electric current. He called it a displacement current, ID. An ordinary 
current I  is then called a conduction current. Ampere’s law can then be written

B - d l  -  fjjQ(/ + /D),end

where

In — € (
d®,
d T

(31-2)

(31-3)

The term “ displacement current” was based on an old discarded theory. Don’t let it 
confuse you: /D does not represent a flow of electric charged nor is there a 
displacement.

FIGURE 31-5 Magnetic field lines 
for a bar magnet.

3 1 -2  Gauss's Law for Magnetism
We are almost in a position to state Maxwell’s equations, but first we need to discuss 
the magnetic equivalent of Gauss’s law. As we saw in Chapter 29, for a magnetic 
field B the magnetic flux <E>S through a surface is defined as

Or — I8dA

where the integral is over the area of either an open or a closed surface. The 
magnetic flux through a closed surface— that is, a surface which completely 
encloses a volume— is written

= (pB-dA.

In the electric case, we saw in Section 22-2 that the electric flux <E>£ through a 
closed surface is equal to the total net charge Q  enclosed by the surface, divided 
by e0 (Eq. 22-4):

E -d A  =  — •

This relation is Gauss’s law for electricity.
We can write a similar relation for the magnetic flux. We have seen, however, 

that in spite of intense searches, no isolated magnetic poles (monopoles)— the 
magnetic equivalent of single electric charges— have ever been observed. Hence, 
Gauss’s law for magnetism is

B dA =  0. (31-4)

In  terms of magnetic field lines, this relation tells us that as many lines enter the 
enclosed volume as leave it. If, indeed, magnetic monopoles do not exist, then 
there are no “ sources” or “ sinks” for magnetic field lines to start or stop on, corre­
sponding to electric field lines starting on positive charges and ending on negative 
charges. Magnetic field lines must then be continuous. Even for a bar magnet, a 
magnetic field B exists inside as well as outside the magnetic material, and the 
lines of B are closed loops as shown in Fig. 31-5.

tThe interpretation of the changing electric field as a current does fit in well with our discussion in 
Chapter 30 where we saw that an alternating current can be said to pass through a capacitor (although 
charge doesn’t). It also means that Kirchhoff’s junction rule will be valid even at a capacitor plate: 
conduction current flows into the plate, but no conduction current flows out of the plate—instead a 
“displacement current” flows out of one plate (toward the other plate).
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31—3 Maxwell's Equations
With the extension of Ampere’s law given by Eq. 31-1, plus Gauss’s law for 
magnetism (Eq. 31-4), we are now ready to state all four of Maxwell’s equations. 
We have seen them all before in the past ten Chapters. In the absence of dielectric 
or magnetic materials, Maxwell’s equations are:

Q E-dA. = —

B d A  = 0 

E -d l  = -  

B d l

d®B
dt

d® E
dt

(31-5a)

(31-5b)

(31-5c)

(31-5d)

The first two of Maxwell’s equations are the same as Gauss’s law for electricity 
(Chapter 22, Eq. 22-4) and Gauss’s law for magnetism (Section 31-2, Eq. 31-4). 
The third is Faraday’s law (Chapter 29, Eq. 29-8) and the fourth is Ampere’s 
law as modified by Maxwell (Eq. 31-1). (We dropped the subscripts on <2encl and 
/ encl for simplicity.)

They can be summarized in words: (1) a generalized form of Coulomb’s law 
relating electric field to its sources, electric charges; (2) the same for the magnetic 
field, except that if  there are no magnetic monopoles, magnetic field lines are 
continuous— they do not begin or end (as electric field lines do on charges); (3) an 
electric field is produced by a changing magnetic field; (4) a magnetic field is 
produced by an electric current or by a changing electric field.

Maxwell’s equations are the basic equations for all electromagnetism, and 
are as fundamental as Newton’s three laws of motion and the law of universal grav­
itation. Maxwell’s equations can also be written in differential form; see Appendix E.

In earlier Chapters, we have seen that we can treat electric and magnetic fields 
separately if they do not vary in time. But we cannot treat them independently if 
they do change in time. For a changing magnetic field produces an electric field; 
and a changing electric field produces a magnetic field. An important outcome of 
these relations is the production of electromagnetic waves.

31—4  Production of Electromagnetic Waves
A  magnetic field w ill be produced in empty space if  there is a changing electric 
field. A  changing magnetic field produces an electric field that is itself changing. 
This changing electric field w ill, in turn, produce a magnetic field, which w ill be 
changing, and so it too w ill produce a changing electric field; and so on. Maxwell 
found that the net result of these interacting changing fields was a w ave  of elec­
tric and magnetic fields that can propagate (travel) through space! We now 
examine, in a simplified way, how such electromagnetic waves can be produced.

Consider two conducting rods that w ill serve as an “ antenna” (Fig. 31-6a). 
Suppose these two rods are connected by a switch to the opposite terminals of a 
battery. When the switch is closed, the upper rod quickly becomes positively 
charged and the lower one negatively charged. Electric field lines are formed as 
indicated by the lines in Fig. 31-6b. While the charges are flowing, a current exists 
whose direction is indicated by the black arrows. A  magnetic field is therefore 
produced near the antenna. The magnetic field lines encircle the rod-like antenna 
and therefore, in Fig. 31-6, B points into the page (® ) on the right and out of the 
page (O) on the left. How far out do these electric and magnetic fields extend? In 
the static case, the fields extend outward indefinitely far. However, when the 
switch in Fig. 31-6 is closed, the fields quickly appear nearby, but it takes time for 
them to reach distant points. Both electric and magnetic fields store energy, and 
this energy cannot be transferred to distant points at infinite speed.

M AXW ELLS
EQUATIONS

l

FIGURE 31-6 Fields produced by 
charge flowing into conductors. It 
takes time for the E and B fields to 
travel outward to distant points. The 
fields are shown to the right of the 
antenna, but they move out in all 
directions, symmetrically about the 
(vertical) antenna.
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FIGURE 3 1 -7  Sequence showing 
electric and magnetic fields that 
spread outward from oscillating 
charges on two conductors (the 
antenna) connected to an ac source 
(see the text).

Now we look at the situation of Fig. 31-7 where our antenna is connected to 
an ac generator. In Fig. 31-7a, the connection has just been completed. Charge 
starts building up and fields form just as in Fig. 31-6. The + and -  signs in 
Fig. 31-7a indicate the net charge on each rod at a given instant. The black arrows 
indicate the direction of the current. The electric field is represented by the red 
lines in the plane of the page; and the magnetic field, according to the right-hand 
rule, is into ((x)) or out of (O) the page, in blue. In Fig. 31-7b, the voltage of the ac gener­
ator has reversed in direction; the current is reversed and the new magnetic field is 
in the opposite direction. Because the new fields have changed direction, the old 
lines fold back to connect up to some of the new lines and form closed loops as 
shown.1- The old fields, however, don’t suddenly disappear; they are on their way to 
distant points. Indeed, because a changing magnetic field produces an electric field, 
and a changing electric field produces a magnetic field, this combination of 
changing electric and magnetic fields moving outward is self-supporting, no longer 
depending on the antenna charges.

The fields not far from the antenna, referred to as the near field, become quite 
complicated, but we are not so interested in them. We are instead mainly interested 
in the fields far from the antenna (they are generally what we detect), which we 
refer to as the radiation field, or far field. The electric field lines form loops, as 
shown in Fig. 31-8, and continue moving outward. The magnetic field lines also 
form closed loops, but are not shown since they are perpendicular to the page. 
Although the lines are shown only on the right of the source, fields also travel in 
other directions. The field strengths are greatest in directions perpendicular to the 
oscillating charges; and they drop to zero along the direction of oscillation— above 
and below the antenna in Fig. 31-8.

FIGURE 3 1 -8  (a) The radiation fields (far from the antenna) 
produced by a sinusoidal signal on the antenna. The red closed 
loops represent electric field lines. The magnetic field lines, 
perpendicular to the page and represented by blue (x) and O, 
also form closed loops, (b) Very far from the antenna the 
wave fronts (field lines) are essentially flat over a fairly 
large area, and are referred to as plane waves. (b)

818 CHAPTER 31

The magnitudes of both E  and B  in the radiation field are found to decrease 
with distance as 1/r. (Compare this to the static electric field given by Coulomb’s 
law where E decreases as 1 /r2.) The energy carried by the electromagnetic wave is 
proportional (as for any wave, Chapter 15) to the square of the amplitude, E 2 or 
B2, as w ill be discussed further in Section 31-8, so the intensity of the wave 
decreases as 1 /r2.

Several things about the radiation field can be noted from Fig. 31-8. First, the 
electric and magnetic fields at any poin t are perpendicular to each other, and to 
the direction o f  wave travel. Second, we can see that the fields alternate in direction 
(B  is into the page at some points and out of the page at others; E  points up at 
some points and down at others). Thus, the field strengths vary from a maximum in 
one direction, to zero, to a maximum in the other direction. The electric and 
magnetic fields are “ in phase” : that is, they each are zero at the same points and 
reach their maxima at the same points in space. Finally, very far from the antenna 
(Fig. 31-8b) the field lines are quite flat over a reasonably large area, and the 
waves are referred to as plane waves.

If  the source voltage varies sinusoidally, then the electric and magnetic field 
strengths in the radiation field w ill also vary sinusoidally. The sinusoidal character 
of the waves is diagrammed in Fig. 31-9, which shows the field directions and 
magnitudes plotted as a function of position. Notice that B  and E  are perpendic­
ular to each other and to the direction of travel (= the direction of the wave velocity v). 
The direction of v can be had from a right-hand rule using E  X B: fingers along E , 
then along B , gives v along thumb.

fWe are considering waves traveling through empty space. There are no charges for lines of E to start 
or stop on, so they form closed loops. Magnetic field lines always form closed loops.



Direction 
of motion

We call these waves electromagnetic (EM) waves. They are transverse waves 
because the amplitude is perpendicular to the direction of wave travel. However, 
EM waves are always waves of fields, not of matter (like waves on water or a 
rope). Because they are fields, EM waves can propagate in empty space.

As we have seen, EM waves are produced by electric charges that are oscillating, 
and hence are undergoing acceleration. In fact, we can say in general that

accelerating electric charges give rise to electromagnetic waves.

Electromagnetic waves can be produced in other ways as well, requiring 
description at the atomic and nuclear levels, as we w ill discuss later.

EXERCISE A A t a particular instant in time, a wave has its electric field pointing north and 
its magnetic field pointing up. In which direction is the wave traveling? (a) South, (b) west,
(c) east, (d) down, (e) not enough information.

FIGURE 31-9 Electric and 
magnetic field strengths in an 
electromagnetic wave. E and B are 
at right angles to each other. The 
entire pattern moves in a direction 
perpendicular to both E and B.

3 1 - 5  Electromagnetic Waves, and 
Their Speed, Derived from 
Maxwell's Equations

Let us now examine how the existence of EM waves follows from Maxwell’s 
equations. We w ill see that Maxwell’s prediction of the existence of EM waves was 
startling. Equally startling was the speed at which they were predicted to travel.

We begin by considering a region of free space, where there are no charges or 
conduction currents— that is, far from the source so that the wave fronts (the 
field lines in Fig. 31-8) are essentially flat over a reasonable area. We call them 
plane waves, as we saw, because at any instant E and B are uniform over a reason­
ably large plane perpendicular to the direction of propagation. We choose a coor­
dinate system, so that the wave is traveling in the x direction with velocity v = vi, 
with E parallel to the y  axis and B parallel to the z  axis, as in Fig. 31-9.

Maxwell’s equations, with Q = I  =  0, become

E -dA  = 0

E ‘d l =  -

0 (31-6a)

0 (31-6b)

d<S>B
dt

(31-6c)

d<$>E
^ d t  • (31-6d)

Notice the beautiful symmetry of these equations. The term on the right in the last 
equation, conceived by Maxwell, is essential for this symmetry. It is also essential if 
electromagnetic waves are to be produced, as we w ill now see.
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FIGURE 31-10 Applying Faraday’s 
law to the rectangle (Ay)(dx).

FIGURE 31-11 Applying Maxwell’s 
fourth equation to the rectangle 
(A z)(dx).

(31-7)

If  the wave is sinusoidal with wavelength A and frequency / ,  then, as we saw in 
Chapter 15, Section 15-4, such a traveling wave can be written as 

E = Ey =  E0sin(kx — cot)
B =  Bz =  B0 sin(/cx -  cot) 

where

k =  <o =  2trf , and f \  =  j  =  v, (31-8)
A  rC

with v  being the speed of the wave. Although visualizing the wave as sinusoidal is 
helpful, we w ill not have to assume so in most of what follows.

Consider now a small rectangle in the plane of the electric field as shown in 
Fig. 31-10. This rectangle has a finite height Ay, and a very thin width which we 
take to be the infinitesimal distance dx. First we show that E, B, and v are in the 
orientation shown by applying Lenz’s law to this rectangular loop. The changing 
magnetic flux through this loop is related to the electric field around the loop by 
Faraday’s law (Maxwell’s third equation, Eq. 31-6c). For the case shown, B through 
the loop is decreasing in time (the wave is moving to the right). So the electric field 
must be in a direction to oppose this change, meaning E  must be greater on the right 
side of the loop than on the left, as shown (so it could produce a counterclockwise 
current whose magnetic field would act to oppose the change in <&B— but of course 
there is no current). This brief argument shows that the orientation of E, B, and v 
are in the correct relation as shown. That is, v is in the direction of E  X B. Now let 
us apply Faraday’s law, which is Maxwell’s third equation (Eq. 31-6c),

-» -J D
E-di = ^dt

to the rectangle of height Ay and width dx shown in Fig. 31-10. First we consider 
<£E'd i. Along the short top and bottom sections of length dx, E is perpendicular 
to d l, so E • d l =  0. Along the vertical sides, we let E  be the electric field along 
the left side, and on the right side where it w ill be slightly larger, it is E  + dE. 
Thus, if we take our loop counterclockwise,

E -d i = (E  + dE) Ay -  E  Ay =  dE  Ay.

For the right side of Faraday’s law, the magnetic flux through the loop changes as
d<S>B dB
——  = ——  dx Ay, 
dt dt J

since the area of the loop, (dx)( A y), is not changing. Thus, Faraday’s law gives us 

dB
d E A y  =  - — d x A y  

dt

dE _  _dB _  
dx dt

Actually, both E  and B are functions of position x and time t. We should therefore 
use partial derivatives:

^  (31-9)
d x  dt

where dE /dx  means the derivative of E  with respect to x while t is held fixed, and 
dB /dt is the derivative of B with respect to t while x  is kept fixed.

We can obtain another important relation between E  and B in addition to 
Eq. 31-9. To do so, we consider now a small rectangle in the plane of B, whose 
length and width are Az  and dx as shown in Fig. 31-11. To this rectangular loop we 
apply Maxwell’s fourth equation (the extension of Ampere’s law), Eq. 31-6d:

-  d $ E >B-dl = fi0€0

where we have taken 7 = 0 since we assume the absence of conduction currents.
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Along the short sides (dx), B -d l is zero since B is perpendicular to di. Along the 
longer sides (Az), we let B be the magnetic field along the left side of length Az, and 
B + dB be the field along the right side. We again integrate counterclockwise, so

B dl = B A z  ~ (B + dB) Az = -d B  Az.

The right side of Maxwell’s fourth equation is 

d<f>E dE
^ ° e ° ~ d T ~ =  ^ ° e o

Equating the two expressions, we obtain
dE

—dB Az = /Ji0e0——dxA z  dt

—  = -Moto—  (31-10)dx ™ 0 dt
where we have replaced dB I dx and dE/dt by the proper partial derivatives as before.

We can use Eqs. 31-9 and 31-10 to obtain a relation between the magnitudes 
of E and B, and the speed v. Let E  and B be given by Eqs. 31-7 as a function of x 
and t. When we apply Eq. 31-9, taking the derivatives of E  and B as given by 
Eqs. 31-7, we obtain

kE0cos(kx — o)t) = (oB0cos(kx -  (at)
or

E q (x)

B0 ~ k ~ V’

since v = (o/k (see Eq. 31-8 or 15-12). Since E  and B are in phase, we see that E 
and B are related by

f  =  V  (31-11)

at any point in space, where v is the velocity of the wave.
Now we apply Eq. 31-10 to the sinusoidal fields (Eqs. 31-7) and we obtain

kB0cos(kx — cot) = fi0e0ct)E0cos(kx -  (ot)

Bo /X,0€0<W
y 0 =  ~ i r  =  ^ e ° *•

We just saw that B0/E 0 = 1/v, so

1
=  - •

Solving for v we find

v = c = i __ . (31-12)
V«oAo

where c is the special symbol for the speed of electromagnetic waves in free space. 
We see that c is a constant, independent of the wavelength or frequency. If we put 
in values for e0 and /jl0 we find

1 1
c =

:o/Ao V (8-85 x  10-12 C2/N • m2)(4ir X 10“7T-m/A)

= 3.00 X 10s m/s.

This is a remarkable result. For this is precisely equal to the measured speed of light!
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EXAMPLE 31-2 Determining E and B in EM waves. Assume a 60.0-Hz EM 
wave is a sinusoidal wave propagating in the z direction with E pointing in the 
x direction, and E0 = 2.00 V/m. Write vector expressions for E and B as 
functions of position and time.
APPROACH We find A from Af  = v = c. Then we use Fig. 31-9 and Eqs. 31-7 
and 31-8 for the mathematical form of traveling electric and magnetic fields of 
an EM wave.
SOLUTION The wavelength is

c 3.00 X 108 m/s _
A = -  = ------------- 7—̂— = 5.00 X 10 m.

/  60.0 s"1
From Eq. 31-8 we have

k  _  2'7r _  277
A 5.00 X 106m 

o) = l i r f  = 277 (60.0 Hz) = 377 rad/s.

From Eq. 31-11 with v = c, we find that

— 6.67 X 10~* T.
0 C 3.00 X 10 m/s

The direction of propagation is that of E X B, as in Fig. 31-9. With E pointing 
in the x direction, and the wave propagating in the z direction, B must point in 
the y direction. Using Eqs. 31-7 we find:

E = i(2.00V/m)sin[(l.26 x lO ^nT 1)* -  (377rad/s);]
B = j(6.67 X 10“9T)sin[(l.26 X lO ^m -1)? -  (377rad/s)?]

* Derivation of Speed of Light (General)
We can derive the speed of EM waves without having to assume sinusoidal waves 
by combining Eqs. 31-9 and 31-10 as follows. We take the derivative, with respect 
to t of Eq. 31-10

d2B d2E
dtdx ^ ° e° dt2 

We next take the derivative of Eq. 31-9 with respect to x: 
d2E _ d2B 
dx2 dt dx

Since d2B/dt dx appears in both relations, we obtain 
d2E _  1 d2E
—9 = ----------T m (31-13a)
dt2 Vo*odx2

By taking other derivatives of Eqs. 31-9 and 31-10 we obtain the same relation for B :

* T  -  — -d~  (31-13b)dt2 fi0e0 dx2
Both of Eqs. 31-13 have the form of the wave equation for a plane wave traveling 
in the x direction, as discussed in Section 15-5 (Eq. 15-16):

d2D 2 d2D
— T  =  v  ----T ’dt2 dx2

where D stands for any type of displacement. We see that the velocity v for 
Eqs. 31-13 is given by

V2 =  —

in agreement with Eq. 31-12. Thus we see that a natural outcome of Maxwell’s 
equations is that E  and B obey the wave equation for waves traveling with speed 
v = 1/V/A0e0. It was on this basis that Maxwell predicted the existence of 
electromagnetic waves and predicted their speed.
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31—6 Light as an Electromagnetic Wave 
and the Electromagnetic Spectrum

The calculations in Section 31-5 gave the result that Maxwell himself determined: 
that the speed of EM waves in empty space is given by

the same as the measured speed of light in vacuum.
Light had been shown some 60 years previously to behave like a wave (we’ll 

discuss this in Chapter 34). But nobody knew what kind of wave it was. What is it that 
is oscillating in a light wave? Maxwell, on the basis of the calculated speed of EM 
waves, argued that light must be an electromagnetic wave. This idea soon came to 
be generally accepted by scientists, but not fully until after EM waves were experi­
mentally detected. EM waves were first generated and detected experimentally by 
Heinrich Hertz (1857-1894) in 1887, eight years after Maxwell’s death. Hertz used a 
spark-gap apparatus in which charge was made to rush back and forth for a short 
time, generating waves whose frequency was about 109 Hz. He detected them some 
distance away using a loop of wire in which an emf was produced when a changing 
magnetic field passed through. These waves were later shown to travel at the speed of 
light, 3.00 X 108m/s, and to exhibit all the characteristics of light such as reflection, 
refraction, and interference. The only difference was that they were not visible. 
Hertz’s experiment was a strong confirmation of Maxwell’s theory.

The wavelengths of visible light were measured in the first decade of the 
nineteenth century, long before anyone imagined that light was an electromagnetic 
wave. The wavelengths were found to lie between 4.0 X 10-7 m and 7.5 X 10-7 m, 
or 400 nm to 750 nm (l nm = 109 m). The frequencies of visible light can be found 
using Eq. 15-1 or 31-8, which we rewrite here:

where /  and A are the frequency and wavelength, respectively, of the wave. Here, 
c is the speed of light, 3.00 X 108m/s; it gets the special symbol c because of its 
universality for all EM waves in free space. Equation 31-14 tells us that the 
frequencies of visible light are between 4.0 X 1014 Hz and 7.5 X 1014 Hz. (Recall 
that 1 Hz = 1 cycle per second = 1 s-1.)

But visible light is only one kind of EM wave. As we have seen, Hertz 
produced EM waves of much lower frequency, about 109 Hz. These are now called 
radio waves, because frequencies in this range are used to transmit radio and TV 
signals. Electromagnetic waves, or EM radiation as we sometimes call it, have been 
produced or detected over a wide range of frequencies. They are usually categorized 
as shown in Fig. 31-12, which is known as the electromagnetic spectrum.

E  1
c = — = —, = 3.00 X 108 m/s,

B V*olM>

c A /, (31-14)

FIGURE 31-12
Electromagnetic spectrum.

Wavelength (m)
3 x 104m 3 m 3 x IO-4m 3 x 10-8 m 3 x 10-12m
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(ac current)

fm  Cellular Satellite 
AM  TV I TV phones TV 
radio ch2-6 |ch7&upj-j—1 -̂------- 1

Frequency (Hz)

/ =  4x 1014Hz
Visible light

7 .5 x  1014Hz
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Radio waves and microwaves can be produced in the laboratory using electronic 
equipment (Fig. 31-7). Higher-frequency waves are very difficult to produce 
electronically. These and other types of EM waves are produced in natural 
processes, as emission from atoms, molecules, and nuclei (more on this later). 
EM waves can be produced by the acceleration of electrons or other charged particles, 
such as electrons in the antenna of Fig. 31-7. Another example is X-rays, which are 
produced (Chapter 35) when fast-moving electrons are rapidly decelerated upon 
striking a metal target. Even the visible light emitted by an ordinary incandescent light 
is due to electrons undergoing acceleration within the hot filament.

We will meet various types of EM waves later. However, it is worth mentioning 
here that infrared (IR) radiation (EM waves whose frequency is just less than that of 
visible light) is mainly responsible for the heating effect of the Sun. The Sun emits 
not only visible light but substantial amounts of IR and UV (ultraviolet) as well. The 
molecules of our skin tend to “resonate” at infrared frequencies, so it is these that 
are preferentially absorbed and thus warm us up. We humans experience EM waves 
differently, depending on their wavelengths: Our eyes detect wavelengths between 
about 4 X 10“7 m and 7.5 X 10 7 m (visible light), whereas our skin detects longer 
wavelengths (IR). Many EM wavelengths we don’t detect directly at all.
I EXERCISE B Return to the Chapter-Opening Question, page 812, and answer it again now. 
| Try to explain why you may have answered differently the first time.

Light and other electromagnetic waves travel at a speed of 3 X 108m/s. 
Compare this to sound, which travels (see Chapter 16) at a speed of about 300 m/s 
in air, a million times slower; or to typical freeway speeds of a car, 
30 m/s (100 km/h, or 60 mi/h), 10 million times slower than light. EM waves differ 
from sound waves in another big way: sound waves travel in a medium such as air, 
and involve motion of air molecules; EM waves do not involve any material—only 
fields, and they can travel in empty space.

U 5 E H I E H 8  Wavelengths of EM waves. Calculate the wavelength (a) of 
a 60-Hz EM wave, (b) of a 93.3-MHz FM radio wave, and (c) of a beam of visible 
red light from a laser at frequency 4.74 X 1014 Hz.
APPROACH All of these waves are electromagnetic waves, so their speed is 
c = 3.00 X 108m/s. We solve for A in Eq. 31-14: A = c /f.

, s c 3.00 X 108m/s *
SOLUTION (fl) A = T — — = 5.0 X 106m,

/  60s 1
or 5000 km. 60 Hz is the frequency of ac current in the United States, and, as we 
see here, one wavelength stretches all the way across the continental USA.

.  3.00 x  I t f  . / ,  _
w  93.3 X 10 s
The length of an FM antenna is about half this (|A), or l |m .

= 3.00 X 10*m/s = 6.33 x l 0 -7m (=633nm).
_  4.74 X 10 s v J
EXERCISE C What are the frequencies of ( a )  an 80-m-wavelength radio wave, and ( b )  an 
X-ray of wavelength 5.5 X 10-11 m?

EXAMPLE 31-4 ESTIMATE 1 Cell phone antenna. The antenna of a cell 
phone is often \  wavelength long. A particular cell phone has an 8.5-cm-long 
straight rod for its antenna. Estimate the operating frequency of this phone.
APPROACH The basic equation relating wave speed, wavelength, and frequency 
is c = A/; the wavelength A equals four times the antenna’s length.
SOLUTION The antenna is ^A long, so A = 4(8.5 cm) = 34 cm = 0.34 m. Then 
f  = c /A = (3.0 X 108 m/s)/(0.34m) = 8.8 X 108Hz = 880 MHz.
NOTE Radio antennas are not always straight conductors. The conductor may be 
a round loop to save space. See Fig. 31-21b.

EXERCISE D How long should a \  A antenna be for an aircraft radio operating at 165 MHz?
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Electromagnetic waves can travel along transmission lines as well as in empty FIGURE 31-13 Coaxial cable, 
space. When a source of emf is connected to a transmission line—be it two parallel 
wires or a coaxial cable (Fig. 31-13)—the electric field within the wire is not set 
up immediately at all points along the wires. This is based on the same argument 
we used in Section 31-4 with reference to Fig. 31-7. Indeed, it can be shown that if 
the wires are separated by empty space or air, the electrical signal travels along the 
wires at the speed c  = 3.0 X 108m/s. For example, when you flip a light 
switch, the light actually goes on a tiny fraction of a second later. If the wires are 
in a medium whose electric permittivity is e and magnetic permeability is fi 
(Sections 24-5 and 28-9, respectively), the speed is not given by Eq. 31-12, but by

1
v =

v e / i

ESTIMATE I Phone call time lag. You make a telephone 
call from New York to a friend in London. Estimate how long it will take the 
electrical signal generated by your voice to reach London, assuming the signal is
(a) carried on a telephone cable under the Atlantic Ocean, and (b) sent via satellite
36.000 km above the ocean. Would this cause a noticeable delay in either case?
APPROACH The signal is carried on a telephone wire or in the air via satellite. In 
either case it is an electromagnetic wave. Electronics as well as the wire or cable slow 
things down, but as a rough estimate we take the speed to be c  = 3.0 X 108 m/s.
SOLUTION The distance from New York to London is about 5000 km.
(a) The time delay via the cable is t  = d / c  «  (5 X 106 m)/(3.0 X 108 m/s) = 0.017 s.
( b )  Via satellite the time would be longer because communications satellites, 
which are usually geosynchronous (Example 6- 6), move at a height of
36.000 km. The signal would have to go up to the satellite and back down, 
or about 72,000 km. The actual distance the signal would travel would be a 
little more than this as the signal would go up and down on a diagonal. Thus 
t = d /c  »  7.2 X 107m/(3 X 10s m/s) = 0.24 s.
NOTE When the signal travels via the underwater cable, there is only a hint of a delay 
and conversations are fairly normal. When the signal is sent via satellite, the delay is 
noticeable. The length of time between the end of when you speak and your friend 
receives it and replies, and then you hear the reply, is about a half second beyond 
the normal time in a conversation. This is enough to be noticeable, and you have to 
adjust for it so you don’t start talking again while your friend’s reply is on the way 
back to you.
EXERCISE E If you are on the phone via satellite to someone only 100 km away, 
would you hear the same effect?

I
 EXERCISE F If your voice traveled as a sound wave, how long would it take to go from 

New York to London?

3 1 -7  Measuring the Speed o f Light
Galileo attempted to measure the speed of light by trying to measure the time 
required for light to travel a known distance between two hilltops. He stationed an 
assistant on one hilltop and himself on another, and ordered the assistant to lift the 
cover from a lamp the instant he saw a flash from Galileo’s lamp. Galileo measured 
the time between the flash of his lamp and when he received the light from his 
assistant’s lamp. The time was so short that Galileo concluded it merely represented 
human reaction time, and that the speed of light must be extremely high.

The first successful determination that the speed of light is finite was made by 
the Danish astronomer Ole Roemer (1644-1710). Roemer had noted that the 
carefully measured orbital period of Io, a moon of Jupiter with an average period 
of 42.5 h, varied slightly, depending on the relative position of Earth and Jupiter.
He attributed this variation in the apparent period to the change in distance 
between the Earth and Jupiter during one of Io’s periods, and the time it took light 
to travel the extra distance. Roemer concluded that the speed of light—though 
great—is finite. SECTION 31- 7  825
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Eight-sided &  Observer 
rotating 
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(Mt. Baldy)
Light 
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(Mt. Wilson)

-35 km
FIGURE 31-14 Michelson’s speed- 
of-light apparatus (not to scale).

Since then a number of techniques have been used to measure the speed of 
light. Among the most important were those carried out by the American Albert A. 
Michelson (1852-1931). Michelson used the rotating mirror apparatus diagrammed 
in Fig. 31-14 for a series of high-precision experiments carried out from 1880 to the 
1920s. Light from a source would hit one face of a rotating eight-sided mirror. 
The reflected light traveled to a stationary mirror a large distance away and back 
again as shown. If the rotating mirror was turning at just the right rate, the 
returning beam of light would reflect from one of the eight mirrors into a small 
telescope through which the observer looked. If the speed of rotation was only 
slightly different, the beam would be deflected to one side and would not be seen 
by the observer. From the required speed of the rotating mirror and the known 
distance to the stationary mirror, the speed of light could be calculated. In the 
1920s, Michelson set up the rotating mirror on the top of Mt. Wilson in southern 
California and the stationary mirror on Mt. Baldy (Mt. San Antonio) 35 km away. 
He later measured the speed of light in vacuum using a long evacuated tube.

Today the speed of light, c, in vacuum is taken as
c = 2.99792458 X 108 m/s,

and is defined to be this value. This means that the standard for length, the meter, 
is no longer defined separately. Instead, as we noted in Section 1-4, the meter is 
now formally defined as the distance light travels in vacuum in 1/299,792,458 
of a second. We usually round off c to

c = 3.00 X 108m/s
when extremely precise results are not required. In air, the speed is only slightly less.

31—8 Energy in EM Waves; the Poynting Vector
Electromagnetic waves carry energy from one region of space to another. This 
energy is associated with the moving electric and magnetic fields. In Section 24-4, 
we saw that the energy density uE (J/m3) stored in an electric field E  is 
u e  = \ eoE2 (Eq. 24-6). The energy density stored in a magnetic field B, as we 
discussed in Section 30-3, is given by uB =  \  B2/ /jlq (Eq. 30-7). Thus, the total energy 
stored per unit volume in a region of space where there is an electromagnetic 
wave is

u = uE + uB = ^€0£ 2 + (31-15)
Z Z ^  0

In this equation, E  and B represent the electric and magnetic field strengths of the 
wave at any instant in a small region of space. We can write Eq. 31-15 in terms 
of the E  field alone, using Eqs. 31-11 (B = E/c) and 31-12 (c = l/V^o^o) 
to obtain

1 t-2 , 1  e0fi0E 2 u = — e0E + -----------
2 2 vo (31-16a)

Note here that the energy density associated with the B field equals that due to the 
E  field, and each contributes half to the total energy. We can also write the energy 
density in terms of the B field only:

d2
u = 6 0E 2 = € o c2 B2 = —  > (31-16b)

or in one term containing both E  and B,

u = e0E 2 =
e0EB

= J  —  EB. (31-16c)

Equations 31-16 give the energy density in any region of space at any instant.
Now let us determine the energy the wave transports per unit time per 

unit area. This is given by a vector S, which is called the Poynting vector.1 
The units of S are W/m2. The direction of S is the direction in which the 
energy is transported, which is the direction in which the wave is moving.
f After J. H. Poynting (1852-1914).
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Let us imagine the wave is passing through an area A  perpendicular to the x axis 
as shown in Fig. 31-15. In a short time dt, the wave moves to the right a distance 
dx = c dt where c is the wave speed. The energy that passes through A  in the 
time dt is the energy that occupies the volume dV = A  dx = Ac dt. The energy 
density u is u = e0E 2 where E  is the electric field in this volume at the given 
instant. So the total energy dU contained in this volume dV  is the energy density u 
times the volume: dU = u dV = (e0E2)(Ac dt). Therefore the energy crossing 
the area A  per time dt is

= 1  dU 
A d t

e0cE2.

Since E = cB and c = l / \ / e 0fjL0, this can also be written:

(31-17)

S = encE2 = cB2 EB 
Mo Mo

The direction of S is along v, perpendicular to E and B, so the Poynting vector S 
can be written

FIGURE 31-15 Electromagnetic 
wave carrying energy through area A.

S = - ( B x i ) .
Mo

(31-18)

Equation 31-17 or 31-18 gives the energy transported per unit area per unit time 
at any instant. We often want to know the average over an extended period of time 
since the frequencies are usually so high we don’t detect the rapid time variation. 
If E  and B are sinusoidal, then E2 = E\/2, just as for electric currents and 
voltages (Section 25-7), where E0 is the maximum value of E. Thus we can write 
for the magnitude of the Poynting vector, on the average,

1 _ ^ B2 = E0B0
2 Mo 2//,0

(31-19a)

where B0 is the maximum value of B. This time averaged value of S is the intensity, 
defined as the average power transferred across unit area (Section 15-3). We can 
also write for the average value of S:

S =
Mo

(31-19b)

where Erms and BTms are the rms values (£rms = \ / e 2 , Brms = \Z l¥ ).

EXAMPLE 31-6_ E  and B from the Sun. Radiation from the Sun reaches the 
Earth (above the atmosphere) at a rate of about 1350J/s-m 2(= 1350W/m2). 
Assume that this is a single EM wave, and calculate the maximum values of E  
and B.
APPROACH We solve Eq. 31-19a (5 = §e0c£o) for ^o in terms of S using
S = 1350 J/s-m 2.

SOLUTION
2(1350 J/s-m 2)

(8.85 X 10“12C2/N -m 2)(3.00 X 108m/s)

= 1.01 X 103 V/m.

From Eq. 31-11, B = E /c , so

E0 1.01 X 103 V/m _
Bn = —  = ---------- , „ , = 3.37 X 10 6T.

c 3.00 X 10 m/s

NOTE Although B has a small numerical value compared to E  (because of the 
way the different units for E  and B are defined), B contributes the same energy 
to the wave as E  does, as we saw earlier (Eqs. 31-15 and 16).
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31—9 Radiation Pressure
If electromagnetic waves carry energy, then we might expect them to also carry 
linear momentum. When an electromagnetic wave encounters the surface of an 
object, a force will be exerted on the surface as a result of the momentum transfer 
(F = dp/dt), just as when a moving object strikes a surface. The force per unit 
area exerted by the waves is called radiation pressure, and its existence was 
predicted by Maxwell. He showed that if a beam of EM radiation (light, for 
example) is completely absorbed by an object, then the momentum transferred is

radiation
Ap  =  — fully

absorbed
(31-20a)

where A t/ is the energy absorbed by the object in a time At, and c is the speed of 
light.1" If instead, the radiation is fully reflected (suppose the object is a mirror), 
then the momentum transferred is twice as great, just as when a ball bounces 
elastically off a surface:

2 AU
Ap =  — —

radiation
fully

reflected
(31-20b)

If a surface absorbs some of the energy, and reflects some of it, then Ap = a AU/c, 
where a is a factor between 1 and 2.

Using Newton’s second law we can calculate the force and the pressure 
exerted by radiation on the object. The force F is given by 

dp
F = -j-- 

dt
The average rate that energy is delivered to the object is related to the Poynting 
vector by

d T  =  5 A ’
where A  is the cross-sectional area of the object which intercepts the radiation. 
The radiation pressure P (assuming full absorption) is given by (see Eq. 31-20a)

- ^ . 1  [ M l ,  I
A A d t  Ac dt c I absorbed I

If the light is fully reflected, the pressure is twice as great (Eq. 31-20b):

f  -  T  <»-“ »
I frfJ iTi I ’J i T T W J  ESTIMATE I Solar pressure. Radiation from the Sun that 
reaches the Earth’s surface (after passing through the atmosphere) transports 
energy at a rate of about 1000 W/m2. Estimate the pressure and force exerted by 
the Sun on your outstretched hand.
APPROACH The radiation is partially reflected and partially absorbed, so let us 
estimate simply P = S/c.

SOLUTION P « -  = 1000 W/m ^ 3 x 10-6N/m2 
c 3 X 10 m /s

An estimate of the area of your outstretched hand might be about 10 cm by 
20 cm, so A  = 0.02 m2. Then the force is

F = PA  ~ (3 X 10-6N/m2)(0.02m2) «  6 X  10“8N.
NOTE These numbers are tiny. The force of gravity on your hand, for comparison, 
is maybe a half pound, or with m = 0.2 kg, mg «  (0.2 kg)(9.8 m/s2) «  2N. The 
radiation pressure on your hand is imperceptible compared to gravity.

'’Very roughly, if we think of light as particles (and we do—see Chapter 37), the force that would be needed 
to bring such a particle moving at speed c to “rest” (i.e. absorption) is F = Ap/ At. But F is also related to 
energy by Eq. 8-7, F = AU/ Ax, so Ap = F At = AU/(Ax/ At) = AU/c where we identify (Ax/At) 
with the speed of light c.
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ESTI A/I ATE | A solar sail. Proposals have been made to use 
the radiation pressure from the Sun to help propel spacecraft around the solar 
system, (a) About how much force would be applied on a 1 km X 1 km highly 
reflective sail, and (b) by how much would this increase the speed of a 5000-kg 
spacecraft in one year? (c) If the spacecraft started from rest, about how far 
would it travel in a year?

APPROACH Pressure P is force per unit area, so F = PA. We use the estimate 
of Example 31-7, doubling it for a reflecting surface P = 2S/c. We find the 
acceleration from Newton’s second law, and assume it is constant, and then find 
the speed from v = v0 + at. The distance traveled is given by x = \a t2. 
SOLUTION (a) Doubling the result of Example 31-7, the solar pressure is 2S/c =
6 X  10-6N/m2. Then the force is F «  PA = (6 X l(T6N/ni2)(l06m2) «  6N.
(b) The acceleration is a «  F/m  «  (6N)/(5000kg) «  1.2 X 10_3m/s2. The speed 
increase is v -  v0 = at = (1.2 X IO-3 m/s2)(365 days) (24 hr/day) (3600 s/hr) «
4 X 104m /s(«  150,000 km/h!), (c) Starting from rest, this acceleration would 
result in a distance of about \a t2 «  6 X 10n m in a year, about four times the 
Sun-Earth distance. The starting point should be far from the Earth so the 
Earth’s gravitational force is small compared to 6 N.
NOTE A large sail providing a small force over a long time can result in a lot of 
motion.

Although you cannot directly feel the effects of radiation pressure, the 
phenomenon is quite dramatic when applied to atoms irradiated by a finely 
focused laser beam. An atom has a mass on the order of 10-27 kg, and a laser beam 
can deliver energy at a rate of 1000 W/m2. This is the same intensity used in 
Example 31-7, but here a radiation pressure of 10“6 N/m2 would be very significant 
on a molecule whose mass might be 10“23 to 10-26 kg. It is possible to move atoms 
and molecules around by steering them with a laser beam, in a device called 
“optical tweezers.” Optical tweezers have some remarkable applications. They are 
of great interest to biologists, especially since optical tweezers can manipulate live 
microorganisms, and components within a cell, without damaging them. Optical 
tweezers have been used to measure the elastic properties of DNA by pulling each 
end of the molecule with such a laser “tweezers.”

31-10 Radio and Television; Wireless 
Communication

Electromagnetic waves offer the possibility of transmitting information over long 
distances. Among the first to realize this and put it into practice was Guglielmo 
Marconi (1874-1937) who, in the 1890s, invented and developed wireless 
communication. With it, messages could be sent at the speed of light without the 
use of wires. The first signals were merely long and short pulses that could be 
translated into words by a code, such as the “dots” and “dashes” of the Morse 
code: they were digital wireless, believe it or not. In 1895 Marconi sent wireless 
signals a kilometer or two in Italy. By 1901 he had sent test signals 3000 km 
across the ocean from Newfoundland, Canada, to Cornwall, England. In 1903 he 
sent the first practical commercial messages from Cape Cod, Massachusetts, to 
England: the London Times printed news items sent from its New York corre­
spondent. 1903 was also the year of the first powered airplane flight by the 
Wright brothers. The hallmarks of the modern age—wireless communication and 
flight—date from the same year. Our modern world of wireless communication, 
including radio, television, cordless phones, cell phones, Bluetooth, wi-fi, and satellite 
communication, are simply modern applications of Marconi’s pioneering work.

The next decade saw the development of vacuum tubes. Out of this early work 
radio and television were born. We now discuss briefly (1) how radio and TV 
signals are transmitted, and (2) how they are received at home.

EXAMPLE 31-8

0 P H Y S I C S  A P P L I E D
O p t i c a l  t w e e z e r s

0 P H Y S I C S  A P P L I E D
W i r e l e s s  t r a n s m i s s i o n
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FIGURE 31-17 In amplitude 
modulation (AM), the amplitude of 
the carrier signal is made to vary in 
proportion to the audio signal’s 
amplitude.
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FIGURE 31-18 Infrequency 
modulation (FM), the frequency of 
the carrier signal is made to change 
in proportion to the audio signal’s 
amplitude. This method is used by 
FM radio and television.
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0 P H Y S I C S  A P P L I E D
R a d i o  a n d  T V  r e c e i v e r s

The process by which a radio station transmits information (words and 
music) is outlined in Fig. 31-16. The audio (sound) information is changed into 
an electrical signal of the same frequencies by, say, a microphone or magnetic 
read/write head. This electrical signal is called an audiofrequency (AF) signal, 
since the frequencies are in the audio range (20 to 20,000 Hz). The signal is 
amplified electronically and is then mixed with a radio-frequency (RF) signal 
called its carrier frequency, which represents that station. AM radio stations have 
carrier frequencies from about 530 kHz to 1700 kHz. For example, “710 on your 
dial” means a station whose carrier frequency is 710 kHz. FM radio stations have 
much higher carrier frequencies, between 88 MHz and 108 MHz. The carrier 
frequencies for broadcast TV stations in the United States lie between 54 MHz 
and 88 MHz, between 174 MHz and 216 MHz, and between 470 MHz and 
890 MHz.

The mixing of the audio and carrier frequencies is done in two ways. In 
amplitude modulation (AM), the amplitude of the high-frequency carrier wave 
is made to vary in proportion to the amplitude of the audio signal, as shown 
in Fig. 31-17. It is called “amplitude modulation” because the amplitude 
of the carrier is altered (“modulate” means to change or alter). In frequency 
modulation (FM), the frequency of the carrier wave is made to change in 
proportion to the audio signal’s amplitude, as shown in Fig. 31-18. The mixed 
signal is amplified further and sent to the transmitting antenna, where the 
complex mixture of frequencies is sent out in the form of EM waves. In digital 
communication, the signal is put into a digital form (Section 29-8) which 
modulates the carrier.

A television transmitter works in a similar way, using FM for audio and AM 
for video; both audio and video signals (see Section 23-9) are mixed with carrier 
frequencies.

Now let us look at the other end of the process, the reception of radio and 
TV programs at home. A simple radio receiver is diagrammed in Fig. 31-19. 
The EM waves sent out by all stations are received by the antenna. The 
signals the antenna detects and sends to the receiver are very small and 
contain frequencies from many different stations. The receiver selects out a 
particular RF frequency (actually a narrow range of frequencies) corresponding 
to a particular station using a resonant LC  circuit (Sections 30-6 and 30-9).

FIGURE 31-19 Block diagram of a simple radio receiver.

I Receiving 
/  antenna

RF
signal

Audio
signal

Loudspeaker
RF tuner Demodulator AF -------- k ih ^and amplifier amplifier
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A simple way of tuning a station is shown in Fig. 31-20. A particular station is 
“tuned in” by adjusting C and/or L  so that the resonant frequency of the circuit 
equals that of the station’s carrier frequency. The signal, containing both audio and 
carrier frequencies, next goes to the demodulator, or detector (Fig. 31-19), where 
“demodulation” takes place—that is, the RF carrier frequency is separated from the 
audio signal. The audio signal is amplified and sent to a loudspeaker or headphones.

Modern receivers have more stages than those shown. Various means are used to 
increase the sensitivity and selectivity (ability to detect weak signals and distinguish 
them from other stations), and to minimize distortion of the original signal. *

A television receiver does similar things to both the audio and the video 
signals. The audio signal goes finally to the loudspeaker, and the video signal to the 
monitor, such as a cathode ray tube (CRT) or LCD screen (Sections 23-9 and 35-12).

One kind of antenna consists of one or more conducting rods; the electric 
field in the EM waves exerts a force on the electrons in the conductor, causing 
them to move back and forth at the frequencies of the waves (Fig. 31-21 a). A 
second type of antenna consists of a tubular coil of wire which detects the magnetic 
field of the wave: the changing B  field induces an emf in the coil (Fig. 31-21b).

FIGURE 31-20 Simple tuning 
stage of a radio.

Antenna rod

(b)
receiver 
(TV set)

FIGURE 31-21 Antennas, (a) Electric field of EM wave produces a current in an antenna consisting of 
straight wire or rods, (b) Changing magnetic field induces an emf and current in a loop antenna.

A satellite dish (Fig. 31-22) consists of a parabolic reflector that focuses the EM FIGURE 31-22 A satellite dish, 
waves onto a “horn,” similar to a concave mirror telescope (Fig. 33-38).

1 5 Z E I 2 H B B 1  Tuning a station. Calculate the transmitting wavelength of 
an FM radio station that transmits at 100 MHz.
APPROACH Radio is transmitted as an EM wave, so the speed is c = 3.0 X 108 m/s.
The wavelength is found from Eq. 31-14, A = c /f .
SOLUTION The carrier frequency is /  = 100 MHz = 1.0 X 108s 1, so

C (3.0 X 108m/s)
A = — = ----------- ;---tt-  = 3.0 m.

/  (1.0 X 10s s_1)

NOTE The wavelengths of other FM signals (88 MHz to 108 MHz) are close to the
3.0-m wavelength of this station. FM antennas are typically 1.5 m long, or about a 
half wavelength. This length is chosen so that the antenna reacts in a resonant 
fashion and thus is more sensitive to FM frequencies. AM radio antennas would 
have to be very long to be either §A or J a.

fFor FM stereo broadcasting, two signals are carried by the carrier wave. One signal contains frequencies 
up to about 15 kHz, which includes most audio frequencies. The other signal includes the same range of 
frequencies, but 19 kHz is added to it. A stereo receiver subtracts this 19,000-Hz signal and distributes 
the two signals to the left and right channels. The first signal consists of the sum of left and right 
channels (L + R), so mono radios detect all the sound. The second signal is the difference between left 
and right (L -  R). Hence the receiver must add and subtract the two signals to get pure left and right 
signals for each channel.
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@  P H Y S I C S A P P L I E D
Cell phones, radio control, 

remote control, cable TV, 
and satellite TV and radio

Summary

The various regions of the radio-wave spectrum are assigned by governmental agencies 
for various purposes. Besides those mentioned above, there are “bands” assigned for 
use by ships, airplanes, police, military, amateurs, satellites and space, and radar. Cell 
phones, for example, are complete radio transmitters and receivers. In the U.S., 
CDMA cell phones function on two different bands: 800 MHz and 1900 MHz 
(=1.9 GHz). Europe, Asia, and much of the rest of the world use a different system: 
the international standard called GSM (Global System for Mobile Communication), 
on 900-MHz and 1800-MHz bands. The U.S. now also has the GSM option (at 850 MHz 
and 1.9 GHz), as does much of the rest of the Americas. Radio-controlled toys (cars, 
sailboats, robotic animals, etc.) can use various frequencies from 27 MHz to 75 MHz. 
Automobile remote (keyless) entry may operate around 300 MHz or 400 MHz.

Cable TV channels are carried as electromagnetic waves along a coaxial cable 
(see Fig. 31-13) rather than being broadcast and received through the “air.” The 
channels are in the same part of the EM spectrum, hundreds of MHz, but some are 
at frequencies not available for TV broadcast. Digital satellite TV and radio 
are carried in the microwave portion of the spectrum (12 to 14 GHz and 2.3 GHz, 
respectively).

Other EM Wave Communications

James Clerk Maxwell synthesized an elegant theory in which all 
electric and magnetic phenomena could be described using four 
equations, now called Maxwell’s equations. They are based on 
earlier ideas, but Maxwell added one more—that a changing 
electric field produces a magnetic field. Maxwell’s equations are

- - QE -dA  = —  
eo

B - d A  =  0

—» -» 73
E 'd l -  - I T

B - d l  =  f i 0 I  +  i x 0 e 0
d<&E
dt

(31-5a)

(31-5b)

(31-5c)

(31-5d)

The first two are Gauss’s laws for electricity and for magnetism; 
the other two are Faraday’s law and Ampere’s law (as extended 
by Maxwell), respectively.

Maxwell’s theory predicted that transverse electromagnetic 
(EM ) waves would be produced by accelerating electric charges, 
and these waves would propagate through space at the speed of 
light c, given by

c = i __ = 3.00 X 108 m/s. (31-12)

The wavelength A and frequency /  of EM waves are related 
to their speed c by

c =  A/, (31-14)

just as for other waves.
The oscillating electric and magnetic fields in an EM wave are 

perpendicular to each other and to the direction of propagation. 
EM waves are waves of fields, not matter, and can propagate in 
empty space.

After EM waves were experimentally detected in the late 
1800s, the idea that light is an EM wave (although of much 
higher frequency than those detected directly) became generally 
accepted. The electromagnetic spectrum includes EM waves of a 
wide variety of wavelengths, from microwaves and radio waves 
to visible light to X-rays and gamma rays, all of which travel 
through space at a speed c = 3.00 X 108 m/s.

The energy carried by EM waves can be described by the 
Poynting vector

S = — E X B
A*o

(31-18)

which gives the rate energy is carried across unit area per unit 
time when the electric and magnetic fields in an EM wave in 
free space are E and B.

EM waves carry momentum and exert a radiation pressure 
proportional to the intensity S of the wave.

Questions
1. An electric field E points away from you, and its magnitude 

is increasing. Will the induced magnetic field be clockwise 
or counterclockwise? What if E points toward you and is 
decreasing?

2. What is the direction of the displacement current in Fig. 31-3? 
(Note: The capacitor is discharging.)

3. Why is it that the magnetic field of a displacement current 
in a capacitor is so much harder to detect than the magnetic 
field of a conduction current?

4. Are there any good reasons for calling the term 
^ 0 ^ 0  d<&E/d t  in Eq. 31-1 a “current”? Explain.

5. The electric field in an EM wave traveling north oscillates in 
an east-west plane. Describe the direction of the magnetic 
field vector in this wave.

6. Is sound an electromagnetic wave? If not, what kind of 
wave is it?

7. Can EM waves travel through a perfect vacuum? Can sound 
waves?

8. When you flip a light switch, does the overhead light go on 
immediately? Explain.

9. Are the wavelengths of radio and television signals longer 
or shorter than those detectable by the human eye?
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10. What does the wavelength calculated in Example 31-2 tell you 
about the phase of a 60-Hz ac current that starts at a power 
plant as compared to its phase at a house 200 km away?

11. When you connect two loudspeakers to the output of a 
stereo amplifier, should you be sure the lead wires are equal 
in length so that there will not be a time lag between 
speakers? Explain.

12. In the electromagnetic spectrum, what type of EM wave 
would have a wavelength of 103km; 1 km; lm ; 1 cm;
1 mm; 1 ^m?

13. Can radio waves have the same frequencies as sound waves 
(20 Hz-20,000 Hz)?

14. Discuss how cordless telephones make use of EM waves. 
What about cellular telephones?

Problems_________________
31 -1 B Produced by Changing E
1. (I) Determine the rate at which the electric field changes 

between the round plates of a capacitor, 6.0 cm in diameter, 
if the plates are spaced 1.1 mm apart and the voltage across 
them is changing at a rate of 120 V/s.

2. (I) Calculate the displacement current /D between the 
square plates, 5.8 cm on a side, of a capacitor if the electric 
field is changing at a rate of 2.0 X 106 V/m • s.

3. (II) At a given instant, a 2.8-A current flows in the wires 
connected to a parallel-plate capacitor. What is the rate at 
which the electric field is changing between the plates if the 
square plates are 1.60 cm on a side?

4. (II) A 1500-nF capacitor with circular parallel plates 2.0 cm 
in diameter is accumulating charge at the rate of 38.0 mC/s 
at some instant in time. What will be the induced magnetic 
field strength 10.0 cm radially outward from the center of 
the plates? What will be the value of the field strength after 
the capacitor is fully charged?

5. (II) Show that the displacement current through a parallel- 
plate capacitor can be written /D = C dV/dt, where V  is the 
voltage across the capacitor at any instant.

6. (II) Suppose an air-gap capacitor has circular plates of radius 
R = 2.5 cm and separation d = 1.6 mm. A 76.0-Hz emf,
% = fo cos (tit, is applied to the capacitor. The maximum 

displacement current is 35 /i A . Determine (a) the maximum 
conduction current I, (b) the value of %, (c) the maximum 
value of d<$>E/dt between the plates. Neglect fringing.

7. (Ill) Suppose that a circular parallel-plate capacitor has 
radius R0 = 3.0 cm and plate separation d = 5.0 mm. A 
sinusoidal potential difference V = V0 sin (2-77f t )  is applied 
across the plates, where Vq = 150 V and /  = 60 Hz. (a) In 
the region between the plates, show that the magnitude of 
the induced magnetic field is given by B = B0(R) cos(2ttf t) ,  
where R is the radial distance from the capacitor’s central 
axis. (b) Determine the expression for the amplitude B0(R) 
of this time-dependent (sinusoidal) field when R < R0, and 
when R > R0. (c) Plot B0(R) in tesla for the range
0 < R < 10 cm.

31-5 EM Waves
8. (I) If the electric field in an EM wave has a peak magnitude 

of 0.57 X 10_4V/m, what is the peak magnitude of the 
magnetic field strength?

15. Can two radio or TV stations broadcast on the same carrier 
frequency? Explain.

16. If a radio transmitter has a vertical antenna, should a 
receiver’s antenna (rod type) be vertical or horizontal to 
obtain best reception?

17. The carrier frequencies of FM broadcasts are much higher 
than for AM broadcasts. On the basis of what you learned 
about diffraction in Chapter 15, explain why AM signals can 
be detected more readily than FM signals behind low hills 
or buildings.

18. A lost person may signal by flashing a flashlight on and off 
using Morse code. This is actually a modulated EM wave. 
Is it AM or FM? What is the frequency of the carrier, 
approximately?

9. (I) If the magnetic field in a traveling EM wave has a peak 
magnitude of 12.5 nT, what is the peak magnitude of the 
electric field?

10. (I) In an EM wave traveling west, the B field oscillates 
vertically and has a frequency of 80.0 kHz and an rms 
strength of 7.75 X 10_9T. Determine the frequency and 
rms strength of the electric field. What is its direction?

11. (II) The electric field of a plane EM wave is given by Ex = 
E0 cos(kz + (tit), Ey = Ez = 0. Determine (a) the direc­
tion of propagation and (b) the magnitude and direction of B.

12. (Ill) Consider two possible candidates E(x,t)  as solutions of 
the wave equation for an EM wave’s electric field. Let A  and a 
be constants. Show that (a) E(x,t)  = Ae~â x~vt̂ 2 satisfies the 
wave equation, and that (b) E(x,t)  = A e ~ ^~ vt̂  does not 
satisfy the wave equation.

31-6 Electromagnetic Spectrum
13. (I) What is the frequency of a microwave whose wavelength 

is 1.50 cm?
14. (I) (a) What is the wavelength of a 25.75 X 109Hz radar 

signal? (b) What is the frequency of an X-ray with wave­
length 0.12 nm?

15. (I) How long does it take light to reach us from the Sun,
1.50 X 108 km away?

16. (I) An EM wave has frequency 8.56 X 1014 Hz. What is its 
wavelength, and how would we classify it?

17. (I) Electromagnetic waves and sound waves can have the 
same frequency, (a) What is the wavelength of a 1.00-kHz 
electromagnetic wave? (b) What is the wavelength of a
1.00-kHz sound wave? (The speed of sound in air is 341 m/s.)
(c) Can you hear a 1.00-kHz electromagnetic wave?

18. (II) Pulsed lasers used for science and medicine produce 
very brief bursts of electromagnetic energy. If the laser 
light wavelength is 1062 nm (Neodymium-YAG laser), and 
the pulse lasts for 38 picoseconds, how many wavelengths 
are found within the laser pulse? How brief would the pulse 
need to be to fit only one wavelength?

19. (II) How long would it take a message sent as radio waves 
from Earth to reach Mars (a) when nearest Earth, (b) when 
farthest from Earth?

20. (II) An electromagnetic wave has an electric field given by
E = i(225 V/m) sin[(0.077 m-1)z — (2.3 X 107rad/s)?].

(a) What are the wavelength and frequency of the wave?
(b) Write down an expression for the magnetic field.
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31-7 Speed of Light
21. (II) What is the minimum angular speed at which 

Michelson’s eight-sided mirror would have had to rotate to 
reflect light into an observer’s eye by succeeding mirror 
faces (1/8 of a revolution, Fig. 31-14)?

31-8 EM Wave Energy; Poynting Vector
22. (I) The E field in an EM wave has a peak of 26.5 mV/m. 

What is the average rate at which this wave carries energy 
across unit area per unit time?

23. (II) The magnetic field in a traveling EM wave has an rms 
strength of 22.5 nT. How long does it take to deliver 335 J of 
energy to 1.00 cm2 of a wall that it hits perpendicularly?

24. (II) How much energy is transported across a 1.00 cm2 area 
per hour by an EM wave whose E  field has an rms strength 
of 32.8 mV/m?

25. (II) A spherically spreading EM wave comes from a 1500-W 
source. At a distance of 5.0 m, what is the intensity, and what 
is the rms value of the electric field?

26. (II) If the amplitude of the B  field of an EM wave is
2.5 X 10- 7T, (a) what is the amplitude of the E  field?
(b) What is the average power per unit area of the EM 
wave?

27. (II) What is the energy contained in a 1.00-m3 volume near 
the Earth’s surface due to radiant energy from the Sun? See 
Example 31-6.

28. (II) A 15.8-mW laser puts out a narrow beam 2.00 mm in 
diameter. What are the rms values of E  and B  in the beam?

29. (II) Estimate the average power output of the Sun, given 
that about 1350 W /m2 reaches the upper atmosphere of the 
Earth.

30. (II) A high-energy pulsed laser emits a 1.0-ns-long pulse of 
average power 1.8 X 1011W. The beam is 2.2 X 10_3m in 
radius. Determine (a) the energy delivered in each pulse, 
and (b) the rms value of the electric field.

31. (II) How practical is solar power for various devices? 
Assume that on a sunny day, sunlight has an intensity of 
1000 W /m 2 at the surface of Earth and that, when illumi­
nated by that sunlight, a solar-cell panel can convert 10% of 
the sunlight’s energy into electric power. For each device 
given below, calculate the area A  of solar panel needed to 
power it. (a) A calculator consumes 50 mW. Find A  in cm2. 
Is A  small enough so that the solar panel can be mounted 
directly on the calculator that it is powering? (b) A  hair 
dryer consumes 1500 W. Find A  in m2. Assuming no other 
electronic devices are operating within a house at the same 
time, is A  small enough so that the hair dryer can be 
powered by a solar panel mounted on the house’s roof?
(c) A car requires 20 hp for highway driving at constant 
velocity (this car would perform poorly in situations 
requiring acceleration). Find A  in m2. Is A  small enough so 
that this solar panel can be mounted directly on the car and 
power it in “real time”?

(27) 32. (Ill) (a) Show that the Poynting vector S points radially 
inward toward the center of a circular parallel-plate 
capacitor when it is being charged as in Example 31-1. 
(b) Integrate S over the cylindrical boundary of the 
capacitor gap to show that the rate at which energy enters 
the capacitor is equal to the rate at which electrostatic 
energy is being stored in the electric field of the capacitor 
(Section 24-4). Ignore fringing of E.

33. (Ill) The Arecibo radio telescope in Puerto Rico can detect 
a radio wave with an intensity as low as 1 X 10_23W /m2. 
As a “best-case” scenario for communication with extrater­
restrials, consider the following: suppose an advanced 
civilization located at point A, a distance x  away from 
Earth, is somehow able to harness the entire power output 
of a Sun-like star, converting that power completely into a 
radio-wave signal which is transmitted uniformly in all 
directions from A. (a) In order for Arecibo to detect this 
radio signal, what is the maximum value for x  in light-years 
( l l y ~ 1 0 16m)? (b) How does this maximum value 
compare with the 100,000-ly size of our Milky Way galaxy? 
The intensity of sunlight at Earth’s orbital distance from the 
Sun is 1350 W /m2.

31 -9  Radiation Pressure
34. (II) Estimate the radiation pressure due to a 75-W bulb at a 

distance of 8.0 cm from the center of the bulb. Estimate 
the force exerted on your fingertip if you place it at 
this point.

35. (II) Laser light can be focused (at best) to a spot with a 
radius r equal to its wavelength A. Suppose that a 1.0-W 
beam of green laser light (A = 5 X 10-7 m) is used to form 
such a spot and that a cylindrical particle of about that size 
(let the radius and height equal r) is illuminated by the laser 
as shown in Fig. 31-23. Estimate the acceleration of the 
particle, if its density equals that of water and it absorbs the 
radiation. [This order-of-magnitude calculation convinced 
researchers of the feasibility of “optical tweezers,” p. 829.]

FIGURE 31-23
Problem 35.

A

36. (II) The powerful laser used in a laser light show provides a 
3-mm diameter beam of green light with a power of 3 W. 
When a space-walking astronaut is outside the Space 
Shuttle, her colleague inside the Shuttle playfully aims such 
a laser beam at the astronaut’s space suit. The masses of the 
suited astronaut and the Space Shuttle are 120 kg and
103,000 kg, respectively, (a) Assuming the suit is perfectly 
reflecting, determine the “radiation-pressure” force exerted 
on the astronaut by the laser beam, (b) Assuming the astro­
naut is separated from the Shuttle’s center of mass by 20 m, 
model the Shuttle as a sphere in order to estimate the grav­
itation force it exerts on the astronaut, (c) Which of the two 
forces is larger, and by what factor?

37. What size should the solar panel on a satellite orbiting Jupiter 
be if it is to collect the same amount of radiation from the 
Sun as a 1.0-m2 solar panel on a satellite orbiting Earth?
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31-10 Radio, TV, Wireless
38. (I) What is the range of wavelengths for (a) FM radio 

(88 MHz to 108 MHz) and (b) AM radio (535 kHz to 
1700 kHz)?

39. (I) Estimate the wavelength for 1.9-GHz cell phone reception.
40. (I) The variable capacitor in the tuner of an AM radio has a 

capacitance of 2200 pF when the radio is tuned to a station 
at 550 kHz. What must the capacitance be for a station near 
the other end of the dial, 1610 kHz?

General Problems___________

41. (II) A certain FM radio tuning circuit has a fixed capacitor 
C = 620 pF. Tuning is done by a variable inductance. What 
range of values must the inductance have to tune stations 
from 88 MHz to 108 MHz?

42. (II) A satellite beams microwave radiation with a power of 
12 kW toward the Earth’s surface, 550 km away. When the 
beam strikes Earth, its circular diameter is about 1500 m. 
Find the rms electric field strength of the beam at the 
surface of the Earth.

43. A 1.60-m-long FM antenna is oriented parallel to the elec­
tric field of an EM wave. How large must the electric field 
be to produce a 1.00-mV (rms) voltage between the ends of 
the antenna? What is the rate of energy transport per 
square meter?

44. Who will hear the voice of a singer first: a person in the 
balcony 50.0 m away from the stage (see Fig. 31-24), or a 
person 1500 km away at home whose ear is next to the radio 
listening to a live broadcast? Roughly how much sooner? 
Assume the microphone is a few centimeters from the 
singer and the temperature is 20° C.

h ~~ -  50.0 m H

FIGURE 31-24 Problem 44.
45. Light is emitted from an ordinary lightbulb filament in 

wave-train bursts about 10_8s in duration. What is the 
length in space of such wave trains?

46. Radio-controlled clocks throughout the United States 
receive a radio signal from a transmitter in Fort Collins, 
Colorado, that accurately (within a microsecond) marks 
the beginning of each minute. A slight delay, however, is 
introduced because this signal must travel from the trans­
mitter to the clocks. Assuming Fort Collins is no more than 
3000 km from any point in the U.S., what is the longest 
travel-time delay?
A radio voice signal from the Apollo crew on the Moon 
(Fig. 31-25) was beamed to a listening crowd from a radio 
speaker. If you were standing 25 m from the loudspeaker, 
what was the total time lag between when you heard the 
sound and when the sound entered a microphone on the 
Moon and traveled to Earth?

47.

48. Cosmic microwave background radiation fills all space with 
an average energy density of 4 X 10_14J/m 3. (a) Find the 
rms value of the electric field associated with this radiation.
(b) How far from a 7.5-kW radio transmitter emitting 
uniformly in all directions would you find a comparable value?

49. What are E0 and B0 2.00 m from a 75-W light source? 
Assume the bulb emits radiation of a single frequency 
uniformly in all directions.

50. Estimate the rms electric field in the sunlight that hits Mars, 
knowing that the Earth receives about 1350 W /m2 and that 
Mars is 1.52 times farther from the Sun (on average) than is 
the Earth.

51. At a given instant in time, a traveling EM wave is noted to 
have its maximum magnetic field pointing west and its 
maximum electric field pointing south. In which direction is 
the wave traveling? If the rate of energy flow is 560 W /m2, 
what are the maximum values for the two fields?

52. How large an emf (rms) will be generated in an antenna that 
consists of a circular coil 2.2 cm in diameter having 320 turns 
of wire, when an EM wave of frequency 810 kHz transporting 
energy at an average rate of 1.0 X 10-4 W /m2 passes through 
it? [Hint, you can use Eq. 29-4 for a generator, since it could 
be applied to an observer moving with the coil so that the 
magnetic field is oscillating with the frequency /  = a)/2it.\

53. The average intensity of a particular TV station’s signal is
1.0 X 10-13 W /m2 when it arrives at a 33-cm-diameter satel­
lite TV antenna, (a) Calculate the total energy received by 
the antenna during 6.0 hours of viewing this station’s 
programs. (b) What are the amplitudes of the E  and B  fields 
of the EM wave?

54. A radio station is allowed to broadcast at an average power 
not to exceed 25 kW. If an electric field amplitude of
0.020 V/m is considered to be acceptable for receiving the 
radio transmission, estimate how many kilometers away you 
might be able to hear this station.

55. A point source emits light energy uniformly in all directions 
at an average rate P0 with a single frequency / .  Show that 
the peak electric field in the wave is given by

E . =
V qcPq

l i r r 2

FIGURE 31-25
Problem 47.

56. Suppose a 35-kW radio station emits EM waves uniformly 
in all directions, (a) How much energy per second crosses 
a 1 .0-m2 area 1.0 km from the transmitting antenna? 
(ib) What is the rms magnitude of the E field at this point, 
assuming the station is operating at full power? What is the 
rms voltage induced in a 1 .0-m-long vertical car antenna
(c) 1.0 km away, (d) 50 km away?
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57. What is the maximum power level of a radio station so as to 
avoid electrical breakdown of air at a distance of 0.50 m 
from the transmitting antenna? Assume the antenna is a 
point source. Air breaks down in an electric field of about
3 X 106 V/m.

58. In free space (“vacuum”), where the net charge and current 
flow is zero, the speed of an EM wave is given by 
v = l/V eo^o- If, instead, an EM wave travels in a noncon­
ducting (“dielectric”) material with dielectric constant K, then 
v = l / y l e ^ .  For frequencies corresponding to the visible 
spectrum (near 5 X  1014 Hz), the dielectric constant of water 
is 1.77. Predict the speed of light in water and compare this 
value (as a percentage) with the speed of light in a vacuum.

59. The metal walls of a microwave oven form a cavity of dimen­
sions 37 cm X 37 cm X 20 cm. When 2.45-GHz microwaves 
are continuously introduced into this cavity, reflection of inci­
dent waves from the walls set up standing waves with nodes at 
the walls. Along the 37-cm dimension of the oven, how many 
nodes exist (excluding the nodes at the wall) and what is the 
distance between adjacent nodes? [Because no heating occurs 
at these nodes, most microwaves rotate food while operating.]

60. Imagine that a steady current I  flows in a straight cylindrical 
wire of radius R0 and resistivity p. (a) If the current is then 
changed at a rate di/d t, show that a displacement current /D 
exists in the wire of magnitude e0p(dl/d t). (b) If the current 
in a copper wire is changed at the rate of 1.0 A/ms, deter­
mine the magnitude of /D. (c) Determine the magnitude of the 
magnetic field BD (T) created by /d  at the surface of a copper 
wire with R0 = 1.0 mm. Compare (as a ratio) BD with the 
field created at the surface of the wire by a steady current of
1.0 A.

61. The electric field of an EM wave pulse traveling 
along the x  axis in free space is given by 
Ey = E0 exp [ - a 2* 2 -  (32t2 + 2a(3xt], where Eq, a, and /3 are 
positive constants, (a) Is the pulse moving in the H-jic or —x 
direction? (b) Express /3 in terms of a and c (speed of light 
in free space), (c) Determine the expression for the 
magnetic field of this EM wave.

62. Suppose that a right-moving EM wave overlaps with a left- 
moving EM wave so that, in a certain region of space, the total 
electric field in the y  direction and magnetic field in the z direc­
tion are given by Ey = Eq sin(kx — cot) + Eq sin(kx + cot) 
and Bz = Bq sin(/:x -  cot) — Bq sin(/:x + cot), (a) Find the 
mathematical expression that represents the standing electric 
and magnetic waves in the y and z directions, respectively.
(b) Determine the Poynting vector and find the x  locations at 
which it is zero at all times.

63. The electric and magnetic fields of a certain EM wave in free 
space are given by E = E 0 sin (A:* -  cot) j + E qcos (kx — cot) k 
and B = i?0co s^x  ~~ <*>t)j -  B0sin(kx — cot)k. (a) Show 
that E and B are perpendicular to each other at all times, (b) For 
this wave, E and B are in a plane parallel to the yz plane. 
Show that the wave moves in a direction perpendicular to 
both E and B. (c) A t any arbitrary choice of position x  and 
time t, show that the magnitudes of E and B always equal E q 
and Bq, respectively. (d) At x = 0, draw the orientation 
of E and B in the yz plane at t = 0. Then qualitatively describe 
the motion of these vectors in the yz  plane as time increases. 
[Note: The EM wave in this Problem is “circularly polarized.”]

Answers to Exercises

A: (c). D : 45 cm.
B : (b). E: Yes; the signal still travels 72,000 km.
C: (a) 3.8 X 106Hz; (b) 5.5 X  1018Hz. F: Over 4 hours.
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Reflection from still water, as from a 
glass mirror, can be analyzed using 
the ray model of light.

Is this picture right side up? How 
can you tell? What are the clues? 
Notice the people and position of the 
Sun. Ray diagrams, which we will learn 
to draw in this Chapter, can provide 
the answer. See Example 32-3.

In this first Chapter on light and 
optics, we use the ray model of light 
to understand the formation of 
images by mirrors, both plane and 
curved (spherical). We also begin 
our study of refraction—how light 
rays bend when they go from one 
medium to another—which prepares 
us for our study in the next Chapter 
of lenses, which are the crucial part 
of so many optical instruments.

?  t  «

Light: Reflection and 
Refraction

CHAPTER-OPENING QUESTION—Guess now!
A 2.0-m-tall person is standing 2.0 m from a flat vertical mirror staring at her image. 
What minimum height must the mirror have if the person is to see her entire body, 
from the top of her head to her feet?

(a) 0.50 m.
(b) 1.0 m.
(c) 1.5 m.
(d) 2.0 m.
(e) 2.5 m.

The sense of sight is extremely important to us, for it provides us with a 
large part of our information about the world. How do we see? What is the 
something called light that enters our eyes and causes the sensation of 
sight? How does light behave so that we can see everything that we do? 

We saw in Chapter 31 that light can be considered a form of electromagnetic 
radiation. We now examine the subject of light in detail in the next four Chapters.

We see an object in one of two ways: (1) the object may be a source of light, 
such as a lightbulb, a flame, or a star, in which case we see the light emitted directly 
from the source; or, more commonly, (2) we see an object by light reflected from it. 
In the latter case, the light may have originated from the Sun, artificial lights, or a 
campfire. An understanding of how objects emit light was not achieved until the 
1920s, and will be discussed in Chapter 37. How light is reflected from objects was 
understood earlier, and will be discussed here, in Section 32-2.
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*32-8 Refraction at a Spherical 

Surface
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This bundle

FIGURE 32-1 Light rays come 
from each single point on an object. A  
small bundle of rays leaving one point 
is shown entering a person’s eye.

32—1 The Ray Model of Light
A great deal of evidence suggests that light travels in straight lines under a wide 
variety of circumstances. For example, a source of light like the Sun casts distinct 
shadows, and the light from a laser pointer appears to be a straight line. In fact, we 
infer the positions of objects in our environment by assuming that light moves 
from the object to our eyes in straight-line paths. Our orientation to the physical 
world is based on this assumption.

This reasonable assumption is the basis of the ray model of light. This model 
assumes that light travels in straight-line paths called light rays. Actually, a ray is 
an idealization; it is meant to represent an extremely narrow beam of light. When 
we see an object, according to the ray model, light reaches our eyes from each 
point on the object. Although light rays leave each point in many different directions, 
normally only a small bundle of these rays can enter an observer’s eye, as shown in 
Fig. 32-1. If the person’s head moves to one side, a different bundle of rays will 
enter the eye from each point.

We saw in Chapter 31 that light can be considered as an electromagnetic 
wave. Although the ray model of light does not deal with this aspect of light 
(we discuss the wave nature of light in Chapters 34 and 35), the ray model has 
been very successful in describing many aspects of light such as reflection, 
refraction, and the formation of images by mirrors and lenses.1 Because these 
explanations involve straight-line rays at various angles, this subject is referred to 
as geometric optics.

32—2  Reflection; Image Formation 
by a Plane Mirror

When light strikes the surface of an object, some of the light is reflected. The rest 
can be absorbed by the object (and transformed to thermal energy) or, if the 
object is transparent like glass or water, part can be transmitted through. For a 
very smooth shiny object such as a silvered mirror, over 95% of the light may 
be reflected.

When a narrow beam of light strikes a flat surface (Fig. 32-2), we define the 
angle of incidence, 6h to be the angle an incident ray makes with the normal 
(perpendicular) to the surface, and the angle of reflection, 0r , to be the angle the 
reflected ray makes with the normal. It is found that the incident and reflected rays 
lie in the same plane with the normal to the surface, and that

the angle of reflection equals the angle of incidence, 0r = 0\.

This is the law of reflection, and it is depicted in Fig. 32-2. It was known to the 
ancient Greeks, and you can confirm it yourself by shining a narrow flashlight 
beam or a laser pointer at a mirror in a darkened room.

FIGURE 32-2 Law of reflection: 
(a) Shows a 3-D view of an incident 
ray being reflected at the top of a 
flat surface; (b) shows a side or 
“end-on” view, which we will usually 
use because of its clarity.

Incident 
light ray

Normal 
to surface 

I
I
I

Analp n f  I A n rrl*=» n f

Normal 
to surface

Reflected 
light ray

fIn ignoring the wave properties of light we must be careful that when the light rays pass by objects or 
through apertures, these must be large compared to the wavelength of the light (so the wave 
phenomena of interference and diffraction, as discussed in Chapter 15, can be ignored), and we ignore 
what happens to the light at the edges of objects until we get to Chapters 34 and 35.
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When light is incident upon a rough surface, even microscopically rough such 
as this page, it is reflected in many directions, as shown in Fig. 32-3. This is called 
diffuse reflection. The law of reflection still holds, however, at each small section of 
the surface. Because of diffuse reflection in all directions, an ordinary object can be 
seen at many different angles by the light reflected from it. When you move your 
head to the side, different reflected rays reach your eye from each point on the 
object (such as this page), Fig. 32-4a. Let us compare diffuse reflection to reflection 
from a mirror, which is known as specular reflection. (“Speculum” is Latin for 
mirror.) When a narrow beam of light shines on a mirror, the light will not reach 
your eye unless your eye is positioned at just the right place where the law of 
reflection is satisfied, as shown in Fig. 32-4b. This is what gives rise to the special 
image-forming properties of mirrors.

FIGURE 32-3  Diffuse reflection 
from a rough surface.

Eye at both
The eye here 
does not see _  , 
reflected light The eye here 

does see

FIGURE 32-4  A  narrow beam of light shines on (a) white paper, and (b) a mirror. In part
(a), you can see with your eye the white light reflected at various positions because of 
diffuse reflection. But in part (b), you see the reflected light only when your eye is placed 
correctly (0r = 6[); mirror reflection is also known as specular reflection. (Galileo, using 
similar arguments, showed that the Moon must have a rough surface rather than a highly 
polished surface like a mirror, as some people thought.)

EXAMPLE 32-1 Reflection from flat mirrors. Two flat mirrors are perpen­
dicular to each other. An incoming beam of light makes an angle of 15° with the 
first mirror as shown in Fig. 32-5a. What angle will the outgoing beam make with 
the second mirror?
APPROACH We sketch the path of the beam as it reflects off the two mirrors, 
and draw the two normals to the mirrors for the two reflections. We use geometry 
and the law of reflection to find the various angles.

FIGURE 32-5  Example 32-1.

SOLUTION In Fig. 32-5b, + 15° = 90°, so Qx = 75°; by the law of reflection
02 = 0i = 75° too. The two normals to the two mirrors are perpendicular to each 
other, so 02 + 03 + 90° = 180° as for any triangle. Thus
03 = 180° -  90° -  75° = 15°. By the law of reflection, 04 = 03 = 15°, so
05 = 75° is the angle the reflected ray makes with the second mirror surface. 
NOTE The outgoing ray is parallel to the incoming ray. Red reflectors on bicycles 
and cars use this principle.

When you look straight into a mirror, you see what appears to be yourself 
as well as various objects around and behind you, Fig. 32-6. Your face and the 
other objects look as if they are in front of you, beyond the mirror. But what 
you see in the mirror is an image of the objects, including yourself, that are in 
front of the mirror.

FIGURE 32-6 When you look in a 
mirror, you see an image of yourself 
and objects around you. You don’t see 
yourself as others see you, because left 
and right appear reversed in the image.
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A “plane” mirror is one with a smooth flat reflecting surface. Figure 32-7 
shows how an image is formed by a plane mirror according to the ray model. 
We are viewing the mirror, on edge, in the diagram of Fig. 32-7, and the rays 
are shown reflecting from the front surface. (Good mirrors are generally made 
by putting a highly reflective metallic coating on one surface of a very flat 
piece of glass.) Rays from two different points on an object (the bottle on the left 
in Fig. 32-7) are shown: two rays are shown leaving from a point on the top of 
the bottle, and two more from a point on the bottom. Rays leave each point on 
the object going in many directions, but only those that enclose the bundle of rays 
that enter the eye from each of the two points are shown. Each set of diverging rays 
that reflect from the mirror and enter the eye appear to come from a single point 
(called the image point) behind the mirror, as shown by the dashed lines. That is, 
our eyes and brain interpret any rays that enter an eye as having traveled straight- 
line paths. The point from which each bundle of rays seems to come is one point on 
the image. For each point on the object, there is a corresponding image point.

Plane mirror

FIGURE 3 2 -7  Formation of a virtual 
image by a plane mirror.

© - P H Y S I C S  A P P L I E D
How tall a mirror do you need to 

see a reflection o f your entire self?
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Let us concentrate on the two rays that leave point A on the object in 
Fig. 32-7, and strike the mirror at points B and B'. We use geometry for 
the rays at B. The angles ADB and CDB are right angles; and because of the law 
of reflection, dx = 0r at point B. Therefore, angles ABD and CBD are also equal. The 
two triangles ABD and CBD are thus congruent, and the length AD = CD. 
That is, the image appears as far behind the mirror as the object is in front. 
The image distance, dx (perpendicular distance from mirror to image, Fig. 32-7), equals 
the object distance, d0 (perpendicular distance from object to mirror). From the geom­
etry, we can also see that the height of the image is the same as that of the object.

The light rays do not actually pass through the image location itself in 
Fig. 32-7. (Note where the red lines are dashed to show they are our projections, 
not rays.) The image would not appear on paper or film placed at the location of 
the image. Therefore, it is called a virtual image. This is to distinguish it from a 
real image in which the light does pass through the image and which therefore 
could appear on film or in an electronic sensor, and even on a white sheet of paper 
or screen placed at the position of the image. Our eyes can see both real and 
virtual images, as long as the diverging rays enter our pupils. We will see that 
curved mirrors and lenses can form real images, as well as virtual. A movie 
projector lens, for example, produces a real image that is visible on the screen.

EXAMPLE 32-2 How tall must a full-length mirror be? A woman 1.60 m 
tall stands in front of a vertical plane mirror. What is the minimum height of the 
mirror, and how close must its lower edge be to the floor, if she is to be able to 
see her whole body? Assume her eyes are 10 cm below the top of her head.
APPROACH For her to see her whole body, light rays from the top of her head 
and from the bottom of her foot must reflect from the mirror and enter her eye: 
see Fig. 32-8. We don’t show two rays diverging from each point as we did in 
Fig. 32-7, where we wanted to find where the image is. Now that we know the 
image is the same distance behind a plane mirror as the object is in front, we only 
need to show one ray leaving point G (top of head) and one ray leaving point A 
(her toe), and then use simple geometry.



FIGURE 32-8 Seeing oneself in a 
mirror. Example 32-2.

A D C  

SOLUTION First consider the ray that leaves her foot at A, reflects at B, and enters the 
eye at E. The mirror needs to extend no lower than B. The angle of reflection equals 
the angle of incidence, so the height BD is half of the height AE. Because 
AE = 1.60 m -  0.10 m = 1.50 m, then BD = 0.75 m. Similarly, if the woman is 
to see the top of her head, the top edge of the mirror only needs to reach point F, 
which is 5 cm below the top of her head (half of GE = 10 cm). Thus, DF = 1.55 m, 
and the mirror needs to have a vertical height of only (1.55 m -  0.75 m) = 0.80 m. 
The mirror’s bottom edge must be 0.75 m above the floor.
NOTE We see that a mirror, if positioned well, need be only half as tall as a 
person for that person to see all of himself or herself.

I EXERCISE A Does the result of Example 32-2 depend on your distance from the mirror? (Try it.) 
EXERCISE B Return to the Chapter-Opening Question, page 837, and answer it again now. 
Try to explain why you may have answered differently the first time.
EXERCISE C Suppose you are standing about 3 m in front of a mirror in a hair salon. You 
can see yourself from your head to your waist, where the end of the mirror cuts off the 
rest of your image. If you walk closer to the mirror (a) you will not be able to see any 
more of your image; (b) you will be able to see more of your image, below your waist;
(c) you will see less of your image, with the cutoff rising to be above your waist.

CONCEPTUAL EXAMPLE 32-3~l Is the photo upside down? Close examination 
of the photograph on the first page of this Chapter reveals that in the top portion, the 
image of the Sun is seen clearly, whereas in the lower portion, the image of the Sun 
is partially blocked by the tree branches. Show why the reflection is not the same as 
the real scene by drawing a sketch of this situation, showing the Sun, the camera, the 
branch, and two rays going from the Sun to the camera (one direct and one 
reflected). Is the photograph right side up?
RESPONSE We need to draw two diagrams, one assuming the photo on p. 837 is 
right side up, and another assuming it is upside down. Figure 32-9 is drawn assuming 
the photo is upside down. In this case, the Sun blocked by the tree would be the 
direct view, and the full view of the Sun the reflection: the ray which reflects off the 
water and into the camera travels at an angle below the branch, whereas the ray that 
travels directly to the camera passes through the branches. This works. Try to draw a 
diagram assuming the photo is right side up (thus assuming that the image of the Sun 
in the reflection is higher above the horizon than it is as viewed directly). It won’t 
work. The photo on p. 837 is upside down.

Also, what about the people in the photo? Try to draw a diagram showing why they 
don’t appear in the reflection. [Hint: Assume they are not sitting on the edge of poolside, 
but back from the edge a bit.] Then try to draw a diagram of the reverse (i.e., assume the 
photo is right side up so the people are visible only in the reflection). Reflected images 
are not perfect replicas when different planes (distances) are involved.

FIGURE 32-9 Example 32-3.
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FIGURE 32-10 Mirrors with convex 
and concave spherical surfaces. Note 
that 0r = 6[ for each ray.

3 2 —3  Formation of Images by Spherical 
Mirrors

Reflecting surfaces do not have to be flat. The m ost com m on curved  m irrors are 
spherical, which m eans they form  a section of a sphere. A  spherical m irror is called 
convex if the reflection takes place on the ou ter surface of the spherical shape so 
tha t the center of the m irror surface bulges ou t tow ard the viewer (Fig. 3 2 -10a). A  
m irror is called concave if the reflecting surface is on the inner surface of the sphere 
so that the m irror surface sinks away from  the viewer (like a “cave”), Fig. 32-10b. 
Concave m irrors are used as shaving o r cosm etic m irrors (Fig. 32-11 a) because 
they magnify, and convex m irrors are som etim es used on cars and trucks (rearview  
m irrors) and in shops (to watch for thieves), because they take in a wide field of 
view (Fig. 3 2 - l lb ) .

FIGURE 32-11 (a) A concave cosmetic 
mirror gives a magnified image, (b) A convex 
mirror in a store reduces image size and so 
includes a wide field of view.

(a) (b)

Focal Point and Focal Length
To see how spherical m irrors form images, we first consider an object that is very far 
from a concave mirror. For a distant object, as shown in Fig. 32-12, the rays from each 
point on the object that strike the m irror will be nearly parallel. For an object infinitely 
fa r  away (the Sun and stars approach this), the rays w ould  be precisely parallel.

essentially parallel.
FIGURE 32-12 If the object’s distance is large compared to the size of the mirror (or lens), the rays 
are nearly parallel.They are parallel for an object at infinity (oo).

(b)
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Now consider such parallel rays falling on a concave mirror as in Fig. 32-13. 
The law of reflection holds for each of these rays at the point each strikes the 
mirror. As can be seen, they are not all brought to a single point. In order to 
form a sharp image, the rays must come to a point. Thus a spherical mirror 
will not make as sharp an image as a plane mirror will. However, as we show 
below, if the mirror is small compared to its radius of curvature, so that a 
reflected ray makes only a small angle with the incident ray (20 in Fig. 32-14), 
then the rays will cross each other at very nearly a single point, or focus. In 
the case shown in Fig. 32-14, the incoming rays are parallel to the principal 
axis, which is defined as the straight line perpendicular to the curved surface 
at its center (line CA in Fig. 32-14). The point F, where incident parallel 
rays come to a focus after reflection, is called the focal point of the mirror. 
The distance between F and the center of the mirror, length FA, is called the 
focal length, / ,  of the mirror. The focal point is also the image point for an object 
infinitely far away along the principal axis. The image of the Sun, for example, 
would be at F.

FIGURE 32-13 Parallel rays 
striking a concave spherical mirror do 
not intersect (or focus) at precisely a 
single point. (This “defect” is referred 
to as “spherical aberration.”)

FIGURE 32-14 Rays parallel to the principal 
axis of a concave spherical mirror come to a 
focus at F, the focal point, as long as the mirror 
is small in width as compared to its radius of 
curvature, r, so that the rays are “paraxial”— 
that is, make only small angles with the 
horizontal axis.

Now we will show, for a mirror whose reflecting surface is small compared to 
its radius of curvature, that the rays very nearly meet at a common point, F, 
and we will also calculate the focal length / .  In this approximation, we consider 
only rays that make a small angle with the principal axis; such rays are called 
paraxial rays, and their angles are exaggerated in Fig. 32-14 to make the labels 
clear. First we consider a ray that strikes the mirror at B in Fig. 32-14. The point C 
is the center of curvature of the mirror (the center of the sphere of which the 
mirror is a part). So the dashed line CB is equal to r, the radius of curvature, and 
CB is normal to the mirror’s surface at B. The incoming ray that hits the mirror 
at B makes an angle 6 with this normal, and hence the reflected ray, BF, also 
makes an angle 0 with the normal (law of reflection). Note that angle BCF is 
also 0 as shown. The triangle CBF is isosceles because two of its angles are equal. 
Thus we have length CF = BF. We assume the mirror surface is small 
compared to the mirror’s radius of curvature, so the angles are small, and the 
length FB is nearly equal to length FA. In this approximation, FA = FC. 
But FA = / ,  the focal length, and CA = 2 X FA = r. Thus the focal length is 
half the radius of curvature:

[spherical mirror] (32-1)

We assumed only that the angle 0 was small, so this result applies for all other 
incident paraxial rays. Thus all paraxial rays pass through the same point F, the 
focal point.

Since it is only approximately true that the rays come to a perfect focus at F, 
the more curved the mirror, the worse the approximation (Fig. 32-13) and the 
more blurred the image. This “defect” of spherical mirrors is called spherical 
aberration; we will discuss it more with regard to lenses in Chapter 33. A parabolic 
mirror, on the other hand, will reflect the rays to a perfect focus. However, 
because parabolic shapes are much harder to make and thus much more expensive, 
spherical mirrors are used for most purposes. (Many astronomical telescopes use 
parabolic mirrors.) We consider here only spherical mirrors and we will assume 
that they are small compared to their radius of curvature so that the image is sharp 
and Eq. 32-1 holds.
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FIGURE 32-15 Rays leave point O' 
on the object (an arrow). Shown 
are the three most useful rays for 
determining where the image I' is 
formed. [Note that our mirror is not 
small compared to / ,  so our diagram 
will not give the precise position of 
the image.]

RAY D I A G R A M
F i n d i n g  t h e  i m a g e  p o s i t i o n  

f o r  a  c u r v e d  m i r r o r

P R O B L E M  S O L V I N G
I m a g e  p o i n t  i s  w h e r e  

r e f l e c t e d  r a y s  i n t e r s e c t

Image Formation—Ray Diagrams
We saw that for an object at infinity, the image is located at the focal point of 
a concave spherical mirror, where /  = r/2. But where does the image lie for 
an object not at infinity? First consider the object shown as an arrow in 
Fig. 32-15a, which is placed between F and C at point O (O for object). Let us 
determine where the image will be for a given point O' at the top of the object.

(a) Ray 1 goes out from 
O' parallel to the axis 
and reflects through F.

(b) Ray 2 goes through F 
and then reflects back 
parallel to the axis.

(c) Ray 3 is chosen perpendicular 
to mirror, and so must reflect 
back on itself and go 
through C (center 
of curvature).

Diverging rays 
heading toward eye
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To do this we can draw several rays and make sure these reflect from the mirror 
such that the angle of reflection equals the angle of incidence. Many rays could be 
drawn leaving any point on an object, but determining the image position is simpli­
fied if we deal with three particularly simple rays. These are the rays labeled 1, 2, 
and 3 in Fig. 32-15 and we draw them leaving object point O' as follows:

Ray 1 is drawn parallel to the axis; therefore after reflection it must pass 
along a line through F (Fig. 32-15a).
Ray 2 leaves O' and is made to pass through F (Fig. 32-15b); therefore it must 
reflect so it is parallel to the axis.
Ray 3 passes through C, the center of curvature (Fig. 32-15c); it is along a 
radius of the spherical surface and is perpendicular to the mirror, so it is 
reflected back on itself.

All three rays leave a single point O' on the object. After reflection from a (small) 
mirror, the point at which these rays cross is the image point I'. All other rays from 
the same object point will also pass through this image point. To find the image 
point for any object point, only these three types of rays need to be drawn. Only 
two of these rays are needed, but the third serves as a check.

We have shown the image point in Fig. 32-15 only for a single point on the 
object. Other points on the object are imaged nearby, so a complete image of 
the object is formed, as shown by the dashed arrow in Fig. 32-15c. Because the 
light actually passes through the image itself, this is a real image that will appear 
on a piece of paper or film placed there. This can be compared to the virtual 
image formed by a plane mirror (the light does not actually pass through that 
image, Fig. 32-7).

The image in Fig. 32-15 can be seen by the eye when the eye is placed to 
the left of the image, so that some of the rays diverging from each point on the 
image (as point I') can enter the eye as shown in Fig. 32-15c. (See also Figs. 32-1 
and 32-7.)



Mirror Equation and Magnification
Image points can be determined, roughly, by drawing the three rays as just 
described, Fig. 32-15. But it is difficult to draw small angles for the “paraxial” 
rays as we assumed. For more accurate results, we now derive an equation that 
gives the image distance if the object distance and radius of curvature of the 
mirror are known. To do this, we refer to Fig. 32-16. The object distance, dQ, is 
the distance of the object (point O) from the center of the mirror. The image 
distance, d\, is the distance of the image (point I) from the center of the mirror. 
The height of the object OO' is called hQ and the height of the image, I 'l, is hx.

FIGURE 32-16 Diagram for 
deriving the mirror equation. For the 
derivation, we assume the mirror 
size is small compared to its radius 
of curvature.

Two rays leaving O ' are shown: O 'FBI' (same as ray 2 in Fig. 32-15) and O 'A I', 
which is a fourth type of ray that reflects at the center of the mirror and can also 
be used to find an image point. The ray O 'A I' obeys the law of reflection, so the 
two right triangles O 'AO and I'A I are similar. Therefore, we have

ho =  do 
h[ d[

For the other ray shown, O 'FBI', the triangles O 'FO and AFB are also similar 
because the angles are equal and we use the approximation AB = hx (mirror 
small compared to its radius). Furthermore FA = / ,  the focal length of the 
mirror, so

ho _  OF _  dQ-  f  

K  FA /

The left sides of the two preceding expressions are the same, so we can equate the 
right sides:

do _ dQ f

~di ~  f

We now divide both sides by dQ and rearrange to obtain

—  H— ~ = (32-2) Mirror equation
dQ di f

This is the equation we were seeking. It is called the mirror equation and relates 
the object and image distances to the focal length /  (where /  = r / 2).

The lateral magnification, ra, of a mirror is defined as the height of the image 
divided by the height of the object. From our first set of similar triangles above, or 
the first equation on this page, we can write:

h\ di
m  =  7 T =  (32" 3)h0 dQ

The minus sign in Eq. 32-4 is inserted as a convention. Indeed, we must be careful 
about the signs of all quantities in Eqs. 32-2 and 32-3. Sign conventions are chosen so 
as to give the correct locations and orientations of images, as predicted by ray diagrams.
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FIGURE 32-16 (Repeated from 
previous page.)

j P R O B L E M  S O L V I N G
Sign conventions

A  C A U T I O N
Remember to take the reciprocal

The sign conventions we use are: the image height h{ is positive if the image is 
upright, and negative if inverted, relative to the object (assuming hQ is taken as 
positive); d± or dQ is positive if image or object is in front of the mirror (as in 
Fig. 32-16); if either image or object is behind the mirror, the corresponding 
distance is negative (an example can be seen in Fig. 32-18, Example 32-6). Thus 
the magnification (Eq. 32-3) is positive for an upright image and negative for 
an inverted image (upside down). We summarize sign conventions more fully in 
the Problem Solving Strategy following our discussion of convex mirrors later 
in this Section.

Concave Mirror Examples
b  =»:fJ iMJI = l»g.■  Image in a concave mirror. A 1.50-cm-high diamond ring 

is placed 20.0 cm from a concave mirror with radius of curvature 30.0 cm. 
Determine (a) the position of the image, and (b) its size.

APPROACH We determine the focal length from the radius of curvature 
(Eq. 32-1), /  = r /2 = 15.0 cm. The ray diagram is basically like that shown in 
Fig. 32-16 (repeated here on this page), since the object is between F and C. The 
position and size of the image are found from Eqs. 32-2 and 32-3.
SOLUTION Referring to Fig. 32-16, we have CA = r = 30.0 cm, FA = /  =15.0 cm, 
and OA = dQ = 20.0 cm.
(a) From Eq. 32-2,

1_ _  1 _  1 

di ~ f  d

1 1

15.0 cm 20.0 cm
= 0.0167 cm

So di = 1/(0.0167 cm x) = 60.0 cm. Because is positive, the image is 60.0 cm 
in front of the mirror, on the same side as the object.
(b) From Eq. 32-3, the magnification is

m  =  —

60.0 cm
= -3.00.

20.0 cm

The image is 3.0 times larger than the object, and its height is

hi = mhQ = (-3.00)(1.5 cm) = -4.5 cm.

The minus sign reminds us that the image is inverted, as in Fig. 32-16.
NOTE When an object is further from a concave mirror than the focal point, we 
can see from Fig. 32-15 or 32-16 that the image is always inverted and real.
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CONCEPTUAL EXAMPLE 32-5 I Reversible rays. If the object in Example 32-4 
is placed instead where the image is (see Fig. 32-16), where will the new image be?

RESPONSE The mirror equation is symmetric in d0 and d{. Thus the new image 
will be where the old object was. Indeed, in Fig. 32-16 we need only reverse the 
direction of the rays to get our new situation.

■ Object closer to concave mirror. A 1.00-cm-high object
is placed 10.0 cm from a concave mirror whose radius of curvature is
30.0 cm. (a) Draw a ray diagram to locate (approximately) the position of 
the image. (b) Determine the position of the image and the magnification 
analytically.
APPROACH We draw the ray diagram using the rays as in Fig. 32-15, page 844. 
An analytic solution uses Eqs. 32-1,32-2, and 32-3.
SOLUTION (a) Since /  = r/2  = 15.0 cm, the object is between the mirror and 
the focal point. We draw the three rays as described earlier (Fig. 32-15); they are 
shown leaving the tip of the object in Fig. 32-17. Ray 1 leaves the tip of our 
object heading toward the mirror parallel to the axis, and reflects through F. Ray 2 
cannot head toward F because it would not strike the mirror; so ray 2 must 
point as if it started at F (dashed line) and heads to the mirror, and then is 
reflected parallel to the principal axis. Ray 3 is perpendicular to the mirror, as 
before. The rays reflected from the mirror diverge and so never meet at a point. 
They appear, however, to be coming from a point behind the mirror. This point 
locates the image of the tip of the arrow. The image is thus behind the mirror and 
is virtual. (Why?)
(b) We use Eq. 32-2 to find di when dQ = 10.0 cm:

J_ _ 1 _  J_ _ __ 1________ 1__  _ 2 - 3  _ 1
d{ f  d0 15.0 cm 10.0 cm 30.0 cm 30.0 cm

Therefore, d{ = -30.0 cm. The minus sign means the image is behind 
the mirror, which our diagram also told us. The magnification is 
m = -d J d Q = -(-30.0cm )/(10.0cm ) = +3.00. So the image is 3.00 times 
larger than the object. The plus sign indicates that the image is upright (same as 
object), which is consistent with the ray diagram, Fig. 32-17.
NOTE The image distance cannot be obtained accurately by measuring on 
Fig. 32-17, because our diagram violates the paraxial ray assumption (we draw 
rays at steeper angles to make them clearly visible).
NOTE When the object is located inside the focal point of a concave mirror 
(d0 < f  )> the image is always upright and vertical. And if the object O in 
Fig. 32-17 is you, you see yourself clearly, because the reflected rays at point O 
are diverging. Your image is upright and enlarged.

--- ^/
[ i 
1 i

O
> ----  /

1

A i

FIGURE 32-17 Object placed within the focal point F. The image is behind the mirror 
and is virtual, Example 32-6. [Note that the vertical scale (height of object = 1.0 cm) is 
different from the horizontal (OA = 10.0 cm) for ease of drawing, and reduces the 
precision of the drawing.]

0  P H Y S I C S  A P P L I E D
Seeing yourself upright and 

magnified in a concave mirror
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@  P H Y S I C S A P P L I E D
M a g n i f y i n g  m i r r o r  

( s h a v i n g / c o s m e t i c )

It is useful to compare Figs. 32-15 and 32-17. We can see that if the object is 
within the focal point (dQ < /) , as in Fig. 32-17, the image is virtual, upright, and 
magnified. This is how a shaving or cosmetic mirror is used—you must place your 
head closer to the mirror than the focal point if you are to see yourself right-side 
up (see the photograph of Fig. 32-11 a). If the object is beyond the focal point, as in 
Fig. 32-15, the image is real and inverted (upside down—and hard to use!). 
Whether the magnification has magnitude greater or less than 1.0 in the latter case 
depends on the position of the object relative to the center of curvature, point C. 
Practice making ray diagrams with various object distances.

The mirror equation also holds for a plane mirror: the focal length is 
/  = r/2  = oo, and Eq. 32-2 gives d{ = ~dQ.

Seeing the Image
For a person’s eye to see a sharp image, the eye must be at a place where it 
intercepts diverging rays from points on the image, as is the case for the eye’s 
position in Figs. 32-15 and 32-16. Our eyes are made to see normal objects, which 
always means the rays are diverging toward the eye as shown in Fig. 32-1. (Or, for 
very distant objects like stars, the rays become essentially parallel, as in 
Fig. 32-12.) If you placed your eye between points O and I in Fig. 32-16, for 
example, converging rays from the object OO' would enter your eye and the lens 
of your eye could not bring them to a focus; you would see a blurry image. [We will 
discuss the eye more in Chapter 33.]

FIGURE 32-18 You can see a clear inverted image 
of your face when you are beyond C (dQ >  2 /), 
because the rays that arrive at your eye are diverging. 
Standard rays 2 and 3 are shown leaving point O on 
your nose. Ray 2 (and other nearby rays) enters 
your eye. Notice that rays are diverging as they move 
to the left of image point I.

FIGURE 32-19 Convex mirror: 
(a) the focal point is at F, behind 
the mirror; (b) the image I of 
the object at O is virtual, upright, 
and smaller than the object. [Not to 
scale for Example 32-7.]

If you are the object OO' in Fig. 32-16, situated between F and C, and 
are trying to see yourself in the mirror, you would see a blur; but the person 
whose eye is shown in Fig. 32-16 can see you clearly. You can see yourself 
clearly, but upside down, if you are to the left of C in Fig. 32-16, where 
dQ > 2/. Why? Because then the rays reflected from the image will be diverging 
at your position as demonstrated in Fig. 32-18, and your eye can then focus 
them. You can also see yourself clearly, and right-side up, if you are closer 
to the mirror than its focal point (dQ <  /) , as we saw in Example 32-6, 
Fig. 32-17.

Convex Mirrors
The analysis used for concave mirrors can be applied to convex mirrors. Even the 
mirror equation (Eq. 32-2) holds for a convex mirror, although the quantities 
involved must be carefully defined. Figure 32-19a shows parallel rays falling on a 
convex mirror. Again spherical aberration is significant (Fig. 32-13), unless we 
assume the mirror’s size is very small compared to its radius of curvature. The 
reflected rays diverge, but seem to come from point F behind the mirror. This is 
the focal point, and its distance from the center of the mirror (point A) is the focal 
length, / .  It is easy to show that again /  = r/2. We see that an object at infinity 
produces a virtual image in a convex mirror. Indeed, no matter where the object is
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placed on the reflecting side of a convex mirror, the image will be virtual and 
upright, as indicated in Fig. 32-19b. To find the image we draw rays 1 and 3 
according to the rules used before on the concave mirror, as shown in Fig. 32-19b. 
Note that although rays 1 and 3 don’t actually pass through points F and C, the 
line along which each is drawn does (shown dashed).

The mirror equation, Eq. 32-2, holds for convex mirrors but the focal length /  must 
be considered negative, as must the radius of curvature. The proof is left as a Problem. 
It is also left as a Problem to show that Eq. 32-3 for the magnification is also valid.

S O L V /

^  c > ______________________________________________

Spherical Mirrors
1. Always draw a ray diagram even though you are 

going to make an analytic calculation—the diagram 
serves as a check, even if not precise. From one point 
on the object, draw at least two, preferably three, of 
the easy-to-draw rays using the rules described in 
Fig. 32-15. The image point is where the reflected 
rays intersect or appear to intersect.

2. Apply the mirror equation, Eq. 32-2, and the 
magnification equation, Eq. 32-3. It is crucially 
important to follow the sign conventions—see the 
next point.

f Object distances are positive for material objects, but can be negative

3. Sign Conventions
(a) When the object, image, or focal point is on the 

reflecting side of the mirror (on the left in our 
drawings), the corresponding distance is positive. 
If any of these points is behind the mirror (on the 
right) the corresponding distance is negatived

(b) The image height hi is positive if the image is 
upright, and negative if inverted, relative to the 
object (hQ is always taken as positive).

4. Check that the analytical solution is consistent with 
the ray diagram.

in systems with more than one mirror or lens—see Section 33-3.

EXAMPLE 32-7 Convex rearview mirror. An external rearview car mirror is @  P H Y S I C S  a p p l i e d

convex with a radius of curvature of 16.0 m (Fig. 32-20). Determine the location Convex rearview mirror
of the image and its magnification for an object 10.0 m from the mirror.
APPROACH We follow the steps of the Problem Solving Strategy explicitly.
SOLUTION
1. Draw a ray diagram. The ray diagram will be like Fig. 32-19b, but the large 

object distance (dQ = 10.0 m) makes a precise drawing difficult. We have a 
convex mirror, so r is negative by convention.

2. Mirror and magnification equations. The center of curvature of a convex 
mirror is behind the mirror, as is its focal point, so we set r = -16.0 m so that 
the focal length is /  = r/ 2 = -8.0 m. The object is in front of the mirror, 
dQ = 10.0 m. Solving the mirror equation, Eq. 32-2, for 1 /d { gives

1 1 1  1 1 - 10.0 -  8.0 18
di f  dQ - 8.0 m 10.0 m 80.0 m 80.0 m

Thus di = — 80.0m/18 = -4.4 m. Equation 32-3 gives the magnification 

d{ (-4 .4  m)
m = ~ T 0 = ~ = + 0 ’4 4 '

3. Sign conventions. The image distance is negative, -4.4 m, so the image is 
behind the mirror. The magnification is m = +0.44, so the image is upright 
(same orientation as object) and less than half as tall as the object.

4. Check. Our results are consistent with Fig. 32-19b.

Convex rearview mirrors on vehicles sometimes come with a warning that 
objects are closer than they appear in the mirror. The fact that d{ may be smaller 
than dQ (as in Example 32-7) seems to contradict this observation. The real reason 
the object seems farther away is that its image in the convex mirror is smaller than 
it would be in a plane mirror, and we judge distance of ordinary objects such as 
other cars mostly by their size.

FIGURE 32-20 Example 32-7.
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TABLE 32-1 Indices of 
Refraction1 32—4  Index of Refraction
Material

Vacuum 
Air (at STP)
Water
Ethyl alcohol
Glass 

Fused quartz 
Crown glass 
Light flint

Lucite or Plexiglas
Sodium chloride
Diamond

1.0000
1.0003

1.33

1.36

1.46
1.52 
1.58

1.51

1.53 

2.42

fA = 589i

A  C A U T I O N
A n g l e s  d i  a n d  d 2 a r e  m e a s u r e d  f r o m  

t h e  p e r p e n d i c u l a r ,  n o t  f r o m  s u r f a c e

We saw in Chapter 31 that the speed of light in vacuum is

c = 2.99792458 X 108 m/s,

which is usually rounded off to

3.00 X 108 m/s

when extremely precise results are not required.
In air, the speed is only slightly less. In other transparent materials such as glass 

and water, the speed is always less than that in vacuum. For example, in water light 
travels at about fc. The ratio of the speed of light in vacuum to the speed v in a 
given material is called the index of refraction, n, of that material:

c
n =  —• v (32-4)

The index of refraction is never less than 1, and values for various materials are 
given in Table 32-1. For example, since n = 2.42 for diamond, the speed of light 
in diamond is

V n

(3.00 X 108m/s)
2.42

= 1.24 X 108m/s.

As we shall see later, n varies somewhat with the wavelength of the light—except 
in vacuum—so a particular wavelength is specified in Table 32-1, that of yellow 
light with wavelength A = 589 nm.

That light travels more slowly in matter than in vacuum can be explained at 
the atomic level as being due to the absorption and reemission of light by atoms 
and molecules of the material.

3 2 -5  Refraction: Snell's Law
When light passes from one transparent medium into another with a different 
index of refraction, part of the incident light is reflected at the boundary. The 
remainder passes into the new medium. If a ray of light is incident at an angle to 
the surface (other than perpendicular), the ray changes direction as it enters the 
new medium. This change in direction, or bending, is called refraction.

Figure 32-21 a shows a ray passing from air into water. Angle 61 is the angle the 
incident ray makes with the normal (perpendicular) to the surface and is called the 
angle of incidence. Angle 02 is the angle of refraction, the angle the refracted ray 
makes with the normal to the surface. Notice that the ray bends toward the normal 
when entering the water. This is always the case when the ray enters a medium where 
the speed of light is less (and the index of refraction greater, Eq. 32-4). If light travels 
from one medium into a second where its speed is greater, the ray bends away from 
the normal; this is shown in Fig. 32-21b for a ray traveling from water to air.

Normal

Retimed
my

FIGURE 32-21 Refraction.
(a) Light refracted when passing from 
air ( n i )  into water (n 2 ): n 2 >  n \ .

(b) Light refracted when passing from 
water («i) into air ( n 2 ) : > n 2 .

Normal
J

Refracted I

Refracted
ray

H2 >H|
(a) Ray hends toward 1

; ,1 > n l 
(b) Ray bonds away from
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FIGURE 32-22 Ray diagram showing why a person’s 
legs look shorter when standing in waist-deep water: the 
path of light traveling from the bather’s foot to the 
observer’s eye bends at the water’s surface, and our 
brain interprets the light as having traveled in a straight 
line, from higher up (dashed line).

Refraction is responsible for a number of common optical illusions. For 
example, a person standing in waist-deep water appears to have shortened legs. As 
shown in Fig. 32-22, the rays leaving the person’s foot are bent at the surface. 
The observer’s brain assumes the rays to have traveled a straight-line path (dashed 
red line), and so the feet appear to be higher than they really are. Similarly, when 
you put a straw in water, it appears to be bent (Fig. 32-23).

Snell's Law
The angle of refraction depends on the speed of light in the two media and on the 
incident angle. An analytical relation between Qx and 02 in Fig- 32-21 was arrived 
at experimentally about 1621 by Willebrord Snell (1591-1626). It is known as 
Snell’s law and is written:

riismOx = n2s in02. (32-5)
6i is the angle of incidence and d2 is the angle of refraction; nx and n2 are the 
respective indices of refraction in the materials. See Fig. 32-21. The incident and 
refracted rays lie in the same plane, which also includes the perpendicular to the 
surface. Snell’s law is the law of refraction. (Snell’s law was derived in Section 15-10 
where Eq. 15-19 is just a combination of Eqs. 32-5 and 32-4. We also derive it in 
Chapter 34 using the wave theory of light.)

It is clear from Snell’s law that if n2 > n1, then 02 <  #i • That is, if light enters 
a medium where n is greater (and its speed is less), then the ray is bent toward the 
normal. And if n2 < nx, then 02 >  0i, so the ray bends away from the normal. This 
is what we saw in Fig. 32-21.

EXERCISE D Light passes from a medium with n = 1.3 into a medium with n = 1.5. Is 
the light bent toward or away from the perpendicular to the interface?

Refraction through flat glass. Light traveling in air strikes a 
flat piece of uniformly thick glass at an incident angle of 60°, as shown in Fig. 32-24. 
If the index of refraction of the glass is 1.50, (a) what is the angle of refraction 0A in 
the glass; (b) what is the angle 0B at which the ray emerges from the glass?
APPROACH We apply Snell’s law at the first surface, where the light enters the 
glass, and again at the second surface where it leaves the glass and enters the air. 
SOLUTION (a) The incident ray is in air, so nx = 1.00 and n2 = 1.50. Applying 
Snell’s law where the light enters the glass (0! = 60°) gives

sin0A = ^  sin 60° = 0.5774,

so 0A = 35.3°.
(b) Since the faces of the glass are parallel, the incident angle at the second 
surface is just 0A (simple geometry), so sin 0A = 0.5774. At this second interface, 
rii = 1.50 and n2 = 1.00. Thus the ray re-enters the air at an angle 0B(=d2) 
given by

1.50
sin0B =  T o o sin0A =  ° '866’

and 0B = 60°. The direction of a light ray is thus unchanged by passing through 
a flat piece of glass of uniform thickness.
NOTE This result is valid for any angle of incidence. The ray is displaced slightly 
to one side, however. You can observe this by looking through a piece of glass 
(near its edge) at some object and then moving your head to the side slightly so 
that you see the object directly. It “jumps.”

FIGURE 32-23 A straw in water 
looks bent even when it isn’t.

SNELL’S LAW
(LAW OF REFRACTION)

FIGURE 32-24 Light passing 
through a piece of glass 
(Example 32-8).

f /“Image” (where object 
object appears to be) when 

viewed through the
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FIGURE 32-25 Example 32-9.

FIGURE 32-26 The spectrum of 
visible light, showing the range of 
wavelengths for the various colors as 
seen in air. Many colors, such as 
brown, do not appear in the 
spectrum; they are made from a 
mixture of wavelengths.

EXAMPLE 32-9 Apparent depth of a pool. A swimmer has dropped her 
goggles to the bottom of a pool at the shallow end, marked as 1.0 m deep. But the 
goggles don’t look that deep. Why? How deep do the goggles appear to be when 
you look straight down into the water?
APPROACH We draw a ray diagram showing two rays going upward from a 
point on the goggles at a small angle, and being refracted at the water’s (flat) 
surface, Fig. 32-25. The two rays traveling upward from the goggles are refracted 
away from the normal as they exit the water, and so appear to be diverging from 
a point above the goggles (dashed lines), which is why the water seems less deep 
than it actually is.
SOLUTION To calculate the apparent depth d' (Fig. 32-25), given a real depth 
d = 1.0 m, we use Snell’s law with ^  = 1.33 for water and n2 = 1.0 for air:

sin 02 = Wi sin •
We are considering only small angles, so sin 0 «  tan 0 «  0, with 0 in radians. So 
Snell’s law becomes

02 ~  Wi 0 i .

From Fig. 32-25, we see that

X X
02 ~ tan 02 = — and 6X «  tan d1 = — ■ 

d d

Putting these into Snell’s law, 02 ~ n161, we get

or
.. d 1.0 m 

d ~ —  = ~ r ^  = 0.75 m. nx 1.33

The pool seems only three-fourths as deep as it actually is.

3 2 -6  Visible Spectrum and Dispersion
An obvious property of visible light is its color. Color is related to the wavelengths 
or frequencies of the light. (How this was discovered will be discussed in Chapter 34.) 
Visible light—that to which our eyes are sensitive—has wavelengths in air in 
the range of about 400 nm to 750 nm.f This is known as the visible spectrum, and 
within it lie the different colors from violet to red, as shown in Fig. 32-26. Light 
with wavelength shorter than 400 nm (= violet) is called ultraviolet (UV), and light 
with wavelength greater than 750 nm (= red) is called infrared (IR).* Although 
human eyes are not sensitive to UV or IR, some types of photographic film and 
digital cameras do respond to them.

A prism can separate white light into a rainbow of colors, as shown in 
Fig. 32-27. This happens because the index of refraction of a material depends 
on the wavelength, as shown for several materials in Fig. 32-28. White light is a

400 nm 500 nm fi(K) nm 7(XJ nm 
J------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1

f Sometimes the angstrom (A) unit is used when referring to light: 1 A = 1 X 10 10 m. Then visible 
light falls in the wavelength range of 4000 A to 7500 A.
*The complete electromagnetic spectrum is illustrated in Fig. 31-12.

852 CHAPTER 32 Light: Reflection and Refraction



Violet Blue
Wavelength (nm) 
Green Yellow Orange Red

FIGURE 32-27 White light 
passing through a prism is broken 
down into its constituent colors.

FIGURE 32-28 Index of refraction as 
a function of wavelength for various 
transparent solids.

mixture of all visible wavelengths, and when incident on a prism, as in Fig. 32-29, 
the different wavelengths are bent to varying degrees. Because the index of 
refraction is greater for the shorter wavelengths, violet light is bent the most and 
red the least, as indicated. This spreading of white light into the full spectrum is 
called dispersion.

Rainbows are a spectacular example of dispersion—by drops of water. You 
can see rainbows when you look at falling water droplets with the Sun behind 
you. Figure 32-30 shows how red and violet rays are bent by spherical water 
droplets and are reflected off the back surface of the droplet. Red is bent the 
least and so reaches the observer’s eyes from droplets higher in the sky, as shown 
in the diagram. Thus the top of the rainbow is red.

FIGURE 32-30 (a) Ray diagram explaining how a rainbow (b) is formed.

These two rays 
are seen by 
observer (not 
to scale)

FIGURE 32-29 White light 
dispersed by a prism into the visible 
spectrum.

® lP H Y S I C S  A P P L I E D
R a i n b o w s

(a) (b)

The visible spectrum, Fig. 32-26, does not show all the colors seen in nature. 
For example, there is no brown in Fig. 32-26. Many of the colors we see are a 
mixture of wavelengths. For practical purposes, most natural colors can be 
reproduced using three primary colors. They are red, green, and blue for direct 
source viewing such as TV and computer monitors. For inks used in printing, the 
primary colors are cyan (the color of the margin notes in this book), yellow, and 
magenta (the color we use for light rays in diagrams).

For any wave, its velocity v is related to its wavelength A and frequency /  by 
v = /A (Eq. 15-1 or 31-14). When a wave travels from one material into another, 
the frequency of the wave does not change across the boundary since a point (an 
atom) at the boundary oscillates at that frequency. Thus if light goes from air into 
a material with index of refraction n, the wavelength becomes (recall Eq. 32^):

= 7  = ~ f  = A (32"6>f  n f  n

where A is the wavelength in vacuum or air and \ n is the wavelength in the material 
with index of refraction n. SECTION 32-6 853



CONCEPTUAL EXAMPLE 32-10 I Observed color of light under water.
We said that color depends on wavelength. For example, for an object emitting 
650 nm light in air, we see red. But this is true only in air. If we observe this same 
object when under water, it still looks red. But the wavelength in water A„ is 
(Eq. 32-6) 650nm/1.33 = 489 nm. Light with wavelength 489 nm would appear 
blue in air. Can you explain why the light appears red rather than blue when 
observed under water?

RESPONSE It must be that it is not the wavelength that the eye responds to, but 
rather the frequency. For example, the frequency of 650 nm red light in air 
is /  = c/A = (3.0 X 108m/s)/(650 X 10_9m) = 4.6 X 1014Hz, and does not 
change when the light travels from one medium to another. Only A changes.

NOTE If we classified colors by frequency, the color assignments would be valid 
for any material. We typically specify colors by wavelength in air (even if less 
general) not just because we usually see objects in air, but because wavelength is 
what is commonly measured (it is easier to measure than frequency).

3 2 -7  Total Internal Reflection; 
Fiber Optics

When light passes from one material into a second material where the index of 
refraction is less (say, from water into air), the light bends away from the normal, 
as for rays I and J in Fig. 32-31. At a particular incident angle, the angle of 
refraction will be 90°, and the refracted ray would skim the surface (ray K) in this

FIGURE 32-31 Since n 2  <  « i , light rays are totally 
internally reflected if the incident angle >  6q , 
as for ray L. If di <  6C, as for rays I and J, only a 
part of the light is reflected, and the rest is refracted.

case. The incident angle at which this occurs is called the critical angle, 0C. From 
Snell’s law, 0C is given by

A  C A U T I O N
T o t a l  i n t e r n a l  r e f l e c t i o n  

( o c c u r s  o n l y  i f  r e f r a c t i v e  

i n d e x  i s  s m a l l e r  b e y o n d  b o u n d a r y )

n2 n2sm 6C = — sin 90° = —  nx ni (32-7)

For any incident angle less than 0C, there will be a refracted ray, although part of 
the light will also be reflected at the boundary. However, for incident angles 
greater than 0C, Snell’s law would tell us that sin02 is greater than 1.00. Yet the 
sine of an angle can never be greater than 1.00. In this case there is no refracted 
ray at all, and all o f the light is reflected, as for ray L in Fig. 32-31. This effect is 
called total internal reflection. Total internal reflection can occur only when light 
strikes a boundary where the medium beyond has a lower index of refraction.

EXERCISE E Fill a sink with water. Place a waterproof watch just below the surface 
with the watch’s flat crystal parallel to the water surface. From above you can still see 
the watch reading. As you move your head to one side far enough what do you see, 
and why?
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CONCEPTUAL EXAMPLE 32-11 I View up from under water. Describe what a 
person would see who looked up at the world from beneath the perfectly smooth 
surface of a lake or swimming pool.
RESPONSE For an air-water interface, the critical angle is given by

1.00sin 0C = — — = 0.750. 
c 1.33

Therefore, 0C = 49°. Thus the person would see the outside world compressed into 
a circle whose edge makes a 49° angle with the vertical. Beyond this angle, the person 
would see reflections from the sides and bottom of the lake or pool (Fig. 32-32).

4 . FIGURE 32-32 (a) Light rays, and 
(b) view looking upward from beneath 
the water (the surface of the water 
must be very smooth). Example 32-11.

Diamonds achieve their brilliance from a combination of dispersion and total 
internal reflection. Because diamonds have a very high index of refraction of 
about 2.4, the critical angle for total internal reflection is only 25°. The light 
dispersed into a spectrum inside the diamond therefore strikes many of the 
internal surfaces of the diamond before it strikes one at less than 25° and emerges.

After many such reflections, the light has traveled far enough that the colors 
have become sufficiently separated to be seen individually and brilliantly by the 
eye after leaving the diamond.

Many optical instruments, such as binoculars, use total internal reflection 
within a prism to reflect light. The advantage is that very nearly 100% of the 
light is reflected, whereas even the best mirrors reflect somewhat less than 100%. 
Thus the image is brighter, especially after several reflections. For glass with 
n = 1.50,0C = 41.8°. Therefore, 45° prisms will reflect all the light internally, if 
oriented as shown in the binoculars of Fig. 32-33.

EXERCISE F If 45.0° plastic lenses are used in binoculars, what minimum index of refraction 
must the plastic have?

Fiber Optics
Total internal reflection is the principle behind fiber optics. Glass and plastic fibers 
as thin as a few micrometers in diameter are common. A bundle of such tiny 
fibers is called a light pipe or cable, and light1" can be transmitted along it with 
almost no loss because of total internal reflection. Figure 32-34 shows how light 
traveling down a thin fiber makes only glancing collisions with the walls so that 
total internal reflection occurs. Even if the light pipe is bent into a complicated 
shape, the critical angle still won’t be exceeded, so light is transmitted practically 
undiminished to the other end. Very small losses do occur, mainly by reflection at 
the ends and absorption within the fiber.

Important applications of fiber-optic cables are in communications and 
medicine. They are used in place of wire to carry telephone calls, video signals, and 
computer data. The signal is a modulated light beam (a light beam whose intensity 
can be varied) and data is transmitted at a much higher rate and with less loss 
and less interference than an electrical signal in a copper wire. Fibers have been 
developed that can support over one hundred separate wavelengths, each modulated 
to carry up to 10 gigabits (lO10 bits) of information per second. That amounts to a 
terabit (lO12 bits) per second for the full one hundred wavelengths.

FIGURE 32-33 Total internal 
reflection of light by prisms in 
binoculars.

FIGURE 32-34 Light reflected 
totally at the interior surface of a 
glass or transparent plastic fiber.

0 P H Y S I C S  A P P L I E D
F i b e r  o p t i c s  i n  c o m m u n i c a t i o n s

f Fiber optic devices use not only visible light but also infrared light, ultraviolet light, and microwaves.
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FIGURE 32-35 (a) How a fiber-optic 
image is made, (b) Example of a 
fiber-optic device inserted through 
the mouth to view the gastro­
intestinal tract, with image on screen.

The sophisticated use of fiber optics to transmit a clear picture is particularly 
useful in medicine, Fig. 32-35. For example, a patient’s lungs can be examined by 
inserting a light pipe known as a bronchoscope through the mouth and down the 
bronchial tube. Light is sent down an outer set of fibers to illuminate the lungs. The 
reflected light returns up a central core set of fibers. Light directly in front of each 
fiber travels up that fiber. At the opposite end, a viewer sees a series of bright and 
dark spots, much like a TV screen—that is, a picture of what lies at the opposite 
end. Lenses are used at each end. The image may be viewed directly or on a 
monitor screen or film. The fibers must be optically insulated from one another, 
usually by a thin coating of material with index of refraction less than that of 
the fiber. The more fibers there are, and the smaller they are, the more detailed the 
picture. Such instruments, including bronchoscopes, colonoscopes (for viewing 
the colon), and endoscopes (stomach or other organs), are extremely useful for 
examining hard-to-reach places.

32—8 Refraction at a Spherical Surface
We now examine the refraction of rays at the spherical surface of a transparent 
material. Such a surface could be one face of a lens or the cornea of the eye. To be 
general, let us consider an object which is located in a medium whose index of 
refraction is n1, and rays from each point on the object can enter a medium 
whose index of refraction is n2. The radius of curvature of the spherical boundary 
is R, and its center of curvature is at point C, Fig. 32-36. We now show that all 
rays leaving a point O on the object will be focused at a single point I, the image 
point, if we consider only paraxial rays: rays that make a small angle with the axis.

FIGURE 32-36 Rays from a point O on an object will be focused at a single 
image point I by a spherical boundary between two transparent materials 
(n2 >  ni), as long as the rays make small angles with the axis.

To do so, we consider a single ray that leaves point O as shown in Fig. 32-37. 
From Snell’s law, Eq. 32-5, we have

sin Qx = n2 sin 02 •
We are assuming that angles d1,d2, a, /3, and 7 are small, so sin 0 ~ 0 (in radians), 
and Snell’s law becomes, approximately,

All 1̂ =  ^2 ̂ 2 •

Also, /3 + 0  = 180° and 02 + 7 + (f> = 180°, so 

/3 =  7  +  02 .

Similarly for triangle OPC,

= a + j3.

FIGURE 32-37 Diagram for 
showing that all paraxial rays from 
O focus at the same point I (n2 >  ni).
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These three relations can be combined to yield 

+ n2y = (n2 — «i)/3.
Since we are considering only the case of small angles, we can write, approximately, 

h h _ h 
“  “  T a ’ p  ~  r ’ 7  ~  1 -

where d0 and d\ are the object and image distances and h is the height as shown in 
Fig. 32-37. We substitute these into the previous equation, divide through by h, 
and obtain

n2 — rix
di "

rh +  n i = 
d r

(32-8)

For a given object distance dQ, this equation tells us the image distance, does 
not depend on the angle of a ray. Hence all paraxial rays meet at the same point I. 
This is true only for rays that make small angles with the axis and with each other, 
and is equivalent to assuming that the width of the refracting spherical surface is 
small compared to its radius of curvature. If this assumption is not true, the rays 
will not converge to a point; there will be spherical aberration, just as for a mirror 
(see Fig. 32-13), and the image will be blurry. (Spherical aberration will be 
discussed further in Section 33-10.)

We derived Eq. 32-8 using Fig. 32-37 for which the spherical surface is convex 
(as viewed by the incoming ray). It is also valid for a concave surface—as can be 
seen using Fig. 32-38—if we use the following conventions:
1. If the surface is convex (so the center of curvature C is on the side of the 

surface opposite to that from which the light comes), R  is positive; if the surface 
is concave (C on the same side from which the light comes) R  is negative.

2. The image distance, d{, follows the same convention: positive if on the opposite 
side from where the light comes, negative if on the same side.

3. The object distance is positive if on the same side from which the light comes 
(this is the normal case, although when several surfaces bend the light it may 
not be so), otherwise it is negative.

For the case shown in Fig. 32-38 with a concave surface, both R  and d-x are negative 
when used in Eq. 32-8. Note, in this case, that the image is virtual.

FIGURE 32-38 Rays from O 
refracted by a concave surface form 
a virtual image (n2 >  ni). Per our 
conventions, R <  0, <  0, dQ >  0.

EXAMPLE 32-12 Apparent depth II. A person looks vertically down into a
1.0-m-deep pool. How deep does the water appear to be?
APPROACH Example 32-9 solved this problem using Snell’s law. Here we use 
Eq. 32-8.
SOLUTION A ray diagram is shown in Fig. 32-39. Point O represents a point on 
the pool’s bottom. The rays diverge and appear to come from point I, the image. 
We have d0 = 1.0 m and, for a flat surface, R = oo. Then Eq. 32-8 becomes

1.33 1.00 _  (1.00 -  1.33)
1.0 m di oo

FIGURE 32-39  Example 32-12.

0.

Hence d\ = — (1.0m)/(1.33) = -0.75 m. So the pool appears to be only three- 
fourths as deep as it actually is, the same result we found in Example 32-9. The 
minus sign tells us the image point I is on the same side of the surface as O, and 
the image is virtual. At angles other than vertical, this conclusion must be modified.
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EXAMPLE 32-13 A spherical "lens." A  point source of light is placed at a 
distance of 25.0 cm from the center of a glass sphere (n = 1.5) of radius 10.0 cm, 
Fig. 32-40. Find the image of the source.

APPROACH As shown in Fig. 32-40, there are two refractions, and we treat them 
successively, one at a time. The light rays from the source first refract from the 
convex glass surface facing the source. We analyze this first refraction, treating it 
as in Fig. 32-36, ignoring the back side of the sphere.
SOLUTION Using Eq. 32-8 (assuming paraxial rays) with nx =  1.0, n2 = 1.5, 
R  =  10.0 cm, and dQ =  25.0 cm -  10.0 cm = 15.0 cm, we solve for the image 
distance as formed at surface 1 ,d xX\

1 1 f ( n 2 -  n x) Wl\
_  J _ | ( 1.5 -  1.0 1.0 \ 1

d\\ n2\  R  d j 1.5 '̂  10.0 cm 15.0 c m / 90.0 cm

Thus, the image of the first refraction is located 90.0 cm to the left of the 
front surface. This image (1^  now serves as the object for the refraction occurring 
at the back surface (surface 2) of the sphere. This surface is concave so 
R  = -1 0 .0  cm, and we consider a ray close to the axis. Then the object distance is 
d02 =  90.0 cm + 2(10.0 cm) = 110.0 cm, and Eq. 32-8 yields, with n x = 1.5, 
n2 =  1 .0,

d[2

1.5 1.5J _ / L 0________________
1.0 V - 10.0 cm 110.0 cm

4.0
110.0 cm

so dl2 = 28 cm. Thus, the final image is located a distance 28 cm from the back 
side of the sphere.

FIG U RE 3 2 -4 0  Example 32-13.
Source

R = 10.0 cm

Summary
Light appears to travel along straight-line paths, called rays, at 

a speed v that depends on the index of refraction, n, of the 
material; that is

(32-4)

where c is the speed of light in vacuum.
When light reflects from a flat surface, the angle o f reflection 

equals the angle o f incidence. This law of reflection explains why 
mirrors can form images.

In a plane mirror, the image is virtual, upright, the same 
size as the object, and is as far behind the mirror as the object is 
in front.

A spherical mirror can be concave or convex. A concave spher­
ical mirror focuses parallel rays of light (light from a very distant 
object) to a point called the focal point. The distance of this 
point from the mirror is the focal length /  of the mirror and

f  = h (32-1)

where r is the radius of curvature of the mirror.
Parallel rays falling on a convex mirror reflect from the 

mirror as if they diverged from a common point behind 
the mirror. The distance of this point from the mirror is the focal 
length and is considered negative for a convex mirror.

For a given object, the position and size of the image 
formed by a mirror can be found by ray tracing. Algebraically,

the relation between image and object distances, d[ and dQ, and 
the focal length / ,  is given by the mirror equation:

JL i - I  
dQ + di f

(32-2)

The ratio of image height to object height, which equals the 
magnification m of a mirror, is

hi di
m  =  7T =  - ~ T '  <32“ 3>hQ dQ

If the rays that converge to form an image actually pass 
through the image, so the image would appear on film or a 
screen placed there, the image is said to be a real image. If the 
rays do not actually pass through the image, the image is a 
virtual image.

When light passes from one transparent medium into 
another, the rays bend or refract. The law of refraction (Snell’s 
law) states that

ni sin0! = n2 sin02> (32-5)
where nx and are the index of refraction and angle with the 
normal to the surface for the incident ray, and n2 and 02 are for 
the refracted ray.

When light of wavelength A enters a medium with index of 
refraction n, the wavelength is reduced to

K  =  ~  0 2 - 6 )

The frequency does not change.
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The frequency or wavelength of light determines its color. 
The visible spectrum in air extends from about 400 nm (violet) 
to about 750 nm (red).

Glass prisms break white light down into its constituent 
colors because the index of refraction varies with wavelength, a 
phenomenon known as dispersion.

Questions

When light rays reach the boundary of a material where the 
index of refraction decreases, the rays will be totally internally 
reflected if the incident angle, Qi, is such that Snell’s law would 
predict sin02 >  1. This occurs if d\ exceeds the critical angle 6C 
given by

sin 0C = — * (32-7)
n\

1. What would be the appearance of the Moon if it had (a) a 
rough surface; (b) a polished mirrorlike surface?

2. Archimedes is said to have burned the whole Roman fleet 
in the harbor of Syracuse by focusing the rays of the Sun 
with a huge spherical mirror. Is this1’ reasonable?

3. What is the focal length of a plane mirror? What is the 
magnification of a plane mirror?

4. An object is placed along the principal axis of a spherical 
mirror. The magnification of the object is -3.0. Is the image 
real or virtual, inverted or upright? Is the mirror concave or 
convex? On which side of the mirror is the image located?

5. Using the rules for the three rays discussed with reference 
to Fig. 32-15, draw ray 2 for Fig. 32-19b.

6. Does the mirror equation, Eq. 32-2, hold for a plane 
mirror? Explain.

7. If a concave mirror produces a real image, is the image 
necessarily inverted?

8. How might you determine the speed of light in a solid, 
rectangular, transparent object?

9. When you look at the Moon’s reflection from a ripply sea, 
it appears elongated 
(Fig. 32-41). Explain.

FIGURE 32-41
Question 9.

10. How can a spherical mirror have a negative object distance?
11. What is the angle of refraction when a light ray is incident 

perpendicular to the boundary between two transparent 
materials?

12. When you look down into a swimming pool or a lake, are 
you likely to overestimate or underestimate its depth? 
Explain. How does the apparent depth vary with the 
viewing angle? (Use ray diagrams.)

13. Draw a ray diagram to show why a stick looks bent when 
part of it is under water (Fig. 32-23).

Students at MIT did a feasibility study. See www.mit.edu.

14. When a wide beam of parallel light enters water at an angle, 
the beam broadens. Explain.

15. You look into an aquarium and view a fish inside. One ray 
of light from the fish as it emerges from the tank is shown in 
Fig. 32-42. The apparent position of the fish is also shown. 
In the drawing, indicate the approximate position of the 
actual fish. Briefly justify your
answer.

FIGURE 32-42
Question 15.

A

16. How can you “see” a round drop of water on a table even 
though the water is transparent and colorless?

17. A ray of light is refracted through three different materials 
(Fig. 32-43). Rank the materials
according to their index of 
refraction, least to greatest.

FIGURE 32-43
Question 17.

18. Can a light ray traveling in air be totally reflected when 
it strikes a smooth water surface if the incident angle 
is chosen correctly? Explain.

19. When you look up at an object in air from beneath 
the surface in a swimming pool, does the object appear 
to be the same size as when you see it directly in air? 
Explain.

20. What type of mirror is shown in Fig. 32-44?

FIGURE 32-
Question 20.

21. Light rays from stars (including our Sun) always bend 
toward the vertical direction as they pass through the Earth’s 
atmosphere, (a) Why does this make sense? (b) What can 
you conclude about the apparent positions of stars as viewed 
from Earth?

Questions 859
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Problems
32-2 Reflection; Plane Mirrors
1. (I) When you look at yourself in a 60-cm-tall plane mirror, 

you see the same amount of your body whether you are 
close to the mirror or far away. (Try it and see.) Use ray 
diagrams to show why this should be true.

2. (I) Suppose that you want to take a photograph of yourself 
as you look at your image in a mirror 2.8 m away. For what 
distance should the camera lens be focused?

3. (II) Two plane mirrors meet at a 135° angle, Fig. 32-45. If 
light rays strike one mirror at 38° as shown, at what angle (f> 
do they leave the second 
mirror?

FIGURE 32-45
Problem 3.

4. (II) A person whose eyes are 1.64 m above the floor stands 
2.30 m in front of a vertical plane mirror whose bottom edge 
is 38 cm above the floor, Fig. 32-46. What is the horizontal 
distance x  to the base of the wall supporting the mirror of 
the nearest point on the floor 
that can be seen reflected in fr
the mirror? y £"

- 2 JO  m-

1.64 m J 

i  1 MK cmFIGURE 32-46
Problem 4. ’■*-£—

5. (II) Show that if two plane mirrors meet at an angle 4>, a 
single ray reflected successively from both mirrors is 
deflected through an angle of 2<j> independent of the inci­
dent angle. Assume <f> < 90° and that only two reflections, 
one from each mirror, take place.

6. (II) Suppose you are 88 cm from a plane mirror. What area of 
the mirror is used to reflect the rays entering one eye from a 
point on the tip of your nose if your pupil diameter is 4.5 mm?

7. (II) Stand up two plane mirrors so they form a 90.0° angle 
as in Fig. 32-47. When you look into this double mirror, you 
see yourself as others see 
you, instead of reversed as 
in a single mirror. Make a 
ray diagram to show how 
this occurs.

FIGURE 32-47
Problems 7 and 8.

8. (Ill) Suppose a third mirror is placed beneath the two shown 
in Fig. 32-47, so that all three are perpendicular to each other.
(a) Show that for such a “corner reflector,” any incident ray 
will return in its original direction after three reflections.
(b) What happens if it makes only two reflections?

32-3 Spherical Mirrors
9. (I) A solar cooker, really a concave mirror pointed at the 

Sun, focuses the Sun’s rays 18.8 cm in front of the mirror. 
What is the radius of the spherical surface from which the 
mirror was made?

10. (I) How far from a concave mirror (radius 24.0 cm) must an 
object be placed if its image is to be at infinity?

11. (I) When walking toward a concave mirror you notice that 
the image flips at a distance of 0.50 m. What is the radius of 
curvature of the mirror?

12. (II) A small candle is 35 cm from a concave mirror having a 
radius of curvature of 24 cm. (a) What is the focal length of 
the mirror? (b) Where will the image of the candle be 
located? (c) Will the image be upright or inverted?

13. (II) You look at yourself in a shiny 9.2-cm-diameter 
Christmas tree ball. If your face is 25.0 cm away from the 
ball’s front surface, where is your image? Is it real or 
virtual? Is it upright or inverted?

14. (II) A mirror at an amusement park shows an upright image 
of any person who stands 1.7 m in front of it. If the image is 
three times the person’s height, what is the radius of 
curvature of the mirror? (See Fig. 32-44.)

15. (II) A dentist wants a small mirror that, when 2.00 cm from a 
tooth, will produce a 4.0X upright image. What kind of mirror 
must be used and what must its radius of curvature be?

16. (II) Some rearview mirrors produce images of cars to your 
rear that are smaller than they would be if the mirror were 
flat. Are the mirrors concave or convex? What is a mirror’s 
radius of curvature if cars 18.0 m away appear 0.33 their 
normal size?

17. (II) You are standing 3.0 m from a convex security mirror in a 
store. You estimate the height of your image to be half of your 
actual height. Estimate the radius of curvature of the mirror.

18. (II) An object 3.0 mm high is placed 18 cm from a convex 
mirror of radius of curvature 18 cm. (a) Show by ray tracing 
that the image is virtual, and estimate the image distance.
(b) Show that the (negative) image distance can be computed 
from Eq. 32-2 using a focal length of -9 .0  cm. (c) Compute 
the image size, using Eq. 32-3.

19. (II) The image of a distant tree is virtual and very small 
when viewed in a curved mirror. The image appears to be
16.0 cm behind the mirror. What kind of mirror is it, and 
what is its radius of curvature?

20. (II) Use two techniques, (a) a ray diagram, and (b) the 
mirror equation, to show that the magnitude of the magnifi­
cation of a concave mirror is less than 1 if the object is 
beyond the center of curvature C (d0 > r), and is greater 
than 1 if the object is within C (d0 < r).

21. (II) Show, using a ray diagram, that the magnification m  of a 
convex mirror is m = ~d[/d0 , just as for a concave mirror. 
[Hint: Consider a ray from the top of the object that reflects 
at the center of the mirror.]

22. (II) Use ray diagrams to show that the mirror equation, 
Eq. 32-2, is valid for a convex mirror as long as /  is 
considered negative.

23. (II) The magnification of a convex mirror is +0.55 X for 
objects 3.2 m from the mirror. What is the focal length of 
this mirror?
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24. (II) (a) Where should an object be placed in front of a 
concave mirror so that it produces an image at the same 
location as the object? (b) Is the image real or virtual? (c) Is 
the image inverted or upright? (d) What is the magnifica­
tion of the image?

25. (II) A 4.5-cm tall object is placed 26 cm in front of a 
spherical mirror. It is desired to produce a virtual image that 
is upright and 3.5 cm tall, (a) What type of mirror should be 
used? (b) Where is the image located? (c) What is the focal 
length of the mirror? (d) What is the radius of curvature of 
the mirror?

26. (II) A shaving or makeup mirror is designed to magnify 
your face by a factor of 1.35 when your face is placed
20.0 cm in front of it. (a) What type of mirror is it?
(b) Describe the type of image that it makes of your face.
(c) Calculate the required radius of curvature for the 
mirror.

27. (II) A concave mirror has focal length / .  When an object is 
placed a distance dQ > f  from this mirror, a real image with 
magnification m  is formed, (a) Show that m  = / / ( /  -  dQ). 
(ib) Sketch m  vs. dQ over the range f  < d0 < +oo where 
/  = 0.45 m. (c) For what value of dQ will the real image 
have the same (lateral) size as the object? (d) To obtain a 
real image that is much larger than the object, in what 
general region should the object be placed relative to the 
mirror?

28. (II) Let the focal length of a convex mirror be written as 
/  = - | / | .  Show that the magnification m  of an object a 
distance dQ from this mirror is given by m = \f\/(d0 + |/|). 
Based on this relation, explain why your nose looks bigger 
than the rest of your face when looking into a convex 
mirror.

29. (II) A spherical mirror of focal length /  produces an image 
of an object with magnification m. (a) Show that the object

is a distance d0 = f (  1 — —) from the reflecting side of 
V m )

the mirror. (b) Use the relation in part (a) to show that, no 
matter where an object is placed in front of a convex mirror, 
its image will have a magnification in the range 0 <  m  <  + 1 .

30. (Ill) An object is placed a distance r in front of a wall, 
where r exactly equals the radius of curvature of a certain 
concave mirror. At what distance from the wall should this 
mirror be placed so that a real image of the object is formed 
on the wall? What is the magnification of the image?

31. (Ill) A short thin object (like a short length of wire) of 
length i  is placed along the axis of a spherical mirror 
(perpendicular to the glass surface). Show that its image has 
length I' = m2l  so the longitudinal magnification is equal 
to —m2 where m  is the normal “lateral” magnification, 
Eq. 32-3. Why the minus sign? [Hint: Find the image posi­
tions for both ends of the wire, and assume £ is very small.]

32-4 Index of Refraction

32. (I) The speed of light in ice is 2.29 X 108 m/s. What is the 
index of refraction of ice?

33. (I) What is the speed of light in (a) ethyl alcohol, (b) lucite,
(c) crown glass?

34. (I) Our nearest star (other than the Sun) is 4.2 light years 
away. That is, it takes 4.2 years for the light to reach Earth. 
How far away is it in meters?

35. (I) How long does it take light to reach us from the Sun,
1.50 X 108 km away?

36. (II) The speed of light in a certain substance is 88% of its value 
in water. What is the index of refraction of that substance?

37. (II) Light is emitted from an ordinary lightbulb filament in 
wave-train bursts of about 10 8 s in duration. What is the 
length in space of such wave trains?

32-5 Snell's Law
38. (I) A diver shines a flashlight upward from beneath the 

water at a 38.5° angle to the vertical. At what angle does 
the light leave the water?

39. (I) A flashlight beam strikes the surface of a pane of glass 
(n = 1.56) at a 63° angle to the normal. What is the angle 
of refraction?

40. (I) Rays of the Sun are seen to make a 33.0° angle to the 
vertical beneath the water. At what angle above the horizon 
is the Sun?

41. (I) A light beam coming from an underwater spotlight exits 
the water at an angle of 56.0°. At what angle of incidence 
did it hit the air-water interface from below the surface?

42. (II) A beam of light in air strikes a slab of glass (n = 1.56) 
and is partially reflected and partially refracted. Determine 
the angle of incidence if the angle of reflection is twice the 
angle of refraction.

43. (II) A light beam strikes a 2.0-cm-thick piece of plastic 
with a refractive index of 1.62 at a 45° angle. The plastic is 
on top of a 3.0-cm- 
thick piece of glass for 
which n = 1.47. What 
is the distance D in 
Fig. 32-48?

44.

45.

FIGURE 32-48
Problem 43.

(II) An aquarium filled with water has flat glass sides whose 
index of refraction is 1.56. A beam of light from outside 
the aquarium strikes the glass at a 43.5° angle to the perpen­
dicular (Fig. 32-49). What is the angle of this light ray when 
it enters (a) the glass, and then
(b) the water? (c) What would Glass
be the refracted angle if the ray Air
entered the water directly?

FIGURE 32-49
Problem 44.

4 3 . 5 ^ ^

Water

(II) In searching the bottom of a pool at night, a watchman 
shines a narrow beam of light from his flashlight, 1.3 m 
above the water level, onto the surface of the water at a point
2.5 m from his foot at 
the edge of the pool 
(Fig. 32-50). Where does 
the spot of light hit the 
bottom of the pool, 
measured from the 
bottom of the wall 
beneath his foot, if the 
pool is 2.1 m deep?

FIGURE 32-50
Problem 45.
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46. (II) The block of glass (n = 1.5) shown in cross section in 
Fig. 32-51 is surrounded by air. A ray of light enters the 
block at its left-hand face with incident angle 6\ and 
reemerges into the air from the right-hand face directed 
parallel to the block’s 
base. Determine 6 i.

FIGURE 32-51
Problem 46.

47. (II) A laser beam of diameter d\ = 3.0 mm in air has an 
incident angle 6\ = 25° at a flat air-glass surface. If the 
index of refraction of the glass is n = 1.5, determine the 
diameter d2 of the beam after it enters the glass.

48. (II) Light is incident on an equilateral glass prism at a 45.0° 
angle to one face, Fig. 32-52. Calculate the angle at which 
light emerges from the 
opposite face. Assume 
that n = 1.54.

FIGURE 32-52
Problems 48 and 65.

49. (II) A triangular prism made of crown glass (n = 1.52) 
with base angles of 30.0° is surrounded by air. If parallel 
rays are incident 
normally on its base as 
shown in Fig. 32-53, 
what is the angle <f> 
between the two 
emerging rays?

FIGURE 32-53
Problem 49.

50. (II) Show in general that for a light beam incident on a 
uniform layer of transparent material, as in Fig. 32-24, the 
direction of the emerging beam is parallel to the incident 
beam, independent of the incident angle 0. Assume the air 
on the two sides of the transparent material is the same.

51. (Ill) A light ray is incident on a flat piece of glass with 
index of refraction n as in Fig. 32-24. Show that if the 
incident angle 0 is small, the emerging ray is displaced a 
distance d = td(n — 1 )/n, where t is the thickness of the 
glass, 0 is in radians, and d is the perpendicular distance 
between the incident ray and the (dashed) line of the 
emerging ray (Fig. 32-24).

32-6 Visible Spectrum; Dispersion
52. (I) By what percent is the speed of blue light (450 nm) less 

than the speed of red light (680 nm), in silicate flint glass 
(see Fig. 32-28)?

53. (I) A light beam strikes a piece of glass at a 60.00° incident 
angle. The beam contains two wavelengths, 450.0 nm and
700.0 nm, for which the index of refraction of the glass is 
1.4831 and 1.4754, respectively. What is the angle between 
the two refracted beams?

54. (II) A parallel beam of light containing two wavelengths, 
Xl = 465 nm and A2 = 652 nm, enters the silicate flint 
glass of an equilateral prism as shown in Fig. 32-54. 
At what angle does 
each beam leave the 
prism (give angle with 
normal to the face)?
See Fig. 32-28.

FIGURE 32-54
Problem 54.

55. (I ll)  A ray of light with wavelength A is incident from air at 
precisely 60° ( = 0) on a spherical water drop of radius r 
and index of refraction n (which depends on A). When the ray 
reemerges into the air from the far side of the drop, it has 
been deflected an angle cf> from its original direction as shown 
in Fig. 32-55. By how  ̂
much does the value \  
of <f> for violet light _ ^no\
(n = 1.341) differ from 
the value for red light 
(n = 1.330)?

FIGURE 32-55
Problem 55.

56. (Ill) For visible light, the index of refraction n of glass is 
roughly 1.5, although this value varies by about 1% across 
the visible range. Consider a ray of white light incident from 
air at angle Qi onto a flat piece of glass, (a) Show that, upon 
entering the glass, the visible colors contained in this inci­
dent ray will be dispersed over a range A02 of refracted 
angles given approximately by

sin di A n
A 02 ~  . : *

\ / n 2 -  sin2 6i n

[Hint: For x  in radians, (d/dx)(siri -1*) = i/V i -  *2.]
(b) If Qi = 0°, what is A02 in degrees? (c) If di = 90°, 
what is A02 in degrees?

32-7 Total Internal Reflection
57. (I) What is the critical angle for the interface between water 

and diamond? To be internally reflected, the light must start in 
which material?

58. (I) The critical angle for a certain liquid-air surface is 49.6°. 
What is the index of refraction of the liquid?

59. (II) A beam of light is emitted in a pool of water from a 
depth of 72.0 cm. Where must it strike the air-water inter­
face, relative to the spot directly above it, in order that the 
light does not exit the water?

60. (II) A ray of light, after entering a light fiber, reflects at an 
angle of 14.5° with the long axis of the fiber, as in Fig. 
32-56. Calculate the distance along the axis of the fiber that 
the light ray travels between successive reflections off the 
sides of the fiber. Assume that the fiber has an index of 
refraction of 1.55 and is 1.40 X 10_4m in diameter.

FIGURE 32-56 Problem 60.
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61. (II) A beam of light is emitted 8.0 cm beneath the surface of 
a liquid and strikes the surface 7.6 cm from the point 
directly above the source. If total internal reflection occurs, 
what can you say about the index of refraction of the liquid?

62. (II) Figure 32-57 shows a liquid-detecting prism device 
that might be used inside a washing machine or other 
liquid-containing appliance. If no liquid covers the prism’s 
hypotenuse, total internal reflection of the beam from the 
light source produces a large signal in the light sensor. If 
liquid covers the hypotenuse, some light escapes from the 
prism into the liquid and the light sensor’s signal 
decreases. Thus a large signal from the light sensor indi­
cates the absence of liquid in the reservoir. If this device is 
designed to detect the presence of water, determine the 
allowable range for the prism’s index of refraction n. 
Will the device work properly if the prism 
is constructed from (inexpensive) lucite? For lucite, 
n = 1.5.

FIGURE 32-57 Problem 62.

64. (II) (a) What is the minimum index of refraction for a glass 
or plastic prism to be used in binoculars (Fig. 32-33) so that 
total internal reflection occurs at 45°? (b) Will binoculars 
work if their prisms (assume n = 1.58) are immersed in water?
(c) What minimum n is needed if the prisms are immersed 
in water?

65. (Ill) Suppose a ray strikes the left face of the prism in 
Fig. 32-52 at 45.0° as shown, but is totally internally 
reflected at the opposite side. If the apex angle (at the top) 
is 6 = 60.0°, what can you say about the index of refraction 
of the prism?

66. (Ill) A beam of light enters the end of an optic fiber as 
shown in Fig. 32-59. (a) Show that we can guarantee total 
internal reflection at the side surface of the material (at 
point A), if the index of refraction is greater than about 
1.42. In other words, regardless of the angle a, the 
light beam reflects back into the material at point A, 
assuming air outside.

I

FIGURE 32-59
Problem 66. material

*32-8 Refraction at Spherical Surface
*67. (II) A 13.0-cm-thick plane piece of glass (n = 1.58) lies on 

the surface of a 12.0-cm-deep pool of water. How far below 
the top of the glass does the bottom of the pool seem, as 
viewed from directly above?

63. (II) Two rays A and B travel down a cylindrical optical fiber 
of diameter d = 75.0 /z,m, length £ = 1.0 km, and index of 
refraction ni = 1.465. Ray A travels a straight path down 
the fiber’s axis, whereas ray B propagates down the fiber by 
repeated reflections at the critical angle each time it 
impinges on the fiber’s boundary. Determine the extra time 
Af it takes for ray B to travel down the entire fiber in 
comparison with ray A (Fig. 32-58), assuming (a) the fiber 
is surrounded by air, (b) the fiber is surrounded by a cylin­
drical glass “cladding” with index of refraction n2 = 1.460.

75.0 /xm j-g

= 1.465

FIGURE 32-58 Problem 63.

* 68. (II) A fish is swimming in water inside a thin spherical glass 
bowl of uniform thickness. Assuming the radius of curvature 
of the bowl is 28.0 cm, locate the image of the fish if the fish 
is located: (a) at the center of the bowl; (b) 20.0 cm from the 
side of the bowl between the observer and the center of 
the bowl. Assume the fish is small.

“69. (Ill) In Section 32-8, we derived Eq. 32-8 for a convex 
spherical surface with n2 > nt. Using the same conventions 
and using diagrams similar to Fig. 32-37, show that Eq. 32-8 
is valid also for (a) a convex spherical surface with n2 < nu
(b) a concave spherical surface with n2 > nt, and (c) a 
concave spherical surface with n2 < nx.

*70. (Ill) A coin lies at the bottom of a 0.75-m-deep pool. If a 
viewer sees it at a 45° angle, where is the image of the coin, 
relative to the coin? [Hint. The image is found by tracing 
back to the intersection of two rays.]
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| General Problems
71. Two identical concave mirrors are set facing each other 1.0 m 

apart. A small lightbulb is placed halfway between the mirrors. A 
small piece of paper placed just to the left of the bulb prevents 
light from the bulb from directly shining on the left mirror, but 
light reflected from the right mirror still reaches the left mirror. 
A good image of the bulb appears on the left side of the piece 
of paper. What is the focal length of the mirrors?

72. A slab of thickness D, whose two faces are parallel, has 
index of refraction n. A ray of light incident from air onto 
one face of the slab at incident angle Qi splits into two rays 
A and B. Ray A reflects directly back into the air, while B 
travels a total distance ft within the slab before reemerging 
from the slab’s face a distance d from its point of entry (Fig. 
32-60). (a) Derive expressions for I and d in terms of D, n, 
and 6 i . (b) For normal incidence (i.e., Qi = 0°) show that 
your expressions
yield the expect 
values for £ and

FIGURE 32-60
Problem 72.

73. Two plane mirrors are facing each other 2.2 m apart as in 
Fig. 32-61. You stand 1.5 m away from one of these mirrors 
and look into it. You will see multiple images of yourself.
(a) How far away from you 
are the first three images of 
yourself in the mirror in 
front of you? (b) Are these 
first three images facing 
toward you or away from 
you?

FIGURE 32-61
Problem 73.

74. We wish to determine the depth of a swimming pool filled 
with water by measuring the width (x = 5.50 m) and then 
noting that the bottom edge of the pool is just visible at an 
angle of 13.0° above the horizontal as shown in Fig. 32-62. 
Calculate the depth of the pool.

75. A 1.80-m-tall person stands 3.80 m from a convex mirror and 
notices that he looks precisely half as tall as he does in a 
plane mirror placed at the same distance. What is the radius 
of curvature of the convex mirror? (Assume that sin 0 ~ 0.) 
[Hint: The viewing angle is half.]
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76. The critical angle of a certain piece of plastic in air is 
0C = 39.3°. What is the critical angle of the same plastic if 
it is immersed in water?

77. Each student in a physics lab is assigned to find the location 
where a bright object may be placed in order that a concave 
mirror, with radius of curvature r = 46 cm, will produce an 
image three times the size of the object. Two students 
complete the assignment at different times using identical 
equipment, but when they compare notes later, they 
discover that their answers for the object distance are not 
the same. Explain why they do not necessarily need to 
repeat the lab, and justify your response with a calculation.

78. A kaleidoscope makes symmetric patterns with two plane 
mirrors having a 60° angle between them as shown in 
Fig. 32-63. Draw the location of the 
images (some of them images of 
images) of the object placed between 
the mirrors.

FIGURE 32-63
Problem 78.

79. When light passes through a prism, the angle that the 
refracted ray makes relative to the incident ray is called 
the deviation angle 5, Fig. 32-64. Show that this angle is a 
minimum when the ray passes through the prism symmetri­
cally, perpendicular to the bisector of the apex angle (f>, and 
show that the minimum deviation angle, <5m, is related to 
the prism’s index of refraction n by

sin \  ((f> + Sm) 
n sin 0/2

[Hint: For 0 in radians, (d/d0)(sin~16) = 1/Vl -  02.]

FIGURE 32-64
Problems 79 and 80.

80. If the apex angle of a prism is <f> = 72° (see Fig. 32-64), 
what is the minimum incident angle for a ray if it is to emerge 
from the opposite side (i.e., not be totally internally 
reflected), given n = 1.58?

81. Fermat’s principle states that “light travels between two points 
along the path that requires the least time, as compared to 
other nearby paths.” From Fermat’s principle derive (a) the 
law of reflection (6[ = 0r) and (b) the law of refraction 
(Snell’s law). [Hint: Choose two appropriate points so that a 
ray between them can undergo reflection or refraction. Draw a 
rough path for a ray between these points, and write down an 
expression of the time required for light to travel the arbitrary 
path chosen. Then take the derivative to find the minimum.]

* 82. Suppose Fig. 32-36 shows a cylindrical rod whose end has a 
radius of curvature R  = 2.0 cm, and the rod is immersed in 
water with index of refraction of 1.33. The rod has index of 
refraction 1.53. Find the location and height of the image of 
an object 2.0 mm high located 23 cm away from the rod.



83.

FIGURE 32-66
Problem 86.

H Numerical/Computer
H87. (II) The index of refraction, n, of crown flint glass at 

different wavelengths (A) of light are given in the Table 
below.

A (nm) 
n

FIGURE 32-65
Problem 83. h-d-H

84. An object is placed 15 cm from a certain mirror. The image 
is half the height of the object, inverted, and real. How far is 
the image from the mirror, and what is the radius of 
curvature of the mirror?

85. The end faces of a cylindrical glass rod (n = 1.51) are 
perpendicular to the sides. Show that a light ray entering an 
end face at any angle will be totally internally reflected 
inside the rod when it strikes the sides. Assume the rod is in 
air. What if it were in water?

86. The paint used on highway signs often contains small trans­
parent spheres which provide nighttime illumination of the 
sign’s lettering by retro-reflecting vehicle headlight beams. 
Consider a light ray from air incident on one such sphere of 
radius r and index of refraction n. Let 6 be its incident angle, 
and let the ray follow the path shown in Fig. 32-66, so that 
the ray exits the sphere in the direction exactly antiparallel to 
its incoming direction. Consid- \
ering only rays for which sin 0 
can be approximated as 0, 
determine the required value 
for n.

1060
1.50586

546.1
1.51978

365.0
1.54251

312.5
1.5600

Make a graph of n versus A. The variation in index of 
refraction with wavelength is given by the Cauchy equation 
n = A  + B /A2. Make another graph of n versus 1 /A 2 and 
determine the constants A  and B  for the glass by fitting the 
data with a straight line.

H88. (Ill) Consider a ray of sunlight incident from air on a spher­
ical raindrop of radius r and index of refraction n. Defining 
0 to be its incident angle, the ray then follows the path 
shown in Fig. 32-67, exiting the drop at a “scattering angle” <f> 
compared with its original incoming direction, (a) Show that 
(f) = 180° + 20 -  4 siiT1 (sin 0/n). (b) The parallel rays of 
sunlight illuminate a raindrop with rays of all possible 
incident angles from 0° to 90°. Plot 4> vs. 0 in the range 
0° <  0 <  90°, in 0.5° steps, assuming n = 1.33 as is appro­
priate for water at visible-light wavelengths. (c) From your 
plot, you should find that a fairly large fraction of the 
incident angles have nearly the same scattering angle. 
Approximately what fraction of the possible incident angles 
is within roughly 1° of (f> = 139°? [This subset of incident 
rays is what creates the 
rainbow. Wavelength- 
dependent variations in 
n cause the rainbow to 
form at slightly different 
<f> for the various visible 
colors.]

FIGURE 32-67
Problem 88.

Answers to Exercises

A: No. D : Toward.
B : (b). E: The face becomes shiny: total internal reflection.
C: (a). F: 1.414.

An optical fiber is a long transparent cylinder of diameter d 
and index of refraction n. If this fiber is bent sharply, some 
light hitting the side of the cylinder may escape rather than 
reflect back into the fiber (Fig. 32-65). What is the smallest 
radius r at a short bent
section for which total 
internal reflection will be 
assured for light initially 
travelling parallel to the 
axis of the fiber?
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Of the many optical devices we discuss 
this Chapter, the magnifying glass is the 
simplest. Here it is magnifying part of 
page 886 of this Chapter, which 
describes how the magnifying glass 
works according to the ray model.
In this Chapter we examine thin 
lenses in detail, seeing how to 
determine image position as a 
function of object position and 
the focal length of the lens, based 
on the ray model of light. We then 
examine optical devices including 
film and digital cameras, the 
human eye, eyeglasses, telescopes, 
and microscopes.
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Lenses and Optical 
Instruments

CONTENTS
33-1 Thin Lenses; Ray Tracing
33-2 The Thin Lens Equation; 

Magnification
33-3 Combinations of Lenses

*33-4 Lensmaker’s Equation
33-5 Cameras: Film and Digital
33-6 The Human Eye; 

Corrective Lenses
33-7 Magnifying Glass
33-8 Telescopes

*33-9 Compound Microscope
*33-10 Aberrations of Lenses 

and Mirrors

CHAPTER-OPENING QUESTION—Guess now!
A converging lens, like the type used in a magnifying glass,

(a) always produces a magnified image (image taller than the object).
(b) can also produce an image smaller than the object.
(c) always produces an upright image.
(d) can also produce an inverted image (upside down).
(e) None of these statements are true.

The laws of reflection and refraction, particularly the latter, are the basis for 
explaining the operation of many optical instruments. In this Chapter we 
discuss and analyze simple lenses using the model of ray optics discussed in 
the previous Chapter. We then analyze a number of optical instruments, from 

the magnifying glass and the human eye to telescopes and microscopes. The 
importance of lenses is that they form images of objects, as shown in Fig. 33-1.

FIGURE 33-1 Converging lens (in holder) 
forms an image (large “F” on screen at right) 
of a bright object (illuminated “F” at the left).
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Double Planoconvex Convex 
convex meniscus

(a) Converging lenses

Double Planoconcave Concave 
concave meniscus

(b) Diverging lenses

(c) (d)

FIGURE 33-2 (a) Converging lenses and (b) diverging lenses, shown in cross section. Converging lenses are thicker in 
the center whereas diverging lenses are thinner in the center, (c) Photo of a converging lens (on the left) and a diverging 
lens (right), (d) Converging lenses (above), and diverging lenses (below), lying flat, and raised off the paper to form 
images.

33—1 Thin Lenses; Ray Tracing
The most important simple optical device is no doubt the thin lens. The development 
of optical devices using lenses dates to the sixteenth and seventeenth centuries, 
although the earliest record of eyeglasses dates from the late thirteenth century. 
Today we find lenses in eyeglasses, cameras, magnifying glasses, telescopes, 
binoculars, microscopes, and medical instruments. A thin lens is usually circular, 
and its two faces are portions of a sphere. (Cylindrical faces are also possible, but 
we will concentrate on spherical.) The two faces can be concave, convex, or plane. 
Several types are shown in Fig. 33-2 a and b in cross section.

Consider parallel rays striking the double convex lens shown in cross section in 
Fig. 33-3a. We assume the lens is made of material such as glass or transparent 
plastic, with index of refraction greater than that of the air outside. The axis of a lens 
is a straight line passing through the center of the lens and perpendicular to its two 
surfaces (Fig. 33-3). From Snell’s law, we can see that each ray in Fig. 33-3a is bent 
toward the axis when the ray enters the lens and again when it leaves the lens at the 
back surface. (Note the dashed lines indicating the normals to each surface for the 
top ray.) If rays parallel to the axis fall on a thin lens, they will be focused to a point 
called the focal point, F. This will not be precisely true for a lens with spherical 
surfaces. But it will be very nearly true—that is, parallel rays will be focused to a tiny 
region that is nearly a point—if the diameter of the lens is small compared to the 
radii of curvature of the two lens surfaces. This criterion is satisfied by a thin lens, 
one that is very thin compared to its diameter, and we consider only thin lenses here.

The rays from a point on a distant object are essentially parallel—see 
Fig. 32-12. Therefore we can say that the fo ca l p o in t is the image p o in t fo r  an 
object at infinity on the lens axis. Thus, the focal point of a lens can be found by 
locating the point where the Sun’s rays (or those of some other distant object) are 
brought to a sharp image, Fig. 33-4. The distance of the focal point from the 
center of the lens is called the focal length, / .  A lens can be turned around so that 
light can pass through it from the opposite side. The focal length is the sam e  on 
both sides, as we shall see later, even if the curvatures of the two lens surfaces are 
different. If parallel rays fall on a lens at an angle, as in Fig. 33-3b, they focus at a 
point Fa. The plane containing all focus points, such as F and Ffl in Fig. 33-3b, is 
called the focal plane of the lens.

FIGURE 33-3 Parallel rays are 
brought to a focus by a converging 
thin lens.

FIGURE 33-4 Image of the Sun 
burning wood.
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Finding the image position 
formed by a thin lens

Any lens (in air) that is thicker in the center than at the edges will make parallel 
rays converge to a point, and is called a converging lens (see Fig. 33-2a). Lenses 
that are thinner in the center than at the edges (Fig. 33-2b) are called diverging lenses 
because they make parallel light diverge, as shown in Fig. 33-5. The focal point, F, 
of a diverging lens is defined as that point from which refracted rays, originating 
from parallel incident rays, seem to emerge as shown in Fig. 33-5. And the distance 
from F to the lens is called the focal length, / ,  just as for a converging lens.

Optometrists and ophthalmologists, instead of using the focal length, use the 
reciprocal of the focal length to specify the strength of eyeglass (or contact) lenses. 
This is called the power, P, of a lens:

The unit for lens power is the diopter (D), which is an inverse meter: 1 D = 1 m-1. 
For example, a 20-cm-focal-length lens has a power P = l/(0.20m) = 5.0 D. We 
will mainly use the focal length, but we will refer again to the power of a lens when 
we discuss eyeglass lenses in Section 33-6.

The most important parameter of a lens is its focal length / .  For a converging 
lens, /  is easily measured by finding the image point for the Sun or other distant 
objects. Once /  is known, the image position can be calculated for any object. To 
find the image point by drawing rays would be difficult if we had to determine the 
refractive angles at the front surface of the lens and again at the back surface 
where the ray exits. We can save ourselves a lot of effort by making use of certain 
facts we already know, such as that a ray parallel to the axis of the lens passes 
(after refraction) through the focal point. To determine an image point, we can 
consider only the three rays indicated in Fig. 33-6, which uses an arrow (on the 
left) as the object, and a converging lens forming an image (dashed arrow) to the 
right. These rays, emanating from a single point on the object, are drawn as if the lens 
were infinitely thin, and we show only a single sharp bend at the center line of the 
lens instead of the refractions at each surface. These three rays are drawn as follows:

Ray 1 is drawn parallel to the axis, Fig. 33- 6a; therefore it is refracted by the 
lens so that it passes along a line through the focal point F behind the lens. 
(See also Fig. 33-3a.)
Ray 2 is drawn on a line passing through the other focal point F' (front side of 
lens in Fig. 33-6) and emerges from the lens parallel to the axis, Fig. 33-6b. 
Ray 3 is directed toward the very center of the lens, where the two surfaces are 
essentially parallel to each other, Fig. 33- 6c; this ray therefore emerges from 
the lens at the same angle as it entered; the ray would be displaced slightly to 
one side, as we saw in Example 32-8, but since we assume the lens is thin, we 
draw ray 3 straight through as shown.

The point where these three rays cross is the image point for that object point. 
Actually, any two of these rays will suffice to locate the image point, but drawing 
the third ray can serve as a check.

FIGURE 3 3 -5  Diverging lens.

(33-1)
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Object

F'

(a) Ray 1 leaves one point on object 
going parallel to the axis, then 
refracts through focal point behind 
the lens.

(b) Ray 2 passes through F' in front of the 
lens; therefore it is parallel to the axis 
behind the lens.

FIGURE 33-6 Finding the 
image by ray tracing for a 
converging lens. Rays are 
shown leaving one point on 
the object (an arrow). Shown 
are the three most useful 
rays, leaving the tip of the 
object, for determining 
where the image of that 
point is formed.

Using these three rays for one object point, we can find the image point for 
that point of the object (the top of the arrow in Fig. 33-6). The image points for 
all other points on the object can be found similarly to determine the complete 
image of the object. Because the rays actually pass through the image for the 
case shown in Fig. 33-6, it is a real image (see page 840). The image could be 
detected by film or electronic sensor, or actually seen on a white surface or 
screen placed at the position of the image (Fig. 33-7a).

FIGURE 33-7 (a) A  converging 
lens can form a real image (here of a 
distant building, upside down) on a 
screen, (b) That same real image is 
also directly visible to the eye. 
[Figure 33-2d shows images (graph 
paper) seen by the eye made by both 
diverging and converging lenses.]

CONCEPTUAL EXAMPLE 33-1 I Half-blocked lens. What happens to the image 
of an object if the top half of a lens is covered by a piece of cardboard?

RESPONSE Let us look at the rays in Fig. 33-6. If the top half (or any half of the 
lens) is blocked, you might think that half the image is blocked. But in Fig. 33-6c, 
we see how the rays used to create the “top” of the image pass through both the 
top and the bottom of the lens. Only three of many rays are shown—many more 
rays pass through the lens, and they can form the image. You don’t lose the 
image, but covering part of the lens cuts down on the total light received and 
reduces the brightness of the image.
NOTE If the lens is partially blocked by your thumb, you may notice an out of focus 
image of part of that thumb.

Seeing the Image
The image can also be seen directly by the eye when the eye is placed behind the 
image, as shown in Fig. 33- 6c, so that some of the rays diverging from each point 
on the image can enter the eye. We can see a sharp image only for rays diverging 
from each point on the image, because we see normal objects when diverging rays 
from each point enter the eye as was shown in Fig. 32-1. Your eye cannot focus rays 
converging on it; if your eye was positioned between points F and I in Fig. 33-6c, 
it would not see a clear image. (More about our eyes in Section 33-6.) Figure 33-7 
shows an image seen (a) on a screen and (b) directly by the eye (and a camera) 
placed behind the image. The eye can see both real and virtual images (see next 
page) as long as the eye is positioned so rays diverging from the image enter it.

SECTION 33-1
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Diverging Lens
By drawing the same three rays emerging from a single object point, we can deter­
mine the image position formed by a diverging lens, as shown in Fig. 33-8. Note 
that ray 1 is drawn parallel to the axis, but does not pass through the focal point F' 
behind the lens. Instead it seems to come from the focal point F in front of the lens 
(dashed line). Ray 2 is directed toward F' and is refracted parallel to the lens axis 
by the lens. Ray 3 passes directly through the center of the lens. The three 
refracted rays seem to emerge from a point on the left of the lens. This is the image 
point, I. Because the rays do not pass through the image, it is a virtual image. 
Note that the eye does not distinguish between real and virtual images—both 
are visible.

FIGURE 33-8 Finding the image 
by ray tracing for a diverging lens.

3 3 -2  The Thin Lens Equation; 
Magnification

We now derive an equation that relates the image distance to the object distance 
and the focal length of a thin lens. This equation will make the determination of 
image position quicker and more accurate than doing ray tracing. Let d0 be the 
object distance, the distance of the object from the center of the lens, and d[ be the 
image distance, the distance of the image from the center of the lens.

FIGURE 33-9 Deriving the lens 
equation for a converging lens.

THIN LENS EQUATION

Let hQ and hi refer to the heights of the object and image. Consider the two rays 
shown in Fig. 33-9 for a converging lens, assumed to be very thin. The right triangles 
FIT and FBA (highlighted in yellow) are similar because angle AFB equals angle 
IFF; so

h  =  d j - f  

K  f
since length AB = hQ. Triangles OAO' and IAI' are similar as well. Therefore,

h[ di  
h0 d0

We equate the right sides of these two equations (the left sides are the same), and 
divide by d{ to obtain

i  _  1  =  _L 
/  d{ dQ

or

i + i  ■ t  ( 3 3 - 2 )

This is called the thin lens equation. It relates the image distance di to the object 
distance d0 and the focal length / .  It is the most useful equation in geometric optics.
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(Interestingly, it is exactly the same as the mirror equation, Eq. 32-2). If the object 
is at infinity, then 1 /d Q = 0, so = / .  Thus the focal length is the image 
distance for an object at infinity, as mentioned earlier.

We can derive the lens equation for a diverging lens using Fig. 33-10. Triangles 
IAI' and OAO' are similar; and triangles IFF and AFB are similar. Thus (noting 
that length AB = hQ)

hi _  d { hi _  f  -  d {

K  d Q an hQ f  

When we equate the right sides of these two equations and simplify, we obtain 

J _ _ J _  =  _ 1  

d 0 di f

This equation becomes the same as Eq. 33-2 if we make /  and di negative. That is, 
we take /  to be negative for a diverging lens, and d\ negative when the image is on 
the same side of the lens as the light comes from. Thus Eq. 33-2 will be valid for 
both converging and diverging lenses, and for all situations, if we use the following 
sign conventions:

1. The focal length is positive for converging lenses and negative for diverging 
lenses.

2. The object distance is positive if the object is on the side of the lens from 
which the light is coming (this is usually the case, although when lenses are 
used in combination, it might not be so); otherwise, it is negative.

3. The image distance is positive if the image is on the opposite side of the 
lens from where the light is coming; if it is on the same side, dx is negative. 
Equivalently, the image distance is positive for a real image and negative for a 
virtual image.

4. The height of the image, hi , is positive if the image is upright, and negative if 
the image is inverted relative to the object. (hQ is always taken as upright and 
positive.)

The lateral magnification, ra, of a lens is defined as the ratio of the image 
height to object height, ra = h j h 0 . From Figs. 33-9 and 33-10 and the 
conventions just stated (for which we’ll need a minus sign below), we have

h  =  _  
hr, dct

m  = (33-3)

For an upright image the magnification is positive (h{ > 0 and dx < 0), and for an 
inverted image the magnification is negative (h{ <  0 and d{ >  0).

From sign convention 1, it follows that the power (Eq. 33-1) of a converging 
lens, in diopters, is positive, whereas the power of a diverging lens is negative. A 
converging lens is sometimes referred to as a positive lens, and a diverging lens as 
a negative lens.

*
S O L V ;

' V.

FIGURE 3 3-10  Deriving the lens 
equation for a diverging lens.

/j\ CAUTION_____
Focal length is negative for 
diverging lens

v \ P R O B L E M  S O L V I N G
SIGN CONVENTIONS for lenses

Thin Lenses

1. Draw a ray diagram, as precise as possible, but 
even a rough one can serve as confirmation of 
analytic results. Choose one point on the object 
and draw at least two, or preferably three, of 
the easy-to-draw rays described in Figs. 33-6 
and 33-8. The image point is where the rays 
intersect.

2. For analytic solutions, solve for unknowns in the thin 
lens equation (Eq. 33-2) and the magnification 
equation (Eq. 33-3). The thin lens equation involves 
reciprocals—don’t forget to take the reciprocal.

3. Follow the sign conventions listed just above.
4. Check that your analytic answers are consistent with 

your ray diagram.
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EXAMPLE 33-2 Image formed by converging lens. What is (a) the
position, and (b) the size, of the image of a 7.6-cm-high leaf placed 1.00 m from 
a +50.0-mm-focal-length camera lens?

APPROACH We follow the steps of the Problem Solving Strategy explicitly.
SOLUTION
1. Ray diagram. Figure 33-11 is an approximate ray diagram, showing only 

rays 1 and 3 for a single point on the leaf. We see that the image ought to be a 
little behind the focal point F, to the right of the lens.

2. Thin lens and magnification equations, (a) We find the image position 
analytically using the thin lens equation, Eq. 33-2. The camera lens is 
converging, with /  = +5.00 cm, and dQ = 100 cm, and so the thin lens 
equation gives

1 1 1  1 1
di f  dQ 5.00 cm 100 cm

20.0 -  1.0 19.0
100 cm 100 cm

Then, taking the reciprocal,
100 cm 

1 = 1 9 0  =  5 2 6  cm ’

or 52.6 mm behind the lens.
(b) The magnification is

di 5.26 cm
m = -  —  = ~ —- ----- = -0.0526,

dQ 100 cm
so

hi = mhQ = (-0.0526) (7.6 cm) = -0.40 cm.

The image is 4.0 mm high.
3. Sign conventions. The image distance di came out positive, so the image is 

behind the lens. The image height is h{ = -0.40 cm; the minus sign means 
the image is inverted.

4. Consistency. The analytic results of steps (2) and (3) are consistent with the 
ray diagram, Fig. 33-11: the image is behind the lens and inverted.

NOTE Part (a) tells us that the image is 2.6 mm farther from the lens than the 
image for an object at infinity, which would equal the focal length, 50.0 mm. 
Indeed, when focusing a camera lens, the closer the object is to the camera, the 
farther the lens must be from the sensor or film.

EXERCISE A If the leaf (object) of Example 33-2 is moved farther from the lens, does the 
image move closer to or farther from the lens? (Don’t calculate!)

872 CHAPTER 33 Lenses and Optical Instruments



EXAMPLE 33-3 Object close to converging lens. An object is placed 10 cm 
from a 15-cm-focal-length converging lens. Determine the image position and 
size (a) analytically, and (b) using a ray diagram.
APPROACH We first use Eqs. 33-2 and 33-3 to obtain an analytic solution, and then 
confirm with a ray diagram using the special rays 1,2, and 3 for a single object point. 
SOLUTION (a) Given /  = 15 cm and dQ = 10 cm, then 

^ 1 1  1 

di 15 cm 10 cm 30 cm

and di = -30  cm. (Remember to take the reciprocal!) Because di is negative, 
the image must be virtual and on the same side of the lens as the object. The 
magnification

di -30  cm
m  =

10 cm
= 3.0.

The image is three times as large as the object and is upright. This lens is being 
used as a simple magnifying glass, which we discuss in more detail in Section 33-7.
(b) The ray diagram is shown in Fig. 33-12 and confirms the result in part (a). We 
choose point O' on the top of the object and draw ray 1, which is easy. But ray 2 
may take some thought: if we draw it heading toward F', it is going the wrong 
way—so we have to draw it as if coming from F' (and so dashed), striking the lens, 
and then going out parallel to the lens axis. We project it back parallel, with a dashed 
line, as we must do also for ray 1, in order to find where they cross. Ray 3 is drawn 
through the lens center, and it crosses the other two rays at the image point, I'. 
NOTE From Fig. 33-12 we can see that, whenever an object is placed between a 
converging lens and its focal point, the image is virtual.

A  C A U T I O N
D on’t forget to take the reciprocal

FIGURE 33-12 An object placed 
within the focal point of a 
converging lens produces a virtual 
image. Example 33-3.

EXAMPLE 33-4 Diverging lens. Where must a small insect be placed if a 
25-cm-focal-length diverging lens is to form a virtual image 20 cm from the lens, 
on the same side as the object?
APPROACH The ray diagram is basically that of Fig. 33-10 because our lens here 
is diverging and our image is in front of the lens within the focal distance. (It 
would be a valuable exercise to draw the ray diagram to scale, precisely, now.) 
The insect’s distance, dQ, can be calculated using the thin lens equation. 
SOLUTION The lens is diverging, so /  is negative: /  = -25 cm. The image 
distance must be negative too because the image is in front of the lens (sign 
conventions), so dx = -20  cm. Equation 33-2 gives

JL _  i  _  1 -  1 1 -  ~4 + 5 _  1
dQ f  d{ 25 cm 20 cm 100 cm 100 cm 

So the object must be 100 cm in front of the lens.

FIGURE 33-13 Exercise C.

EXERCISE B Return to the Chapter-Opening Question, page 866, and answer it again now. 
Try to explain why you may have answered differently the first time.

EXERCISE C Figure 33-13 shows a converging lens held above three equal-sized letters A. 
In (a) the lens is 5 cm from the paper, and in (b) the lens is 15 cm from the paper. Estimate 
the focal length of the lens. What is the image position for each case?
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33—3 Combinations of Lenses

A  C A U T I O N
Object distance 

for second lens is not  
equal to the image 

distance for first lens

Optical instruments typically use lenses in combination. When light passes through 
more than one lens, we find the image formed by the first lens as if it were alone. 
This image becomes the object for the second lens, and we find the image then 
formed by this second lens, which is the final image if there are only two lenses. 
The total magnification will be the product of the separate magnifications of each 
lens, as we shall see. Even if the second lens intercepts the light from the first lens 
before it forms an image, this technique still works.

focal lengths f A = 20.0 cm and f B = 25.0 cm, are placed 80.0 cm apart, as 
shown in Fig. 33-14a. An object is placed 60.0 cm in front of the first lens as 
shown in Fig. 33-14b. Determine (a) the position, and (b) the magnification, of 
the final image formed by the combination of the two lenses.
APPROACH Starting at the tip of our object O, we draw rays 1, 2, and 3 for the 
first lens, A, and also a ray 4 which, after passing through lens A, acts as “ray 3” 
(through the center) for the second lens, B. Ray 2 for lens A exits parallel, and so 
is ray 1 for lens B. To determine the position of the image IA formed by lens A, 
we use Eq. 33-2 with f A = 20.0 cm and doA = 60.0 cm. The distance of IA (lens 
A’s image) from lens B is the object distance doB for lens B. The final image is 
found using the thin lens equation, this time with all distances relative to lens B. 
For (b) the magnifications are found from Eq. 33-3 for each lens in turn. 
SOLUTION (a) The object is a distance doA = +60.0 cm from the first lens, A, 
and this lens forms an image whose position can be calculated using the thin lens 
equation:

So the first image IA is at diA = 30.0 cm behind the first lens. This 
image becomes the object for the second lens, B. It is a distance 
doB = 80.0 cm -  30.0 cm = 50.0 cm in front of lens B, as shown in Fig. 33-14b. 
The image formed by lens B, again using the thin lens equation, is at a distance 
diB from the lens B:

Hence dlB = 50.0 cm behind lens B. This is the final image—see Fig. 33-14b.

A two-lens system. Two converging lenses, A and B, with

1 1 1  1 1 3 - 1  1

d\ a  / a  doA 2 0 . 0  cm 60.0 cm 60.0 cm 30.0 cm

1 1 1  1 1 2 - 1  1

d{B / b  doB 25.0 cm 50.0 cm 50.0 cm 50.0 cm

Lens A Lens B

FIGURE 3 3-14  Two lenses, A (a)
and B, used in combination,
Example 33-5. The small numbers 
refer to the easily drawn rays.

80.0 cm

A B

(b)
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(ib) Lens A has a magnification (Eq. 33-3) 
dlA 30.0 cm

m A = doA 60.0 cm
= -0.500.

Thus, the first image is inverted and is half as high as the object (again Eq. 33-3): 

h\A rnA hoA 0.500/ioA .
Lens B takes this image as object and changes its height by a factor

raB =
loB

50.0 cm
50.0 cm

=  -1 .0 0 0 .

The second lens reinverts the image (the minus sign) but doesn’t change its size. 
The final image height is (remember hoB is the same as hiA)

hiB =  m Bh0 B =  m QhiA =  m Qm A hoA =  (m total)/ioA.

The total magnification is the product of m A and raB, which here equals 
wtotai = mAmB = (—1.000)( —0.500) = +0.500, or half the original height, and 
the final image is upright.

EXAMPLE 33-6 Measuring /  for a diverging lens. To measure the focal 
length of a diverging lens, a converging lens is placed in contact with it, as shown 
in Fig. 33-15. The Sun’s rays are focused by this combination at a point 28.5 cm, 
behind the lenses as shown. If the converging lens has a focal length f c of
16.0 cm, what is the focal length / D of the diverging lens? Assume both lenses are 
thin and the space between them is negligible.
APPROACH The image distance for the first lens equals its focal length (16.0 cm) 
since the object distance is infinity (o o ). The position of this image, even though 
it is never actually formed, acts as the object for the second (diverging) lens. We 
apply the thin lens equation to the diverging lens to find its focal length, given 
that the final image is at dx = 28.5 cm.
SOLUTION If the diverging lens was absent, the converging lens would form the 
image at its focal point—that is, at a distance f c = 16.0 cm behind it (dashed 
lines in Fig. 33-15). When the diverging lens is placed next to the converging lens, 
we treat the image formed by the first lens as the object for the second lens. Since 
this object lies to the right of the diverging lens, this is a situation where dQ is 
negative (see the sign conventions, page 871). Thus, for the diverging lens, the 
object is virtual and d0 = -16.0 cm. The diverging lens forms the image of this 
virtual object at a distance d[ = 28.5 cm away (given). Thus,

1 1

fo dQ d[
= -0.0274 cm"

16.0 cm 28.5 cm 
We take the reciprocal to find / D = -1/(0.0274 cm-1) = -36.5 cm.
NOTE If this technique is to work, the converging lens must be “stronger” than 
the diverging lens—that is, it must have a focal length whose magnitude is less 
than that of the diverging lens. (Rays from the Sun are focused 28.5 cm behind 
the combination, so the focal length of the total combination is / T = 28.5 cm.)

Image point

FIGURE 33-15 Determining the 
focal length of a diverging lens. 
Example 33-6.
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* 33-4  Lensmaker's Equation

876

In this Section, we will show that parallel rays are brought to a focus at a single 
point for a thin lens. At the same time, we will also derive an equation that relates 
the focal length of a lens to the radii of curvature of its two surfaces and its index 
of refraction, which is known as the lensmaker’s equation.

In Fig. 33-16, a ray parallel to the axis of a lens is refracted at the front surface 
of the lens at point A 1 and is refracted at the back surface at point A2. This ray 
then passes through point F, which we call the focal point for this ray. Point Ax is a 
height h x above the axis, and point A 2 is height h 2 above the axis. Ci and C2 are the 
centers of curvature of the two lens surfaces; so the length Ci A x = Ri, the radius 
of curvature of the front surface, and C2A 2 = R2 is the radius of the second 
surface. We consider a double convex lens and by convention choose the radii of 
both lens surfaces as positive. The thickness of the lens has been grossly exagger­
ated so that the various angles would be clear. But we will assume that the lens is 
actually very thin and that angles between the rays and the axis are small. In this 
approximation, the sines and tangents of all the angles will be equal to the angles 
themselves in radians. For example, sin 61 «  tan dx ~ Qx (radians).

FIGURE 3 3-16  Diagram of a ray 
passing through a lens for derivation 
of the lensmaker’s equation.

To this approximation, then, Snell’s law tells us that
Qx = nd2
04 = nd3

where n is the index of refraction of the glass, and we assume that the lens is 
surrounded by air (n = 1). Notice also in Fig. 33-16 that

0 i «  s i n 0 ]

a
*  * 2

h 2
P ”  / '

The last follows because the distance from F to the lens (assumed very thin) is / .  
From the diagram, the angle 7 is

7  =  0 ! -  02.

A careful examination of Fig. 33-16 shows also that 
a  =  d3 -  7.

This can be seen by drawing a horizontal line to the left from point A2, which 
divides the angle 03 into two parts. The upper part equals 7 and the lower part 
equals a. (The opposite angles between an oblique line and two parallel lines are 
equal.) Thus, 03 = 7 + a. Furthermore, by drawing a horizontal line to the right 

CHAPTER 33 from point A2, we divide 04 into two parts. The upper part is a and the lower is /3.



Thus
04 = a  + (3.

We now combine all these equations:

04 / x a (3 
a = 03 -  7 = — -  (0i -  02) = -  + -  -  0i n K J n n

or
/?2__ ______  ̂ 1̂ | hi
R2 nR2 n f  Rx nRx

Because the lens is thin, hx «  h2 and all h’s can be canceled from all the numerators. 
We then multiply through by n and rearrange to find that

7 ■ <" - '>(£+ i)- ®-4>
This is called the lensmaker’s equation. It relates the focal length of a thin lens to 
the radii of curvature of its two surfaces and its index of refraction. Notice that f  
for a thin lens does not depend on hx or h2. Thus the position of the point F does 
not depend on where the ray strikes the lens. Hence, all rays parallel to the axis of 
a thin lens will pass through the same point F, which we wished to prove.

In our derivation, both surfaces are convex and Rt and R2 are considered posi­
tive.f Equation 33-4 also works for lenses with one or both surfaces concave; but 
for a concave surface, the radius must be considered negative.

Notice in Eq. 33-4 that the equation is symmetrical in Rx and R2. Thus, if a 
lens is turned around so that light impinges on the other surface, the focal length is 
the same even if the two lens surfaces are different.

EXAMPLE 33-7 Calculating /  for a converging lens. A convex meniscus 
lens (Figs. 33-2a and 33-17) is made from glass with n = 1.50. The radius of 
curvature of the convex surface is 22.4 cm and that of the concave surface is 
46.2 cm. (a) What is the focal length? (b) Where will the image be for an object
2.00 m away?
APPROACH We use Eq. 33-4, noting that R2 is negative because it refers to the 
concave surface.
SOLUTION (■a)R1 = 22.4 cm and R2 = -46.2 cm.
Then

1 (1.50 -  1.00) 1 1

So

/  V 22.4 cm 46.2 cm
= 0.0115 cm-1.

/  = ------ ----- -r = 87.0 cm
0.0115 cm

and the lens is converging. Notice that if we turn the lens around so that 
Ri = -46.2 cm and R2 = +22.4 cm, we get the same result.
(b) From the lens equation, with /  = 0.870 m and dQ = 2.00 m, we have

1_ =  1 _  1_ =  __________1 _
di f  dQ 0.870 m 2.00 m 

= 0.649 m-1, 
so di = 1/0.649 m_1 = 1.54 m.

EXERCISE D A  Lucite planoconcave lens (see Fig. 33-2b) has one flat surface and the 
other has R = —18.4 cm. What is the focal length? Is the lens converging or diverging?

A c a u t i q n

Sign conventions

FIGURE 33-17 Example 33-7.

fSome books use a different convention—for example, R\ and R2 are considered positive if their 
centers of curvature are to the right of the lens, in which case a minus sign appears in their equivalent 
of Eq. 33-4. ♦SECTION 33-4 877



@  P H Y S I C S A P P L I E D
The camera

Viewfinder

Lens

D = lens 
opening

Iris diaphragm 
or “stop” Shutter Sensor 

or film

FIGURE 33-18 A simple camera.

0 P H Y S I C S  A P P L I E D
Digital cameras

Color
pixel

Electrodes

FIGURE 33-19 Portion of a typical 
CCD sensor. A square group of four 
pixels gb is sometimes called a 
“color pixel.”

FIGURE 33-20 Suppose we take a 
picture that includes a thin black line 
(our object) on a white background. 
The image of this black line has a 
colored halo (red above, blue below) 
due to the mosaic arrangement of 
color filter pixels, as shown by the 
colors transmitted. Computer 
averaging can minimize color 
problems such as this (the green at 
top and bottom of image can be 
averaged with nearby pixels to give 
white or nearly so) but the image is 
consequently “softened” or blurred. 
The layered color pixel described in 
the text would avoid this artifact.

Object

White

Black

White

Pixels Image

33—5 Cameras: Film and Digital
The basic elements of a camera are a lens, a light-tight box, a shutter to let light 
pass through the lens only briefly, and in a digital camera an electronic sensor or 
in a traditional camera a piece of film (Fig. 33-18). When the shutter is opened 
for a brief “exposure,” light from external objects in the field of view is focused 
by the lens as an image on the film or sensor. Film contains light-sensitive chem­
icals that change when light strikes them. In the development process, chemical 
reactions cause the changed areas to turn opaque, so the image is recorded on 
the film.1"

You can see the image yourself if you remove the back of a conventional 
camera and view through a piece of tissue paper (on which an image can form) 
placed where the film should be with the shutter open.

Digital Cameras, Electronic Sensors (CCD, CMOS)
In a digital camera, the film is replaced by a semiconductor sensor. Two types are 
in common use: CCD {charge-coupled device) and CMOS (complementary metal 
oxide semiconductor). A CCD sensor is made up of millions of tiny pixels 
(“picture elements”)—see Figs. 35-42 and 33-19. A 6-MP (6-megapixel) sensor* 
would contain about 2000 pixels vertically by 3000 pixels horizontally over an 
area of perhaps 4 X 6  mm or even 24 X 36 mm. Light reaching any pixel liber­
ates electrons from the semiconductor. The more intense the light, the more 
charge accumulates during the brief exposure time. Conducting electrodes carry 
each pixel’s charge (serially in time, row by row—hence the name “charge- 
coupled”) to a central processor that stores the relative brightness of pixels, and 
allows reformation of the image later onto a computer screen or printer. A CCD 
is fully reusable. Once the pixel charges are transferred to memory, a new picture 
can be taken.

A CMOS sensor also uses a silicon semiconductor, and incorporates some 
electronics within each pixel, allowing parallel readout.

Color is achieved by red, green, and blue filters over alternating pixels as 
shown in Fig. 33-19, similar to a color CRT or LCD screen. The sensor type shown 
in Fig. 33-19 contains twice as many green pixels as red or blue (because green is 
claimed to have a stronger influence on the sensation of sharpness). The computer- 
analyzed color at each pixel is that pixel’s intensity averaged with the intensities of 
the nearest-neighbor colors.

To reduce the amount of memory for each picture, compression programs 
average over pixels, but with a consequent loss of sharpness, or “resolution.”

* Digital Artifacts
Digital cameras can produce image artifacts (artificial effects in the image 
not present in the original) resulting from the imaging process. One example 
using the “mosaic” of pixels (Fig. 33-19) is described in Fig. 33-20. An alterna­
tive technology uses a semitransparent silicon semiconductor layer system 
wherein different wavelengths of light penetrate silicon to different depths: 
each pixel is a sandwich of partly transparent layers, one for each color. The top 
layer can absorb blue light, allowing green and red light to pass through. 
The second layer absorbs green and the bottom layer detects the red. All 
three colors are detected by each pixel, resulting in better color resolution and 
fewer artifacts.

fThis is called a negative, because the black areas correspond to bright objects and vice versa. 
The same process occurs during printing to produce a black-and-white “positive” picture from 
the negative. Color film has three emulsion layers (or dyes) corresponding to the three primary 
colors.
*Each different color of pixel in a CCD is counted as a separate pixel. In contrast, in an LCD screen 
(Section 35-12), a group of three subpixels is counted as one pixel, a more conservative count.
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Camera Adjustments
There are three main adjustments on good-quality cameras: shutter speed, /-stop, 
and focusing. Although most cameras today make these adjustments automatically, 
it is valuable to understand these adjustments to use a camera effectively. For 
special or top-quality work, a manual camera is indispensable (Fig. 33-21).
Exposure time or shutter speed This refers to how quickly the digital 
sensor can make an accurate reading, or how long the shutter of a camera is 
open and the film or sensor exposed. It could vary from a second or more (“time 
exposures”), to ^ s  or less. To avoid blurring from camera movement, exposure 
times shorter than ^ s  are normally needed. If the object is moving, even shorter 
exposure times are needed to “stop” the action. If the exposure (or sampling) time is 
not fast enough, the image will be blurred by camera shake no matter how many 
pixels a digital camera claims. Blurring in low light conditions is more of a problem 
with cell-phone cameras whose sensors are not usually the most sophisticated. 
Digital still cameras or cell phones that take short videos must have a fast enough 
“sampling” time and fast “clearing” (of the charge) time so as to take pictures at 
least 15 frames per second, and preferably 30 fps.
/-stop The amount of light reaching the film must be carefully controlled to avoid 
underexposure (too little light so the picture is dark and only the brightest objects 
show up) or overexposure (too much light, so that all bright objects look the same, 
with a consequent lack of contrast and a “washed-out” appearance). Most cameras 
these days make /-stop and shutter speed adjustments automatically. A high quality 
camera controls the exposure with a “stop” or iris diaphragm, whose opening is of 
variable diameter, placed behind the lens (Fig. 33-18). The size of the opening is 
controlled to compensate for bright or dark lighting conditions, the sensitivity of the 
sensor or film/ and for different shutter speeds. The size of the opening is specified 
by the /-number or /-stop, defined as 

ff -  stop = —>

where /  is the focal length of the lens and D is the diameter of the lens opening 
(Fig. 33-18). For example, when a 50-mm-focal-length lens has an opening 
D = 25 mm, we say it is set at //2 . When this lens is set at / / 8, the opening is 
only 6 \ mm (50/6^ = 8). For faster shutter speeds, or low light conditions, a wider 
lens opening must be used to get a proper exposure, which corresponds to a 
smaller /-stop number. The smaller the /-stop number, the larger the opening and 
the more light passes through the lens to the sensor or film. The smallest /-number 
of a lens (largest opening) is referred to as the speed of the lens. The best lenses 
may have a speed of //2.0, or even faster. The advantage of a fast lens is that it 
allows pictures to be taken under poor lighting conditions. Good quality lenses 
consist of several elements to reduce the defects present in simple thin lenses 
(Section 33-10). Standard /-stops are

1.0, 1.4, 2.0, 2.8, 4.0, 5.6, 8, 11, 16, 22, and 32 
(Fig. 33-21). Each of these stops corresponds to a diameter reduction by a factor 
of about V2 ~ 1.4. Because the amount of light reaching the film is proportional to 
the area of the opening, and therefore proportional to the diameter squared, each 
standard /-stop corresponds to a factor of 2 in light intensity reaching the film.
Focusing Focusing is the operation of placing the lens at the correct position 
relative to the sensor or film for the sharpest image. The image distance is smallest 
for objects at infinity (the symbol oo is used for infinity) and is equal to the focal 
length. For closer objects, the image distance is greater than the focal length, as can 
be seen from the lens equation, 1 / /  = l /d Q + l /d l (Eq. 33-2). To focus on 
nearby objects, the lens must therefore be moved away from the sensor or film, 
and this is usually done on a manual camera by turning a ring on the lens.
different films have different sensitivities to light, referred to as the “film speed” and specified as an 
“ISO (or ASA) number.” A “faster” film is more sensitive and needs less light to produce a good image. 
Faster films are grainier so offer less sharpness (resolution) when enlarged. Digital cameras may have a 
“gain” or “ISO” adjustment for sensitivity. Adjusting a CCD to be “faster” for low light conditions 
results in “noise,” the digital equivalent of graininess.

FIGURE 33-21 On this camera, 
the /-stops and the focusing ring are 
on the camera lens. Shutter speeds 
are selected on the small wheel on 
top of the camera body.
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FIGURE 33-22  Photos taken with a 
camera lens (a) focused on a nearby 
object with distant object blurry, 
and (b) focused on a more distant 
object with nearby object blurry.

(a) (b)

If the lens is focused on a nearby object, a sharp image of it will be formed, 
but the image of distant objects may be blurry (Fig. 33-22). The rays from a 
point on the distant object will be out of focus—they will form a circle on the 
sensor or film as shown (exaggerated) in Fig. 33-23. The distant object will thus 
produce an image consisting of overlapping circles and will be blurred. These 
circles are called circles of confusion. To include near and distant objects in the 
same photo, you (or the camera) can try setting the lens focus at an intermediate 
position. For a given distance setting, there is a range of distances over which the 
circles of confusion will be small enough that the images will be reasonably 
sharp. This is called the depth of field. The depth of field varies with the lens 
opening. If the lens opening is smaller, only rays through the central part of the 
lens are accepted, and these form smaller circles of confusion for a given object 
distance. Hence, at smaller lens openings, a greater range of object distances will 
fit within the circle of confusion criterion, so the depth of field is greater.f For a 
sensor or film width of 36 mm (including 35-mm film cameras), the depth of field 
is usually based on a maximum circle of confusion diameter of 0.003 mm.

FIGURE 33-23  When the lens is 
positioned to focus on a nearby 
object, points on a distant object 
produce circles and are therefore 
blurred. (The effect is shown greatly 
exaggerated.)

Rays from 
neaiby object 
(in locus}

+lCirclc of confusion" 
for distant objcct 
(greatly exuggonikxt)

Camera focus. How far must a 50.0-mm-focal-length camera 
lens be moved from its infinity setting to sharply focus an object 3.00 m away?

APPROACH For an object at infinity, the image is at the focal point, by definition. 
For an object distance of 3.00 m, we use the thin lens equation, Eq. 33-2, to find 
the image distance (distance of lens to film or sensor).
SOLUTION When focused at infinity, the lens is 50.0 mm from the film. When 
focused at dQ = 3.00 m, the image distance is given by the lens equation,

J_ _ 1 _  J_  _  _ _ 1 _________ 1 _ 3000 -  50 _ 2950
d[ f  dQ 50.0 mm 3000 mm (3000)(50.0) mm 150,000 mm

We solve for dx and find dx = 50.8 mm, so the lens needs to move 0.8 mm away 
from the film or digital sensor.

f Smaller lens openings, however, result in reduced resolutions due to diffraction (discussed in Chapter 35). 
Best resolution is typically found around //8 .

EXAMPLE 33-8
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CONCEPTUAL EXAMPLE 55-9 I Shutter speed. To improve the depth of field, 
you “ stop down” your camera lens by two /-stops from / /4  to / / 8 . What should you 
do to the shutter speed to maintain the same exposure?

RESPONSE The amount of light admitted by the lens is proportional to the area 
of the lens opening. Reducing the lens opening by two /-stops reduces the 
diameter by a factor of 2, and the area by a factor of 4. To maintain the same 
exposure, the shutter must be open four times as long. I f  the shutter speed had 
been ^ s , you would have to increase the exposure time to ^5 s.

* Picture Sharpness
The sharpness of a picture depends not only on accurate focusing and short 
exposure times, but also on the graininess of the film , or the number of pixels for a 
digital camera. Fine-grained films are “ slower,” meaning they require longer 
exposures for a given light level. Digital cameras have averaging (or “ compression” ) 
programs, such as JPEG, which reduce memory size by averaging over pixels 
where little  contrast is detected. Hence it is unusual to use all pixels available. They 
also average over pixels in low light conditions, resulting in a less sharp photo.

The quality of the lens strongly affects the image quality, and we discuss lens reso­
lution and diffraction effects in Sections 33-10 and 35-4. The sharpness, or resolution, 
of a lens is often given as so many lines per millimeter, measured by photographing a 
standard set of parallel lines on fine-grain film  or high quality sensor, or as so 
many dots per inch (dpi). The minimum spacing of distinguishable lines or dots 
gives the resolution; 50 lines/mm is reasonable, 100 lines/mm is quite good 
( = 100 dots/mm « 2500 dpi on the sensor).

Pixels and resolution. A  6-MP (6-megapixel) digital 
camera offers a maximum resolution of 2000 X 3000 pixels on a 16-mm X 24-mm 
CCD sensor. How sharp should the lens be to make use of this resolution?

APPROACH We find the number of pixels per millimeter and require the lens to 
be at least that good.
SOLUTION We can either take the image height (2000 pixels in 16 mm) or the 
width (3000 pixels in 24 mm):

3000 pixels
— — --------- = 125 pixels/mm.

24 mm

We would want the lens to be able to resolve at least 125 lines or dots per mm as 
well, which would be a very good lens. I f  the lens is not this good, fewer pixels 
and less memory could be used.
NOTE Increasing lens resolution is a tougher problem today than is squeezing 
more pixels on a CCD or CMOS. The sensor for high MP cameras must also be 
physically larger for greater light sensitivity (low light conditions).

Blown-up photograph. An enlarged photograph looks sharp 
at normal viewing distances if the dots or lines are resolved to about 10 dots/mm.
Would an 8 X 10-inch enlargement of a photo taken by the camera in Example 33-10 
seem sharp? To what maximum size could you enlarge this 2000 X 3000-pixel image?

APPROACH We assume the image is 2000 X 3000 pixels on a 16 X 24-mm CCD 
as in Example 33-10, or 125 pixels/mm. We make an enlarged photo 
8 X 10 in. = 20 cm X 25 cm.
SOLUTION The short side of the CCD is 16 mm = 1.6 cm long, and that side of 
the photograph is 8 inches or 20 cm. Thus the size is increased by a factor of
20 cm/1.6 cm = 12.5X (or 25 cm/2.4 cm « 10X). To fill the 8 X 10-in. paper, we 
assume the enlargement is 12.5 X . The pixels are thus enlarged 12.5 X ; so the 
pixel count of 125/mm on the CCD becomes 10 per mm on the print. Hence an 
8 X 10-inch print is just about the maximum possible for a sharp photograph 
with 6 megapixels. I f  you feel 7 dots per mm is good enough, you can enlarge to 
maybe 11 X 14 inches.
—  SECTION 33-5 Cameras: Film and Digital 881
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FIGURE 33-24 Single-lens reflex 
(SLR) camera, showing how the 
image is viewed through the lens 
with the help of a movable mirror 
and prism.
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FIGURE 33-25
human eye.
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Telephotos and Wide-angles
Camera lenses are categorized into normal, telephoto, and wide angle, according 
to focal length and film  size. A  normal lens covers the sensor or film  w ith a fie ld of 
view that corresponds approximately to that o f normal vision. A  normal lens for 
35-mm film  has a focal length in the vicinity o f 50 mm. The best digital cameras 
aim for a sensor of the same size1" (24 mm X 36mm). ( If the sensor is smaller, digital 
cameras sometimes specify focal lengths to correspond with classic 35-mm cameras.) 
Telephoto lenses act like telescopes to magnify images. They have longer focal 
lengths than a normal lens: as we saw in Section 33-2 (Eq. 33-3), the height of 
the image fo r a given object distance is proportional to the image distance, and 
the image distance w ill be greater fo r a lens w ith longer focal length. For distant 
objects, the image height is very nearly proportional to the focal length. Thus a 
200-mm telephoto lens for use w ith a 35-mm camera gives a 4X magnification 
over the normal 50-mm lens. A  wide-angle lens has a shorter focal length than 
normal: a wider fie ld of view is included, and objects appear smaller. A  zoom lens 
is one whose focal length can be changed so that you seem to zoom up to, or away 
from , the subject as you change the focal length.

D igita l cameras may have an optical zoom meaning the lens can change focal 
length and maintain resolution. But an “ electronic” or digital zoom just enlarges 
the dots (pixels) w ith loss of sharpness.

D ifferent types of viewing systems are used in cameras. In  some cameras, 
you view through a small window just above the lens as in Fig. 33-18. 
In  a single-lens reflex camera (SLR), you actually view through the lens w ith 
the use of prisms and m irrors (Fig. 33-24). A  m irror hangs at a 45° angle 
behind the lens and flips up out of the way just before the shutter opens. SLRs 
have the advantage that you can see almost exactly what you w ill get. 
D ig ita l cameras use an LCD display, and it  too can show what you w ill get on the 
photo if  it is carefully designed.

33-6 The Human Eye; Corrective Lenses
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The human eye resembles a camera in its basic structure (Fig. 33-25), but is far 
more sophisticated. The in terior of the eye is filled  w ith a transparent gel-like 
substance called the vitreous hum or w ith index o f refraction n =  1.337. L ight 
enters this enclosed volume through the cornea and lens. Between the cornea 
and lens is a watery flu id , the aqueous humor (aqua is “ water” in Latin) w ith 
n =  1.336. A  diaphragm, called the iris (the colored part o f your eye), adjusts 
automatically to control the amount o f light entering the eye, sim ilar to a 
camera. The hole in the iris through which light passes (the pupil) is black 
because no light is reflected from  it ( it ’s a hole), and very little  light is reflected 
back out from  the in terio r o f the eye. The retina, which plays the role of 
the film  or sensor in a camera, is on the curved rear surface of the eye. The 
retina consists of a complex array o f nerves and receptors known as rods 
and cones which act to change ligh t energy into electrical signals that travel 
along the nerves. The reconstruction o f the image from  all these tiny receptors is 
done mainly in the brain, although some analysis may also be done in the 
complex interconnected nerve network at the retina itself. A t the center of the 
retina is a small area called the fovea, about 0.25 mm in diameter, where the cones are 
very closely packed and the sharpest image and best color discrimination are found.

Unlike a camera, the eye contains no shutter. The equivalent operation is 
carried out by the nervous system, which analyzes the signals to form images at the 
rate of about 30 per second. This can be compared to motion picture or television 
cameras, which operate by taking a series of s till pictures at a rate of 24 (movies) 
or 30 (U.S. television) per second; their rapid projection on the screen gives the 
appearance of motion.
f A “35-mm camera” uses film that is physically 35 mm wide; that 35 mm is not to be confused with a 
focal length. 35-mm film has sprocket holes, so only 24 mm of its height is used for the photo; the width 
is usually 36 mm for stills. Thus one frame is 24 mm X 36 mm. Movie frames are 18 mm X 24 mm.

Lenses and Optical Instruments
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The lens of the eye (n =  1.386 to 1.406) does little  of the bending of 
the light rays. Most of the refraction is done at the front surface of the 
cornea (n =  1.376) at its interface with air (n =  1.0). The lens acts as a fine 
adjustment for focusing at different distances. This is accomplished by the 
ciliary muscles (Fig. 33-25), which change the curvature of the lens so that its 
focal length is changed. To focus on a distant object, the ciliary muscles of 
the eye are relaxed and the lens is thin, as shown in Fig. 33-26a, and parallel 
rays focus at the focal point (on the retina). To focus on a nearby object, the 
muscles contract, causing the center of the lens to thicken, Fig. 33-26b, thus 
shortening the focal length so that images of nearby objects can be focused on 
the retina, behind the new focal point. This focusing adjustment is called 
accommodation.

The closest distance at which the eye can focus clearly is called the near point 
of the eye. For young adults it is typically 25 cm, although younger children can 
often focus on objects as close as 10 cm. As people grow older, the ability to 
accommodate is reduced and the near point increases. A  given person’s far point is 
the farthest distance at which an object can be seen clearly. For some purposes it is 
useful to speak of a normal eye (a sort of average over the population), defined as 
an eye having a near point of 25 cm and a far point of infinity. To check your own 
near point, place this book close to your eye and slowly move it away until the 
type is sharp.

The “normal” eye is sort of an ideal. Many people have eyes that do not 
accommodate w ithin the “ normal” range of 25 cm to infinity, or have some 
other defect. Two common defects are nearsightedness and farsightedness. 
Both can be corrected to a large extent with lenses— either eyeglasses or 
contact lenses.

In nearsightedness, or myopia, the eye can focus only on nearby objects. The 
far point is not infin ity but some shorter distance, so distant objects are not seen 
clearly. It is usually caused by an eyeball that is too long, although sometimes it is 
the curvature of the cornea that is too great. In either case, images of distant 
objects are focused in front of the retina. A  diverging lens, because it causes 
parallel rays to diverge, allows the rays to be focused at the retina (Fig. 33-27a) 
and thus corrects this defect.

In farsightedness, or hyperopia, the eye cannot focus on nearby objects. 
Although distant objects are usually seen clearly, the near point is somewhat 
greater than the “normal” 25 cm, which makes reading difficult. This defect is 
caused by an eyeball that is too short or (less often) by a cornea that is not 
sufficiently curved. It is corrected by a converging lens, Fig. 33-27b. Similar to 
hyperopia is presbyopia, which refers to the lessening ability of the eye to accom­
modate as a person ages, and the near point moves out. Converging lenses also 
compensate for this.

FIGURE 33-26 Accommodation 
by a normal eye: (a) lens relaxed, 
focused at infinity; (b) lens thickened, 
focused on a nearby object.

@ P H Y S I C S  A P P L I E D
Corrective lenses

Object
at°° ____ | FIGURE 33-27 Correcting eye

defects with lenses:
(a) a nearsighted eye, which cannot 
focus clearly on distant objects, can 
be corrected by use of a diverging lens;
(b) a farsighted eye, which cannot 
focus clearly on nearby objects, can 
be corrected by use of a converging lens.

Nearsighted eye

Focal point of lens and cornea

Object 
at oo

Focal point of lens and cornea

Object
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FIGURE 33-28 A cylindrical lens 
forms a line image of a point object 
because it is converging in one 
plane only.

Astigmatism is usually caused by an out-of-round cornea or lens so that point 
objects are focused as short lines, which blurs the image. It is as if the cornea were 
spherical with a cylindrical section superimposed. As shown in Fig. 33-28, a 
cylindrical lens focuses a point into a line parallel to its axis. An astigmatic eye may 
focus rays in one plane, such as the vertical plane, at a shorter distance than it 
does for rays in a horizontal plane. Astigmatism is corrected with the use of a 
compensating cylindrical lens. Lenses for eyes that are nearsighted or farsighted as 
well as astigmatic are ground with superimposed spherical and cylindrical surfaces, 
so that the radius of curvature of the correcting lens is different in different planes.

EXAMPLE 33-12 Farsighted eye. Sue is farsighted with a near point of 100 cm. 
Reading glasses must have what lens power so that she can read a newspaper at 
a distance of 25 cm? Assume the lens is very close to the eye.

APPROACH When the object is placed 25 cm from the lens, we want the image to 
be 100 cm away on the same side of the lens (so the eye can focus it), and so the 
image is virtual, as shown in Fig. 33-29, and d\ =  -100 cm w ill be negative. We 
use the thin lens equation (Eq. 33-2) to determine the needed focal length. 
Optometrists’ prescriptions specify the power (P  =  1 / / ,  Eq. 33-1) given in 
diopters ( l D = 1 m-1).
SOLUTION Given that dQ =  25 cm and dx = -100 cm, the thin lens equation 
gives

1 1 4 - 1  1i  = JL 1  - 
/  dQ + d{ 25 cm -100 cm 100 cm 33 cm

So /  = 33 cm = 0.33 m. The power P  of the lens is P  = 1 / f  = +3.0 D. The 
plus sign indicates that it is a converging lens.
NOTE We chose the image position to be where the eye can actually focus. The lens 
needs to put the image there, given the desired placement of the object (newspaper).

FIGURE 33-29 Lens of reading 
glasses (Example 33-12).

FIGURE 33-30

Object 
at oo

Example 33-13. 
2cm-|

(Far point)

(a)

EXAMPLE 33-13 Nearsighted eye. A  nearsighted eye has near and far 
points of 12 cm and 17 cm, respectively, (a) What lens power is needed for this 
person to see distant objects clearly, and (b) what then w ill be the near point? 
Assume that the lens is 2.0 cm from the eye (typical for eyeglasses).

APPROACH For a distant object (dQ =  oo), the lens must put the image at the 
far point of the eye as shown in Fig. 33-30a, 17 cm in front of the eye. We can use 
the thin lens equation to find the focal length of the lens, and from this its lens 
power. The new near point (as shown in Fig. 33-30b) can be calculated for the 
lens by again using the thin lens equation.
SOLUTION (a) For an object at infinity (dQ =  oo), the image must be in front of 
the lens 17 cm from the eye or (17 cm — 2 cm) = 15 cm from the lens; hence 
di =  -15  cm. We use the thin lens equation to solve for the focal length of the 
needed lens:

i  _  JL 1  _  JL
oo

1 1
-15  cm 15 cm/  d0 di

So /  = -15 cm = -0.15 m or P  = 1 / f  = -6.7 D. The minus sign indicates 
that it must be a diverging lens for the myopic eye.
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(b) The near point when glasses are worn is where an object is placed (dQ) so that 
the lens forms an image at the “near point of the naked eye,” namely 12 cm from 
the eye. That image point is (12 cm — 2 cm) = 10 cm in front of the lens, so 
di =  - 0.10 m and the thin lens equation gives

1 1 1  1 1 -2  + 3 1
+

d0 f  di 0.15 m 0.10 m 0.30 m 0.30 m

So dQ =  30 cm, which means the near point when the person is wearing glasses 
is 30 cm in front of the lens, or 32 cm from the eye.

Suppose contact lenses are used to correct the eye in Example 33-13. Since @  P H Y S I C S  A P P L I E D  
contacts are placed directly on the cornea, we would not subtract out the 2.0 cm Contact lenses 
for the image distances. That is, for distant objects rfi = /= -1 7 c m , so 
P  = 1 /f  =  -5.9  D. The new near point would be 41cm. Thus we see that a 
contact lens and an eyeglass lens w ill require slightly different powers, or 
focal lengths, for the same eye because of their different placements relative 
to the eye. We also see that glasses in this case give a better near point 
than contacts.

EXERCISE E What power contact lens is needed for an eye to see distant objects if its far 
point is 25 cm?

When your eyes are under water, distant underwater objects look blurry P H Y S I C S  A P P L I E D
because at the water-cornea interface, the difference in indices of refraction is Underwater vision 
very small: n =  1.33 for water, 1.376 for the cornea. Hence light rays are bent 
very little  and are focused far behind the retina, Fig. 33-3la. I f  you wear goggles 
or a face mask, you restore an air-cornea interface (n =  1.0 and 1.376, respec­
tively) and the rays can be focused, Fig. 33-31b.

FIGURE 33-31 (a) Under water, we see a blurry 
image because light rays are bent much less than 
in air. (b) If we wear goggles, we again have an 
air-cornea interface and can see clearly.

33-7 Magnifying Glass
Much of the remainder of this Chapter w ill deal with optical devices that are 
used to produce magnified images of objects. We first discuss the simple 
magnifier, or magnifying glass, which is simply a converging lens (see Chapter- 
Opening Photo).

How large an object appears, and how much detail we can see on it, depends 
on the size of the image it makes on the retina. This, in turn, depends on 
the angle subtended by the object at the eye. For example, a penny held 30 cm 
from the eye looks twice as ta ll as one held 60 cm away because the angle it 
subtends is twice as great (Fig. 33-32). When we want to examine detail on 
an object, we bring it up close to our eyes so that it subtends a greater angle. 
However, our eyes can accommodate only up to a point (the near point), and 
we w ill assume a standard distance of N  =  25 cm as the near point in what 
follows.

FIGURE 33-32 When the same 
object is viewed at a shorter distance, 
the image on the retina is greater, so 
the object appears larger and more 
detail can be seen. The angle 6 that 
the object subtends in (a) is greater 
than in (b). Note: This is not a normal 
ray diagram because we are showing 
only one ray from each point.

I niiWf

(b)
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(= 25 cm for normal eye)

(b)
FIGURE 33-33 Leaf viewed (a) through a magnifying glass, and (b) with the unaided eye. The eye is 
focused at its near point in both cases.

A  magnifying glass allows us to place the object closer to our eye so that it 
subtends a greater angle. As shown in Fig. 33-33a, the object is placed at the focal 
point or just within it. Then the converging lens produces a virtual image, which 
must be at least 25 cm from the eye if the eye is to focus on it. I f  the eye is relaxed, 
the image w ill be at infinity, and in this case the object is exactly at the focal point. 
(You make this slight adjustment yourself when you “ focus” on the object by 
moving the magnifying glass.)

A  comparison of part (a) of Fig. 33-33 with part (b), in which the same object 
is viewed at the near point with the unaided eye, reveals that the angle the 
object subtends at the eye is much larger when the magnifier is used. The angular 
magnification or magnifying power, M, of the lens is defined as the ratio of the 
angle subtended by an object when using the lens, to the angle subtended using the 
unaided eye, with the object at the near point N  of the eye (N  =  25 cm for a 
normal eye):

M  = j ,  (33-5)

where 0 and 0' are shown in Fig. 33-33. We can write M  in terms of the focal 
length by noting that 0 = h /N  (Fig. 33-33b) and O' =  h /d Q (Fig. 33-33a), where 
h is the height of the object and we assume the angles are small so 0 and 0 ' equal 
their sines and tangents. If  the eye is relaxed (for least eye strain), the image w ill 
be at infin ity and the object w ill be precisely at the focal point; see Fig. 33-34. 
Then dQ = f  and 0' = h /f ,  whereas 6 =  h /N  as before (Fig. 33-33b). Thus

M  = —  = h l L  = K .  \  eye focused at oo;
0 h /N  f  \_N =  25 cm for normal eye

We see that the shorter the focal length of the lens, the greater the magnification.1
The magnification of a given lens can be increased a bit by moving the 

lens and adjusting your eye so it focuses on the image at the eye’s near point. 
In this case, d{ = —N  (see Fig. 33-33a) if  your eye is very near the magnifier.

f Simple single-lens magnifiers are limited to about 2 or 3X because of blurring due to spherical 
aberration (Section 33-10).

J (33-6a)

FIGURE 33-34 With the eye 
relaxed, the object is placed at the 
focal point, and the image is at infinity. 
Compare to Fig. 33-33a where the 
image is at the eye’s near point.

Image

h
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j
F  /F  1

/
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Then the object distance dQ is given by

J- = i  _ 1 = i  J-
d o ~  f  ^  ~ f  + N '

We see from this equation that dQ = f N / ( f  +  N ) <  f ,  as shown in Fig. 33-33a, 
since N / ( f  + N )  must be less than 1. With O' = h /d Q the magnification is

= = N  / I  1_
e h /N  da \ f  N

or

[eye focused at near point, N; 1 
N  =  25 cm for normal eye J  ̂ '

We see that the magnification is slightly greater when the eye is focused at its near 
point, as compared to when it is relaxed.

EXAMPLE 33-14 ESTIMATE I A jeweler's "loupe." An 8-cm-focal-length 
converging lens is used as a “jeweler’s loupe,” which is a magnifying glass. Esti­
mate (a) the magnification when the eye is relaxed, and (b) the magnification if 
the eye is focused at its near point N  =  25 cm.

APPROACH The magnification when the eye is relaxed is given by Eq. 33- 6a. 
When the eye is focused at its near point, we use Eq. 33-6b and we assume the 
lens is near the eye.
SOLUTION (a) With the relaxed eye focused at infinity,

N  25 cm
M  = —  = —-----  ~ 3X .

/  8 cm

(ft) The magnification when the eye is focused at its near point (N  =  25 cm), 
and the lens is near the eye, is

M  =  l + ^ = l + ^ - « 4 x .
J o

33-8 Telescopes
A  telescope is used to magnify objects that are very far away. In most cases, the 
object can be considered to be at infinity.

Galileo, although he did not invent it,f developed the telescope into a 
usable and important instrument. He was the first to examine the heavens 
with the telescope (Fig. 33-35), and he made world-shaking discoveries, 
including the moons of Jupiter, the phases of Venus, sunspots, the structure of 
the Moon’s surface, and that the M ilky Way is made up of a huge number 
of individual stars.

Galileo built his first telescope in 1609 after having heard of such an instrument existing in Holland. 
The first telescopes magnified only three to four times, but Galileo soon made a 30-power instrument. 
The first Dutch telescope seems to date from about 1604, but there is a reference suggesting it may 
have been copied from an Italian telescope built as early as 1590. Kepler (see Chapter 6 ) gave a ray 
description (in 1611) of the Keplerian telescope, which is named for him because he first described it, 
although he did not build it.

FIGURE 33-35 (a) Objective lens 
(mounted now in an ivory frame) 
from the telescope with which 
Galileo made his world-shaking 
discoveries, including the moons of 
Jupiter, (b) Later telescopes made 
by Galileo.

(b)
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FIGURE 33-36 Astronomical 
telescope (refracting). Parallel light from 
one point on a distant object (dQ = oo) 
is brought to a focus by the objective 
lens in its focal plane. This image (IJ is 
magnified by the eyepiece to form the 
final image I2. Only two of the rays 
shown entering the objective are 
standard rays (2 and 3) as described in 
Fig. 33-6.

Parallel 
rays from 
object at

FIGURE 33-37 This large 
refracting telescope was built in 1897 
and is housed at Yerkes Observatory 
in Wisconsin. The objective lens is 
102 cm (40 inches) in diameter, and 
the telescope tube is about 19 m 
long. Example 33-15.

Several types of astronomical telescope exist. The common refracting type, 
sometimes called Keplerian, contains two converging lenses located at opposite ends 
of a long tube, as illustrated in Fig. 33-36. The lens closest to the object is called the 
objective lens (focal length / Q) and forms a real image I4 of the distant object in 
the plane of its focal point F0 (or near it if the object is not at infinity). The second lens, 
called the eyepiece (focal length / e), acts as a magnifier. That is, the eyepiece magnifies 
the image I x formed by the objective lens to produce a second, greatly magnified 
image, I 2, which is virtual and inverted. If the viewing eye is relaxed, the eyepiece is 
adjusted so the image I 2 is at infinity. Then the real image 11 is at the focal point Fg of 
the eyepiece, and the distance between the lenses is f0 + / e for an object at infinity.

To find the total angular magnification of this telescope, we note that the angle 
an object subtends as viewed by the unaided eye is just the angle 6 subtended at 
the telescope objective. From Fig. 33-36 we can see that 0 ~ h /f0 , where h is the 
height of the image and we assume 0 is small so that tan 0 « 0. Note, too, that 
the thickest of the three rays drawn in Fig. 33-36 is parallel to the axis before it 
strikes the eyepiece and therefore is refracted through the eyepiece focal point Fe 
on the far side. Thus, 0' « h /f e and the total magnifying power (that is, angular 
magnification, which is what is always quoted) of this telescope is

, ,  6' (h /fe )  f B
M  =  — =  j - —7\  =  -~T>  [telescope] (33-7)

0  W  J o )  / e

where we have inserted a minus sign to indicate that the image is inverted. To 
achieve a large magnification, the objective lens should have a long focal length 
and the eyepiece a short focal length.

EXAMPLE 33-15 Telescope magnification. The largest optical refracting 
telescope in the world is located at the Yerkes Observatory in Wisconsin, 
Fig. 33-37. It is referred to as a “40-inch” telescope, meaning that the diameter of 
the objective is 40 in., or 102 cm. The objective lens has a focal length of 19 m, and 
the eyepiece has a focal length of 10 cm. (a) Calculate the total magnifying power 
of this telescope. (b) Estimate the length of the telescope.

APPROACH Equation 33-7 gives the magnification. The length of the telescope 
is the distance between the two lenses.
SOLUTION (a) From Eq. 33-7 we find 

fo 19 m

fc
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=  -190X
0.10 m

(b) For a relaxed eye, the image 11 is at the focal point of both the eyepiece and 
the objective lenses. The distance between the two lenses is thus f Q + / e ~ 19 m, 
which is essentially the length of the telescope.



EXERCISE F A 40 X telescope has a 1.2-cm focal length eyepiece. What is the focal length 
of the objective lens?

For an astronomical telescope to produce bright images of faint stars, the objective 
lens must be large to allow in as much light as possible. Indeed, the diameter of the 
objective lens (and hence its “ light-gathering power” ) is an important parameter for an 
astronomical telescope, which is why the largest ones are specified by giving the objec­
tive diameter (such as the 10-meter Keck telescope in Hawaii). The construction and 
grinding of large lenses is very difficult. Therefore, the largest telescopes are reflecting 
telescopes which use a curved mirror as the objective, Fig. 33-38. A mirror has only 
one surface to be ground and can be supported along its entire surface1 (a large lens, 
supported at its edges, would sag under its own weight). Often, the eyepiece lens or 
mirror (see Fig. 33-38) is removed so that the real image formed by the objective 
mirror can be recorded directly on film or on an electronic sensor (CCD or CMOS, 
Section 33-5).

Concave mirror 
(objective)

Secondary
mirror

(b) (c) (d)
FIGURE 33-38 A concave mirror can be used as the objective of an astronomical telescope. Arrangement (a) is called the 
Newtonian focus, and (b) the Cassegrainian focus. Other arrangements are also possible, (c) The 200-inch (mirror diameter) 
Hale telescope on Palomar Mountain in California, (d) The 10-meter Keck telescope on Mauna Kea, Hawaii. The Keck 
combines thirty-six 1.8-meter six-sided mirrors into the equivalent of a very large single reflector, 10 m in diameter.

A terrestrial telescope, for viewing objects on Earth, must provide an upright 
image— seeing normal objects upside down would be difficult (much less 
important for viewing stars). Two designs are shown in Fig. 33-39. The Galilean 
type, which Galileo used for his great astronomical discoveries, has a diverging 
lens as eyepiece which intercepts the converging rays from the objective lens 
before they reach a focus, and acts to form a virtual upright image, Fig. 33-39a.
This design is still used in opera glasses. The tube is reasonably short, but the field of 
view is small. The second type, shown in Fig. 33-39b, is often called a spyglass and 
makes use of a third convex lens that acts to make the image upright as shown. A 
spyglass must be quite long. The most practical design today is the prism binocular 
which was shown in Fig. 32-33. The objective and eyepiece are converging lenses.
The prisms reflect the rays by total internal reflection and shorten the physical size 
of the device, and they also act to produce an upright image. One prism reinverts 
the image in the vertical plane, the other in the horizontal plane.

f Another advantage of mirrors is that they exhibit no chromatic aberration because the light doesn’t 
pass through them; and they can be ground in a parabolic shape to correct for spherical aberration 
(Section 33-10). The reflecting telescope was first proposed by Newton.

FIGURE 33-39 Terrestrial 
telescopes that produce an upright 
image: (a) Galilean; (b) spyglass, or 
erector type.



*33—9 Compound Microscope
© P H Y S I C S  A P P L I E D  The compound microscope, like the telescope, has both objective and eyepiece (or 

Microscopes ocular) lenses, Fig. 33-40. The design is different from that for a telescope because 
a microscope is used to view objects that are very close, so the object distance is 
very small. The object is placed just beyond the objective’s focal point as shown in 
Fig. 33-40a. The image formed by the objective lens is real, quite far from the 
objective lens, and much enlarged. The eyepiece is positioned so that this image is 
near the eyepiece focal point Fe. The image I x is magnified by the eyepiece into a 
very large virtual image, I 2, which is seen by the eye and is inverted. Modern 
microscopes use a third “ tube” lens behind the objective, but we w ill analyze the 
simpler arrangement shown in Fig. 33-40a.

FIGURE 33-40 Compound microscope: (a) ray diagram, (b) photograph 
(illumination comes from the lower right, then up through the slide holding the object).

h  The overall magnification of a microscope is the product of the magnifications
produced by the two lenses. The image ^  formed by the objective lens is a 
factor m Q greater than the object itself. From Fig. 33-40a and Eq. 33-3 for the 
lateral magnification of a simple lens, we have

hi di e -  U  »
m0 = —  = —  = — j— > (33-8)

hQ dQ dQ
where dQ and d{ are the object and image distances for the objective lens, £ is the 
distance between the lenses (equal to the length of the barrel), and we ignored the 
minus sign in Eq. 33-3 which only tells us that the image is inverted. We set 
di =  £ -  / e, which is true only if the eye is relaxed, so that the image 11 is at the 
eyepiece focal point Fe. The eyepiece acts like a simple magnifier. I f  we assume 
that the eye is relaxed, the eyepiece angular magnification Me is (from Eq. 33- 6a) 

N
Me = — > (33-9)

Je

where the near point N  = 25 cm for the normal eye. Since the eyepiece enlarges 
the image formed by the objective, the overall angular magnification M  is the 
product of the lateral magnification of the objective lens, m 0, times the angular 
magnification, Me, of the eyepiece lens (Eqs. 33-8 and 33-9):

M  = Mcm0 = J ^  J [microscope] (33-10a)

« ~  [fo and / e «  f] (33-10b)
J e  Jo

The approximation, Eq. 33-10b, is accurate when / e and f Q are small compared to £, 
so £ -  / e « £, and the object is near F0 so dQ « f0 (Fig. 33-40a). This is a good

890 CHAPTER 33 Lenses and Optical Instruments



approximation for large magnifications, which are obtained when f Q and / e are 
very small (they are in the denominator of Eq. 33-10b). To make lenses of very 
short focal length, compound lenses involving several elements must be used to 
avoid serious aberrations, as discussed in the next Section.

EXAMPLE 33-16 Microscope. A  compound microscope consists of a 10 X 
eyepiece and a 50 X objective 17.0 cm apart. Determine (a) the overall 
magnification, (b ) the focal length of each lens, and (c) the position of the object 
when the final image is in focus with the eye relaxed. Assume a normal eye, 
so N  =  25 cm.

APPROACH The overall magnification is the product of the eyepiece magni­
fication and the objective magnification. The focal length of the eyepiece is found 
from Eq. 33-6a or 33-9 for the magnification of a simple magnifier. For the 
objective lens, it is easier to next find dQ (part c) using Eq. 33-8 before we 
find f Q.

SOLUTION (a) The overall magnification is (10X)(50X) = 500X.
(b) The eyepiece focal length is (Eq. 33-9) / e = N /M e =  25 cm/10 = 2.5 cm. 
Next we solve Eq. 33-8 for dQ, and find

£ -  / e (17.0 cm -  2.5 cm)
dQ =  --------- = ----------- — -----------  = 0.29 cm.m Q 50

Then, from the thin lens equation for the objective with dx = £ — / e = 14.5 cm 
(see Fig. 33-40a),

—  1 +  1 -  3  5 2  cm-1-
f Q dQ di 0.29 cm 14.5 cm • cm ,

so f Q =  l/(3.52cm _1) = 0.28 cm.
(c) We just calculated d0 =  0.29 cm, which is very close to f Q.

*33—10 Aberrations of Lenses and Mirrors
Earlier in this Chapter we developed a theory of image formation by a thin lens. 
We found, for example, that all rays from each point on an object are brought to a 
single point as the image point. This result, and others, were based on approxima­
tions for a thin lens, mainly that all rays make small angles with the axis and that 
we can use sin 6 ~  0. Because of these approximations, we expect deviations from 
the simple theory, which are referred to as lens aberrations. There are several types 
of aberration; we w ill briefly discuss each of them separately, but all may be 
present at one time.

Consider an object at any point (even at infinity) on the axis of a lens with 
spherical surfaces. Rays from this point that pass through the outer regions of the 
lens are brought to a focus at a different point from those that pass through 
the center of the lens. This is called spherical aberration, and is shown exaggerated 
in Fig. 33-41. Consequently, the image seen on a screen or film  w ill not be a 
point but a tiny circular patch of light. I f  the sensor or film  is placed at the point 
C, as indicated, the circle w ill have its smallest diameter, which is referred to as 
the circle of least confusion. Spherical aberration is present whenever spherical 
surfaces are used. It  can be reduced by using nonspherical (= aspherical) lens 
surfaces, but grinding such lenses is d ifficult and expensive. Spherical aberration 
can be reduced by the use of several lenses in combination, and by using 
prim arily the central part of lenses.

0 P H Y S I C S  A P P L I E D
Lens aberrations

FIGURE 33-41 Spherical 
aberration (exaggerated).
Circle of least confusion is at C.

C
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r r  P -
(a) (b)

FIGURE 33-42 Distortion: 
lenses may image a square grid of 
perpendicular lines to produce
(a) barrel distortion or (b) pincushion 
distortion. These distortions can be 
seen in the photograph of Fig. 33-2d.

FIGURE 33-43 Chromatic 
aberration. Different colors are 
focused at different points.

FIGURE 33-44 Achromatic 
doublet.

0 P H Y S I C S  A P P L I E D
Human eye

For object points o ff the lens axis, additional aberrations occur. Rays passing 
through the different parts of the lens cause spreading of the image that is 
noncircular. There are two effects: coma (because the image of a point is comet-shaped 
rather than a circle) and off-axis astigmatism.1 Furthermore, the image points for 
objects off the axis but at the same distance from the lens do not fall on a flat 
plane but on a curved surface— that is, the focal plane is not flat. (We expect this 
because the points on a flat plane, such as the film  in a camera, are not equidistant 
from the lens.) This aberration is known as curvature of field and is a problem in 
cameras and other devices where the film  is placed in a flat plane. In the eye, 
however, the retina is curved, which compensates for this effect.

Another aberration, distortion, is a result of variation of magnification at 
different distances from the lens axis. Thus a straight-line object some distance 
from the axis may form a curved image. A  square grid of lines may be distorted to 
produce “barrel distortion,” or “pincushion distortion,” Fig. 33-42. The former is 
common in extreme wide-angle lenses.

A ll the above aberrations occur for monochromatic light and hence are 
referred to as monochromatic aberrations. Normal light is not monochromatic, 
and there w ill also be chromatic aberration. This aberration arises because of 
dispersion— the variation of index of refraction of transparent materials with wave­
length (Section 32-6). For example, blue light is bent more than red light by glass. So 
if white light is incident on a lens, the different colors are focused at different points, 
Fig. 33-43, and have slightly different magnifications resulting in colored fringes in 
the image. Chromatic aberration can be eliminated for any two colors (and reduced 
greatly for all others) by the use of two lenses made of different materials with 
different indices of refraction and dispersion. Normally one lens is converging and 
the other diverging, and they are often cemented together (Fig. 33-44). Such a lens 
combination is called an achromatic doublet (or “ color-corrected” lens).

To reduce aberrations, high-quality lenses are compound lenses consisting of 
many simple lenses, referred to as elements. A  typical high-quality camera lens 
may contain six to eight (or more) elements. For simplicity we w ill usually indicate 
lenses in diagrams as if they were simple lenses.

The human eye is also subject to aberrations, but they are minimal. Spherical 
aberration, for example, is minimized because (1) the cornea is less curved at the 
edges than at the center, and (2 ) the lens is less dense at the edges than at the 
center. Both effects cause rays at the outer edges to be bent less strongly, and thus 
help to reduce spherical aberration. Chromatic aberration is partially compensated 
for because the lens absorbs the shorter wavelengths appreciably and the retina is less 
sensitive to the blue and violet wavelengths. This is just the region of the spectrum 
where dispersion— and thus chromatic aberration— is greatest (Fig. 32-28).

Spherical mirrors (Section 32-3) also suffer aberrations including spherical 
aberration (see Fig. 32-13). M irrors can be ground in a parabolic shape to correct 
for aberrations, but they are much harder to make and therefore very expensive. 
Spherical mirrors do not, however, exhibit chromatic aberration because the light 
does not pass through them (no refraction, no dispersion).

f Although the effect is the same as for astigmatism in the eye (Section 33-6), the cause is different. Off-£ 
astigmatism is no problem in the eye because objects are clearly seen only at the fovea, on the lens axis.

Summary
A lens uses refraction to produce a real or virtual image. 
Parallel rays of light are focused to a point, called the focal 
point, by a converging lens. The distance of the focal point from 
the lens is called the focal length /  of the lens.

After parallel rays pass through a diverging lens, they 
appear to diverge from a point, its focal point; and the corre­
sponding focal length is considered negative.

The power P of a lens, which is

P  = J  (33-1)

is given in diopters, which are units of inverse meters (m-1).
For a given object, the position and size of the image 

formed by a lens can be found approximately by ray tracing.

White
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Algebraically, the relation between image and object distances, d[ 
and dQ, and the focal length / ,  is given by the thin lens equation:

JL  1  = 1  
dQ +  d{ f

(33-2)

The ratio of image height to object height, which equals the 
lateral magnification ra, is

h
hn

A ,
dc,

(33-3)

When using the various equations of geometric optics, it is 
important to remember the sign conventions for all quantities 
involved: carefully review them (page 871) when doing Problems.

When two (or more) thin lenses are used in combination to 
produce an image, the thin lens equation can be used for each 
lens in sequence. The image produced by the first lens acts as 
the object for the second lens.

[*The lensmaker’s equation relates the radii of curvature of 
the lens surfaces and the len’s index of refraction to the focal 
length o f the lens.]

A  camera lens forms an image on film , or on an electronic 
sensor (CCD or CMOS) in a digital camera, by allowing light in 
through a shutter. The image is focused by moving the lens rela­
tive to the film , and the /-stop (or lens opening) must be 
adjusted for the brightness o f the scene and the chosen shutter 
speed. The /-stop is defined as the ratio of the focal length to 
the diameter of the lens opening.

The human eye also adjusts for the available ligh t— by 
opening and closing the iris. I t  focuses not by moving the lens, 
but by adjusting the shape o f the lens to vary its focal length. 
The image is formed on the retina, which contains an array of 
receptors known as rods and cones.

Diverging eyeglass or contact lenses are used to correct the 
defect of a nearsighted eye, which cannot focus well on distant

objects. Converging lenses are used to correct for defects in 
which the eye cannot focus on close objects.

A  simple magnifier is a converging lens that forms a virtual 
image o f an object placed at (or w ithin) the focal point. The 
angular magnification, when viewed by a relaxed normal eye, is

“ - T
(33-6a)

where /  is the focal length of the lens and N  is the near point of 
the eye (25 cm for a “ normal” eye).

A n astronomical telescope consists of an objective lens or 
m irror, and an eyepiece that magnifies the real image formed by 
the objective. The magnification is equal to the ratio of the 
objective and eyepiece focal lengths, and the image is inverted:

(33-7)

[*A  compound microscope also uses objective and eye­
piece lenses, and the final image is inverted. The total magnifica­
tion is the product of the magnifications of the two lenses and is 
approximately

N i
M  «  — , (33-10b)

/ e / o

where £ is the distance between the lenses, N  is the near point of 
the eye, and f Q and / e are the focal lengths of objective and 
eyepiece, respectively.]

[*Microscopes, telescopes, and other optical instruments are 
lim ited in the formation of sharp images by lens aberrations. 
These include spherical aberration, in which rays passing 
through the edge of a lens are not focused at the same point as 
those that pass near the center; and chromatic aberration, in 
which different colors are focused at different points. 
Compound lenses, consisting of several elements, can largely 
correct for aberrations.]

Questions
1. Where must the film  be placed if  a camera lens is to make a 

sharp image o f an object far away?

2. A  photographer moves closer to his subject and then refo­
cuses. Does the camera lens move farther away from or 
closer to the sensor? Explain.

3. Can a diverging lens form  a real image under any circum­
stances? Explain.

4. Use ray diagrams to show that a real image formed by a 
thin lens is always inverted, whereas a virtual image is 
always upright if  the object is real.

5. Light rays are said to be “ reversible.” Is this consistent w ith 
the thin lens equation? Explain.

6 . Can real images be projected on a screen? Can virtual 
images? Can either be photographed? Discuss carefully.

7. A  thin converging lens is moved closer to a nearby object. 
Does the real image formed change (a) in position, (<b) in 
size? I f  yes, describe how.

8 . Compare the m irror equation w ith the thin lens equation. 
Discuss similarities and differences, especially the sign 
conventions for the quantities involved.

9. A  lens is made of a material with an index of refraction 
n = 1.30. In air, it is a converging lens. W ill it still be a 
converging lens if placed in water? Explain, using a ray diagram.

10. Explain how you could have a virtual object.

11. A  dog w ith its ta il in the air stands facing a converging lens. 
I f  the nose and the ta il are each focused on a screen in turn, 
which w ill have the greater magnification?

12. A  cat w ith its ta il in the air stands facing a converging lens. 
Under what circumstances ( if any) would the image of the 
nose be virtual and the image of the ta il be real? Where 
would the image of the rest of the cat be?

13. Why, in  Example 33-6, must the converging lens have a 
shorter focal length than the diverging lens if  the latter’s 
focal length is to be determined by combining them?

14. The thicker a double convex lens is in the center as 
compared to its edges, the shorter its focal length for a given 
lens diameter. Explain.

15. Does the focal length of a lens depend on the flu id  in which 
it is immersed? What about the focal length o f a spherical 
m irror? Explain.
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16. An underwater lens consists o f a carefully shaped thin- 
walled plastic container filled  w ith air. What shape should it 
have in order to be (a) converging (b) diverging? Use ray 
diagrams to support your answer.

17. Consider two converging lenses separated by some distance. 
An object is placed so that the image from the first lens lies 
exactly at the focal point o f the second lens. W ill this combi­
nation produce an image? I f  so, where? I f  not, why not?

18. W ill a nearsighted person who wears corrective lenses in her 
glasses be able to see clearly underwater when wearing 
those glasses? Use a diagram to show why or why not.

19. You can te ll whether people are nearsighted or farsighted 
by looking at the width o f their face through their glasses. 
I f  a person’s face appears narrower through the glasses, 
(Fig. 33-45), is the person farsighted or nearsighted?

FIGURE 33-45
Question 19.

| Problems

20. The human eye is much like a camera— yet, when a camera 
shutter is le ft open and the camera is moved, the image w ill 
be blurred. But when you move your head with your eyes 
open, you still see clearly. Explain.

21. In  attempting to discern distant details, people w ill some­
times squint. Why does this help?

22. Is the image formed on the retina o f the human eye upright 
or inverted? Discuss the implications of this for our percep­
tion of objects.

23. Reading glasses use converging lenses. A  simple magnifier is 
also a converging lens. Are reading glasses therefore 
magnifiers? Discuss the similarities and differences 
between converging lenses as used for these two different 
purposes.

24. Why must a camera lens be moved farther from the film  to 
focus on a closer object?

"25. Spherical aberration in a thin lens is minimized if  rays 
are bent equally by the two surfaces. I f  a planoconvex lens 
is used to form a real image of an object at infinity, 
which surface should face the object? Use ray diagrams to 
show why.

* 26. For both converging and diverging lenses, discuss how the 
focal length for red light differs from that fo r violet light.

33-1 and 33-2  Thin Lenses
1. (I) A  sharp image is located 373 mm behind a 215-mm- 

focal-length converging lens. Find the object distance
(a) using a ray diagram, (b) by calculation.

2. (I) Sunlight is observed to focus at a point 18.5 cm behind a 
lens, (a) What kind of lens is it? (b) What is its power in 
diopters?

3. (I) (a) What is the power of a 23.5-cm-focal-length lens?
(b) What is the focal length of a -6.75-D  lens? Are these 
lenses converging or diverging?

4. (II)  A  certain lens focuses an object 1.85 m away as an 
image 48.3 cm on the other side o f the lens. What type of 
lens is it and what is its focal length? Is the image real or 
virtual?

5. (II)  A  105-mm-focal-length lens is used to focus an image 
on the sensor of a camera. The maximum distance allowed 
between the lens and the sensor plane is 132 mm. (a) How 
far ahead of the sensor should the lens be if  the object to be 
photographed is 10.0 m away? (b ) 3.0 m away? (c) 1.0 m 
away? (d) What is the closest object this lens could 
photograph sharply?

6 . (II)  A  stamp collector uses a converging lens w ith focal 
length 28 cm to view a stamp 18 cm in front o f the lens.
(a) Where is the image located? (b) What is the magnification?

7. (II)  I t  is desired to magnify reading material by a factor of
2.5 X when a book is placed 9.0 cm behind a lens, (a) Draw a 
ray diagram and describe the type o f image this would be. 
(ib) What type of lens is needed? (c) What is the power of 
the lens in diopters?

8 . (II) A  — 8.00-D lens is held 12.5 cm from an ant 1.00 mm high. 
Describe the position, type, and height o f the image.

9. ( II)  A n object is located 1.50 m from an 8.0-D lens. By how 
much does the image move if  the object is moved (a) 0.90 m 
closer to the lens, and (b) 0.90 m farther from the lens?

10. ( II)  (a) How far from  a 50.0-mm-focal-length lens must an 
object be placed if  its image is to be magnified 2.50X and 
be real? (b) What if  the image is to be virtual and magnified 
2.50X?

11. ( II)  How far from  a converging lens w ith a focal length of 
25 cm should an object be placed to produce a real image 
which is the same size as the object?

12. ( II)  (a) A  2.80-cm-high insect is 1.30 m from a 135-mm- 
focal-length lens. Where is the image, how high is it, and 
what type is it? (b) What if  /  = — 135 mm?

13. ( II)  A  bright object and a viewing screen are separated by a 
distance o f 86.0 cm. A t what location(s) between the object 
and the screen should a lens o f focal length 16.0 cm be 
placed in order to produce a sharp image on the screen? 
[Hint, first draw a diagram.]

14. ( II)  How far apart are an object and an image formed 
by an 85-cm-focal-length converging lens if  the image is 
2.95X larger than the object and is real?

15. ( II)  Show analytically that the image formed by a 
converging lens (a) is real and inverted if  the object is 
beyond the focal point (dQ >  / ) ,  and (b ) is virtual and 
upright if  the object is w ithin the focal point (d Q <  /) . 
Next, describe the image if  the object is itself an image 
(formed by another lens), and its position is on the opposite 
side of the lens from the incoming light, (c) for —d0> f ,  
and (id) fo r 0 <  —d0 <  f .
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16. (II) A  converging lens has focal length / .  When an object is 
placed a distance dQ >  f  from this lens, a real image with 
magnification m  is formed, (a) Show that m  = / / ( /  -  d0).
(b) Sketch m  vs. dQ over the range f  <  dQ <  oo where /  =
0.45 cm. (c) For what value of dQ w ill the real image have 
the same (lateral) size as the object? (d) To obtain a real 
image that is much larger than the object, in what general 
region should the object be placed relative to the lens?

17. (n) In a slide or movie projector, the film acts as the object whose 
image is projected on a screen (Fig. 33-46). If  a 105-mm-focal- 
length lens is to project an image on a screen 6.50 m away, 
how far from the lens should the slide be? If  the slide is 
36 mm wide, how wide w ill the picture be on the screen?

FIGURE 33-46 , ---  »
Slide projector, s m T \ /  '
Problem 17. Lens Screen

18. ( I ll)  A  bright object is placed on one side of a converging 
lens of focal length / ,  and a white screen for viewing the 
image is on the opposite side. The distance dT = d[ + dQ 
between the object and the screen is kept fixed, but the lens 
can be moved, (a) Show that if  dT >  4 /, there w ill be two 
positions where the lens can be placed and a sharp image 
w ill be produced on the screen, (b) If  dT <  4/ ,  show that 
there w ill be no lens position where a sharp image is formed.
(c) Determine a formula for the distance between the two 
lens positions in part (a), and the ratio of the image sizes.

19. (Ill) (a) Show that the lens equation can be written in the 
Newtonian form :

xx' = f \

where x is the distance of the object from the focal point on the 
front side of the lens, and x' is the distance of the image to the 
focal point on the other side of the lens. Calculate the location of 
an image if the object is placed 48.0 cm in front of a convex lens 
with a focal length of 38.0 cm using (b) the standard form of the 
thin lens formula, and (c) the Newtonian form, derived above.

33-3  Lens Combinations
20. (II) A  diverging lens with /  = — 33.5 cm is placed 14.0 cm 

behind a converging lens with /  = 20.0 cm. Where w ill an 
object at infinity be focused?

21. (II) Two 25.0-cm-focal-length converging lenses are placed
16.5 cm apart. An object is placed 35.0 cm in front of one 
lens. Where w ill the final image formed by the second lens 
be located? What is the total magnification?

22. (II) A  34.0-cm-focal-length converging lens is 24.0 cm 
behind a diverging lens. Parallel light strikes the diverging 
lens. A fter passing through the converging lens, the light is 
again parallel. What is the focal length of the diverging lens? 
[Hint: first draw a ray diagram.]

23. (II) The two converging lenses of Example 33-5 are now 
placed only 20.0 cm apart. The object is still 60.0 cm in front 
of the first lens as in Fig. 33-14. In this case, determine
(a) the position of the final image, and (b) the overall 
magnification, (c) Sketch the ray diagram for this system.

24. (II) A  diverging lens with a focal length of — 14 cm is placed 
12 cm to the right of a converging lens with a focal length of 
18 cm. An object is placed 33 cm to the left of the 
converging lens, (a) Where w ill the final image be located?
(b) Where w ill the image be if  the diverging lens is 38 cm 
from the converging lens?

25. (II) Two lenses, one converging with focal length 20.0 cm 
and one diverging with focal length - 10.0 cm, are placed
25.0 cm apart. An object is placed 60.0 cm in front of the 
converging lens. Determine (a) the position and (b) the 
magnification of the final image formed, (c) Sketch a ray 
diagram for this system.

26. (II) A  diverging lens is placed next to a converging lens of 
focal length / c , as in Fig. 33-15. I f  / T represents the focal 
length of the combination, show that the focal length of the 
diverging lens, / D, is given by

J_ _ J_ _ J_
/d  / t  fc

27. (II) A  lighted candle is placed 36 cm in front of a converging 
lens of focal length /  =  13 cm, which in turn is 56 cm in 
front of another converging lens of focal length f 2 =  16 cm 
(see Fig. 33-47). (a) Draw a ray diagram and estimate the 
location and the relative size of the final image. (b) Calculate 
the position and relative size of the final image.

f l  = 13 cm f 2 = 16 cm

FIGURE 33-47 § ()
Problem 27. T - 36 cm— ¥------ 56 cm-

*33-4 Lensmaker's Equation
*28. (I) A  double concave lens has surface radii of 33.4 cm and

28.8 cm. What is the focal length if n =  1.58?
*29. (I) Both surfaces of a double convex lens have radii of

31.4 cm. I f  the focal length is 28.9 cm, what is the index of 
refraction of the lens material?

*30. (I) Show that if  the lens of Example 33-7 is reversed, the 
focal length is unchanged.

*31. (I) A  planoconvex lens (Fig. 33-2a) is to have a focal length 
of 18.7 cm. I f  made from fused quartz, what must be the 
radius of curvature of the convex surface?

*32. (II) An object is placed 90.0 cm from a glass lens 
(n = 1.52) with one concave surface of radius 22.0 cm and 
one convex surface of radius 18.5 cm. Where is the final 
image? What is the magnification?

* 33. (II) A  prescription for a corrective lens calls for +3.50 diopters. 
The lensmaker grinds the lens from a “blank” with n =  1.56 
and convex front surface of radius of curvature of 30.0 cm. 
What should be the radius of curvature of the other surface?

33-5 Camera
34. (I) A  properly exposed photograph is taken at //1 6  and ^ s . 

What lens opening is required if the shutter speed is i^ qS?
35. (I) A  television camera lens has a 17-cm focal length and a 

lens diameter of 6.0 cm. What is its /-number?
36. (II) A  “pinhole” camera uses a tiny pinhole instead of a 

lens. Show, using ray diagrams, how reasonably sharp images 
can be formed using such a pinhole camera. In particular, 
consider two point objects 2.0 cm apart that are 1.0 m from 
a 1.0-mm-diameter pinhole. Show that on a piece of film
7.0 cm behind the pinhole the two objects produce two 
separate circles that do not overlap.

37. (II) Suppose that a correct exposure is 550 s at / / l l .  Under 
the same conditions, what exposure time would be needed 
for a pinhole camera (Problem 36) if  the pinhole diameter is
1.0 mm and the film  is 7.0 cm from the hole?
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38. (II) Human vision normally covers an angle of about 40° hori­
zontally. A  “normal” camera lens then is defined as follows: 
When focused on a distant horizontal object which subtends an 
angle of 40°, the lens produces an image that extends across the 
full horizontal extent of the camera’s light-recording medium 
(film  or electronic sensor). Determine the focal length /  of 
the “normal” lens for the following types of cameras: (a) a 
35-mm camera that records images on film  36 mm wide; (b) a 
digital camera that records images on a charge-coupled device 
(CCD) 1.00 cm wide.

39. (II) A  nature photographer wishes to photograph a 38-m tall 
tree from a distance of 65 m. What focal-length lens should be 
used if the image is to fill the 24-mm height of the sensor?

33-6 Eye and Corrective Lenses
40. (I) A  human eyeball is about 2.0 cm long and the pupil has a 

maximum diameter of about 8.0 mm. What is the “ speed” of 
this lens?

41. (II) A  person struggles to read by holding a book at arm’s 
length, a distance of 55 cm away. What power of reading 
glasses should be prescribed for her, assuming they w ill be 
placed 2.0 cm from the eye and she wants to read at the 
“normal” near point of 25 cm?

42. (II) Reading glasses of what power are needed for a person 
whose near point is 105 cm, so that he can read a computer 
screen at 55 cm? Assume a lens-eye distance of 1.8 cm.

43. (II) I f  the nearsighted person in Example 33-13 wore 
contact lenses corrected for the far point (= oo), what would 
be the near point? Would glasses be better in this case?

44. (II) An eye is corrected by a — 4.50-D lens, 2.0 cm from the 
eye. (a) Is this eye near- or farsighted? (b) What is this eye’s 
far point without glasses?

45. (II) A  person’s right eye can see objects clearly only if they 
are between 25 cm and 78 cm away, (a) What power of 
contact lens is required so that objects far away are sharp? 
(b) What w ill be the near point with the lens in place?

46. (II) A  person has a far point of 14 cm. What power glasses 
would correct this vision if  the glasses were placed 2.0 cm 
from the eye? What power contact lenses, placed on the eye, 
would the person need?

47. (II) One lens of a nearsighted person’s eyeglasses has a 
focal length of -23.0 cm and the lens is 1.8 cm from the eye. 
I f  the person switches to contact lenses placed directly 
on the eye, what should be the focal length of the 
corresponding contact lens?

48. (II) What is the focal length of the eye lens system when 
viewing an object (a) at infinity, and (b) 38 cm from the eye? 
Assume that the lens-retina distance is 2.0 cm.

49. (II) A  nearsighted person has near and far points of 10.6 
and 20.0 cm respectively. I f  she puts on contact lenses with 
power P  = -4.00 D, what are her new near and far points?

50. (II) The closely packed cones in the fovea of the eye have a 
diameter of about 2 fim. For the eye to discern two images 
on the fovea as distinct, assume that the images must be 
separated by at least one cone that is not excited. I f  these 
images are of two point-like objects at the eye’s 25-cm near 
point, how far apart are these barely resolvable objects? 
Assume the diameter of the eye (cornea-to-fovea distance) 
is 2.0 cm.

33-7 Magnifying Glass
51. (I) What is the focal length of a magnifying glass of 

3.8X magnification for a relaxed normal eye?

52. (I) What is the magnification of a lens used with a relaxed 
eye if its focal length is 13 cm?

53. (I) A  magnifier is rated at 3.OX for a normal eye focusing on 
an image at the near point, (a) What is its focal length? 
(b) What is its focal length if the 3.0X refers to a relaxed eye?

54. (II) Sherlock Holmes is using an 8.80-cm-focal-length lens 
as his magnifying glass. To obtain maximum magnification, 
where must the object be placed (assume a normal eye), and 
what w ill be the magnification?

55. (II) A  small insect is placed 5.85 cm from a +6.00-cm-focal- 
length lens. Calculate (a) the position of the image, and
(b) the angular magnification.

56. (II) A  3.40-mm-wide bolt is viewed with a 9.60-cm-focal- 
length lens. A  normal eye views the image at its near point. 
Calculate (a) the angular magnification, (b) the width of the 
image, and (c) the object distance from the lens.

57. (II) A  magnifying glass with a focal length of 9.5 cm is used 
to read print placed at a distance of 8.3 cm. Calculate (a) the 
position of the image; (b) the angular magnification.

58. (II) A  magnifying glass is rated at 3.0X for a normal eye 
that is relaxed. What would be the magnification for a 
relaxed eye whose near point is (a) 65 cm, and (b) 17 cm? 
Explain the differences.

59. (II) A  converging lens of focal length /  = 12 cm is being 
used by a writer as a magnifying glass to read some fine 
print on his book contract. Initially, the writer holds the lens 
above the fine print so that its image is at infinity. To get a 
better look, he then moves the lens so that the image is at 
his 25-cm near point. How far, and in what direction 
(toward or away from the fine print) did the writer move 
the lens? Assume the writer’s eye is adjusted to remain 
always very near the magnifying glass.

33-8 Telescopes
60. (I) What is the magnification of an astronomical telescope 

whose objective lens has a focal length of 78 cm, and whose 
eyepiece has a focal length of 2.8 cm? What is the overall 
length of the telescope when adjusted for a relaxed eye?

61. (I) The overall magnification of an astronomical telescope is 
desired to be 35 X. I f  an objective of 88 cm focal length 
is used, what must be the focal length of the eyepiece? What 
is the overall length of the telescope when adjusted for use 
by the relaxed eye?

62. (II) A  7.0X binocular has 3.0-cm-focal-length eyepieces. 
What is the focal length of the objective lenses?

63. (II) An astronomical telescope has an objective with focal 
length 75 cm and a +35 D eyepiece. What is the total 
magnification?

64. (II) An astronomical telescope has its two lenses spaced
78.0 cm apart. I f  the objective lens has a focal length of
75.5 cm, what is the magnification of this telescope? Assume 
a relaxed eye.

65. (II) A  Galilean telescope adjusted for a relaxed eye is
33.8 cm long. I f  the objective lens has a focal length of
36.0 cm, what is the magnification?
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66. (II) What is the magnifying power of an astronomical tele­
scope using a reflecting m irror whose radius of curvature is
6.4 m and an eyepiece whose focal length is 2.8 cm?

67. (II) The Moon’s image appears to be magnified 120 X by a 
reflecting astronomical telescope with an eyepiece having a 
focal length of 3.1 cm. What are the focal length and radius 
of curvature of the main (objective) mirror?

68. (II) A  120 X astronomical telescope is adjusted for a relaxed 
eye when the two lenses are 1.25 m apart. What is the focal 
length of each lens?

69. (II) An astronomical telescope longer than about 50 cm is 
not easy to hold by hand. Based on this fact, estimate the 
maximum angular magnification achievable for a telescope 
designed to be handheld. Assume its eyepiece lens, if  used 
as a magnifying glass, provides a magnification of 5X for a 
relaxed eye with near point N  =  25 cm.

70. ( Ill)  A  reflecting telescope (Fig. 33-38b) has a radius of curva­
ture of 3.00 m for its objective mirror and a radius of curvature 
of — 1.50 m for its eyepiece mirror. If  the distance between the 
two mirrors is 0.90 m, how far in front of the eyepiece should 
you place the electronic sensor to record the image of a star?

71. ( I ll)  A  7.5 X pair of binoculars has an objective focal length 
of 26 cm. I f  the binoculars are focused on an object 4.0 m 
away (from the objective), what is the magnification? (The
7.5 X refers to objects at infinity; Eq. 33-7 holds only for 
objects at infinity and not for nearby ones.)

3 3 -9  Microscopes
72. (I) A  microscope uses an eyepiece with a focal length of 

1.50 cm. Using a normal eye with a final image at infinity, the 
barrel length is 17.5 cm and the focal length of the objective 
lens is 0.65 cm. What is the magnification of the microscope?

73. (I) A  680 X microscope uses a 0.40-cm-focal-length objective 
lens. I f  the barrel length is 17.5 cm, what is the focal length 
of the eyepiece? Assume a normal eye and that the final 
image is at infinity.

74. (I) A  17-cm-long microscope has an eyepiece with a focal 
length of 2.5 cm and an objective with a focal length of
0.28 cm. What is the approximate magnification?

75. (II) A  microscope has a 13.0X eyepiece and a 58.0X objec­
tive lens 20.0 cm apart. Calculate (a) the total magnification,
(b) the focal length of each lens, and (c) where the object 
must be for a normal relaxed eye to see it in focus.

* 76 . (II) Repeat Problem 75 assuming that the final image is
located 25 cm from the eyepiece (near point of a normal eye).

*77. (II) A  microscope has a 1.8-cm-focal-length eyepiece and a
0.80-cm objective. Assuming a relaxed normal eye, calculate
(a) the position of the object if  the distance between the 
lenses is 16.8 cm, and (b) the total magnification.

*78. (II) The eyepiece of a compound microscope has a focal 
length of 2.80 cm and the objective lens has /  = 0.740 cm. 
I f  an object is placed 0.790 cm from the objective lens, 
calculate (a) the distance between the lenses when the 
microscope is adjusted for a relaxed eye, and (b) the total 
magnification.

* 79. (II) An inexpensive instructional lab microscope allows the
user to select its objective lens to have a focal length of 
32 mm, 15 mm, or 3.9 mm. It also has two possible eyepieces 
with magnifications 5X and 10X. Each objective forms a 
real image 160 mm beyond its focal point. What are the 
largest and smallest overall magnifications obtainable with 
this instrument?

*80. ( I ll)  Given two 12-cm-focal-length lenses, you attempt to 
make a crude microscope using them. While holding these 
lenses a distance 55 cm apart, you position your microscope 
so that its objective lens is distance dQ from a small object. 
Assume your eye’s near point N  =  25 cm. (a) For your 
microscope to function properly, what should d0 be?
(b) Assuming your eye is relaxed when using it, what magni­
fication M  does your microscope achieve? (c) Since the 
length of your microscope is not much greater than the 
focal lengths of its lenses, the approximation M  ~ N £ /fef0 
is not valid. I f  you apply this approximation to your 
microscope, what % error do you make in your microscope’s 
true magnification?

*33-10  Lens Aberrations

*81. (II) A  planoconvex lens (Fig. 33-2a) has one flat surface 
and the other has R =  15.3 cm. This lens is used to view a 
red and yellow object which is 66.0 cm away from the lens. 
The index of refraction of the glass is 1.5106 for red light 
and 1.5226 for yellow light. What are the locations of the red 
and yellow images formed by the lens?

*82. (II) An achromatic lens is made of two very thin lenses, 
placed in contact, that have focal lengths f i  = — 28 cm and 
f2 =  +25 cm. (a) Is the combination converging or 
diverging? (b) What is the net focal length?

| General Problems
83. A  200-mm-focal-length lens can be adjusted so that it is

200.0 mm to 206.4 mm from the film . For what range of 
object distances can it be adjusted?

84. I f  a 135-mm telephoto lens is designed to cover object 
distances from 1.30 m to oo, over what distance must the 
lens move relative to the plane of the sensor or film?

85. For a camera equipped with a 58-mm-focal-length lens, what 
is the object distance if the image height equals the object 
height? How far is the object from the image on the film?

86. Show that for objects very far away (assume infinity), the 
magnification of any camera lens is proportional to its focal 
length.

87. A  small object is 25.0 cm from a diverging lens as shown in 
Fig. 33-48. A  converging lens with a focal length of 12.0 cm 
is 30.0 cm to the right of the diverging lens. The two-lens 
system forms a real inverted image 17.0 cm to the right of 
the converging lens. What is the focal length of the diverging 
lens?

1__x
h— 25.0 cm— H

FIGURE 33-48 Problem 87.
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88 . A  converging lens w ith focal length of 13.0 cm is placed in 
contact w ith a diverging lens with a focal length of 
-20.0 cm. What is the focal length o f the combination, and 
is the combination converging or diverging?

89. An astronomical telescope has a magnification o f 8.0 X. I f  
the two lenses are 28 cm apart, determine the focal length of 
each lens.

90. (a) Show that if  two thin lenses of focal lengths /  and f2 are 
placed in contact w ith each other, the focal length of the 
combination is given by / T = (b ) Show that 
the power P  of the combination o f two lenses is the sum of 
their separate powers, P  = Pi + P2 .

91. How large is the image o f the Sun on film  used in a camera 
w ith (a) a 28-mm-focal-length lens, (b) a 50-mm-focal-length 
lens, and (c) a 135-mm-focal-length lens? (d ) I f  the 50-mm 
lens is considered normal for this camera, what relative 
magnification does each of the other two lenses provide? 
The Sun has diameter 1.4 X 106 km, and it is 1.5 X 108km 
away.

92. Two converging lenses are placed 30.0 cm apart. The focal 
length o f the lens on the right is 20.0 cm, and the focal 
length of the lens on the le ft is 15.0 cm. An object is placed 
to the le ft o f the 15.0-cm-focal-length lens. A  final image 
from  both lenses is inverted and located halfway between 
the two lenses. How far to the le ft o f the 15.0-cm-focal- 
length lens is the original object?

93. When an object is placed 60.0 cm from a certain converging 
lens, it forms a real image. When the object is moved to
40.0 cm from the lens, the image moves 10.0 cm farther from 
the lens. Find the focal length of this lens.

94. Figure 33-49 was taken from the NIST Laboratory 
(National Institute of Standards and Technology) in 
Boulder, CO, 2 km from the hiker in the photo. The Sun’s 
image was 15 mm across on the film . Estimate the focal 
length of the camera lens (actually a telescope). The Sun 
has diameter 1.4 X 106 km, and it is 1.5 X 108km away.

FIGURE 33-49 Problem 94.

95. A  movie star catches a reporter shooting pictures o f her at 
home. She claims the reporter was trespassing. To prove her 
point, she gives as evidence the film  she seized. Her 1.75-m 
height is 8.25 mm high on the film , and the focal length of 
the camera lens was 220 mm. How far away from  the subject 
was the reporter standing?

96. As early morning passed toward midday, and the sunlight 
got more intense, a photographer noted that, if  she kept her 
shutter speed constant, she had to change the /-num ber 
from  //5 .6  to //1 6 . By what factor had the sunlight 
intensity increased during that time?

97. A  child has a near point o f 15 cm. What is the maximum 
magnification the child can obtain using an 8.5-cm-focal- 
length magnifier? What magnification can a normal eye 
obtain w ith the same lens? Which person sees more 
detail?

98. A  woman can see clearly w ith her right eye only when 
objects are between 45 cm and 155 cm away. Prescription 
bifocals should have what powers so that she can see 
distant objects clearly (upper part) and be able to read a 
book 25 cm away (lower part) w ith her right eye? Assume 
that the glasses w ill be 2.0  cm from  the eye.

99. What is the magnifying power o f a +4.0-D lens used as a 
magnifier? Assume a relaxed normal eye.

100. A  physicist lost in the mountains tries to make a telescope 
using the lenses from  his reading glasses. They have powers 
o f +2.0 D and +4.5 D, respectively, (a) What maximum 
magnification telescope is possible? (b) Which lens should 
be used as the eyepiece?

101. A  50-year-old man uses +2.5-D lenses to read a newspaper 
25 cm away. Ten years later, he must hold the paper 32 cm 
away to see clearly w ith the same lenses. What power 
lenses does he need now in order to hold the paper 25 cm 
away? (Distances are measured from the lens.)

102. An object is moving toward a converging lens o f focal 
length /  w ith constant speed vQ such that its distance dQ 
from the lens is always greater than / .  (a) Determine the 
velocity of the image as a function o f dQ. (b ) Which 
direction (toward or away from the lens) does the image 
move? (c) For what d0 does the image’s speed equal the 
object’s speed?

103. The objective lens and the eyepiece o f a telescope are 
spaced 85 cm apart. I f  the eyepiece is +23 D, what is the 
total magnification of the telescope?

18104. Two converging lenses, one w ith /  = 4.0 cm and the other 
w ith /  = 44 cm, are made into a telescope, (a) What are 
the length and magnification? Which lens should be the 
eyepiece? (b) Assume these lenses are now combined to 
make a microscope; if  the magnification needs to be 25 X, 
how long would the microscope be?

105. Sam purchases +3.50-D eyeglasses which correct his faulty 
vision to put his near point at 25 cm. (Assume he wears the 
lenses 2.0 cm from his eyes.) (a) Calculate the focal length 
o f Sam’s glasses, (b) Calculate Sam’s near point without 
glasses, (c) Pam, who has normal eyes w ith near point at 
25 cm, puts on Sam’s glasses. Calculate Pam’s near point 
w ith Sam’s glasses on.

106. The proper functioning o f certain optical devices (e.g., 
optical fibers and spectrometers) requires that the input 
light be a collection of diverging rays w ithin a cone o f half­
angle 6 (Fig. 33-50). I f  the light in itia lly  exists as a co lli­
mated beam (i.e., parallel rays), show that a single lens of 
focal length /  and diameter D  can be used to create the 
required input light if  D / f  =  2 tan 0. I f  0 = 3.5° for a 
certain spectrometer, what focal length lens should be used 
if  the lens diameter is 5.0 cm?
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107. In a science-fiction novel, an intelligent ocean-dwelling 
creature’s eye functions underwater with a near point of 
25 cm. This creature would like to create an underwater 
magnifier out of a thin plastic container filled with air. 
What shape should the air-filled plastic container have 
(i.e., determine radii of curvature of its surfaces) in order 
for it to be used by the creature as a 3.0 X magnifier? 
Assume the eye is focused at its near point.

108. A  telephoto lens system obtains a large magnification in a 
compact package. A  simple such system can be constructed 
out of two lenses, one converging and one diverging, of 
focal lengths f \  and f2 = ~ \ f \ ,  respectively, separated 
by a distance i  = \ f i  as shown in Fig. 33-51.
(a) For a distant object located at distance d0 from the 
first lens, show that the first lens forms an image with 
magnification m i « —f i /d Q located very close to its focal 
point. Go on to show that the total magnification for the 
two-lens system is m & —2f \ /d Q. (b) For an object located 
at infinity, show that the two-lens system forms an image 
that is a distance f f i  behind the first lens, (c) A  single 250- 
mm-focal-length lens would have to be mounted 
about 250 mm from a camera’s film  in order to produce 
an image of a distant object at d0 with magnification 
-(250 m m )/d Q. To produce an image of this object with 
the same magnification using the two-lens system, what 
value of f i  should be used and how far in front of the film  
should the first lens be placed? How much smaller is the 
“ focusing length” (i.e., first lens-to-final image distance) of 
this two-lens system in comparison with the 250-mm 
“ focusing length” of the equivalent single lens?

* Numerical/Computer
* 109. ( I ll)  In the “magnification” method, the focal length /  of a

converging lens is found by placing an object of known 
size at various locations in front of the lens and measuring 
the resulting real-image distances d[ and their associated 
magnifications m (minus sign indicates that image is 
inverted). The data taken in such an experiment are given 
here:

d{ (cm) 20 25 30 35 40
m -0.43 -0.79 -1.14 -1.50 -1.89

(a) Show analytically that a graph of m vs. d[ should 
produce a straight line. What are the theoretically expected 
values for the slope and the ^-intercept of this line? [Hint. 
d0 is not constant.] (b) Using the data above, graph m vs. d[ 
and show that a straight line does indeed result. Use the 
slope of this line to determine the focal length of the lens. 
Does the ^-intercept of your plot have the expected value?
(c) In performing such an experiment, one has the practical 
problem of locating the exact center of the lens since d[ 
must be measured from this point. Imagine, instead, that 
one measures the image distance d[ from the back surface 
of the lens, which is a distance £ from the lens’s center. 
Then, d[ = d[ + t  Show that, when implementing the 
magnification method in this fashion, a plot of m  vs. d[ w ill 
still result in a straight line. How can /  be determined from 
this straight line?

< = i/ i

Light A
from ,
distant
object

h ~  ~ \ h

Image

“Focusing length” 

FIGURE 33-51 Problem 108.

Answers to Exercises

A: Closer to it. D: — 36 cm; diverging.

B: (b) and (d) are true. E: P  =  -4 .0  D.

C: /  = 10 cm for both cases; dj = -10  cm in (a) and 30 cm in (b). F: 48 cm.
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The beautiful colors from the 
surface of this soap bubble can be 
nicely explained by the wave theory 
of light. A soap bubble is a very thin 
spherical film filled with air. Light 
reflected from the outer and inner 
surfaces of this thin film of soapy 
water interferes constructively to 
produce the bright colors. Which 
color we see at any point depends 
on the thickness of the soapy water 
film at that point and also on the 
viewing angle. Near the top of the 
bubble, we see a small black area 
surrounded by a silver or white area. 
The bubble’s thickness is smallest at 
that black spot, perhaps only about 
30 nm thick, and is fully transparent 
(we see the black background).

We cover fundamental aspects 
of the wave nature of light, 
including two-slit interference and 
interference in thin films.** T ** 
34
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Light; Interference
CHAPTER-OPENING QUESTIOI — Guess now!
When a thin layer of o il lies on top of water or wet pavement, you can often see 
swirls of color. We also see swirls of color on the soap bubble shown above. What 
causes these colors?

(a) Additives in the o il or soap reflect various colors.
(b )  Chemicals in the o il or soap absorb various colors.
(c) Dispersion due to differences in index o f refraction in the o il or soap.
(d )  The interactions of the light w ith a thin boundary layer where the o il (or 

soap) and the water have mixed irregularly.
(e) Light waves reflected from the top and bottom surfaces of the thin o il or 

soap film  can add up constructively fo r particular wavelengths.

That light carries energy is obvious to anyone who has focused the Sun’s 
rays w ith a magnifying glass on a piece of paper and burned a hole in it. 
But how does light travel, and in what form  is this energy carried? In  our 
discussion of waves in Chapter 15, we noted that energy can be carried 

from place to place in basically two ways: by particles or by waves. In the first case, 
material objects or particles can carry energy, such as an avalanche of rocks or 
rushing water. In  the second case, water waves and sound waves, for example, can 
carry energy over long distances even though the oscillating particles of the 
medium do not travel these distances. In  view of this, what can we say about 
the nature of light: does light travel as a stream of particles away from  its source, or 
does light travel in the form of waves that spread outward from  the source?
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Historically, this question has turned out to be a difficult one. For one thing, 
light does not reveal itself in any obvious way as being made up of tiny particles; 
nor do we see tiny light waves passing by as we do water waves. The evidence 
seemed to favor first one side and then the other until about 1830, when most 
physicists had accepted the wave theory. By the end of the nineteenth century, 
light was considered to be an electromagnetic wave (Chapter 31). In the early 
twentieth century, light was shown to have a particle nature as well, as we shall 
discuss in Chapter 37. We now speak of the wave-particle duality of light. The 
wave theory of light remains valid and has proved very successful. We now 
investigate the evidence for the wave theory and how it has been used to explain a 
wide range of phenomena.

34-1 Waves versus Particles; 
Huygens' Principle and Diffraction

The Dutch scientist Christian Huygens (1629-1695), a contemporary of Newton, 
proposed a wave theory of light that had much merit. S till useful today is a 
technique Huygens developed for predicting the future position of a wave front 
when an earlier position is known. By a wave front, we mean all the points along 
a two- or three-dimensional wave that form a wave crest— what we simply call a 
“wave” as seen on the ocean. Wave fronts are perpendicular to rays as we 
already discussed in Chapter 15 (Fig. 15-20). Huygens’ principle can be stated as 
follows: Every poin t on a w ave front can be considered as a source o f  tiny 
wavelets that spread out in the forw ard direction at the speed o f  the w ave itself 
The new w ave front is the envelope o f  all the wavelets— that is, the tangent to all 
o f  them.

As a simple example of the use of Huygens’ principle, consider the wave 
front AB in Fig. 34-1, which is traveling away from a source S. We assume the 
medium is isotropic— that is, the speed v  of the waves is the same in all 
directions. To find the wave front a short time t after it is at AB, tiny circles are 
drawn with radius r =  vt. The centers of these tiny circles are blue dots on the 
original wave front AB, and the circles represent Huygens’ (imaginary) wavelets. 
The tangent to all these wavelets, the curved line CD, is the new position of the 
wave front.

Huygens’ principle is particularly useful for analyzing what happens when 
waves impinge on an obstacle and the wave fronts are partially interrupted. 
Huygens’ principle predicts that waves bend in behind an obstacle, as shown in 
Fig. 34-2. This is just what water waves do, as we saw in Chapter 15 (Figs. 15-31 
and 15-32). The bending of waves behind obstacles into the “ shadow region” is 
known as diffraction. Since diffraction occurs for waves, but not for particles, it can 
serve as one means for distinguishing the nature of light.

Note, as shown in Fig. 34-2, that diffraction is most prominent when the size of 
the opening is on the order of the wavelength of the wave. If  the opening is much 
larger than the wavelength, diffraction goes unnoticed.

Does light exhibit diffraction? In the mid-seventeenth century, the Jesuit priest 
Francesco Grimaldi (1618-1663) had observed that when sunlight entered a 
darkened room through a tiny hole in a screen, the spot on the opposite wall was 
larger than would be expected from geometric rays. He also observed that the 
border of the image was not clear but was surrounded by colored fringes. Grimaldi 
attributed this to the diffraction of light.

The wave model of light nicely accounts for diffraction, and we discuss diffraction 
in detail in the next Chapter. But the ray model (Chapter 32) cannot account for 
diffraction, and it is important to be aware of such limitations to the ray model. 
Geometric optics using rays is successful in a wide range of situations only because 
normal openings and obstacles are much larger than the wavelength of the light, 
and so relatively little  diffraction or bending occurs.

Source

S

FIGURE 34-1 Huygens’ principle, 
used to determine wave front CD 
when wave front AB is given.

FIGURE 34-2 Huygens’ principle 
is consistent with diffraction
(a) around the edge of an obstacle,
(b) through a large hole, (c) through 
a small hole whose size is on the 
order of the wavelength of the wave.

(c)
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34—2 Huygens' Principle and the 
Law of Refraction

FIGURE 34-3 Refraction 
explained, using Huygens’ principle. 
Wave fronts are perpendicular to the 
rays.

902 CHAPTER 34

The laws of reflection and refraction were well known in Newton’s time. The law 
of reflection could not distinguish between the two theories we just discussed: 
waves versus particles. For when waves reflect from an obstacle, the angle of 
incidence equals the angle of reflection (Fig. 15-21). The same is true of 
particles— think of a tennis ball without spin striking a flat surface.

The law of refraction is another matter. Consider a ray of light entering a 
medium where it is bent toward the normal, as when traveling from air into water. 
As shown in Fig. 34-3, this bending can be constructed using Huygens’ principle if 
we assume the speed of light is less in the second medium (v2 <  vJ. In time t, 
point B on wave front AB (perpendicular to the incoming ray) travels a distance vx t 
to reach point D. Point A  on the wave front, traveling in the second medium, goes a 
distance v2t to reach point C, and v2t <  vxt. Huygens’ principle is applied to points 
A  and B to obtain the curved wavelets shown at C and D. The wave front is tangent 
to these two wavelets, so the new wave front is the line CD. Hence the rays, which 
are perpendicular to the wave fronts, bend toward the normal if v2 < vx, as drawn.

Newton favored a particle theory of light which predicted the opposite result, 
that the speed of light would be greater in the second medium (v2 >  vJ. Thus the 
wave theory predicts that the speed of light in water, for example, is less than in 
air; and Newton’s particle theory predicts the reverse. An experiment to actually 
measure the speed of light in water was performed in 1850 by the French physicist 
Jean Foucault, and it confirmed the wave-theory prediction. By then, however, the 
wave theory was already fully accepted, as we shall see in the next Section.

Snell’s law of refraction follows directly from Huygens’ principle, given that 
the speed of light v in any medium is related to the speed in a vacuum, c, and 
the index of refraction, n, by Eq. 32-4: that is, v = c/n. From the Huygens’ 
construction of Fig. 34-3, angle ADC is equal to d2 and angle BAD is equal to 61. 
Then for the two triangles that have the common side AD, we have 

vxt v2t
=  A D ’ 2 = AD

We divide these two equations and obtain 
sin 61 vx 
sin 02 v2

Then, by Eq. 32-4 vx = c/nx and v2 = c/n2, so we have

nx sin 6X = n2 sin 02,
which is Snell’s law of refraction, Eq. 32-5. (The law of reflection can be derived 
from Huygens’ principle in a similar way: see Problem 1 at the end of this Chapter.)

When a light wave travels from one medium to another, its frequency does not 
change, but its wavelength does. This can be seen from Fig. 34-3, where each of the 
blue lines representing a wave front corresponds to a crest (peak) of the wave. Then 

A2 v2 t v2 nx 
Ax vx t vx n2 

where, in the last step, we used Eq. 32-4, v = c/n. I f  medium 1 is a vacuum (or 
air), so nx =  1, vx = c, and we call \ x simply A, then the wavelength in another 
medium of index of refraction n (= n2) w ill be

K  = ~  (34-1)
This result is consistent with the frequency /  being unchanged no matter what 
medium the wave is traveling in, since c =  /A .

EXERCISE A A light beam in air with wavelength = 500 nm, frequency = 6.0 X  1014 Hz, 
and speed = 3.0 X 108m/s goes into glass which has an index of refraction = 1.5. What 
are the wavelength, frequency, and speed of the light in the glass?



(a)

Wave fronts can be used to explain how mirages are produced by refraction of 
light. For example, on a hot day motorists sometimes see a mirage of water on the 
highway ahead of them, with distant vehicles seemingly reflected in it (Fig. 34-4a). On 
a hot day, there can be a layer of very hot air next to the roadway (made hot by the 
Sun beating on the road). Hot air is less dense than cooler air, so the index of refrac­
tion is slightly lower in the hot air. In Fig. 34-4b, we see a diagram of light coming 
from one point on a distant car (on the right) heading left toward the observer. Wave 
fronts and two rays (perpendicular to the wave fronts) are shown. Ray A  heads 
directly at the observer and follows a straight-line path, and represents the normal 
view of the distant car. Ray B is a ray initially directed slightly downward, but it bends 
slightly as it moves through layers of air of different index of refraction. The wave 
fronts, shown in blue in Fig. 34-4b, move slightly faster in the layers of air nearer the 
ground. Thus ray B is bent as shown, and seems to the observer to be coming from 
below (dashed line) as if reflected off the road. Hence the mirage.

34—3 Interference—Young's 
Double-Slit Experiment

In 1801, the Englishman Thomas Young (1773-1829) obtained convincing evidence for 
the wave nature of light and was even able to measure wavelengths for visible light. 
Figure 34-5a shows a schematic diagram of Young’s famous double-slit experiment.

FIGURE 34-5 (a) Young’s double-slit experiment, (b) If light consists of particles, 
we would expect to see two bright lines on the screen behind the slits, (c) In fact, 
many lines are observed. The slits and their separation need to be very thin.

Sun’s
rays

^1

---S2 B S
(a) Viewing screen (b) Viewing screen 

(particle theory 
prediction)

(c) Viewing screen 
(actual)

To have light from a single source, Young used the Sun passing through a very 
narrow slit in a window covering. This beam of parallel rays falls on a screen 
containing two closely spaced slits, Si and S2. (The slits and their separation are 
very narrow, not much larger than the wavelength of the light.) I f  light consists of 
tiny particles, we might expect to see two bright lines on a screen placed behind 
the slits as in (b). But instead a series of bright lines are seen, as in (c). Young was 
able to explain this result as a wave-interference phenomenon.

To understand why, we consider the simple situation of plane waves of light 
of a single wavelength— called monochromatic, meaning “ one color” — falling on 
the two slits as shown in Fig. 34-6. Because of diffraction, the waves leaving the two 
small slits spread out as shown. This is equivalent to the interference pattern 
produced when two rocks are thrown into a lake (Fig. 15-23), or when sound from 
two loudspeakers interferes (Fig. 16-15). Recall Section 15-8 on wave interference.

FIGURE 34-4 (a) A highway 
mirage, (b) Drawing (greatly 
exaggerated) showing wave fronts 
and rays to explain highway mirages. 
Note how sections of the wave fronts 
near the ground move faster and so 
are farther apart.

0 P H Y S I C S  A P P L I E D
Highway mirages

FIGURE 34-6 If light is a wave, 
light passing through one of two slits 
should interfere with light passing 
through the other slit.

Rays

Wave fronts

Direct ray
Ray directed 

slightly downward
Observer
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Bright (constructive 
interference)

- l - Screen
(a) 0 = 0° (d)

FIGURE 34-7 How the wave theory explains the pattern of lines seen in the double-slit experiment.
(a) At the center of the screen the waves from each slit travel the same distance and are in phase.
(b) At this angle 0, the lower wave travels an extra distance of one whole wavelength, and the 
waves are in phase; note from the shaded triangle that the path difference equals d sin 0. (c) For this 
angle 0, the lower wave travels an extra distance equal to one-half wavelength, so the two waves 
arrive at the screen fully out of phase, (d) A more detailed diagram showing the geometry for parts 
(b) and (c).

FIGURE 34-8 Two traveling 
waves are shown undergoing
(a) constructive interference,
(b) destructive interference. 
(See also Section 15-8.)

W
a A -f
m

w
\AA;

(b)

To see how an interference pattern is produced on the screen, we make 
use of Fig. 34-7. Waves of wavelength A are shown entering the slits Sx and S2, 
which are a distance d  apart. The waves spread out in all directions after passing 
through the slits (Fig. 34-6), but they are shown only for three different angles 0. 
In Fig. 34-7a, the waves reaching the center of the screen are shown (0 = 0°). The 
waves from the two slits travel the same distance, so they are in phase: a crest of one 
wave arrives at the same time as a crest of the other wave. Hence the amplitudes of 
the two waves add to form a larger amplitude as shown in Fig. 34-8a. This is 
constructive interference, and there is a bright area at the center of the screen. 
Constructive interference also occurs when the paths of the two rays differ by one 
wavelength (or any whole number of wavelengths), as shown in Fig. 34-7b; also here 
there w ill be brightness on the screen. But if one ray travels an extra distance of 
one-half wavelength (or §A, f A, and so on), the two waves are exactly out of phase 
when they reach the screen: the crests of one wave arrive at the same time as the 
troughs of the other wave, and so they add to produce zero amplitude (Fig. 34-8b). 
This is destructive interference, and the screen is dark, Fig. 34-7c. Thus, there w ill be 
a series of bright and dark lines (or fringes) on the viewing screen.

To determine exactly where the bright lines fall, first note that Fig. 34-7 is some­
what exaggerated; in real situations, the distance d  between the slits is very small 
compared to the distance £ to the screen. The rays from each slit for each case w ill 
therefore be essentially parallel, and 0 is the angle they make with the horizontal as 
shown in Fig. 34-7d. From the shaded right triangles shown in Figs. 34-7b and c, we 
can see that the extra distance traveled by the lower ray is d  sin 6 (seen more clearly 
in Fig. 34-7d). Constructive interference w ill occur, and a bright fringe w ill appear on 
the screen, when the path difference, d  sin 0 , equals a whole number of wavelengths:

d  sin 9 =  raA, ra = 0,1,2,
constructive
interference

(bright)
(34-2a)

The value of ra is called the order of the interference fringe. The first order 
(ra = 1 ), for example, is the first fringe on each side of the central fringe (which is 
at 6 =  0, ra = 0 ). Destructive interference occurs when the path difference d  sin 0 
is |A ,|A , and so on:

d  sin 6 =  (ra + |)A, ra = 0,1,2,
destructive

interference
(dark)

(34-2b)

The bright fringes are peaks or maxima of light intensity, the dark fringes are minima.

sl ~s2 
= d sin0
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The intensity of the bright fringes is greatest for the central fringe (ra = 0) and 
decreases for higher orders, as shown in Fig. 34-9. How much the intensity 
decreases with increasing order depends on the width of the two slits.

CONCEPTUAL EXAMPLE 54-1 I Interference pattern lines, (a) W ill there be
an infinite number of points on the viewing screen where constructive and destruc­
tive interference occur, or only a finite number of points? (b) Are neighboring points 
of constructive interference uniformly spaced, or is the spacing between neighboring 
points of constructive interference not uniform?

RESPONSE (a) When you look at Eqs. 34-2a and b you might be tempted to say, 
given the statement ra = 0 , 1, 2 , beside the equations, that there are an 
infinite number of points of constructive and destructive interference. However, 
recall that sin 9 cannot exceed 1. Thus, there is an upper lim it to the values of ra 
that can be used in these equations. For Eq. 34-2a, the maximum value of ra is 
the integer closest in value but smaller than d/X. So there are & finite number of 
points of constructive and destructive interference no matter how large the 
screen, (b) The spacing between neighboring points of constructive or destructive 
interference is not uniform: The spacing gets larger as 6 gets larger, and you can 
verify this statement mathematically. For small values of 6 the spacing is nearly 
uniform as you w ill see in Example 34-2.

Line spacing for double-slit interference. A  screen 
containing two slits 0.100 mm apart is 1.20 m from the viewing screen. Light of 
wavelength A = 500 nm falls on the slits from a distant source. Approximately 
how far apart w ill adjacent bright interference fringes be on the screen?

APPROACH The angular position of bright (constructive interference) fringes is 
found using Eq. 34-2a. The distance between the first two fringes (say) can be 
found using right triangles as shown in Fig. 34-10.
SOLUTION Given d =  0.100 mm = 1.00 X HT4m, A = 500 X 10“9m, and 
£ =  1.20 m, the first-order fringe (ra = 1 ) occurs at an angle 6 given by

m \  (1)(500 X l(T 9m)
sin#! = — — = — — — ---- —— ------  = 5.00 X 10 .

d  1.00 X 10“4 m

This is a very small angle, so we can take sin 0 « 0, with 0 in radians. The first-order 
fringe w ill occur a distance xx above the center of the screen (see Fig. 34-10), given 
by x j l  = tan#! » 01? so

~ £0X =  (1.20m)(5.00 X IO-3) = 6.00 mm.

The second-order fringe (ra = 2) w ill occur at

2a
x2 ~ 102 = £ —~ =  12.0 mm 

d
S

above the center, and so on. Thus the lower order fringes are 6.00 mm apart. s 
NOTE The spacing between fringes is essentially uniform until the approximation 
sin 0 ^ 0  is no longer valid.

CONCEPTUAL EXAMPLE 34-3 I Changing the wavelength, (a) What happens
to the interference pattern shown in Fig. 34-10, Example 34-2, if the incident light 
(500 nm) is replaced by light of wavelength 700 nm? (b) What happens instead if the 
wavelength stays at 500 nm but the slits are moved farther apart?

RESPONSE (a) When A increases in Eq. 34-2a but d  stays the same, then the 
angle 0 for bright fringes increases and the interference pattern spreads out.
(b) Increasing the slit spacing d  reduces 0 for each order, so the lines are closer 
together.

Constructive interference
(a)

m =3 2 1 0  1 2  3

m= 2 1 0  0 1 2  3
Destructive interference 

(b)

FIGURE 34-9 (a) Interference 
fringes produced by a double-slit 
experiment and detected by 
photographic film placed on the 
viewing screen. The arrow marks the 
central fringe, (b) Graph of the 
intensity of light in the interference 
pattern. Also shown are values of m for 
Eq. 34-2a (constructive interference) 
and Eq. 34-2b (destructive 
interference).

FIGURE 34-10 Examples 34-2 
and 34-3. For small angles 6 
(give 6 in radians), the interference 
fringes occur at distance x = $£ 
above the center fringe (m = 0); 
and xi are for the first-order fringe 
(m = 1),02 and x2 are for m = 2.
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White

II  I I
h-2 .0  mm-H 

H------ 3.5 mm

FIGURE 34-11 First-order fringes 
are a full spectrum, like a rainbow. 
Also Example 34-4.

From Eqs. 34-2 we can see that, except for the zeroth-order fringe at the 
center, the position of the fringes depends on wavelength. Consequently, when 
white light falls on the two slits, as Young found in his experiments, the central 
fringe is white, but the first- (and higher-) order fringes contain a spectrum of 
colors like a rainbow; 0 was found to be smallest for violet light and largest for red 
(Fig. 34-11). By measuring the position of these fringes, Young was the first to 
determine the wavelengths of visible light (using Eqs. 34-2). In doing so, he 
showed that what distinguishes different colors physically is their wavelength (or 
frequency), an idea put forward earlier by Grimaldi in 1665.

FIGURE 34-10 (Repeated.)
For small angles 0 (give 6 in radians), 
the interference fringes occur 
at distance x = di above the center 
fringe (ra = 0); and x\ are for 
the first-order fringe (ra = 1),
02 and x2 are for ra = 2.

EXAMPLE 34-4 Wavelengths from double-slit interference. White light 
passes through two slits 0.50 mm apart, and an interference pattern is observed 
on a screen 2.5 m away. The first-order fringe resembles a rainbow with violet and 
red light at opposite ends. The violet light is about 2.0 mm and the red 3.5 mm 
from the center of the central white fringe (Fig. 34-11). Estimate the wavelengths 
for the violet and red light.

APPROACH We find the angles for violet and red light from the distances given 
and the diagram of Fig. 34-10. Then we use Eq. 34-2a to obtain the wavelengths. 
Because 3.5 mm is much less than 2.5 m, we can use the small-angle approximation. 
SOLUTION We use Eq. 34-2a with ra =  1 and sin 0 ~ tan 6 ~  6. Then for violet 
light, x =  2.0 mm, so (see also Fig. 34-10)

A =
d  sin0

ra m
d x 
ra i

5.0 X 10-4 m \  /  2.0 X 10“3
1

m
2.5 m

= 4.0 X 10_7m

or 400 nm. For red light, x =  3.5 mm, so

_ d x 
m l  ~

5.0 X 10_4m \ /  3.5 X 10“3
1

m
2.5 m

= 7.0 X 10-7 m = 700 nm.

Coherence
The two slits in Fig. 34-7 act as if they were two sources of radiation. They are 
called coherent sources because the waves leaving them have the same wavelength 
and frequency, and bear the same phase relationship to each other at all times. This 
happens because the waves come from a single source to the left of the two slits in 
Fig. 34-7, splitting the original beam into two. An interference pattern is observed 
only when the sources are coherent. I f  two tiny lightbulbs replaced the two slits, an 
interference pattern would not be seen. The light emitted by one lightbulb would 
have a random phase with respect to the second bulb, and the screen would be 
more or less uniformly illuminated. Two such sources, whose output waves have 
phases that bear no fixed relationship to each other over time, are called 
incoherent sources.

*34—4 Intensity in the Double-Slit 
Interference Pattern

We saw in Section 34-3 that the interference pattern produced by the coherent 
light from two slits, Sx and S2 (Figs. 34-7 and 34-9), produces a series of bright and 
dark fringes. I f  the two monochromatic waves of wavelength A are in phase at the 
slits, the maxima (brightest points) occur at angles 0 given by (Eqs. 34-2)

d  sin 0 = raA,

and the minima (darkest points) when

dsinO =  (ra +  !)A ,

where ra is an integer (m = 0 , 1, 2 , • • •).
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We now determine the intensity of the light at all points in the pattern, 
assuming that if either slit were covered, the light passing through the other would 
diffract sufficiently to illuminate a large portion of the screen uniformly. The 
intensity I  of the light at any point is proportional to the square of its wave 
amplitude (Section 15-3). Treating light as an electromagnetic wave, I  is propor­
tional to the square of the electric field E  (or to the magnetic field B, Section 31-8):
I  oc E 2. The electric field E at any point P (see Fig. 34-12) w ill be the sum of the 
electric field vectors of the waves coming from each of the two slits, E1 and E2. 
Since E1 and E2 are essentially parallel (on a screen far away compared to the slit 
separation), the magnitude of the electric field at angle 6 (that is, at point P) w ill be

Ee = E1 + E2.

Both E1 and E2 vary sinusoidally with frequency /  = c/A, but they differ in 
phase, depending on their different travel distances from the slits. The electric field 
at P can then be written for the light from each of the two slits, using cd = 2irf, as

Ei = Ew sm<ot
E2 =  E20sm((i)t + 8)

where Eio and E2o are their respective amplitudes and 8 is the phase difference. The 
value of 8 depends on the angle 0 , so let us now determine 8 as a function of 0.

A t the center of the screen (point 0), 5 = 0. If  the difference in path length 
from P to S1 and S2 is d  sin 0 =  A/2, the two waves are exactly out of phase so 8 =  ir (or 180°). I f  d  sin 0 =  A, the two waves differ in phase by 8 =  2tt. In 
general, then, 8 is related to 0 by

8 _  d  sin 0
2tt A

8 = —̂ ~d sin0. (34-4)
A

To determine Ed = E1 + E2, we add the two scalars E1 and E2 which are sine 
functions differing by the phase 8. One way to determine the sum of E1 and E2 is 
to use a phasor diagram. (We used this technique before, in Chapter 30.) As shown 
in Fig. 34-13, we draw an arrow of length Eio to represent the amplitude of Ex 
(Eq. 34-3); and the arrow of length E2q > which we draw to make a fixed angle 8 
with -̂ 10 > represents the amplitude of E2. When the diagram rotates at angular 
frequency to about the origin, the projections of £io and 2̂0 on the vertical axis 
represent E1 and E2 as a function of time (see Eq. 34-3). We let Ego be the 
“vector” sumf of Ew and E2o; Eeo is the amplitude of the sum Ee =  El + E2, and 
the projection of Eeo on the vertical axis is just Ee . I f  the two slits provide equal 
illumination, so that E10 = E20 =  E0, then from symmetry in Fig. 34-13, the 
angle (j> = 8/ 2, and we can write

+ (34-5a)

From Fig. 34-13 we can also see that

Eeo = 2E0 co s  <f) = 2E0 co s  —. (34-5b)

Combining Eqs. 34-5a and b, we obtain

Ee = 2E0 co s  ^  sin + ^ ) ,  (34-5c)

where 8 is given by Eq. 34-4.

fWe are not adding the actual electric field vectors; instead we are using the “phasor” technique to add 
the amplitudes, taking into account the phase difference of the two waves.

S2

Screen

FIGURE 34-12 Determining the 
intensity in a double-slit interference 
pattern. Not to scale: in fact £ »  d, 
and the two rays become essentially 
parallel.

FIGURE 34-13 Phasor diagram for 
double-slit interference pattern.
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We are not really interested in Ee as a function of time, since for visible light 
the frequency (1014 to 1015 Hz) is much too high to be noticeable. We are interested 
in the average intensity, which is proportional to the amplitude squared, Eg0 • We

point P at an angle 0 to the horizontal. We let 70 be the intensity at point O, the 
center of the screen, where 6 = 8 =  0, so 70 oc (E10 +  E20)2 = (2E0)2. Then

these two points, so

where we used Eq. 34-5b. Thus the intensity Ie at any point is related to the 
maximum intensity at the center of the screen by

where 8 was given by Eq. 34-4. This is the relation we sought.
From Eq. 34-6 we see that maxima occur where cos 8 /2  = ±  1, which 

corresponds to 5 = 0, 2tt, 4tt, • • •. From Eq. 34-4, 8 has these values when

These are the same results we obtained in Section 34-3. But now we know not 
only the position of maxima and minima, but from Eq. 34-6 we can determine the 
intensity at all points.

In the usual situation where the distance £ to the screen from the slits is large 
compared to the slit separation d (£ »  d), if  we consider only points P whose 
distance y  from the center (point O) is small compared to £ (y  «  £)— see 
Fig. 34-12— then

EXERCISE B What are the values for the intensity Ie when (a) y = 0, (b) y = \£/4d, and
(c) y = X£/2dl

The intensity Ie as a function of the phase difference 8 is plotted in Fig. 34-14. 
In the approximation of Eq. 34-7, the horizontal axis could as well be y, the 
position on the screen.

now drop the word “ average,” and we let Ie (Ie oc Eg) be the intensity at any

the ratio Ie/ I0 is equal to the ratio of the squares of the electric-field amplitudes at

(34-6)

d  sin0 = raA, ra = 0,1,2, •••.

Minima occur where 8 = tt, 3tt, 5-77, • • •, which corresponds to 

dsin0 = (ra + !)A, ra = 0,1,2, •••.

From this it follows (see Eq. 34-4) that

Equation 34-6 then becomes

[y «  £, d  «  £] (34-7)
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FIGURE 34-14 Intensity /  as a 
function of phase difference 8 and 
position on screen y (assuming
y «  *)•

The intensity pattern expressed in Eqs. 34-6 and 34-7, and plotted in Fig. 34-14, 
shows a series of maxima of equal height, and is based on the assumption that 
each slit (alone) would illuminate the screen uniformly. This is never quite true, 
as we shall see when we discuss diffraction in the next Chapter. We w ill see that 
the center maximum is strongest and each succeeding maximum to each side is a 
little  less strong.

Antenna intensity. Two radio antennas are located close to 
each other as shown in Fig. 34-15, separated by a distance d. The antennas 
radiate in phase with each other, emitting waves of intensity I0 at wavelength A.
(a) Calculate the net intensity as a function of 6 for points very far from the 
antennas. (b) For d =  A, determine I  and find in which directions I  is a 
maximum and a minimum, (c) Repeat part (b ) when d =  A/2.

APPROACH This setup is similar to Young’s double-slit experiment.
SOLUTION (a) Points of constructive and destructive interference are still given 
by Eqs. 34-2a and b, and the net intensity as a function of 6 is given by Eq. 34-6.
(b) We let d =  A in Eq. 34-6, and find for the intensity,

I  =  /ocos2(7rs in 0 ).

I  is a maximum, equal to 70, when sin 0 = 0, 1, or -1 , meaning 6 = 0, 90°, 180°, 
and 270°. I  is zero when sin 6 =  \  and for which 6 =  30°, 150°, 210°, and 330°.
(c) For d =  A/2, I  is maximized for 6 =  0 and 180°, and minimized for 90° 
and 270°.

34—5 Interference in Thin Films
Interference of light gives rise to many everyday phenomena such as the bright 
colors reflected from soap bubbles and from thin oil or gasoline films on water,
Fig. 34-16. In these and other cases, the colors are a result of constructive interfer­
ence between light reflected from the two surfaces of the thin film.

FIGURE 34-16 Thin film interference patterns seen in (a) a soap bubble, (b) a thin film of soapy water, 
and (c) a thin layer of oil on wet pavement.

FIGURE 34-15 Example 34-5. The 
two dots represent the antennas.

(a)
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Air
Oil

Water

FIGURE 34-17 Light reflected 
from the upper and lower surfaces of 
a thin film of oil lying on water. This 
analysis assumes the light strikes the 
surface nearly perpendicularly, but is 
shown here at an angle so we can 
display each ray.

To see how this thin-film interference happens, consider a smooth surface 
of water on top of which is a thin uniform layer of another substance, say an
oil whose index of refraction is less than that of water (we’ll see why we 
assume this in a moment); see Fig. 34-17. Assume for the moment that the 
incident light is of a single wavelength. Part of the incident light is reflected 
at A  on the top surface, and part of the light transmitted is reflected at B on the 
lower surface. The part reflected at the lower surface must travel the extra 
distance ABC. I f  this path difference ABC equals one or a whole number of 
wavelengths in the film  (A„), the two waves w ill reach the eye in phase and 
interfere constructively. Hence the region AC on the surface film  w ill appear 
bright. But if  ABC equals ^An,§An, and so on, the two waves w ill be exactly 
out of phase and destructive interference occurs: the area AC on the film  w ill 
show no reflection— it w ill be dark (or better, transparent to the dark material 
below). The wavelength Xn is the wavelength in the film: Xn =  X/n, where n 
is the index of refraction in the film  and A is the wavelength in vacuum. See 
Eq. 34-1.

When white light falls on such a film , the path difference ABC w ill equal Xn 
(or mXn, with m =  an integer) for only one wavelength at a given viewing 
angle. The color corresponding to A (A in air) w ill be seen as very bright. For light 
viewed at a slightly different angle, the path difference ABC w ill be longer or 
shorter and a different color w ill undergo constructive interference. Thus, for an 
extended (nonpoint) source emitting white light, a series of bright colors w ill 
be seen next to one another. Variations in thickness of the film  w ill also alter 
the path difference ABC and therefore affect the color of light that is most 
strongly reflected.

EXERCISE C Return to the Chapter-Opening Question, page 900, and answer it again now. 
Try to explain why you may have answered differently the first time.

When a curved glass surface is placed in contact with a flat glass surface, 
Fig. 34-18, a series of concentric rings is seen when illuminated from above by 
either white light (as shown) or by monochromatic light. These are called 
Newton’s ringst and they are due to interference between waves reflected by the 
top and bottom surfaces of the very thin air gap between the two pieces of glass. 
Because this gap (which is equivalent to a thin film ) increases in width from the 
central contact point out to the edges, the extra path length for the lower ray 
(equal to BCD) varies; where it equals 0, \X , A, §A, 2A, and so on, it corresponds 
to constructive and destructive interference; and this gives rise to the series of 
bright colored circles seen in Fig. 34-18b. The color you see at a given radius 
corresponds to constructive interference; at that radius, other colors partially or fully 
destructively interfere. ( If monochromatic light is used, the rings are alternately 
bright and dark.)

f Although Newton gave an elaborate description of them, they had been first observed and described 
by his contemporary, Robert Hooke.

FIGURE 34-18 Newton’s rings.
(a) Light rays reflected from 
upper and lower surfaces of 
the thin air gap can interfere.
(b) Photograph of interference 
patterns using white light.
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The point of contact of the two glass surfaces (A  in Fig. 34-18a) is dark in 
Fig. 34-18b. Since the path difference is zero here, our previous analysis would 
suggest that the waves reflected from each surface are in phase and so this central 
area ought to be bright. But it is dark, which tells us something else is happening 
here: the two waves must be completely out of phase. This can happen if one of the 
waves, upon reflection, flips over— a crest becomes a trough— see Fig. 34-19. We 
say that the reflected wave has undergone a phase change of 180°, or of half a 
wave cycle. Indeed, this and other experiments reveal that, at normal incidence,

a beam of light reflected by a material with index of refraction greater than 
that of the material in which it is traveling, changes phase by 180° or \  cycle;

see Fig. 34-19. This phase change acts just like a path difference of \  A. I f  the index 
of refraction of the reflecting material is less than that of the material in which the 
light is traveling, no phase change occurs.f

Thus the wave reflected at the curved surface above the air gap in Fig. 34-18a 
undergoes no change in phase. But the wave reflected at the lower surface, where 
the beam in air strikes the glass, undergoes a |-cycle phase change, equivalent to a 
\  A path difference. Thus the two waves reflected near the point of contact A  of the 
two glass surfaces (where the air gap approaches zero thickness) w ill be a half cycle 
(or 180°) out of phase, and a dark spot occurs. Bright colored rings w ill occur when 
the path difference is \X,  § A, and so on, because the phase change at one surface 
effectively adds a path difference of \X  (=§ cycle). (If monochromatic light is used, 
the bright Newton’s rings w ill be separated by dark bands which occur when the 
path difference BCD in Fig. 34-18a is equal to an integral number of wavelengths.)

Returning for a moment to Fig. 34-17, the light reflecting at both interfaces, 
a ir-o il and oil-water, underwent a phase change of 180° equivalent to a path 
difference of \X,  since we assumed nwater > noil > nair; since the phase changes 
were equal, they didn’t affect our analysis.

■  Thin film of air, wedge-shaped. A  very fine wire
7.35 X IO-3 mm in diameter is placed between two flat glass plates as in Fig. 34-20a. 
Light whose wavelength in air is 600 nm falls (and is viewed) perpendicular to the 
plates and a series of bright and dark bands is seen, Fig. 34-20b. How many light and 
dark bands w ill there be in this case? W ill the area next to the wire be bright or dark?

APPROACH We need to consider two effects: (1) path differences for rays 
reflecting from the two close surfaces (thin wedge of air between the two glass 
plates), and (2) the ^-cycle phase change at the lower surface (point E in 
Fig. 34-20a), where rays in air can enter glass. Because of the phase change at the 
lower surface, there w ill be a dark band (no reflection) when the path difference 
is 0, A, 2A, 3A, and so on. Since the light rays are perpendicular to the plates, the 
extra path length equals 21, where t is the thickness of the air gap at any point. 
SOLUTION Dark bands w ill occur where

21 = mX, m =  0,1,2, •••.

Bright bands occur when 21 =  (m +  )̂A, where m is an integer. A t the 
position of the wire, t =  7.35 X 10_6m. A t this point there w ill be 2t/X  = 
(2)(7.35 X 10-6 m)/(6.00 X 10“7 m) = 24.5 wavelengths. This is a “half integer,” 
so the area next to the wire w ill be bright. There w ill be a total 
of 25 dark lines along the plates, corresponding to path lengths of 
0A, IA, 2A, 3A,..., 24A, including the one at the point of contact A  (m = 0). 
Between them, there w ill be 24 bright lines plus the one at the end, or 25.
NOTE The bright and dark bands w ill be straight only if the glass plates are 
extremely flat. I f  they are not, the pattern is uneven, as in Fig. 34-20c. Thus we 
see a very precise way of testing a glass surface for flatness. Spherical lens 
surfaces can be tested for precision by placing the lens on a flat glass surface and 
observing Newton’s rings (Fig. 34-18b) for perfect circularity.

n\
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(b)

FIGURE 34-19 (a) Reflected ray 
changes phase by 180° or \ cycle if 
n2 > n i , but (b) does not if n2 < n\.
FIGURE 34-20 (a) Light rays 
reflected from the upper and lower 
surfaces of a thin wedge of air interfere 
to produce bright and dark bands.
(b) Pattern observed when glass plates 
are optically flat; (c) pattern when plates 
are not so flat. See Example 34-6.&

*
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Testing glass for flatness

trThis result can be derived from Maxwell’s equations. It corresponds to the reflection of a wave trav­
eling along a cord when it reaches the end; as we saw in Fig. 15-18, if the end is tied down, the wave 
changes phase and the pulse flips over, but if the end is free, no phase change occurs. SECTION 34-5 911



n =  1.35

Incident ray. 
Reflected rays’

Outside air 
n = 1.00

Bubble 
interior 
n = 1.00

-H t h-
FIGURE 34-21 Example 34-7.
The incident and reflected rays are 
assumed to be perpendicular to the 
bubble’s surface. They are shown at a 
slight angle so we can distinguish them.

/?\ CAUTION____________
A formula is not enough: you must also 

check for phase changes at surfaces

FIGURE 34-16b (Repeated.)

If  the wedge between the two glass plates of Example 34-6 is filled with some 
transparent substance other than air— say, water— the pattern shifts because the 
wavelength of the light changes. In a material where the index of refraction is n, 
the wavelength is An = A/n , where A is the wavelength in vacuum (Eq. 34-1). 
For instance, if the thin wedge of Example 34-6 were filled with water, then 
kn =  600nm/1.33 = 450 nm; instead of 25 dark lines, there would be 33.

When white light (rather than monochromatic light) is incident on the thin 
wedge of air in Figs. 34-18a or 34-20a, a colorful series of fringes is seen because 
constructive interference occurs for different wavelengths in the reflected light at 
different thicknesses along the wedge.

A  soap bubble (Fig. 34-16a and Chapter-Opening Photo) is a thin spherical 
shell (or film ) with air inside. The variations in thickness of a soap bubble film  gives 
rise to bright colors reflected from the soap bubble. (There is air on both sides of the 
bubble film .) Similar variations in film  thickness produce the bright colors seen 
reflecting from a thin layer of oil or gasoline on a puddle or lake (Fig. 34-16c). 
Which wavelengths appear brightest also depends on the viewing angle.

■  Thickness of soap bubble skin. A  soap bubble appears
green (A = 540 nm) at the point on its front surface nearest the viewer. What is 
the smallest thickness the soap bubble film  could have? Assume n = 1.35. 
APPROACH Assume the light is reflected perpendicularly from the point on a 
spherical surface nearest the viewer, Fig. 34-21. The light rays also reflect from 
the inner surface of the soap bubble film  as shown. The path difference of these 
two reflected rays is 21, where t is the thickness of the soap film . Light reflected 
from the first (outer) surface undergoes a 180° phase change (index of refraction 
of soap is greater than that of air), whereas reflection at the second (inner) 
surface does not. To determine the thickness t for an interference maximum, we 
must use the wavelength of light in the soap (n =  1.35).
SOLUTION The 180° phase change at only one surface is equivalent to a §A path 
difference. Therefore, green light is bright when the minimum path difference 
equals ^An. Thus, 21 =  A/2n, so

A (540 nm)
=  100 nm.
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(4)(1.35)
This is the smallest thickness; but the green color is more likely to be seen at the 
next thickness that gives constructive interference, 21 =  3 \/2 n , because other 
colors would be more fully cancelled by destructive interference. The more likely 
thickness is 3A/4n = 300 nm, or even 5A/4n =  500 nm. Note that green is seen 
in air, so A = 540 nm (not A/«).

* Colors in a Thin Soap Film
The thin film  of soapy water shown in Fig. 34-16b (repeated here) has stood vertically 
for a long time so that gravity has pulled much of the soapy water toward the bottom. 
The top section is so thin (perhaps 30 nm thick) that light reflected from the front and 
back surfaces have almost no path difference. Thus the 180° phase change at the front 
surface assures that the two reflected waves are 180° out of phase for all wavelengths 
of visible light. The white light incident on this thin film  does not reflect at the top part 
of the film. Thus the top is transparent, and we see the background which is black.

Below the black area at the top, there is a thin blue line, and then a white 
band. The film  thickness is perhaps 75 to 100 nm, so the shortest wavelength (blue) 
light begins to partially interfere constructively; but just below, where the thickness 
is slightly greater (100 nm), the path length is reasonably close to A/2 for much of 
the spectrum and we see white or silver. (Why? Recall that red starts at 600 nm in 
air; so most colors in the spectrum lie between 450 nm and 600 nm in air; but in 
water the wavelengths are n =  1.33 times smaller, 340 nm to 450 nm, so a 100 nm 
thickness is a 200 nm path length, not far from A/2 for most colors.) Immediately 
below the white band we see a brown band (around 200 nm in thickness) where 
selected wavelengths (not all) are close to exactly A and those colors destructively 
interfere, leaving only a few colors to partially interfere constructively, giving us 
murky brown.
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Farther down, with increasing thickness t, a path length 21 =  510 nm corresponds 
nicely to §A for blue, but not for other colors, so we see blue (§A path difference 
plus \  A phase change = constructive interference). Other colors experience constructive 
interference (at §A and then at f A) at still greater thicknesses, so we see a series of 
separated colors something like a rainbow.

In the soap bubble of our Chapter-Opening Photo (p. 900), similar things 
happen: at the top (where the film  is thinnest) we see black and then silver-white, 
just as within the loop shown in Fig. 34-16b. And examine the oil film  on wet 
pavement shown in Fig. 34-16c (repeated here); the oil film  is thickest at the center 
and thins out toward the edges. Notice the whitish outer ring where most colors 
constructively interfere, which would suggest a thickness on the order of 100 nm as 
discussed above for the white band in the soap film. Beyond the outer white band 
of the oil film , Fig. 34-16c, there is still some oil, but the film  is so thin that reflected 
light from upper and lower surfaces destructively interfere and you can see right 
through this very thin oil film.

FIGURE 34-16C (Repeated.)

Lens Coatings
An important application of thin-film  interference is in the coating of glass to make 
it “ nonreflecting,” particularly for lenses. A  glass surface reflects about 4% of the 
light incident upon it. Good-quality cameras, microscopes, and other optical devices 
may contain six to ten thin lenses. Reflection from all these surfaces can reduce the 
light level considerably, and multiple reflections produce a background haze that 
reduces the quality of the image. By reducing reflection, transmission is increased. A  
very thin coating on the lens surfaces can reduce reflections considerably. The 
thickness of the film  is chosen so that light (at least for one wavelength) reflecting 
from the front and rear surfaces of the film  destructively interferes. The amount of 
reflection at a boundary depends on the difference in index of refraction between 
the two materials. Ideally, the coating material should have an index of refraction 
which is the geometric mean (= V n1 n2) of those for air and glass, so that the amount 
of reflection at each surface is about equal. Then destructive interference can occur 
nearly completely for one particular wavelength depending on the thickness of the 
coating. Nearby wavelengths w ill at least partially destructively interfere, but a single 
coating cannot eliminate reflections for all wavelengths. Nonetheless, a single coating 
can reduce total reflection from 4% to 1% of the incident light. Often the coating is 
designed to eliminate the center of the reflected spectrum (around 550 nm). The 
extremes of the spectrum— red and violet— w ill not be reduced as much. Since a 
mixture of red and violet produces purple, the light seen reflected from such coated 
lenses is purple (Fig. 34-22). Lenses containing two or three separate coatings can 
more effectively reduce a wider range of reflecting wavelengths.

*

c, O L V /

( ^ P H Y S I C S  A P P L I E D
Lens coatings

FIGURE 34-22 A coated lens. 
Note color of light reflected from 
the front lens surface.
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Interference
1. Interference effects depend on the simultaneous arrival 

of two or more waves at the same point in space.
2. Constructive interference occurs when the waves arrive 

in phase with each other: a crest of one wave arrives at 
the same time as a crest of the other wave. The ampli­
tudes of the waves then add to form a larger amplitude. 
Constructive interference also occurs when the path 
difference is exactly one full wavelength or any integer 
multiple of a full wavelength: 1A, 2A, 3A, • • •.

3. Destructive interference occurs when a crest of one 
wave arrives at the same time as a trough of the

other wave. The amplitudes add, but they are of 
opposite sign, so the total amplitude is reduced to 
zero if the two amplitudes are equal. Destructive 
interference occurs whenever the phase difference is 
half a wave cycle, or the path difference is a 
half-integral number of wavelengths. Thus, the total 
amplitude w ill be zero if two identical waves arrive 
one-half wavelength out of phase, or (m  + |)A out of 
phase, where m  is an integer.

4. For thin-film  interference, an extra half-wavelength 
phase shift occurs when light reflects from an 
optically more dense medium (going from a material 
of lesser toward greater index of refraction).
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Coating

FIGURE 34-23 Example 34-8. 
Incident ray of light is partially 
reflected at the front surface of a 
lens coating (ray 1) and again 
partially reflected at the rear surface 
of the coating (ray 2), with most of 
the energy passing as the 
transmitted ray into the

FIGURE 34-24
interferometer.

Michelson

EXAMPLE 34-8 Nonreflective coating. What is the thickness of an optical 
coating of MgF2 whose index of refraction is n =  1.38 and which is designed to 
eliminate reflected light at wavelengths (in air) around 550 nm when incident 
normally on glass for which n =  1.50?
APPROACH We explicitly follow the procedure outlined in the Problem Solving 
Strategy on page 913.
SOLUTION
1. Interference effects. Consider two rays reflected from the front and rear 

surfaces of the coating on the lens as shown in Fig. 34-23. The rays are drawn 
not quite perpendicular to the lens so we can see each of them. These two 
reflected rays w ill interfere with each other.

2. Constructive interference. We want to eliminate reflected light, so we do not 
consider constructive interference.

3. Destructive interference. To eliminate reflection, we want reflected rays 1 and 
2 to be \  cycle out of phase with each other so that they destructively interfere. 
The phase difference is due to the path difference 21 traveled by ray 2, as well 
as any phase change in either ray due to reflection.

4. Reflection phase shift. Rays 1 and 2 both undergo a change of phase by \  cycle 
when they reflect from the coating’s front and rear surfaces, respectively (at 
both surfaces the index of refraction increases). Thus there is no net change in 
phase due to the reflections. The net phase difference w ill be due to the extra 
path 21 taken by ray 2 in the coating, where n =  1.38. We want 21 to equal 
\ A„ so that destructive interference occurs, where An =  k /n  is the wavelength 
in the coating. With 2 1 =  An/ 2  =  A /2 n, then

(550 nm)t = ^  = A  =
4 4 n

=  99.6 nm.
(4)(1.38)

NOTE We could have set 21 =  (m +  ^)A„, where ra is an integer. The smallest 
thickness (ra = 0 ) is usually chosen because destructive interference w ill occur 
over the widest angle.
NOTE Complete destructive interference occurs only for the given wavelength of 
visible light. Longer and shorter wavelengths w ill have only partial cancellation.

34—6 Michelson Interferometer
A  useful instrument involving wave interference is the Michelson interferometer 
(Fig. 34-24),f invented by the American Albert A. Michelson (Section 31-7). 
Monochromatic light from a single point on an extended source is shown striking a 
half-silvered mirror M s. This beam splitter mirror M s has a thin layer of silver that 
reflects only half the light that hits it, so that half of the beam passes through to a fixed 
mirror M 2, where it is reflected back. The other half is reflected by M s to a mirror M x 
that is movable (by a fine-thread screw), where it is also reflected back. Upon its 
return, part of beam 1 passes through M s and reaches the eye; and part of beam 2 , on 
its return, is reflected by M s into the eye. If the two path lengths are identical, the two 
coherent beams entering the eye constructively interfere and brightness w ill be seen. If 
the movable mirror is moved a distance A/4, one beam w ill travel an extra distance 
equal to A/2 (because it travels back and forth over the distance A/4). In this case, the 
two beams w ill destructively interfere and darkness w ill be seen. As M l is moved 
farther, brightness w ill recur (when the path difference is A), then darkness, and so on.

Very precise length measurements can be made with an interferometer. The 
motion of m irror M x by only ^A produces a clear difference between brightness 
and darkness. For A = 400 nm, this means a precision of 100 nm or 10-4mm! If  
m irror M x is tilted very slightly, the bright or dark spots are seen instead as a series 
of bright and dark lines or “ fringes.” By counting the number of fringes (or frac­
tions thereof) that pass a reference line, extremely precise length measurements 
can be made.
trThere are other types of interferometer, but Michelson’s is the best known.
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34—7 Lum inous Intensity
The intensity of light, as for any electromagnetic wave, is measured by the Poynting 
vector in W /m 2, and the total power output of a source can be measured in watts 
(the radiant flux). But fo r measuring the visual sensation we call brightness, we 
must consider only the visible spectrum as well as the eye’s sensitivity to different 
wavelengths— the eye is most sensitive in the central, 550-nm (green), portion of 
the spectrum.

These factors are taken into account in the quantity luminous flux, Ft , whose 
unit is the lumen (lm ). One lumen is equivalent to ^  watts of 555-nm light.

Since the luminous flux from a source may not be uniform  over all directions, 
we define the luminous intensity I£ as the luminous flux per unit solid anglef 
(steradian). Its unit is the candela (cd) where 1 cd = 1 lm /sr, and it is one of the 
seven basic quantities in the SI. (See Section 1-4 and Table 1-5.)

The illuminance, Et , is the luminous flux incident on a surface per unit area of 
the surface: = F J A . Its unit is the lumen per square meter (lm /m 2) and is a 
measure of the illum ination falling on a surface.*

EXAMPLE 34-9 Lightbulb illuminance. The brightness of a particular type 
o f 100-W lightbulb is rated at 1700 lm. Determine (a) the luminous intensity and
(b) the illuminance at a distance of 2.0 m.

APPROACH Assume the light output is uniform  in all directions.
SOLUTION (a) A  fu ll sphere corresponds to 477 sr. Hence, It = 17001m/47r sr = 
135 cd. I t  does not depend on distance. (b ) A t d =  2.0 m from the source, the 
luminous flux per unit area is

Ft 17001m ,

= (4* )(2 .0m )’ = 3 4 Im /m '

The illuminance decreases as the square of the distance.

f A solid angle is a sort of two-dimensional angle and is measured in steradians. Think of a solid angle 
starting at a point and intercepting an area A A on a sphere of radius r surrounding that point. The solid 
angle has magnitude A A/r2 steradians. A solid angle including all of space intercepts the full surface 
area of the sphere, 4irr2, and so has magnitude Airr2/r2 = Air steradians. (Compare to a normal angle, 
for which a full circle subtends 2tt radians.)
*The British unit is the foot-candle, or lumen per square foot.

Summary
The wave theory of light is strongly supported by the observa­
tions that light exhibits interference and diffraction. Wave 
theory also explains the refraction of light and the fact that light 
travels more slowly in transparent solids and liquids than it does 
in air.

An aid to predicting wave behavior is Huygens’ principle, 
which states that every point on a wave front can be considered 
as a source of tiny wavelets that spread out in the forward 
direction at the speed of the wave itself. The new wave front is 
the envelope (the common tangent) of all the wavelets.

The wavelength of light in a medium with index of 
refraction n is

A„ =  (34-1)

where A is the wavelength in vacuum; the frequency is not 
changed.

Young’s double-slit experiment clearly demonstrated the 
interference of light. The observed bright spots of the interference 
pattern are explained as constructive interference between the 
beams coming through the two slits, where the beams differ in 
path length by an integral number of wavelengths. The dark 
areas in between are due to destructive interference when the 
path lengths differ by |A ,|A , and so on. The angles 0 at which 
constructive interference occurs are given by

sin0 = ra (34-2a)
d

where A is the wavelength of the light, d is the separation of the 
slits, and ra is an integer (0,1,2, •••). Destructive interference 
occurs at angles 0 given by

sin0 = (ra + (34-2b)

where ra is an integer (0,1,2, • • •).
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The light intensity Ie at any point in a double-slit interference 
pattern can be calculated using a phasor diagram, which predicts that

Ie = I0 cos2 1  (34-6)

where Iq is the intensity at 6 =  0 and the phase angle 8 is
O //8 =  — sin 6. (34-4)

A

Two sources of light are perfectly coherent if  the waves 
leaving them are of the same single frequency and maintain the

same phase relationship at all times. I f  the light waves from the two 
sources have a random phase with respect to each other over time 
(as for two incandescent lightbulbs) the two sources are incoherent.

Light reflected from  the front and rear surfaces of a thin 
film  of transparent material can interfere constructively or 
destructively, depending on the path difference. A  phase change 
of 180° or |  A occurs when the light reflects at a surface where 
the index o f refraction increases. Such thin-film interference has 
many practical applications, such as lens coatings and using 
Newton’s rings to check the uniform ity of glass surfaces.

Questions
1. Does Huygens’ principle apply to sound waves? To water 

waves?
2. What is the evidence that light is energy?
3. Why is light sometimes described as rays and sometimes as 

waves?
4. We can hear sounds around corners but we cannot see 

around corners; yet both sound and light are waves. Explain 
the difference.

5. Can the wavelength of light be determined from reflection 
or refraction measurements?

6 . Two rays o f light from the same source destructively inter­
fere if  their path lengths differ by how much?

7. Monochromatic red light is incident on a double slit and the 
interference pattern is viewed on a screen some distance 
away. Explain how the fringe pattern would change if  the 
red light source is replaced by a blue light source.

8 . I f  Young’s double-slit experiment were submerged in water, 
how would the fringe pattern be changed?

9. Compare a double-slit experiment for sound waves to that 
for light waves. Discuss the similarities and differences.

10. Suppose white light falls on the two slits o f Fig. 34-7, but 
one slit is covered by a red filte r (700 nm) and the other by 
a blue filte r (450 nm). Describe the pattern on the screen.

11. Why doesn’t the light from  the two headlights o f a distant 
car produce an interference pattern?

12. Why are interference fringes noticeable only for a thin film  
like a soap bubble and not for a thick piece o f glass, say?

13. Why are Newton’s rings (Fig. 34-18) closer together farther 
from the center?

14. Some coated lenses appear greenish yellow when seen by 
reflected light. What wavelengths do you suppose the 
coating is designed to eliminate completely?

15. A  drop of o il on a pond appears bright at its edges where its 
thickness is much less than the wavelengths of visible light. 
What can you say about the index of refraction of the o il 
compared to that o f water?

| Problems__________________
34-2 Huygens' Principle
1. ( II)  Derive the law of reflection— namely, that the angle of 

incidence equals the angle of reflection from a fla t 
surface— using Huygens’ principle for waves.

34-3 Double-Slit Interference
2. (I) Monochromatic light falling on two slits 0.018 mm apart 

produces the fifth-order bright fringe at a 9.8° angle. What is 
the wavelength of the light used?

3. (I) The third-order bright fringe o f 610 nm light is observed 
at an angle of 28° when the light falls on two narrow slits. 
How far apart are the slits?

4. ( II)  Monochromatic light falls on two very narrow slits 
0.048 mm apart. Successive fringes on a screen 6.00 m away 
are 8.5 cm apart near the center of the pattern. Determine 
the wavelength and frequency o f the light.

5. ( II)  I f  720-nm and 660-nm light passes through two slits 
0.68 mm apart, how far apart are the second-order fringes 
fo r these two wavelengths on a screen 1.0 m away?

6 . ( II)  A  red laser from the physics lab is marked as producing 
632.8-nm light. When light from  this laser falls on two 
closely spaced slits, an interference pattern formed on a wall 
several meters away has bright fringes spaced 5.00 mm apart 
near the center o f the pattern. When the laser is replaced by 
a small laser pointer, the fringes are 5.14 mm apart. What is 
the wavelength of light produced by the pointer?

7. (II)  Light of wavelength A passes through a pair o f slits 
separated by 0.17 mm, forming a double-slit interference 
pattern on a screen located a distance 35 cm away. Suppose 
that the image in Fig. 34-9a is an actual-size reproduction of 
this interference pattern. Use a ruler to measure a pertinent 
distance on this image; then utilize this measured value to 
determine A (nm).

8 . (II)  Light o f wavelength 680 nm falls on two slits and 
produces an interference pattern in which the third-order 
bright fringe is 38 mm from the central fringe on a screen
2.6 m away. What is the separation of the two slits?

9. (II)  A  parallel beam of light from a H e-N e laser, w ith a 
wavelength 633 nm, falls on two very narrow slits 0.068 mm 
apart. How far apart are the fringes in the center o f the 
pattern on a screen 3.8 m away?

10. (II)  A  physics professor wants to perform a lecture demon­
stration o f Young’s double-slit experiment for her class 
using the 633-nm light from a He-N e laser. Because the 
lecture hall is very large, the interference pattern w ill be 
projected on a wall that is 5.0 m from the slits. For easy 
viewing by all students in the class, the professor wants the 
distance between the m  = 0 and m = 1 maxima to be
25 cm. What slit separation is required in order to produce 
the desired interference pattern?
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11. ( II)  Suppose a thin piece of glass is placed in front o f the 3 4  
lower slit in Fig. 34-7 so that the two waves enter the slits 23. 
180° out o f phase (Fig. 34-25). Describe in detail the inter­
ference pattern on the screen.

w w m

FIGURE 34-25
Problem 11.

12. ( II)  In  a double-slit experiment it  is found that blue light of 
wavelength 480 nm gives a second-order maximum at a 26. 
certain location on the screen. What wavelength of visible
light would have a minimum at the same location?

13. ( II)  Two narrow slits separated by 1.0 mm are illuminated
by 544 nm light. Find the distance between adjacent bright 27. 
fringes on a screen 5.0 m from the slits.

14. ( II)  In  a double-slit experiment, the third-order maximum 
for light o f wavelength 500 nm is located 12 mm from the 
central bright spot on a screen 1.6 m from the slits. Light of 
wavelength 650 nm is then projected through the same slits.
How far from the central bright spot w ill the second-order 
maximum of this light be located?

15. ( II)  Light o f wavelength 470 nm in  air falls on two slits
6.00 X 10 2 mm apart. The slits are immersed in water, as is 
a viewing screen 50.0 cm away. How far apart are the fringes 
on the screen?

16. ( II)  A  very thin sheet o f plastic (n = 1.60) covers one slit 
o f a double-slit apparatus illuminated by 680-nm light. The 
center point on the screen, instead o f being a maximum, is 
dark. What is the (minimum) thickness of the plastic?

34-4  Intensity in Two-Slit Interference
2oa

17. (I) I f  one slit in Fig. 34-12 is covered, by what factor does 
the intensity at the center of the screen change?

18. ( II)  Derive an expression similar to Eq. 34-2 which gives 
the angles for which the double-slit intensity is one-half its 
maximum value, I6 =  \Iq . 29

19. ( II)  Show that the angular fu ll w idth at half maximum of the 
central peak in a double-slit interference pattern is given by 
A 6 =  A/2d  if  A «  d.

20. (II) In  a two-slit interference experiment, the path length to a 
certain point P on the screen differs for one slit in compar- 30. 
ison with the other by 1.25A. (a) What is the phase difference 
between the two waves arriving at point P? (b ) Determine
the intensity at P, expressed as a fraction of the maximum 
intensity I0 on the screen.

21. ( I ll)  Suppose that one slit o f a double-slit apparatus is 3 1 . 
wider than the other so that the intensity o f light passing 
through it is twice as great. Determine the intensity I  as a 
function of position (0 ) on the screen for coherent light.

22. ( I ll)  (a) Consider three equally spaced and equal-intensity 32. 
coherent sources of light (such as adding a th ird slit to the
two slits o f Fig. 34-12). Use the phasor method to obtain 
the intensity as a function of the phase difference 8 
(Eq. 34-4). (b ) Determine the positions of maxima and 
minima.

-5 Thin-Film Interference
(I) I f  a soap bubble is 120 nm thick, what wavelength is 
most strongly reflected at the center o f the outer surface 
when illuminated normally by white light? Assume that 
n =  1.32.

(I) How far apart are the dark fringes in Example 34-6 if 
the glass plates are each 28.5 cm long?

(II) (a) What is the smallest thickness of a soap film  (n = 1.33) 
that would appear black if  illuminated w ith 480-nm light? 
Assume there is air on both sides of the soap film , (b) What 
are two other possible thicknesses for the film  to appear 
black? (c) I f  the thickness t was much less than A, why 
would the film  also appear black?

(II)  A  lens appears greenish yellow ( A = 570 nm is 
strongest) when white light reflects from  it. What minimum 
thickness of coating (n = 1.25) do you think is used on 
such a glass (n = 1.52) lens, and why?

(II)  A  thin film  of o il (nQ = 1.50) w ith varying thickness 
floats on water (nw = 1.33). When it is illuminated from 
above by white light, the reflected colors are as shown in 
Fig. 34-26. In  air, the wavelength o f yellow light is 580 nm.
(a) Why are there no reflected colors at point A? (b) What 
is the o il’s thickness t at point B?

FIGURE 34-26
Problem 27.

(II)  A  thin o il slick (nQ = 1.50) floats on water 
(nw = 1.33). When a beam of white light strikes this film  at 
normal incidence from air, the only enhanced reflected 
colors are red (650 nm) and violet (390 nm). From this in for­
mation, deduce the (minimum) thickness t of the o il slick.

(II)  A  total of 31 bright and 31 dark Newton’s rings (not 
counting the dark spot at the center) are observed when 
560-nm light falls normally on a planoconvex lens resting on 
a fla t glass surface (Fig. 34-18). How much thicker is the 
center than the edges?

(II)  A  fine metal fo il separates one end o f two pieces 
of optically fla t glass, as in Fig. 34-20. When light of 
wavelength 670 nm is incident normally, 28 dark lines 
are observed (w ith one at each end). How thick is 
the foil?

(II)  How thick (minimum) should the air layer be between 
two fla t glass surfaces if  the glass is to appear bright when 
450-nm light is incident normally? What if  the glass is to 
appear dark?

(II)  A  uniform  thin film  o f alcohol (n = 1.36) lies on a fla t 
glass plate (n = 1.56). When monochromatic light, whose 
wavelength can be changed, is incident normally, the 
reflected light is a minimum for A = 512 nm and a 
maximum for A = 635 nm. What is the minimum thickness 
of the film?

I I.:. k

Water
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33. (II) Show that the radius r o f the mth dark Newton’s ring, as 
viewed from directly above (Fig. 34-18), is given by 
r =  V'm XR  where R  is the radius of curvature of the 
curved glass surface and A is the wavelength of light used. 
Assume that the thickness of the air gap is much less than R  
at all points and that r <SC R. [Hint: Use the binomial 
expansion.]

34. (II) Use the result o f Problem 33 to show that the distance 
between adjacent dark Newton’s rings is

Ar

fo r the mth ring, assuming ra »  1 .

35. ( II)  When a Newton’s ring apparatus (Fig. 34-18) is 
immersed in a liquid, the diameter o f the eighth dark ring 
decreases from 2.92 cm to 2.54 cm. What is the refractive 
index o f the liquid? [Hint: see Problem 33.]

36. ( II)  A  planoconvex lucite lens 3.4 cm in diameter is placed 
on a fla t piece o f glass as in Fig. 34-18. When 580-nm light 
is incident normally, 44 bright rings are observed, the last 
one right at the edge. What is the radius o f curvature o f the 
lens surface, and the focal length of the lens? [Hint: see 
Problem 33.]

37. ( II)  Let’s explore why only “ th in ” layers exhibit th in-film  
interference. Assume a layer o f water, sitting atop a fla t 
glass surface, is illum inated from  the air above by 
white ligh t (a ll wavelengths from  400 nm to 700 nm). 
Further, assume that the water layer’s thickness t is 
much greater than a micron (= 1 0 0 0 nm); in  particular, 
le t t = 200 ftm. Take the index of refraction for 
water to be n =  1.33 fo r all visible wavelengths, (a) Show 
that a visible color w ill be reflected from  the water layer 
if  its wavelength is A = 2nt/m, where ra is an integer. 
(b) Show that the two extremes in wavelengths (400 nm 
and 700 nm) of the incident ligh t are both reflected from 
the water layer and determine the m-value associated 
w ith each, (c) How many other visible wavelengths, 
besides A = 400 nm and 700 nm, are reflected from  the 
“ th ick” layer o f water? (d ) How does this explain why 
such a thick layer does not reflect colorfully, but is white 
or grey?

38. ( I ll)  A  single optical coating reduces reflection to zero 
fo r A = 550 nm. By what factor is the intensity reduced by 
the coating for A = 430 nm and A = 670 nm as compared 
to no coating? Assume normal incidence.

| General Problems___________

34-6 Michelson Interferometer
“ 39. (II) How far must the m irror M i in a Michelson interferometer 

be moved if  650 fringes o f 589-nm light are to pass by a 
reference line?

15 40. (II)  What is the wavelength of the light entering an 
interferometer if  384 bright fringes are counted when the 
movable m irror moves 0.125 mm?

“ 41. (II)  A  micrometer is connected to the movable m irror o f an 
interferometer. When the micrometer is tightened down on 
a thin metal fo il, the net number of bright fringes that move, 
compared to the empty micrometer, is 272. What is the 
thickness o f the foil? The wavelength o f light used is 
589 nm.

“42. ( I ll)  One o f the beams of an interferometer (Fig. 34-27) 
passes through a small evacuated glass container 1.155 cm 
deep. When a gas is allowed to slowly f ill the container, a 
total of 176 dark fringes are counted to move past a refer­
ence line. The light used has a wavelength o f 632.8 nm. 
Calculate the index o f refraction of the gas at its final 
density, assuming that the interferometer is in vacuum.

To mirror M

Source -

M,
7

Glass container

h1.155 cm
Mo

FIGURE 34-27 Problem 42.

“43. ( I ll)  The yellow sodium D lines have wavelengths of 589.0 
and 589.6 nm. When they are used to illum inate a Michelson 
interferometer, it is noted that the interference fringes 
disappear and reappear periodically as the m irror M i is 
moved. Why does this happen? How far must the m irror 
move between one disappearance and the next?

“34-7 Luminous Intensity
“44. (II)  The illuminance o f direct sunlight on Earth is about 

105 lm /m 2. Estimate the luminous flux and luminous intensity 
o f the Sun.

“45. (II)  The luminous efficiency o f a lightbulb is the ratio of 
luminous flux to electric power input, (a) What is the 
luminous efficiency (%) o f a 100-W, 1700-lm bulb? (b ) How 
many 40-W, 60-lm /W  fluorescent lamps would be needed to 
provide an illuminance o f 250 lm /m 2 on a factory floor of 
area 25 m X 30 m? Assume the lights are 10 m above the 
floor and that half their flux reaches the floor.

46. Light of wavelength 5.0 X 10_7m passes through two 
parallel slits and falls on a screen 4.0 m away. Adjacent 
bright bands of the interference pattern are 2.0 cm apart.
(a) Find the distance between the slits, (b) The same two 
slits are next illuminated by light o f a different wavelength, 
and the fifth-order minimum for this light occurs at the 
same point on the screen as the fourth-order minimum for 
the previous light. What is the wavelength o f the second 
source o f light?

47. Television and radio waves reflecting from mountains or 
airplanes can interfere w ith the direct signal from the 
station, (a) What kind of interference w ill occur when 
75-MHz television signals arrive at a receiver directly from 
a distant station, and are reflected from a nearby airplane 
122 m directly above the receiver? Assume \ \  change in 
phase of the signal upon reflection, (b) What kind of 
interference w ill occur if  the plane is 22 m closer to the 
receiver?
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48. A  radio station operating at 88.5 MHz broadcasts from two 
identical antennas at the same elevation but separated by a
9.0-m horizontal distance d, Fig. 34-28. A  maximum signal is 
found along the midline, perpendicular to d  at its m idpoint 
and extending horizontally in both directions. I f  the m idline 
is taken as 0°, at what other angle(s) 6 is a maximum signal 
detected? A  minimum signal? Assume all measurements are 
made much farther than 9.0 m from the antenna towers.

d - Midline

FIGURE 34-28
Problem 48. Antenna 2

55.

56.

Light o f wavelength A strikes a screen containing two slits a 
distance d  apart at an angle 6\ to the normal. Determine the 
angle 6m at which the mth-order maximum occurs.

Consider two antennas radiating 6.0-MHz radio waves in 
phase with each other. They are located at points S1 and S2, 
separated by a distance d  = 175 m, Fig. 34-30. Determine 
the points on the y  axis where the signals from the two 
sources w ill be out o f phase (crests of one meet troughs of 
the other).

FIGURE 34-30
Problem 56.

S2

175 m

49. Light o f wavelength 690 nm passes through two narrow slits 
0.66 mm apart. The screen is 1.60 m away. A  second source 
o f unknown wavelength produces its second-order fringe 
1.23 mm closer to the central maximum than the 690-nm 
light. What is the wavelength o f the unknown light?

50. Monochromatic light of variable wavelength is incident 
normally on a thin sheet o f plastic film  in air. The reflected 
light is a minimum only for A = 491.4 nm and 
A = 688.0 nm in the visible spectrum. What is the thickness of 
the film  (n  = 1.58)? [H int Assume successive values of ra.]

15 51. Suppose the m irrors in a Michelson interferometer are 
perfectly aligned and the path lengths to m irrors M i and M 2 
are identical. W ith these in itia l conditions, an observer sees 
a bright maximum at the center of the viewing area. Now 
one o f the m irrors is moved a distance x. Determine a 
formula for the intensity at the center o f the viewing area as 
a function o f x, the distance the movable m irror is moved 
from the in itia l position.

52. A  highly reflective m irror can be made for a particular 
wavelength at normal incidence by using two thin layers of 
transparent materials of indices o f refraction ni and 
n2 ( l <  <  n2) on the surface of the glass (n >  n2). What 
should be the minimum thicknesses d \ and d2 in Fig. 34-29 
in terms of the incident wavelength A, to maximize 
reflection?

57. What is the minimum (non-zero) thickness for the air layer 
between two fla t glass surfaces if  the glass is to appear dark 
when 680-nm light is incident normally? What if  the glass is 
to appear bright?

58. L lo yd ’s mirror provides one way o f obtaining a double-slit 
interference pattern from a single source so the light is 
coherent. As shown in Fig. 34-31, the light that reflects from 
the plane m irror appears to come from the virtual image of 
the slit. Describe in detail the interference pattern on the 
screen.

FIGURE 34-31 Problem 58.

nj n2
di d2FIGURE 34-29

Problem 52.

53. Calculate the minimum thickness needed for an antireflec- 
tive coating (n = 1.38) applied to a glass lens in order to 
eliminate (a) blue (450 nm), or (b) red (720 nm) reflections 
for light at normal incidence.

54. Stealth aircraft are designed to not reflect radar, whose 
wavelength is typically 2 cm, by using an antireflecting 
coating. Ignoring any change in wavelength in the coating, 
estimate its thickness.

59. Consider the antenna array of Example 34-5, Fig. 34-15. 
Let d  = A/2, and suppose that the two antennas are now 
180° out o f phase w ith each other. Find the directions for 
constructive and destructive interference, and compare with 
the case when the sources are in phase. (These results illus­
trate the basis for directional antennas.)

60. Suppose you viewed the light transmitted through a thin film  
layered on a fla t piece of glass. Draw a diagram, similar to 
Fig. 34-17 or 34-23, and describe the conditions required 
for maxima and minima. Consider all possible values of 
index of refraction. Discuss the relative size of the minima 
compared to the maxima and to zero.

61. A  thin film  of soap (n = 1.34) coats a piece o f fla t glass 
(n =  1.52). How thick is the film  if  it reflects 643-nm red 
light most strongly when illuminated normally by white 
light?

Screen^

Source

° \  Mirror
Virtual image 
of slit

General Problems 919



62. Two identical sources Si and S2, separated by distance d, 
coherently emit light of wavelength A uniformly in all direc­
tions. Defining the x axis with its origin at Si as shown in 
Fig. 34-32, find the locations (expressed as multiples of A) 
where the signals from
the two sources are out Sx ______________________x
of phase along this axis 
for x >  0, if  d =  3A.

d

FIGURE 34-32
Problem 62. S2u

63. A  two-slit interference set-up with slit separation d  = 
0.10 mm produces interference fringes at a particular set of 
angles 0m (where m = 0 , 1, 2 ,...) for red light of frequency 
/  =  4.6 X 1014 Hz. I f  one wishes to construct an analogous 
two-slit interference set-up that produces interference fringes 
at the same set of angles 6m for room-temperature sound of 
middle-C frequency / s = 262 Hz, what should the slit sepa­
ration ds be for this analogous set-up?

64. A  radio telescope, whose two antennas are separated by 
55 m, is designed to receive 3.0-MHz radio waves produced 
by astronomical objects. The received radio waves create
3.0-MHz electronic signals in the telescope’s left and right 
antennas. These signals then travel by equal-length cables to 
a centrally located amplifier, where they are added together. 
The telescope can be “pointed” to a certain region of the 
sky by adding the instantaneous signal from the right 
antenna to a “ time-delayed” signal received by the left 
antenna a time At ago. (This time delay of the left signal can 
be easily accomplished with the proper electronic circuit.) If 
a radio astronomer wishes to “view” radio signals arriving 
from an object oriented at a 12° angle to the vertical as in 
Fig. 34-33, what time delay A? is necessary?

65. In a compact disc (CD), digital information is stored as a 
sequence of raised surfaces called “pits” and recessed 
surfaces called “ lands.” Both pits and lands are highly reflec­
tive and are embedded in a thick plastic material with index 
of refraction n = 1.55 (Fig. 34-34). As a 780-nm wave­
length (in air) laser scans across the pit-land sequence, the 
transition between a neighboring pit and land is sensed by 
monitoring the intensity of reflected laser light from the 
CD. A t the moment when half the width of the laser beam is 
reflected from the pit and the other half from the land, we 
want the two reflected halves of the beam to be 180° out of 
phase with each other. What should be the (minimum) 
height difference t between a pit and land? [When this light 
enters a detector, cancellation of the two out-of-phase 
halves of the beam produces a minimum detector output.]
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Problem 65. beam

* Numerical/Computer
* 66. (II) A  Michelson interferometer can be used to determine the

index of refraction of a glass plate. A  glass plate (thickness t)  
is placed on a platform that can rotate. The plate is placed in 
the light’s path between the beam splitter and either the 
fixed or movable mirror, so that its thickness is in the direc­
tion of the laser beam. The platform is rotated to various 
angles, and the number of fringes shifted is counted. It can 
be shown that if  N  is the number of fringes shifted when the 
angle of rotation changes by 0 , the index of refraction 
is n =  (21 -  NX)(1 -  cos0)/[2£(l -  cos0) -  NX] where 
t is the thickness of the plate. The accompanying Table shows 
the data collected by a student in determining the index of 
refraction of a transparent plate by a Michelson interferometer.

N  25 50 75 100 125 150
0 (degree) 5.5 6.9 8.6 10.0 11.3 12.5

In the experiment A = 632.8 nm and t = 4.0 mm. Deter­
mine n for each 0 and find the average n.

Answers to Exercises B: (a) If). (b) 0.5o /0; (c) o.

A: 333 nm; 6.0 X 1014Hz;2.0 X 108 m/s. C: (e).
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Parallel coherent light from a laser, 
which acts as nearly a point source, 
illuminates these shears. Instead of a 
clean shadow, there is a dramatic 
diffraction pattern, which is a strong 
confirmation of the wave theory 
of light. Diffraction patterns are 
washed out when typical extended 
sources of light are used, and 
hence are not seen, although a 
careful examination of shadows will 
reveal fuzziness. We will examine 
diffraction by a single slit, and how 
it affects the double-slit pattern. 
We also discuss diffraction gratings 
and diffraction of X-rays by crystals. 
We will see how diffraction affects 
the resolution of optical instruments, 
and that the ultimate resolution can 
never be greater than the wavelength 
of the radiation used. Finally we 
study the polarization of light.

T £

Diffraction and 
Polarization

C H AP TE R -O P E N IN G  Q U ESTIO I — Guess now!
Because o f diffraction, a light microscope has a maximum useful magnification o f about

(a) 50 X;
(b) 100 X;
(c) 500 X;
(d) 2000 X;
(e) 5000 X;

and the smallest objects it  can resolve have a size o f about

(a) 10 nm;
(b) 100  nm;
(c) 500 nm;
(d) 2500 nm;
(e) 5500 nm.

Y
oung’s double-slit experim ent put the wave theory o f ligh t on a firm  
footing. B ut fu ll acceptance came only w ith  studies on d iffraction  more 
than a decade later, in  the 1810s and 1820s.

We have already discussed d iffraction  b rie fly  w ith  regard to water 
waves (Section 15-11) as w ell as fo r ligh t (Section 34-1). We have seen that it 
refers to  the spreading or bending o f waves around edges. Now we look at 
d iffraction  in  more detail, including its im portant practical effects o f lim iting  the 
amount o f detail, or reso lu tion , that can be obtained w ith  any optical instrum ent 
such as telescopes, cameras, and the eye.
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FIGURE 35-1 If light is a wave, a 
bright spot will appear at the center 
of the shadow of a solid disk 
illuminated by a point source of 
monochromatic light.

In 1819, Augustin Fresnel (1788-1827) presented to the French Academy a 
wave theory of light that predicted and explained interference and diffraction 
effects. Almost immediately Simeon Poisson (1781-1840) pointed out a 
counter-intuitive inference: according to Fresnel’s wave theory, if light from a 
point source were to fa ll on a solid disk, part of the incident light would be 
diffracted around the edges and would constructively interfere at the center of 
the shadow (Fig. 35-1). That prediction seemed very unlikely. But when the 
experiment was actually carried out by Frangois Arago, the bright spot was seen 
at the very center of the shadow (Fig. 35-2a). This was strong evidence for the 
wave theory.

Figure 35-2a is a photograph of the shadow cast by a coin using a coherent 
point source of light, a laser in this case. The bright spot is clearly present 
at the center. Note also the bright and dark fringes beyond the shadow. 
These resemble the interference fringes of a double slit. Indeed, they are 
due to interference of waves diffracted around the disk, and the whole is 
referred to as a diffraction pattern. A  diffraction pattern exists around any 
sharp-edged object illuminated by a point source, as shown in Fig. 35-2b and c. 
We are not always aware of diffraction because most sources of light in everyday 
life are not points, so light from different parts of the source washes out 
the pattern.

FIGURE 35-2 Diffraction pattern 
of (a) a circular disk (a coin),
(b) razorblade, (c) a single slit, each 
illuminated by a coherent point 
source of monochromatic light, such 
as a laser.

35-1 Diffraction by a Single Slit or Disk
To see how a diffraction pattern arises, we w ill analyze the important case of 
monochromatic light passing through a narrow slit. We w ill assume that parallel 
rays (plane waves) of light fall on the slit of width D , and pass through to a viewing 
screen very far away. I f  the viewing screen is not far away, lenses can be used to 
make the rays parallel.f As we know from studying water waves and from 
Huygens’ principle, the waves passing through the slit spread out in all directions. 
We w ill now examine how the waves passing through different parts of the slit 
interfere with each other.

Parallel rays of monochromatic light pass through the narrow slit as shown 
in Fig. 35-3a. The slit width D  is on the order of the wavelength A of 
the light, but the s lit’s length (in and out of page) is large compared to A. 
The light falls on a screen which is assumed to be very far away, so the rays 
heading for any point are very nearly parallel before they meet at the screen.

tSuch a diffraction pattern, involving parallel rays, is called Fraunhofer diffraction. If the screen is close 
and no lenses are used, it is called Fresnel diffraction. The analysis in the latter case is rather involved, 
so we consider only the limiting case of Fraunhofer diffraction.
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(a) 0 = 0 
Bright

(b) sin 0 = ± 
Dark

(c)sin0 = g  
Bright

FIGURE 35-3 Analysis of diffraction pattern formed by light passing through a narrow slit 
of width D.

(d)sine = §  
Dark

First we consider rays that pass straight through as in Fig. 35-3a. They are all in 
phase, so there w ill be a central bright spot on the screen (see Fig. 35-2c). In 
Fig. 35-3b, we consider rays moving at an angle 0 such that the ray from the top 
of the slit travels exactly one wavelength farther than the ray from the bottom 
edge to reach the screen. The ray passing through the very center of the slit w ill 
travel one-half wavelength farther than the ray at the bottom of the slit. These 
two rays w ill be exactly out of phase with one another and so w ill destructively 
interfere when they overlap at the screen. Similarly, a ray slightly above the 
bottom one w ill cancel a ray that is the same distance above the central one. 
Indeed, each ray passing through the lower half of the slit w ill cancel with a 
corresponding ray passing through the upper half. Thus, all the rays destructively 
interfere in pairs, and so the light intensity w ill be zero on the viewing screen at 
this angle. The angle 0 at which this takes place can be seen from Fig. 35-3b to 
occur when A = D  sin 0, so

SW  = D
[first minimum] (35-1)

The light intensity is a maximum at 0 = 0° and decreases to a minimum 
(intensity = zero) at the angle 0 given by Eq. 35-1.

Now consider a larger angle 0 such that the top ray travels §A farther than 
the bottom ray, as in Fig. 35-3c. In this case, the rays from the bottom third of 
the slit w ill cancel in pairs with those in the middle third because they w ill be A/2 
out of phase. However, light from the top third of the slit w ill s till reach the 
screen, so there w ill be a bright spot centered near sin 0 ~ 3A/2D, but it w ill not 
be nearly as bright as the central spot at 0 = 0°. For an even larger angle 0 such 
that the top ray travels 2A farther than the bottom ray, Fig. 35-3d, rays from the 
bottom quarter of the slit w ill cancel with those in the quarter just above it 
because the path lengths differ by A/2. And the rays through the quarter of the 
slit just above center w ill cancel with those through the top quarter. A t this angle 
there w ill again be a minimum of zero intensity in the diffraction pattern. A  plot 
of the intensity as a function of angle is shown in Fig. 35-4. This corresponds 
well with the photo of Fig. 35-2c. Notice that minima (zero intensity) occur on 
both sides of center at

D  sin 0 = raA, m + 1, ±2, +3, [minima] (35-2)

but not at m = 0 where there is the strongest maximum. Between the minima, 
smaller intensity maxima occur at approximately (not exactly) m « §, §, • • •.

Note that the minima for a diffraction pattern, Eq. 35-2, satisfy a criterion 
that looks very similar to that for the maxima (bright fringes) for double-slit 
interference, Eq. 34-2a. Also note that D  is a single slit width, whereas d  in Eq. 34-2 
is the distance between two slits.

FIGURE 35-4 Intensity in the 
diffraction pattern of a single slit 
as a function of sin 0. Note that the 
central maximum is not only much 
higher than the maxima to each 
side, but it is also twice as wide 
(2A/D wide) as any of the others 
(only A/D  wide each).

A  C A U T I O N
Don’t confuse Eqs 34-2 for interference 
with Eq. 35-1 for diffraction: 
note the differences
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FIGURE 35-6 Example 35-2.

FIGURE 35-7 Slit of width D 
divided into N  strips of width Ay.

EXAMPLE 35-1 Single-slit diffraction maximum. Light of wavelength 
750 nm passes through a slit 1.0 X 10-3mm wide. How wide is the central 
maximum (a) in degrees, and (b) in centimeters, on a screen 20 cm away?

APPROACH The width of the central maximum goes from the first minimum on 
one side to the first minimum on the other side. We use Eq. 35-1 to find the 
angular position of the first single-slit diffraction minimum.
SOLUTION (a) The first minimum occurs at

sin0 = = 0.75.
D  1.0 X 10 m

So 0 = 49°. This is the angle between the center and the first minimum, 
Fig. 35-5. The angle subtended by the whole central maximum, between the 
minima above and below the center, is twice this, or 98°.
(b) The width of the central maximum is 2x, where tan 0 =  x/20 cm. So 
2x =  2(20 cm) (tan 49°) = 46 cm.
NOTE A  large width of the screen w ill be illuminated, but it w ill not normally be 
very bright since the amount of light that passes through such a small slit w ill 
be small and it is spread over a large area. Note also that we cannot use the 
small-angle approximation here (0 « sin0 « tan0 ) because 0 is large.

EXERCISE A In Example 35-1, red light (A = 750 nm) was used. If instead yellow light at 
575 nm had been used, would the central maximum be wider or narrower?

CONCEPTUAL EXAMPLE 35-2 I Diffraction spreads. Light shines through a 
rectangular hole that is narrower in the vertical direction than the horizontal, 
Fig. 35-6. (a) Would you expect the diffraction pattern to be more spread out in 
the vertical direction or in the horizontal direction? (b) Should a rectangular 
loudspeaker horn at a stadium be high and narrow, or wide and flat?
RESPONSE (a) From Eq. 35-1 we can see that if  we make the slit (width D) 
narrower, the pattern spreads out more. This is consistent with our study of 
waves in Chapter 15. The diffraction through the rectangular hole w ill be wider 
vertically, since the opening is smaller in that direction. (b) For a loudspeaker, the 
sound pattern desired is one spread out horizontally, so the horn should be tall 
and narrow (rotate Fig. 35-6 by 90°).

*35-2 Intensity in Single-Slit 
Diffraction Pattern

We have determined the positions of the minima in the diffraction pattern 
produced by light passing through a single slit, Eq. 35-2. We now discuss a method 
for predicting the amplitude and intensity at any point in the pattern using the 
phasor technique already discussed in Section 34-4.

Let us consider the slit divided into N  very thin strips of width Ay  as indicated in 
Fig. 35-7. Each strip sends light in all directions toward a screen on the right. Again 
we take the rays heading for any particular point on the distant screen to be parallel, 
all making an angle 0 with the horizontal as shown. We choose the strip width Ay  to 
be much smaller than the wavelength A of the monochromatic light falling on the slit, 
so all the light from a given strip is in phase. The strips are of equal size, and if the 
whole slit is uniformly illuminated, we can take the electric field wave amplitudes 
A E0 from each thin strip to be equal as long as 0 is not too large. However, the 
separate amplitudes from the different strips w ill differ in phase. The phase difference 
in the light coming from adjacent strips w ill be (see Section 34-4, Eq. 34-4)

Aj8 = Ay sin 0 (35-3)
A

since the difference in path length is Ay sin 0.
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The total amplitude on the screen at any angle 6 w ill be the sum of the separate 
wave amplitudes due to each strip. These wavelets have the same amplitude AE0 
but differ in phase. To obtain the total amplitude, we can use a phasor diagram as 
we did in Section 34-4 (Fig. 34-13). The phasor diagrams for four different angles 6 
are shown in Fig. 35-8. A t the center of the screen, 6 = 0, the waves from each 
strip are all in phase (A/3 = 0, Eq. 35-3), so the arrows representing each AE0 line 
up as shown in Fig. 35-8a. The total amplitude of the light arriving at the center of 
the screen is then E0 =  N  AE0.

FIGURE 35-8 Phasor diagram for single-slit diffraction, giving 
the total amplitude Ed at four different angles 6.

E0( = NAEa)

A Er A Ec
(a) At center, 0=0. (b) Between center and first minimum.

(c) First minimum, Eq= 0 (j8 = 2tt = 360°).

A t a small angle 0, for a point on the distant screen not far from the center, 
Fig. 35-8b shows how the wavelets of amplitude AE0 add up to give Ee , the total 
amplitude on the screen at this angle 6. Note that each wavelet differs in phase 
from the adjacent one by A/3. The phase difference between the wavelets from the 
top and bottom edges of the slit is

(3 =  N  A/3
2tt
—  N  Ay sin 6 
A

277 .
= —  D  sin 6 

A
(35-4)

where D  = N  Ay is the total width of the slit. Although the “ arc” in Fig. 35-8b has 
length N  AE0, and so would equal E0 (total amplitude at 6 =  0), the amplitude of the 
total wave Ee at angle 6 is the vector sum of each wavelet amplitude and so is equal to 
the length of the chord as shown. The chord is shorter than the arc, so Ed <  E0.

For greater 6, we eventually come to the case, illustrated in Fig. 35-8c, where 
the chain of arrows closes on itself. In this case the vector sum is zero, so Ee = 0 
for this angle 6. This corresponds to the first minimum. Since /3 = N  A(3 is 360° or 
277 in this case, we have from Eq. 35-3,

2tt =  N  A/3
(  2 tt

= AM —  Ay sin 0

or, since the slit width D  = N  Ay,

sine  =

Thus the first minimum (Ee =  0) occurs where sin 6 =  A/D, which is the same 
result we obtained in the previous Section, Eq. 35-1.

For even greater values of 6, the chain of arrows spirals beyond 360°. 
Figure 35-8d shows the case near the secondary maximum next to the first 
minimum. Here /3 = N  A/3 « 360° + 180° = 540° or 37t. When greater angles 6 
are considered, new maxima and minima occur. But since the total length of the 
coil remains constant, equal to N  AE0 (= E0), each succeeding maximum is smaller 
and smaller as the coil winds in on itself.
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FIGURE 35-9 Determining 
amplitude Ee as a function of 6 for 
single-slit diffraction.

To obtain a quantitative expression for the amplitude (and intensity) for 
any point on the screen (that is, for any angle 0), we now consider the lim it N  —> oo 
so Ay  becomes the infinitesimal width dy. In this case, the diagrams of Fig. 35-8 
become smooth curves, one of which is shown in Fig. 35-9. For any angle 0, the 
wave amplitude on the screen is Ee, equal to the chord in Fig. 35-9. The length of 
the arc is E0, as before. I f  r is the radius of curvature of the arc, then

Ee . P—  = rsin  — •2 2 
Using radian measure for j8/2, we also have

Eo _ P
2 r 2 

We combine these to obtain
sin B/2

Ee = (35-5)
The angle /3 is the phase difference between the waves from the top and bottom 
edges of the slit. The path difference for these two rays is D  sin 0 (see Fig. 35-7 as 
well as Eq. 35-4), so

/3 = - p  D  sin 8. (35-6)
A

Intensity is proportional to the square of the wave amplitude, so the intensity Ie at 
any angle 0 is, from Eq. 35-5,

(  sin @/2\2
*  = \ f i j r )  (35_7)

where I0 (oc Eq) is the intensity at 9 = 0 (the central maximum). We can combine 
Eqs. 35-7 and 35-6 (although it is often simpler to leave them as separate 
equations) to obtain

7rD  sin 0
sin

ttD  sin 6 (35-8)

A
According to Eq. 35-8, minima ( le = 0) occur where sin(7rDsin0/A) = 0, 

which means ttD  sin 0/A must be 77, 2ir, 377, and so on, or

D sin0 = raA, m  = 1,2,3, ••• [minima]

which is what we have obtained previously, Eq. 35-2. Notice that m  cannot be 
zero: when /3/2 = 7rZ)sin0/A = 0, the denominator as well as the numerator in 
Eqs. 35-7 or 35-8 vanishes. We can evaluate the intensity in this case by taking the 
lim it as 0 —» 0 (or /3 —> 0); for very small angles, sin/3/2 « (3/2, so 
(sin/3/2)/(jS/2) —> 1 and Ie =  70, the maximum at the center of the pattern.

The intensity Ie as a function of 0, as given by Eq. 35-8, corresponds to the 
diagram of Fig. 35-4.

■ ESTIMATE I Intensity at secondary maxima. Estimate the
intensities of the first two secondary maxima to either side of the central 
maximum.

APPROACH The secondary maxima occur close to halfway between the minima, 
at about

/3 ttD  sin 0 . u .
-  = ----------- « (m + i)TT. m  = 1,2,3,•••

The actual maxima are not quite at these points— their positions can be determined 
by differentiating Eq. 35-7 (see Problem 14)— but we are only seeking an estimate. 
SOLUTION Using these values for f3 in Eq. 35-7 or 35-8, with sin(m + 5)77 = 1, gives

Ie = ?— r W r  m = 1’ 2’ 3> '"(ra + 2) 77
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For m  = 1 and 2, we get

= 617 = ° 0167°- [m = 2]

The first maximum to the side of the central peak has only 1/22, or 4.5%, the 
intensity of the central peak, and succeeding ones are smaller still, just as we can 
see in Fig. 35-4 and the photo of Fig. 35-2c.

D iffraction by a circular opening produces a similar pattern (though circular 
rather than rectangular) and is of great practical importance, since lenses are 
essentially circular apertures through which light passes. We w ill discuss this in 
Section 35-4 and see how diffraction limits the resolution (or sharpness) of images.

^  =  2 2 2  =  ° -0457° [m =  1]

*35-3 Diffraction in the Double-Slit 
Experiment

When we analyzed Young’s double-slit experiment in Section 34-4, we assumed 
that the central portion of the screen was uniformly illuminated. This is equivalent 
to assuming the slits are infinitesimally narrow, so that the central diffraction peak 
is spread out over the whole screen. This can never be the case for real slits; 
diffraction reduces the intensity of the bright interference fringes to the side of 
center so they are not all of the same height as they were shown in Fig. 34-14. 
(They were shown more correctly in Fig. 34-9b.)

To calculate the intensity in a double-slit interference pattern, including 
diffraction, let us assume the slits have equal widths D  and their centers are 
separated by a distance d. Since the distance to the screen is large compared to the 
slit separation d, the wave amplitude due to each slit is essentially the same at each 
point on the screen. Then the total wave amplitude at any angle 6 w ill no longer be

g
Eeo =  2E0 c o s  — >

as was given by Eq. 34-5b. Rather, it must be modified, because of diffraction, by 
Eq. 35-5, so that

( sin/3/2^ 8
eo =  \ ~ p /2~ J  cos 2

Thus the intensity w ill be given by

r (  s in /3 /2 \2/'

“ H  m  ) Vh  =  J o l- ^ - 1  I c o s -] (35-9)

where /0 = 4£ q, and from Eqs. 35-6 and 34-4 we have

(3 7T ^ . 8 77 , .
—  = —  D sin0 and — = a sm 6.
2 A 2 A
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10° 5° 0 5° 10°
(a) Diffraction factor, (sin2/3/2)/(/3/2)2 vs. 6

V V V |V V V V V |V V V V V |V V V V V |V V V V V |V V V 0

10° 5° 0 5° 10°
(b) Interference factor, cos2 ^ vs. 6

FIGURE 35-10
(a) Diffraction factor,
(b) interference factor, and
(c) the resultant intensity Ie, 
plotted as a function of 6 
for d = 6D = 60A.

(c) Intensity, I q v s .  6

Equation 35-9 for the intensity in a double-slit pattern, as we just saw, is

FIGURE 35-11 Photographs of a 
double-slit interference pattern using 
a laser beam showing effects of 
diffraction. In both cases d = 0.50 mm, 
whereas D = 0.040 mm in (a) and 
0.080 mm in (b).

(b)
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0/2
8

C O S  —  
2

(35-9)

The first term in parentheses is sometimes called the “diffraction factor” and the second 
one the “ interference factor.” These two factors are plotted in Fig. 35-10a and b for the 
case when d  =  6D , and D  =  10A. (Figure 35-10b is essentially the same as 
Fig. 34-14.) Figure 35-10c shows the product of these two curves (times 70) which is 
the actual intensity as a function of 0 (or as a function of position on the screen for 6 
not too large) as given by Eq. 35-9. As indicated by the dashed lines in Fig. 35-10c, the 
diffraction factor acts as a sort of envelope that limits the interference peaks.

Diffraction plus interference. Show why the central diffrac­
tion peak in Fig. 35-10c contains 11 interference fringes.
APPROACH The first minimum in the diffraction pattern occurs wherefirst 

• „ A sme = - -  

Since d  =  6D,

d  sin 0 =  6D  I I = 6A.

SOLUTION From Eq. 34-2a, interference peaks (maxima) occur for d  sin 0 =  raA 
where ra can be 0,1,••• or any integer. Thus the diffraction minimum 
(d  sin 6 =  6A) coincides with tn =  6 in the interference pattern, so the m  =  6 
peak won’t appear. Hence the central diffraction peak encloses the central 
interference peak (ra = 0) and five peaks ( ra = 1 to 5) on each side for a total 
of 11. Since the sixth order doesn’t appear, it is said to be a “ missing order.”

Notice from Example 35-4 that the number o f interference fringes in the 
central diffraction peak depends only on the ratio d /D .  I t  does not depend on 
wavelength A. The actual spacing (in angle, or in position on the screen) does 
depend on A. For the case illustrated, D  =  10A, and so the first diffraction 
minimum occurs at sin0 = X /D  =  0.10 or about 6°.

The decrease in intensity of the interference fringes away from the center, as 
graphed in Fig. 35-10, is shown in Fig. 35-11.



Interference vs. Diffraction
The patterns due to interference and diffraction arise from the same phenomenon—  
the superposition of coherent waves of different phase. The distinction between them 
is thus not so much physical as for convenience of description, as in this Section 
where we analyzed the two-slit pattern in terms of interference and diffraction 
separately. In general, we use the word “ diffraction” when referring to an analysis by 
superposition of many infinitesimal and usually contiguous sources, such as when we 
subdivide a source into infinitesimal parts. We use the term “ interference” when we 
superpose the wave from a finite (and usually small) number of coherent sources.

35-4 Limits of Resolution; 
Circular Apertures

The ability of a lens to produce distinct images of two point objects very close 
together is called the resolution of the lens. The closer the two images can be and 
still be seen as distinct (rather than overlapping blobs), the higher the resolution. 
The resolution of a camera lens, for example, is often specified as so many dots or 
lines per millimeter, as mentioned in Section 33-5.

Two principal factors lim it the resolution of a lens. The first is lens aberrations. 
As we saw in Chapter 33, because of spherical and other aberrations, a point 
object is not a point on the image but a tiny blob. Careful design of compound 
lenses can reduce aberrations significantly, but they cannot be eliminated entirely. 
The second factor that limits resolution is diffraction, which cannot be corrected 
for because it is a natural result of the wave nature of light. We discuss it now.

In Section 35-1, we saw that because light travels as a wave, light from a point 
source passing through a slit is spread out into a diffraction pattern (Figs. 35-2 and 
35-4). A  lens, because it has edges, acts like a round slit. When a lens forms the 
image of a point object, the image is actually a tiny diffraction pattern. Thus an 
image would be blurred even if  aberrations were absent.

In the analysis that follows, we assume that the lens is free of aberrations, so 
we can concentrate on diffraction effects and how much they lim it the resolution 
of a lens. In Fig. 35-4 we saw that the diffraction pattern produced by light 
passing through a rectangular slit has a central maximum in which most of the 
light falls. This central peak falls to a minimum on either side of its center at an 
angle 6 given by sin0 = X /D  (this is Eq. 35-1), where D  is the slit width and A 
the wavelength of light used. 0 is the angular half-width of the central maximum, 
and for small angles can be written

0 « sin 6 =  ~

There are also low-intensity fringes beyond.
For a lens, or any circular hole, the image of a point object w ill consist of a 

circular central peak (called the diffraction spot or Airy disk) surrounded by faint 
circular fringes, as shown in Fig. 35-12a. The central maximum has an angular half 
width given by

= L22A 
D

where D  is the diameter of the circular opening. This is a theoretical result for a 
perfect circle or lens. For real lenses or circles, the factor is on the order of 1 to 2. 
This formula differs from that for a slit (Eq. 35-1) by the factor 1.22. This factor 
appears because the width of a circular hole is not uniform (like a rectangular slit) 
but varies from its diameter D  to zero. A  mathematical analysis shows that the 
“ average” width is D/1.22. Hence we get the equation above rather than Eq. 35-1. 
The intensity of light in the diffraction pattern from a point source of light passing 
through a circular opening is shown in Fig. 35-13. The image for a non-point 
source is a superposition of such patterns. For most purposes we need consider 
only the central spot, since the concentric rings are so much dimmer.

I f  two point objects are very close, the diffraction patterns of their images w ill 
overlap as shown in Fig. 35-12b. As the objects are moved closer, a separation is

I  (b)
FIGURE 35-12 Photographs of 
images (greatly magnified) formed 
by a lens, showing the diffraction 
pattern of an image for: (a) a single 
point object; (b) two point objects 
whose images are barely resolved.

FIGURE 35-13 Intensity of light 
across the diffraction pattern of a 
circular hole.

Intensity
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criterion. Two images are just 
resolvable when the center of the 
diffraction peak of one is directly 
over the first minimum in the 
diffraction pattern of the other. The 
two point objects O and O' subtend 
an angle 6 at the lens; only one ray 
(it passes through the center of the 
lens) is drawn for each object, to 
indicate the center of the diffraction 
pattern of its image.

FIGURE 35-15 Hubble Space 
Telescope, with Earth in the 
background. The flat orange panels 
are solar cells that collect energy 
from the Sun.

0 P H Y S I C S  A P P L I E D
How well the eye can see

reached where you can’t tell if  there are two overlapping images or a single image. 
The separation at which this happens may be judged differently by different 
observers. However, a generally accepted criterion is that proposed by Lord 
Rayleigh (1842-1919). This Rayleigh criterion states that two images are just 
resolvable when the center o f  the diffraction disk o f  one image is directly over the 
first minimum in the diffraction pattern o f  the other. This is shown in Fig. 35-14. 
Since the first minimum is at an angle 0 = 1.22A/D  from the central maximum, 
Fig. 35-14 shows that two objects can be considered just resolvable if  they are 
separated by at least an angle 0 given by

Q =
1.22 A 

D
[0 in radians] (35-10)

In this equation, D  is the diameter of the lens, and applies also to a m irror diameter. 
This is the lim it on resolution set by the wave nature of light due to diffraction. A  
smaller angle means better resolution: you can make out closer objects. We see 
from Eq. 35-10 that using a shorter wavelength A can reduce 0 and thus increase 
resolution.

EXERCISE B Green light (550 nm) passes through a 25-mm-diameter camera lens. What 
is the angular half-width of the resulting diffraction pattern? (a) 2.7 X IO-5 degrees, 
(b) 1.5 X 1(T3 degrees, (c) 3.2°, (d) 27°, (e) 1.5 X 103 degrees.

I u lJI Hubble Space Telescope. The Hubble Space Telescope (HST)
is a reflecting telescope that was placed in orbit above the Earth’s atmosphere, so 
its resolution would not be limited by turbulence in the atmosphere (Fig. 35-15). 
Its objective diameter is 2.4 m. For visible light, say A = 550 nm, estimate the 
improvement in resolution the Hubble offers over Earth-bound telescopes, which 
are limited in resolution by movement of the Earth’s atmosphere to about half an 
arc second. (Each degree is divided into 60 minutes each containing 60 seconds, 
so 1° = 3600 arc seconds.)

APPROACH Angular resolution for the Hubble is given (in radians) by Eq. 35-10. 
The resolution for Earth telescopes is given, and we first convert it to radians so 
we can compare.
SOLUTION Earth-bound telescopes are limited to an angular resolution of 

1 \ ° ( 2ir rad
3600/ V 360c ■ = 2-4 x  10-rad.

The Hubble, on the other hand, is limited by diffraction (Eq. 35-10) which for 
A = 550 nm is

0 =
1.22 A 1.22(550 X IO-9 m)

2.8 X 10-7 rad,
D  2.4 m

thus giving almost ten times better resolution (2.4 X IO-6 rad/2.8 X 10“7rad « 9x).

Eye resolution. You are in an airplane at anEXAMPLE 35-6 ESTIMATE
altitude of 10,000 m. If  you look down at the ground, estimate the minimum 
separation s between objects that you could distinguish. Could you count cars in a 
parking lot? Consider only diffraction, and assume your pupil is about 3.0 mm in 
diameter and A = 550 nm.

APPROACH We use the Rayleigh criterion, Eq. 35-10, to estimate 0. The 
separation s of objects is s =  id, where i  =  104m and 0 is in radians. 
SOLUTION In Eq. 35-10, we set D  =  3.0 mm for the opening of the eye:

s =  id =  i
1.22A (lO4 m)(1.22)(550 X l(T 9m)

3.0 X 10-3m
= 2.2 m.

Yes, you could just resolve a car (roughly 2 m wide by 3 or 4 m long) and count them.
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35—5 Resolution o f Telescopes and 
Microscopes; the A Limit

You might think that a microscope or telescope could be designed to produce any 
desired magnification, depending on the choice of focal lengths and quality of the 
lenses. But this is not possible, because of diffraction. An increase in magnification 
above a certain point merely results in magnification of the diffraction patterns. This 
can be highly misleading since we might think we are seeing details of an object 
when we are really seeing details of the diffraction pattern. To examine this problem, 
we apply the Rayleigh criterion: two objects (or two nearby points on one object) are 
just resolvable if they are separated by an angle 6 (Fig. 35-14) given by Eq. 35-10:

1.22A
e = ^ r -

This formula is valid for either a microscope or a telescope, where D  is the 
diameter of the objective lens or mirror. For a telescope, the resolution is specified 
by stating 6 as given by this equation.1

Telescope resolution (radio wave vs. visible light). What 
is the theoretical minimum angular separation of two stars that can just be 
resolved by (a) the 200-inch telescope on Palomar Mountain (Fig. 33-38c); and
(b) the Arecibo radiotelescope (Fig. 35-16), whose diameter is 300 m and whose 
radius of curvature is also 300 m. Assume A = 550 nm for the visible-light 
telescope in part (a), and A = 4cm (the shortest wavelength at which the 
radiotelescope has been operated) in part (b).

APPROACH We apply the Rayleigh criterion (Eq. 35-10) for each telescope. 
SOLUTION (a) Since D  =  200 in. = 5.1 m, we have from Eq. 35-10 that

n 1.22A (1.22)(5.50 X 10-7m) . _  7 
9 =  — —  =   — —    = 1.3 x  10 rad,

D  (5.1 m)

or 0.75 X 10-5 deg. (Note that this is equivalent to resolving two points less than
1 cm apart from a distance of 100 km!)
(b) For radio waves with A = 0.04 m emitted by stars, the resolution is

(1.22) (0.04 m)6 =  K x ; = 1.6 X 10 rad.
(300 m)

The resolution is less because the wavelength is so much larger, but the larger 
objective collects more radiation and thus detects fainter objects.
NOTE In both cases, we determined the lim it set by diffraction. The resolution 
for a visible-light Earth-bound telescope is not this good because of aberrations 
and, more importantly, turbulence in the atmosphere. In fact, large-diameter 
objectives are not justified by increased resolution, but by their greater 
light-gathering ability— they allow more light in, so fainter objects can be seen. 
Radiotelescopes are not hindered by atmospheric turbulence, and the resolution 
found in (b) is a good estimate.

f Earth-bound telescopes with large-diameter objectives are usually limited not by diffraction but by 
other effects such as turbulence in the atmosphere. The resolution of a high-quality microscope, on the 
other hand, normally is limited by diffraction; microscope objectives are complex compound lenses 
containing many elements of small diameter (since /  is small), thus reducing aberrations.

FIGURE 35-16 The 300-meter 
radiotelescope in Arecibo, Puerto 
Rico, uses radio waves (Fig. 31-12) 
instead of visible light.
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For a microscope, it is more convenient to specify the actual distance, s, 
between two points that are just barely resolvable: see Fig. 35-14. Since objects 
are normally placed near the focal point of the microscope objective, the angle 
subtended by two objects is 6 =  s / f ,  so s =  fd . I f  we combine this with 
Eq. 35-10, we obtain the resolving power (RP) of a microscope

1.22A/
fe = — (35-11)RP = 5

D
where /  is the objective lens’ focal length (not frequency). This distance s is called the 
resolving power of the lens because it is the minimum separation of two object points 
that can just be resolved— assuming the highest quality lens since this lim it is imposed 
by the wave nature of light. A  smaller RP means better resolution, better detail.

A limits resolution

EXERCISE C What is the resolving power of a microscope with a 5-mm-diameter objective 
| which has /  = 9 mm? (a) 550 nm, (b) 750 nm, (c) 1200 nm, (d) 0.05 nm, (e) 0.005 nm.

Diffraction sets an ultimate lim it on the detail that can be seen on any object. 
In Eq. 35-11 for resolving power of a microscope, the focal length of the lens 
cannot practically be made less than (approximately) the radius of the lens, and 
even that is very difficult (see the lensmaker’s equation, Eq. 33-4). In this best 
case, Eq. 35-11 gives, with /  « D /2.

(35-12)

*

Thus we can say, to within a factor of 2 or so, that

it is not possible to resolve detail of objects smaller than the wavelength of the 
radiation being used.

This is an important and useful rule of thumb.
Compound lenses in microscopes are now designed so well that the actual lim it 

on resolution is often set by diffraction— that is, by the wavelength of 
the light used. To obtain greater detail, one must use radiation of shorter 
wavelength. The use of UV radiation can increase the resolution by a factor 
of perhaps 2. Far more important, however, was the discovery in the early 
twentieth century that electrons have wave properties (Chapter 37) and that their 
wavelengths can be very small. The wave nature of electrons is utilized in the electron 
microscope (Section 37-8), which can magnify 100 to 1000 times more than a visible- 
light microscope because of the much shorter wavelengths. X-rays, too, have very 
short wavelengths and are often used to study objects in great detail (Section 35-10).

35—6 Resolution of the Human Eye and 
Useful Magnification

The resolution of the human eye is limited by several factors, all of roughly 
the same order of magnitude. The resolution is best at the fovea, where the 
cone spacing is smallest, about 3 /u-m (=3000nm). The diameter of the pupil 
varies from about 0.1 cm to about 0.8 cm. So for A = 550 nm (where the eye’s 
sensitivity is greatest), the diffraction lim it is about 6 « 1.22k/D  ~ 8 X 10“5 rad to
6 X 10“4rad. The eye is about 2 cm long, giving a resolving power (Eq. 35-11) of 
i ~ ( 2 x  10“2m)(8 X 10_5rad) « 2 /im  at best, to about 10/xm at worst (pupil 
small). Spherical and chromatic aberration also lim it the resolution to about 10 /Am. 
The net result is that the eye can just resolve objects whose angular separation is 
around r -.

best eye 
[resolution]5 X 10-4 rad.

CHAPTER 35

This corresponds to objects separated by 1 cm at a distance of about 20 m.
The typical near point of a human eye is about 25 cm. A t this distance, the eye 

can just resolve objects that are (25cm)(5 X 10_4rad) » 10_4m = ^m m  apart. 
Since the best light microscopes can resolve objects no smaller than about 200 nm 
at best (Eq. 35-12 for violet light, A = 400 nm ), the useful magnification



[= (resolution by naked eye)/(resolution by microscope)] is limited to about
10“4 m

200 X 1(T9
500 X

m [ maximum useful 
microscope magnification]

In practice, magnifications of about 1000 X are often used to minimize eyestrain. 
Any greater magnification would simply make visible the diffraction pattern 
produced by the microscope objective lens.

Now you have the answers to the Chapter-Opening Question: (c), by the 
equation above, and (c) by the A rule.

35—7 Diffraction Grating
A  large number of equally spaced parallel slits is called a diffraction grating, 
although the term “ interference grating” might be as appropriate. Gratings can be 
made by precision machining of very fine parallel lines on a glass plate. The 
untouched spaces between the lines serve as the slits. Photographic transparencies 
of an original grating serve as inexpensive gratings. Gratings containing 10,000 
lines per centimeter are common, and are very useful for precise measurements of 
wavelengths. A  diffraction grating containing slits is called a transmission grating. 
Another type of diffraction grating is the reflection grating, made by ruling fine 
lines on a metallic or glass surface from which light is reflected and analyzed. The 
analysis is basically the same as for a transmission grating, which we now discuss.

The analysis of a diffraction grating is much like that of Young’s double-slit 
experiment. We assume parallel rays of light are incident on the grating as shown 
in Fig. 35-17. We also assume that the slits are narrow enough so that diffraction 
by each of them spreads light over a very wide angle on a distant screen beyond 
the grating, and interference can occur with light from all the other slits. Light rays 
that pass through each slit without deviation (0 =  0°) interfere constructively to 
produce a bright line at the center of the screen. Constructive interference also 
occurs at an angle 6 such that rays from adjacent slits travel an extra distance of 
M  =  raA, where ra is an integer. I f  d  is the distance between slits, then we see 
from Fig. 35-17 that M  = d  sin0, and

diffractionra = 0,1,2, grating, 1
naxima J v 7[  principal maxima

is the criterion to have a brightness maximum. This is the same equation as for the 
double-slit situation, and again ra is called the order of the pattern.

There is an important difference between a double-slit and a m ultiple-slit 
pattern. The bright maxima are much sharper and narrower for a grating. Why? 
Suppose that the angle 6 is increased just slightly beyond that required for a 
maximum. In the case of only two slits, the two waves w ill be only slightly out 
of phase, so nearly fu ll constructive interference occurs. This means the maxima 
are wide (see Fig. 34-9). For a grating, the waves from two adjacent slits w ill also 
not be significantly out of phase. But waves from one slit and those from a 
second one a few hundred slits away may be exactly out of phase; all or nearly 
all the light can cancel in pairs in this way. For example, suppose the angle 0 
is very slightly different from its first-order maximum, so that the extra path 
length for a pair of adjacent slits is not exactly A but rather 1.0010A. The wave 
through one slit and another one 500 slits below w ill have a path difference of 
1A + (500)(0.0010A) = 1.5000A, or 1 \  wavelengths, so the two w ill cancel. A  pair 
of slits, one below each of these, w ill also cancel. That is, the light from slit 1 
cancels with that from slit 501; light from slit 2 cancels with that from slit 502, 
and so on. Thus even for a tiny anglef corresponding to an extra path length 
of o tA , there is much destructive interference, and so the maxima are very 
narrow. The more lines there are in a grating, the sharper w ill be the peaks 
(see Fig. 35-18). Because a grating produces much sharper lines than two slits 
alone can (and much brighter lines because there are many more slits), a grating 
is a far more precise device for measuring wavelengths.

depending on the total number of slits, there may or may not be complete cancellation for such an 
angle, so there will be very tiny peaks between the main maxima (see Fig. 35-18b), but they are usually 
much too small to be seen.

Diffraction grating is analyzed 
using interference formulas, not 

diffraction formulas

FIGURE 35-18 Intensity as a 
function of viewing angle 0 (or 
position on the screen) for (a) two 
slits, (b) six slits. For a diffraction 
grating, the number of slits is very 
large («104) and the peaks are 
narrower still.

AAA
m = 1 ra = 0 ra = 1

(a)

.a a |a ^a a |a ^^a |a a ,_
ra = 1 ra = 0 ra = 1

(b)
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FIGURE 35-19 Spectra produced by a 
grating: (a) two wavelengths, 400 nm and 
700 nm; (b) white light. The second order 
will normally be dimmer than the first 
order. (Higher orders are not shown.)
If grating spacing is small enough, the 
second and higher orders will be missing.

Suppose the light striking a diffraction grating is not monochromatic, but consists 
of two or more distinct wavelengths. Then for all orders other than m =  0, each wave­
length w ill produce a maximum at a different angle (Fig. 35-19a), just as for a double 
slit. If white light strikes a grating, the central (ra = 0) maximum will be a sharp white 
peak. But for all other orders, there w ill be a distinct spectrum of colors spread out over 
a certain angular width, Fig. 35-19b. Because a diffraction grating spreads out light into 
its component wavelengths, the resulting pattern is called a spectrum.

m = 2 m = 2m=l m= 1 m = 0 m= 1 m = 1 m = 2 m = 2

700 400 700 400 Both A 400 700 400 700
nm nm nm nm

(a)
nm nm nm nm

m = 2 m = 1 m = 0 m = 1 m = 2

■ ■
Rainbow Rainbow White Rainbow Rainbow
(fainter)

(b)
(fainter)

EXAMPLE 35-8 Diffraction grating: lines. Determine the angular positions 
of the first- and second-order maxima for light of wavelength 400 nm and 700 nm 
incident on a grating containing 10,000 lines/cm.

APPROACH First we find the distance d  between grating lines: if the grating 
has N  lines in lm , then the distance between lines must be d =  1 /N  meters. 
Then we use Eq. 35-13, sin 0 = mX/d, to find the angles for the two wavelengths 
for ra = 1 and 2 .
SOLUTION The grating contains 1.00 X 104 lines/cm = 1.00 X 106 lines/m, 
which means the distance between lines is d =  (l/l.OO X 106)m  =
1.00 X 10“6m = 1.00 fim. In first order (ra = 1), the angles are

m \  (1)(4.00 X 10-7 m) ____
sin 04OO = =  — — — ---- — 7------  = 0.400

d 1.00 X 10 m

(1)(7.00 X 10-7m)
sin 07oo = ---- — r----- - =  0.700

1.00 X 10 m

so 04OO = 23.6° and 07OO = 44.4°. In second order,

2A (2)(4.00 X 10~7m)
sin 04OO = —  = — ------------ 7----- - = 0.800

400 d 1.00 X 10 m

(2) (7.00 X 10-7 m)
sin 07OO = — ------------ t----- - = 1.40

700 1.00 X 10 m

so 04OO = 53.1°. But the second order does not exist for A = 700 nm because 
sin0 cannot exceed 1. No higher orders w ill appear.

I frf J  iMJI * V g l  Spectra overlap. White light containing wavelengths from 
400 nm to 750 nm strikes a grating containing 4000 lines/cm. Show that the blue 
at A = 450 nm of the third-order spectrum overlaps the red at 700 nm of the 
second order.

APPROACH We use sin 0 = m X /d  to calculate the angular positions of the ra = 3 
blue maximum and the ra = 2 red one.
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SOLUTION The grating spacing is d =  (1/4000) cm = 2.50 X 10 6m. The blue 
of the third order occurs at an angle 0 given by

mX (3)(4.50 X 10-7 m) 
sin0 = —  = ^  = 0.540.

d  (2.50 X 10 m)

Red in second order occurs at

(2)(7.00 X 10-7 m) 
sin0 = ^  = 0.560,

(2.50 X 10 m)

which is a greater angle; so the second order overlaps into the beginning of the 
third-order spectrum.

CONCEPTUAL EXAMPLE 55-10 I Compact disk. When you look at the FIGURE 35-20 A compact disk,
surface of a music CD (Fig. 35-20), you see the colors of a rainbow, (a) Estimate the Example 35-10. 
distance between the curved lines (they are read by a laser). (b) Estimate the distance 
between lines, noting that a CD contains at most 80 min of music, that it rotates at 
speeds from 200 to 500 rev/m in, and that \  of its 6 cm radius contains the lines.

RESPONSE (a) The CD acts like a reflection diffraction grating. To satisfy 
Eq. 35-13, we might estimate the line spacing as one or a few (2 or 3) wavelengths 
(A « 550 nm) or 0.5 to 1.5 /xm. (b) Average rotation speed of 350 rev/m in times 
80 min gives 28,000 total rotations or 28,000 lines, which are spread over 
(|)(6 cm) = 4 cm. So we have a sort of reflection diffraction grating with about 
(28,000 lines)/(4 cm) = 7000 lines/cm. The distance d  between lines is roughly
1 cm/7000 lines « 1.4 X 10_6m = 1.4 /xm. Our results in (a) and (b) agree.

35-8 The Spectrometer and Spectroscopy
A  spectrometer or spectroscope, Fig. 35-21, is a device to measure wavelengths FIGURE 35-21 Spectrometer or 
accurately using a diffraction grating (or a prism) to separate different wavelengths spectroscope, 
of light. Light from a source passes through a narrow slit S in the “ collimator.” The 
slit is at the focal point of the lens L, so parallel light falls on the grating.
The movable telescope can bring the rays to a focus. Nothing w ill be seen in the 
viewing telescope unless it is positioned at an angle 0 that corresponds to a diffraction 
peak (first order is usually used) of a wavelength emitted by the source. The 
angle 0 can be measured to very high accuracy, so the wavelength of a line can be 
determined to high accuracy using Eq. 35-13: 

d  • „A = — sin 0, 
m

where m is an integer representing the order, and d  is the distance between grating 
lines. The line you see in a spectrometer corresponding to each wavelength is actu­
ally an image of the slit S. A  narrower slit results in dimmer light but we can 
measure the angular positions more precisely. I f  the light contains a continuous 
range of wavelengths, then a continuous spectrum is seen in the spectroscope.

The spectrometer in Fig. 35-21 uses a transmission grating. Others may use a 
reflection grating, or sometimes a prism. A  prism works because of dispersion 
(Section 32-6), bending light of different wavelengths into different angles. (A  prism 
is not a linear device and must be calibrated.)

An important use of a spectrometer is for the identification of atoms or molecules.
When a gas is heated or an electric current is passed through it, the gas emits a 
characteristic line spectrum. That is, only certain discrete wavelengths of light are 
emitted, and these are different for different elements and compounds.* Figure 35-22 
shows the line spectra for a number of elements in the gas state. Line spectra occur 
only for gases at high temperatures and low pressure and density. The light from 
heated solids, such as a lightbulb filament, and even from a dense gaseous object such 
as the Sun, produces a continuous spectrum including a wide range of wavelengths.

tWhy atoms and molecules emit line spectra was a great mystery for many years and played a central 
role in the development of modern quantum theory, as we shall see in Chapter 37.
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Atomic hydrogen

Mercury

Sodium

Solar absorption spectrum

FIGURE 35-22 Line spectra for 
the gases indicated, and the 
spectrum from the Sun showing 
absorption lines.

P H Y S I C S  A P P L I E D
Chemical and biochemical analysis 
by spectroscopy

Figure 35-22 also shows the Sun’s “ continuous spectrum,” which contains a 
number of dark lines (only the most prominent are shown), called absorption lines. 
Atoms and molecules can absorb light at the same wavelengths at which they emit light. 
The Sun’s absorption lines are due to absorption by atoms and molecules in the 
cooler outer atmosphere of the Sun, as well as by atoms and molecules in the Earth’s 
atmosphere. A  careful analysis of all these thousands of lines reveals that at least 
two-thirds of all elements are present in the Sun’s atmosphere. The presence of 
elements in the atmosphere of other planets, in interstellar space, and in stars, is 
also determined by spectroscopy.

Spectroscopy is useful for determining the presence of certain types of 
molecules in laboratory specimens where chemical analysis would be difficult. For 
example, biological DNA and different types of protein absorb light in particular 
regions of the spectrum (such as in the UV). The material to be examined, which is 
often in solution, is placed in a monochromatic light beam whose wavelength is 
selected by the placement angle of a diffraction grating or prism. The amount of 
absorption, as compared to a standard solution without the specimen, can reveal 
not only the presence of a particular type of molecule, but also its concentration.

Light emission and absorption also occur outside the visible part of the 
spectrum, such as in the UV and IR  regions. Glass absorbs light in these regions, so 
reflection gratings and mirrors (in place of lenses) are used. Special types of film  
or sensors are used for detection.

EXAMPLE 35-11 Hydrogen spectrum. Light emitted by hot hydrogen 
gas is observed with a spectroscope using a diffraction grating having
1.00 X 104 lines/cm. The spectral lines nearest to the center (0°) are a violet line 
at 24.2°, a blue line at 25.7°, a blue-green line at 29.1°, and a red line at 41.0° from 
the center. What are the wavelengths of these spectral lines of hydrogen? 
APPROACH The wavelengths can be determined from the angles by using 
A = (d /m )  sin 0 where d  is the spacing between slits, and m is the order of the 
spectrum (Eq. 35-13).
SOLUTION Since these are the closest lines to 0 = 0°, this is the first-order
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spectrum (m  = 1). The slit spacing is d  = l/( l.0 0  X 104cm x) =1.00 X 10 
The wavelength of the violet line is

d \  . . ( 1.00 X 1(T6

- 6 m.

A = I —  
m

sin0 =
m

sin 24.2° = 4.10 X 10“7m = 410 nm.

The other wavelengths are:
blue: A = (l.OO X 10-6 m) sin 25.7° = 434 nm,

blue-green: A = (l.OO X 10_6m) sin 29.1° = 486 nm, 
red: A = (l.OO X 10-6m) sin 41.0° = 656 nm.

NOTE In an unknown mixture of gases, these four spectral lines need to be seen 
to identify that the mixture contains hydrogen.



35—9 Peak Widths and Resolving 
Power for a Diffraction Grating

We now look at the pattern of maxima produced by a multiple-slit grating using 
phasor diagrams. We can determine a formula for the width of each peak, and we 
w ill see why there are tiny maxima between the principal maxima, as indicated in 
Fig. 35-18b. First of all, it should be noted that the two-slit and six-slit patterns 
shown in Fig. 35-18 were drawn assuming very narrow slits so that diffraction does 
not lim it the height of the peaks. For real diffraction gratings, this is not normally 
the case: the slit width D  is often not much smaller than the slit separation d , and 
diffraction thus limits the intensity of the peaks so the central peak (m = 0) is 
brighter than the side peaks. We won’t worry about this effect on intensity except 
to note that if a diffraction minimum coincides with a particular order of the inter­
ference pattern, that order w ill not appear. (For example, if d = 2D, all the even 
orders, m =  2, 4, • • •, w ill be missing. Can you see why? Hint: See Example 35-4.)

Figures 35-23 and 35-24 show phasor diagrams for a two-slit and a six-slit grating, 
respectively. Each short arrow represents the amplitude of a wave from a single slit, 
and their vector sum (as phasors) represents the total amplitude for a given viewing 
angle 0. Part (a) of each Figure shows the phasor diagram at 0 = 0°, at the center of 
the pattern, which is the central maximum (ra = 0). Part (b) of each Figure shows the 
condition for the adjacent minimum: where the arrows first close on themselves (add to 
zero) so the amplitude Ed is zero. For two slits, this occurs when the two separate ampli­
tudes are 180° out of phase. For six slits, it occurs when each amplitude makes a 60° 
angle with its neighbor. For two slits, the minimum occurs when the phase between slits 
is 8 = 2t t/2 (in radians); for six slits it occurs when the phase 8 is 2tt/6; and in the 
general case of N  slits, the minimum occurs for a phase difference between adjacent 
slits of

8 = ~  (35-14)
N

What does this correspond to in 0? First note that 8 is related to 0 by (Eq. 34-4)
8 _  d sin 6 

2tt A
Let us call A0O the angular position of the minimum next to the peak at 0 = 0. 
Then

or cs 27T8 = —— d  sin 0. 
A (35-15)

_8_
2tt

d sin A 0r

sinA0n = (35-16a)

» A0O, so

(35-16b)

We insert Eq. 35-14 for 8 and find 
A

N d
Since A0O is usually small (N  is usually very large for a grating), sin A0O 
in the small angle lim it we can write

Ae° = w
It is clear from either of the last two relations that the larger N  is, the narrower w ill 
be the central peak. (For N  =  2, sin A0O = A/2d, which is what we obtained 
earlier for the double slit, Eq. 34-2b with ra = 0 .)

Either of Eqs. 35-16 shows why the peaks become narrower for larger N. The 
origin of the small secondary maxima between the principal peaks (see Fig. 35-18b) 
can be deduced from the diagram of Fig. 35-25. This is just a continuation of 
Fig. 35-24b (where 8 =  60°); but now the phase 8 has been increased to almost 90°, 
where Ee is a relative maximum. Note that Ee is much less than E0 (Fig. 35-24a), so 
the intensity in this secondary maximum is much smaller than in a principal peak. 
As 8 (and 0) is increased further, Ee again decreases to zero (a “double circle” ), then 
reaches another tiny maximum, and so on. Eventually the diagram unfolds again and 
when 8 =  360°, all the amplitudes again lie in a straight line (as in Fig. 35-24a) 
corresponding to the next principal maximum (ra = 1 in Eq. 35-13).

(a) Central maximum: 6= 0, 8= 0 

E =0
180°

(b) Minimum: 8= 180°
FIGURE 35-23 Phasor diagram for 
two slits (a) at the central maximum,
(b) at the nearest minimum.

FIGURE 35-24 Phasor diagram for 
six slits (a) at the central maximum, 
(b) at the nearest minimum.

(a) Central maximum: 6=0, 8=0

£= 60° 
(b) Minimum: 8 = 60°, Ee = 0

FIGURE 35-25 Phasor diagram for 
the secondary peak.
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FIGURE 35-26 X-ray tube. 
Electrons emitted by a heated 
filament in a vacuum tube are 
accelerated by a high voltage. When 
they strike the surface of the anode, 
the “target,” X-rays are emitted.

Equation 35-16 b gives the half-width of the central (ra = 0) peak. To
determine the half-width of higher order peaks, A0m for order ra, we differentiate
Eq. 35-15 so as to relate the change A8 in S, to the change AO in the angle 6:

. . dd . n 2ird
A8 « —  AO = ----- cos 0 AO.

dO X
I f  A0m represents the half-width of a peak of order ra (ra = 1,2, • ••)— that is, the 
angle between the peak maximum and the minimum to either side— then 
A8 =  2 tt /N  as given by Eq. 35-14. We insert this into the above relation and find

A0„, = . . . A  - ’ (35-17)N d  cos 0m
where 0m is the angular position of the rath peak as given by Eq. 35-13. 
This derivation is valid, of course, only for small A8 (= 2 t t /N )  which is indeed the 
case for real gratings since N  is on the order of 104 or more.

An important property of any diffraction grating used in a spectrometer is its 
ability to resolve two very closely spaced wavelengths (wavelength difference = AA). 
The resolving power R of a grating is defined as

R = i r  <35- 18>
With a little  work, using Eq. 35-17, we can show that AA = X /N m  where N  is the 
total number of grating lines and ra is the order. Then we have

R = XT = N m . (35-19)AA
The larger the value of R, the closer two wavelengths can be resolvable. If  R is given, 
the minimum separation AA between two wavelengths near A, is (by Eq. 35-18) 

aa  = A .

EXAMPLE 35-12 Resolving two close lines. Yellow sodium light, which consists 
of two wavelengths, Ax = 589.00 nm and X2 =  589.59 nm, falls on a 7500-line/cm 
diffraction grating. Determine (a) the maximum order ra that w ill be present for 
sodium light, (b) the width of grating necessary to resolve the two sodium lines. 
APPROACH We first find d =  1 cm/7500 = 1.33 X 10“6m, and then use Eq. 35-13 
to find ra. For (b) we use Eqs. 35-18 and 35-19.
SOLUTION (a) The maximum value of ra at A = 589 nm, using Eq. 35-13 with 
sin0 <  1, is

d  d  1.33 x  1fT°m
= 2.26,ra d  . d 

~ x S1 ~ x = 5.89 X 10_/ m

so ra = 2 is the maximum order present 
(b) The resolving power needed is 

A _ 589 nm 
AA

R = =  1000.
0.59 nm

From Eq. 35-19, the total number N  of lines needed for the ra = 2 order is 
N  =  R /ra = 1000/2 = 500, so the grating need only be 500/7500 cm-1 = 
0.0667 cm wide. A  typical grating is a few centimeters wide, and so w ill easily 
resolve the two lines.

35-10 X-Rays and X-Ray Diffraction
In 1895, W. C. Roentgen (1845-1923) discovered that when electrons were 
accelerated by a high voltage in a vacuum tube and allowed to strike a glass or 
metal surface inside the tube, fluorescent minerals some distance away would 
glow, and photographic film  would become exposed. Roentgen attributed these 
effects to a new type of radiation (different from cathode rays). They were given 
the name X-rays after the algebraic symbol jc, meaning an unknown quantity. He 
soon found that X-rays penetrated through some materials better than through 
others, and w ithin a few weeks he presented the first X-ray photograph (of 
his wife’s hand). The production of X-rays today is usually done in a tube 
(Fig. 35-26) similar to Roentgen’s, using voltages of typically 30 kV to 150 kV.



Investigations into the nature of X-rays indicated they were not charged particles 
(such as electrons) since they could not be deflected by electric or magnetic fields. It 
was suggested that they might be a form of invisible light. However, they showed no 
diffraction or interference effects using ordinary gratings. Indeed, if their wavelengths 
were much smaller than the typical grating spacing of 10-6 m (= 103 nm), no effects 
would be expected. Around 1912, Max von Laue (1879-1960) suggested that if the 
atoms in a crystal were arranged in a regular array (see Fig. 17-2a), such a crystal 
might serve as a diffraction grating for very short wavelengths on the order of the 
spacing between atoms, estimated to be about IO-10 m (= 10-1 nm). Experiments 
soon showed that X-rays scattered from a crystal did indeed show the peaks and 
valleys of a diffraction pattern (Fig. 35-27). Thus it was shown, in a single blow, that 
X-rays have a wave nature and that atoms are arranged in a regular way in crystals. 
Today, X-rays are recognized as electromagnetic radiation with wavelengths in the 
range of about 10-2 nm to 10 nm, the range readily produced in an X-ray tube.

We saw in Section 35-5 that light of shorter wavelength provides greater resolu­
tion when we are examining an object microscopically. Since X-rays have much 
shorter wavelengths than visible light, they should in principle offer much greater 
resolution. However, there seems to be no effective material to use as lenses for the 
very short wavelengths of X-rays. Instead, the clever but complicated technique of 
X-ray diffraction (or crystallography) has proved very effective for examining the 
microscopic world of atoms and molecules. In a simple crystal such as NaCl, the atoms 
are arranged in an orderly cubical fashion, Fig. 35-28, with atoms spaced a distance d 
apart. Suppose that a beam of X-rays is incident on the crystal at an angle cf) to the 
surface, and that the two rays shown are reflected from two subsequent planes of 
atoms as shown. The two rays w ill constructively interfere if the extra distance ray I 
travels is a whole number of wavelengths farther than the distance ray II travels. This 
extra distance is 2d sin </>. Therefore, constructive interference w ill occur when

mX = 2d  sin cf), m =  1,2, 3, • ■ •, (35-20)

where m can be any integer. (Notice that <f) is not the angle with respect to the 
normal to the surface.) This is called the Bragg equation after W. L. Bragg 
(1890-1971), who derived it and who, together with his father W. H. Bragg 
(1862-1942), developed the theory and technique of X-ray diffraction by crystals in 
1912-1913. If  the X-ray wavelength is known and the angle <fr is measured, the 
distance d  between atoms can be obtained. This is the basis for X-ray crystallography. 

EXERCISE D When X-rays of wavelength 0.10 X 10-9 m are scattered from a sodium 
chloride crystal, a second-order diffraction peak is observed at 21°. What is the spacing 
between the planes of atoms for this scattering?

FIGURE 35-29 X-rays can be 
diffracted from many possible 
planes within a crystal.

Actual X-ray diffraction patterns are quite complicated. First of all, a crystal is a 
three-dimensional object, and X-rays can be diffracted from different planes at different 
angles within the crystal, as shown in Fig. 35-29. Although the analysis is complex, a 
great deal can be learned about any substance that can be put in crystalline form.

X-ray diffraction has also been very useful in determining the structure of 
biologically important molecules, such as the double helix structure of DNA, 
worked out by James Watson and Francis Crick in 1953. See Fig. 35-30, and for 
models of the double helix, Figs. 21-47a and 21-48. Around 1960, the first detailed 
structure of a protein molecule, myoglobin, was elucidated with the aid of X-ray 
diffraction. Soon the structure of an important constituent of blood, hemoglobin, 
was worked out, and since then the structures of a great many molecules have 
been determined with the help of X-rays.

FIGURE 35-27 This X-ray 
diffraction pattern is one of the first 
observed by Max von Laue in 1912 
when he aimed a beam of X-rays at 
a zinc sulfide crystal. The diffraction 
pattern was detected directly on a 
photographic plate.

FIGURE 35-28 X-ray diffraction 
by a crystal.

FIGURE 35-30 X-ray diffraction photo 
of DNA molecules taken by Rosalind 
Franklin in the early 1950s. The cross of 
spots suggested that DNA is a helix.
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FIGURE 35-31 Transverse waves 
on a rope polarized (a) in a vertical 
plane and (b) in a horizontal plane.

FIGURE 35-32 (a) Vertically 
polarized wave passes through a 
vertical slit, but (b) a horizontally 
polarized wave will not.

FIGURE 35-33 (below) (a) Oscillation 
of the electric field vectors in 
unpolarized light. The light is traveling 
into or out of the page, (b) Electric 
field in linear polarized light.

(a )| (b )|

FIGURE 35-34 (right) Vertical Polaroid 
transmits only the vertical component 
of a wave (electric field) incident upon it.

35—11 Polarization
An important and useful property of light is that it can be polarized. To see 
what this means, let us examine waves traveling on a rope. A  rope can be set 
into oscillation in a vertical plane as in Fig. 35-3la, or in a horizontal plane 
as in Fig. 35-31b. In either case, the wave is said to be linearly polarized or 
plane-polarized— that is, the oscillations are in a plane.

If  we now place an obstacle containing a vertical slit in the path of the wave, 
Fig. 35-32, a vertically polarized wave passes through the vertical slit, but a horizon­
tally polarized wave w ill not. I f  a horizontal slit were used, the vertically polarized 
wave would be stopped. If  both types of slit were used, both types of wave would be 
stopped by one slit or the other. Note that polarization can exist only for transverse 
waves, and not for longitudinal waves such as sound. The latter oscillate only along 
the direction of motion, and neither orientation of slit would stop them.

Light is not necessarily polarized. It can also be unpolarized, which means that 
the source has oscillations in many planes at once, as shown in Fig. 35-33. An 
ordinary incandescent lightbulb emits unpolarized light, as does the Sun.

Polaroids (Polarization by Absorption)
Plane-polarized light can be obtained from unpolarized light using certain crystals 
such as tourmaline. Or, more commonly, we use a Polaroid sheet. (Polaroid materials 
were invented in 1929 by Edwin Land.) A  Polaroid sheet consists of long complex 
molecules arranged parallel to one another. Such a Polaroid acts like a series of 
parallel slits to allow one orientation of polarization to pass through nearly undimin­
ished. This direction is called the transmission axis of the Polaroid. Polarization 
perpendicular to this direction is absorbed almost completely by the Polaroid.

Absorption by a Polaroid can be explained at the molecular level. An electric 
field E that oscillates parallel to the long molecules can set electrons into motion 
along the molecules, thus doing work on them and transferring energy. Hence, if E 
is parallel to the molecules, it gets absorbed. An electric field E perpendicular to 
the long molecules does not have this possibility of doing work and transferring 
its energy, and so passes through freely. When we speak of the transmission axis 
of a Polaroid, we mean the direction for which E is passed, so a Polaroid axis is 
perpendicular to the long molecules. I f  we want to think of there being slits 
between the parallel molecules in the sense of Fig. 35-32, then Fig. 35-32 would 
apply for the B field in the EM wave, not the E field.

I f  a beam of plane-polarized light strikes a Polaroid whose transmission axis 
is at an angle 0 to the incident polarization direction, the beam w ill emerge 
plane-polarized parallel to the Polaroid transmission axis, and the amplitude of E  
w ill be reduced to E  cos 0, Fig. 35-34. Thus, a Polaroid passes only that component 
of polarization (the electric field vector, E) that is parallel to its transmission axis. 
Because the intensity of a light beam is proportional to the square of the amplitude 
(Sections 15-3 and 31-8), we see that the intensity of a plane-polarized beam 
transmitted by a polarizer is

I  = L  cos2 0, intensity of plane polarized 2 i \
[  wave reduced by polarizer J '  '

where I0 is the incoming intensity and 0 is the angle between the polarizer transmission 
axis and the plane of polarization of the incoming wave.

Light
direction

I
E = En cos 6

Transmitted wave

Vertical
polarizer

Incident beam polarized 
at angle 6 to the vertical; 
has amplitude Eq
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A Polaroid can be used as a polarizer to produce plane-polarized light from 
unpolarized light, since only the component of light parallel to the axis is 
transmitted. A Polaroid can also be used as an analyzer to determine (1) if light is 
polarized and (2) the plane of polarization. A Polaroid acting as an analyzer will 
pass the same amount of light independent of the orientation of its axis if the light 
is unpolarized; try rotating one lens of a pair of Polaroid sunglasses while looking 
through it at a lightbulb. If the light is polarized, however, when you rotate the 
Polaroid the transmitted light will be a maximum when the plane of polarization is 
parallel to the Polaroid’s axis, and a minimum when perpendicular to it. If you do 
this while looking at the sky, preferably at right angles to the Sun’s direction, you 
will see that skylight is polarized. (Direct sunlight is unpolarized, but don’t look 
directly at the Sun, even through a polarizer, for damage to the eye may occur.) If 
the light transmitted by an analyzer Polaroid falls to zero at one orientation, then 
the light is 100% plane-polarized. If it merely reaches a minimum, the light is 
partially polarized.

Unpolarized light consists of light with random directions of polarization. 
Each of these polarization directions can be resolved into components along two 
mutually perpendicular directions. On average, an unpolarized beam can be 
thought of as two plane-polarized beams of equal magnitude perpendicular to one 
another. When unpolarized light passes through a polarizer, one component is 
eliminated. So the intensity of the light passing through is reduced by half since 
half the light is eliminated: I  = \ l Q (Fig. 35-35).

When two Polaroids are crossed—that is, their polarizing axes are perpendicular 
to one another—unpolarized light can be entirely stopped. As shown in Fig. 35-36, 
unpolarized light is made plane-polarized by the first Polaroid (the polarizer).

Polarizer 
Unpolarized Polarized

light light

Light__ % V S
direction >*T

FIGURE 35-35 Unpolarized light 
has equal intensity vertical and 
horizontal components. After passing 
through a polarizer, one of these 
components is eliminated. The 
intensity of the light is reduced to half.

Light _  
direction

Polarizer 
(axis vertical)

Analyzer 
(axis horizontal)

Unpolarized
light

Plane-polarized
light

No light FIGURE 35-36 Crossed Polaroids 
completely eliminate light.

The second Polaroid, the analyzer, then eliminates this component since its 
transmission axis is perpendicular to the first. You can try this with Polaroid 
sunglasses (Fig. 35-37). Note that Polaroid sunglasses eliminate 50% of unpolarized 
light because of their polarizing property; they absorb even more because they 
are colored.

EXAMPLE 35-13 Two Polaroids at 60°. Unpolarized light passes through 
two Polaroids; the axis of one is vertical and that of the other is at 60° to the 
vertical. Describe the orientation and intensity of the transmitted light.

APPROACH Half of the unpolarized light is absorbed by the first Polaroid, and 
the remaining light emerges plane polarized. When that light passes through the 
second Polaroid, the intensity is further reduced according to Eq. 35-21, and the 
plane of polarization is then along the axis of the second Polaroid.
SOLUTION The first Polaroid eliminates half the light, so the intensity is reduced 
by half: I1 = \ I q. The light reaching the second polarizer is vertically polarized 
and so is reduced in intensity (Eq. 35-21) to

I2 = ^ ( a ^ O 0)2 = \ l x.

Thus, I2 = | / 0. The transmitted light has an intensity one-eighth that of the 
original and is plane-polarized at a 60° angle to the vertical.

FIGURE 35-37 Crossed Polaroids. 
When the two polarized sunglass 
lenses overlap, with axes perpendic­
ular, almost no light passes through.
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Vertical Horizontal
polarizer 45° polarizer

FIGURE 35-38 Example 35-14.

FIGURE 35-39 Light reflected from a 
nonmetallic surface, such as the smooth 
surface of water in a lake, is partially 
polarized parallel to the surface.

CONCEPTUAL EXAMPLE 35-14 | Three Polaroids. We saw in Fig. 35-36 that 
when unpolarized light falls on two crossed Polaroids (axes at 90°), no light passes 
through. What happens if a third Polaroid, with axis at 45° to each of the other two, 
is placed between them (Fig. 35-38a)?
RESPONSE We start just as in Example 35-13 and recall again that light 
emerging from each Polaroid is polarized parallel to that Polaroid’s axis. Thus the 
angle in Eq. 35-21 is that between the transmission axes of each pair of Polaroids 
taken in turn. The first Polaroid changes the unpolarized light to plane-polarized 
and reduces the intensity from I0 to I1 = \ l Q. The second polarizer further 
reduces the intensity by (cos450)2, Eq. 35-21:

I2 = Z1(cos45°)2 = \I , = J/„.

The light leaving the second polarizer is plane polarized at 45° (Fig. 35-38b) 
relative to the third polarizer, so the third one reduces the intensity to

h  =  72( c o s 4 5 ° ) 2 =  \ I 2 ,

or /3 = |  /0. Thus |  of the original intensity gets transmitted.
NOTE If we don’t insert the 45° Polaroid, zero intensity results (Fig. 35-36).

EXERCISE E How much light would pass through if the 45° polarizer in Example 35-14  
was placed not between the other two polarizers but (a) before the vertical (first) polarizer, 
or (b ) after the horizontal polarizer?

Polarization by Reflection
Another means of producing polarized light from unpolarized light is by reflection. 
When light strikes a nonmetallic surface at any angle other than perpendicular, the 
reflected beam is polarized preferentially in the plane parallel to the surface, Fig. 35-39. 
In other words, the component with polarization in the plane perpendicular to the 
surface is preferentially transmitted or absorbed. You can check this by rotating 
Polaroid sunglasses while looking through them at a flat surface of a lake or road. Since 
most outdoor surfaces are horizontal, Polaroid sunglasses are made with their axes 
vertical to eliminate the more strongly reflected horizontal component, and thus reduce 
glare. People who go fishing wear Polaroids to eliminate reflected glare from the 
surface of a lake or stream and thus see beneath the water more clearly (Fig. 35-40).

FIGURE 35-40 Photographs of a 
river, (a) allowing all light into the 
camera lens, and (b) using a polarizer. 
The polarizer is adjusted to absorb 
most of the (polarized) light reflected 
from the water’s surface, allowing the 
dimmer light from the bottom of the 
river, and any fish lying there, to be 
seen more readily.

(a) (b)

!

i Y j

' t o *

4
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The amount of polarization in the reflected beam depends on the angle, 
varying from no polarization at normal incidence to 100% polarization at an angle 
known as the polarizing angle 0p .f This angle is related to the index of refraction 
of the two materials on either side of the boundary by the equation

n2
tan 0D = — j 

p
(35-22a)

where is the index of refraction of the material in which the beam is traveling, 
and n2 is that of the medium beyond the reflecting boundary. If the beam is trav­
eling in air, nx = 1, and Eq. 35-22a becomes

tan 0p = n. (35-22b)

The polarizing angle 0p is also called Brewster’s angle, and Eqs. 35-22 Brewster’s 
law, after the Scottish physicist David Brewster (1781-1868), who worked it out 
experimentally in 1812. Equations 35-22 can be derived from the electromagnetic 
wave theory of light. It is interesting that at Brewster’s angle, the reflected ray 
and the transmitted (refracted) ray make a 90° angle to each other; that is, 
0p + 0r = 90°, where 0r is the refraction angle (Fig. 35-41). This can be seen by 
substituting Eq. 35-22a, n2 = ra1tan0p = nx sin 0p/cos 0p, into Snell’s law, 
nx sin 0p = n2 sin 0r , which gives cos 0p = sin 0r which can only hold if 0p = 90° -  0r .

FIGURE 35-41 A t 0p the reflected 
light is plane-polarized parallel to 
the surface, and 0p +  0r =  90°, 
where 0r is the refraction angle.
(The large dots represent vibrations 
perpendicular to the page.)

*

EXAMPLE 35-15 Polarizing angle, (a) At what incident angle is sunlight 
reflected from a lake plane-polarized? (b) What is the refraction angle?
APPROACH The polarizing angle at the surface is Brewster’s angle, Eq. 35-22b. 
We find the angle of refraction from Snell’s law.
SOLUTION (a) We use Eq. 35-22b with n = 1.33, so tan 0p = 1.33 giving 0p = 53.1°. 
(b) From Snell’s law, sin0r = sin0p/w = sin53.1°/1.33 = 0.601 giving 0r = 36.9°. 
NOTE 0p + 0r = 53.1° + 36.9° = 90.0°, as expected.

3 5 -1 2  Liquid Crystal Displays (LCD)
A wonderful use of polarization is in a liquid crystal display (LCD). LCDs are 
used as the display in hand-held calculators, digital wrist watches, cell phones, and 
in beautiful color flat-panel computer and television screens.

A liquid crystal display is made up of many tiny rectangles called pixels, or 
“picture elements.” The picture you see depends on which pixels are dark or light 
and of what color, as suggested in Fig. 35-42 for a simple black and white picture.

Liquid crystals are organic materials that at room temperature exist in a 
phase that is neither fully solid nor fully liquid. They are sort of gooey, and their 
molecules display a randomness of position characteristic of liquids, as we discussed 
in Section 17-1 and Fig. 17-2. They also show some of the orderliness of a solid 
crystal (Fig. 17-2a), but only in one dimension. The liquid crystals we find useful 
are made up of relatively rigid rod-like molecules that interact weakly with each 
other and tend to align parallel to each other, as shown in Fig. 35-43.

FIGURE 35-43 Liquid crystal 
molecules tend to align in one 
dimension (parallel to each other) 
but have random positions 
(left-right, up-down).

V *

!'•■V
tOnly a fraction of the incident light is reflected at the surface of a transparent medium. Although this 
reflected light is 1 0 0 % polarized (if 6 = 0p), the remainder of the light, which is transmitted into the 
new medium, is only partially polarized.

FIGURE 35-42 Example of an 
image made up of many small 
squares or pixels (picture elements). 
This one has rather poor resolution.

^SECTION 35-12 Liquid Crystal Displays (LCD) 943



U rtpolatvcd 
lij£ht source i

. G lass

Liquid
crystal

11 HiMUM
AWJ- . . . .  I I Ll

Bright
light
exits

Vertical Vertically 
polarizer polarized

lieht entering 
liquid crystal

(a} Voltage off

Vertical 
:senitches 
on j*lass

Liquid
crystal

Horizontal
scratches

Kotirranf
HID-

Horizontal
polarizer

Seroen
or

mirror

Horizontally
polarized
light

I E

- H i  f

(h )  Voltage o r

/
Li^ht still
vertically
polarized

No
light
exits

FIGURE 3 5 -4 4  (a) “Twisted” form 
of liquid crystal. Light polarization 
plane is rotated 90°, and so is 
transmitted by the horizontal 
polarizer. Only one line of molecules 
is shown, (b) M olecules disoriented 
by electric field. Plane of polarization 
is not changed, so light does not pass 
through the horizontal polarizer. 
(The transparent electrodes are not 
shown.)

FIGURE 3 5 -4 5  Calculator LCD  
display. The black segments or pixels 
have a voltage applied to them. N ote  
that the 8 uses all seven segments 
(pixels), whereas other numbers use 
fewer.

1 8 3 ^ 5 5 1 8 3 0

In a simple LCD, each pixel (picture element) contains a liquid crystal 
sandwiched between two glass plates whose inner surfaces have been brushed to 
form nanometer-wide parallel scratches. The rod-like liquid crystal molecules in 
contact with the scratches tend to line up along the scratches. The two plates 
typically have their scratches at 90° to each other, and the weak forces between the 
rod-like molecules tend to keep them nearly aligned with their nearest neighbors, 
resulting in the twisted pattern shown in Fig. 35-44a.

The outer surfaces of the glass plates each have a thin film polarizer, they too 
oriented at 90° to each other. Unpolarized light incident from the left becomes 
plane-polarized and the liquid crystal molecules keep this polarization aligned 
with their rod-like shape. That is, the plane of polarization of the light rotates with 
the molecules as the light passes through the liquid crystal. The light emerges with 
its plane of polarization rotated by 90°, and passes through the second polarizer 
readily (Fig. 35-44a). A tiny LCD pixel in this situation will appear bright.

Now suppose a voltage is applied to transparent electrodes on each glass plate 
of the pixel. The rod-like molecules are polar (or can acquire an internal separation 
of charge due to the applied electric field). The applied voltage tends to align 
the molecules and they no longer follow the twisted pattern shown in Fig. 35-44a, 
with the end molecules always lying in a plane parallel to the glass plates. 
Instead the applied electric field tends to align the molecules flat, left to right 
(perpendicular to the glass plates), and they don’t affect the light polarization 
significantly. The entering plane-polarized light no longer has its plane of polariza­
tion rotated as it passes through, and no light can exit through the second 
(horizontal) polarizer (Fig. 35^l4b). With the voltage on, the pixel appears dark.*

The simple display screens of watches and calculators use ambient light as the 
source (you can’t see the display in the dark), and a mirror behind the LCD to reflect 
the light back. There are only a few pixels, corresponding to the elongated segments 
needed to form the numbers from 0 to 9 (and letters in some displays), as seen in 
Fig. 35-45. Any pixels to which a voltage is applied appear dark and form part of a 
number. With no voltage, pixels pass light through the polarizers to the mirror and 
back out, which forms a bright background to the dark numbers on the display.

Color television and computer LCDs are more sophisticated. A color pixel 
consists of three cells, or subpixels, each covered with a red, green, or blue filter. 
Varying brightnesses of these three primary colors can yield almost any natural color. 
A good-quality screen consists of a million or more pixels. Behind this array of pixels 
is a light source, often thin fluorescent tubes the diameter of a straw. The light passes 
through the pixels, or not, depending on the voltage applied to each subpixel, as in 
Fig. 35-44a and b.

tIn some displays, the polarizers are parallel to each other (the scratches remain at 90° to maintain the 
twist). Then voltage off results in black (no light), and voltage on results in bright light.
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3 5 -1 3  Scattering of light by the Atmosphere
Sunsets are red, the sky is blue, and skylight is polarized (at least partially). These 
phenomena can be explained on the basis of the scattering of light by the 
molecules of the atmosphere. In Fig. 35-46 we see unpolarized light from the Sun 
impinging on a molecule of the Earth’s atmosphere. The electric field of the EM 
wave sets the electric charges within the molecule into oscillation, and the 
molecule absorbs some of the incident radiation. But the molecule quickly reemits 
this light since the charges are oscillating. As discussed in Section 31-4, oscillating 
electric charges produce EM waves. The intensity is strongest along the direction 
perpendicular to the oscillation, and drops to zero along the line of oscillation 
(Section 31-4). In Fig. 35-46 the motion of the charges is resolved into two 
components. An observer at right angles to the direction of the sunlight, as shown, 
will see plane-polarized light because no light is emitted along the line of the other 
component of the oscillation. (When viewing along the line of an oscillation, you 
don’t see that oscillation, and hence see no waves made by it.) At other viewing 
angles, both components will be present; one will be stronger, however, so the light 
appears partially polarized. Thus, the process of scattering explains the polarization 
of skylight.

Scattering of light by the Earth’s atmosphere depends on wavelength A. 
For particles much smaller than the wavelength of light (such as molecules of 
air), the particles will be less of an obstruction to long wavelengths than to short 
ones. The scattering decreases, in fact, as 1/A4. Blue and violet light are thus 
scattered much more than red and orange, which is why the sky looks blue. At 
sunset, the Sun’s rays pass through a maximum length of atmosphere. Much of 
the blue has been taken out by scattering. The light that reaches the surface of 
the Earth, and reflects off clouds and haze, is thus lacking in blue. That is why 
sunsets appear reddish.

The dependence of scattering on 1/A4 is valid only if the scattering objects are 
much smaller than the wavelength of the light. This is valid for oxygen and 
nitrogen molecules whose diameters are about 0.2 nm. Clouds, however, contain 
water droplets or crystals that are much larger than A. They scatter all frequencies 
of light nearly uniformly. Hence clouds appear white (or gray, if shadowed).

Unpolarized
sunlight

FIGURE 35-46 Unpolarized 
sunlight scattered by molecules of the 
air. A n observer at right angles sees 
plane-polarized light, since the 
component of oscillation along the line 
of sight emits no light along that line.

® lP H Y S I C S  A P P L I E D
Why the sky is blue 
Why sunsets are red

0 P H Y S I C S  A P P L I E D
Why clouds are white

Summary
Diffraction refers to the fact that light, like other waves, bends 
around objects it passes, and spreads out after passing through 
narrow slits. This bending gives rise to a diffraction pattern due 
to interference between rays of light that travel different 
distances.

Light passing through a very narrow slit of width D  (on the 
order of the wavelength A) will produce a pattern with a bright 
central maximum of half-width 0 given by

sin0 =  j j ,  (35-1)

flanked by fainter lines to either side.
The minima in the diffraction pattern occur at

D  sin0 =  raA (35-2)

where ra =  1 ,2 , 3, •••, but not ra =  0 (for which the pattern 
has its strongest maximum).

The intensity at any point in the single-slit diffraction 
pattern can be calculated using phasor diagrams. The same tech­
nique can be used to determine the intensity of the pattern 
produced by two slits.

The pattern for two-slit interference can be described  
as a series of maxima due to interference of light from the

two slits, modified by an “envelope” due to diffraction at 
each slit.

The wave nature of light limits the sharpness or resolution 
of images. Because of diffraction, it is not possible to discern 
details smaller than the wavelength  of the radiation being used. 
The useful magnification of a light microscope is limited by 
diffraction to about 500 X.

A  diffraction grating consists of many parallel slits or lines, 
each separated from its neighbors by a distance d. The peaks of 
constructive interference occur at angles 0 given by

sin0 =  (35-13)
d

where rn =  0,1,2, • • • .  The peaks of constructive interference 
are much brighter and sharper for a diffraction grating than 
for a simple two-slit apparatus. [*Peak width is inversely 
proportional to the total number of lines in the grating.]

[* A  diffraction grating (or a prism) is used in a spectrometer 
to separate different colors or to observe line spectra. For a 
given order ra, 0 depends on A. Precise determination of wave­
length can be done with a spectrometer by careful measurement 
of 0.]
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*X-rays are a form of electromagnetic radiation of very 
short wavelength. They are produced when high-speed elec­
trons, accelerated by high voltage in an evacuated tube, strike a 
glass or metal target.

In unpolarized light, the electric field vectors oscillate in all 
transverse directions. If the electric vector oscillates only in one 
plane, the light is said to be plane-polarized. Light can also be 
partially polarized.

When an unpolarized light beam passes through a Polaroid 
sheet, the emerging beam is plane-polarized. When a light beam 
is polarized and passes through a Polaroid, the intensity varies 
as the Polaroid is rotated. Thus a Polaroid can act as a polarizer 
or as an analyzer.

The intensity I  of a plane-polarized light beam incident on 
a Polaroid is reduced by the factor

I  = 70 cos2 61 (35-21)
where 0 is the angle between the axis of the Polaroid and the 
initial plane of polarization.

Light can also be partially or fully polarized by reflection. 
If light traveling in air is reflected from a medium of index of 
refraction n, the reflected beam will be completely plane- 
polarized if the incident angle 0p is given by

tan 0p = n. (35-22b)
The fact that light can be polarized shows that it must be a 
transverse wave.

Questions
1. Radio waves and light are both electromagnetic waves. Why 

can a radio receive a signal behind a hill when we cannot 
see the transmitting antenna?

2. Hold one hand close to your eye and focus on a distant light 
source through a narrow slit between two fingers. (Adjust 
your fingers to obtain the best pattern.) Describe the 
pattern that you see.

3. Explain why diffraction patterns are more difficult to 
observe with an extended light source than for a point 
source. Compare also a monochromatic source to white 
light.

4. For diffraction by a single slit, what is the effect of 
increasing (a) the slit width, (b) the wavelength?

5. Describe the single-slit diffraction pattern produced when 
white light falls on a slit having a width of (a) 50 nm, 
(b) 50,000 nm.

6. What happens to the diffraction pattern of a single slit if the 
whole apparatus is immersed in (a) water, (b) a vacuum, 
instead of in air.

7. In the single-slit diffraction pattern, why does the first off- 
center maximum not occur at exactly sin0 = §A/D?

8. Discuss the similarities, and differences, of double-slit inter­
ference and single-slit diffraction.

*9. Figure 35-10 shows a two-slit interference pattern for the 
case when d is larger than D. Can the reverse case occur, 
when d is less than D l

*10. When both diffraction and interference are taken into 
account in the double-slit experiment, discuss the effect of 
increasing (a) the wavelength, (b) the slit separation, (c) the 
slit width.

11. Does diffraction limit the resolution of images formed by
(a) spherical mirrors, (b) plane mirrors?

12. Do diffraction effects occur for virtual as well as real images?
13. Give at least two advantages for the use of large reflecting 

mirrors in astronomical telescopes.
14. Atoms have diameters of about 10-8 cm. Can visible light be 

used to “see” an atom? Explain.
15. Which color of visible light would give the best resolution in 

a microscope? Explain.
16. Could a diffraction grating just as well be called an interfer­

ence grating? Discuss.
17. Suppose light consisting of wavelengths between 400 nm 

and 700 nm is incident normally on a diffraction grating. For 
what orders (if any) would there be overlap in the 
observed spectrum? Does your answer depend on the slit 
spacing?

18. What is the difference in the interference patterns formed 
by two slits 10_4cm apart as compared to a diffraction 
grating containing 104 lines/cm?

19. White light strikes (a) a diffraction grating and (b) a prism. 
A rainbow appears on a wall just below the direction of the 
horizontal incident beam in each case. What is the color of 
the top of the rainbow in each case? Explain.

20. Explain why there are tiny peaks between the main 
peaks produced by a diffraction grating illuminated with 
monochromatic light. Why are the peaks so tiny?

21. What does polarization tell us about the nature of light?
22. How can you tell if a pair of sunglasses is polarizing or not?

“23. What would be the color of the sky if the Earth had no 
atmosphere?

| Problems
[Note: Assume light passing through slits is in phase, unless stated 
otherwise.]

35-1 Single-Slit Diffraction
1. (I) If 680-nm light falls on a slit 0.0365 mm wide, what is the 

angular width of the central diffraction peak?
2. (I) Monochromatic light falls on a slit that is 2.60 X 10-3 mm 

wide. If the angle between the first dark fringes on either side 
of the central maximum is 32.0° (dark fringe to dark fringe), 
what is the wavelength of the light used?

3. (II) Light of wavelength 580 nm falls on a slit that is
3.80 X 10_3mm wide. Estimate how far the first brightest 
diffraction fringe is from the strong central maximum if the 
screen is 10.0 m away.

4. (II) Consider microwaves which are incident perpendicular 
to a metal plate which has a 1.6-cm slit in it. Discuss the 
angles at which there are diffraction minima for wave­
lengths of (a) 0.50 cm, (b) 1.0 cm, and (c) 3.0 cm.
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5. (II) If parallel light falls on a single slit of width D  at a 
23.0° angle to the normal, describe the diffraction pattern.

6. (II) Monochromatic light of wavelength 633 nm falls on 
a slit. If the angle between the first bright fringes on 
either side of the central maximum is 35°, estimate the 
slit width.

7. (II) If a slit diffracts 580-nm light so that the diffraction 
maximum is 6.0 cm wide on a screen 2.20 m away, what will 
be the width of the diffraction maximum for light with a 
wavelength of 460 nm?

8. (II) (a) For a given wavelength A, what is the minimum 
slit width for which there will be no diffraction minima? 
(b) What is the minimum slit width so that no visible light 
exhibits a diffraction minimum?

9. (II) When blue light of wavelength 440 nm falls on a single 
slit, the first dark bands on either side of center are sepa­
rated by 55.0°. Determine the width of the slit.

10. (II) A single slit 1.0 mm wide is illuminated by 450-nm light. 
What is the width of the central maximum (in cm) in the 
diffraction pattern on a screen 5.0 m away?

11. (II) Coherent light from a laser diode is emitted through a 
rectangular area 3.0 /mi X 1.5 fjum (horizontal-by-vertical). 
If the laser light has a wavelength of 780 nm, determine the 
angle between the first diffraction minima (a) above and 
below the central maximum, (b) to the left and right of the 
central maximum.

35-2 Intensity, Single-Slit Diffraction Pattern
12. (II) If you double the width of a single slit, the intensity of 

the light passing through the slit is doubled, (a) Show, 
however, that the intensity at the center of the screen 
increases by a factor of 4. (b) Explain why this does not 
violate conservation of energy.

13. (II) Light of wavelength 750 nm passes through a slit 1.0 jam 
wide and a single-slit diffraction pattern is formed vertically 
on a screen 25 cm away. Determine the light intensity I  
15 cm above the central maximum, expressed as a fraction 
of the central maximum’s intensity 70.

14. (Ill) (a) Explain why the secondary maxima in the 
single-slit diffraction pattern do not occur precisely at 
j6/2 = (ra + 5)77 where ra = 1,2, 3,---. (b) By differ­
entiating Eq. 35-7 with respect to j8 show that the 
secondary maxima occur when j8/2 satisfies the relation 
tan(/3/2) = /3/2. (c) Carefully and precisely plot the curves 
y  = j6/2 and y  = tan/3/2. From their intersections, 
determine the values of /3 for the first and second 
secondary maxima. What is the percent difference from 
/3/2 = (ra + \)tt1

35-3 Intensity, Double-Slit Diffraction
15. (II) If a double-slit pattern contains exactly nine fringes in 

the central diffraction peak, what can you say about the slit 
width and separation? Assume the first diffraction 
minimum occurs at an interference minimum.

16. (II) Design a double-slit apparatus so that the central 
diffraction peak contains precisely seventeen fringes. 
Assume the first diffraction minimum occurs at (a) an inter­
ference miminum, (b) an interference maximum.

* 17. (II) 605-nm light passes through a pair of slits and creates
an interference pattern on a screen 2.0 m behind the slits. 
The slits are separated by 0.120 mm and each slit is 
0.040 mm wide. How many constructive interference fringes 
are formed on the screen? [Many of these fringes will be of 
very low intensity.]

*18. (II) In a double-slit experiment, if the central diffraction 
peak contains 13 interference fringes, how many fringes are 
contained within each secondary diffraction peak (between 
ra = +1 and +2 in Eq. 35-2). Assume the first diffraction 
minimum occurs at an interference minimum.

* 19. (II) Two 0.010-mm-wide slits are 0.030 mm apart (center to
center). Determine (a) the spacing between interference 
fringes for 580 nm light on a screen 1.0 m away and (b) the 
distance between the two diffraction minima on either side 
of the central maximum of the envelope.

*20. (II) Suppose d = D in a double-slit apparatus, so that 
the two slits merge into one slit of width 2D. Show that 
Eq. 35-9 reduces to the correct equation for single-slit 
diffraction.

*21. (II) In a double-slit experiment, let d = 5.00 D = 40.0 A. 
Compare (as a ratio) the intensity of the third-order 
interference maximum with that of the zero-order maximum.

* 22. (II) How many fringes are contained in the central diffrac­
tion peak for a double-slit pattern if (a) d = 2.00Z), 
(b) d = 12.0D, (c) d = 4.50D, (d) d = 7.20D.

* 23. (Ill) (a) Derive an expression for the intensity in the inter­
ference pattern for three equally spaced slits. Express in 
terms of 8 = 27rdsin0/A where d is the distance between 
adjacent slits and assume the slit width D  «  A. (b) Show 
that there is only one secondary maximum between 
principal peaks.

35-4 and 35-5 Resolution Limits
24. (I) What is the angular resolution limit (degrees) set by 

diffraction for the 100-inch (254-cm mirror diameter) 
Mt. Wilson telescope (A = 560 nm)?

25. (II) Two stars 16 light-years away are barely resolved by a 
66-cm (mirror diameter) telescope. How far apart are the 
stars? Assume A = 550 nm and that the resolution is 
limited by diffraction.

26. (II) The nearest neighboring star to the Sun is about 
4 light-years away. If a planet happened to be orbiting this 
star at an orbital radius equal to that of the Earth-Sun 
distance, what minimum diameter would an Earth-based 
telescope’s aperture have to be in order to obtain an image 
that resolved this star-planet system? Assume the light 
emitted by the star and planet has a wavelength of 550 nm.

27. (II) If you shine a flashlight beam toward the Moon, estimate 
the diameter of the beam when it reaches the Moon. 
Assume that the beam leaves the flashlight through a 5.0-cm 
aperture, that its white light has an average wavelength of 
550 nm, and that the beam spreads due to diffraction only.

28. (II) Suppose that you wish to construct a telescope that can 
resolve features 7.5 km across on the moon, 384,000 km away. 
You have a 2.0-m-focal-length objective lens whose diameter is
11.0 cm. What focal-length eyepiece is needed if your eye can 
resolve objects 0.10 mm apart at a distance of 25 cm? What is 
the resolution limit set by the size of the objective lens (that is, 
by diffraction)? Use A = 560 nm.
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29. (II) The normal lens on a 35-mm camera has a focal length 
of 50.0 mm. Its aperture diameter varies from a maximum of 
25 mm (//2 ) to a minimum of 3.0 mm (//16). Determine 
the resolution limit set by diffraction for (//2 ) and (//16). 
Specify as the number of lines per millimeter resolved on 
the detector or film. Take A = 560 nm.

35-7 and 35-8 Diffraction Grating, Spectroscopy

30. (I) At what angle will 480-nm light produce a second-order 
maximum when falling on a grating whose slits are
1.35 X 10-3 cm apart?

31. (I) A source produces first-order lines when incident 
normally on a 12,000-line/cm diffraction grating at angles 
28.8°, 36.7°, 38.6°, and 47.9°. What are the wavelengths?

32. (I) A 3500-line/cm grating produces a third-order fringe at 
a 26.0° angle. What wavelength of light is being used?

33. (I) A grating has 6800 lines/cm. How many spectral orders can 
be seen (400 to 700 nm) when it is illuminated by white light?

34. (II) How many lines per centimeter does a grating have if 
the third order occurs at a 15.0° angle for 650-nm light?

35. (II) Red laser light from a He-Ne laser (A = 632.8 nm) is 
used to calibrate a diffraction grating. If this light creates a 
second-order fringe at 53.2° after passing through the 
grating, and light of an unknown wavelength A creates a 
first-order fringe at 20.6°, find A.

36. (II) White light containing wavelengths from 410 nm to 
750 nm falls on a grating with 7800 lines/cm. How wide is 
the first-order spectrum on a screen 2.80 m away?

37. (II) A diffraction grating has 6.0 X 105 lines/m. Find the 
angular spread in the second-order spectrum between red 
light of wavelength 7.0 X 10_7m and blue light of wave­
length 4.5 X 10-7 m.

38. (II) A tungsten-halogen bulb emits a continuous spectrum 
of ultraviolet, visible, and infrared light in the wavelength 
range 360 nm to 2000 nm. Assume that the light from a 
tungsten-halogen bulb is incident on a diffraction grating 
with slit spacing d and that the first-order brightness 
maximum for the wavelength of 1200 nm occurs at angle 0. 
What other wavelengths within the spectrum of incident 
light will produce a brightness maximum at this same 
angle 0? [Optical filters are used to deal with this bother­
some effect when a continuous spectrum of light is 
measured by a spectrometer.]

39. (II) Show that the second- and third-order spectra of white 
light produced by a diffraction grating always overlap. What 
wavelengths overlap?

40. (II) Two first-order spectrum lines are measured by a 
9650 line/cm spectroscope at angles, on each side of center, 
of +26°38', +41°02' and -26°18', -40°27'. Calculate the 
wavelengths based on these data.

41. (II) Suppose the angles measured in Problem 40 were 
produced when the spectrometer (but not the source) was 
submerged in water. What then would be the wavelengths 
(in air)?

42. (II) The first-order line of 589-nm light falling on a 
diffraction grating is observed at a 16.5° angle. How far 
apart are the slits? At what angle will the third order be 
observed?

43. (II) White light passes through a 610-line/mm diffraction 
grating. First-order and second-order visible spectra (“rain­
bows”) appear on the wall 32 cm away as shown in Fig. 35-47. 
Determine the widths ^  and l2 of the two “rainbows” 
(400 nm to 700 nm). In which order is the “rainbow” dispersed 
over a larger distance? 0
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44. (II) Missing orders occur for a diffraction grating when a

diffraction minimum coincides with an interference
maximum. Let D be the width of each slit and d the
separation of slits, (a) Show that if d = 2D, all even orders
(ra = 2, 4, 6, • • •) are missing. (b) Show there will be missing
orders whenever ,d _ m1

D ra2
where m1 and ra2 are integers, (c) Discusss the case d = D, 
the limit in which the space between slits becomes negligible.

45. (II) Monochromatic light falls on a transmission diffraction 
grating at an angle <f> to the normal, (a) Show that Eq. 35-13 
for diffraction maxima must be replaced by

d(sin</> + sin0) = ± raA. ra = 0,1, 2, •••.
(b) Explain the ± sign, (c )  Green light with a wave­
length of 550 nm is incident at an angle of 15° to the 
normal on a diffraction grating with 5000 lines/cm. Find 
the angles at which the first-order maxima occur.

* 35-9 Grating, Peak Widths, Resolving Power
*46. (II) A 6500-line/cm diffraction grating is 3.18 cm wide. If 

light with wavelengths near 624 nm falls on the grating, how 
close can two wavelengths be if they are to be resolved in 
any order? What order gives the best resolution?

*47. (II) A diffraction grating has 16,000 rulings in its 1.9 cm 
width. Determine (a) its resolving power in first and second 
orders, and (b) the minimum wavelength resolution (AA) it 
can yield for A = 410 nm.

*48. (II) Let 580-nm light be incident normally on a diffraction 
grating for which d = 3.00D = 1050 nm. (a) How many 
orders (principal maxima) are present? (b) If the grating is
1.80 cm wide, what is the full angular width of each principal 
maximum?

35-10 X-Ray Diffraction
49. (II) X-rays of wavelength 0.138 nm fall on a crystal whose 

atoms, lying in planes, are spaced 0.285 nm apart. At what 
angle <f> (relative to the surface, Fig. 35-28) must the X-rays 
be directed if the first diffraction maximum is to be observed?

50. (II) First-order Bragg diffraction is observed at 26.8° rela­
tive to the crystal surface, with spacing between atoms of 
0.24 nm. (a) At what angle will second order be observed?
(b) What is the wavelength of the X-rays?
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51. (II) If X-ray diffraction peaks corresponding to the first 
three orders ( m  = 1,2, and 3) are measured, can both the 
X-ray wavelength A and lattice spacing d be determined? 
Prove your answer.

35-11 Polarization
52. (I) Two polarizers are oriented at 65° to one another. 

Unpolarized light falls on them. What fraction of the light 
intensity is transmitted?

53. (I) Two Polaroids are aligned so that the light passing 
through them is a maximum. At what angle should one of 
them be placed so the intensity is subsequently reduced by 
half?

54. (I) What is Brewster’s angle for an air-glass (n = 1.58) 
surface?

55. (I) What is Brewster’s angle for a diamond submerged in 
water if the light is hitting the diamond (n = 2.42) while 
traveling in the water?

56. (II) The critical angle for total internal reflection at a boundary 
between two materials is 55°. What is Brewster’s angle at this 
boundary? Give two answers, one for each material.

57. (II) At what angle should the axes of two Polaroids be 
placed so as to reduce the intensity of the incident unpolar­
ized light to (a) \ , (b) ^?

58. (II) Two polarizers are oriented at 36.0° to one another. 
Light polarized at an 18.0° angle to each polarizer passes 
through both. What is the transmitted intensity (%)?

59. (II) What would Brewster’s angle be for reflections off the 
surface of water for light coming from beneath the surface? 
Compare to the angle for total internal reflection, and to 
Brewster’s angle from above the surface.

| General Problems__________
63. When violet light of wavelength 415 nm falls on a single slit, 

it creates a central diffraction peak that is 8.20 cm wide on a 
screen that is 2.85 m away. How wide is the slit?

64. A series of polarizers are each placed at a 10° interval from 
the previous polarizer. Unpolarized light is incident on this 
series of polarizers. How many polarizers does the light 
have to go through before it is \  of its original intensity?

65. The wings of a certain beetle have a series of parallel lines 
across them. When normally incident 480-nm light is 
reflected from the wing, the wing appears bright when 
viewed at an angle of 56°. How far apart are the lines?

66. A teacher stands well back from an outside doorway 0.88 m 
wide, and blows a whistle of frequency 850 Hz. Ignoring 
reflections, estimate at what angle(s) it is not possible to hear 
the whistle clearly on the playground outside the doorway. 
Assume 340 m /s for the speed of sound.

67. Light is incident on a diffraction grating with 7600 lines/cm 
and the pattern is viewed on a screen located 2.5 m from the 
grating. The incident light beam consists of two wavelengths, 
Ai = 4.4 X 10_7m and A2 = 6.8 X 10_7m. Calculate the 
linear distance between the first-order bright fringes of 
these two wavelengths on the screen.

68. How many lines per centimeter must a grating have if 
there is to be no second-order spectrum for any visible 
wavelength?

60. (II) Unpolarized light passes through six successive Polaroid 
sheets each of whose axis makes a 45° angle with the 
previous one. What is the intensity of the transmitted beam?

61. (II) Two polarizers A and B are aligned so that their trans­
mission axes are vertical and horizontal, respectively. A 
third polarizer is placed between these two with its axis 
aligned at angle 6 with respect to the vertical. Assuming 
vertically polarized light of intensity /0 is incident upon polar­
izer A, find an expression for the light intensity I  transmitted 
through this three-polarizer sequence. Calculate the derivative 
dl/d0\ then use it to find the angle 6 that maximizes I.

62. (Ill) The percent polarization P  of a partially polarized 
beam of light is defined as

Anax +  Anin

where /max and /min are the maximum and minimum inten­
sities that are obtained when the light passes through a 
polarizer that is slowly rotated. Such light can be considered 
as the sum of two unequal plane-polarized beams of 
intensities /max and /mjn perpendicular to each other. Show 
that the light transmitted by a polarizer, whose axis makes 
an angle (f> to the direction in which /max is obtained, has 
intensity

1 + p  cos 2(f>
i  + P /max

where p = P / 100 is the “fractional polarization.”

69. When yellow sodium light, A = 589 nm, falls on a diffrac­
tion grating, its first-order peak on a screen 66.0 cm away 
falls 3.32 cm from the central peak. Another source 
produces a line 3.71 cm from the central peak. What is its 
wavelength? How many lines/cm are on the grating?

70. Two of the lines of the atomic hydrogen spectrum have wave­
lengths of 656 nm and 410 nm. If these fall at normal incidence 
on a grating with 8100 lines/cm, what will be the angular 
separation of the two wavelengths in the first-order spectrum?

71. (a) How far away can a human eye distinguish two car 
headlights 2.0 m apart? Consider only diffraction effects 
and assume an eye diameter of 6.0 mm and a wavelength of 
560 nm. (b) What is the minimum angular separation an eye 
could resolve when viewing two stars, considering only 
diffraction effects? In reality, it is about V  of arc. Why is it 
not equal to your answer in (b)l

72. A laser beam passes through a slit of width 1.0 cm and is 
pointed at the Moon, which is approximately 380,000 km 
from the Earth. Assume the laser emits waves of wave­
length 633 nm (the red light of a H e-N e laser). Estimate the 
width of the beam when it reaches the Moon.

73. A H e-N e gas laser which produces monochromatic light 
of wavelength A = 6.328 X 10_7m is used to calibrate a 
reflection grating in a spectroscope. The first-order diffraction 
line is found at an angle of 21.5° to the incident beam. How 
many lines per meter are there on the grating?
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74. The entrance to a boy’s bedroom consists of two door­
ways, each 1.0 m wide, which are separated by a distance of
3.0 m. The boy’s mother yells at him through the two doors 
as shown in Fig. 35-48, telling him to clean up his room. 
Her voice has a frequency of 400 Hz. Later, when the 
mother discovers the room is still a mess, the boy says he 
never heard her telling him to clean his room. The velocity 
of sound is 340 m/s. (a) Find all of the angles 0 (Fig. 35-48) 
at which no sound will be heard within the bedroom when 
the mother yells. Assume 
sound is completely absorbed 
when it strikes a bedroom 
wall. (b) If the boy was at the 
position shown when his 
mother yelled, does he have a 
good explanation for not 
having heard her? Explain.
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FIGURE 35-48
Problem 74.
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75. A t what angle above the horizon is the Sun when light 
reflecting off a smooth lake is polarized most strongly?

76. Unpolarized light falls on two polarizer sheets whose axes are 
at right angles, (a) What fraction of the incident 
light intensity is transmitted? (b) What fraction is transmitted 
if a third polarizer is placed between the first two so that its 
axis makes a 66° angle with the axis of the first polarizer?
(c) What if the third polarizer is in front of the other two?

77 At what angle should the axes of two Polaroids be placed so 
as to reduce the intensity of the incident unpolarized light 
by an additional factor (after the first Polaroid cuts it in 
half) of (a) 4, (b) 10, (c) 100?

78. Four polarizers are placed in succession with their axes 
vertical, at 30.0° to the vertical, at 60.0° to the vertical, and 
at 90.0° to the vertical, (a) Calculate what fraction of the 
incident unpolarized light is transmitted by the four 
polarizers, (b) Can the transmitted light be decreased by 
removing one of the polarizers? If so, which one? (c) Can 
the transmitted light intensity be extinguished by removing 
polarizers? If so, which one(s)?

79. Spy planes fly at extremely high altitudes (25 km) to avoid 
interception. Their cameras are reportedly able to discern 
features as small as 5 cm. What must be the minimum aperture 
of the camera lens to afford this resolution? (Use A = 580 nm.)

80. Two polarizers are oriented at 48° to each other and plane- 
polarized light is incident on them. If only 25% of the light 
gets through both of them, what was the initial polarization 
direction of the incident light?__________________________

81. X-rays of wavelength 0.0973 nm are directed at an unknown 
crystal. The second diffraction maximum is recorded when 
the X-rays are directed at an angle of 23.4° relative to the 
crystal surface. What is the spacing between crystal planes?

82. X-rays of wavelength 0.10 nm fall on a microcrystalline 
powder sample. The sample is located 12 cm from the 
photographic film. The crystal structure of the sample has 
an atomic spacing of 0.22 nm. Calculate the radii of the 
diffraction rings corresponding to first- and second-order 
scattering. Note in Fig. 35-28 that the X-ray beam is 
deflected through an angle 2<f>.

83. The Hubble Space Telescope with an objective diameter of
2.4 m, is viewing the Moon. Estimate the minimum distance 
between two objects on the Moon that the Hubble can 
distinguish. Consider diffraction of light with wavelength 
550 nm. Assume the Hubble is near the Earth.

84. The Earth and Moon are separated by about 400 X 106 m. 
When Mars is 8 X 1010m from Earth, could a person 
standing on Mars resolve the Earth and its Moon as two 
separate objects without a telescope? Assume a pupil diam­
eter of 5 mm and A = 550 nm.

85. A slit of width D = 22 fxm is cut through a thin aluminum 
plate. Light with wavelength A = 650 nm passes through 
this slit and forms a single-slit diffraction pattern on a 
screen a distance £ =  2.0 m away. Defining x  to be the 
distance between the first minima (ra = +1 and ra = -1 )  
in this diffraction pattern, find the change Ax in this 
distance when the temperature T  of the metal plate is 
changed by amount AT = 55 C°. [Hint: Since A «  D, the 
first minima occur at a small angle.]

*Numerical/Computer
* 86. (II) A student shined a laser light onto a single slit of width 

0.04000 mm. He placed a screen at a distance of 1.490 m from 
the slit to observe the diffraction pattern of the laser light. The 
accompanying Table shows the distances of the dark fringes 
from the center of the central bright fringe for different orders.

Order
number,ra: 1 2 3  4 5 6 7 8
Distance
(m) 0.0225 0.0445 0.0655 0.0870 0.1105 0.1320 0.1540 0.1775

Determine the angle of diffraction, 0, and sin 0 for each order. 
Make a graph of sin 0 vs. order number, ra, and find the wave­
length, A, of the laser from the best-fit straight line.

*87. (Ill) Describe how to rotate the plane of polarization of a 
plane-polarized beam of light by 90° and produce only a 10% 
loss in intensity, using polarizers. Let N be the number of polar­
izers and 0 be the (same) angle between successive polarizers.

88. (Ill) The “full-width at half-maximum” (FWHM) of the 
central peak for single-slit diffraction is defined as the angle 
A0 between the two points on either side of center where 
the intensity is \  I 0. (a) Determine A0 in terms of (A/D ). 
Use graphs or a spreadsheet to solve sin a  = a / v 2 .
(b) Determine A0 (in degrees) for D = A and for D  = 100A.

Answers to Exercises
A: Narrower.
B: (ib).
C: (c).

D: 0.28 nm.
E: Zero for both (a) and (b), because the two successive 

polarizers at 90° cancel all light. The 45° Polaroid must be 
inserted between the other two if any transmission is to occur.
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A n early science fantasy book (1940), called M r Tompkins in Wonderland by physicist George Gamow, imagined 
a world in which the speed of light was only 10 m /s (20 m i/h ). Mr Tompkins had studied relativity and when he 
began “speeding” on a bicycle, he “expected that he would be immediately shortened, and was very happy about 
it as his increasing figure had lately caused him some anxiety. To his great surprise, however, nothing happened 
to him or to his cycle. On the other hand, the picture around him completely changed. The streets grew shorter,

the windows of the shops 
began to look like narrow slits, 
and the policeman on the 
corner became the thinnest 
man he had ever seen. ‘By 
Jove!’ exclaimed Mr Tompkins 
excitedly, ‘I see the trick now. 
This is where the word 
relativity comes in.’ ”

Relativity does indeed 
predict that objects moving 
relative to us at high speed, 
close to the speed of light c, 
are shortened in length. We 
don’t notice it as Mr Tompkins 
did, because c =  3 X 108 m /s  
is incredibly fast. We will 
study length contraction, time 
dilation, simultaneity non­
agreement, and how energy 
and mass are equivalent
(£ = me2)

T h e  S p e c i a l  T h e o r y  o f  

R e l a t i v i t y
CHAPTER-OPENING QUESTION —Guess now!
A rocket is headed away from Earth at a speed of 0.80c. The rocket fires a missile 
at a speed of 0.70c (the missile is aimed away from Earth and leaves the rocket at 
0.70c relative to the rocket). How fast is the missile moving relative to Earth?

(a) 1.50c;
(b) a little less than 1.50c;
(c) a little over c;
(d) a little under c;
(e) 0.75c.

P hysics at the end of the nineteenth century looked back on a period of great 
progress. The theories developed over the preceding three centuries had been 
very successful in explaining a wide range of natural phenomena. Newtonian 
mechanics beautifully explained the motion of objects on Earth and in the 

heavens. Furthermore, it formed the basis for successful treatments of fluids, wave 
motion, and sound. Kinetic theory explained the behavior of gases and other materials. 
Maxwell’s theory of electromagnetism not only brought together and explained 
electric and magnetic phenomena, but it predicted the existence of electromagnetic 
waves that would behave in every way just like light—so light came to be thought of 
as an electromagnetic wave. Indeed, it seemed that the natural world, as seen through 
the eyes of physicists, was very well explained. A few puzzles remained, but it was felt 
that these would soon be explained using already known principles.
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FIGURE 36-1 Albert Einstein  
(1879-1955), one of the great minds 
of the twentieth century, was the 
creator of the special and general 
theories of relativity.

FIGURE 36-2 A  coin is dropped 
by a person in a moving car. The 
upper views show the moment of the 
coin’s release, the lower views are a 
short time later, (a) In the reference 
frame of the car, the coin falls 
straight down (and the tree moves to 
the left), (b) In a reference frame 
fixed on the Earth, the coin has an 
initial velocity (= to car’s) and 
follows a curved (parabolic) path.

It did not turn out so simply. Instead, these puzzles were to be solved only by 
the introduction, in the early part of the twentieth century, of two revolutionary 
new theories that changed our whole conception of nature: the theory o f relativity 
and quantum theory.

Physics as it was known at the end of the nineteenth century (what we’ve 
covered up to now in this book) is referred to as classical physics. The new physics 
that grew out of the great revolution at the turn of the twentieth century is now 
called modern physics. In this Chapter, we present the special theory of relativity, 
which was first proposed by Albert Einstein (1879-1955; Fig. 36-1) in 1905. In 
Chapter 37, we introduce the equally momentous quantum theory.

3 6 -1  Galilean-Newtonian Relativity
Einstein’s special theory of relativity deals with how we observe events, particularly 
how objects and events are observed from different frames of reference. This 
subject had, of course, already been explored by Galileo and Newton.

The special theory of relativity deals with events that are observed and 
measured from so-called inertial reference frames (Sections 4-2 and 11-8), which 
are reference frames in which Newton’s first law is valid: if an object experiences 
no net force, the object either remains at rest or continues in motion with constant 
speed in a straight line. It is usually easiest to analyze events when they are 
observed and measured by observers at rest in an inertial frame. The Earth, though 
not quite an inertial frame (it rotates), is close enough that for most purposes we 
can consider it an inertial frame. Rotating or otherwise accelerating frames of 
reference are noninertial frames,f and won’t concern us in this Chapter (they are 
dealt with in Einstein’s general theory of relativity).

A reference frame that moves with constant velocity with respect to an inertial 
frame is itself also an inertial frame, since Newton’s laws hold in it as well. When 
we say that we observe or make measurements from a certain reference frame, it 
means that we are at rest in that reference frame.

Both Galileo and Newton were aware of what we now call the relativity principle 
applied to mechanics: that the basic laws o f physics are the same in all inertial 
reference frames. You may have recognized its validity in everyday life. For example, 
objects move in the same way in a smoothly moving (constant-velocity) train or 
airplane as they do on Earth. (This assumes no vibrations or rocking which would 
make the reference frame noninertial.) When you walk, drink a cup of soup, play 
pool, or drop a pencil on the floor while traveling in a train, airplane, or ship moving 
at constant velocity, the objects move just as they do when you are at rest on Earth. 
Suppose you are in a car traveling rapidly at constant velocity. If you drop a coin 
from above your head inside the car, how will it fall? It falls straight downward with 
respect to the car, and hits the floor directly below the point of release, Fig. 36-2a.

tOn a rotating platform (say a merry-go-round), for example, an object at rest starts moving outward 
even though no object exerts a force on it. This is therefore not an inertial frame. See Section 11-8.

(a) (b)
Reference frame = car Reference frame = Barth
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This is just how objects fall on the Earth—straight down—and thus our experiment 
in the moving car is in accord with the relativity principle. (If you drop the coin out 
the car’s window, this won’t happen because the moving air drags the coin backward 
relative to the car.)

Note in this example, however, that to an observer on the Earth, the coin follows 
a curved path, Fig. 36-2b. The actual path followed by the coin is different as viewed 
from different frames of reference. This does not violate the relativity principle 
because this principle states that the laws of physics are the same in all inertial frames. 
The same law of gravity, and the same laws of motion, apply in both reference frames. 
The acceleration of the coin is the same in both reference frames. The difference 
in Figs. 36-2a and b is that in the Earth’s frame of reference, the coin has an initial 
velocity (equal to that of the car). The laws of physics therefore predict it will follow a 
parabolic path like any projectile (Chapter 3). In the car’s reference frame, there is no 
initial velocity, and the laws of physics predict that the coin will fall straight down. The 
laws are the same in both reference frames, although the specific paths are different.

Galilean-Newtonian relativity involves certain unprovable assumptions that 
make sense from everyday experience. It is assumed that the lengths of objects are 
the same in one reference frame as in another, and that time passes at the same 
rate in different reference frames. In classical mechanics, then, space and time 
intervals are considered to be absolute: their measurement does not change from 
one reference frame to another. The mass of an object, as well as all forces, are 
assumed to be unchanged by a change in inertial reference frame.

The position of an object, however, is different when specified in different 
reference frames, and so is velocity. For example, a person may walk inside a bus 
toward the front with a speed of 2 m/s. But if the bus moves 10 m/s with respect to the 
Earth, the person is then moving with a speed of 12 m/s with respect to the Earth. The 
acceleration of an object, however, is the same in any inertial reference frame according 
to classical mechanics. This is because the change in velocity, and the time interval, 
will be the same. For example, the person in the bus may accelerate from 0 to 2 m/s 
in 1.0 seconds, so a = 2 m/s2 in the reference frame of the bus. With respect to the 
Earth, the acceleration is (12 m/s -  10 m/s)/(1.0 s) = 2 m/s2, which is the same.

Since neither F, m, nor a changes from one inertial frame to another, then 
Newton’s second law, F = ma, does not change. Thus Newton’s second law 
satisfies the relativity principle. It is easily shown that the other laws of mechanics 
also satisfy the relativity principle.

That the laws of mechanics are the same in all inertial reference frames 
implies that no one inertial frame is special in any sense. We express this important 
conclusion by saying that all inertial reference frames are equivalent for the 
description of mechanical phenomena. No one inertial reference frame is any 
better than another. A reference frame fixed to a car or an aircraft traveling at 
constant velocity is as good as one fixed on the Earth. When you travel smoothly 
at constant velocity in a car or airplane, it is just as valid to say you are at rest and 
the Earth is moving as it is to say the reverse.* There is no experiment you can do 
to tell which frame is “really” at rest and which is moving. Thus, there is no way to 
single out one particular reference frame as being at absolute rest.

A complication arose, however, in the last half of the nineteenth century. 
Maxwell’s comprehensive and successful theory of electromagnetism (Chapter 31) 
predicted that light is an electromagnetic wave. Maxwell’s equations gave the 
velocity of light c as 3.00 X 108m/s; and this is just what is measured. 
The question then arose: in what reference frame does light have precisely the 
value predicted by Maxwell’s theory? It was assumed that light would have 
a different speed in different frames of reference. For example, if observers were 
traveling on a rocket ship at a speed of 1.0 X 108 m/s away from a source of light, we 
might expect them to measure the speed of the light reaching them to be 
(3.0 X 108m/s) -  (1.0 X 108m/s) = 2.0 X 108m/s. But Maxwell’s equations have 
no provision for relative velocity. They predicted the speed of light to be 
c = 3.0 X 108m/s, which seemed to imply that there must be some preferred 
reference frame where c would have this value.

A  CAUTI ON___________
L aw s are the same, but
paths may be different in different
reference frames

/ j \  CAUTI ON_____________
Position and velocity are different in 
different reference frames, but length 
is the same (classical)

fWe are ignoring the rotation and curvature of the Earth. SECTION 36-1 953



We discussed in Chapters 15 and 16 that waves can travel on water and 
along ropes or strings, and sound waves travel in air and other materials. 
Nineteenth-century physicists viewed the material world in terms of the laws of 
mechanics, so it was natural for them to assume that light too must travel in some 
medium. They called this transparent medium the ether and assumed it permeated 
all spaced It was therefore assumed that the velocity of light given by Maxwell’s 
equations must be with respect to the ether.

At first it appeared that Maxwell’s equations did not satisfy the relativity 
principle. They were simplest in the frame where c = 3.00 X 108m/s; that is, in a 
reference frame at rest in the ether. In any other reference frame, extra terms 
would have to be added to take into account the relative velocity. Thus, although 
most of the laws of physics obeyed the relativity principle, the laws of electricity 
and magnetism apparently did not. Einstein’s second postulate (Section 36-3) 
resolved this problem: Maxwell’s equations do satisfy relativity.

Scientists soon set out to determine the speed of the Earth relative to this 
absolute frame, whatever it might be. A number of clever experiments were 
designed. The most direct were performed by A. A. Michelson and E. W. Morley in 
the 1880s. They measured the difference in the speed of light in different directions 
using Michelson’s interferometer (Section 34-6). They expected to find a difference 
depending on the orientation of their apparatus with respect to the ether. For 
just as a boat has different speeds relative to the land when it moves upstream, 
downstream, or across the stream, so too light would be expected to have different 
speeds depending on the velocity of the ether past the Earth.

Strange as it may seem, they detected no difference at all. This was a great 
puzzle. A number of explanations were put forth over a period of years, but they 
led to contradictions or were otherwise not generally accepted. This null result was 
one of the great puzzles at the end of the nineteenth century.

Then in 1905, Albert Einstein proposed a radical new theory that reconciled 
these many problems in a simple way. But at the same time, as we shall see, it 
completely changed our ideas of space and time.

*36—2 The Michelson-Morley Experiment
The Michelson-Morley experiment was designed to measure the speed of the 
ether—the medium in which light was assumed to travel—with respect to the Earth. 
The experimenters thus hoped to find an absolute reference frame, one that could 
be considered to be at rest.

One of the possibilities nineteenth-century scientists considered was that the 
ether is fixed relative to the Sun, for even Newton had taken the Sun as the center 
of the universe. If this were the case (there was no guarantee, of course), the 
Earth’s speed of about 3 X 104m/s in its orbit around the Sun could produce a 
change of 1 part in 104 in the speed of light (3.0 X 108m/s). Direct measurement 
of the speed of light to this precision was not possible. But A. A. Michelson, later 
with the help of E. W. Morley, was able to use his interferometer (Section 34-6) to 
measure the difference in the speed of light in different directions to this precision.

This famous experiment is based on the principle shown in Fig. 36-3. Part (a) is 
a diagram of the Michelson interferometer, and it is assumed that the “ether wind” is 
moving with speed v to the right. (Alternatively, the Earth is assumed to move to the 
left with respect to the ether at speed v.) The light from a source is split into two 
beams by a half-silvered mirror Ms . One beam travels to mirror Mx and the other to 
mirror M2. The beams are reflected by Mx and M2 and are joined again after passing 
through Ms . The now superposed beams interfere with each other and the resultant 
is viewed by the observer’s eye as an interference pattern (discussed in Section 34-6).

Whether constructive or destructive interference occurs at the center of the 
interference pattern depends on the relative phases of the two beams after they have 
traveled their separate paths. Let us consider an analogy of a boat traveling up and

trThe medium for light waves could not be air, since light travels from the Sun to Earth through nearly 
empty space. Therefore, another medium was postulated, the ether. The ether was not only transparent 
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FIGURE 3 6 -3  The M ichelson-M orley experiment, (a) Michelson 
interferometer, (b) Boat analogy: boat 1 goes across the stream and back; 
boat 2 goes downstream and back upstream (boat has speed c relative to 
the water), (c) Calculation of the velocity of boat (or light beam) traveling 
perpendicular to the current (or ether wind).

down, and across, a river whose current moves with speed v, as shown in Fig. 36-3b. 
In still water, the boat can travel with speed c (not the speed of light in this case).

First we consider beam 2 in Fig. 36-3a, which travels parallel to the “ether 
wind.” In its journey from Ms to M2, the light would travel with speed 
c + v, according to classical physics, just as for a boat traveling downstream (see 
Fig. 36-3b) we add the speed of the river water to the boat’s own speed (relative 
to the water) to get the boat’s speed relative to the shore. Since the beam travels a 
distance i2, the time it takes to go from Ms to M2 would be t = i2/(c  + v )- To 
make the return trip from M2 to Ms , the light moves against the ether wind (like 
the boat going upstream), so its relative speed is expected to be c — v. The time 
for the return trip would be i2/(c  — v). The total time for beam 2 to travel from 
Ms to M2 and back to Ms is

j _ h  + h  _  2l2_____
2 C +  V C -  V c ( 1 -  v2/c2)

Now let us consider beam 1, which travels crosswise to the ether wind. Here 
the boat analogy (Fig. 36-3b) is especially helpful. The boat is to go from wharf A 
to wharf B directly across the stream. If it heads directly across, the stream’s 
current will drag it downstream. To reach wharf B, the boat must head at an 
angle upstream. The precise angle depends on the magnitudes of c and v, but 
is of no interest to us in itself. Part (c) of Fig. 36-3 shows how to calculate the 
velocity v' of the boat relative to Earth as it crosses the stream. Since c, v, and v' 
form a right triangle, we have that v' = Vc2 -  v2. The boat has the same 
speed when it returns. If we now apply these principles to light beam 1 in 
Fig. 36-3a, we expect the beam to travel with speed Vc2 -  v2 in going from 
Ms to Mx and back again. The total distance traveled is 2lx, so the time required 
for beam 1 to make the round trip would be 2 ^ /V c 2 -  v2, or 

» = , 2fl
c \ J  1 v2/c2

Notice that the denominator in this equation for t\ involves a square root, whereas 
that for t2 does not.
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If £x = i2 = £, we see that beam 2 will lag behind beam 1 by an amount
2ft I  1 1A t = t2 -  tx = —
c \ l  -  v2/c2 \ / l  -  t)2/c 2

If v = 0, then A£ = 0, and the two beams will return in phase since they were 
initially in phase. But if v ^  0, then At ^  0, and the two beams will return out 
of phase. If this change of phase from the condition v = 0 to that for v ^  0 could 
be measured, then v could be determined. But the Earth cannot be stopped. 
Furthermore, we should not be too quick to assume that lengths are not affected 
by motion and therefore to assume i  1 = i2.

Michelson and Morley realized that they could detect the difference in phase 
(assuming that v ^  0) if they rotated their apparatus by 90°, for then the interference 
pattern between the two beams should change. In the rotated position, beam 1 would 
now move parallel to the ether and beam 2 perpendicular to it. Thus the roles could 
be reversed, and in the rotated position the times (designated by primes) would be

Ui , 2£2
= ~T\-------and 12 = ----------------- / 9/ /

c (1  -  v2/c2) c V 1 -  Vl/c2

The time lag between the two beams in the nonrotated position (unprimed) would be

212 2 t xAt = t2 ~ tx = —------r r -------------- .
C (1 -  V /c ) c V l  v2/c2

In the rotated position, the time difference would be

2Z2 2ix
At' = t'2 -  t[ =

V l  -  *>2/c2 c C1 “  ^ / c 2)
When the rotation is made, the fringes of the interference pattern (Section 34-6) 
will shift an amount determined by the difference:

Af -  Af'  =  ~(e1 + t2)(- ------—-r— r --------. 1
c vi 2J\ l - v 2/c 2 V l  -  *>2/c2

This expression can be considerably simplified if we assume that v/c  «  1. In this 
case we can use the binomial expansion (Appendix A), so

1 y2 j 1 . 1 v21 H—  ̂ and —  - «  1 + —
1 -  v2/c2 c2 V l  -  ^ / c 2

Then

-  fc + h ) ~

Now we assume v = 3.0 X 104m/s, the speed of the Earth in its orbit around the 
Sun. In Michelson and Morley’s experiments, the arms ^  and t2 were about 11 m 
long. The time difference would then be about

(22m)(3.0 X 104 m/s)2
(3.0 X 108 m/s)3

For visible light of wavelength A = 5.5 X 10_7m, say, the frequency would be 
/  = c/A = (3.0 X 108m/s)/(5.5 X 10_7m) = 5.5 X 1014Hz, which means that 
wave crests pass by a point every l/(5.5 X 1014Hz) = 1.8 X 10-15s. Thus, with 
a time difference of 7.3 X 10-16s, Michelson and Morley should have noted a 
movement in the interference pattern of (7.3 X 10-16s)/(l.8 X 10-15s) = 0.4 fringe. 
They could easily have detected this, since their apparatus was capable of observing 
a fringe shift as small as 0.01 fringe.

But they found no significant fringe shift whateverl They set their apparatus at 
various orientations. They made observations day and night so that they would 

CHAPTER 36 be at various orientations with respect to the Sun (due to the Earth’s rotation).



They tried at different seasons of the year (the Earth at different locations due to 
its orbit around the Sun). Never did they observe a significant fringe shift.

This null result was one of the great puzzles of physics at the end of the 
nineteenth century. To explain it was a difficult challenge. One possibility to 
explain the null result was put forth independently by G. E Fitzgerald and
H. A. Lorentz (in the 1890s) in which they proposed that any length (including 
the arm of an interferometer) contracts by a factor y / l  — v2/c2 in the direction of 
motion through the ether. According to Lorentz, this could be due to the ether 
affecting the forces between the molecules of a substance, which were assumed to be 
electrical in nature. This theory was eventually replaced by the far more comprehen­
sive theory proposed by Albert Einstein in 1905—the special theory of relativity.

3 6 -3  Postulates of the Special 
Theory of Relativity

The problems that existed at the start of the twentieth century with regard to 
electromagnetic theory and Newtonian mechanics were beautifully resolved by 
Einstein’s introduction of the theory of relativity in 1905. Unaware of the 
Michelson-Morley null result, Einstein was motivated by certain questions 
regarding electromagnetic theory and light waves. For example, he asked himself: 
“What would I see if I rode a light beam?” The answer was that instead of a 
traveling electromagnetic wave, he would see alternating electric and magnetic 
fields at rest whose magnitude changed in space, but did not change in time. Such 
fields, he realized, had never been detected and indeed were not consistent with 
Maxwell’s electromagnetic theory. He argued, therefore, that it was unreasonable to 
think that the speed of light relative to any observer could be reduced to zero, or in 
fact reduced at all. This idea became the second postulate of his theory of relativity.

In his famous 1905 paper, Einstein proposed doing away completely with the idea 
of the ether and the accompanying assumption of a preferred or absolute reference 
frame at rest. This proposal was embodied in two postulates. The first postulate was an 
extension of the Galilean-Newtonian relativity principle to include not only the laws 
of mechanics but also those of the rest of physics, including electricity and magnetism:

First postulate (the relativity principle): The laws of physics have the same form 
in all inertial reference frames.

The first postulate can also be stated as: There is no experiment you can do in an 
inertial reference frame to tell if you are at rest or moving uniformly at constant velocity. 

The second postulate is consistent with the first:
Second postulate (constancy of the speed of light): Light propagates through empty 
space with a definite speed c independent of the speed of the source or observer.

These two postulates form the foundation of Einstein’s special theory of relativity. 
It is called “special” to distinguish it from his later “general theory of relativity,” 
which deals with noninertial (accelerating) reference frames (Chapter 44). The 
special theory, which is what we discuss here, deals only with inertial frames.

The second postulate may seem hard to accept, for it seems to violate common 
sense. First of all, we have to think of light traveling through empty space. Giving 
up the ether is not too hard, however, since it had never been detected. But the 
second postulate also tells us that the speed of light in vacuum is always the same,
3.00 X 108m/s, no matter what the speed of the observer or the source. Thus, a 
person traveling toward or away from a source of light will measure the same speed 
for that light as someone at rest with respect to the source. This conflicts with our 
everyday experience: we would expect to have to add in the velocity of the 
observer. On the other hand, perhaps we can’t expect our everyday experience to 
be helpful when dealing with the high velocity of light. Furthermore, the null result 
of the Michelson-Morley experiment is fully consistent with the second postulated

trThe Michelson-Morley experiment can also be considered as evidence for the first postulate, since it 
was intended to measure the motion of the Earth relative to an absolute reference frame. Its failure to 
do so implies the absence of any such preferred frame. SECTION 36-3 957



Einstein’s proposal has a certain beauty. By doing away with the idea of an 
absolute reference frame, it was possible to reconcile classical mechanics with 
Maxwell’s electromagnetic theory. The speed of light predicted by Maxwell’s 
equations is the speed of light in vacuum in any reference frame.

Einstein’s theory required us to give up common sense notions of space 
and time, and in the following Sections we will examine some strange but 
interesting consequences of special relativity. Our arguments for the most part 
will be simple ones. We will use a technique that Einstein himself did: we will 
imagine very simple experimental situations in which little mathematics is 
needed. In this way, we can see many of the consequences of relativity theory 
without getting involved in detailed calculations. Einstein called these “thought” 
experiments.

36—4  Simultaneity
An important consequence of the theory of relativity is that we can no longer 
regard time as an absolute quantity. No one doubts that time flows onward and 
never turns back. But the time interval between two events, and even whether or 
not two events are simultaneous, depends on the observer’s reference frame. By an 
event, which we use a lot here, we mean something that happens at a particular 
place and at a particular time.

Two events are said to occur simultaneously if they occur at exactly the same 
time. But how do we know if two events occur precisely at the same time? If they 
occur at the same point in space—such as two apples falling on your head at the 
same time—it is easy. But if the two events occur at widely separated places, it is 
more difficult to know whether the events are simultaneous since we have to take 
into account the time it takes for the light from them to reach us. Because light 
travels at finite speed, a person who sees two events must calculate back to find 
out when they actually occurred. For example, if two events are observed to occur 
at the same time, but one actually took place farther from the observer than the 
other, then the more distant one must have occurred earlier, and the two events 
were not simultaneous.

We now imagine a simple thought experiment. Assume an observer, called O, 
is located exactly halfway between points A and B where two events occur, 
Fig. 36-4. Suppose the two events are lightning that strikes the points A and B, as 
shown. For brief events like lightning, only short pulses of light (blue in Fig. 36-4) 
will travel outward from A and B and reach O. Observer O “sees” the events when 
the pulses of light reach point O. If the two pulses reach O at the same time, then 
the two events had to be simultaneous. This is because the two light pulses travel at 
the same speed (postulate 2), and since the distance OA equals OB, the time for 
the light to travel from A to O and B to O must be the same. Observer O can 
then definitely state that the two events occurred simultaneously. On the other 
hand, if O sees the light from one event before that from the other, then the 
former event occurred first.

FIGURE 3 6 -4  A  moment after lightning 
strikes at points A  and B, the pulses of light 
(shown as blue waves) are traveling toward the 
observer O, but O “sees” the lightning only 
when the light reaches O.

Light coming from 
the two events 
at A and B
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The question we really want to examine is this: if two events are simultaneous to 
an observer in one reference frame, are they also simultaneous to another observer 
moving with respect to the first? Let us call the observers and 0 2 and assume they 
are fixed in reference frames 1 and 2 that move with speed v relative to one another. 
These two reference frames can be thought of as two rockets or two trains (Fig. 36-5).
0 2 says that Ox is moving to the right with speed v, as in Fig. 36-5a; and says 0 2 is 
moving to the left with speed v, as in Fig. 36-5b. Both viewpoints are legitimate 
according to the relativity principle. [There is no third point of view which will tell us 
which one is “really” moving.]

Now suppose that observers and 0 2 observe and measure two lightning 
strikes. The lightning bolts mark both trains where they strike: at A 1 and Bx on Oi’s 
train, and at A2 and B2 on 0 2’s train, Fig. 36-6a. For simplicity, we assume that is 
exactly halfway between A x and Bx, and that 0 2 is halfway between A2 and B2. Let 
us first put ourselves in 0 2’s reference frame, so we observe C  ̂moving to the right 
with speed v. Let us also assume that the two events occur simultaneously in 0 2’s 
frame, and just at the instant when Ox and 0 2 are opposite each other, Fig. 36-6a. 
A short time later, Fig. 36-6b, the light from A2 and B2 reaches 0 2 at the same time 
(we assumed this). Since 0 2 knows (or measures) the distances 0 2A2 and 0 2B2 as 
equal, 0 2 knows the two events are simultaneous in the 0 2 reference frame.

i
c v

o 2.

(a)

•0 1

(b)

FIGURE 3 6 -5  Observers Oi and 
0 2 , on two different trains (two 
different reference frames), are 
moving with relative speed v. 0 2 
says that Ox is moving to the right (a); 
O i says that 0 2 is moving to the left (b). 
Both viewpoints are legitimate: it all 
depends on your reference frame.

FIGURE 3 6 -6  Thought experiment on simultaneity. In both (a) and (b) 
we are in the reference frame of observer 0 2 , who sees the reference 
frame of O i moving to the right. In (a), one lightning bolt strikes the two 
reference frames at A i and A 2 , and a second lightning bolt strikes at 
and B 2 . (b) A  moment later, the light (shown in blue) from the two 
events reaches 0 2 at the same time. So according to observer 0 2 , the two 
bolts of lightning struck simultaneously. But in O i’s reference frame, the 
light from B i has already reached O i , whereas the light from A i has not 
yet reached O x. So in O i’s reference frame, the event at B i must have 
preceded the event at A x . Simultaneity in time is not absolute.

But what does observer Ox observe and measure? From our (0 2) reference 
frame, we can predict what Oi will observe. We see that Ox moves to the right 
during the time the light is traveling to from A 1 and Bx. As shown in 
Fig. 36-6b, we can see from our 0 2 reference frame that the light from 
has already passed Ol5 whereas the light from A 1 has not yet reached C^. 
That is, Ox observes the light coming from before observing the light 
coming from A x. Given (1) that light travels at the same speed c in any direction 
and in any reference frame, and (2) that the distance C^Ax equals C^Bx, 
then observer Oi can only conclude that the event at Bx occurred before the event 
at A i. The two events are not simultaneous for , even though they are for 0 2.

We thus find that two events which take place at different locations and are 
simultaneous to one observer, are actually not simultaneous to a second observer 
who moves relative to the first.

It may be tempting to ask: “Which observer is right, Ox or 0 2?” The 
answer, according to relativity, is that they are both right. There is no “best” reference 
frame we can choose to determine which observer is right. Both frames are equally 
good. We can only conclude that simultaneity is not an absolute concept, but is relative. 
We are not aware of this lack of agreement on simultaneity in everyday life because 
the effect is noticeable only when the relative speed of the two reference frames is 
very large (near c), or the distances involved are very large.

EXERCISE A Examine the experiment of Fig. 36-6 from O^s reference frame. In this case, 
O x will be at rest and will see event B t occur before A x. Will Ox recognize that 0 2, who is 
moving with speed v  to the left, will see the two events as simultaneous? [Hint: Draw a 
diagram equivalent to Fig. 36-6.]
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FIGURE 36-7 Time dilation can be 
shown by a thought experiment: the 
time it takes for light to travel across 
a spaceship and back is longer for the 
observer on Earth (b) than for the 
observer on the spaceship (a).

| TIME D IL A T IO N  \

Mirror

source

(a ) Recsivtfr Clock timer

(k) Earth

36—5 Time Dilation and the Twin Paradox
The fact that two events simultaneous to one observer may not be simultaneous 
to a second observer suggests that time itself is not absolute. Could it be that time 
passes differently in one reference frame than in another? This is, indeed, just what 
Einstein’s theory of relativity predicts, as the following thought experiment shows.

Figure 36-7 shows a spaceship traveling past Earth at high speed. The point of 
view of an observer on the spaceship is shown in part (a), and that of an observer on 
Earth in part (b). Both observers have accurate clocks. The person on the spaceship 
(Fig. 36-7a) flashes a light and measures the time it takes the light to travel directly 
across the spaceship and return after reflecting from a mirror (the rays are drawn at a 
slight angle for clarity). In the reference frame of the spaceship, the light travels a 
distance 2D at speed c; so the time required to go across and back, which we call At0, is 

At0 = 2 D/c.
The observer on Earth, Fig. 36-7b, observes the same process. But to this 

observer, the spaceship is moving. So the light travels the diagonal path shown 
going across the spaceship, reflecting off the mirror, and returning to the sender. 
Although the light travels at the same speed to this observer (the second postulate), 
it travels a greater distance. Hence the time required, as measured by the observer 
on Earth, will be greater than that measured by the observer on the spaceship.

Let us determine the time interval At measured by the observer on Earth between 
sending and receiving the light. In time At, the spaceship travels a distance 21 = v At 
where v is the speed of the spaceship (Fig. 36-7b). The light travels a total distance on 
its diagonal path (Pythagorean theorem) of 2 \/D 2 + I2, where I = v At/2. Therefore

2 V-D2 + f2 2 V ® 2 + v2(At)2/4
C = At = At

We square both sides,
AD2
(At)2

and solve for At, to find 

At =

+ v2,

2D
c \ / l  -  v2/c2

We combine this equation for At with the formula above, At0 = 2D/c, and find 

A tQ
At = . (36-la)

V l  -  f 2/c 2
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spaceship) is greater for the observer on Earth than for the observer on 
the spaceship. This is a general result of the theory of relativity, and is known as 
time dilation. Stated simply, the time dilation effect says that

clocks moving relative to an observer are measured to run more slowly (as 
compared to clocks at rest relative to that observer).

However, we should not think that the clocks are somehow at fault. Time is actually 
measured to pass more slowly in any moving reference frame as compared to your 
own. This remarkable result is an inevitable outcome of the two postulates of the 
theory of relativity.

The factor l / \ / l  — v2/c2 occurs so often in relativity that we often give it the 
shorthand symbol 7 (the Greek letter “gamma”), and write Eq. 36-la as

At = 7 At0 (36-lb )
where

7 = . 1 (36-2)
\ / \  -  v2/c2

Note that 7 is never less than one, and has no units. At normal speeds, 7 = 1 to a 
few decimal places; in general, 7 > 1.

The concept of time dilation may be hard to accept, for it contradicts our 
experience. We can see from Eqs. 36-1 that the time dilation effect is indeed 
negligible unless v is reasonably close to c. If v is much less than c, then the term v2/c2 
is much smaller than the 1 in the denominator of Eq. 36-la, and then At «  At0 (see 
Example 36-2). The speeds we experience in everyday life are much smaller than c, 
so it is little wonder we don’t ordinarily notice time dilation. Experiments have 
tested the time dilation effect, and have confirmed Einstein’s predictions. In 1971, for 
example, extremely precise atomic clocks were flown around the Earth in jet planes. 
The speed of the planes (lO3 km/h) was much less than c, so the clocks had to be 
accurate to nanoseconds (lO-9 s) in order to detect any time dilation. They were this 
accurate, and they confirmed Eqs. 36-1 to within experimental error. Time dilation 
had been confirmed decades earlier, however, by observations on “elementary 
particles” which have very small masses (typically IO-30 to 10“27 kg) and so require 
little energy to be accelerated to speeds close to the speed of light, c. Many of these 
elementary particles are not stable and decay after a time into lighter particles. One 
example is the muon, whose mean lifetime is 2.2 juls when at rest. Careful experiments 
showed that when a muon is traveling at high speeds, its lifetime is measured to be 
longer than when it is at rest, just as predicted by the time dilation formula.

EXAMPLE 36-1 Lifetime of a moving muon, (a) What will be the mean 
lifetime of a muon as measured in the laboratory if it is traveling at 
v = 0.60c = 1.80 X 108m/s with respect to the laboratory? Its mean lifetime 
at rest is 2.20/ jls  = 2.20 X 10_6s. (b) How far does a muon travel in the 
laboratory, on average, before decaying?
APPROACH If an observer were to move along with the muon (the muon would 
be at rest to this observer), the muon would have a mean life of 2.20 X 10-6 s. To 
an observer in the lab, the muon lives longer because of time dilation. We find the 
mean lifetime using Eq. 36-la and the average distance using d = v At. 
SOLUTION (a) From Eq. 36-la  with v = 0.60c, we have

Ar = Af"
\ / l  — v2/c2 \ / l  — 0.36 c2/c2 y/0.64

(fe) Relativity predicts that a muon with speed 1.80 X 108m/s would travel an 
average distance d = v At = (1.80 X 108m/s)(2.8 X 10“6s) = 500 m, and this is 
the distance that is measured experimentally in the laboratory.
NOTE At a speed of 1.8 X 108m/s, classical physics would tell us that 
with a mean life of 2.2/as, an average muon would travel d = vt =
(1.8 X 108 m/s)(2.2 X 10-6 s) = 400 m. This is shorter than the distance measured.

EXERCISE B What is the muon’s mean lifetime (Example 3 6 -1 ) if it is traveling at
v = 0.90c? (a) 0.42 / a s ;  (b) 2.3 ju ls ; (c) 5.0 / a s ;  (d) 5.3 / a s ;  (e) 12.0 / a s .  SECTION 36—5 961



A  CAUTI ON
Proper time At0 is fo r  2 events at 

the same po in t in space.

We need to clarify how to use Eqs. 36-1, and the meaning of At and At0. The 
equation is true only when At0 represents the time interval between the two events 
in a reference frame where the two events occur at the same point in space (as in 
Fig. 36-7a where the two events are the light flash being sent and being received). 
This time interval, At0, is called the proper time. Then At in Eqs. 36-1 represents 
the time interval between the two events as measured in a reference frame moving 
with speed v with respect to the first. In Example 36-1 above, At0 (and not At) was 
set equal to 2.2 X 10-6 s because it is only in the rest frame of the muon that the 
two events (“birth” and “decay”) occur at the same point in space. The proper 
time At0 is the shortest time between the events any observer can measure. In any 
other moving reference frame, the time At is greater.

P R O B L E M  S O L V I N G
Use o f  the binomial expansion

EXAMPLE 36-2____________________ Time dilation at 100 km/h. Let us check time dilation for
everyday speeds. A car traveling 100 km/h covers a certain distance in 10.00 s 
according to the driver’s watch. What does an observer at rest on Earth measure 
for the time interval?
APPROACH The car’s speed relative to Earth is 100 km/h = (l.OO X 105 m)/(3600 s) 
= 27.8 m/s. The driver is at rest in the reference frame of the car, so we set 
At0 = 10.00 s in the time dilation formula.
SOLUTION We use Eq. 36-la:

At0 10.00 s 10.00 s
At = ,______ -  ,____________________ -  ,_______________

27.8 m/s \ 2 V 1 “  (8-59 x  10_15)
3.00 X 108 m/s /

If you put these numbers into a calculator, you will obtain At = 10.00 s, since 
the denominator differs from 1 by such a tiny amount. Indeed, the time measured 
by an observer on Earth would show no difference from that measured by the 
driver, even with the best instruments. A computer that could calculate to a large 
number of decimal places would reveal a difference between At and At0. We can 
estimate the difference using the binomial expansion (Appendix A),

(1 + x)n «  1 + nx. [for x «  1]

In our time dilation formula, we have the factor 7 = (l -  v 2/ c 2)~2. Thus

1 -  —
c2

1 -

At = y  Ato = Atnl 1 -
,2\-;

Atr
1 v2

1 + 2 7

10.00 s 1 + -
27.8 m/s

3.00 X 108 m/s
10.00 s + 4 X 10“

So the difference between At and At0 is predicted to be 4 X 10 14 s, an extremely 
small amount.

EXERCISE C A  certain atomic clock keeps perfect time on Earth. If the clock is taken on a 
spaceship traveling at a speed v  =  0.60c, does this clock now run slow according to the 
people (a) on the spaceship, (b) on Earth?

Reading a magazine on a spaceship. A passenger on a 
high-speed spaceship traveling between Earth and Jupiter at a steady speed of 
0.75c reads a magazine which takes 10.0 min according to her watch, (a) How 
long does this take as measured by Earth-based clocks? (b) How much farther is the 
spaceship from Earth at the end of reading the article than it was at the beginning?
APPROACH (a) The time interval in one reference frame is related to the time 
interval in the other by Eq. 36-la or b. (b) At constant speed, distance is speed X time. 
Since there are two times (a At and a At0) we will get two distances, one for each 
reference frame. [This surprising result is explored in the next Section (36-6).]

EXAMPLE 36-3
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SOLUTION (a) The given 10.0-min time interval is the proper time—starting and 
finishing the magazine happen at the same place on the spaceship. Earth clocks
measure 10.00 min .

At = —, = — , =  = 15.1 mm.
1 _ 1?  V I  -  (0.75)2

(b) In the Earth frame, the rocket travels a distance D = v At = 
(0.75c)(15.1 min) = (0.75)(3.0 X 108m/s)(15.1min X 60s/min) = 2.04 X 10n m. 
In the spaceship’s frame, the Earth is moving away from the spaceship at 
0.75c, but the time is only 10.0 min, so the distance is measured to be 
D1 = v A t0 = (2.25 X 108m/s)(600s) = 1.35 X 10n m.

Values for 7 = l / \ / l  -  v2/c2 at a few speeds v are given in Table 36-1. 

Space Travel?
Time dilation has aroused interesting speculation about space travel. According to 
classical (Newtonian) physics, to reach a star 100 light-years away would not be 
possible for ordinary mortals (1 light-year is the distance light can travel in 1 year =
3.0 X 108m/s X 3.16 X 107s = 9.5 X 1015m). Even if a spaceship could travel at 
close to the speed of light, it would take over 100 years to reach such a star. 
But time dilation tells us that the time involved could be less. In a spaceship 
traveling at v = 0.999c, the time for such a trip would be only about 
At0 = At y j l -  v2/c2 = (100 yr)v"l “  (0.999)2 = 4.5 yr. Thus time dilation allows 
such a trip, but the enormous practical problems of achieving such speeds may not 
be possible to overcome, certainly not in the near future.

In this example, 100 years would pass on Earth, whereas only 4.5 years would pass 
for the astronaut on the trip. Is it just the clocks that would slow down for the astronaut? 
No. All processes, including aging and other life processes, run more slowly for the astro­
naut according to the Earth observer. But to the astronaut, time would pass in a normal 
way. The astronaut would experience 4.5 years of normal sleeping, eating, reading, 
and so on. And people on Earth would experience 100 years of ordinary activity.

Twin Paradox
Not long after Einstein proposed the special theory of relativity, an apparent 
paradox was pointed out. According to this twin paradox, suppose one of a pair of 
20-year-old twins takes off in a spaceship traveling at very high speed to a distant 
star and back again, while the other twin remains on Earth. According to the Earth 
twin, the astronaut twin will age less. Whereas 20 years might pass for the Earth 
twin, perhaps only 1 year (depending on the spacecraft’s speed) would pass for the 
traveler. Thus, when the traveler returns, the earthbound twin could expect to be
40 years old whereas the traveling twin would be only 21.

This is the viewpoint of the twin on the Earth. But what about the traveling 
twin? If all inertial reference frames are equally good, won’t the traveling twin 
make all the claims the Earth twin does, only in reverse? Can’t the astronaut twin 
claim that since the Earth is moving away at high speed, time passes more slowly 
on Earth and the twin on Earth will age less? This is the opposite of what the 
Earth twin predicts. They cannot both be right, for after all the spacecraft returns 
to Earth and a direct comparison of ages and clocks can be made.

There is, however, no contradiction here. One of the viewpoints is indeed incorrect. 
The consequences of the special theory of relativity—in this case, time dilation—can 
be applied only by observers in an inertial reference frame. The Earth is such a frame 
(or nearly so), whereas the spacecraft is not. The spacecraft accelerates at the start and 
end of its trip and when it turns around at the far point of its journey. During the accel­
eration, the twin on the spacecraft is not in an inertial frame. In between, the astronaut 
twin may be in an inertial frame (and is justified in saying the Earth twin’s clocks run 
slow), but it is not always the same frame. So she cannot use special relativity to predict 
their relative ages when she returns to Earth. The Earth twin stays in the same inertial 
frame, and we can thus trust her predictions based on special relativity. Thus, there is no 
paradox. The prediction of the Earth twin that the traveling twin ages less is the proper one.

TABLE 36-1 Values of 7
V 7

0 1.000
0.01c 1.000
0.10c 1.005
0.50c 1.15
0.90c 2.3
0.99c 7.1
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* Global Positioning System (GPS)
© P H Y S I C S  A P P L I E D  Airplanes, cars, boats, and hikers use global positioning system (GPS) receivers to 

Global positioning system tell them quite accurately where they are, at a given moment. The 24 global 
(GPS) positioning system satellites send out precise time signals using atomic clocks. Your 

receiver compares the times received from at least four satellites, all of whose 
times are carefully synchronized to within 1 part in 1013. By comparing the time 
differences with the known satellite positions and the fixed speed of light, the 
receiver can determine how far it is from each satellite and thus where it is on 
the Earth. It can do this to a typical accuracy of 15 m, if it has been constructed to 
make corrections such as the one below due to special relativity.

CONCEPTUAL EXAMPLE 56-4 I A relativity correction to CPS. GPS satellites 
move at about 4km /s = 4000 m/s. Show that a good GPS receiver needs to correct 
for time dilation if it is to produce results consistent with atomic clocks accurate 
to 1 part in 1013.
RESPONSE Let us calculate the magnitude of the time dilation effect by inserting 
v = 4000 m/s into Eq. 36-la:

— i---------------------------
4 X 103m /s\ 2
3 X 108m/s /

= —  ̂ Af0.
V l - u x  IO"10

We use the binomial expansion: (1 + x)n «  1 + nx for x «  1 (see Appendix A) 
which here is (1 -  x)~^ «  1 + \x . That is

A t =  (1 +  | ( 1 .8  X 10“10)) A t0 =  (1 +  9 X 10“n ) A t0 .

The time “error” divided by the time interval is
(At -  Atn)
--------------- --  =  1 +  9 X 10-11 -  1 =  9 X 10-11 «  I X  10“10.

A f0
Time dilation, if not accounted for, would introduce an error of about 1 part in 1010, 
which is 1000 times greater than the precision of the atomic clocks. Not correcting 
for time dilation means a receiver could give much poorer position accuracy.
NOTE GPS devices must make other corrections as well, including effects associated 
with general relativity.

3 6 -6  Length Contraction
Time intervals are not the only things different in different reference frames. Space 
intervals—lengths and distances—are different as well, according to the special 
theory of relativity, and we illustrate this with a thought experiment.

Observers on Earth watch a spacecraft traveling at speed v from Earth to, say, 
Neptune, Fig. 36-8a. The distance between the planets, as measured by the Earth 
observers, is £0. The time required for the trip, measured from Earth, is 

£
At = [Earth observer]

In Fig. 36-8b we see the point of view of observers on the spacecraft. In this frame 
of reference, the spaceship is at rest; Earth and Neptune movef with speed v. 
The time between departure of Earth and arrival of Neptune (observed from the 
spacecraft) is the “proper time,” since the two events occur at the same point in 
space (i.e., on the spacecraft). Therefore the time interval is less for the spacecraft

964 CHAPTER 36 fWe assume v is much greater than the relative speed of Neptune and Earth, so the latter can be ignored.
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FIGURE 3 6 -8  (a) A  spaceship 
traveling at very high speed from 
Earth to the planet Neptune, as seen  
from Earth’s frame of reference.
(b) According to an observer on the 
spaceship, Earth and Neptune are 
moving at the very high speed v : 
Earth leaves the spaceship, and a 
time At0 later Neptune arrives at the 
spaceship.

observers than for the Earth observers. That is, because of time dilation (Eq. 36-la), 
the time for the trip as viewed by the spacecraft is

At0 = At V l  “  v2/c2 = At/y. [spacecraft observer]
Because the spacecraft observers measure the same speed but less time between 
these two events, they also measure the distance as less. If we let £ be the distance 
between the planets as viewed by the spacecraft observers, then I = v At0, 
which we can rewrite as i  = v At0 = v At y / l  -  v2/c2 = £0\ / l  -  v2/c2. Thus 
we have the important result that

i  = f0\ / i  -  ^ / c 2

or, using 7 (Eq. 36-2),

I = '

(36-3a)

(36-3b)

This is a general result of the special theory of relativity and applies to lengths of objects 
as well as to distance between objects. The result can be stated most simply in words as:

the length of an object moving relative to an observer is measured to be 
shorter along its direction of motion than when it is at rest.

This is called length contraction. The length £0 in Eqs. 36-3 is called the proper 
length. It is the length of the object (or distance between two points whose positions 
are measured at the same time) as determined by observers at rest with respect to the 
object. Equations 36-3 give the length i  that will be measured by observers when 
the object travels past them at speed v.

It is important to note that length contraction occurs only along the direction 
o f motion. For example, the moving spaceship in Fig. 36-8a is shortened in length, 
but its height is the same as when it is at rest.

Length contraction, like time dilation, is not noticeable in everyday life because the 
factor y / l — v2/c2 in Eq. 36-3a differs from 1.00 significantly only when v is very large.

I tTi I jT T T S M  Painting's contraction. A rectangular painting measures 
1.00 m tall and 1.50 m wide. It is hung on the side wall of a spaceship which is 
moving past the Earth at a speed of 0.90c. See Fig. 36-9a. (a) What are the 
dimensions of the picture according to the captain of the spaceship? (b) What are 
the dimensions as seen by an observer on the Earth?
APPROACH We apply the length contraction formula, Eq. 36-3a, to the dimension 
parallel to the motion; v is the speed of the painting relative to the observer. 
SOLUTION (a) The painting is at rest (v = 0) on the spaceship so it (as well as 
everything else in the spaceship) looks perfectly normal to everyone on the 
spaceship. The captain sees a 1.00-m by 1.50-m painting.
(b) Only the dimension in the direction of motion is shortened, so the height is 
unchanged at 1.00 m, Fig. 36-9b. The length, however, is contracted to

1 -  —2Ct  = A

= (1.50 m ) \ / l  “  (0.90)2 = 0.65 

So the picture has dimensions 1.00 m X 0.65 m.

m.

L E N G T H  C O N TR A C TIO N

/ j \  CAUTI ON
Proper length is measured 
in reference fram e where the 
tw o positions are at rest

FIGURE 3 6 - 9  Example 36-5 .
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A fantasy supertrain. A very fast train with a proper length 
of 500 m is passing through a 200-m-long tunnel. Let us imagine the train’s speed 
to be so great that the train fits completely within the tunnel as seen by an 
observer at rest on the Earth. That is, the engine is just about to emerge from one 
end of the tunnel at the time the last car disappears into the other end. What is 
the train’s speed?

APPROACH Since the train just fits inside the tunnel, its length measured by the 
person on the ground is 200 m. The length contraction formula, Eq. 36-3a or b, 
can thus be used to solve for v.

SOLUTION Substituting I = 200 m and £0 = 500 m into Eq. 36-3a gives

L i f
200 m = 500 m -w 1 _ 2̂ ’

dividing both sides by 500 m and squaring, we get 

(0.40)2 = 1 -  ^

^  = \ A  -  (0.40)2 

v = 0.92c.

NOTE No real train could go this fast. But it is fun to think about.

NOTE An observer on the train would not see the two ends of the train inside the 
tunnel at the same time. Recall that observers moving relative to each other do 
not agree about simultaneity.

EXERCISE D What is the length of the tunnel as measured by observers on the train in 
Example 36-6?

CONCEPTUAL EXAMPLE 56-7~| Resolving the train and tunnel length.
Observers at rest on the Earth see a very fast 200-m-long train pass through a 
200-m-long tunnel (as in Example 36-6) so that the train momentarily disappears from 
view inside the tunnel. Observers on the train measure the train’s length to be 
500 m and the tunnel’s length to be only 80 m (Exercise D, using Eq. 36-3a). Clearly 
a 500-m-long train cannot fit inside an 80-m-long tunnel. How is this apparent 
inconsistency explained?
RESPONSE Events simultaneous in one reference frame may not be simultaneous 
in another. Let the engine emerging from one end of the tunnel be “event A,” and 
the last car disappearing into the other end of the tunnel “event B.” To observers in 
the Earth frame, events A and B are simultaneous. To observers on the train, 
however, the events are not simultaneous. In the train’s frame, event A occurs before 
event B. As the engine emerges from the tunnel, observers on the train observe the 
last car as still 500 m -  80 m = 420 m from the entrance to the tunnel.

EXAMPLE 36-6
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(a)

A 9 ± i

(b)

FIGURE 3 6 -1 0  According to an 
accurate clock on a fast-moving 
train, a person (a) begins dinner at 
7:00 and (b) finishes at 7:15. A t the 
beginning of the meal, two observers 
on Earth set their watches to 
correspond with the clock on the 
train. These observers measure the 
eating time as 20 minutes.

3 6 -7  Four-Dimensional Space-Time
Let us imagine a person is on a train moving at a very high speed, say 0.65c, 
Fig. 36-10. This person begins a meal at 7:00 and finishes at 7:15, according to a 
clock on the train. The two events, beginning and ending the meal, take place at 
the same point on the train. So the proper time between these two events is 
15 min. To observers on Earth, the meal will take longer—20 min according to 
Eqs. 36-1. Let us assume that the meal was served on a 20-cm-diameter plate. To 
observers on the Earth, the plate is only 15 cm wide (length contraction). Thus, 
to observers on the Earth, the meal looks smaller but lasts longer.

In a sense the two effects, time dilation and length contraction, balance each 
other. When viewed from the Earth, what an object seems to lose in size it gains in 
length of time it lasts. Space, or length, is exchanged for time.

Considerations like this led to the idea of four-dimensional space-time: space 
takes up three dimensions and time is a fourth dimension. Space and time are 
intimately connected. Just as when we squeeze a balloon we make one dimension 
larger and another smaller, so when we examine objects and events from different 
reference frames, a certain amount of space is exchanged for time, or vice versa.

Although the idea of four dimensions may seem strange, it refers to the idea 
that any object or event is specified by four quantities—three to describe where in 
space, and one to describe when in time. The really unusual aspect of four-dimensional 
space-time is that space and time can intermix: a little of one can be exchanged 
for a little of the other when the reference frame is changed.

It is difficult for most of us to understand the idea of four-dimensional 
space-time. Somehow we feel, just as physicists did before the advent of relativity, 
that space and time are completely separate entities. Yet we have found in our 
thought experiments that they are not completely separate. And think about 
Galileo and Newton. Before Galileo, the vertical direction, that in which objects 
fall, was considered to be distinctly different from the two horizontal dimensions. 
Galileo showed that the vertical dimension differs only in that it happens to be the 
direction in which gravity acts. Otherwise, all three dimensions are equivalent, a 
viewpoint we all accept today. Now we are asked to accept one more dimension, 
time, which we had previously thought of as being somehow different. This is not 
to say that there is no distinction between space and time. What relativity has 
shown is that space and time determinations are not independent of one another.

In Galilean-Newtonian relativity, the time interval between two events, At, 
and the distance between two events or points, Ax, are invariant quantities no 
matter what inertial reference frame they are viewed from. Neither of these 
quantities is invariant according to Einstein’s relativity. But there is an invariant 
quantity in four-dimensional space-time, called the space-time interval, which 
is (As)2 = (c At)2 -  (Ax)2. We leave it as a Problem (97) to show that this quantity 
is indeed invariant under a Lorentz transformation (Section 36-8).
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36—8 Galilean and Lorentz Transformations
We now examine in detail the mathematics of relating quantities in one inertial 
reference frame to the equivalent quantities in another. In particular, we will see 
how positions and velocities transform (that is, change) from one frame to the other.

We begin with the classical or Galilean viewpoint. Consider two inertial 
reference frames S and S' which are each characterized by a set of coordinate axes, 
Fig. 36-11. The axes x and y (z is not shown) refer to S and x' and y' to S'. 
The x' and x axes overlap one another, and we assume that frame S' moves to the 
right in the x direction at constant speed v with respect to S. For simplicity let 
us assume the origins 0 and O' of the two reference frames are superimposed at 
time t = 0.

y /
S S'

FIGURE 36-11 Inertial reference
frame S' moves to the right at constant a T)
speed v with respect to frame S. -------------- v t -------------- -

*------------------x ---------

• r
—x - —

o * o' *'

Now consider an event that occurs at some point P (Fig. 36-11) represented 
by the coordinates *', y', z' in reference frame S' at the time t ' . What will be the 
coordinates of P in S? Since S and S' initially overlap precisely, after a time t', S' 
will have moved a distance vt'. Therefore, at time t ’, x = x' + v t'. The y and z 
coordinates, on the other hand, are not altered by motion along the x axis; 
thus y = y' and z = z '. Finally, since time is assumed to be absolute in 
Galilean-Newtonian physics, clocks in the two frames will agree with each other; 
so t = t'. We summarize these in the following Galilean transformation equations:

x = x' + vt'
y = y'
z = z' [Galilean] (36-4)
t = t'.

These equations give the coordinates of an event in the S frame when those in the 
S' frame are known. If those in the S frame are known, then the S' coordinates are 
obtained from

x' = x — vt, y' = y, z' = z, t' = t. [Galilean]

These four equations are the “inverse” transformation and are very easily obtained 
from Eqs. 36-4. Notice that the effect is merely to exchange primed and unprimed 
quantities and replace v by —v. This makes sense because from the S' frame, S 
moves to the left (negative x direction) with speed v.

Now suppose the point P in Fig. 36-11 represents a particle that is moving. Let 
the components of its velocity vector in S' be u'x , u'y , u'z . (We use u to distinguish 
it from the relative velocity of the two frames, v.) Now u'x = dx'/ dt', 
u'y = dy' I  dt' and u'z = dz'/dt'. The velocity of P as seen from S will have 
components ux ,u y , and uz . We can show how these are related to the velocity 
components in S' by differentiating Eqs. 36-4. For ux we get

dx d(x' + vt')
u* = dF = dF’------------ = u* + v

since v is assumed constant. For the other components, u'y = uy and u'z = uz , so 
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we have
= u'r + V

Uy = u'y
u7 = u'7.

[Galilean] (36-5)

These are known as the Galilean velocity transformation equations. We see that 
the y and z components of velocity are unchanged, but the x components 
differ by v: ux = u'x + v. This is just what we have used before (see Chapter 3, 
Section 3-9) when dealing with relative velocity.

The Galilean transformations, Eqs. 36-4 and 36-5, are valid only when the 
velocities involved are much less than c. We can see, for example, that the first 
of Eqs. 36-5 will not work for the speed of light: light traveling in S' with 
speed u'x = c would have speed c + v in S, whereas the theory of relativity insists it 
must be c in S. Clearly, then, a new set of transformation equations is needed to 
deal with relativistic velocities.

We derive the required equation, looking again at Fig. 36-11. We will try the 
simple assumption that the transformation is linear and of the form

= y(x' + vt'), y = y z = z (i)
That is, we modify the first of Eqs. 36-4 by multiplying by a constant 7 which is yet to 
be determined1 (7 = 1 non-relativistically). But we assume the y and z equations are 
unchanged since there is no length contraction in these directions. We will not assume 
a form for t, but will derive it. The inverse equations must have the same form with v 
replaced by —v. (The principle of relativity demands it, since S' moving to the right 
with respect to S is equivalent to S moving to the left with respect to S'.) Therefore

x' = y(x -  vt). (ii)
Now if a light pulse leaves the common origin of S and S' at time t = t' = 0, after 
a time t it will have traveled a distance x = ct or x' = ct' along the x axis. 
Therefore, from Eqs. (i) and (ii) above,

ct = 7 (ct' + vt') = 7 (c + v ) t ',  (iii)
ct' = 7 (ct -  vt) = 7 (c -  v)t. (iv)

We substitute t' from Eq. (iv) into Eq. (iii) and find ct = 7(c + v)J(c — v)(t/c) = 
72(c2 -  v2)t/c. We cancel out the t on each side and solve for 7 to find 

1
7 =

\ / l  -  v2/c2
The constant 7 here has the same value as the 7 we used before, Eq. 36-2. Now 
that we have found 7, we need only find the relation between t and t'. To do so, we 
combine x' = 7(x -  vt) with x = J(x ' + vt'):

x' = J(x — vt) = 7(7[x' + vt'] — vt).
We solve for t and find t = l ( t ' + vx '/c2). In summary,

J(x ’ + vt')
y'
z' (36-6)

vx'

These are called the Lorentz transformation equations. They were first proposed, 
in a slightly different form, by Lorentz in 1904 to explain the null result of the 
Michelson-Morley experiment and to make Maxwell’s equations take the same 
form in all inertial reference frames. A year later Einstein derived them 
independently based on his theory of relativity. Notice that not only is the x equation 
modified as compared to the Galilean transformation, but so is the t equation; 
indeed, we see directly in this last equation how the space and time coordinates mix.
f7 here is not assumed to be given by Eq. 36-2.

X =
y =
z =

t = y\t' +

L O R E N T Z  TRANSFORM ATIONS
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Deriving Length Contraction
We now derive the length contraction formula, Eq. 36-3, from the Lorentz 
transformation equations. We consider two reference frames S and S' as in Fig. 36-11.

Let an object of length £0 be at rest on the x axis in S. The coordinates of its two 
end points are xx and x2, so that x2 — x1 = £0 • At any instant in S', the end points will 
be at Xi and x2 as given by the Lorentz transformation equations. The length measured 
in S' is I = x2 — x [ . An observer in S' measures this length by measuring x2 and x\ at 
the same time (in the S' reference frame), so t2 = t[. Then, from the first of Eqs. 36-6,

lQ = X2  -  X l  = y 1 0 / A *2 + Vt'2 -  xi -  Vti).
y l  -  vl /c l

Since t2 = t \ , we have
1 I

f° = /, 2/2  "  X0  = Tl 2 / 2 ’ y l  -  v2/c 2 v 1 _  v l c
or

1 = W i  -  «2/c2,
which is Eq. 36-3.

Deriving Time Dilation
We now derive the time-dilation formula, Eq. 36-la, using the Lorentz transformation 
equations.

The time At0 between two events that occur at the same place (x2 = x^) in S' 
is measured to be At0 = t2 — t[. Since x2 = x [ , then from the last of Eqs. 36-6, 
the time A t between the events as measured in S is

1 I , VX2 , VX1

1 (* -  <0 -  Atn\ / l  ~ v2/c2 \ J l  -  v2/c2
which is Eq. 36-la. Note that we chose S' to be the frame in which the two events 
occur at the same place, so that x[ = x2 and the terms containing x[ and x2 cancel out.

Relativistic Addition of Velocities
The relativistically correct velocity equations are readily obtained by differentiating 
Eqs. 36-6 with respect to time. For example (using 7 = l / \ / l  — v2/c2 and 
the chain rule for derivatives):

dX d r /  \  -\

= J t ^ x + * ')]

= T r l y(x' + = y\iTT + v I t - -dt* L v n  dt I dt' J dt
But dx’ I  dt' = u'x and dt'/d t = 1 /(d t/d t')  = l /[7 ( l  + vu'x/c2)\ where we have 
differentiated the last of Eqs. 36-6 with respect to time. Therefore

_ [y{u'x + ^)] _  u'x + v 
Ux [y(l + vux/c2)] 1 + vu'Jc2 

The others are obtained in the same way and we collect them here: 
u'x + v

(36-7a) 

(36-7b)

, / 2 (36-7c)1 + vux/c
Note that even though the relative velocity v is in the x direction, if the object has 
y or z components of velocity, they too are affected by v and the x component of 

CHAPTER 36 the object’s velocity. This was not true for the Galilean transformation, Eqs. 36-5.
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EXAMPLE 36-8 Adding velocities. Calculate the speed of rocket 2 in Fig. 36-12 
with respect to Earth.

APPROACH Consider Earth as reference frame S, and rocket 1 as reference 
frame S'. Rocket 2 moves with speed u' = 0.60c with respect to rocket 1. 
Rocket 1 has speed v = 0.60c with respect to Earth. The velocities are along the 
same straight line which we take to be the x (and x') axis. We need use only 
the first of Eqs. 36-7.
SOLUTION The speed of rocket 2 with respect to Earth is

«'= 0.60c with 
respect u> 
rocket 1

JEiunh v X  r = O.fiOr with
/  respect Birth

0.60c + 0.60cu =
1 +

vu
~̂ 2 1 +

(0.60c) (0.60c)
1.20c
1.36

= 0.88c.

NOTE The Galilean transformation would have given u = 1.20c.

EXERCISE E U se Eqs. 3 6 -7  to calculate the speed of rocket 2 in Fig. 36-12  relative to 
Earth if it was shot from rocket 1 at a speed u' =  3000 k m /s =  0.010c. Assum e rocket 1 
had a speed v  =  6000 km /s =  0.020c.

FIGURE 36-12 R ocket 1 moves 
away at speed v  =  0.60c. Rocket 2 
is fired from rocket 1 with speed 
u' =  0.60c. What is the speed of 
rocket 2 with respect to the Earth?

EXERCISE F Return to the Chapter-Opening Question, page 951, and answer it again now. 
Try to explain why you may have answered differently the first time.

Notice that Eqs. 36-7 reduce to the classical (Galilean) forms for velocities 
small compared to the speed of light, since 1 + vu'/c2 ~ 1 for v and u' <5C c. At 
the other extreme, let rocket 1 in Fig. 36-12 send out a beam of light, so that 
u' = c. Then Eq. 36-7a tells us the speed of light relative to Earth is

0.60c + c 
1 , (0-60c)(c)

which is consistent with the second postulate of relativity.

36—9 Relativistic Momentum
So far in this Chapter, we have seen that two basic mechanical quantities, length 
and time intervals, need modification because they are relative—their value 
depends on the reference frame from which they are measured. We might expect 
that other physical quantities might need some modification according to the 
theory of relativity, such as momentum, energy, and mass.

The analysis of collisions between two particles shows that if we want to 
preserve the law of conservation of momentum in relativity, we must redefine 
momentum as

mv
p = — , -  = Jmv. (36-8)

V I  -  ^ / c 2

Here T is shorthand for l / \ / l  — u2/c2 as before (Eq. 36-2). For speeds much less 
than the speed of light, Eq. 36-8 gives the classical momentum, p = mv.

Relativistic momentum has been tested many times on tiny elementary 
particles (such as muons), and it has been found to behave in accord with 
Eq. 36-8. We derive Eq. 36-8 in the optional subsection on the next page.
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EXAMPLE 36-9 Momentum of moving electron. Compare the momentum 
of an electron when it has a speed of (a) 4.00 X 107 m/s in the CRT of a television 
set, and (b) 0.98c in an accelerator used for cancer therapy.

APPROACH We use Eq. 36-8 for the momentum of a moving electron. 
SOLUTION (a) At v = 4.00 X 107m/s, the electron’s momentum is

mv mv
= 1.01 mv.

v2 I (4.00 X 107m/s)2
c2 V (3.00 X 108 m/s)2

The factor 7 = l / \ / l  — v2/c2 ~ 1.01, so the momentum is only about 1% 
greater than the classical value. (If we put in the mass of an electron, 
m = 9.11 X 10-31kg, the momentum is p = 1.01 mv = 3.68 X 10-23 kg-m/s.) 
(b) With v = 0.98c, the momentum is

mv mv mv
p = —. = —, =  = — , =  = 5.0 mv.

1 _ ±  r  (0.98c)2 V l  -  (0.98)2

An electron traveling at 98% the speed of light has 7 = 5.0 and a momentum 
_5.0 times its classical value.

Newton’s second law, stated in its most general form, is

F = f  = L  ( W )  = f  (  - )  (36-9)
dt dt dt V ^ l  — v2/c2 J

and is valid relativistically.

* Derivation of Relativistic Momentum
Classically, momentum is a conserved quantity. We hope to find a formula for 
momentum that will also be valid relativistically. To do so, let us assume it has the 
general form given by p = fm v  where /  is some function of v: f(v). We consider 
a hypothetical collision between two objects—a thought experiment—and see 
what form f(v) must take if momentum is to be conserved.

Our thought experiment involves the elastic collision of two identical balls, 
A and B. We consider two inertial reference frames, S and S', moving along the x 
axis with a speed v with respect to each other, Fig. 36-13. That is, frame S' moves 
to the right with velocity v as seen by observers on frame S; and frame S moves to 
the left with — v as seen by observers on S'. In reference frame S, ball A is 
thrown with speed u in the +y direction. In reference frame S', ball B is thrown 
with speed u in the negative y' direction. The two balls are thrown at just the right 
time so that they collide. We assume that they rebound elastically and, from 
symmetry, that each moves with the same speed u back in the opposite direction in 
its thrower’s reference frame. Figure 36-13a shows the collision as seen by an 
observer in reference frame S; and Fig. 36-13b shows the collision as seen from 
reference frame S'. In reference frame S, ball A has vx = 0 both before and after 
the collision; it has vy = +u before the collision and - u  after the collision. In 
frame S', ball A has x  component of velocity u'x = —v both before and after the 
collision, and a y' component (Eq. 36-7b with u'x = - v ) of magnitude

u'y = u \ / l  — v2/c2.

The same holds true for ball B, except in reverse. The velocity components are 
indicated in Fig. 36-13.

We now apply the law of conservation of momentum, which we hope remains 
valid in relativity, even if momentum has to be redefined. That is, we assume that 
the total momentum before the collision is equal to the total momentum after the
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FIGURE 36-13 Deriving the 
momentum formula. Collision as 
seen by observers (a) in reference 
frame S, (b) in reference frame S'.

collision. We apply conservation of momentum to the y component of momentum in 
reference frame S (Fig. 36-13a). To make our task easier, let us assume u « v  so 
that the speed of ball B as seen in reference frame S is essentially v. Then B’s 
y component of momentum in S before collision is —f(v)m u \ / 1 — v2/c2 and 
after the collision is + f(v )m u \/1 -  v2/c 2. Ball A in S has y component f(u)mu  
before and —f(u)mu  after the collision. (We use f(u) for A because its speed in S is 
only u.) Conservation of momentum in S for the y  component is

(Pa + Pb) before = (Pa + Pb) after

f(u)mu — f(v) m u \ / l  — v2/c 2 = —f(u)mu + f(v)m u \ / 1 — v2/c 2.
We solve this for f(v) and obtain

/(») = /  2/ 2- V l  -  v2/c 2
To simplify this relation so we can solve for / ,  let us allow u to become very 

small so that it approaches zero (this corresponds to a glancing collision with one 
of the balls essentially at rest and the other moving with speed v). Then the 
momentum terms f(u)mu  are in the nonrelativistic realm and take on the classical 
form, simply mu, meaning that f(u) = 1. So the previous equation becomes

M  = / .  1 2 . 2- 
y l  -  r f /c

We see that f(v) comes out to be the factor we used before and called 7, and here 
has been shown to be valid for ball A. Using Fig. 36-13b we can derive the same 
relation for ball B. Thus we can conclude that we need to define the relativistic 
momentum of a particle moving with velocity v as 

mv
P

V T
= 7mv.

v2/c2
With this definition the law of conservation of momentum will remain valid even 
in the relativistic realm. This relativistic momentum formula (Eq. 36-8) has been 
tested countless times on tiny elementary particles and been found valid.
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*  R e la tiv is tic  Mass
The relativistic definition of momentum, Eq. 36-8, is sometimes interpreted as an 
increase in the mass of an object. In this interpretation, a particle can have a 
relativistic mass, mrel, which increases with speed according to 

m
mrel "  v T ^ T J ? '

In this “mass-increase” formula, m is referred to as the rest mass of the object. 
With this interpretation, the mass o f an object appears to increase as its speed 
increases. But we must be careful in the use of relativistic mass. We cannot just 
plug it into formulas like F = ma or K  = \m v2. For example, if we substitute it 
into F = ma, we obtain a formula that does not agree with experiment. If 
however, we write Newton’s second law in its more general form, F = dp/dt, we 
do get a correct result (Eq. 36-9).

Also, be careful not to think a mass acquires more particles or more molecules 
as its speed becomes very large. It doesn’t. In fact, many physicists believe an 
object has only one mass (its rest mass), and that it is only the momentum that 
increases with speed.

Whenever we talk about the mass of an object, we will always mean its rest 
mass (a fixed value).

36—10 The Ultimate Speed
A basic result of the special theory of relativity is that the speed of an object 
cannot equal or exceed the speed of light. That the speed of light is a natural speed 
limit in the universe can be seen from any of Eqs. 36-1,36-2,36-8, or the addition 
of velocities formula. It is perhaps easiest to see from Eq. 36-8. As an object is 
accelerated to greater and greater speeds, its momentum becomes larger and 
larger. Indeed, if v were to equal c, the denominator in this equation would be 
zero, and the momentum would be infinite. To accelerate an object up to v = c 
would thus require infinite energy, and so is not possible.

36-11 E  —  m e 2 ; Mass and Energy
If momentum needs to be modified to fit with relativity as we just saw in Eq. 36-8, 
then we might expect energy too would need to be rethought. Indeed, Einstein not 
only developed a new formula for kinetic energy, but also found a new relation 
between mass and energy, and the startling idea that mass is a form of energy.

We start with the work-energy principle (Chapter 7), hoping it is still valid in 
relativity and will give verifiable results. That is, we assume the net work done on a 
particle is equal to its change in kinetic energy (K). Using this principle, Einstein 
showed that at high speeds the formula K  = \m v2 is not correct. Instead, as we 
show in the optional Subsection on page 978, the kinetic energy of a particle of mass 
m traveling at speed v is given by 

me2
K  = . -  me2. (36-10a)

V I  -  *>7c2
In terms of 7 = l / \ / l  — v2/c2 we can rewrite Eq. 36-10a as

K  = 7mc2 -  mc2 = (7 -  1)me2. (36-10b)
Equations 36-10 require some interpretation. The first term increases with the 
speed v of the particle. The second term, me2, is constant; it is called the rest energy 
of the particle, and represents a form of energy that a particle has even when at 
rest. Note that if a particle is at rest (v = 0) the first term in Eq. 36-10a becomes 
me1, so K  = 0 as it should.

We can rearrange Eq. 36-10b to get
7 me2 = mc2 + K.

We call 7me2 the total energy E  of the particle (assuming no potential energy), 
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because it equals the rest energy plus the kinetic energy: 
E  = K  + me2.

The total energy can also be written, using Eqs. 36-10, as

E = Jmc2 =
me

\ / \  -  v2/c2
(36 -llb )

(36-lla)

For a particle at rest in a given reference frame, K  is zero in Eq. 36-lla , so the 
total energy is its rest energy:

E = me2. (36-12)

Here we have Einstein’s famous formula, E  = me2. This formula mathematically 
relates the concepts of energy and mass. But if this idea is to have any physical 
meaning, then mass ought to be convertible to other forms of energy and vice versa. 
Einstein suggested that this might be possible, and indeed changes of mass to other 
forms of energy, and vice versa, have been experimentally confirmed countless times in 
nuclear and elementary particle physics. For example, an electron and a positron 
(= a positive electron, Section 37-5) have often been observed to collide and disappear, 
producing pure electromagnetic radiation. The amount of electromagnetic 
energy produced is found to be exactly equal to that predicted by Einstein’s 
formula, E = me2. The reverse process is also commonly observed in the 
laboratory: electromagnetic radiation under certain conditions can be converted 
into material particles such as electrons (see Section 37-5 on pair production). On 
a larger scale, the energy produced in nuclear power plants is a result of the loss in 
mass of the uranium fuel as it undergoes the process called fission. Even the 
radiant energy we receive from the Sun is an example of E = me2; the Sun’s mass 
is continually decreasing as it radiates electromagnetic energy outward.

The relation E = me2 is now believed to apply to all processes, although the 
changes are often too small to measure. That is, when the energy of a system changes 
by an amount A E, the mass of the system changes by an amount Am given by

A E  = (Am)(c2).
In a nuclear reaction where an energy E  is required or released, the masses of the 
reactants and the products will be different by Am = A E /e2.

Pion's kinetic energy. A 7r° meson (m = 2.4 x 10“28kg) 
travels at a speed v =  0.80c =  2.4 X 108m/s. What is its kinetic energy? 
Compare to a classical calculation.
APPROACH We use Eq. 36-10 and compare to \ mv2.
SOLUTION We substitute values into Eq. 36-10a or b 

K = {J -  1 )mc2
where

Then

J = = 1.67.
V i  -  vVc2 V i  -  (°-80)2

K = (1.67 -  1)(2.4 X 10_2Skg)(3.0 x 108m/s)2

= 1.4 X 10“UJ.
Notice that the units of mc2 are kg-m2/s2, which is the joule.
NOTE If we were to do a classical calculation we would obtain 
K  = \ mv2 = \  (2.4 X 10-28 kg) (2.4 X 108 m/s)2 = 6.9 X 10-12 J, about half as 
much, but this is not a correct result. Note that \ym v2 also does not work.

EXERCISE G A proton is traveling in an accelerator with a speed of 1.0 X 108m/s. 
By what factor does the proton’s kinetic energy increase if its speed is doubled? (a) 1.3, 
(b) 2.0, (c) 4.0, (d) 5.6.

MASS RELATED 
TO ENERGY

i P R O B L E M  S O L V I N G
Relativistic kinetic energy

SECTION 36-11 E  = me2] Mass and Energy 975



If r f i V i U Energy from nuclear decay. The energy required or 
released in nuclear reactions and decays comes from a change in mass between

(ra = 232.03714 u) decays to an atom of thorium (ra = 228.02873 u) plus an 
atom of helium (ra = 4.00260 u) where the masses given are in atomic mass 
units ( l  u = 1.6605 X 10_27kg). Calculate the energy released in this decay. 
APPROACH The initial mass minus the total final mass gives the mass loss in 
atomic mass units (u); we convert that to kg, and multiply by c2 to find the energy 
released, AE = Arac2.
SOLUTION The initial mass is 232.03714 u, and after the decay the mass is 
228.02873 u + 4.00260 u = 232.03133 u, so there is a decrease in mass of
0.00581 u. This mass, which equals (0.00581 u)(l.66 X 10_27kg) = 9.64 X 10-30kg, 
is changed into energy. By AE = Amc2, we have

AE  =  (9.64 X IO-30 kg)(3.0 X 108m/s)2 =  8.68 X 1(T13J.
Since 1 MeV = 1.60 X IO-13 J (Section 23-8), the energy released is 5.4 MeV.

In the tiny world of atoms and nuclei, it is common to quote energies in eV 
(electron volts) or multiples such as MeV (lO6 eV). Momentum (see Eq. 36-8) can 
be quoted in units of eV/c (or MeV/c). And mass can be quoted (from E = me2) 
in units of eV/c2 (or MeV/c2). Note the use of c to keep the units correct. The rest 
masses of the electron and the proton are readily shown to be 0.511 MeV/c2 and 
938 MeV/c2, respectively. See also the Table inside the front cover.

Illinois can accelerate protons to a kinetic energy of 1.0 TeV (l012eV). What is 
the speed of such a proton?
APPROACH We solve the kinetic energy formula, Eq. 36-10a, for v.
SOLUTION The rest energy of a proton is rac2 = 938 MeV or 9.38 X 108eV. 
Compared to the kinetic energy of 1012 eV, the rest energy can be neglected, so 
we simplify Eq. 36-10a to

So the proton is traveling at a speed very nearly equal to c.

At low speeds, v «  c, the relativistic formula for kinetic energy reduces to 
the classical one, as we now show by using the binomial expansion, (1 + x)n = 
1 + nx + n(n — l)x 2/2\ + •••. With n = — we expand the square root in 
Eq. 36-10a

the initial and final particles. In one type of radioactive decay, an atom of uranium

A 1-TeV proton. The Tevatron accelerator at Fermilab in

We solve this for v in the following steps:

' t  = (m c2\ 2 = _ ( 9.38 X 108eV \ 2 
~  \  K  )  \  1.0 x 1012eV /  ’

v = V 1 -  (9-38 x 10-4)2 c = 0.99999956 c.

so that
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form for kinetic energy reduces to the classical form, K  = \m v2. This makes 
relativity a viable theory in that it can predict accurate results at low speed as well 
as at high. Indeed, the other equations of special relativity also reduce to their 
classical equivalents at ordinary speeds: length contraction, time dilation, and 
modifications to momentum as well as kinetic energy, all disappear for v «  c 
since \ / l  -  v2/c2 «  1.

A useful relation between the total energy E  of a particle and its momentum p  
can also be derived. The momentum of a particle of mass m and speed v is given 
by Eq. 36-8

mv
p = 7 mv = —, -•

V l  -  ^ / c 2
The total energy is

E  = K  + mc2

- mc2
E = ymc2 =

V l  -  «7 c2
We square this equation (and we insert “v2 — v2” which is zero, but will help us): 

m2c2(v2 -  v2 + c2)
EL =

p2c2

-  v2/c2
m2c \  1 — v2/c2)

1 -  v2/c2 
or

E 2 = p2c2 + m2c4. (36-13)
Thus, the total energy can be written in terms of the momentum p, or in terms of the 
kinetic energy (Eqs. 36-11), where we have assumed there is no potential energy.

We can rewrite Eq. 36-13 as E 2 — p2c2 = m2c4. Since the mass m of a 
given particle is the same in any reference frame, we see that the quantity 
E 2 — p2c2 must also be the same in any reference frame. Thus, at any given 
moment the total energy E  and momentum p  of a particle will be different in 
different reference frames, but the quantity E 2 — p2c2 will have the same value 
in all inertial reference frames. We say that the quantity E2 — p2c2 is invariant 
under a Lorentz transformation.

*When Do We Use Relativistic Formulas?
From a practical point of view, we do not have much opportunity in our 
daily lives to use the mathematics of relativity. For example, the 7 factor, 
y = 1 /V l  “  v2/c2, which appears in many relativistic formulas, has a value of
1.005 when y =  0.10c. Thus, for speeds even as high as 0.10c =  3.0 X 107m/s, 
the factor V l  “  v2/c2 in relativistic formulas gives a numerical correction of less 
than 1%. For speeds less than 0.10c, or unless mass and energy are interchanged, 
we don’t usually need to use the more complicated relativistic formulas, and can 
use the simpler classical formulas.

If you are given a particle’s mass m and its kinetic energy K, you can do a 
quick calculation to determine if you need to use relativistic formulas or if classical 
ones are good enough. You simply compute the ratio K /m c2 because (Eq. 36-10b)

- *  = y - 1  = _____*_______ 1
me2 V l  “  « 7 c2

If this ratio comes out to be less than, say, 0.01, then 7 < 1.01 and relativistic 
equations will correct the classical ones by about 1%. If your expected precision 
is no better than 1%, classical formulas are good enough. But if your precision is 
1 part in 1000 (0.1%) then you would want to use relativistic formulas. If your 
expected precision is only 10%, you need relativity if (K/mc2) ^  0.1.

I EXERCISE H For 1% accuracy, does an electron with K  =  100 eV  need to be treated
I relativistically? [Hint: The rest mass of an electron is 0.511 MeV.] SECTION 3 6-1 1 977



* Deriving Relativistic Energy
To find the mathematical relationship between mass and energy, we assume that 
the work-energy theorem is still valid in relativity for a particle, and we take the 
motion of the particle to be along the x axis. The work done to increase a particle’s 
speed from zero to v is

f  (fdp ff dp f f
W  = j^ F d x  = = \ . % vd t  = j. vdP

where i and /  refer to the initial (v = 0) and final (v = v) states. Since 
d(pv) = p dv + v dp we can write

v dp = d(pv) -  p d v
so

W = d(pv) -  |  p dv.

The first term on the right of the equal sign is

d(pv) = pv
f

= (ymv)v
V 1 “  v2/ c2

The second term in our equation for W  above is easily integrated since
d
d

and so becomes

—  ( V 1 “  v2/ c2) = ~{v/c2) / \ / l  -  v2/c2,

(f  [v mv J - r-------
-  I p dv = -  I — , -  dv = me V 1 — v / c*

i i  J o y l  ~  v2/c 2

= mc2\ / l  -  v2/c2 — me2.
Finally, we have for W:

W = — , mV = + mc2\ / l  — v2/c2 -  me2.
V l  -  v2/e2 V

We multiply the second term on the right by \ / l  — v2/c2/ \ / l  -  v2/c2 = 1, and 
obtain

9
w  =

V l  -  ^2/ c 2
By the work-energy theorem, the work done on the particle must equal its final 
kinetic energy K  since the particle started from rest. Therefore

me2 2
K = — , - -  me

\ / l  -  v2/c2

= 7mc2 -  me2 = (7 -  1 )mc2, 

which are Eqs. 36-10.

36—12 Doppler Shift for Light
In Section 16-7 we discussed how the frequency and wavelength of sound are 
altered if the source of the sound and the observer are moving toward or away 
from each other. When a source is moving toward us, the frequency is higher than 
when the source is at rest. If the source moves away from us, the frequency is 
lower. We obtained four different equations for the Doppler shift (Eqs. 16-9a 
and b, Eqs. 16-10a and b), depending on the direction of the relative motion 
and whether the source or the observer is moving. The Doppler effect occurs also 
for light; but the shifted frequency or wavelength is given by slightly different 
equations, and there are only two of them, because for light—according to special
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relativity—we can make no distinction between motion of the source and motion 
of the observer. (Recall that sound travels in a medium such as air, whereas light 
does not—there is no evidence for an ether.)

To derive the Doppler shift for light, let us consider a light source and an observer 
that move toward each other, and let their relative velocity be v as measured in the 
reference frame of either the source or the observer. Figure 36-14a shows a source at 
rest emitting light waves of frequency f 0 and wavelength A0 = c //0. Two wavecrests 
are shown, a distance A0 apart, the second crest just having been emitted. In 
Fig. 36-14b, the source is shown moving at speed v toward a stationary observer who 
will see the wavelength A being somewhat less than A0. (This is much like Fig. 16-19 
for sound.) Let A t represent the time between crests as detected by the observer, 
whose reference frame is shown in Fig. 36-14b. From Fig. 36-14b we see that

A = c At -  v At,
where c At is the distance crest 1 has moved in the time At after it was emitted, 
and v At is the distance the source has moved in time At. So far our derivation has 
not differed from that for sound (Section 16-7). Now we invoke the theory of 
relativity. The time between emission of wavecrests has undergone time dilation:

At = A tJ \ / 1 -  v2/c2
where At0 is the time between emissions of wavecrests in the reference frame where 
the source is at rest (the “proper” time). In the source’s reference frame (Fig. 36-14a), 
we have

A, = 1  =
0 fo c

(Eqs. 5-2 and 31-14). Thus

A = (c -  v) At (c -  v)
At a__________ = (c -  ^

V i  -  «7c2 -  v2

Observer 
(at rest)

Crest emitted when 
source was at point 2

/  \  Crest emitted 
/  Y /w h e n  source 

.  jL__ ^__ J  was at point 1

s J
cAt (b)

FIGURE 3 6 -1 4  Doppler shift for 
light, (a) Source and observer at 
rest, (b) Source moving toward 
stationary observer.

or

A — An
c -  V 
c + v

The frequency /  is (recall A0 = c //0)

fo- l c
+ V

/  c -  V

source and observer 
moving toward 

each other

source and observer 
moving toward 

each other

(36-14a)

(36-14b)

Here / 0 is the frequency of the light as seen in the source’s reference frame, and /  is 
the frequency as measured by an observer moving toward the source or toward 
whom the source is moving. Equations 36-14 depend only on the relative velocity v. 
For relative motion away  from each other we set v  < 0 in Eqs. 36-14, and obtain

A — An

/  =  fo

l c
+ V

J C -  V

l c
-  V

J C + V

source and observer 
moving away from 

each other

(36-15a)

(36-15b)

From Eqs. 36-14 and 36-15 we see that light from a source moving toward us will 
have a higher frequency and shorter wavelength, whereas if a light source moves away 
from us, we will see a lower frequency and a longer wavelength. In the latter case, 
visible light will have its wavelength lengthened toward the red end of the visible 
spectrum (Fig. 32-26), an effect called a redshift. As we will see in the next Chapter, all 
atoms have their own distinctive signature in terms of the frequencies of the light they 
emit. In 1929 the American astronomer Edwin Hubble (1889-1953) found that radia­
tion from atoms in many galaxies is redshifted. That is, the frequencies of light emitted 
are lower than those emitted by stationary atoms on Earth, suggesting that the galaxies 
are receding from us. This is the origin of the idea that the universe is expanding. ♦SECTION 36-12 979



Speeding through a red light. A driver claims that he 
did not go through a red light because the light was Doppler shifted and 
appeared green. Calculate the speed of a driver in order for a red light to 
appear green.

APPROACH We apply the Doppler shift equation for red light (A0 ~ 650 nm) and 
green light (A ~ 500 nm).
SOLUTION Equation 36-14a holds for the source and the object moving toward 
each other:

l c ~

V
V c + V

EXAMPLE 36-13

We square this equation:

c — v _  ( A 
c +  v  \ A 0

where (A/A0)2 = (500 nm/650 nm)2 = 0.59. We solve for v :

1 -  (VAo)2'
V = c

1 + (A/A0)2
= 0.26c.

With this defense, the driver might not be guilty of running a red light, but he 
would clearly be guilty of speeding.

3 6 -1 3  The Impact of Special Relativity
A great many experiments have been performed to test the predictions of the 
special theory of relativity. Within experimental error, no contradictions have 
been found. Scientists have therefore accepted relativity as an accurate description 
of nature.

At speeds much less than the speed of light, the relativistic formulas reduce 
to the old classical ones, as we have discussed. We would, of course, hope—or 
rather, insist—that this be true since Newtonian mechanics works so well for 
objects moving with speeds v «  c. This insistence that a more general theory 
(such as relativity) give the same results as a more restricted theory (such as 
classical mechanics which works for v c) is called the correspondence 
principle. The two theories must correspond where their realms of validity 
overlap. Relativity thus does not contradict classical mechanics. Rather, it is a 
more general theory, of which classical mechanics is now considered to be a 
limiting case.

The importance of relativity is not simply that it gives more accurate results, 
especially at very high speeds. Much more than that, it has changed the way we 
view the world. The concepts of space and time are now seen to be relative, and 
intertwined with one another, whereas before they were considered absolute and 
separate. Even our concepts of matter and energy have changed: either can be 
converted to the other. The impact of relativity extends far beyond physics. It has 
influenced the other sciences, and even the world of art and literature; it has, 
indeed, entered the general culture.

From a practical point of view, we do not have much opportunity in our 
daily lives to use the mathematics of relativity. For example, the 7 factor 
l / \ / l  -  v2/c 2, which appears in relativistic formulas, has a value of only 1.005 
even for a speed as high as 0.10c = 3.0 X 107m/s, giving a correction of less 
than 1%. For speeds less than 0.10c, or unless mass and energy are interchanged, 
we don’t usually need to use the more complicated relativistic formulas, and can 
use the simpler classical formulas.
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Summary
An inertial reference frame is one in which Newton’s law of 
inertia holds. Inertial reference frames can move at constant 
velocity relative to one another; accelerating reference frames 
are noninertial.

The special theory of relativity is based on two principles: 
the relativity principle, which states that the laws of physics 
are the same in all inertial reference frames, and the principle of 
the constancy of the speed of light, which states that the speed 
of light in empty space has the same value in all inertial 
reference frames.

One consequence of relativity theory is that two events 
that are simultaneous in one reference frame may not be 
simultaneous in another. Other effects are time dilation: moving 
clocks are measured to run slow; and length contraction: the 
length of a moving object is measured to be shorter (in its 
direction of motion) than when it is at rest. Quantitatively,

At =
A tn

V l  -  V2/c2
= 7 Atn (36-1)

(36-3)

where £ and At are the length and time interval of objects (or 
events) observed as they move by at the speed v; £0 and At0 are 
the proper length and proper time—that is, the same quantities 
as measured in the rest frame of the objects or events. The 
quantity 7 is shorthand for

y =
V i  -  «2/c 2

(36-2)

The theory of relativity has changed our notions of space 
and time, and of momentum, energy, and mass. Space and time 
are seen to be intimately connected, with time being the fourth 
dimension in addition to the three dimensions of space.

The Lorentz transformations relate the positions and times 
of events in one inertial reference frame to their positions and 
times in a second inertial reference frame. 

x = y (x ’ + vt')
y = y'
z = z' (36-6)

(  , vx' N 
f " T + ^

where 7 = 1 / V l  “  v2/c2.
Velocity addition also must be done in a special way. All these 

relativistic effects are significant only at high speeds, close to the 
speed of light, which itself is the ultimate speed in the universe. 

The momentum of an object is given by
mv

p = 7mv = • (36-8)
V i  -  ^ / c 2

Mass and energy are interconvertible. The equation
E = me2 (36-12)

tells how much energy E  is needed to create a mass m, or vice 
versa. Said another way, E  = mc2 is the amount of energy an 
object has because of its mass m. The law of conservation of 
energy must include mass as a form of energy.

The kinetic energy K  of an object moving at speed v is given by

(36-10)K  = (y -  1 )mc2 = — mc*
V l  -  v2 /  c2

where m  is the mass of the object. The total energy E, if there is 
no potential energy, is

E = K  + me2 (36-11)
= 7 me2.

The momentum p  of an object is related to its total energy 
E  (assuming no potential energy) by

E 2 = p2c2 + m2c4. (36-13)

Questions
1. You are in a windowless car in an exceptionally smooth 

train moving at constant velocity. Is there any physical 
experiment you can do in the train car to determine 
whether you are moving? Explain.

2. You might have had the experience of being at a red light 
when, out of the corner of your eye, you see the car beside 
you creep forward. Instinctively you stomp on the brake 
pedal, thinking that you are rolling backward. What does 
this say about absolute and relative motion?

3. A worker stands on top of a moving railroad car, and throws 
a heavy ball straight up (from his point of view). Ignoring air 
resistance, will the ball land back in his hand or behind him?

4. Does the Earth really go around the Sun? Or is it also valid 
to say that the Sun goes around the Earth? Discuss in view 
of the relativity principle (that there is no best reference 
frame). Explain.

5. If you were on a spaceship traveling at 0.5c away from a 
star, at what speed would the starlight pass you?

6. The time dilation effect is sometimes expressed as “moving 
clocks run slowly.” Actually, this effect has nothing to do 
with motion affecting the functioning of clocks. What then 
does it deal with?

7. Does time dilation mean that time actually passes more 
slowly in moving reference frames or that it only seems to 
pass more slowly?

8. A young-looking woman astronaut has just arrived home 
from a long trip. She rushes up to an old gray-haired man 
and in the ensuing conversation refers to him as her son. 
How might this be possible?

9. If you were traveling away from Earth at speed 0.5c, would 
you notice a change in your heartbeat? Would your mass, 
height, or waistline change? What would observers on Earth 
using telescopes say about you?

10. Do time dilation and length contraction occur at ordinary 
speeds, say 90 km/h?

11. Suppose the speed of light were infinite. What would 
happen to the relativistic predictions of length contraction 
and time dilation?

12. Discuss how our everyday lives would be different if the 
speed of light were only 25 m/s.

13. Explain how the length contraction and time dilation 
formulas might be used to indicate that c is the limiting 
speed in the universe.
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FIGURE 36-15
Question 14.
Mr Tompkins as seen by 
people on the sidewalk.
See also Chapter-Opening 
figure on page 951.

| Problems
36-5 and 36-6 Time Dilation, Length Contraction

1. (I) A spaceship passes you at a speed of 0.850c. You measure 
its length to be 38.2 m. How long would it be when at rest?

2. (I) A certain type of elementary particle travels at a speed 
of 2.70 X 108m/s. At this speed, the average lifetime is 
measured to be 4.76 X 10 6 s. What is the particle’s lifetime 
at rest?

3. (II) According to the special theory of relativity, the factor 7 
that determines the length contraction and the time 
dilation is given by 7 = l / \ / l  -  v2/c2. Determine the 
numerical values of 7 for an object moving at speed 
v = 0.01c, 0.05c, 0.10c, 0.20c, 0.30c, 0.40c, 0.50c, 0.60c, 0.70c, 
0.80c, 0.90c, and 0.99c. Make a graph of 7 versus v.

4. (II) If you were to travel to a star 135 light-years from Earth 
at a speed of 2.80 X 108m/s, what would you measure this 
distance to be?

5. (II) What is the speed of a pion if its average lifetime is 
measured to be 4.40 X 10-8 s? At rest, its average lifetime is 
2.60 X 10-8 s.

6. (II) In an Earth reference frame, a star is 56 light-years 
away. How fast would you have to travel so that to you the 
distance would be only 35 light-years?

7. (II) Suppose you decide to travel to a star 65 light-years 
away at a speed that tells you the distance is only 25 light- 
years. How many years would it take you to make the trip?

8. (II) At what speed v will the length of a 1.00-m stick look 
10.0% shorter (90.0 cm)?

9. (II) Escape velocity from the Earth is 11.2 km/s. What 
would be the percent decrease in length of a 65.2-m-long 
spacecraft traveling at that speed as seen from Earth?

10. (II) A friend speeds by you in her spacecraft at a speed of 
0.760c. It is measured in your frame to be 4.80 m long and
1.35 m high, (a) What will be its length and height at rest?
(b) How many seconds elapsed on your friend’s watch when
20.0 s passed on yours? (c) How fast did you appear to be 
traveling according to your friend? (d) How many seconds 
elapsed on your watch when she saw 20.0 s pass on hers?

16. Can a particle of nonzero mass attain the speed of 
light?

17. Does the equation E  = mc2 conflict with the conservation 
of energy principle? Explain.

18. If mass is a form of energy, does this mean that a spring has 
more mass when compressed than when relaxed?

19. It is not correct to say that “matter can neither be created 
nor destroyed.” What must we say instead?

20. Is our intuitive notion that velocities simply add, as in 
Section 3-9, completely wrong?

11. (II) At what speed do the relativistic formulas for (a) length 
and (ib) time intervals differ from classical values by 1.00%? 
(This is a reasonable way to estimate when to do relativistic 
calculations rather than classical.)

12. (II) A certain star is 18.6 light-years away. How long would it 
take a spacecraft traveling 0.950c to reach that star from Earth, 
as measured by observers: (a) on Earth, (b) on the spacecraft?
(c) What is the distance traveled according to observers on the 
spacecraft? (d) What will the spacecraft occupants compute 
their speed to be from the results of (b) and (c)?

13. (II) Suppose a news report stated that starship Enterprise 
had just returned from a 5-year voyage while traveling at 
0.74c. (a) If the report meant 5.0 years of Earth time, how 
much time elapsed on the ship? (b) If the report meant
5.0 years of ship time, how much time passed on Earth?

14. (II) An unstable particle produced in an accelerator experi­
ment travels at constant velocity, covering 1.00 m in 3.40 ns in 
the lab frame before changing (“decaying”) into other parti­
cles. In the rest frame of the particle, determine (a) how long it 
lived before decaying, (b) how far it moved before decaying.

15. (II) When it is stationary, the half-life of a certain subatomic 
particle is T0. That is, if N  of these particles are present at a 
certain time, then a time T0 later only N /2  particles will be 
present, assuming the particles are at rest. A beam carrying 
N  such particles per second is created at position x = 0 in 
a high-energy physics laboratory. This beam travels along 
the x  axis at speed v in the laboratory reference frame 
and it is found that only N /2  particles per second travel in 
the beam at x = 2cT0, where c is the speed of light. Find 
the speed v of the particles within the beam.

16. (II) In its own reference frame, a box has the shape of a cube
2.0 m on a side. This box is loaded onto the flat floor of a 
spaceship and the spaceship then flies past us with a horizontal 
speed of 0.80c. What is the volume of the box as we observe it?

17. (II) When at rest, a spaceship has the form of an isosceles 
triangle whose two equal sides have length 2i  and whose base 
has length 1. If this ship flies past an observer with a relative 
velocity of v = 0.95c directed along its base, what are the 
lengths of the ship’s three sides according to the observer?

18. (II) How fast must a pion be moving on average to travel 25 m 
before it decays? The average lifetime, at rest, is 2.6 X 10 8 s.

14. The drawing at the start of this Chapter shows the street as 
seen by Mr Tompkins, where the speed of light is 
c = 20 mi/h. What does 
Mr Tompkins look like 
to the people standing 
on the street (Rg. 36-15)?
Explain.

15. An electron is limited to travel at speeds less than c. Does 
this put an upper limit on the momentum of an electron? If 
so, what is this upper limit? If not, explain.
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36-8 Lorentz Transformations
19. (I) An observer on Earth sees an alien vessel approach at 

a speed of 0.60c. The Enterprise comes to the rescue 
(Fig. 36-16), overtaking the aliens while moving directly 
toward Earth at a speed of 0.90c relative to Earth. What is 
the relative speed of one vessel as seen by the other?

Enterprise

v -  060c

film
FIGURE 36-16 Problem 19.

20. (I) Suppose in Fig. 36-11 that the origins of S and S' overlap 
at t = t' = 0 and that S' moves at speed v = 30 m/s with 
respect to S. In S', a person is resting at a point whose 
coordinates are x' = 25 m, y' = 20 m, and z' = 0. Calcu­
late this person’s coordinates in S (jc, y, z) at (a) t = 3.5 s, 
(b) t = 10.0 s. Use the Galilean transformation.

21. (I) Repeat Problem 20 using the Lorentz transformation 
and a relative speed v = 1.80 X 108m/s, but choose the 
time t to be (a) 3.5 fxs and (b) 10.0 fjbs.

22. (II) In Problem 21, suppose that the person moves with a 
velocity whose components are u'x = u'y = 1.10 X 108m/s, 
What will be her velocity with respect to S? (Give magni­
tude and direction.)

23. (II) Two spaceships leave Earth in opposite directions, each 
with a speed of 0.60c with respect to Earth, (a) What is the 
velocity of spaceship 1 relative to spaceship 2? (b) What is 
the velocity of spaceship 2 relative to spaceship 1?

24. (II) Reference frame S' moves at speed v = 0.92c in the +x 
direction with respect to reference frame S. The origins of S 
and S' overlap at t = t’ = 0. An object is stationary in S' 
at position x' = 100 m. What is the position of the object 
in S when the clock in S reads 1.00 fis according to the
(a) Galilean and (b) Lorentz transformation equations?

25. (II) A spaceship leaves Earth traveling at 0.61c. A second 
spaceship leaves the first at a speed of 0.87c with respect to 
the first. Calculate the speed of the second ship with respect 
to Earth if it is fired (a) in the same direction the first space­
ship is already moving, (b) directly backward toward Earth.

26. (II) Your spaceship, traveling at 0.90c, needs to launch a 
probe out the forward hatch so that its speed relative to the 
planet that you are approaching is 0.95c. With what speed 
must it leave your ship?

27. (II) A spaceship traveling at 0.76c away from Earth fires a 
module with a speed of 0.82c at right angles to its own 
direction of travel (as seen by the spaceship). What is the 
speed of the module, and its direction of travel (relative to 
the spaceship’s direction), as seen by an observer on Earth?

28. (II) If a particle moves in the xy plane of system S 
(Fig. 36-11) with speed u in a direction that makes an 
angle 0 with the x axis, show that it makes an angle 0' in 5' 
given by tan0' = (s in 0 ) \/l  -  v2/c2/(cosd — v/u).

29. (II) A stick of length £0, at rest in reference frame S, makes 
an angle 0 with the x axis. In reference frame S', which 
moves to the right with velocity v = v\ with respect to S, 
determine (a) the length £ of the stick, and (b) the angle 0' 
it makes with the x' axis.

30. (Ill) In the old West, a marshal riding on a train traveling
35.0 m/s sees a duel between two men standing on the 
Earth 55.0 m apart parallel to the train. The marshal’s 
instruments indicate that in his reference frame the two 
men fired simultaneously, (a) Which of the two men, the 
first one the train passes (A) or the second one (B) should 
be arrested for firing the first shot? That is, in the 
gunfighter’s frame of reference, who fired first? (b) How 
much earlier did he fire? (c) Who was struck first?

31. (Ill) Two lightbulbs, A and B, are placed at rest on the x axis 
at positions xA = 0 and xB = + t  In this reference frame, 
the bulbs are turned on simultaneously. Use the Lorentz trans­
formations to find an expression for the time interval between 
when the bulbs are turned on as measured by an observer 
moving at velocity v  in the +x direction. According to this 
observer, which bulb is turned on first?

32. (Ill) An observer in reference frame S notes that two events 
are separated in space by 220 m and in time by 0.80 /a s .  How 
fast must reference frame S' be moving relative to S in 
order for an observer in S' to detect the two events as 
occurring at the same location in space?

33. (Ill) A farm boy studying physics believes that he can fit a 
12.0-m long pole into a 10.0-m long barn if he runs fast 
enough, carrying the pole. Can he do it? Explain in detail. 
How does this fit with the idea that when he is running the 
barn looks even shorter than 10.0 m?

36-9 Relativistic Momentum
34. (I) What is the momentum of a proton traveling at v = 0.75c?
35. (II) (a) A particle travels at v  = 0.10c. By what percentage 

will a calculation of its momentum be wrong if you use the 
classical formula? (b) Repeat for v  = 0.60c.

36. (II) A particle of mass m  travels at a speed v  = 0.26c. At 
what speed will its momentum be doubled?

37. (II) An unstable particle is at rest and suddenly decays into two 
fragments. No external forces act on the particle or its frag­
ments. One of the fragments has a speed of 0.60c and a mass of 
6.68 X 10-27kg, while the other has a mass of 1.67 X 10_27kg. 
What is the speed of the less massive fragment?

38. (II) What is the percent change in momentum of a proton that 
accelerates (a) from 0.45c to 0.80c, (b) from 0.80c to 0.98c?

36-11 Relativistic Energy
39. (I) Calculate the rest energy of an electron in joules and in 

MeV (1 MeV = 1.60 X 10-13 j).
40. (I) When a uranium nucleus at rest breaks apart in the 

process known as fission in a nuclear reactor, the resulting 
fragments have a total kinetic energy of about 200 MeV. 
How much mass was lost in the process?

41. (I) The total annual energy consumption in the United 
States is about 8 X 1019J. How much mass would have to 
be converted to energy to fuel this need?

42. (I) Calculate the mass of a proton in MeV/c2.
43. (II) Suppose there was a process by which two photons, 

each with momentum 0.50 MeV/c, could collide and make a 
single particle. What is the maximum mass that the particle 
could possess?

44. (II) (a) How much work is required to accelerate a proton 
from rest up to a speed of 0.998c? (b) What would be the 
momentum of this proton?
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45. (II) How much energy can be obtained from conversion of
1.0 gram of mass? How much mass could this energy raise 
to a height of 1.0 km above the Earth’s surface?

46. (II) To accelerate a particle of mass m  from rest to speed 0.90c 
requires work W\. To accelerate the particle from speed 
0.90c to 0.99c, requires work W2. Determine the ratio W2/Wi.

47. (II) What is the speed of a particle when its kinetic energy 
equals its rest energy?

48. (II) What is the momentum of a 950-MeV proton (that is, its 
kinetic energy is 950 MeV)?

49. (II) Calculate the kinetic energy and momentum of a 
proton traveling 2.80 X 108 m/s.

50. (II) What is the speed of an electron whose kinetic energy is 
1.25 MeV?

51. (II) What is the speed of a proton accelerated by a potential 
difference of 125 MV?

52. (II) Two identical particles of mass ra approach each other 
at equal and opposite speeds, v. The collision is completely 
inelastic and results in a single particle at rest. What is the 
mass of the new particle? How much energy was lost in the 
collision? How much kinetic energy was lost in this collision?

53. (II) What is the speed of an electron just before it hits a 
television screen after being accelerated from rest by the
28.000 V of the picture tube?

54. (II) The kinetic energy of a particle is 45 MeV. If the 
momentum is 14 MeV/c, what is the particle’s mass?

55. (II) Calculate the speed of a proton (ra = 1.67 X 10“27 kg) 
whose kinetic energy is exactly half (a) its total energy, 
(b) its rest energy.

56. (II) Calculate the kinetic energy and momentum of a 
proton (ra = 1.67 X 10-27 kg) traveling 8.15 X  107 m/s. By 
what percentages would your calculations have been in 
error if you had used classical formulas?

57. (II) Suppose a spacecraft of mass 17,000 kg is accelerated to
0.18c. (a) How much kinetic energy would it have? (b) If 
you used the classical formula for kinetic energy, by what 
percentage would you be in error?

* 58. (II) What magnetic field B is needed to keep 998-GeV protons 
revolving in a circle of radius 1.0 km (at, say, the Fermilab 
synchrotron)? Use the relativistic mass. The proton’s rest mass 
is 0.938 GeV/c2. (l GeV = 109 eV.) [Hint: In relativity, 
rî taVll r = QvB  is still valid in a magnetic field, where 
rare i = ym.]

59. (II) The americium nucleus, ^ A m , decays to a neptunium 
nucleus, 293Np, by emitting an alpha particle of mass 
4.00260 u and kinetic energy 5.5 MeV Estimate the mass of 
the neptunium nucleus, ignoring its recoil, given that the 
americium mass is 241.05682 u.

60. (II) Make a graph of the kinetic energy versus momentum 
for (a) a particle of nonzero mass, and (b) a particle 
with zero mass.

61. (II) A negative muon traveling at 43% the speed of light 
collides head on with a positive muon traveling at 55% the 
speed of light. The two muons (each of mass 105.7 MeV/c2) 
annihilate, and produce how much electromagnetic energy?

62. (II) Show that the kinetic energy K  of a particle of 
mass ra is related to its momentum p  by the equation

p = \ / K 2 + 2 Kmc2!  c.

63. (Ill) (a) In reference frame S, a particle has momentum 
p = px\ along the positive x  axis. Show that in frame S', 
which moves with speed v as in Fig. 36-11, the momentum 
has components

, px -  vE /c 2 
Px =

Py =

E' =

V i -  v2/c 2
P y

P z
E -  P x V

V l  “  ^ / c 2
(These transformation equations hold, actually, for any direc­
tion of p, as long as the motion of S' is along the x  axis.)
(b) Show that px , py , p z , E /c  transform according to the 
Lorentz transformation in the same way as x, y, z, ct.

36-12 Doppler Shift for Light
64. (II) A certain galaxy has a Doppler shift given by 

fo — f  = 0.697/o, How fast is it moving away from us?
65. (II) A spaceship moving toward Earth at 0.70c transmits 

radio signals at 95.0 MHz. At what frequency should Earth 
receivers be tuned?

66. (II) Starting from Eq. 36-15a, show that the Doppler shift 
in wavelength is

AA _  v
T ~  ~ c

if v «  c.
67. (Ill) A radar “speed gun” emits microwaves of frequency 

fo = 36.0 GHz. When the gun is pointed at an object 
moving toward it at speed v, the object senses the 
microwaves at the Doppler-shifted frequency / .  The moving 
object reflects these microwaves at this same frequency / .  
The stationary radar apparatus detects these reflected 
waves at a Doppler-shifted frequency / ' .  The gun combines 
its emitted wave at / 0 and its detected wave at / ' .  These 
waves interfere, creating a beat pattern whose beat 
frequency is /beat = f  ~ fo- (a) Show that

c/beat
* ”  2/0 ’

if /beat «  /o-If/beat = 6670 Hz, what is v (km/h)? (b) If 
the object’s speed is different by Av, show that the difference 
in beat frequency A /b eat is given by

2/0 Av
A/beat = — -----c

If the accuracy of the speed gun is to be 1 km/h, to what 
accuracy must the beat frequency be measured?

68. (Ill) A certain atom emits light of frequency / 0 when at rest. 
A monatomic gas composed of these atoms is at temperature 
T. Some of the gas atoms move toward and others away 
from an observer due to their random thermal motion. 
Using the rms speed of thermal motion, show that the 
fractional difference between the Doppler-shifted frequencies 
for atoms moving directly toward the observer and directly 
away from the observer is Af / f 0 ~ 2\Z?>kT/rac2; assume 
me2 »  3kT. Evaluate Af / f 0 for a gas of hydrogen atoms 
at 550 K. [This “Doppler-broadening” effect is commonly 
used to measure gas temperature, such as in astronomy.]
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| General Problems
69. An atomic clock is taken to the North Pole, while another 

stays at the Equator. How far will they be out of synchro­
nization after 2.0 years has elapsed? {Hint: Use the binomial 
expansion, Appendix A.]

70. A spaceship in distress sends out two escape pods in opposite 
directions. One travels at a speed Vi = —0.60c in one 
direction, and the other travels at a speed v2 = + 0.50c in the 
other direction, as observed from the spaceship. What speed 
does the first escape pod measure for the second escape pod?

71. An airplane travels 1300 km /h around the Earth in a circle 
of radius essentially equal to that of the Earth, returning to 
the same place. Using special relativity, estimate the differ­
ence in time to make the trip as seen by Earth and airplane 
observers. [Hint: Use the binomial expansion, Appendix A.]

72. The nearest star to Earth is Proxima Centauri, 4.3 light- 
years away, (a) At what constant velocity must a spacecraft 
travel from Earth if it is to reach the star in 4.6 years, as 
measured by travelers on the spacecraft? (b) How long does 
the trip take according to Earth observers?

73. A quasar emits familiar hydrogen lines whose wave-lengths 
are 2.5 times longer than what we measure in the laboratory,
(a) What is the speed of this quasar? (b) What result would 
you obtain if you used the “classical” Doppler shift 
discussed in Chapter 16?

74. A healthy astronaut’s heart rate is 60beats/min. Flight 
doctors on Earth can monitor an astronaut’s vital signs 
remotely while in flight. How fast would an astronaut 
have to be flying away from Earth in order for the doctor to 
measure her having a heart rate of 30 beats/min?

75. A spacecraft (reference frame S') moves past Earth (refer­
ence frame S) at velocity v, which points along the x  and 
x ' axes. The spacecraft emits a light beam (speed c) along 
its y' axis as shown in Fig. 36-17. (a) What angle 0 does
this light beam make with 
the x  axis in the Earth’s 
reference frame? (b) Use 
velocity transformations to 
show that the light moves 
with speed c also in the 
Earth’s reference frame,
(c) Compare these relativistic 
results to what you would 
have obtained classically 
(Galilean transformations).

yf
S'

c = cj

FIGURE 36-17
Problem 75.

Earth

v S L

76. Rocket A passes Earth at a speed of 0.65c. At the same 
time, rocket B passes Earth moving 0.85c relative to Earth 
in the same direction. How fast is B moving relative to A 
when it passes A?

77. (a) What is the speed v of an electron whose kinetic energy 
is 14,000 times its rest energy? You can state the answer as 
the difference c -  v. Such speeds are reached in the Stan­
ford Linear Accelerator, SLAC. (b) If the electrons travel in 
the lab through a tube 3.0 km long (as at SLAC), how long 
is this tube in the electrons’ reference frame? [Hint: Use the 
binomial expansion.]

78. As a rough rule, anything traveling faster than about 0.1c is 
called relativistic—that is, special relativity is a significant 
effect. Determine the speed of an electron in a hydrogen 
atom (radius 0.53 X 10-10 m) and state whether or not it is 
relativistic. (Treat the electron as though it were in a circular 
orbit around the proton.)

79. What minimum amount of electromagnetic energy is 
needed to produce an electron and a positron together? A 
positron is a particle with the same mass as an electron, 
but has the opposite charge. (Note that electric charge is 
conserved in this process. See Section 37-5.)

80. How many grams of matter would have to be totally 
destroyed to run a 75-W lightbulb for 1.0 year?

81. If E  is the total energy of a particle with zero potential 
energy, show that dE/dp = v, where p  and v are the 
momentum and velocity of the particle, respectively.

82. A free neutron can decay into a proton, an electron, and a 
neutrino. Assume the neutrino’s mass is zero; the other 
masses can be found in the Table inside the front cover. 
Determine the total kinetic energy shared among the three 
particles when a neutron decays at rest.

83. The Sun radiates energy at a rate of about 4 X 1026W.
(a) At what rate is the Sun’s mass decreasing? (b) How long 
does it take for the Sun to lose a mass equal to that of 
Earth? (c) Estimate how long the Sun could last if it radi­
ated constantly at this rate.

84. An unknown particle is measured to have a negative charge 
and a speed of 2.24 X 108 m/s. Its momentum is determined 
to be 3.07 X 10_22kg-m/s. Identify the particle by finding 
its mass.

85. How much energy would be required to break a helium 
nucleus into its constituents, two protons and two neutrons? 
The rest masses of a proton (including an electron), a 
neutron, and neutral helium are, respectively, 1.00783 u, 
1.00867 u, and 4.00260 u. (This energy difference is called 
the total binding energy of the |H e nucleus.)

86. Show analytically that a particle with momentum p  and 
energy E  has a speed given by

v =
PC
E

pc

V » + PL

87. Two protons, each having a speed of 0.985c in the labora­
tory, are moving toward each other. Determine (a) the 
momentum of each proton in the laboratory, (b) the total 
momentum of the two protons in the laboratory, and (c) the 
momentum of one proton as seen by the other proton.

88. When two moles of hydrogen molecules (H2) and one mole 
of oxygen molecules ( 0 2) react to form two moles of water 
(H20 ) , the energy released is 484 kJ. How much does the 
mass decrease in this reaction? What % of the total original 
mass of the system does this mass change represent?

89. The fictional starship Enterprise obtains its power by 
combining matter and antimatter, achieving complete 
conversion of mass into energy. If the mass of the Enterprise 
is approximately 6 X 109kg, how much mass must be 
converted into kinetic energy to accelerate it from rest to 
one-tenth the speed of light?
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90. A spaceship and its occupants have a total mass of
180.000 kg. The occupants would like to travel to a star that 
is 35 light-years away at a speed of 0.70c. To accelerate, the 
engine of the spaceship changes mass directly to energy. 
How much mass will be converted to energy to accelerate 
the spaceship to this speed? Assume the acceleration is 
rapid, so the speed for the entire trip can be taken to be
0.70c, and ignore decrease in total mass for the calculation. 
How long will the trip take according to the astronauts 
on board?

91. In a nuclear reaction two identical particles are created, 
traveling in opposite directions. If the speed of each particle 
is 0.85c, relative to the laboratory frame of reference, what 
is one particle’s speed relative to the other particle?

92. A 32,000-kg spaceship is to travel to the vicinity of a star
6.6 light-years from Earth. Passengers on the ship want the 
(one-way) trip to take no more than 1.0 year. How much 
work must be done on the spaceship to bring it to the speed 
necessary for this trip?

93. Suppose a 14,500-kg spaceship left Earth at a speed of 0.98c. 
What is the spaceship’s kinetic energy? Compare with the 
total U.S. annual energy consumption (about IO20 J).

94. A pi meson of mass ra^ decays at rest into a muon 
(mass m^) and a neutrino of negligible or zero mass. 
Show that the kinetic energy of the muon is 
K,jl = ~ f f i j2c2/ ( 2 m j .

95. Astronomers measure the distance to a particular star to be
6.0 light-years (1 ly = distance light travels in 1 year). A 
spaceship travels from Earth to the vicinity of this star at 
steady speed, arriving in 2.50 years as measured by clocks on 
the spaceship, (a) How long does the trip take as measured 
by clocks in Earth’s reference frame (assumed inertial)? (b) 
What distance does the spaceship travel as measured in its 
own reference frame?

96. A 1.88-kg mass oscillates on the end of a spring whose 
spring stiffness constant is k  = 84.2 N/m. If this system is 
in a spaceship moving past Earth at 0.900c, what is its period 
of oscillation according to (a) observers on the ship, and 
(ib) observers on Earth?

97. Show that the space-time interval, (c At)2 -  (Ax)2, is 
invariant, meaning that all observers in all inertial reference 
frames calculate the same number for this quantity for any 
pair of events.

98. A slab of glass with index of refraction n moves to the 
right with speed v. A flash of light is emitted at point A 
(Fig. 36-18) and passes through the glass arriving at point 
B a distance £ away. The glass has thickness d in the refer­
ence frame where it is at rest, and the speed of light in the 
glass is c/n. How long does it take the light to go from point 
A to point B according to an observer at rest with respect 
to points A and B? Check your answer for the cases v = c, 
v = 0, and n = 1.

glass

FIGURE 36-18
Problem 98.

* Numerical/Computer
* 99. (II) For a 1.0-kg mass, make a plot of the kinetic energy as a

function of speed for speeds from 0 to 0.9c, using both the 
classical formula (K  = \  m v2) and the correct relativistic 
formula (K  = (7 -  l)m c2).

*100. (Ill) A particle of mass m  is projected horizontally at a 
relativistic speed v0 in the +x direction. There is a constant 
downward force F  acting on the particle. Using the definition 
of relativistic momentum p = 7 m \ and Newton’s second 
law F = d\>/dt, (a) show that the x  and y  components of 
the velocity of the particle at time t are given by

% ( 0  =  P oc/(m 2c2 +  Po +  F 2t2) 2

vy(t) = ~F ct/(m 2c2 + Po + F 2t2)i

where p0 is the initial momentum of the particle,
(b) Assume the particle is an electron (ra = 9.11 X 10 31 kg), 
with v0 = 0.50 c and F = 1.00 X 10-15N. Calculate the 
values of vx and vy of the electron as a function of time t 
from t = 0 to t = 5.00 /as in intervals of 0.05 /jls. Graph 
the values to show how the velocity components change 
with time during this interval, (c) Is the path parabolic, as 
it would be in classical mechanics (Sections 3-7 and 3-8)? 
Explain.

Answers to Exercises

A: Yes. E: 0.030c, same as classical, to an accuracy of better than 0.1%.
B: (c). F: (d).
C: (a) No; (b) yes. G: (d).
D: 80 m. H: No.
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Electron microscopes produce images 
using electrons which have wave 
properties just as light does. Since the 
wavelength of electrons can be much 
smaller than that of visible light, much 
greater resolution and magnification 
can be obtained. A  scanning electron 
microscope (SEM) can produce images 
with a three-dimensional quality, as 
for these Giardia cells inside a human 
small intestine. Magnification here is 
about 2000X. Giardia is on the minds 
of backpackers because it has become 
too common in untreated water, even 
in the high mountains, and causes an 
unpleasant intestinal infection not 
easy to get rid of.

T £

E a r l y  Q u a n t u m  T h e o r y  

a n d  M o d e l s  o f  t h e  A t o m
CHAPTER-OPENING QUESTION—Guess now!
It has been found experimentally that

(a) light behaves as a wave.
(b) light behaves as a particle.
(c) electrons behave as particles.
(d) electrons behave as waves.
(e) all of the above are true.
(f> none of the above are true.

T he second aspect of the revolution that shook the world of physics in the 
early part of the twentieth century was the quantum theory (the other was 
Einstein’s theory of relativity). Unlike the special theory of relativity, the 
revolution of quantum theory required almost three decades to unfold, 

and many scientists contributed to its development. It began in 1900 with Planck’s 
quantum hypothesis, and culminated in the mid-1920s with the theory of quantum 
mechanics of Schrodinger and Heisenberg which has been so effective in 
explaining the structure of matter.

37—1 Planck's Quantum Hypothesis; 
Blackbody Radiation

Blackbody Radiation
One of the observations that was unexplained at the end of the nineteenth century 
was the spectrum of light emitted by hot objects. We saw in Section 19-10 that 
all objects emit radiation whose total intensity is proportional to the fourth power 
of the Kelvin (absolute) temperature (T4). At normal temperatures (~300K), 
we are not aware of this electromagnetic radiation because of its low intensity.
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FIGURE 37-1 Measured spectra of 
wavelengths and frequencies 
emitted by a blackbody at three 
different temperatures.

At higher temperatures, there is sufficient infrared radiation that we can feel heat 
if we are close to the object. At still higher temperatures (on the order of 1000 K), 
objects actually glow, such as a red-hot electric stove burner or the heating 
element in a toaster. At temperatures above 2000 K, objects glow with a yellow or 
whitish color, such as white-hot iron and the filament of a lightbulb. The light 
emitted is of a continuous range of wavelengths or frequencies, and the spectrum is 
a plot of intensity vs. wavelength or frequency. As the temperature increases, the 
electromagnetic radiation emitted by objects not only increases in total intensity 
but reaches a peak at higher and higher frequencies.

The spectrum of light emitted by a hot dense object is shown in Fig. 37-1 for an 
idealized blackbody. A blackbody is a body that would absorb all the radiation falling 
on it (and so would appear black under reflection when illuminated by other sources). 
The radiation such an idealized blackbody would emit when hot and luminous, 
called blackbody radiation (though not necessarily black in color), approximates 
that from many real objects. The 6000-K curve in Fig. 37-1, corresponding to the 
temperature of the surface of the Sun, peaks in the visible part of the spectrum. 
For lower temperatures, the total radiation drops considerably and the peak occurs 
at longer wavelengths (or lower frequencies). (This is why objects glow with a red 
color at around 1000 K.) It is found experimentally that the wavelength at the 
peak of the spectrum, AP, is related to the Kelvin temperature T  by

AP T = 2.90 X 10“3m-K. (37-1)
This is known as Wien’s law.

EXAMPLE 37-1 The Sun's surface temperature. Estimate the temperature 
of the surface of our Sun, given that the Sun emits light whose peak intensity 
occurs in the visible spectrum at around 500 nm.
APPROACH We assume the Sun acts as a blackbody, and use AP = 500 nm in 
Wien’s law (Eq. 37-1).
SOLUTION Wien’s law gives

2.90 X 10“3 m • K 2.90 X 10“3 m • K
500 X 10_9m

6000 K.

FIGURE 37-2 Comparison of the 
Wien and the Rayleigh-Jeans 
theories to that of Planck, which 
closely follows experiment. The 
dashed lines show lack of agreement 
of older theories.

Frequency (Hz)
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EXAMPLE 37-2 Star color. Suppose a star has a surface temperature of 
32,500 K. What color would this star appear?
APPROACH We assume the star emits radiation as a blackbody, and solve for AP 
in Wien’s law, Eq. 37-1.
SOLUTION From Wien’s law we have

2.90 X 10“3 m • K 2.90 X 10“3 m • K
Ap — = 89.2 nm.

T 3.25 X 104K
The peak is in the UV range of the spectrum, and will be way to the left in Fig. 37-1. 
In the visible region, the curve will be descending, so the shortest visible 
wavelengths will be strongest. Hence the star will appear bluish (or blue-white). 
NOTE This example helps us to understand why stars have different colors 
(reddish for the coolest stars, orangish, yellow, white, bluish for “hotter” stars.)

Planck's Quantum Hypothesis
A major problem facing scientists in the 1890s was to explain blackbody radiation. 
Maxwell’s electromagnetic theory had predicted that oscillating electric charges 
produce electromagnetic waves, and the radiation emitted by a hot object could be due 
to the oscillations of electric charges in the molecules of the material. Although this 
would explain where the radiation came from, it did not correctly predict the observed 
spectrum of emitted light. Two important theoretical curves based on classical ideas 
were those proposed by W. Wien (in 1896) and by Lord Rayleigh (in 1900). The latter 
was modified later by J. Jeans and since then has been known as the Rayleigh-Jeans 
theory. As experimental data came in, it became clear that neither Wien’s nor the 
Rayleigh-Jeans formulations were in accord with experiment (see Fig. 37-2).



In the year 1900 Max Planck (1858-1947) proposed an empirical formula that 
nicely fit the data (now often called Planck’s radiation formula):

IU  T) =
ehc/XkT _  1

/(A, T) is the radiation intensity as a function of wavelength A at the temperature T; 
k  is Boltzman’s constant, c is the speed of light, and h is a new constant, now called 
Planck’s constant. The value of h was estimated by Planck by fitting his formula for 
the blackbody radiation curve to experiment. The value accepted today is 

h = 6.626 X IO-34 J • s.
To provide a theoretical basis for his formula, Planck made a new and radical 
assumption: that the energy of the oscillations of atoms within molecules cannot 
have just any value; instead each has energy which is a multiple of a minimum 
value related to the frequency of oscillation by 

E = hf.
Planck’s assumption suggests that the energy of any molecular vibration could be 
only a whole number multiple of the minimum energy hf:

E = nh f , n = 1 ,2 ,3 , - ,  (37-2)
where n is called a quantum number (“quantum” means “discrete amount” as 
opposed to “continuous”). This idea is often called Planck’s quantum hypothesis, 
although little attention was brought to this point at the time. In fact, it appears 
that Planck considered it more as a mathematical device to get the “right answer” 
rather than as an important discovery in its own right. Planck himself continued to 
seek a classical explanation for the introduction of h. The recognition that this was 
an important and radical innovation did not come until later, after about 1905 
when others, particularly Einstein, entered the field.

The quantum hypothesis, Eq. 37-2, states that the energy of an oscillator can be 
E = hf ,  or 2hf,  or 3hf,  and so on, but there cannot be vibrations with energies 
between these values. That is, energy would not be a continuous quantity as had 
been believed for centuries; rather it is quantized—it exists only in discrete amounts. 
The smallest amount of energy possible (hf)  is called the quantum of energy. 
Recall from Chapter 14 that the energy of an oscillation is proportional to the 
amplitude squared. Another way of expressing the quantum hypothesis is that not 
just any amplitude of vibration is possible. The possible values for the amplitude 
are related to the frequency / .

A simple analogy may help. Compare a ramp, on which a box can be placed at 
any height, to a flight of stairs on which the box can have only certain discrete 
amounts of potential energy, as shown in Fig. 37-3.

3 7 -2  Photon Theory of Light and 
the Photoelectric Effect

In 1905, the same year that he introduced the special theory of relativity, Einstein made 
a bold extension of the quantum idea by proposing a new theory of light. Planck’s work 
had suggested that the vibrational energy of molecules in a radiating object is 
quantized with energy E = nhf,  where n is an integer and /  is the frequency of 
molecular vibration. Einstein argued that when light is emitted by a molecular 
oscillator, the molecule’s vibrational energy of nhf  must decrease by an amount hf  (or 
by 2 hf,  etc.) to another integer times hf,  such as (n — 1 )hf.  Then to conserve energy, 
the light ought to be emitted in packets, or quanta, each with an energy

E = h f, (37-3)
where /  is here the frequency of the emitted light.

Again h is Planck’s constant. Since all light ultimately comes from a radiating 
source, this suggests that perhaps light is transmitted as tiny particles, or photons, as 
they are now called, as well as via waves predicted by Maxwell’s electromagnetic 
theory. The photon theory of light was a radical departure from classical ideas. 
Einstein proposed a test of the quantum theory of light: quantitative measurements 
on the photoelectric effect.

(b)

FIGURE 3 7 -3  Ramp versus stair 
analogy, (a) On a ramp, a box can 
have continuous values of potential 
energy, (b) But on stairs, the box can 
have only discrete (quantized) 
values of energy.
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When light shines on a metal surface, electrons are found to be emitted from 
the surface. This effect is called the photoelectric effect and it occurs in many 
materials, but is most easily observed with metals. It can be observed using the 
apparatus shown in Fig. 37-4. A metal plate P and a smaller electrode C are 
placed inside an evacuated glass tube, called a photocell. The two electrodes are 
connected to an ammeter and a source of emf, as shown. When the photocell is in 
the dark, the ammeter reads zero. But when light of sufficiently high frequency 
illuminates the plate, the ammeter indicates a current flowing in the circuit. We 
explain completion of the circuit by imagining that electrons, ejected from 
the plate by the impinging radiation, flow across the tube from the plate to the 
“collector” C as indicated in Fig. 37-4.

That electrons should be emitted when light shines on a metal is consistent 
with the electromagnetic (EM) wave theory of light: the electric field of an EM 
wave could exert a force on electrons in the metal and eject some of them. 
Einstein pointed out, however, that the wave theory and the photon theory of light 
give very different predictions on the details of the photoelectric effect. For 
example, one thing that can be measured with the apparatus of Fig. 37-4 is the 
maximum kinetic energy (^ max) of the emitted electrons. This can be done by 
using a variable voltage source and reversing the terminals so that electrode C is 
negative and P is positive. The electrons emitted from P will be repelled by the 
negative electrode, but if this reverse voltage is small enough, the fastest electrons 
will still reach C and there will be a current in the circuit. If the reversed voltage is 
increased, a point is reached where the current reaches zero—no electrons have 
sufficient kinetic energy to reach C. This is called the stopping potential, or 
stopping voltage, V0, and from its measurement, Kmax can be determined using 
conservation of energy (loss of kinetic energy = gain in potential energy):

-̂ max — •
Now let us examine the details of the photoelectric effect from the point of 

view of the wave theory versus Einstein’s particle theory.
First the wave theory, assuming monochromatic light. The two important prop­

erties of a light wave are its intensity and its frequency (or wavelength). When 
these two quantities are varied, the wave theory makes the following predictions:

1. If the light intensity is increased, the number of electrons ejected and their 
maximum kinetic energy should be increased because the higher intensity 
means a greater electric field amplitude, and the greater electric field should 
eject electrons with higher speed.

2. The frequency of the light should not affect the kinetic energy of the ejected 
electrons. Only the intensity should affect Kmax.

The photon theory makes completely different predictions. First we note that 
in a monochromatic beam, all photons have the same energy (= h f ). Increasing 
the intensity of the light beam means increasing the number of photons in the 
beam, but does not affect the energy of each photon as long as the frequency is not 
changed. According to Einstein’s theory, an electron is ejected from the metal by a 
collision with a single photon. In the process, all the photon energy is transferred 
to the electron and the photon ceases to exist. Since electrons are held in the metal 
by attractive forces, some minimum energy W0 is required just to get an electron 
out through the surface. W0 is called the work function, and is a few electron volts 
(l eV =  1.6 X IO-19 j) for most metals. If the frequency f  of the incoming light is 
so low that h f  is less than W0, then the photons will not have enough energy to 
eject any electrons at all. If h f > W0, then electrons will be ejected and energy 
will be conserved in the process. That is, the input energy (of the photon), hf, will 
equal the outgoing kinetic energy K  of the electron plus the energy required to get 
it out of the metal, W:

h f = K  + W. (37-4a)

The least tightly held electrons will be emitted with the most kinetic energy 
(X™). in which case W  in this equation becomes the work function W0,



and K  becomes Kmax:

h f = Kmax + W0. [least bound electrons] (37-4b)

Many electrons will require more energy than the bare minimum (W0) to get out of the 
metal, and thus the kinetic energy of such electrons will be less than the maximum. 

From these considerations, the photon theory makes the following predictions:

1. An increase in intensity of the light beam means more photons are incident, so 
more electrons will be ejected; but since the energy of each photon is not 
changed, the maximum kinetic energy of electrons is not changed by an 
increase in intensity.

2. If the frequency of the light is increased, the maximum kinetic energy of the 
electrons increases linearly, according to Eq. 37-4b. That is,

Km„  = h f -  W0.

This relationship is plotted in Fig. 37-5.
3. If the frequency /  is less than the “cutoff” frequency / 0, where hf0 = W0, no 

electrons will be ejected, no matter how great the intensity of the light.

These predictions of the photon theory are clearly very different from the 
predictions of the wave theory. In 1913-1914, careful experiments were carried 
out by R. A. Millikan. The results were fully in agreement with Einstein’s 
photon theory.

One other aspect of the photoelectric effect also confirmed the photon theory. 
If extremely low light intensity is used, the wave theory predicts a time delay 
before electron emission so that an electron can absorb enough energy to exceed 
the work function. The photon theory predicts no such delay—it only takes one 
photon (if its frequency is high enough) to eject an electron—and experiments 
showed no delay. This too confirmed Einstein’s photon theory.

Photon energy. Calculate the energy of a photon of blue 
light, A = 450 nm in air (or vacuum).
APPROACH The photon has energy E = h f  (Eq. 37-3) where /  = c/A. 
SOLUTION Since /  = c/A, we have

he (6.63 X 10“34J-s)(3.0 X 108 m/s)
E = h f  = —  = ------------t --------—  = 4.4 X 10“19J,

J A (4.5 X 10 m)

or (4.4 X 10-19 j)/(l.60 X 10_19J/eV) = 2.8 eV. (See definition of eV in 
Section 23-8, 1 eV = 1.60 X 10“19J.)

ESTIMATE"! Photons from a lightbulb. Estimate how many 
visible light photons a 100-W lightbulb emits per second. Assume the bulb has a 
typical efficiency of about 3% (that is, 97% of the energy goes to heat).
APPROACH Let’s assume an average wavelength in the middle of the visible 
spectrum, A «  500 nm. The energy of each photon is E  = h f = he/A. Only 3% of 
the 100-W power is emitted as light, or 3 W = 3 J/s. The number of photons emitted 
per second equals the light output of 3 J/s divided by the energy of each photon. 
SOLUTION The energy emitted in one second (=3 J) is E = N h f  where N  is 
the number of photons emitted per second and /  = c/A. Hence

E Ek  (3J)(500 X 10- rn
a t  _  _____  _  ______ _  _____________ v J v_________________________ i _____________ ^  o  v  i  r \ 1 8

h f he (6.63 X 10“34J-s)(3.0 X 10s m/s)

per second, or almost 1019 photons emitted per second, an enormous number.

EXERCISE A Compare a light beam that contains infrared light of a single wavelength, 
1000 nm, with a beam of monochromatic U V  at 100 nm, both of the same intensity. Are 
there more 100-nm photons or more 1000-nm photons?

Photon

theory

predictions

/ 0 Frequency of lig h t/

FIGURE 37-5 Photoelectric effect: 
the maximum kinetic energy of 
ejected electrons increases linearly 
with the frequency of incident light. 
N o electrons are emitted if /  <  / 0 .
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FIGURE 37-6 Optical sound track 
on movie film. In the projector, light 
from a small source (different from 
that for the picture) passes through 
the sound track on the moving film. 
The light and dark areas on the 
sound track vary the intensity of the 
transmitted light which reaches the 
photocell, whose output current is 
then a replica of the original sound. 
This output is amplified and sent to 
the loudspeakers. High-quality 
projectors can show movies 
containing several parallel sound 
tracks to go to different speakers 
around the theater.

Picture

EXAMPLE 37-5 Photoelectron speed and energy. What is the kinetic 
energy and the speed of an electron ejected from a sodium surface whose work 
function is W0 = 2.28 eV when illuminated by light of wavelength (a) 410 nm,
(b) 550 nm?

APPROACH We first find the energy of the photons (E = h f  = hc/\). If the 
energy is greater than WQ, then electrons will be ejected with varying amounts of 
kinetic energy, with a maximum of Kmax = h f  — W0.
SOLUTION (a) For A = 410 nm,

he
h f  = —  = 4.85 x 10 19 J or 3.03 eV.

A

The maximum kinetic energy an electron can have is given by Eq. 37-4b, 
Km„  = 3.03 eV -  2.28 eV = 0.75 eV, or (0.75 eV)(l.60 x  IO-19 J/eV) = 
1.2 x 10“19J. Since K  = \trnf1 where m = 9.11 X H r31 kg, 

'  = 5.1 X 105m/s.m

Most ejected electrons will have less kinetic energy and less speed than these 
maximum values.
(ft) For A = 550 nm, h f = h c /\ = 3.61 X 10-19J = 2.26 eV. Since this photon 
energy is less than the work function, no electrons are ejected.
NOTE In (a) we used the nonrelativistic equation for kinetic energy. If v had 
turned out to be more than about 0.1c, our calculation would have been inaccurate 
by at least a percent or so, and we would probably prefer to redo it using the 
relativistic form (Eq. 36-10).

EXERCISE B Determ ine the lowest frequency and the longest wavelength needed to emit 
electrons from sodium.

It is easy to show that the energy of a photon in electron volts, when given the 
wavelength A in nm, is

1.240 X 103eV-nm r i  . TriE  (eV) = -------- —---- ----------[photon energy in eV]
A (nm)

Applications of the Photoelectric Effect
The photoelectric effect, besides playing an important historical role in confirming 
the photon theory of light, also has many practical applications. Burglar alarms and 
automatic door openers often make use of the photocell circuit of Fig. 37-4. When 
a person interrupts the beam of light, the sudden drop in current in the circuit 
activates a switch—often a solenoid—which operates a bell or opens the door. UV 
or IR light is sometimes used in burglar alarms because of its invisibility. Many 
smoke detectors use the photoelectric effect to detect tiny amounts of smoke that 
interrupt the flow of light and so alter the electric current. Photographic light 
meters use this circuit as well. Photocells are used in many other devices, such as 
absorption spectrophotometers, to measure light intensity. One type of film sound 
track is a variably shaded narrow section at the side of the film. Light passing 
through the film is thus “modulated,” and the output electrical signal of the 
photocell detector follows the frequencies on the sound track. See Fig. 37-6. 
For many applications today, the vacuum-tube photocell of Fig. 37-4 has been 
replaced by a semiconductor device known as a photodiode (Section 40-9). In 
these semiconductors, the absorption of a photon liberates a bound electron, 
which changes the conductivity of the material, so the current through a photodiode 
is altered.
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3 7 -3  Energy, Mass, and Momentum 
of a Photon

We have just seen (Eq. 37-3) that the total energy of a single photon is given 
by E = hf. Because a photon always travels at the speed of light, it is truly a 
relativistic particle. Thus we must use relativistic formulas for dealing with its 
energy and momentum. The momentum of any particle of mass m is given by 
p = m v / \ / l  — v2/c2. Since v = c for a photon, the denominator is zero. To 
avoid having an infinite momentum, we conclude that the photon’s mass must 
be zero: m = 0. This makes sense too because a photon can never be at rest (it 
always moves at the speed of light). A photon’s kinetic energy is its total energy:

K = E = hf. [photon]

The momentum of a photon can be obtained from the relativistic formula 
(Eq. 36-13) E 2 = p2c2 + m2cA where we set m = 0, so E2 = p2c2 or

E  r 1 ip  = — • [photon]

Since E = h f  for a photon, its momentum is related to its wavelength by 
E h f  h

p  = -  = i  = - •  (37-5)

EXAMPLE 37-6 Photon momentum and force. Suppose the 1019 
photons emitted per second from the 100-W lightbulb in Example 37-4 were all 
focused onto a piece of black paper and absorbed, (a) Calculate the momentum of 
one photon and (b) estimate the force all these photons could exert on the paper.
APPROACH Each photon’s momentum is obtained from Eq. 37-5, p = h/k. 
Next, each absorbed photon’s momentum changes from p = h /k  to zero. We 
use Newton’s second law, F = Ap/ At, to get the force. Let A = 500 nm. 
SOLUTION (a) Each photon has a momentum

h 6.63 X 10-34J-s „ „ „ ~7l
p = — = ---- tttq----  = 1.3 X 10 27 kg-m/s.y  A 500 X 10 m 6

(b) Using Newton’s second law for N  = 1019 photons (Example 37-4) whose 
momentum changes from h /k  to 0, we obtain

F = = NH^ ~  ° = N j  f» (lO19 s-1)(l0-27 kg • m/s) «  10“8N.

This is a tiny force, but we can see that a very strong light source could exert 
a measurable force, and near the Sun or a star the force due to photons in 
electromagnetic radiation could be considerable. See Section 31-9.

Photosynthesis. In photosynthesis, pigments such as chlorophyll 
in plants capture the energy of sunlight to change C 02 to useful carbohydrate. 
About nine photons are needed to transform one molecule of C 02 to carbohydrate 
and 0 2. Assuming light of wavelength A = 670 nm (chlorophyll absorbs most 
strongly in the range 650 nm to 700 nm), how efficient is the photosynthetic 
process? The reverse chemical reaction releases an energy of 4.9 eV/molecule 
of C 02.
APPROACH The efficiency is the minimum energy required (4.9 eV) divided by 
the actual energy absorbed, nine times the energy (hf)  of one photon. 
SOLUTION The energy of nine photons, each of energy h f  = hc/k  is 
(9)(6.63 X 10“34J-s)(3.0 X 108m/s)/(6.7 X 10“7m) = 2.7 X 10“18J or 17eV. 
Thus the process is (4.9 eV/17 eV) = 29% efficient.

EXAMPLE 37-7

/ f \  CAUTI ON__________
Momentum o f  photon is not m v
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FIGURE 37-7 The Compton effect. 
A  single photon of wavelength A 
strikes an electron in some material, 
knocking it out of its atom. The 
scattered photon has less energy 
(some energy is given to the electron) 
and hence has a longer wavelength A'.

FIGURE 37-8 Plots of intensity of 
radiation scattered from a target such 
as graphite (carbon), for three 
different angles. The values for A' 
match Eq. 37-6. For (a) (f> =  0°,
A' =  A0. In (b) and (c) a peak is 
found not only at A' due to photons 
scattered from free electrons (or very 
nearly free), but also a peak at almost 
precisely A0. The latter is due to 
scattering from electrons very tightly 
bound to their atoms so the mass in 
Eq. 37-6  becomes very large (mass of 
the atom) and AA becomes very small.

3 7 -4  Compton Effect
Besides the photoelectric effect, a number of other experiments were carried out 
in the early twentieth century which also supported the photon theory. One of 
these was the Compton effect (1923) named after its discoverer, A. H. Compton 
(1892-1962). Compton scattered short-wavelength light (actually X-rays) from 
various materials. He found that the scattered light had a slightly longer 
wavelength than did the incident light, and therefore a slightly lower frequency 
indicating a loss of energy. He explained this result on the basis of the photon 
theory as incident photons colliding with electrons of the material, Fig. 37-7. Using 
Eq. 37-5 for momentum of a photon, Compton applied the laws of conservation of 
momentum and energy to the collision of Fig. 37-7 and derived the following 
equation for the wavelength of the scattered photons:

hA' = A H--------(1 -  cos d>),mPc v ' (37-6a)

where rae is the mass of the electron. For <f> = 0, the wavelength is unchanged 
(there is no collision for this case of the photon passing straight through). At any 
other angle, A' is longer than A. The difference in wavelength,

AA = A' A = ----- (1mec cos (f>), (37-6b)

is called the Compton shift. The quantity h/m ec, which has the dimensions of 
length, is called the Compton wavelength Ac of a free electron,

Ar = -----  = 2.43 X 10 3 nm = 2.43 pm.mPc [electron]

Equations 37-6 predict that A' depends on the angle <£ at which the photons 
are detected. Compton’s measurements of 1923 were consistent with this 
formula, confirming the value of Ac and the dependence of A' on (f>. See 
Fig. 37-8. The wave theory of light predicts no wavelength shift: an incoming 
electromagnetic wave of frequency /  should set electrons into oscillation at the 
same frequency / ,  and such oscillating electrons should reemit EM waves of this 
same frequency /  (Chapter 31), and would not change with the angle (f>. Hence 
the Compton effect adds to the firm experimental foundation for the photon 
theory of light.

EXERCISE C When a photon scatters off an electron by the Compton effect, which of the
following increase: its energy, frequency, or wavelength?

EXAMPLE 37-8 X-ray scattering. X-rays of wavelength 0.140 nm are scattered 
from a very thin slice of carbon. What will be the wavelengths of X-rays scattered at
(a) 0°, (b) 90°, (c) 180°?
APPROACH This is an example of the Compton effect, and we use Eq. 37-6a to 
find the wavelengths.
SOLUTION (a) For (f) = 0°, cos 0 = 1 and 1 -  cos (f> = 0. Then Eq. 37-6 gives 
A' = A = 0.140 nm. This makes sense since for <f> = 0°, there really isn’t any 
collision as the photon goes straight through without interacting.
(b) For <f> = 90°, cos 4> = 0, and 1 -  cos (f> = 1. So

h ____ 6.63 X 10-34 J • s
mecA' = A 0.140 nm

(9.11 X 10-31 kg)(3.00 X 108 m/s) 

= 0.140 nm + 2.4 X 10-12m = 0.142 nm;

that is, the wavelength is longer by one Compton wavelength ( = 0.0024 nm for 
an electron).
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(c) For <f) = 180°, which means the photon is scattered backward, returning in 
the direction from which it came (a direct “head-on” collision), cos <j> = — 1, and 
1 — cos (f> = 2. So

A' = A + 2 — = 0.140 nm + 2(0.0024 nm) = 0.145 nm.
m e c

NOTE The maximum shift in wavelength occurs for backward scattering, and it is 
twice the Compton wavelength.

The Compton effect has been used to diagnose bone disease such as osteoporosis. 
Gamma rays, which are photons of even shorter wavelength than X-rays, coming 
from a radioactive source are scattered off bone material. The total intensity of the 
scattered radiation is proportional to the density of electrons, which is in turn 
proportional to the bone density. Changes in the density of bone can indicate the 
onset of osteoporosis.

* Derivation of Compton Shift
If the incoming photon in Fig. 37-7 has wavelength A, then its total energy and 
momentum are

Z7 i r hc a hE = h f  = —  and p = - •

After the collision of Fig. 37-7, the photon scattered at the angle <p has a wavelength 
which we call A'. Its energy and momentum are

hc a * hE = —  and p = —  •
A A

The electron, assumed at rest before the collision but free to move when struck, 
is scattered at an angle 0 as shown in Fig. 37-8. The electron’s kinetic energy is 
(see Eq. 36-10):

*•" (vnhp ■ ' h c'
where m e is the mass of the electron and v is its speed. The electron’s momentum is

Pe = V i  -  w ? meV-
We apply conservation of energy to the collision (see Fig. 37-7):

incoming photon---- ► scattered photon + electron

hc hc ( 1
—  = — + y -  1 rae c .
A A' W l  -  ”7 c 2 >

We apply conservation of momentum to the x and y components of momentum: 
h h m P v cos 6

=  — COS (f> +
A A' - \ / i  _  v2/ c2

h mev sin 60 = — sin (f)

0 P H Y S I C S  A P P L I E D
Measuring bone density

A' V l  -  «2/c2
We can combine these three equations to eliminate v and 6, and we obtain, as 
Compton did, an equation for the wavelength of the scattered photon in terms of 
its scattering angle 0:

h
A' = A H--------(1 -  cos <b),mec

which is Eq. 37-6a.
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37—5 Photon Interactions; Pair Production

e+

e -

FIGURE 3 7 -9  Pair production: a 
photon disappears and produces an 
electron and a positron.

When a photon passes through matter, it interacts with the atoms and electrons. 
There are four important types of interactions that a photon can undergo:
1. The photoelectric effect'. A photon may knock an electron out of an atom and 

in the process the photon disappears.
2. The photon may knock an atomic electron to a higher energy state in the atom 

if its energy is not sufficient to knock the electron out altogether. In this 
process the photon also disappears, and all its energy is given to the atom. Such 
an atom is then said to be in an excited state, and we shall discuss it more later.

3. The photon can be scattered from an electron (or a nucleus) and in the 
process lose some energy; this is the Compton effect (Fig. 37-7). But notice 
that the photon is not slowed down. It still travels with speed c, but its 
frequency will be lower because it has lost some energy.

4. Pair production: A photon can actually create matter, such as the production 
of an electron and a positron, Fig. 37-9. (A positron has the same mass as an 
electron, but the opposite charge, +e.)

In process 4, pair production, the photon disappears in the process of creating the 
electron-positron pair. This is an example of mass being created from pure 
energy, and it occurs in accord with Einstein’s equation E = me2. Notice that a 
photon cannot create an electron alone since electric charge would not then be 
conserved. The inverse of pair production also occurs: if an electron collides with a 
positron, the two annihilate each other and their energy, including their mass, 
appears as electromagnetic energy of photons. Because of this process, positrons 
usually do not last long in nature.

Pa*r production, (a) What is the minimum energy of a photon 
that can produce an electron-positron pair? (b) What is this photon’s wavelength?
APPROACH The minimum photon energy E  equals the rest energy (me2) of the 
two particles created, via Einstein’s famous equation E = m0c2 (Eq. 36-12). 
There is no energy left over, so the particles produced will have zero kinetic 
energy. The wavelength is A = c / f  where E = h f  for the original photon. 
SOLUTION (a) Because E  = me2, and the mass created is equal to two electron 
masses, the photon must have energy

E = 2(9.11 x 10“31kg)(3.0 x 108m/s)2 = 1.64 X 10“13J = 1.02 MeV

(lM eV = 106eV = 1.60 X 10_13j). A photon with less energy cannot 
undergo pair production.
(b) Since E = h f  = he/ A, the wavelength of a 1.02-MeV photon is

he (6.63 x 10"34J-s)(3.0 x 108 m/s)
A = —  = -----------7---------- -  .------- —  = 1.2 X 10 m,

E  (1.64 X 10“13J)

which is 0.0012 nm. Such photons are in the gamma-ray (or very short X-ray) 
region of the electromagnetic spectrum (Fig. 31-12).
NOTE Photons of higher energy (shorter wavelength) can also create an electron- 
positron pair, with the excess energy becoming kinetic energy of the particles.

Pair production cannot occur in empty space, for momentum could not be 
conserved. In Example 37-9, for instance, energy is conserved, but only enough 
energy was provided to create the electron-positron pair at rest, and thus with zero 
momentum, which could not equal the initial momentum of the photon. Indeed, it can 
be shown that at any energy, an additional massive object, such as an atomic nucleus, 
must take part in the interaction to carry off some of the momentum.
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37—6 Wave-Particle Duality; the 
Principle of Complementarity

The photoelectric effect, the Compton effect, and other experiments have placed 
the particle theory of light on a firm experimental basis. But what about the classic 
experiments of Young and others (Chapters 34 and 35) on interference and 
diffraction which showed that the wave theory of light also rests on a firm 
experimental basis?

We seem to be in a dilemma. Some experiments indicate that light behaves 
like a wave; others indicate that it behaves like a stream of particles. These two 
theories seem to be incompatible, but both have been shown to have validity. 
Physicists finally came to the conclusion that this duality of light must be accepted 
as a fact of life. It is referred to as the wave-particle duality. Apparently, light is a 
more complex phenomenon than just a simple wave or a simple beam of particles.

To clarify the situation, the great Danish physicist Niels Bohr (1885-1962, 
Fig. 37-10) proposed his famous principle of complementarity. It states that to 
understand an experiment, sometimes we find an explanation using wave theory 
and sometimes using particle theory. Yet we must be aware of both the wave and 
particle aspects of light if we are to have a full understanding of light. Therefore 
these two aspects of light complement one another.

It is not easy to “visualize” this duality. We cannot readily picture a combination 
of wave and particle. Instead, we must recognize that the two aspects of light are 
different “faces” that light shows to experimenters.

Part of the difficulty stems from how we think. Visual pictures (or models) in our 
minds are based on what we see in the everyday world. We apply the concepts of 
waves and particles to light because in the macroscopic world we see that energy is 
transferred from place to place by these two methods. We cannot see directly whether 
light is a wave or particle, so we do indirect experiments. To explain the experiments, 
we apply the models of waves or of particles to the nature of light. But these 
are abstractions of the human mind. When we try to conceive of what light really “is,” 
we insist on a visual picture. Yet there is no reason why light should conform to these 
models (or visual images) taken from the macroscopic world. The “true” nature of 
light—if that means anything—is not possible to visualize. The best we can do is 
recognize that our knowledge is limited to the indirect experiments, and that in terms 
of everyday language and images, light reveals both wave and particle properties.

It is worth noting that Einstein’s equation E = h f  itself links the particle and 
wave properties of a light beam. In this equation, E  refers to the energy of a 
particle; and on the other side of the equation, we have the frequency /  of the 
corresponding wave.

37—7 Wave Nature of Matter
In 1923, Louis de Broglie (1892-1987) extended the idea of the wave-particle 
duality. He appreciated the symmetry in nature, and argued that if light sometimes 
behaves like a wave and sometimes like a particle, then perhaps those things in 
nature thought to be particles—such as electrons and other material objects—might 
also have wave properties. De Broglie proposed that the wavelength of a material 
particle would be related to its momentum in the same way as for a photon, 
Eq. 37-5, p = h/k. That is, for a particle having linear momentum p = mv, the 
wavelength A is given by

h
A = —> (37-7)

P
and is valid classically (p  = mv for v «  c) and relativistically (p = Jmv = 
m v/y /1  -  v2/c2). This is sometimes called the de Broglie wavelength of a 
particle.

FIGURE 37-10 Niels Bohr (right), 
walking with Enrico Fermi along the 
Appian Way outside Rome. This 
photo shows one important way 
physics is done.

CAUTI ON_____________
N ot correct to say light is a wave and/or 
a particle. Light can act like a wave or 
like a particle.
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FIGURE 37-11 Diffraction pattern 
of electrons scattered from 
aluminum foil, as recorded on film.

EXAMPLE 37-10 Wavelength of a ball. Calculate the de Broglie wavelength 
of a 0.20-kg ball moving with a speed of 15 m/s.
APPROACH We use Eq. 37-7.

h h (6.6 X 10-34 J • s) 
SOLUTION A = -  V '

p mv (0.20 kg) (15 m/s)

Ordinary size objects, such as the ball of Example 37-10, have unimaginably small 
wavelengths. Even if the speed is extremely small, say 10_4m/s, the wavelength 
would be about 10-29 m. Indeed, the wavelength of any ordinary object is much too 
small to be measured and detected. The problem is that the properties of waves, 
such as interference and diffraction, are significant only when the size of objects 
or slits is not much larger than the wavelength. And there are no known objects or 
slits to diffract waves only 10-30 m long, so the wave properties of ordinary objects 
go undetected.

But tiny elementary particles, such as electrons, are another matter. Since the 
mass m appears in the denominator of Eq. 37-7, a very small mass should have a 
much larger wavelength.

EXAMPLE 37-11 Wavelength of an electron. Determine the wavelength of 
an electron that has been accelerated through a potential difference of 100 V.
APPROACH If the kinetic energy is much less than the rest energy, we can 
use the classical formula, K  = \m v2 (see Section 36-11). For an electron, 
mc2 = 0.511 MeV. We then apply conservation of energy: the kinetic energy 
acquired by the electron equals its loss in potential energy. After solving for v, we 
use Eq. 37-7 to find the de Broglie wavelength.
SOLUTION Gain in kinetic energy equals loss in potential energy: AU = e V -  0. 
Thus K=eV, so ^=100eV . The ratio K/mc2= 100 eV/(0.511Xl06eV) «  10“4, 
so relativity is not needed. Thus

1
i-m v2 = eV

and

Then

, (2)(1.6 X 10-19C)(100V)
v = A/ -----  = a / ------ --------------— 7------  = 5.9 X 106m/s.

v  “  A/ (9.1 X 10 kg)

(6.63 X 10-34 J • s)
v 7 = 1.2 X 10 m,

or 0.12 nm.
(9.1 X 10“31kg)(5.9 X 106 m/s)

EXERCISE D A s a particle travels faster, does its de Broglie wavelength decrease, increase, 
or remain the same?

From Example 37-11, we see that electrons can have wavelengths on the 
order of 10“10m, and even smaller. Although small, this wavelength can be 
detected: the spacing of atoms in a crystal is on the order of 10“10m and the 
orderly array of atoms in a crystal could be used as a type of diffraction grating, as 
was done earlier for X-rays (see Section 35-10). C. J. Davisson and L. H. Germer 
performed the crucial experiment; they scattered electrons from the surface of a 
metal crystal and, in early 1927, observed that the electrons were scattered into a 
pattern of regular peaks. When they interpreted these peaks as a diffraction 
pattern, the wavelength of the diffracted electron wave was found to be just that 
predicted by de Broglie, Eq. 37-7. In the same year, G. P. Thomson (son of J. J. 
Thomson) used a different experimental arrangement and also detected diffraction 
of electrons. (See Fig. 37-11. Compare it to X-ray diffraction, Section 35-10.) 
Later experiments showed that protons, neutrons, and other particles also have 
wave properties.
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Thus the wave-particle duality applies to material objects as well as to light. 
The principle of complementarity applies to matter as well. That is, we must be 
aware of both the particle and wave aspects in order to have an understanding of 
matter, including electrons. But again we must recognize that a visual picture of a 
“wave-particle” is not possible.

Electron diffraction. The wave nature of electrons is 
manifested in experiments where an electron beam interacts with the atoms on 
the surface of a solid. By studying the angular distribution of the diffracted 
electrons, one can indirectly measure the geometrical arrangement of atoms. 
Assume that the electrons strike perpendicular to the surface of a solid (see 
Fig. 37-12), and that their energy is low, K = 100 eV, so that they interact 
only with the surface layer of atoms. If the smallest angle at which a diffraction 
maximum occurs is at 24°, what is the separation d between the atoms on 
the surface?
SOLUTION Treating the electrons as waves, we need to determine the condition 
where the difference in path traveled by the wave diffracted from adjacent 
atoms is an integer multiple of the de Broglie wavelength, so that constructive 
interference occurs. The path length difference is d sin 0; so for the smallest value 
of 6 we must have

dsin0 = A.

However, A is related to the (non-relativistic) kinetic energy K  by

K =
h2

2 me 2mP A
Thus

A =
(6.63 X IO-34 J • s)

\ /2 m c K  V 2(9-H x 10-31 kg)(100 eV)(l.6 X 10“19J/eV)
= 0.123 nm.

The surface inter-atomic spacing is 

A 0.123 nm
sin 0 sin 24c

= 0.30 nm.

0 P H Y S I C S  A P P L I E D
Electron diffraction

FIGURE 37-12 Example 37-12. 
The red dots represent atoms in an 
orderly array in a solid.

EXERCISE E Return to the Chapter-Opening Question, page 987, and answer it again now. 
Try to explain why you may have answered differently the first time.

What Is an_Electron?
We might ask ourselves: “What is an electron?” The early experiments of 
J. J. Thomson (Section 27-7) indicated a glow in a tube, and that glow moved 
when a magnetic field was applied. The results of these and other experiments 
were best interpreted as being caused by tiny negatively charged particles which 
we now call electrons. No one, however, has actually seen an electron directly. 
The drawings we sometimes make of electrons as tiny spheres with a negative 
charge on them are merely convenient pictures (now recognized to be inaccurate). 
Again we must rely on experimental results, some of which are best interpreted 
using the particle model and others using the wave model. These models are mere 
pictures that we use to extrapolate from the macroscopic world to the tiny 
microscopic world of the atom. And there is no reason to expect that these models 
somehow reflect the reality of an electron. We thus use a wave or a particle model 
(whichever works best in a situation) so that we can talk about what is happening. 
But we should not be led to believe that an electron is a wave or a particle. 
Instead we could say that an electron is the set of its properties that we can 
measure. Bertrand Russell said it well when he wrote that an electron is “a logical 
construction.”
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FIGURE 37-13 Transmission 
electron microscope. The magnetic 
field coils are designed to be “magnetic 
lenses,” which bend the electron paths 
and bring them to a focus, as shown. 

0 P H Y S I C S  A P P L I E D
Electron microscope

3 7 -8  Electron Microscopes
The idea that electrons have wave properties led to the development of the 
electron microscope, which can produce images of much greater magnification 
than does a light microscope. Figures 37-13 and 37-14 are diagrams of two 
types, developed around the middle of the twentieth century: the transmission 
electron microscope, which produces a two-dimensional image, and the scanning 
electron microscope (SEM), which produces images with a three-dimensional 
quality. In both types, the objective and eyepiece lenses are actually magnetic 
fields that exert forces on the electrons to bring them to a focus. The fields are 
produced by carefully designed current-carrying coils of wire. Photographs using 
each type are shown in Fig. 37-15.

As discussed in Section 35-5, the maximum resolution of details on an 
object is about the size of the wavelength of the radiation used to view it. 
Electrons accelerated by voltages on the order of 105V have wavelengths of 
about 0.004 nm. The maximum resolution obtainable would be on this order, 
but in practice, aberrations in the magnetic lenses limit the resolution in 
transmission electron microscopes to at best about 0.1 to 0.5 nm. This is 
still 103 times better than that attainable with a visible-light microscope, and 
corresponds to a useful magnification of about a million. Such magnifications 
are difficult to attain, and more common magnifications are 104 to 105. 
The maximum resolution attainable with a scanning electron microscope is 
somewhat less, typically 5 to 10 nm although new high-resolution SEMs 
approach 1 nm.

We discuss other sophisticated electron microscopes in the next Chapter, 
Section 38-10.

FIGURE 37-15 Electron micrographs (in false color) of viruses attacking a cell of the 
bacterium Escherichia c o lt  (a) transmission electron micrograph (~  50,000X); (b) scanning 
electron micrograph (~  35,000X).

FIGURE 37-14 Scanning electron  
microscope. Scanning coils move an 
electron beam back and forth across 
the specimen. Secondary electrons 
produced when the beam strikes 
the specimen are collected and 
modulate the intensity of the beam  
in the CRT to produce a picture.

Electron source

electrons

3 7 -9  Early Models of the Atom
The idea that matter is made up of atoms was accepted by most scientists by 1900. 
With the discovery of the electron in the 1890s, scientists began to think of the 
atom itself as having a structure with electrons as part of that structure. We now 
introduce our modern approach to the atom and the quantum theory with which it 
is intertwined.*

fSome readers may say: “Tell us the facts as we know them today, and don’t bother us with the 
historical background and its outmoded theories.” Such an approach would ignore the creative aspect 
of science and thus give a false impression of how science develops. Moreover, it is not really possible 
to understand today’s view of the atom without insight into the concepts that led to it.
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A typical model of the atom in the 1890s visualized the atom as a homogeneous 
sphere of positive charge inside of which there were tiny negatively charged 
electrons, a little like plums in a pudding, Fig. 37-16.

Around 1911, Ernest Rutherford (1871-1937) and his colleagues performed 
experiments whose results contradicted the plum-pudding model of the atom. In 
these experiments a beam of positively charged alpha (a) particles was directed at 
a thin sheet of metal foil such as gold, Fig. 37-17a. (These newly discovered 
a particles were emitted by certain radioactive materials and were soon shown to 
be doubly ionized helium atoms—that is, having a charge of +2e.) It was expected 
from the plum-pudding model that the alpha particles would not be deflected 
significantly because electrons are so much lighter than alpha particles, and the 
alpha particles should not have encountered any massive concentration of positive 
charge to strongly repel them. The experimental results completely contradicted 
these predictions. It was found that most of the alpha particles passed through the 
foil unaffected, as if the foil were mostly empty space. And of those deflected, a 
few were deflected at very large angles—some even backward, nearly in the 
direction from which they had come. This could happen, Rutherford reasoned, 
only if the positively charged alpha particles were being repelled by a massive 
positive charge concentrated in a very small region of space (see Fig. 37-17b).

-10“

charged
material

FIGURE 37-16  Plum-pudding 
model of the atom.

FIGU RE 37-17  (a) Experimental setup 
for Rutherford’s experiment: a particles 
emitted by radon are deflected by a thin 
metallic foil and a few rebound backward;
(b) backward rebound of a particles 
explained as the repulsion from a heavy 
positively charged nucleus.

a  panicIc

(b)
He hypothesized that the atom must consist of a tiny but massive positively 
charged nucleus, containing over 99.9% of the mass of the atom, surrounded by 
electrons some distance away. The electrons would be moving in orbits about the 
nucleus—much as the planets move around the Sun—because if they were at 
rest, they would fall into the nucleus due to electrical attraction, Fig. 37-18. 
Rutherford’s experiments suggested that the nucleus must have a radius of about 
10-15 to 10“14m. From kinetic theory, and especially Einstein’s analysis of 
Brownian motion (see Section 17-1), the radius of atoms was estimated to be 
about 10-10 m. Thus the electrons would seem to be at a distance from the nucleus 
of about 10,000 to 100,000 times the radius of the nucleus itself. (If the nucleus 
were the size of a baseball, the atom would have the diameter of a big city several 
kilometers across.) So an atom would be mostly empty space.

Rutherford’s “planetary” model of the atom (also called the “nuclear model of 
the atom”) was a major step toward how we view the atom today. It was not, 
however, a complete model and presented some major problems, as we shall see.

37—10 Atom ic Spectra: Key to  
the  S tructure o f  th e  Atom

Earlier in this Chapter we saw that heated solids (as well as liquids and dense 
gases) emit light with a continuous spectrum of wavelengths. This radiation is 
assumed to be due to oscillations of atoms and molecules, which are largely 
governed by the interaction of each atom or molecule with its neighbors.

FIGURE 37-18  Rutherford’s 
model of the atom, in which 
electrons orbit a tiny positive 
nucleus (not to scale). The atom is 
visualized as mostly empty space.
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FIGURE 37-19  Gas-discharge 
tube: (a) diagram; (b) photo of an 
actual discharge tube for hydrogen.

FIGURE 37-21 Balmer series of 
lines for hydrogen.
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Rarefied gases can also be excited to emit light. This is done by intense heating, 
or more commonly by applying a high voltage to a “discharge tube” containing the 
gas at low pressure, Fig. 37-19. The radiation from excited gases had been observed 
early in the nineteenth century, and it was found that the spectrum was not contin­
uous, but discrete. Since excited gases emit light of only certain wavelengths, when this 
light is analyzed through the slit of a spectroscope or spectrometer, a line spectrum is 
seen rather than a continuous spectrum. The line spectra in the visible region emitted 
by a number of elements are shown below in Fig. 37-20, and in Chapter 35, 
Fig. 35-22. The emission spectrum is characteristic of the material and can serve as a 
type of “fingerprint” for identification of the gas.

We also saw (Chapter 35) that if a continuous spectrum passes through a 
rarefied gas, dark lines are observed in the emerging spectrum, at wavelengths corre­
sponding to lines normally emitted by the gas. This is called an absorption spectrum 
(Fig. 37-20c), and it became clear that gases can absorb light at the same frequencies 
at which they emit. Using film sensitive to ultraviolet and to infrared light, it was 
found that gases emit and absorb discrete frequencies in these regions as well as in 
the visible.

(a)

(b)

(c)

■ ■
FIGURE 37 -2 0  Emission spectra of the gases (a) atomic hydrogen, (b) helium, and
(c) the solar absorption spectrum.

In low-density gases, the atoms are far apart on the average and hence the 
light emitted or absorbed is assumed to be by individual atoms rather than 
through interactions between atoms, as in a solid, liquid, or dense gas. Thus the line 
spectra serve as a key to the structure of the atom: any theory of atomic structure 
must be able to explain why atoms emit light only of discrete wavelengths, and it 
should be able to predict what these wavelengths are.

Hydrogen is the simplest atom—it has only one electron. It also has the 
simplest spectrum. The spectrum of most atoms shows little apparent regularity. 
But the spacing between lines in the hydrogen spectrum decreases in a regular 
way, Fig. 37-21. Indeed, in 1885, J. J. Balmer (1825-1898) showed that the four 
lines in the visible portion of the hydrogen spectrum (with measured wavelengths 
656 nm, 486 nm, 434 nm, and 410 nm) have wavelengths that fit the formula

n = 3,4, (37-8)

1002 CHAPTER 37

Here n takes on the values 3, 4, 5, 6 for the four visible lines, and R, called the 
Rydberg constant, has the value R = 1.0974 X 107m-1. Later it was found that 
this Balmer series of lines extended into the UV region, ending at A = 365 nm, as 
shown in Fig. 37-21. Baimer’s formula, Eq. 37-8, also worked for these lines with 
higher integer values of n. The lines near 365 nm became too close together to 
distinguish, but the limit of the series at 365 nm corresponds to n = oo (so 
1/n2 = 0 in Eq. 37-8).

Later experiments on hydrogen showed that there were similar series of lines 
in the UV and IR regions, and each series had a pattern just like the Balmer series, 
but at different wavelengths, Fig. 37-22. Each of these series was found to fit a 
formula with the same form as Eq. 37-8 but with the 1/22 replaced by 
l / l 2,1 /32,1 /42, and so on. For example, the so-called Lyman series contains lines



Wavelength, A

V
Lyman
series

Balmer series Paschen series

UV Visible light IR

with wavelengths from 91 nm to 122 nm (in the UV region) and fits the formula

2 ,3 ,-

The wavelengths of the Paschen series (in the IR region) fit

n = 4 ,5 ,"-.

The Rutherford model was unable to explain why atoms emit line spectra. It 
had other difficulties as well. According to the Rutherford model, electrons orbit 
the nucleus, and since their paths are curved the electrons are accelerating. Hence 
they should give off light like any other accelerating electric charge (Chapter 31), 
with a frequency equal to its orbital frequency. Since light carries off energy and 
energy is conserved, the electron’s own energy must decrease to compensate. 
Hence electrons would be expected to spiral into the nucleus. As they spiraled 
inward, their frequency would increase in a short time and so too would the 
frequency of the light emitted. Thus the two main difficulties with the Rutherford 
model are these: (1) it predicts that light of a continuous range of frequencies will 
be emitted, whereas experiment shows line spectra; (2) it predicts that atoms are 
unstable—electrons would quickly spiral into the nucleus—but we know that 
atoms in general are stable, because there is stable matter all around us.

Clearly Rutherford’s model was not sufficient. Some sort of modification 
was needed, and Niels Bohr provided it in a model that included the quantum 
hypothesis. Although the Bohr model has been superceded, it did provide a crucial 
stepping stone to our present understanding. And some aspects of the Bohr model 
are still useful today, so we examine it in detail in the next Section.

37—11 The B ohr M odel
Bohr had studied in Rutherford’s laboratory for several months in 1912 and was 
convinced that Rutherford’s planetary model of the atom had validity. But in order to 
make it work, he felt that the newly developing quantum theory would somehow 
have to be incorporated in it. The work of Planck and Einstein had shown that in 
heated solids, the energy of oscillating electric charges must change discontinuously— 
from one discrete energy state to another, with the emission of a quantum of light. 
Perhaps, Bohr argued, the electrons in an atom also cannot lose energy continuously, 
but must do so in quantum “jumps.” In working out his model during the next year, 
Bohr postulated that electrons move about the nucleus in circular orbits, but that only 
certain orbits are allowed. He further postulated that an electron in each orbit would 
have a definite energy and would move in the orbit without radiating energy (even 
though this violated classical ideas since accelerating electric charges are supposed to 
emit EM waves; see Chapter 31). He thus called the possible orbits stationary states. 
Light is emitted, he hypothesized, only when an electron jumps from a higher (upper) 
stationary state to another of lower energy, Fig. 37-23. When such a transition occurs, 
a single photon of light is emitted whose energy, by energy conservation, is given by 

h f = Ev -  Eh, (37-9)
where Ev refers to the energy of the upper state and E h the energy of the lower state.

FIGURE 37-22  Line spectrum of 
atomic hydrogen. Each series fits the

formula -7 =  RI \  ]»where
A \nu nz J n' = 1 for the Lyman series, n' = 2  for the Balmer series, n' = 3  for the Paschen series, 

and so on; n can take on all integer 
values from n =  nr + 1 up to 
infinity. The only lines in the visible 
region of the electromagnetic 
spectrum are part of the Balmer series.

FIGURE 37-23  A n atom emits a 
photon (energy =  hf) when its 
energy changes from Ev to a lower 
energy EL.

------------- £u

---------el
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F = 1 (Ze)(e)
477e0

FIGURE 37 -2 4  Electric force 
(Coulomb’s law) keeps the negative 
electron in orbit around the 
positively charged nucleus.

In 1912-13, Bohr set out to determine what energies these orbits would have 
in the simplest atom, hydrogen; the spectrum of light emitted could then be 
predicted from Eq. 37-9. In the Balmer formula he had the key he was looking 
for. Bohr quickly found that his theory would be in accord with the Balmer 
formula if he assumed that the electron’s angular momentum L  is quantized and 
equal to an integer n times h/lir. As we saw in Chapter 11 angular momentum is 
given by L = Icj, where I  is the moment of inertia and a) is the angular velocity. 
For a single particle of mass m moving in a circle of radius r with speed v, I  = mr2 
and oo = v/r; hence, L = la) = (mr2)(v/r) = mvr. Bohr’s quantum condition is

T kL = mvrn = n - ■ 
n 2 77

n = 1,2,3, (37-10)

where n is an integer and rn is the radius of the nth possible orbit. The allowed 
orbits are numbered 1,2,3, •••, according to the value of n, which is called the 
principal quantum number of the orbit.

Equation 37-10 did not have a firm theoretical foundation. Bohr had searched 
for some “quantum condition,” and such tries as E = h f  (where E  represents the 
energy of the electron in an orbit) did not give results in accord with experiment. 
Bohr’s reason for using Eq. 37-10 was simply that it worked; and we now look 
at how. In particular, let us determine what the Bohr theory predicts for the 
measurable wavelengths of emitted light.

An electron in a circular orbit of radius rn (Fig. 37-24) would have a 
centripetal acceleration v2/rn produced by the electrical force of attraction 
between the negative electron and the positive nucleus. This force is given by 
Coulomb’s law,

{Z e){e)
F =

Aire,
The charge on the nucleus is +Ze, where Z is the number of positive charges1 
(i.e., protons). For the hydrogen atom, Z = +1.

In Newton’s second law, F = ma, we substitute Coulomb’s law for F, and 
a = v2/rn for a particular allowed orbit of radius rn, and obtain

F = ma 
1 Ze2 _  mv2 

4-7760 r2n rn

We solve this for rn, and then substitute for v from Eq. 37-10 (which says 
v = nh/2irmrn):

Ze2 Ze2A7r2mr2n
r” 4776 o mv2 4-776 0 n2h2 

We solve for rn (it appears on both sides, so we cancel one of them) and find

r„ =

where
irmZe

h2e0 
irme2

0 IT 
~2 = (37-11)

Equation 37-11 gives the radii of all possible orbits. The smallest orbit is for 
n = 1, and for hydrogen (Z = 1) has the value

(1)2(6.626 x 10"34J -s)2(8.85 x 10-12C2/N -m 2)

(3.14)(9.11 x  10"31 kg)(l.602 x 10"19C)2

fWe include Z in our derivation so that we can treat other single-electron (“hydrogenlike”) atoms such 
as the ions He+ (Z = 2) and Li2+(Z = 3). Helium in the neutral state has two electrons: if one 
electron is missing, the remaining He+ ion consists of one electron revolving around a nucleus of 
charge +2e. Similarly, doubly ionized lithium, Li2+, also has a single electron, and in this case Z = 3.
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or
rx = 0.529 X l ( r 10m. (37-12)

The radius of the smallest orbit in hydrogen, rl9 is sometimes called the Bohr 
radius. From Eq. 37-11, we see that the radii of the larger orbits1 increase as n2, so 

r2 = 4rx = 2.12 X 10-10m, 
r3 = 9rx = 4.76 X 10-10m,

rn = n \ .
The first four orbits are shown in Fig. 37-25. Notice that, according to Bohr’s 
model, an electron can exist only in the orbits given by Eq. 37-11. There are no 
allowable orbits in between.

For an atom with Z ¥= 1, we can write the orbital radii, rn, using Eq. 37-11:
n2

r„ = — (0.529 X 10-10m), n = 1,2,3,---. (37-13)Z/
In each of its possible orbits, the electron would have a definite energy, as 

the following calculation shows. The total energy equals the sum of the kinetic 
and potential energies. The potential energy of the electron is given by 
U = qV = —eV, where V is the potential due to a point charge +Ze as given 
by Eq. 23-5: V =  (l/4i7e0)(g /r)  = (l/4ire„)(Ze/r). So

1 Ze2
U = -e V  = - - -----------

47re0 r
The total energy En for an electron in the nth orbit of radius rn is the sum of the 
kinetic and potential energies:

1 2  1 Z*2En = f m r  -  ------------
47reo rn

When we substitute v from Eq. 37-10 and rn from Eq. 37-11 into this equation, we 
obtain

E-  ■ ,37- 14"
If we evaluate the constant term in Eq. 37-14a and convert it to electron volts, as 
is customary in atomic physics, we obtain

Z 2
En = -(13 .6eV )-^>  n = 1 ,2 ,3 , - .  (37-14b)

The lowest energy level (n = 1) for hydrogen (Z = 1) is 

E1 = -13.6 eV.

Since n2 appears in the denominator of Eq. 37-14b, the energies of the larger 
orbits in hydrogen (Z = 1) are given by

-13.6 eVE„ =

For example,
£2 _  _  _ 3 40eV;

_  ^ e V  _

3 9
We see that not only are the orbit radii quantized, but from Eqs. 37-14 so is the 
energy. The quantum number n that labels the orbit radii also labels the energy 
levels. The lowest energy level or energy state has energy E1, and is called the 
ground state. The higher states, E2,E 3, and so on, are called excited states. The 
fixed energy levels are also called stationary states.
fBe careful not to believe that these well-defined orbits actually exist. Today electrons are better 
thought of as forming “clouds,” as discussed in Chapter 39.

FIGURE 37-25 The four smallest 
orbits in the Bohr model of 
hydrogen; =  0.529 X 10- 10m.
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Notice that although the energy for the larger orbits has a smaller numerical 
value, all the energies are less than zero. Thus, -3.4 eV is a higher energy than 
-13.6 eV. Hence the orbit closest to the nucleus (r^ has the lowest energy. The 
reason the energies have negative values has to do with the way we defined the 
zero for potential energy (U). For two point charges, U = (l/47re0)(q1q2/r) 
corresponds to zero potential energy when the two charges are infinitely far apart. 
Thus, an electron that can just barely be free from the atom by reaching r = oo 
(or, at least, far from the nucleus) with zero kinetic energy will have E = 0, 
corresponding to n = oo in Eqs. 37-14. If an electron is free and has kinetic 
energy, then E > 0. To remove an electron that is part of an atom requires an 
energy input (otherwise atoms would not be stable). Since E > 0 for a free 
electron, then an electron bound to an atom needs to have E  <  0. That is, energy 
must be added to bring its energy up, from a negative value, to at least zero in 
order to free it.

The minimum energy required to remove an electron from an atom initially in 
the ground state is called the binding energy or ionization energy. The ionization 
energy for hydrogen has been measured to be 13.6 eV, and this corresponds 
precisely to removing an electron from the lowest state, E1 = -13.6 eV, up to 
E = 0 where it can be free.

Spectra Lines Explained
It is useful to show the various possible energy values as horizontal lines on an 
energy-level diagram. This is shown for hydrogen in Fig. 37-26.f The electron in a 
hydrogen atom can be in any one of these levels according to Bohr’s theory. But 
it could never be in between, say at -9.0 eV. At room temperature, nearly all 
H atoms will be in the ground state (n = 1). At higher temperatures, or during an 
electric discharge when there are many collisions between free electrons and 
atoms, many atoms can be in excited states (n > 1). Once in an excited state, an 
atom’s electron can jump down to a lower state, and give off a photon in the 
process. This is, according to the Bohr model, the origin of the emission spectra of 
excited gases.

tNote that above E = 0, an electron is free and can have any energy (E is not quantized). Thus 
there is a continuum of energy states above E = 0, as indicated in the energy-level diagram of 
Fig. 37-26.

FIGURE 37 -2 6  Energy-level 
diagram for the hydrogen atom, 
showing the transitions for the 
spectral lines of the Lyman, Balmer, 
and Paschen series (Fig. 37-22).
Each vertical arrow represents an 
atomic transition that gives rise to the 
photons of one spectral line (a single 
wavelength or frequency).

Excited
states
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The vertical arrows in Fig. 37-26 represent the transitions or jumps that 
correspond to the various observed spectral lines. For example, an electron 
jumping from the level n = 3 to n = 2 would give rise to the 656-nm line in the 
Balmer series, and the jump from n = 4 to n = 2 would give rise to the 486-nm 
line (see Fig. 37-21). We can predict wavelengths of the spectral lines emitted by 
combining Eq. 37-9 with Eq. 37-14a. Since h f = hc/k, we have from Eq. 37-9

-  =  —  =  — ( E  -  E  )A hc he n>’

where n refers to the upper state and n' to the lower state. Then using Eq. 37-14a, 

1 _  Z V ra  /  1 1 \
A "  8 “  W V *  ( '

This theoretical formula has the same form as the experimental Balmer formula, 
Eq. 37-8, with n' = 2. Thus we see that the Balmer series of lines corresponds to 
transitions or “jumps” that bring the electron down to the second energy level. 
Similarly, n' = 1 corresponds to the Lyman series and n' = 3 to the Paschen 
series (see Fig. 37-26).

When the constant in Eq. 37-15 is evaluated with Z = 1, it is found to have 
the measured value of the Rydberg constant, R = 1.0974 X 107 m_1 in Eq. 37-8, 
in accord with experiment (see Problem 58).

The great success of Bohr’s model is that it gives an explanation for why atoms 
emit line spectra, and accurately predicts the wavelengths of emitted light for 
hydrogen. The Bohr model also explains absorption spectra: photons of just 
the right wavelength can knock an electron from one energy level to a higher one. 
To conserve energy, only photons that have just the right energy will be absorbed. 
This explains why a continuous spectrum of light entering a gas will emerge 
with dark (absorption) lines at frequencies that correspond to emission lines 
(Fig. 37-20c).

The Bohr theory also ensures the stability of atoms. It establishes stability by 
decree: the ground state is the lowest state for an electron and there is no lower 
energy level to which it can go and emit more energy. Finally, as we saw above, the 
Bohr theory accurately predicts the ionization energy of 13.6 eV for hydrogen. 
However, the Bohr model was not so successful for other atoms, and has been 
superseded as we shall discuss in the next Chapter. We discuss the Bohr model 
because it was an important start, and because we still use the concept of 
stationary states, the ground state, and transitions between states. Also, the 
terminology used in the Bohr model is still used by chemists and spectroscopists.

EXAMPLE 37-13 Wavelength of a Lyman line. Use Fig. 37-26 to determine 
the wavelength of the first Lyman line, the transition from n = 2 to n = 1. In 
what region of the electromagnetic spectrum does this lie?

APPROACH We use Eq. 37-9, h f = -  EL, with the energies obtained from 
Fig. 37-26 to find the energy and the wavelength of the transition. The region of 
the electromagnetic spectrum is found using the EM spectrum in Fig. 31-12. 
SOLUTION In this case, h f = E2 -  E1 = {-3.4eV  -  (-1 3 .6 eV)} = 10.2eV 
= (10.2 eV)(l.60 X 10“19 J/eV) = 1.63 X 10-18 J. Since A = c /f, we have

, c hc (6.63 X 10-34 J-s)(3.00 X 108m/s)
A = — = —----- — = -------------------------- ---------------- = 1.22 X 10 m,

/  E2 - E 1 1.63 X 10 J

or 122 nm, which is in the UV region of the EM spectrum, Fig. 31-12. See also 
Fig. 37-22.
NOTE An alternate approach would be to use Eq. 37-15 to find A, and it gives 
the same result.
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EXAMPLE 37-14 Wavelength of a Balmer line. Determine the wavelength 
of light emitted when a hydrogen atom makes a transition from the n = 6 to the 
n = 2 energy level according to the Bohr model.
APPROACH We can use Eq. 37-15 or its equivalent, Eq. 37-8, with 
R = 1.097 X 107m_1.
SOLUTION We find

-  = (1.097 X 107m 2.44 X 106 m~

So A = l/(2.44 X 106m *) = 4.10 X 10 7m or 410 nm. This is the fourth line in 
the Balmer series, Fig. 37-21, and is violet in color.

EXERCISE F The energy of the photon emitted when a hydrogen atom goes from the n = 6 
state to the n = 3 state is (a) 0.378 eV; (b) 0.503 eV; (c) 1.13 eV; (d) 3.06 eV; (e) 13.6 eV.

EXAMPLE 37-15 Absorption wavelength. Use Fig. 37-26 to determine the 
maximum wavelength that hydrogen in its ground state can absorb. What would 
be the next smaller wavelength that would work?
APPROACH Maximum wavelength corresponds to minimum energy, and this would 
be the jump from the ground state up to the first excited state (Fig. 37-26). The next 
smaller wavelength occurs for the jump from the ground state to the second excited 
state. In each case, the energy difference can be used to find the wavelength. 
SOLUTION The energy needed to jump from the ground state to the first excited 
state is 13.6 eV — 3.4 eV = 10.2 eV; the required wavelength, as we saw in 
Example 37-13, is 122 nm. The energy to jump from the ground state to the second 
excited state is 13.6 eV — 1.5 eV = 12.1 eV, which corresponds to a wavelength

he
h f

he
E3 -  E1
(6.63 x  1(T34 J-s)(3.00 x 10s m/s) 

(12.1 eV)(l.60 X IO-19 J/eV)
= 103 nm.

EXAMPLE 37-16 He+ ionization energy, (a) Use the Bohr model to determine 
the ionization energy of the He+ ion, which has a single electron, (b) Also 
calculate the maximum wavelength a photon can have to cause ionization. 
APPROACH We want to determine the minimum energy required to lift the 
electron from its ground state and to barely reach the free state at E = 0. 
The ground state energy of He+ is given by Eq. 37-14b with n = 1 and Z  = 2. 
SOLUTION (a) Since all the symbols in Eq. 37-14b are the same as for the 
calculation for hydrogen, except that Z is 2 instead of 1, we see that Ex will 
be Z 2 = 22 = 4 times the E1 for hydrogen:

E1 = 4(-13.6eV) = -54.4 eV.
Thus, to ionize the He+ ion should require 54.4 eV, and this value agrees with 
experiment.
(b) The maximum wavelength photon that can cause ionization will have energy 
h f  = 54.4 eV and wavelength

c _  he (6.63 x  lO-^J-sXS.OO x 108m/s)
X  =  -f  =  ̂  = = 22.8 nm.

CHAPTER 37

h f  (54.4 eV)(l.60 X 10“19J/eV)
NOTE If the atom absorbed a photon of greater energy (wavelength shorter than 
22.8 nm), the atom could still be ionized and the freed electron would have kinetic 
energy of its own. If A > 22.8 nm, the photon has too little energy to cause ionization.

In this last Example, we saw that E1 for the He+ ion is four times more negative 
than that for hydrogen. Indeed, the energy-level diagram for He+ looks just like that 
for hydrogen, Fig. 37-26, except that the numerical values for each energy level are 
four times larger. Note, however, that we are talking here about the He+ ion. Normal 
(neutral) helium has two electrons and its energy level diagram is entirely different.



CONCEPTUAL EXAMPLE 37-17 I Hydrogen at 20°C. Estimate the average
kinetic energy of whole hydrogen atoms (not just the electrons) at room temperature, 
and use the result to explain why nearly all H atoms are in the ground state at room 
temperature, and hence emit no light.
RESPONSE According to kinetic theory (Chapter 18), the average kinetic energy 
of atoms or molecules in a gas is given by Eq. 18-4:

K  = \kT ,
where k = 1.38 X 10-23J/K  is Boltzmann’s constant, and T  is the kelvin 
(absolute) temperature. Room temperature is about T = 300 K, so

K = |(1.38 X 10“23J/K)(300K) = 6.2 X 10“21J, 
or, in electron volts:

* -

The average kinetic energy of an atom as a whole is thus very small compared 
to the energy between the ground state and the next higher energy state 
(13.6 eV -  3.4 eV = 10.2 eV). Any atoms in excited states quickly fall to the 
ground state and emit light. Once in the ground state, collisions with other atoms 
can transfer energy of only 0.04 eV on the average. A small fraction of atoms can 
have much more energy (see Section 18-2 on the distribution of molecular 
speeds), but even a kinetic energy that is 10 times the average is not nearly 
enough to excite atoms into states above the ground state. Thus, at room 
temperature, nearly all atoms are in the ground state. Atoms can be excited to 
upper states by very high temperatures, or by passing a current of high energy 
electrons through the gas, as in a discharge tube (Fig. 37-19).

Correspondence Principle
We should note that Bohr made some radical assumptions that were at variance 
with classical ideas. He assumed that electrons in fixed orbits do not radiate light 
even though they are accelerating (moving in a circle), and he assumed that angular 
momentum is quantized. Furthermore, he was not able to say how an electron 
moved when it made a transition from one energy level to another. On the other 
hand, there is no real reason to expect that in the tiny world of the atom electrons 
would behave as ordinary-sized objects do. Nonetheless, he felt that where quantum 
theory overlaps with the macroscopic world, it should predict classical results.
This is the correspondence principle, already mentioned in regard to relativity 
(Section 36-13). This principle does work for Bohr’s theory of the hydrogen atom.
The orbit sizes and energies are quite different for n = 1 and n = 2, say. But 
orbits with n = 100,000,000 and 100,000,001 would be very close in radius and 
energy (see Fig. 37-26). Indeed, jumps between such large orbits (which would 
approach macroscopic sizes), would be imperceptible. Such orbits would thus 
appear to be continuously spaced, which is what we expect in the everyday world.

Finally, it must be emphasized that the well-defined orbits of the Bohr model 
do not actually exist. The Bohr model is only a model, not reality. The idea of 
electron orbits was rejected a few years later, and today electrons are thought 
of (Chapter 39) as forming “probability clouds.”

3 7 -1 2  de Broglie's H ypothesis 
A pplied to  Atoms

Bohr’s theory was largely of an ad hoc nature. Assumptions were made so that 
theory would agree with experiment. But Bohr could give no reason why the orbits 
were quantized, nor why there should be a stable ground state. Finally, ten years 
later, a reason was proposed by Louis de Broglie. We saw in Section 37-7 that in 
1923, de Broglie proposed that material particles, such as electrons, have a wave
nature; and that this hypothesis was confirmed by experiment several years later. SECTION 37-1] 1009



FIGURE 37-27  A n ordinary 
standing wave compared to a 
circular standing wave.

FIGURE 37 -2 8  When a wave does 
not close (and hence interferes 
destructively with itself), it rapidly 
dies out.

FIGURE 37 -2 9  Standing circular 
waves for two, three, and five 
wavelengths on the circumference; n, the number of wavelengths, is also 
the quantum number.

Summary

One of de Broglie’s original arguments in favor of the wave nature of 
electrons was that it provided an explanation for Bohr’s theory of the hydrogen 
atom. According to de Broglie, a particle of mass m moving with a nonrelativistic 
speed v would have a wavelength (Eq. 37-7) of

A -  -*-• mv
Each electron orbit in an atom, he proposed, is actually a standing wave. As we 
saw in Chapter 15, when a violin or guitar string is plucked, a vast number of 
wavelengths are excited. But only certain ones—those that have nodes at the 
ends—are sustained. These are the resonant modes of the string. Waves with other 
wavelengths interfere with themselves upon reflection and their amplitudes 
quickly drop to zero. With electrons moving in circles, according to Bohr’s theory, 
de Broglie argued that the electron wave was a circular standing wave that closes 
on itself, Fig. 31-21. If the wavelength of a wave does not close on itself, as in 
Fig. 37-28, destructive interference takes place as the wave travels around the 
loop, and the wave quickly dies out. Thus, the only waves that persist are those for 
which the circumference of the circular orbit contains a whole number of wavelengths, 
Fig. 37-29. The circumference of a Bohr orbit of radius rn is 2irrn, so to have 
constructive interference, we need

2irrn = nk, n = 1,2,3,

When we substitute A = h/m v , we get 2irrn = nh/m v , or 
nh

mVrn 2 ir’
This is just the quantum condition proposed by Bohr on an ad hoc basis, 
Eq. 37-10. It is from this equation that the discrete orbits and energy levels were 
derived. Thus we have a first explanation for the quantized orbits and energy 
states in the Bohr model: they are due to the wave nature of the electron, and only 
resonant “standing” waves can persist.1- This implies that the wave-particle duality 
is at the root of atomic structure.

In viewing the circular electron waves of Fig. 37-29, the electron is not to be 
thought of as following the oscillating wave pattern. In the Bohr model of hydrogen, 
the electron moves in a circle. The circular wave, on the other hand, represents the 
amplitude of the electron “matter wave,” and in Fig. 37-29 the wave amplitude is 
shown superimposed on the circular path of the particle orbit for convenience.

Bohr’s theory worked well for hydrogen and for one-electron ions. But it did 
not prove successful for multi-electron atoms. Bohr’s theory could not predict line 
spectra even for the next simplest atom, helium. It could not explain why some 
emission lines are brighter than others, nor why some lines are split into two or 
more closely spaced lines (“fine structure”). A new theory was needed and was 
indeed developed in the 1920s. This new and radical theory is called quantum 
mechanics. It finally solved the problem of atomic structure, but it gives us a very 
different view of the atom: the idea of electrons in well-defined orbits was replaced 
with the idea of electron “clouds.” This new theory of quantum mechanics has given 
us a wholly different view of the basic mechanisms underlying physical processes.

fWe note, however, that Eq. 37-10 is no longer considered valid, as discussed in Chapter 39.

Quantum theory has its origins in Planck’s quantum hypothesis 
that molecular oscillations are quantized: their energy E can 
only be integer (n) multiples of hf, where h is Planck’s constant 
and /  is the natural frequency of oscillation:E = nhf. (37-2)
This hypothesis explained the spectrum of radiation emitted by 
a blackbody at high temperature.

Einstein proposed that for some experiments, light could be 
pictured as being emitted and absorbed as quanta (particles), 
which we now call photons, each with energyE = hf (37-3)
and momentum E _ hf_ = h c AP  = (37-5)
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He proposed the photoelectric effect as a test for the photon 
theory of light. In the photoelectric effect, the photon theory 
says that each incident photon can strike an electron in a mate­
rial and eject it if the photon has sufficient energy. The 
maximum energy of ejected electrons is then linearly related to 
the frequency of the incident light.

The photon theory is also supported by the Compton effect 
and the observation of electron-positron pair production.

The wave-particle duality refers to the idea that light and 
matter (such as electrons) have both wave and particle proper­
ties. The wavelength of an object is given by

A = —> (37-7)
P

where p  is the momentum of the object (p = mv for a particle 
of mass m and speed v).

The principle of complementarity states that we must be 
aware of both the particle and wave properties of light and of 
matter for a complete understanding of them.

Early models of the atom include the plum-pudding model, 
and Rutherford’s planetary (or nuclear) model of an atom 
which consists of a tiny but massive positively charged nucleus 
surrounded (at a relatively great distance) by electrons.

To explain the line spectra emitted by atoms, as well as the 
stability of atoms, Bohr’s theory postulated that: (1) electrons 
bound in an atom can only occupy orbits for which the angular

momentum is quantized, which results in discrete values for the 
radius and energy; (2) an electron in such a stationary state 
emits no radiation; (3) if an electron jumps to a lower state, it 
emits a photon whose energy equals the difference in energy 
between the two states; (4) the angular momentum L  of atomic 
electrons is quantized by the rule

where n is an integer called the quantum number. The n = 1 
state is the ground state, which in hydrogen has an energy 
Ei = —13.6 eV. Higher values of n correspond to excited 
states, and their energies are

Z2
En = —(13.6 eV) —r- (37-14b)

nl

Atoms are excited to these higher states by collisions with other 
atoms or electrons, or by absorption of a photon of just the right 
frequency.

De Broglie’s hypothesis that electrons (and other matter) 
have a wavelength A = h/m v  gave an explanation for Bohr’s 
quantized orbits by bringing in the wave-particle duality: 
the orbits correspond to circular standing waves in which 
the circumference of the orbit equals a whole number of 
wavelengths.

Questions
1. What can be said about the relative temperatures of 

whitish-yellow, reddish, and bluish stars? Explain.
2. If energy is radiated by all objects, why can we not see most 

of them in the dark?
3. Does a lightbulb at a temperature of 2500 K produce as 

white a light as the Sun at 6000 K? Explain.
4. Darkrooms for developing black-and-white film were some­

times lit by a red bulb. Why red? Would such a bulb work in 
a darkroom for developing color photographs?

5. If the threshold wavelength in the photoelectric effect 
increases when the emitting metal is changed to a different 
metal, what can you say about the work functions of the two 
metals?

6. Explain why the existence of a cutoff frequency in the 
photoelectric effect more strongly favors a particle theory 
rather than a wave theory of light.

7. UV light causes sunburn, whereas visible light does not. 
Suggest a reason.

8. The work functions for sodium and cesium are 2.28 eV and 
2.14 eV, respectively. For incident photons of a given 
frequency, which metal will give a higher maximum kinetic 
energy for the electrons?

9. (a) Does a beam of infrared photons always have less energy 
than a beam of ultraviolet photons? Explain. (b) Does a 
single photon of infrared light always have less energy than 
a single photon of ultraviolet light?

10. Light of 450-nm wavelength strikes a metal surface, and a 
stream of electrons emerges from the metal. If light of the 
same intensity but of wavelength 400 nm strikes the surface, 
are more electrons emitted? Does the energy of the emitted 
electrons change? Explain.

11. Explain how the photoelectric circuit of Fig. 37-4 could 
be used in (a) a burglar alarm, (b) a smoke detector, (c) a 
photographic light meter.

12. Kan X-ray photon is scattered by an electron, does the photon’s 
wavelength change? If so, does it increase or decrease?

13. In both the photoelectric effect and in the Compton effect, a 
photon collides with an electron causing the electron to fly 
off. What then, is the difference between the two processes?

14. Consider a point source of light. How would the intensity 
of light vary with distance from the source according to
(a) wave theory, (b) particle (photon) theory? Would this 
help to distinguish the two theories?

15. If an electron and a proton travel at the same speed, which 
has the shorter de Broglie wavelength? Explain.

16. Why do we say that light has wave properties? Why do we 
say that light has particle properties?

17. Why do we say that electrons have wave properties? Why 
do we say that electrons have particle properties?

18. What are the differences between a photon and an electron? 
Be specific: make a list.

19. In Rutherford’s planetary model of the atom, what keeps 
the electrons from flying off into space?

20. How can you tell if there is oxygen near the surface of the 
Sun?

21. When a wide spectrum of light passes through hydrogen gas 
at room temperature, absorption lines are observed that 
correspond only to the Lyman series. Why don’t we observe 
the other series?

22. Explain how the closely spaced energy levels for hydrogen 
near the top of Fig. 37-26 correspond to the closely spaced 
spectral lines at the top of Fig. 37-21.
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23. Is it possible for the de Broglie wavelength of a “particle” to 
be greater than the dimensions of the particle? To be 
smaller? Is there any direct connection?

24. In a helium atom, which contains two electrons, do you 
think that on average the electrons are closer to the nucleus 
or farther away than in a hydrogen atom? Why?

25. How can the spectrum of hydrogen contain so many lines 
when hydrogen contains only one electron?

26. The Lyman series is brighter than the Balmer series 
because this series of transitions ends up in the most 
common state for hydrogen, the ground state. Why then was 
the Balmer series discovered first?

27. Use conservation of momentum to explain why photons 
emitted by hydrogen atoms have slightly less energy than 
that predicted by Eq. 37-9.

28. Suppose we obtain an emission spectrum for hydrogen at 
very high temperature (when some of the atoms are in 
excited states), and an absorption spectrum at room temper­
ature, when all atoms are in the ground state. Will the two 
spectra contain identical lines?

Problem s
37-1 Planck's Quantum Hypothesis
1. (I) Estimate the peak wavelength for radiation from (a) ice 

at 273K, (ib) a floodlamp at 3500 K, (c) helium at 4.2 K, (d) for 
the universe at T = 2.725 K, assuming blackbody emission. 
In what region of the EM spectrum is each?

2. (I) How hot is metal being welded if it radiates most 
strongly at 460 nm?

3. (I) An HC1 molecule vibrates with a natural frequency of
8.1 X 1013 Hz. What is the difference in energy (in joules 
and electron volts) between successive values of the oscilla­
tion energy?

4. (II) Estimate the peak wavelength of light issuing from the 
pupil of the human eye (which approximates a blackbody) 
assuming normal body temperature.

5. (Ill) Planck’s radiation law is given by:

^
where /(A, T) is the rate energy is radiated per unit surface 
area per unit wavelength interval at wavelength A and 
Kelvin temperature T. (a) Show that Wien’s displacement 
law follows from this relationship, (b) Determine the value 
of h from the experimental value of APT given in the text. 
[You may want to use graphing techniques.] (c) Derive the 
r 4 dependence of the rate at which energy is radiated (as in 
the Stefan-Boltzmann law, Eq. 19-17), by integrating Planck’s 
formula over all wavelengths; that is, show that

j  /(A, T) dX oc T \

37-2 and 37-3 Photons and the Photoelectric Effect
6. (I) What is the energy of photons (in joules) emitted by a 

104.1-MHz FM radio station?
7. (I) What is the energy range (in joules and eV) of photons 

in the visible spectrum, of wavelength 410 nm to 750 nm?
8. (I) A typical gamma ray emitted from a nucleus during 

radioactive decay may have an energy of 380 keV. What is 
its wavelength? Would we expect significant diffraction of 
this type of light when it passes through an everyday 
opening, such as a door?

9. (I) About 0.1 eV is required to break a “hydrogen bond” in 
a protein molecule. Calculate the minimum frequency and 
maximum wavelength of a photon that can accomplish this.

10. (I) Calculate the momentum of a photon of yellow light of 
wavelength 6.20 X 10 7 m.

11. (I) What minimum frequency of light is needed to eject 
electrons from a metal whose work function is 4.8 X 1 0 19 J?

12. (I) What is the longest wavelength of light that will emit 
electrons from a metal whose work function is 3.70 eV?

13. (II) What wavelength photon would have the same energy 
as a 145-gram baseball moving 30.0 m/s?

14. (II) The human eye can respond to as little as 10-18 J of light 
energy. For a wavelength at the peak of visual sensitivity, 
550 nm, how many photons lead to an observable flash?

15. (II) The work functions for sodium, cesium, copper, and 
iron are 2.3, 2.1, 4.7, and 4.5 eV, respectively. Which of 
these metals will not emit electrons when visible light shines 
on it?

16. (II) In a photoelectric-effect experiment it is observed that 
no current flows unless the wavelength is less than 520 nm.
(a) What is the work function of this material? (b) What is 
the stopping voltage required if light of wavelength 470 nm 
is used?

17. (II) What is the maximum kinetic energy of electrons 
ejected from barium (W0 = 2.48 eV) when illuminated by 
white light, A = 410 to 750 nm?

18. (II) Barium has a work function of 2.48 eV. What is the 
maximum kinetic energy of electrons if the metal is illumi­
nated by UV light of wavelength 365 nm? What is their speed?

19. (II) When UV light of wavelength 285 nm falls on a metal 
surface, the maximum kinetic energy of emitted electrons is 
1.70 eV. What is the work function of the metal?

20. (II) The threshold wavelength for emission of electrons 
from a given surface is 320 nm. What will be the maximum 
kinetic energy of ejected electrons when the wavelength is 
changed to (a) 280 nm, (b) 360 nm?

21. (II) When 230-nm light falls on a metal, the current through a 
photoelectric circuit (Fig. 37-4) is brought to zero at a stop­
ping voltage of 1.84 V. What is the work function of the metal?

22. (II) A certain type of film is sensitive only to light whose 
wavelength is less than 630 nm. What is the energy (eV and 
kcal/mol) needed for the chemical reaction to occur which 
causes the film to change?

23. (II) The range of visible light wavelengths extends from 
about 410 nm to 750 nm. (a) Estimate the minimum energy 
(eV) necessary to initiate the chemical process on the retina 
that is responsible for vision, (b) Speculate as to why, at the 
other end of the visible range, there is a threshold photon 
energy beyond which the eye registers no sensation of sight. 
Determine this threshold photon energy (eV).
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24. (II) In a photoelectric experiment using a clean sodium 
surface, the maximum energy of the emitted electrons was 
measured for a number of different incident frequencies, 
with the following results.

Frequency (x 1014 Hz) Energy (eV)

11.8 2.60
10.6 2.11
9.9 1.81
9.1 1.47
8.2 1.10
6.9 0.57

Plot the graph of these results and find: (a) Planck’s constant; 
(b) the cutoff frequency of sodium; (c) the work function.

25. (II) A photomultiplier tube (a very sensitive light sensor), is 
based on the photoelectric effect: incident photons strike 
a metal surface and the resulting ejected electrons are 
collected. By counting the number of collected electrons, the 
number of incident photons (i.e., the incident light intensity) 
can be determined. (a) If a photomultiplier tube is to 
respond properly for incident wavelengths throughout the 
visible range (410 nm to 750 nm), what is the maximum 
value for the work function W0 (eV) of its metal surface?
(b) If W0 for its metal surface is above a certain threshold 
value, the photomultiplier will only function for incident 
ultraviolet wavelengths and be unresponsive to visible light. 
Determine this threshold value (eV).

26. (Ill) A group of atoms is confined to a very small (point-like) 
volume in a laser-based atom trap. The incident laser light 
causes each atom to emit 1.0 X 106 photons of wavelength 
780 nm every second. A sensor of area 1.0 cm2 measures the 
light intensity emanating from the trap to be 1.6 nW when 
placed 25 cm away from the trapped atoms. Assuming each 
atom emits photons with equal probability in all directions, 
determine the number of trapped atoms.

27. (Ill) Assume light of wavelength A is incident on a metal 
surface, whose work function is known precisely (i.e., its 
uncertainty is better than 0.1% and can be ignored). Show 
that if the stopping voltage can be determined to an 
accuracy of A ^ , the fractional uncertainty (magnitude) in 
wavelength is

Determine this fractional uncertainty if = 0.01 V and 
A = 550 nm.

37-4 Compton Effect
28. (I) A high-frequency photon is scattered off of an electron 

and experiences a change of wavelength of 1.5 X 10-4 nm. At 
what angle must a detector be placed to detect the scattered 
photon (relative to the direction of the incoming photon)?

29. (II) Determine the Compton wavelength for (a) an elec­
tron, (b) a proton, (c) Show that if a photon has wavelength 
equal to the Compton wavelength of a particle, the photon’s 
energy is equal to the rest energy of the particle.

30. (II) X-rays of wavelength A = 0.120 nm are scattered from 
carbon. What is the expected Compton wavelength shift for 
photons detected at angles (relative to the incident beam) 
of exactly {a) 60°, (b) 90°, (c) 180°?

31. (II) In the Compton effect, determine the ratio (AA/A) of 
the maximum change AA in a photon’s wavelength to the 
photon’s initial wavelength A, if the photon is (a) a visible- 
light photon with A = 550 nm, (b) an X-ray photon with 
A = 0.10 nm.

32. (II) A 1.0-MeV gamma-ray photon undergoes a sequence of 
Compton-scattering events. If the photon is scattered at an 
angle of 0.50° in each event, estimate the number of events 
required to convert the photon into a visible-light photon with 
wavelength 555 nm. You can use an expansion for small 0; see 
Appendix A. [Gamma rays created near the center of the 
Sun are transformed to visible wavelengths as they travel to 
the Sun’s surface through a sequence of small-angle 
Compton scattering events.]

33. (Ill) In the Compton effect, a 0.160-nm photon strikes a 
free electron in a head-on collision and knocks it into the 
forward direction. The rebounding photon recoils directly 
backward. Use conservation of (relativistic) energy and 
momentum to determine (a) the kinetic energy of the elec­
tron, and (b) the wavelength of the recoiling photon. Use 
Eq. 37-5, but not Eq. 37-6.

34. (Ill) In the Compton effect (see Fig. 37-7), use the rela­
tivistic equations for conservation of energy and of linear 
momentum to show that the Compton shift in wavelength is 
given by Eq. 37-6.

37-5 Pair Production
35. (I) How much total kinetic energy will an electron-positron 

pair have if produced by a 2.67-MeV photon?
36. (II) What is the longest wavelength photon that could 

produce a proton-antiproton pair? (Each has a mass of
1.67 X 10“27kg.)

37. (II) What is the minimum photon energy needed to produce 
a /jl+ -  pair? The mass of each /jl (muon) is 207 times the 
mass of an electron. What is the wavelength of such a 
photon?

38. (II) An electron and a positron, each moving at
2.0 X 105 m/s, collide head on, disappear, and produce two 
photons moving in opposite directions, each with the 
same energy and momentum. Determine the energy and 
momentum of each photon.

39. (II) A gamma-ray photon produces an electron and a 
positron, each with a kinetic energy of 375 keV. Determine 
the energy and wavelength of the photon.

37-7 Wave Nature of Matter
40. (I) Calculate the wavelength of a 0.23-kg ball traveling at

0.10 m/s.
41. (I) What is the wavelength of a neutron (ra = 1.67 X 10_27kg) 

traveling at 8.5 X 104m/s?
42. (I) Through how many volts of potential difference must an 

electron be accelerated to achieve a wavelength of 0.21 nm?
43. (II) What is the theoretical limit of resolution for an elec­

tron microscope whose electrons are accelerated through 
85 kV? (Relativistic formulas should be used.)

44. (II) The speed of an electron in a particle accelerator is
0.98c. Find its de Broglie wavelength. (Use relativistic 
momentum.)

45. (II) Calculate the ratio of the kinetic energy of an electron 
to that of a proton if their wavelengths are equal. Assume 
that the speeds are nonrelativistic.
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46. (II) Neutrons can be used in diffraction experiments to 
probe the lattice structure of crystalline solids. Since the 
neutron’s wavelength needs to be on the order of the 
spacing between atoms in the lattice, about 0.3 nm, what 
should the speed of the neutrons be?

47. (II) An electron has a de Broglie wavelength 
A = 6.0 X IO-10 m. (a) What is its momentum? (b) What is 
its speed? (c) What voltage was needed to accelerate it to 
this speed?

48. (II) What is the wavelength of an electron of energy (a) 20 eV,
(b) 200 eV, (c) 2.0 keV?

49. (II) Show that if an electron and a proton have the same 
nonrelativistic kinetic energy, the proton has the shorter 
wavelength.

50. (II) Calculate the de Broglie wavelength of an electron in 
a TV picture tube if it is accelerated by 33,000 V. Is it rela­
tivistic? How does its wavelength compare to the size of the 
“neck” of the tube, typically 5 cm? Do we have to worry about 
diffraction problems blurring our picture on the screen?

51. (II) After passing through two slits separated by a distance 
of 3.0 /mi, a beam of electrons creates an interference 
pattern with its second-order maximum at an angle of 55°. 
Find the speed of the electrons in this beam.

*37-8 Electron Microscope
*52. (II) What voltage is needed to produce electron wavelengths 

of 0.28 nm? (Assume that the electrons are nonrelativistic.)
*53. (II) Electrons are accelerated by 3450 V in an electron 

microscope. Estimate the maximum possible resolution of 
the microscope.

37-10 and 37-11 Bohr Model
54. (I) For the three hydrogen transitions indicated below, 

with n being the initial state and n' being the final state, is 
the transition an absorption or an emission? Which is 
higher, the initial state energy or the final state energy of 
the atom? Finally, which of these transitions involves 
the largest energy photon? (a) n = 1, n' = 3; (b) n = 6, 
n' = 2; (c) n = 4, n' = 5.

55. (I) How much energy is needed to ionize a hydrogen atom 
in the n = 3 state?

56. (I) (a) Determine the wavelength of the second Balmer line 
(n = 4 to n = 2 transition) using Fig. 37-26. Determine 
likewise (b) the wavelength of the third Lyman line and
(c) the wavelength of the first Balmer line.

57. (I) Calculate the ionization energy of doubly ionized 
lithium, Li2+, which has Z  = 3.

58. (I) Evaluate the Rydberg constant R  using the Bohr model 
(compare Eqs. 37-8 and 37-15) and show that its value is 
R = 1.0974 X 107 m_1.

| General Problems__________
72. If a 75-W lightbulb emits 3.0% of the input energy as visible 

light (average wavelength 550 nm) uniformly in all direc­
tions, estimate how many photons per second of visible light 
will strike the pupil (4.0 mm diameter) of the eye of an 
observer 250 m away.

73. At low temperatures, nearly all the atoms in hydrogen gas 
will be in the ground state. What minimum frequency photon 
is needed if the photoelectric effect is to be observed?

59. (II) What is the longest wavelength light capable of ionizing 
a hydrogen atom in the ground state?

60. (II) In the Sun, an ionized helium (He+) atom makes a tran­
sition from the n = 5 state to the n = 2 state, emitting a 
photon. Can that photon be absorbed by hydrogen atoms 
present in the Sun? If so, between what energy states will 
the hydrogen atom transition occur?

61. (II) What wavelength photon would be required to ionize a 
hydrogen atom in the ground state and give the ejected 
electron a kinetic energy of 20.0 eV?

62. (II) For what maximum kinetic energy is a collision between an 
electron and a hydrogen atom in its ground state definitely 
elastic?

63. (II) Construct the energy-level diagram for the He+ ion 
(like Fig. 37-26).

64. (II) Construct the energy-level diagram (like Fig. 37-26) for 
doubly ionized lithium, Li2+.

65. (II) Determine the electrostatic potential energy and the 
kinetic energy of an electron in the ground state of the 
hydrogen atom.

66. (II) An excited hydrogen atom could, in principle, have a 
diameter of 0.10 mm. What would be the value of n for a 
Bohr orbit of this size? What would its energy be?

67. (II) Is the use of nonrelativistic formulas justified in the 
Bohr atom? To check, calculate the electron’s velocity, v, in 
terms of c, for the ground state of hydrogen, and then calcu­
late \ / l  -  v2lc2.

68. (II) A hydrogen atom has an angular momentum of 
5.273 X 10-34 kg • m2/s. According to the Bohr model, what 
is the energy (eV) associated with this state?

69 (II) Assume hydrogen atoms in a gas are initially in their 
ground state. If free electrons with kinetic energy 12.75 eV 
collide with these atoms, what photon wavelengths will be 
emitted by the gas?

70. (II) Suppose an electron was bound to a proton, as in the 
hydrogen atom, but by the gravitational force rather than by 
the electric force. What would be the radius, and energy, of 
the first Bohr orbit?

71. (II) Correspondence principle: Show that for large values 
of n, the difference in radius Ar between two adjacent orbits 
(with quantum numbers n and n -  1) is given by

Ar = rn -  rn- i  «  — > 
n

so A r/rn —>• 0 as n —» oo in accordance with the correspon­
dence principle. [Note that we can check the correspondence 
principle by either considering large values of n (n —» oo) 
or by letting h —» 0. Are these equivalent?]

74. A beam of 125-eV electrons is scattered from a crystal, as in 
X-ray diffraction, and a first-order peak is observed at 
6 = 38°. What is the spacing between planes in the 
diffracting crystal? (See Section 35-10.)

75. A microwave oven produces electromagnetic radiation at 
A = 12.2 cm and produces a power of 860 W. Calculate the 
number of microwave photons produced by the microwave 
oven each second.
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76. Sunlight reaching the Earth has an intensity of about 
1350 W/m2. Estimate how many photons per square meter 
per second this represents. Take the average wavelength to 
be 550 nm.

77. A beam of red laser light (A = 633 nm) hits a black wall 
and is fully absorbed. If this light exerts a total force 
F = 6.5 nN on the wall, how many photons per second are 
hitting the wall?

78. The Big Bang theory states that the beginning of the 
universe was accompanied by a huge burst of photons. 
Those photons are still present today and make up the 
so-called cosmic microwave background radiation. The 
universe radiates like a blackbody with a temperature of 
about 2.7 K. Calculate the peak wavelength of this radiation.

79. An electron and a positron collide head on, annihilate, and 
create two 0.755-MeV photons traveling in opposite directions. 
What were the initial kinetic energies of electron and positron?

80. By what potential difference must (a) a proton (m =
1.67 X 10-27 kg), and (b) an electron (m = 9.11 X 10-31 kg), 
be accelerated to have a wavelength A = 6.0 X 10-12 m?

81. In some of Rutherford’s experiments (Fig. 37-17) the 
a particles (mass = 6.64 X 10 27 kg) had a kinetic energy 
of 4.8 MeV. How close could they get to the center of a 
silver nucleus (charge = +47e)? Ignore the recoil motion 
of the nucleus.

82. Show that the magnitude of the electrostatic potential 
energy of an electron in any Bohr orbit of a hydrogen atom 
is twice the magnitude of its kinetic energy in that orbit.

83. Calculate the ratio of the gravitational force to the electric 
force for the electron in a hydrogen atom. Can the 
gravitational force be safely ignored?

84. Electrons accelerated by a potential difference of 12.3 V 
pass through a gas of hydrogen atoms at room temperature. 
What wavelengths of light will be emitted?

85. In a particular photoelectric experiment, a stopping potential 
of 2.70 V is measured when ultraviolet light of wavelength 
380 nm is incident on the metal. If blue light of wavelength 
440 nm is used, what is the new stopping potential?

86. In an X-ray tube (see Fig. 35-26 and discussion in 
Section 35-10), the high voltage between filament and 
target is V. After being accelerated through this voltage, an 
electron strikes the target where it is decelerated (by 
positively charged nuclei) and in the process one or more 
X-ray photons are emitted, (a) Show that the photon of 
shortest wavelength will have

(b) What is the shortest wavelength of X-ray emitted when 
accelerated electrons strike the face of a 33-kV television 
picture tube?

87. The intensity of the Sun’s light in the vicinity of Earth is 
about 1350 W/m2. Imagine a spacecraft with a mirrored 
square sail of dimension 1.0 km. Estimate how much thrust 
(in newtons) this craft will experience due to collisions with 
the Sun’s photons. [Hint: Assume the photons bounce 
perpendicularly off the sail with no change in the magnitude 
of their momentum.]

88. Photons of energy 9.0 eV are incident on a metal. It is found 
that current flows from the metal until a stopping potential 
of 4.0 V is applied. If the wavelength of the incident photons 
is doubled, what is the maximum kinetic energy of the 
ejected electrons? What would happen if the wavelength of 
the incident photons was tripled?

89. Light of wavelength 360 nm strikes a metal whose work 
function is 2.4 eV. What is the shortest de Broglie wavelength 
for the electrons that are produced as photoelectrons?

90. Visible light incident on a diffraction grating with slit 
spacing of 0.012 mm has the first maximum at an angle of 
3.5° from the central peak. If electrons could be diffracted 
by the same grating, what electron velocity would produce 
the same diffraction pattern as the visible light?

91. (a) Suppose an unknown element has an absorption spectrum 
with lines corresponding to 2.5, 4.7, and 5.1 eV above its 
ground state, and an ionization energy of 11.5 eV. Draw an 
energy level diagram for this element. (b) If a 5.1-eV photon is 
absorbed by an atom of this substance, in which state was the 
atom before absorbing the photon? What will be the energies 
of the photons that can subsequently be emitted by this atom?

92. Light of wavelength 424 nm falls on a metal which has a 
work function of 2.28 eV. (a) How much voltage should be 
applied to bring the current to zero? (b) What is the 
maximum speed of the emitted electrons? (c) What is 
the de Broglie wavelength of these electrons?

93. Apply Bohr’s assumptions to the Earth-Moon system to 
calculate the allowed energies and radii of motion. Given 
the known distance between Earth and the Moon, is the 
quantization of the energy and radius apparent?

94. Show that the wavelength of a particle of mass ra 
with kinetic energy K  is given by the relativistic formula 
A = h c /y /K 2 + 2 mc2K .

95. A small flashlight is rated at 3.0 W. As the light leaves the 
flashlight in one direction, a reaction force is exerted on 
the flashlight in the opposite direction. Estimate the size of 
this reaction force.

96. At the atomic-scale, the electron volt and nanometer are 
well-suited units for energy and distance, respectively.
(a) Show that the energy E  in eV of a photon, whose 
wavelength A is in nm, is given by

^  _  1240 eV • nm 
A (nm)

(b) How much energy (eV) does a 650-nm photon have?
*97. Three fundamental constants of nature—the gravitational

constant G, Planck’s constant h, and the speed of light c— 
have the dimensions of [L3/M T 2], [ML2/T], and [L/T], 
respectively, (a) Find the mathematical combination of 
these fundamental constants that has the dimension of time. 
This combination is called the “Planck time” tP and is 
thought to be the earliest time, after the creation of the 
universe, at which the currently known laws of physics can be 
applied. (b) Determine the numerical value of tP. (c) Find 
the mathematical combination of these fundamental 
constants that has the dimension of length. This combination 
is called the “Planck length” AP and is thought to be the 
smallest length over which the currently known laws of physics 
can be applied, (d) Determine the numerical value of AP.

98. Imagine a free particle of mass ra bouncing back and forth 
between two perfectly reflecting walls, separated by distance L 
Imagine that the two oppositely directed matter waves 
associated with this particle interfere to create a 
standing wave with a node at each of the walls. Show that 
the ground state (first harmonic) and first excited state 
(second harmonic) have (non-relativistic) kinetic energies 
A2/8ra£2 and /z2/2mf2, respectively.
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99. (a) A rubidium atom (ra = 85 u) is at rest with one elec­
tron in an excited energy level. When the electron jumps to 
the ground state, the atom emits a photon of wavelength 
A = 780 nm. Determine the resulting (nonrelativistic) 
recoil speed v of the atom. (b) The recoil speed sets the 
lower limit on the temperature to which an ideal gas of 
rubidium atoms can be cooled in a laser-based atom trap. 
Using the kinetic theory of gases (Chapter 18), estimate 
this “lowest achievable” temperature.

100. A rubidium atom (atomic mass 85) is initially at room temper­
ature and has a velocity v = 290 m/s due to its thermal 
motion. Consider the absorption of photons by this atom from 
a laser beam of wavelength A = 780 nm. Assume the 
rubidium atom’s initial velocity v is directed into the laser 
beam (the photons are moving right and the atom is 
moving left) and that the atom absorbs a new photon every 
25 ns. How long will it take for this process to completely stop 
(“cool”) the rubidium atom? [Note: a more detailed analysis 
predicts that the atom can be slowed to about 1 cm/s by this 
light absorption process, but it cannot be completely stopped.]

* Numerical/Computer
* 101. (Ill) (a) Graph Planck’s radiation formula (top of page 989)

as a function of wavelength from A = 20 nm to 2000 nm in 
20 nm steps for two lightbulb filaments, one at 2700 K and 
the other at 3300 K. Plot both curves on the same set of axes.
(b) Approximately how much more intense is the visible 
light from the hotter bulb? Use numerical integration.

*102. (Ill) Estimate what % of emitted sunlight energy is in the 
visible range. Use Planck’s radiation formula (top of page 989) 
and numerical integration.

* 103. (Ill) Potassium has one of the lowest work functions of all
metals and so is useful in photoelectric devices using visible 
light. Light from a source is incident on a potassium surface. 
Data for the stopping voltage V0 as a function of wave­
length A is shown below, (a) Explain why a graph of V0 vs. 
1/A is expected to yield a straight line. What are the 
theoretical expectations for the slope and the ^-intercept of 
this line? (b ) Using the data below, graph V q vs. 1/A 
and show that a straight-line plot does indeed result. 
Determine the slope a and ^-intercept b of this line. Using 
your values for a and b, determine (c) potassium’s work 
function (eV) and (d) Planck’s constant h (J-s).

A (/mi) 0^00 0430 0460 0490 0520~ 

V0 (V) 0.803 0.578 0.402 0.229 0.083

Answers to Exercises

A: More 1000-nm photons (lower frequency). D: Decrease.
B: 5.50 X 1014 Hz, 545 nm. E: (e).
C: Only A. F: (c).
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Participants in the 1927 Solvay 
Conference. Albert Einstein, seated at 
front center, had difficulty accepting 
that nature could behave according 
to the rules of quantum mechanics. 
We present a brief summary of 
quantum mechanics in this Chapter 
starting with the wave function and 
the uncertainty principle. We examine 
the Schrodinger equation and its 
solutions for some simple cases: 
free particles, the square well, and 
tunneling through a barrier.
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Quantum Mechanics
CHAPTER-OPENING QUESTION—Guess now!
The uncertainty principle states that

(a) no measurement can be perfect because it is technologically impossible to 
make perfect measuring instruments.

(b) it is impossible to measure exactly where a particle is, unless it is at rest.
(c) it is impossible to simultaneously know both the position and the momentum 

of a particle with complete certainty.
(d) a particle cannot actually have a completely certain value of momentum.

B
ohr’s model of the atom gave us a first (though rough) picture of what 
an atom is like. It proposed explanations for why there is emission 
and absorption of light by atoms at only certain wavelengths. The 
wavelengths of the line spectra and the ionization energy for hydrogen 

(and one-electron ions) are in excellent agreement with experiment. But the Bohr 
theory had important limitations. It was not able to predict line spectra for more 
complex atoms—not even for the neutral helium atom, which has only two 
electrons. Nor could it explain why emission lines, when viewed with great 
precision, consist of two or more very closely spaced lines (referred to as fine 
structure). The Bohr model also did not explain why some spectral lines were 
brighter than others. And it could not explain the bonding of atoms in molecules 
or in solids and liquids.

From a theoretical point of view, too, the Bohr theory was not satisfactory: it 
was a strange mixture of classical and quantum ideas. Moreover, the wave-particle 
duality was not really resolved.
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FIGURE 38-1 Erwin Schrodinger with Lise Meitner FIGURE 3 8 -2  Werner Heisenberg (center) on Lake Como with
(see Chapter 42). Enrico Fermi (left) and Wolfgang Pauli (right).

We mention these limitations of the Bohr theory not to disparage it—for it 
was a landmark in the history of science. Rather, we mention them to show why, in 
the early 1920s, it became increasingly evident that a new, more comprehensive 
theory was needed. It was not long in coming. Less than two years after de Broglie 
gave us his matter-wave hypothesis, Erwin Schrodinger (1887-1961; Fig. 38-1) 
and Werner Heisenberg (1901-1976; Fig. 38-2) independently developed a new 
comprehensive theory.

3 8 -1  Quantum Mechanics—A New Theory
The new theory, called quantum mechanics, has been extremely successful. It 
unifies the wave-particle duality into a single consistent theory and has successfully 
dealt with the spectra emitted by complex atoms, even the fine details. It explains 
the relative brightness of spectral lines and how atoms form molecules. It is also a 
much more general theory that covers all quantum phenomena from blackbody 
radiation to atoms and molecules. It has explained a wide range of natural 
phenomena and from its predictions many new practical devices have become 
possible. Indeed, it has been so successful that it is accepted today by nearly all 
physicists as the fundamental theory underlying physical processes.

Quantum mechanics deals mainly with the microscopic world of atoms and 
light. But this new theory, when it is applied to macroscopic phenomena, must be 
able to produce the old classical laws. This, the correspondence principle (already 
mentioned in Section 37-11), is satisfied fully by quantum mechanics.

This doesn’t mean we should throw away classical theories such as Newton’s 
laws. In the everyday world, the latter are far easier to apply and they give 
sufficiently accurate descriptions. But when we deal with high speeds, close to the 
speed of light, we must use the theory of relativity; and when we deal with the tiny 
world of the atom, we use quantum mechanics.

Although we won’t go into the detailed mathematics of quantum mechanics, 
we will discuss the main ideas and how they involve the wave and particle properties 
of matter to explain atomic structure and other applications.

38—2 The Wave Function and Its Interpretation; 
the Double-Slit Experiment

The important properties of any wave are its wavelength, frequency, and amplitude. 
For an electromagnetic wave, the frequency (or wavelength) determines whether 
the light is in the visible spectrum or not, and if so, what color it is. We also have 
seen (Eq. 37-3) that the frequency is a measure of the energy of the corresponding 
photons (E = h f). The amplitude or displacement of an electromagnetic wave at any 
point is the strength of the electric (or magnetic) field at that point, and is related 
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For material particles such as electrons, quantum mechanics relates the 
wavelength to momentum according to de Broglie’s formula, A = h/p, Eq. 37-7. 
But what corresponds to the amplitude or displacement of a matter wave? The 
amplitude of an electromagnetic wave is represented by the electric and magnetic 
fields, E  and B. In quantum mechanics, this role is played by the wave function, 
which is given the symbol M* (the Greek capital letter psi, pronounced “sigh”). 
Thus 'P represents the wave displacement, as a function of time and position, of a 
new kind of field which we might call a “matter” field or a matter wave.

To understand how to interpret the wave function ''P', we make an analogy 
with light using the wave-particle duality.

We saw in Chapter 15 that the intensity I  of any wave is proportional to the 
square of the amplitude. This holds true for light waves as well, as we saw in 
Chapter 31. That is,

I  oc E2,
where E  is the electric field strength. From the particle point of view, the intensity 
of a light beam (of given frequency) is proportional to the number of photons, N, 
that pass through a given area per unit time. The more photons there are, the 
greater the intensity. Thus

/  oc E2 oc N.
This proportion can be turned around so that we have

N  oc E2.
That is, the number of photons (striking a page of this book, say) is proportional to 
the square of the electric field strength.

If the light beam is very weak, only a few photons will be involved. Indeed, it 
is possible to “build up” a photograph in a camera using very weak light so the 
effect of individual photons can be seen.

If we are dealing with only one photon, the relationship above (N  oc E2) can 
be interpreted in a slightly different way. At any point the square of the electric 
field strength, E 2, is a measure of the probability that a photon will be at that 
location. At points where E 2 is large, there is a high probability the photon will be 
there; where E2 is small, the probability is low.

We can interpret matter waves in the same way, as was first suggested by Max 
Born (1882-1970) in 1927. The wave function 'VP may vary in magnitude from 
point to point in space and time. If V  describes a collection of many electrons, 
then l^ l2 at any point will be proportional to the number of electrons expected to 
be found at that point.1 When dealing with small numbers of electrons we can’t 
make very exact predictions, so |^ |2 takes on the character of a probability. If 'VP, 
which depends on time and position, represents a single electron (say, in an 
atom), then |^ |2 is interpreted as follows: |^ |2 at a certain point in space and time 
represents the probability o f finding the electron at the given position and time. 
Thus |^ |2 is often referred to as the probability density or probability distribution.

Double-Slit Interference Experiment for Electrons
To understand this better, we take as a thought experiment the familiar double-slit 
experiment, and consider it both for light and for electrons.

Consider two slits whose size and separation are on the order of the wavelength 
of whatever we direct at them, either light or electrons, Fig. 38-3. We know very 
well what would happen in this case for light, since this is just Young’s double-slit 
experiment (Section 34-3): an interference pattern would be seen on the screen 
behind. If light were replaced by electrons with wavelength comparable to the slit 
size, they too would produce an interference pattern (recall Fig. 37-11). In the case 
of light, the pattern would be visible to the eye or could be recorded on film. For 
electrons, a fluorescent screen could be used (it glows where an electron strikes).

fThe wave function W is generally a complex quantity (that is, it involves i = ) and hence is not 
directly observable. On the other hand, |2, the absolute value of M* squared, is always a real quantity 
and it is to |^ |2 that we can give a physical interpretation.

FIGURE 3 8 -3  Parallel beam, of 
light or electrons, falls on two slits 
whose sizes are comparable to the 
wavelength. A n interference pattern 
is observed.

Light or 
electrons
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FIGURE 3 8 -4  Young’s double-slit 
experiment done with electrons—  
note that the pattern is not evident 
with only a few electrons (top 
photo), but with more and more 
electrons (second and third photos), 
the familiar double-slit interference 
pattern (Chapter 34) is seen.

If we reduced the flow of electrons (or photons) so they passed through the 
slits one at a time, we would see a flash each time one struck the screen. At first, 
the flashes would seem random. Indeed, there is no way to predict just where 
any one electron would hit the screen. If we let the experiment run for a long 
time, and kept track of where each electron hit the screen, we would soon see a 
pattern emerging—the interference pattern predicted by the wave theory; see 
Fig. 38-4. Thus, although we could not predict where a given electron would strike 
the screen, we could predict probabilities. (The same can be said for photons.) 
The probability, as mentioned before, is proportional to l^ l2. Where |Mf|2 is zero, 
we would get a minimum in the interference pattern. And where |^ |2 is a 
maximum, we would get a peak in the interference pattern.

The interference pattern would thus occur even when electrons (or photons) 
passed through the slits one at a time. So the interference pattern could not arise 
from the interaction of one electron with another. It is as if an electron passed 
through both slits at the same time, interfering with itself. This is possible because 
an electron is not precisely a particle. It is as much a wave as it is a particle, and a 
wave could travel through both slits at once. But what would happen if we 
covered one of the slits so we knew that the electron passed through the other 
slit, and a little later we covered the second slit so the electron had to have 
passed through the first slit? The result would be that no interference pattern 
would be seen. We would see, instead, two bright areas (or diffraction patterns) 
on the screen behind the slits. This confirms our idea that if both slits are open, 
the screen shows an interference pattern as if each electron passed through both 
slits, like a wave. Yet each electron would make a tiny spot on the screen as if it 
were a particle.

The main point of this discussion is this: if we treat electrons (and other 
particles) as if they were waves, then 'VP represents the wave amplitude. If we treat 
them as particles, then we must treat them on a probabilistic basis. The square of 
the wave function, |'VP|2, gives the probability of finding a given electron at a given 
point. We cannot predict—or even follow—the path of a single electron precisely 
through space and time.

38—3 The Heisenberg Uncertainty Principle
Whenever a measurement is made, some uncertainty is always involved. For 
example, you cannot make an absolutely exact measurement of the length of a 
table. Even with a measuring stick that has markings 1 mm apart, there will be an 
inaccuracy of perhaps \  mm or so. More precise instruments will produce more 
precise measurements. But there is always some uncertainty involved in a 
measurement, no matter how good the measuring device. We expect that by 
using more precise instruments, the uncertainty in a measurement can be made 
indefinitely small.

But according to quantum mechanics, there is actually a limit to the precision 
of certain measurements. This limit is not a restriction on how well instruments can 
be made; rather, it is inherent in nature. It is the result of two factors: the 
wave-particle duality, and the unavoidable interaction between the thing observed 
and the observing instrument. Let us look at this in more detail.

To make a measurement on an object without disturbing it, at least a little, 
is not possible. Consider trying to locate a Ping-Pong ball in a completely dark 
room. You grope about trying to find its position; and just when you touch it 
with your finger, you bump it and it bounces away. Whenever we measure the 
position of an object, whether it is a ball or an electron, we always touch it 
with something else that gives us the information about its position. To locate a 
lost Ping-Pong ball in a dark room, you could probe about with your hand or a 
stick; or you could shine a light and detect the light reflecting off the ball. When 
you search with your hand or a stick, you find the ball’s position when you touch 
it, but at the same time you unavoidably bump it and give it some momentum.
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Thus you won’t know its future position. The same would be true if you observe 
the Ping-Pong ball using light. In order to “see” the ball, at least one photon must 
scatter from it, and the reflected photon must enter your eye or some other 
detector. When a photon strikes an ordinary-sized object, it does not appreciably 
alter the motion or position of the object. But when a photon strikes a very tiny 
object like an electron, it can transfer momentum to the object and thus greatly 
change the object’s motion and position in an unpredictable way. The mere act of 
measuring the position of an object at one time makes our knowledge of its future 
position imprecise.

Now let us see where the wave-particle duality comes in. Imagine a thought 
experiment in which we are trying to measure the position of an object, say an 
electron, with photons, Fig. 38-5. (The arguments would be similar if we were 
using, instead, an electron microscope.) As we saw in Chapter 35, objects can 
be seen to a precision at best of about the wavelength of the radiation used due to 
diffraction. If we want a precise position measurement, we must use a short wave­
length. But a short wavelength corresponds to high frequency and large momentum 
(p = h / A); and the more momentum the photons have, the more momentum 
they can give the object when they strike it. If we use photons of longer wavelength, 
and correspondingly smaller momentum, the object’s motion when struck by 
the photons will not be affected as much. But the longer wavelength means 
lower resolution, so the object’s position will be less accurately known. Thus the 
act of observing produces an uncertainty in both the position and the momentum 
of the electron. This is the essence of the uncertainty principle first enunciated by 
Heisenberg in 1927.

Quantitatively, we can make an approximate calculation of the magnitude of 
this effect. If we use light of wavelength A, the position can be measured at best to 
a precision of about A. That is, the uncertainty in the position measurement, Ax, is 
approximately

Ax A.

Suppose that the object can be detected by a single photon. The photon has a 
momentum px = h/X (Eq. 37-5). When the photon strikes our object, it will give 
some or all of this momentum to the object, Fig. 38-5. Therefore, the final x 
momentum of our object will be uncertain in the amount 

h 
” i

since we can’t tell beforehand how much momentum will be transferred. The 
product of these uncertainties is

(Ax)(Apx) «  h.

The uncertainties could be worse than this, depending on the apparatus and the 
number of photons needed for detection. A more careful mathematical calculation 
shows the product of the uncertainties as, at best, about

(38-1)

where Ap x is the uncertainty of the momentum in the x direction.* This is a 
mathematical statement of the Heisenberg uncertainty principle, or, as it is 
sometimes called, the indeterminancy principle. It tells us that we cannot measure 
both the position and momentum of an object precisely at the same time. The 
more accurately we try to measure the position so that Ax is small, the greater will 
be the uncertainty in momentum, Ap x . If we try to measure the momentum very 
accurately, then the uncertainty in the position becomes large.

A

i
Electron

0
Light Light
source source

(a) (b)

FIGURE 3 8 -5  Thought experiment 
for observing an electron with a 
powerful light microscope. A t least 
one photon must scatter from the 
electron (transferring some 
momentum to it) and enter the 
microscope.

UNCERTAINTY PRINCIPLE 
(Ax and Ap)

fNote, however, that quantum mechanics does allow simultaneous precise measurements of px and y: 
that is, (Ay)(Apx) >  0.
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/ l \  CAUTI ON_____________Uncertainties not due to instrument deficiency, but inherent in nature (wave-particle)

UNCERTAINTY PRINCIPLE 
(A E and A t)

The uncertainty principle does not forbid individual precise measurements, 
however. For example, in principle we could measure the position of an object 
exactly. But then its momentum would be completely unknown. Thus, although we 
might know the position of the object exactly at one instant, we could have no idea 
at all where it would be a moment later. The uncertainties expressed here are 
inherent in nature, and reflect the best precision theoretically attainable even with 
the best instruments.
| EXERCISE A Return to the Chapter-Opening Question on p. 1017, and answer it again now.

Another useful form of the uncertainty principle relates energy and time, 
and we examine this as follows. The object to be detected has an uncertainty 
in position Ax «  A. The photon that detects it travels with speed c, and it takes a 
time At «  Ax/c  «  A/c to pass through the distance of uncertainty. Hence, the 
measured time when our object is at a given position is uncertain by about 

A
At «  - •  c

Since the photon can transfer some or all of its energy (= h f = he/A) to our 
object, the uncertainty in energy of our object as a result is

a 77 hc
A '

The product of these two uncertainties is

(AE)(At) ~ h.

A more careful calculation gives

(AE)(At) a  ~  (38-2)

This form of the uncertainty principle tells us that the energy of an object can be 
uncertain (or can be interpreted as briefly nonconserved) by an amount AE  for a 
time At «  h/(2ir AE).

The quantity (h/2ir) appears so often in quantum mechanics that for convenience 
it is given the symbol h (“h-bar”). That is,

h h = 6.626 X 10~34J-s _  10_34j.s
277 2tt

By using this notation, Eqs. 38-1 and 38-2 for the uncertainty principle can be 
written

(Ax)(Apx) ^  h and (AE)(At) ^  h.

We have been discussing the position and velocity of an electron as if it 
were a particle. But it isn’t simply a particle. Indeed, we have the uncertainty 
principle because an electron—and matter in general—has wave as well as 
particle properties. What the uncertainty principle really tells us is that if we 
insist on thinking of the electron as a particle, then there are certain limitations 
on this simplified view—namely, that the position and velocity cannot both 
be known precisely at the same time; and even that the electron does not have a 
precise position and momentum at the same time (because it is not simply a particle). 
Similarly, the energy can be uncertain in the amount AE  for a time At «  h/AE.

Because Planck’s constant, h, is so small, the uncertainties expressed in the 
uncertainty principle are usually negligible on the macroscopic level. But at the level 
of atomic sizes, the uncertainties are significant. Because we consider ordinary 
objects to be made up of atoms containing nuclei and electrons, the uncertainty 
principle is relevant to our understanding of all of nature. The uncertainty principle 
expresses, perhaps most clearly, the probabilistic nature of quantum mechanics. It 
thus is often used as a basis for philosophic discussion.
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EXAMPLE 38-1 Position uncertainty of an electron. An electron moves in 
a straight line with a constant speed v = 1.10 X 106m/s which has been 
measured to a precision of 0.10%. What is the maximum precision with which its 
position could be simultaneously measured?
APPROACH The momentum is p = mv, and the uncertainty in p  is Ap = 0.0010/7. 
The uncertainty principle (Eq. 38-1) gives us the lowest Ax using the equals sign. 
SOLUTION The momentum of the electron is

p = mv = (9.11 x  IO"31 kg)(l.l0 x 106m/s) = 1.00 X IO"24kg-m/s.
The uncertainty in the momentum is 0.10% of this, or Ap = 1.0 X 10 27 kg-m/s. 
From the uncertainty principle, the best simultaneous position measurement will 
have an uncertainty of

h 1.055 X 10-34J-s „ „ -Ax ~ - — = — ---- -------------- - = 1.1 X 10 m,
Ap  1.0 X 10 7 kg -m/s

or 110 nm.
NOTE This is about 1000 times the diameter of an atom.

EXAMPLE 38-2 Position uncertainty of a baseball. What is the uncertainty 
in position, imposed by the uncertainty principle, on a 150-g baseball thrown 
at (93 + 2) mi/h = (42 + 1) m/s?
APPROACH The uncertainty in the speed is Av = 1 m/s. We multiply Av by m 
to get Ap and then use the uncertainty principle, solving for Ax.
SOLUTION The uncertainty in the momentum is

Ap = m Av = (0.150kg)(l m/s) = 0.15 kg-m/s.
Hence the uncertainty in a position measurement could be as small as

Ax _  A  _  1.055 X 10~34 J • s 
Ap 0.15 kg-m/s

NOTE This distance is far smaller than any we could imagine observing or 
measuring. It is trillions of trillions of times smaller than an atom. Indeed, the 
uncertainty principle sets no relevant limit on measurement for macroscopic objects.

ESTIMATE! j/tff lifetime calculated. The J/if/ meson, 
discovered in 1974, was measured to have an average mass of 3100 MeV/c2 (note 
the use of energy units since E = me2) and an intrinsic width of 63keV/c2. By 
this we mean that the masses of different J/*f/ mesons were actually measured to 
be slightly different from one another. This mass “width” is related to the very 
short lifetime of the J/if/ before it decays into other particles. From the uncertainty 
principle, if the particle exists for only a time At, its mass (or rest energy) will be 
uncertain by AE  «  h/A t. Estimate the J/i/f lifetime.
APPROACH We use the energy-time version of the uncertainty principle, Eq. 38-2. 
SOLUTION The uncertainty of 63keV/c2 in the J /^ ’s mass is an uncertainty in 
its rest energy, which in joules is

AE = (63 X 103eV)(l.60 X 10“19J/eV) = 1.01 X 10“14J.

Then we expect its lifetime t (= At using Eq. 38-2) to be 
h 1.06 X 10-34J-s

. - 1, 1 X 10_20s.
A E  1.01X10“14J

Lifetimes this short are difficult to measure directly, and the assignment of very 
short lifetimes depends on this use of the uncertainty principle. (See Chapter 43.)

The uncertainty principle applies also for angular variables:
( A L Z)( A < «  S  h

where L  is the component of angular momentum along a given axis (z) and (f> is 
the angular position in a plane perpendicular to that axis.
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38—4  P hilosophic Im plications; 
P robability  Versus D eterm inism

The classical Newtonian view of the world is a deterministic one (see Section 6-5). 
One of its basic ideas is that once the position and velocity of an object are known at 
a particular time, its future position can be predicted if the forces on it are known. 
For example, if a stone is thrown a number of times with the same initial velocity and 
angle, and the forces on it remain the same, the path of the projectile will always be 
the same. If the forces are known (gravity and air resistance, if any), the stone’s path 
can be precisely predicted. This mechanistic view implies that the future unfolding of 
the universe, assumed to be made up of particulate objects, is completely determined.

This classical deterministic view of the physical world has been radically altered 
by quantum mechanics. As we saw in the analysis of the double-slit experiment 
(Section 38-2), electrons all prepared in the same way will not all end up in the 
same place. According to quantum mechanics, certain probabilities exist that an 
electron will arrive at different points. This is very different from the classical view, 
in which the path of a particle is precisely predictable from the initial position and 
velocity and the forces exerted on it. According to quantum mechanics, the position 
and velocity of an object cannot even be known accurately at the same time. This is 
expressed in the uncertainty principle, and arises because basic entities, such as 
electrons, are not considered simply as particles: they have wave properties as well. 
Quantum mechanics allows us to calculate only the probability* that, say, an electron 
(when thought of as a particle) will be observed at various places. Quantum 
mechanics says there is some inherent unpredictability in nature.

Since matter is considered to be made up of atoms, even ordinary-sized objects 
are expected to be governed by probability, rather than by strict determinism. For 
example, quantum mechanics predicts a finite (but negligibly small) probability that 
when you throw a stone, its path will suddenly curve upward instead of following 
the downward-curved parabola of normal projectile motion. Quantum mechanics 
predicts with extremely high probability that ordinary objects will behave just as 
the classical laws of physics predict. But these predictions are considered probabilities, 
not certainties. The reason that macroscopic objects behave in accordance with 
classical laws with such high probability is due to the large number of molecules 
involved: when large numbers of objects are present in a statistical situation, deviations 
from the average (or most probable) approach zero. It is the average configuration 
of vast numbers of molecules that follows the so-called fixed laws of classical 
physics with such high probability, and gives rise to an apparent “determinism.” 
Deviations from classical laws are observed when small numbers of molecules are 
dealt with. We can say, then, that although there are no precise deterministic laws in 
quantum mechanics, there are statistical laws based on probability.

It is important to note that there is a difference between the probability 
imposed by quantum mechanics and that used in the nineteenth century to 
understand thermodynamics and the behavior of gases in terms of molecules 
(Chapters 18 and 20). In thermodynamics, probability is used because there are 
far too many particles to keep track of. But the molecules are still assumed to 
move and interact in a deterministic way following Newton’s laws. Probability in 
quantum mechanics is quite different; it is seen as inherent in nature, and not as a 
limitation on our abilities to calculate or to measure.

The view presented here is the generally accepted one and is called the 
Copenhagen interpretation of quantum mechanics in honor of Niels Bohr’s home, 
since it was largely developed there through discussions between Bohr and other 
prominent physicists.

Because electrons are not simply particles, they cannot be thought of as 
following particular paths in space and time. This suggests that a description of 
matter in space and time may not be completely correct. This deep and far-reaching

tNote that these probabilities can be calculated precisely, just like exact predictions of probabilities at 
rolling dice or playing cards, but they are unlike predictions of probabilities at sporting events or for 
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conclusion has been a lively topic of discussion among philosophers. Perhaps the 
most important and influential philosopher of quantum mechanics was Bohr. He 
argued that a space-time description of actual atoms and electrons is not possible. Yet 
a description of experiments on atoms or electrons must be given in terms of space 
and time and other concepts familiar to ordinary experience, such as waves and 
particles. We must not let our descriptions of experiments lead us into believing that 
atoms or electrons themselves actually move in space and time as classical particles.

3 8 -5  The Schrodinger Equation in One 
Dim ension—Time-Independent Form

In order to describe physical systems quantitatively using quantum mechanics, 
we must have a means of determining the wave function 'VP mathematically. 
The basic equation (in the nonrelativistic realm) for determining is the 
Schrodinger equation. We cannot, however, derive the Schrodinger equation 
from some higher principles, just as Newton’s second law, for example, cannot 
be derived. The relation F = ma was invented by Newton to describe how 
the motion of an object is related to the net applied force. As we saw early 
in this book, Newton’s second law works exceptionally well. In the realm of 
classical physics it is the starting point for analytically solving a wide range of 
problems, and the solutions it yields are fully consistent with experiment. 
The validity of any fundamental equation resides in its agreement with experiment. 
The Schrodinger equation forms part of a new theory, and it too had to be 
invented—and then checked against experiment, a test that it passed splendidly.

The Schrodinger equation can be written in two forms: the time-dependent 
version and the time-independent version. We will mainly be interested in steady- 
state situations—that is, when there is no time dependence—and so we mainly 
deal with the time-independent version. (We briefly discuss the time-dependent 
version in the optional Section 38-6.) The time-independent version involves a 
wave function with only spatial dependence which we represent by lowercase psi, 
ijj(x), for the simple one-dimensional case we deal with here. In three dimensions, 
we write if/(x, y, z) or if/(r, 6, <f>).

In classical mechanics, we solved problems using two approaches: via Newton’s 
laws with the concept of force, and by using the energy concept with the conservation 
laws. The Schrodinger equation is based on the energy approach. Even though the 
Schrodinger equation cannot be derived, we can suggest what form it might take 
by using conservation of energy and considering a very simple case: that of a free 
particle on which no forces act, so that its potential energy U is constant. We 
assume that our particle moves along the x axis, and since no force acts on it, its 
momentum remains constant and its wavelength (A = h/p) is fixed. To describe a 
wave for a free particle such as an electron, we expect that its wave function will 
satisfy a differential equation that is akin to (but not identical to) the classical 
wave equation. Let us see what we can infer about this equation. Consider a 
simple traveling wave of a single wavelength A whose wave displacement, as we 
saw in Chapter 15 for mechanical waves and in Chapter 31 for electromagnetic 
waves, is given by A  sin (A:* -  cot), or more generally as a superposition of sine and 
cosine: A sin(kx -  cot) + Bcos(kx -  (ot). We are only interested in the spatial 
dependence, so we consider the wave at a specific moment, say t = 0. Thus we 
write as the wave function for our free particle

i[/(x) = A sin kx  + Bcoskx, (38-3a)

where A  and B are constants1 and k = 2tt/ \  (Eq. 15-11). For a particle of mass m 
and velocity v, the de Broglie wavelength is A = h/p, where p = mv is the 
particle’s momentum. Hence

277 2ttd p
k = T  - ~ T  = T  <38-3b>

fIn quantum mechanics, constants can be complex (i.e., with a real and/or imaginary part). SECTION 38-5 1025



SCHRODINGER EQUATION 
(time-independent form)

One requirement for our wave equation, then, is that it have the wave function 
as given by Eq. 38-3 as a solution for a free particle. A second requirement 

is that it be consistent with the conservation of energy, which we can express as
P2^ -  + U = E,
2m

where E  is the total energy, U is the potential energy, and (since we are considering 
the nonrelativistic realm) the kinetic energy K  of our particle of mass m is 
K  = \m v2 = p2/2m. Since p = hk  (Eq. 38-3b), we can write the conservation of 
energy condition as

h2k2
— V U = E. (38-4)
2m

Thus we are seeking a differential equation that satisfies conservation of energy 
(Eq. 38-4) when if/(x) is its solution. Now, note that if we take two derivatives of 
our expression for if/(x), Eq. 38-3a, we get a factor - k2 multiplied by if/(x):

dif/(x) d
—------= — (A sinkx  + B coskx) = k iA co skx  — B sinkx)dx dx

d2if/(x) d
d i2-----= “  B sinkx) = - k  (A sin kx  + Bcoskx) = -k ijj(x ).

Can this last term be related to the k2 term in Eq. 38-4? Indeed, if we multiply this 
last relation by — h2/2m, we obtain

V  d2H x) Vic2 , .  .
2m dx 2m

The right side is just the first term on the left in Eq. 38-4 multiplied by ifj(x). If we 
multiply Eq. 38-4 through by if/(x), and make this substitution, we obtain

h2 d2ifj(x)
+ = (38- 5)

This is, in fact, the one-dimensional time-independent Schrodinger equation, where 
for generality we have written U = U(x). It is the basis for solving problems in 
nonrelativistic quantum mechanics. For a particle moving in three dimensions 
there would be additional derivatives with respect to y and z (see Chapter 39).

Note that we have by no means derived the Schrodinger equation. Although 
we have made a good argument in its favor, other arguments could also be made 
which might or might not lead to the same equation. The Schrodinger equation as 
written (Eq. 38-5) is useful and valid only because it has given results in accord 
with experiment for a wide range of situations.

There are some requirements we impose on any wave function that is a 
solution of the Schrodinger equation in order that it be physically meaningful. 
First, we insist that it be a continuous function; after all, if \if/\2 represents the 
probability of finding a particle at a certain point, we expect the probability to be 
continuous from point to point and not to take discontinuous jumps. Second, we 
want the wave function to be normalized. By this we mean that for a single 
particle, the probability of finding the particle at one point or another (i.e., the 
probabilities summed over all space) must be exactly 1 (or 100%). For a single 
particle, |i/f|2 represents the probability of finding the particle in unit volume. Then

|<A| 2dV  (38-6a)

is the probability of finding the particle within a volume dV, where ip is the value of the 
wave function in this infinitesimal volume dV. For the one-dimensional case, dV = dx, 
so the probability of finding a particle within dx of position x is

\i/j(x )\ 2dx. (38-6b)
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Then the sum of the probabilities over all space— that is, the probability of finding 
the particle somewhere— becomes

[ \ifs\2dV = [ \if/\2 dx = 1. (38-6c)J all space J
This is called the normalization condition, and the integral is taken over whatever 
region of space in which the particle has a chance of being found, which is often all 
of space, from x =  - o o  to x = oo.

3 8 -6  Time-Dependent Schrodinger 
Equation

The more general form of the Schrodinger equation, including time dependence, 
for a particle of mass m moving in one dimension, isfi2 d2V(x,t) dV(x,t)
This is the time-dependent Schrodinger equation; here U(x) is the potential 
energy of the particle as a function of position, and i is the imaginary number i = V - l . For a particle moving in three dimensions, there would be additional 
derivatives with respect to y and z, just as for the classical wave equation discussed 
in Section 15-5. Indeed, it is worth noting the similarity between the Schrodinger 
wave equation for zero potential energy (U =  0 ) and the classical wave equation: d2D/dt2 = v2d2D/dx2, where D is the wave displacement (equivalent of the wave 
function). In both equations there is the second derivative with respect to x; but in 
the Schrodinger equation there is only the first derivative with respect to time, 
whereas the classical wave equation has the second derivative for time.

As we pointed out in the preceding Section, we cannot derive the time-dependent 
Schrodinger equation. But we can show how the time-independent Schrodinger equa­
tion (Eq. 38-5) is obtained from it. For many problems in quantum mechanics, it is 
possible to write the wave function as a product of separate functions of space and time: 

¥ ( * ,* )  =  <Kx)f(t).
Substituting this into the time-dependent Schrodinger equation (Eq. 3 8 -7 ), we get:

^  S., \ £ I *\ W

We divide both sides of this equation by ifj(x)f(t) and obtain an equation that 
involves only x on one side and only t on the other:

_  fe2 1 f>Hx) 1 dfjt)
2m <l>(x) dx2 W  f( t)d t

This separation of variables is very convenient. Since the left side is a function only 
of x, and the right side is a function only of t, the equality can be valid for all 
values of x and all values of t only if each side is equal to a constant (the same 
constant), which we call C:h2 1 d2ifj(x)

+ U(x) =  C  (38-8a)2m ili(x) dx2 v '
1 df(t)

ih m *  = c  (38"8b)
We multiply the first of these (Eq. 38-8a) through by ijj(x) and obtain

+ t/W-AW = C * { x ) .  (38-8c)

This we recognize immediately as the time-independent Schrodinger equation, 
Eq. 38-5 , where the constant C equals the total energy E. Thus we have obtained the 
time-independent form of Schrodinger’s equation from the time-dependent form.

*SECTION 38-6 Time-Dependent Schrodinger Equation 1027
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Equation 38-8b is easy to solve. Putting C = E, we rewrite Eq. 38-8b as 
df(t) . E
~it = ~ l n m

(note that since i2 = —1, i = — 1/i), and then as
dm  _ .E,t
m  1 h dL

We integrate both sides to obtain 

In /(f)  = - i j r t

m  -  .<*> .
Thus the total wave function is

V (x ,t)  = (38-9)
where if/(x) satisfies Eq. 38-5. It is, in fact, the solution of the time-independent 
Schrodinger equation (Eq. 38-5) that is the major task of nonrelativistic quantum 
mechanics. Nonetheless, we should note that in general the wave function ^ (x , t) 
is a complex function since it involves / = V —1. It has both a real and an imaginary 
part.* Since ^ (x , t) is not purely real, it cannot itself be physically measurable. 
Rather it is only |^ |2, which is real, that can be measured physically.

Note also that

l/col = = i,
so 1/(012 = 1- Hence the probability density in space does not depend on time:

|^ (* ,0 I2 = w * ) |2.
We thus will be interested only in the time-independent Schrodinger equation, 
Eq. 38-5, which we will now examine for a number of simple situations.

3 8 -7  Free Particles; P lane Waves and  
Wave Packets

A free particle is one that is not subject to any force, and we can therefore take its 
potential energy to be zero. (Although we dealt with the free particle in Section 38-5 
in arguing for Schrodinger’s equation, here we treat it directly using Schrodinger’s 
equation as the basis.) Schrodinger’s equation (Eq. 38-5) with U(x) = 0  becomes

V d M x )  r „  ,
= m x ) '

which can be written
d2i/j 2m E

+ ~
This is a familiar equation that we encountered in Chapter 14 (Eq. 14-3) in 
connection with the simple harmonic oscillator. The solution to this equation, but 
with appropriate variable changes* for our case here, is

ifj = A  sin kx  + B cos kx, [free particle] (38-10)
where

k  = (38-lla)

Since U = 0, the total energy E  of the particle is E = \m v2 = p2/2m (where p 
is the momentum); thus

fRecall that e~10 = cos 8 - i sin 6.
*In Eq. 14-3, t becomes x and co becomes k = \/2mE/h2. (Don’t confuse this k with the spring 
constant k of Chapter 14.) We could also write our solution (Eq. 38-10) as <// = A cos (kx + <f>) 

CHAPTER 38 where <f> is a phase constant.



So a free particle of momentum p  and energy E  can be represented by a plane 
wave that varies sinusoidally. If we are not interested in the phase, we can choose 
i? = 0 in Eq. 38-10, and we show this sine wave in Fig. 38-6a.

EXAMPLE 38-4 = 6.3 eV is in 
(b) the wave

Free electron. An electron with energy E 
free space (where U = 0). Find (a) the wavelength A and 
function if/ for the electron, assuming B = 0.
APPROACH The wavelength A = l ir /k  (Eq. 38-1 lb) where the wave number k  
is given by Eq. 38-lla . The wave function is given by ift = A  sin kx.

SOLUTION
2irh

V 2 mE

2ir (1.055 X 10~34 J-s)

V2(9.11 X 10“31 kg)(6.3 eV)(l.60 X 10“19J/eV)

= 4.9 X 10~10m = 0.49 nm.

(b) k  = —
27T
r

1.28 X IO10m

A A A j w w v

(a)

<!<

'v/VAAAm
Ax

(b)
FIGURE 3 8 -6  (a) A plane wave 
describing a free particle, (b) A wave 
packet of “width” Ajc.

if/ = A sin kx  = Asin[(l.28 X IO10m_1)(x)].

Note in Fig. 38-6a that the sine wave will extend indefinitely* in the +x 
and - x  directions. Thus, since \if/\2 represents the probability of finding the particle, 
the particle could be anywhere between x = -oo and x = oo. This is fully 
consistent with the uncertainty principle (Section 38-3): the momentum of the 
particle was given and hence is known precisely (p = hk), so the particle’s position 
must be totally unpredictable. Mathematically, if Ap = 0, Ax ^  h/A p = oo.

To describe a particle whose position is well localized—that is, it is known to be 
within a small region of space—we can use the concept of a wave packet. Figure 38-6b 
shows an example of a wave packet whose width is about Ax as shown, meaning that 
the particle is most likely to be found within this region of space. A well-localized 
particle moving through space can thus be represented by a moving wave packet.

A wave packet can be represented mathematically as the sum of many plane 
waves (sine waves) of slightly different wavelengths. That this will work can be 
seen by looking carefully at Fig. 16-17. There we combined only two nearby 
frequencies (to explain why there are “beats”) and found that the sum of two sine 
waves looked like a series of wave packets. If we add additional waves with other 
nearby frequencies, we can eliminate all but one of the packets and arrive at 
Fig. 38-6b. Thus a wave packet consists of waves of a range of wavelengths; hence 
it does not have a definite momentum p  (= h /A), but rather, a range of momenta. 
This is consistent with the uncertainty principle: we have made Ax small, 
so the momentum cannot be precise; that is, Ap cannot be zero. Instead, our 
particle can be said to have a range of momenta, Ap, or to have an uncertainty in 
its momentum, Ap. It is not hard to show, even for this simple situation (see 
Problem 20), that Ap «  h / Ax, in accordance with the uncertainty principle.

fSuch an infinite wave makes problems for normalization since dx = A2̂  sin2 kx dx is
infinite for any nonzero value for A. For practical purposes we can usually normalize the waves (A + 0) by assuming that the particle is in a large but finite region of space. The region can be chosen 
large enough so that momentum is still rather precisely fixed.
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3 8 —8 Particle in an Infinitely Deep 
Square Well Potential (a Rigid Box)

U

„ xx=0 x= £

FIGURE 3 8 - 7  A  plot of potential 
energy U vs. x for an infinitely deep  
square well potential.

The Schrodinger equation can be solved analytically only for a few possible forms 
of the potential energy U. We consider some simple cases here which at first may 
not seem realistic, but have simple solutions that can be used as approximations to 
understand a variety of phenomena.

In our first case, we assume that a particle of mass m is confined to a 
one-dimensional box of width £ whose walls are perfectly rigid. (This can serve as 
an approximation for an electron in a metal, for example.) The particle is trapped in 
this box and collisions with the walls are perfectly elastic. The potential energy for 
this situation, which is commonly known as an infinitely deep square well potential 
or rigid box, is shown in Fig. 38-7. We can write the potential energy U(x) as

U(x) = 0  0 < x <  £
U(x) = oo x < 0 and x > £.

For the region 0 < x < £, where U(x) = 0, we already know the solution of 
the Schrodinger equation from our discussion in Section 38-7: it is just Eq. 38-10,

ij/(x) = A sin kx  + Bcoskx,
where (from Eq. 38-lla)

llm E
k = v ^ -

(We could also use if/(x) = A  sin (kx + <f>) where <f> is a phase constant.) 
Outside the well U(x) = oo, so if/(x) must be zero. (If it weren’t, the product Uif/ 
in the Schrodinger equation wouldn’t be finite; besides, if U = oo, we can’t expect 
a particle of finite total energy to be in such a region.) So we are concerned only 
with the wave function within the well, and we must determine the constants A  
and B as well as any restrictions on the value of k  (and hence on the energy E).

We have insisted that the wave function must be continuous. Hence, if if/ = 0 
outside the well, it must be zero at x = 0 and at x = £:

if/(0) = 0 and i//(£) = 0.
These are the boundary conditions for this problem. At x = 0, sin kx = 0 but 
cos kx = 1, so at this point Eq. 38-10 yields

0 = if/(0) = AsinO + i?cos0 = 0 + B.
Thus B must be zero. Our solution is reduced to

if/(x) = A sinkx.
Now we apply the other boundary condition, if/ = 0 at x = £:

0 = if/(£) = A s in k t
We don’t want A  = 0 or we won’t have a particle at all (|^|2 = 0 everywhere). 
Therefore, we set

sink£ = 0.
The sine is zero for angles of 0, ir, 2tt, 377, • • • radians, which means that 
k£ = 0, 7r, 277, 377, • • •. In other words,

k£ = mr, n = 1 ,2,3,---, (38-12)
where n is an integer. We eliminate the case n = 0 since that would make if/ = 0 
everywhere. Thus k, and hence E, cannot have just any value; rather, k  is limited to

Putting this expression in Eq. 3 8 -lla  (and substituting h /l i r  for h ), we find that E
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can have only the values

E = n2
h2

8 mi2' (38-13)

A particle trapped in a rigid box thus can only have certain quantized energies. The 
lowest energy (the ground state) has n = 1 and is given by

h2
[ground state]

El 8ml2

The next highest energy (n = 2) is 

E2 = 4 Eu  

and for higher energies (see Fig. 38-8),

E3 = 9E1

En = n2E,.
The integer n is called the quantum number of the state.

That the lowest energy, Ex, is not zero means that the particle in the box can 
never be at rest. This is contrary to classical ideas, according to which a particle 
can have E = 0. Ex is called the zero-point energy. One outcome of this result 
is that even at a temperature of absolute zero (OK), quantum mechanics predicts 
that particles in a box would not be at rest but would have a zero-point energy.

We also note that both the energy E1 and momentum px = hk = fnr/l 
(Eq. 38-1 lb) in the ground state are related inversely to the width of the box. The 
smaller the width I, the larger the momentum (and energy). This can be considered 
a direct result of the uncertainty principle (see Problem 25).

The wave function if/ = A sin kx  for each of the quantum states is (since 
k = mr/i )

iff, A ' ( H7TA sin l —  jc (38-14)

We can determine the constant A  by imposing the normalization condition (Eq. 38-6c):

1 = [ if/2 dx = [ A2 sii
J- oo Jo

tlTT
sin ——x dx, (38-15)

where the integral needs to be done only over the range 0 < jc < I because 
outside these limits if/ = 0. The integral (see Example 38-6) is equal to A2£/2, 
so we have

A  = J -VI and
2 . ( rnr 
— sin jc i V i

The amplitude A  is the same for all the quantum numbers. Figure 38-9 shows the 
wave functions (Eq. 38-14) for n = 1,2, 3, and 10. They look just like standing 
waves on a string—see Fig. 15-26. This is not surprising since the wave function 
solutions, Eq. 38-14, are the same as for the standing waves on a string, and the 
condition k i = nir is the same in the two cases (page 414).

Figure 38-10 shows the probability distribution, \if/\2, for the same states 
(n = 1, 2, 3,10) for which if/ is shown in Fig. 38-9. We see immediately that the 
particle is more likely to be found in some places than in others. For example, in 
the ground state (n = 1), the electron is much more likely to be found near the 
center of the box than near the walls. This is clearly at variance with classical 
ideas, which predict a uniform probability density—the particle would be as likely 
to be found at one point in the box as at any other. The quantum-mechanical 
probability densities for higher states are even more complicated, with areas of 
low probability not only near the walls but also at regular intervals in between.

FIGURE 3 8 -8  Possible energy 
levels for a particle in a box with 
perfectly rigid walls (infinite square 
well potential).

fVNAAAj--”

FIGURE 3 8 -9  Wave functions 
corresponding to the quantum 
number n being 1, 2,3 , and 10 for a 
particle confined to a rigid box.

FIGURE 38 -1 0  The probability 
distribution for a particle in a rigid box 
for the states with n = 1 ,2 ,3 , and 10.

« = 10

w 2

A A A ft = 3

« = 2

x  =  0
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EXAMPLE 38-5 Electron in an infinite potential well, (a) Calculate the 
three lowest energy levels for an electron trapped in an infinitely deep square 
well potential of width £ = 1.00 X IO-10 m (about the diameter of a hydrogen 
atom in its ground state). (b) If a photon were emitted when the electron jumps 
from the n = 2 state to the n = 1 state, what would its wavelength be?

APPROACH The energy levels are given by Eq. 38-13. In (b), h f  = hc/k = E2 -  Ev 
SOLUTION (a) The ground state (n = 1) has energy

h2 (6.63 X IO-34 J • s)2
El = ---- 7T = ------------- J----w--------------77-T7 = 6.03 X 10-18J.8m f 8 (9 .1 1  X 10 k g )( l .0 0  x  10 m )

In electron volts this is

6.03 x  10-18J

1.60 X IO-19 J/eV
= 37.7 eV.

Then
E2 = (2)2£i = 151 eV
E3 = (3)2£i = 339 eV.

(b) The energy difference is E2- E x = 151 eV -  38 eV = 113 eV or 1.81 X 10“17 J, 
and this would equal the energy of the emitted photon (energy conservation). Its 
wavelength would be

c he (6.63 X 10-34J*s)(3.00 X 108 m/s)
A = -  = — = --------------------- ------------------ —  = 1.10 X 10 m

/  E  1.81 X 10 J

or 11.0 nm, which is in the ultraviolet region of the spectrum.

EXERCISE B The wavelength of a photon emitted in an n =  3 to n =  1 transition is (a) 0.062 nm, (b) 620 nm, (c) 301 nm, (d) 3.2 X 10-15 m, (e) 4.1 nm.

■ Calculating a normalization constant. Show that the
normalization constant A  for all wave functions describing a particle in an 
infinite potential well of width I has a value of A  = \ /2 j l .

APPROACH The wave functions for various n are
. nirx 

ijj = A s m ——  -

To normalize if/, we must have (Eq. 38-15)

1 = I \il/\2 dx = I A2 sin2^ ^ - d x .[ m 2dx =  f 
Jo Jo I

SOLUTION We need integrate only from 0 to £ since if/ = 0 for all other values 
of x. To evaluate this integral we let 0 = m rx/i and use the trigonometric 
identity sin20 = \  {1 — cos 26). Then, with dx = ldd/m r, we have

fmr /  0 \  /fi 0 Cnir
1 = A2J sin2dy— Jdd  = — j (1 -  cos2d) dd 

= "  Ŝin20)
A2£

2

Thus A2 = 2 /i and 

A  =
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EXAMPLE 38-7 Probability near center of rigid box. An electron 
is in an infinitely deep square well potential of width £ = 1.00 X IO-10 m. If the 
electron is in the ground state, what is the probability of finding it in a region of 
width Ax = 1.0 X 10-12m at the center of the well (at x = 0.50 X 10-10m)?

APPROACH The probability of finding a particle in a small region of width dx is 
\if/\2 dx (Eq. 38-6b). Using A  from Example 38-6, the wave function for the 
ground state is

<K*) = 7 f sinX '
SOLUTION The n = 1 curve in Fig. 38-9 shows that ifj is roughly constant near 
the center of the well. So we can avoid doing an integral over dx and just set 
dx ~ Ax and find

Ax = 7 sln [? ]-
2 . 2 ru-(0 .50  X 10“10m )

(1.00 X 10~10 m) Sm I (1.00 X lO^10 m)
(l.O  X 10-12m) = 0.02.

The probability of finding the electron in this region at the center of the well is 
thus 2%.

NOTE Since Ax = 1.0 X 10“12m is 1% of the well width of 1.00 X 10“10m, our 
result of 2% probability is not what would be expected classically. Classically, the 
electron would be equally likely to be anywhere in the box, and we would expect 
the probability to be 1% instead of 2%.

EXAMPLE 38-8 Probability of e“ in J of box. Determine the probability of 
findng an electron in the left quarter of a rigid box—i.e., between one wall at 
x = 0 and position x = £/4. Assume the electron is in the ground state.

APPROACH We cannot make the assumption we did in Example 38-7 that 
\if/\2 ~ constant and Ax is small. Here we need to integrate \if/\2 dx from x = 0 to 
x = £/4, which is equal to the area under the curve shown colored in Fig. 38-11.

SOLUTION The wave function in the ground state is ^  = \ / 2 / i  sin(7rx/£). To 
find the probability of the electron in the left quarter of the box, we integrate 
just as in Example 38-6 but with different limits on the integral (and now 
we know that A  = \ /2 / l ) .  That is, we set 6 = irx /i (then x = i/4  corresponds 
to 6 = ir/4) and use the identity sin2 6 = \(\ -  cos 2d). Thus, with
dx = [i/ir)d9,

r e / 4 2  f £/4 ( tt  \

L w2dx = iSo Mt*)*
1 [tt/4
- \  (1 -  cos20)( - ) d d

= — ( 0 -  \  sin 26 ttV 2

= T -  = 0.091.4 277

NOTE The electron spends only 9.1% of its time in the left quarter of the box. 
Classically it would spend 25%.

EXERCISE C What is the probability of finding the electron between x = £/4 and 
x = f /2?  (D o you need to integrate?) (a) 9.1%; (b) 18.2%; (c) 25%; (d) 33%; (e) 40.9%.

FIGURE 3 8 -1 1  Ground-state 
probability distribution |j/j|2 for an 
electron in a rigid box. Same as 
n = 1 graph of Fig. 38-10; but here 
we show the area under the curve 
from x =  0 to x = 1/4 which 
represents the probability of finding 
the electron in that region.
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EXAMPLE 38-9 Most likely and average positions. Two interesting quantities 
are the most likely position of a particle and the average position of the particle. 
Consider an electron in a rigid box of width 1.00 X 10-10m in the first excited 
state n = 2. (a) What is its most likely position? (b) What is its average position?

APPROACH To find (a) the most likely position (or positions), we find the maximum 
value(s) of the probability distribution \if/\2 by taking its derivative and setting it equal 
to zero. For (b) the average position, we integrate x = f*x \ip\2 dx.

SOLUTION (a) The wave function for n = 2 is if/(x) = * /—sin(— *), so
2 (2 tt \  i  \  i J

\if/(x)\2 = — sin2 ( -g-xj. To find maxima and minima, we set d\if/\2/d x  = 0:

C O S
27T

d x l'r i  i v _ /  i  "“ V I  ~ )  I

This quantity is zero when either the sine is zero (2irx/l = 0 ,77, 27t, •■•), or the 
cosine is zero (27tx/1 = tt/2, 37t/2, •■•). The maxima and minima occur at x = 0, 
i/2 ,i ,  and x = i/4, 31/A. The latter (i/4 ,3 i/4 ) are the maxima—see the 
n = 2 curve of Fig. 38-10; the others are minima. [To confirm, you can take the 
second derivative, d2\if/\2/d x 2, which is > 0  for minima and < 0  for maxima.]
(b) The average position is (again we use sin20 = |(1 -  cos 26)):

-  f* 1 /12 j f 2  . 2(2 tt \  1 f e r /4 tt jx = j x\ifj\ dx = j —x s m y — x j d x  = — j x ^ l  -  cos^-^-xJ J dx,

which gives (integrating by parts, Appendix B: u = x, dv = cos (4irx/i) dx):

1
* = 1

x2 xl . ( 4’jr \  I2 ( 4ir

Since the curves for \if/\2 are symmetric about the center of the box, we expect 
this answer. But note that for n = 2, the probability of finding the particle at the 
point x = i/2  is actually zero (Fig. 38-10).

EXAMPLE 38-10

CHAPTER 38

ESTIMATE"! Confined bacterium. A tiny bacterium with a 
mass of about 1 0 14 kg is confined between two rigid walls 0.1 mm apart, (a) Estimate 
its minimum speed. (b) If, instead, its speed is about 1 mm in 100 s, estimate the 
quantum number of its state.

APPROACH We assume U = 0 inside the potential well, so E  = \  mv2. In (a) 
the minimum speed occurs in the ground state, n = 1, so v = \f2 E /m  where 
E  is the ground-state energy. In (b) we solve Eq. 38-13 for n.
SOLUTION (a) With n = 1, Eq. 38-13 gives E = h2/S m i2 so

h _  6.6 X 10-34 J • s
2 m i

v =
h2

v, . v - 3 X 10 16m/s. 
4m i  2m i 2(l0~14 kg)(l0-4 m)

This is a speed so small that we could not measure it and the object would seem 
at rest, consistent with classical physics.
(b) Given v = 10-3 m/100 s = 10-5 m/s, the kinetic energy of the bacterium is 

E = l mv2 = i( io -14 kg)(l0-5 m/s)2 = 0.5 X 10_24J.

From Eq. 38-13, the quantum number of this state is

n = a IE
8mi (0.5 X 10-24 J)(8)(l0-14 kg)(l0“

3 X 1010.
(6.6 X 10-34 J • s)2

NOTE This number is so large that we could never distinguish between adjacent 
energy states (between n = 3 X 1010 and 3 X 1010 + 1). The energy states would 
appear to form a continuum. Thus, even though the energies involved here are 
small ( «  1 eV), we are still dealing with a macroscopic object (though visible 
only under a microscope) and the quantum result is not distinguishable from a 
classical one. This is in accordance with the correspondence principle.



3 8 —9 Finite P o ten tia l Well
Let us now look at a particle in a box whose walls are not perfectly rigid. That is, 
the potential energy outside the box or well is not infinite, but rises to some level 
U0, as shown in Fig. 38-12. This is called a finite potential well. It can serve as an 
approximation for, say, a neutron in a nucleus. There are some significant new 
features that arise for the finite well as compared to the infinite well. We divide the 
well into three regions as shown in Fig. 38-12. In region II, inside the well, the 
Schrodinger equation is the same as before (U = 0), although the boundary 
conditions will be different. So we write the solution for region II as

if/n = A sin kx  + B coskx  (0 < x <
but we don’t immediately set B = 0 or assume that k  is given by Eq. 38-12.

In regions I and III, the Schrodinger equation, now with U(x) = U0, is
h2 d2if/
2m dx2 

We rewrite this as
d2if/
dx2

2m(U0 -  E )
if/ = 0.

Let us assume that E  is less than U0, so the particle is “trapped” in the well (at 
least classically). There might be only one such bound state, or several, or even 
none, as we shall discuss later. We define the constant G by 

2m(U0 -  E)
G  = — 1 ----- - (38-16)

and rewrite the Schrodinger equation as 
d2if/
T T  -  = dx

0.

This equation has the general solution 
if/im  = CeGx + D e Gx, 

which can be confirmed by direct substitution, since
d2
—  (e±Gx) = 
d x A  >

GLe2 „±Gx

In region I, x is always negative, so D must be zero (otherwise, if/ —> oo as 
x —> oo, giving an unacceptable result). Similarly in region III, where x is always 
positive, C must be zero. Hence

iff! = CeGx (x < 0) 

ipm = De~Gx (x > t).

In regions I and III, the wave function decreases exponentially with distance from 
the well. The mathematical forms of the wave function inside and outside the well 
are different, but we insist that the wave function be continuous even at the two 
walls. We also insist that the slope of if/, which is its first derivative, be continuous 
at the walls. Hence we have the boundary conditions:

dif/! d if/n
dx dx
d*!*ii _ dif/in
dx dx

At the left-hand wall (x = 0) these boundary conditions become

Ce° = AsinO + .BcosO or C = B
and

GCe° = kA  cosO -  fc.BsinO or GC = kA.

if/1 = if/n

*An = <Am

and

and

at x = 0

at x = L

FIGURE 3 8 -1 2  Potential energy U vs. x for a finite one-dimensional 
square well.

These are two of the relations that link the constants A, B ,C ,D  and the energy E.
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jc = 0 x = l
(b)

FIGURE 38-13  The wave 
functions (a), and probability 
distributions (b), for the three lowest 
possible states of a particle in a finite 
potential well. Each of the if/ and \if/\2 
curves has been superposed on its 
energy level (dashed lines) for 
convenience.

FIGURE 38 -1 4  The wave function 
of a particle of energy E traveling 
over a potential well whose depth UQ 
is less than E (measured in the well).

mU=U0I

ll ox =■o x-u

We get two more relations from the boundary conditions at x = £, and a fifth 
relation from normalizing the wave functions over all space, dx = 1. These
five relations allow us to solve for the five unknowns, including the energy E. We will 
not go through the detailed mathematics, but we will discuss some of the results.

Figure 38-13a shows the wave function if/ for the three lowest possible states, 
and Fig. 38-13b shows the probability distributions \if/\2. We see that the wave func­
tions are smooth at the walls of the well. Within the well if/ has the form of a 
sinusoidal wave; for the ground state, there is less than a half wavelength. Compare 
this to the infinite well (Fig. 38-9), where the ground-state wave function is exactly 
a half wavelength: A = 2t. For our finite well, A > 21 Thus for a finite well the 
momentum of a particle (p = h /A), and hence its ground-state energy, will be 
less than for an infinite well of the same width £.

Outside the finite well we see that the wave function drops off exponentially 
on either side of the walls. That if/ is not zero beyond the walls means that the 
particle can sometimes be found outside the well. This completely contradicts clas­
sical ideas. Outside the well, the potential energy of the particle is greater than its 
total energy: U0 > E. This violates conservation of energy. But we clearly see in 
Fig. 38-13b that the particle can spend some time outside the well, where U0 > E 
(although the penetration into this classically forbidden region is generally not far 
since \if/\2 decreases exponentially with distance from either wall). The penetration 
of a particle into a classically forbidden region is a very important result of 
quantum mechanics. But how can it be? How can we accept this nonconservation 
of energy? We can look to the uncertainty principle, in the form

AE  At >  h.
It tells us that the energy can be uncertain, and can even be nonconserved, by an 
amount AE  for very short times At ~ h/AE.

Now let us consider the situation when the total energy E  of the particle is 
greater than U0. In this case the particle is a free particle and everywhere its 
wave function is sinusoidal, Fig. 38-14. Its wavelength is different outside the well 
than inside, as shown. Since K  = \m v2 = p2/ 2m, the wavelength in region II (U = 0) is

A = -  = , h  0 < x < i,
P V 2 mE

whereas in regions I and III, where p2/2m = K  = E -  U0, the wavelength is 
longer and is given by

h h
A = — = — , =  x < 0 and x > L

P \flm (E  -  I/0)
For E > U0, any energy E  is possible. But for E < UQ, as we saw above, the 
energy is quantized and only certain states are possible.

EXERCISE D A n electron with energy E  = 6.0 eV  is near a potential well of depth UQ =  4.5 eV  and width I =  10.0 nm. What is the wavelength of the electron when it is 
inside the well? (a) 0.50 nm; (b) 0.58 nm; (c) 1.0 nm; (d) 10 nm; (e) 20 nm.

[Another very interesting but more complicated well is the simple harmonic 
oscillator which has U(x) =  \ Cx2 as we discussed in Chapter 14. Some quantum 
mechanical results, such as a zero-point energy of \ha) (E cannot be zero), are 
treated briefly in Problem 52.]

3 8 -1 0  T unneling  th ro u g h  a B arrier
We saw in Section 38-9 that, according to quantum mechanics, a particle such as an 
electron can penetrate a barrier into a region forbidden by classical mechanics. 
There are a number of important applications of this phenomenon, particularly as 
applied to penetration of a thin barrier.

We consider a particle of mass m and energy E  traveling to the right along 
the x axis in free space where the potential energy U = 0 so the energy is 
all kinetic energy (E = K ). The particle encounters a narrow potential barrier
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whose height U0 (in energy units) is greater than E, and whose thickness 
is £ (distance units); see Fig. 38-15a. Since E < U0, we would expect from 
classical physics that the particle could not penetrate the barrier but would 
simply be reflected and would return in the opposite direction. Indeed, this is 
what happens for macroscopic objects. But quantum mechanics predicts a 
nonzero probability for finding the particle on the other side of the barrier. 
We can see how this can happen in part (b) of Fig. 38-15, which shows the 
wave function. The approaching particle has a sinusoidal wave function. Within 
the barrier the solution to the Schrodinger equation is a decaying exponential 
just as for the finite well of Section 38-9. However, before the exponential 
dies away to zero, the barrier ends (at x = I), and for x > H there is again a 
sinusoidal wave function, since U = 0 and E = K  > 0. But it is a sine wave 
of greatly reduced amplitude. Nonetheless, because |î |2 is nonzero beyond 
the barrier, we see that there is a nonzero probability that the particle penetrates 
the barrier. This process is called tunneling through the barrier, or barrier 
penetration. Although we cannot observe the particle within the barrier (it would 
violate conservation of energy), we can detect it after it has penetrated the barrier.

Quantitatively, we can describe the tunneling probability with a transmission 
coefficient, T, and a reflection coefficient, R. Suppose, for example, that T = 0.03 
and R = 0.97; then if 100 particles struck the barrier, on the average 3 would 
tunnel through and 97 would be reflected. Note that T + R = 1, since an 
incident particle must either reflect or tunnel through. The transmission coeffi­
cient can be determined by writing the wave function for each of the three 
regions, just as we did for the finite well, and then applying the boundary 
conditions that if/ and dif//dx must be continuous at the edges of the barrier (x = 0 
and x = t). The calculation shows (see Problem 44) that if T  is small (<5C 1), then

,-2 Gt

where

G =
2m(U0 -  E)

(38-17a)

(38-17b)

(This is the same G as in Section 38-9, Eq. 38-16.) We note that increasing the 
height of the barrier, U0, or increasing its thickness, I, will drastically reduce T. 
Indeed, for macroscopic situations, T  is extremely small, in accord with classical 
physics, which predicts no tunneling (again the correspondence principle).

■ f t f i V i l J Barrier penetration. A 50-eV electron approaches a 
square barrier 70 eV high and (a) 1.0 nm thick, (b) 0.10 nm thick. What is the 
probability that the electron will tunnel through?
APPROACH We convert eV to joules and use Eqs. 38-17.
SOLUTION (a) Inside the barrier U0 -  E  = (70 eV -  50eV)(l.6 X 10 19J/eV) =
3.2 X 10 18 J. Then, using Eqs. 38-17, we have

2 Gt = 2
2(9.11 X 10-31 kg)(3.2 X 10"18J) 

(1.055 X 10~34 J • s)2
(1.0 X 10- rn 46

and
T = e-2GH = e-A6 ~ 1 X 10“

which is extremely small.
(b) For £ = 0.10 nm, 2G£ = 4.6 and 

T = e~46 = 0.010.

u

ll

rE\ U = 0 x = 0 x = i
(a)

W ___

x = 0 x = i

(b)

FIGURE 3 8 -1 5  (a) A  potential 
barrier of height U0 and thickness t 
(b) The wave function for a particle 
of energy E (<  U0) that approaches 
from the left. The curve for if/ is 
superposed, for convenience, on the 
energy level line (dashed).

Thus the electron has a 1% chance of penetrating a 0.1-nm-thick barrier, but only 
1 chance in IO20 to penetrate a 1-nm barrier. By reducing the barrier thickness by 
a factor of 10, the probability of tunneling through increases 1018 times!
Clearly the transmission coefficient is extremely sensitive to the values of £,
U0 — E, and m.
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in glass strikes the interface with air 
at an angle greater than the critical 
angle, and is totally internally 
reflected, (b) A  small amount of 
light tunnels through a narrow air 
gap between two pieces of glass.

FIGURE 3 8 -1 7  Potential energy 
seen by an alpha particle (charge q) 
in presence of nucleus (charge Q), 
showing the wave function for 
tunneling out.

Tunneling of Light Wave
Tunneling is a result of the wave properties of material particles, and also 
occurs for classical waves. For example, we saw in Section 32-7 that, when light 
traveling in glass strikes a glass-air boundary at an angle greater than the critical 
angle, the light is 100% totally reflected. We studied this phenomenon of total 
internal reflection from the point of view of ray optics, and we show it here in 
Fig. 38-16a. The wave theory, however, predicts that waves actually penetrate the 
air for a few wavelengths—almost as if they “needed” to pass the interface to find 
out there is air beyond and hence need to be totally reflected. Indeed, if a second 
piece of glass is brought near the first as shown in Fig. 38-16b, a transmitted wave 
that has tunneled through the air gap can be experimentally observed. You can 
actually observe this for yourself by looking down into a glass of water at an angle 
such that light entering your eye has been totally internally reflected from the 
(outer) glass surface (it will look silvery). If you press a moistened fingertip against 
the glass, you can see the whorls of the ridges on your fingerprints, because at the 
ridges you have interfered with the total internal reflection at the outer surface of 
the glass. So you see light that has penetrated the gap and reflected off the ridges 
on your finger.

Applications of Tunneling
Tunneling thus occurs even for classical waves. What is new in quantum 
mechanics is that material particles have wave properties and hence can tunnel. 
Tunneling has provided the basis for a number of useful devices, as well as 
helped to explain a number of important phenomena, some of which we mention 
briefly now.

Some atomic nuclei undergo radioactive decay by the emission of an alpha (a) 
particle, which consists of two protons and two neutrons. Inside a radioactive 
nucleus, we can imagine that the protons and neutrons are moving about, 
and sometimes two of each come together and form this stable entity, the 
alpha particle. We will study alpha decay in more detail in Chapter 41, but for 
now we note that the potential energy diagram for the alpha particle inside this 
type of nucleus looks something like Fig. 38-17. The square well represents the 
attractive nuclear force that holds the nucleus together. To this is added the 1 Ir 
Coulomb potential energy of repulsion between the positive alpha particle and 
the remaining positively charged nucleus. The barrier that results is called the 
Coulomb barrier. The wave function for the tunneling particle shown must 
have energy greater than zero (or the barrier would be infinitely wide and 
tunneling could not occur), but less than the height of the barrier. If the alpha 
particle had energy higher than the barrier, it would always be free and the 
original nucleus wouldn’t exist. Thus the barrier keeps the nucleus together, but 
occasionally a nucleus of this type can decay by the tunneling of an alpha 
particle. The probability of an a particle escaping, and hence the “lifetime” of a 
nucleus, depends on the height and width of the barrier, and can take on a very 
wide range of values for only a limited change in barrier width as we saw in 
Example 38-11. Lifetimes of a-decaying radioactive nuclei range from less than 
1 fis to 1010 yr.

A so-called tunnel diode is an electronic device made of two types of 
semiconductor carrying opposite-sign charge carriers, separated by a very thin 
neutral region. Current can tunnel through this thin barrier and can be controlled 
by the voltage applied to it, which affects the height of the barrier.

The scanning tunneling electron microscope (STM), developed in the 1980s, 
makes use of tunneling through a vacuum. A tiny probe, whose tip may be only 
one (or a few) atoms wide, is moved across the specimen to be examined in a 
series of linear passes, like those made by the electron beam in a TV tube or CRT. 
The tip, as it scans, remains very close to the surface of the specimen, about 1 nm
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above it, Fig. 38-18. A  small voltage applied between the probe and the surface 
causes electrons to tunnel through the vacuum between them. This tunneling 
current is very sensitive to the gap width (see Example 38-11), so that a feedback 
mechanism can be used to raise and lower the probe to maintain a constant electron 
tunneling current. The probe’s vertical motion, following the surface of the specimen, 
is then plotted as a function of position, scan after scan, producing a three- 
dimensional image of the surface. Surface features as fine as the size of an atom can 
be resolved: a resolution better than 0.1 nm laterally and 10-2 to 10-3 nm vertically. 
This kind of resolution was not available previously and has given a great impetus 
to the study of the surface structure of materials. The “topographic” image of a 
surface actually represents the distribution of electron charge (electron wave 
probability distributions) on the surface.

The new atomic force microscope (AFM ) is in many ways similar to an STM, 
but can be used on a wider range of sample materials. Instead of detecting an 
electric current, the AFM  measures the force between a cantilevered tip and the 
sample, a force which depends strongly on the tip-sam ple separation at each 
point. The tip is moved as for the STM.

Surface of specimen

FIGURE 38-18 Probe tip of a 
scanning tunneling microscope, as 
it is moved horizontally, automatically 
moves up and down to maintain a 
constant tunneling current, thus 
producing an image of the surface.

Summary
In 1925, Schrodinger and Heisenberg separately worked out a 
new theory, quantum mechanics, which is now considered to be 
the fundamental theory at the atomic level. It is a statistical 
theory rather than a deterministic one.

An important aspect of quantum mechanics is the 
Heisenberg uncertainty principle. It results from the wave-particle 
duality and the unavoidable interaction between the observed 
object and the observer.

One form of the uncertainty principle states that the posi­
tion x and momentum px of an object cannot both be measured 
precisely at the same time. The products of the uncertainties, 
(Ax)(Apx), can be no less than h (= h/2ir):

(Ax){APx) *  h. (38-1)
Another form states that the energy can be uncertain, or 

nonconserved, by an amount AE for a time At where
(AE)(At)  >  h. (38-2)

A particle such as an electron is represented by a wave 
function if/. The square of the wave function, \if/\2, at any point 
in space represents the probability of finding the particle at 
that point. The wave function must be normalized, meaning 
that j\if/\2 dV  over all space must equal 1, since the particle must 
be found at one place or another.

In nonrelativistic quantum mechanics, if/ satisfies the 
Schrodinger equation:

h2 d2if/
+ Uif, = Erf/,

2m dx2
(38-5)

here in its one-dimensional time-independent form, where U is 
the potential energy as a function of position and E  is the total 
energy of the particle.

A free particle subject to no forces has a sinusoidal wave 
function if/ = A sin kx  + B coskx  with k  = p /h  and p  is the 
particle’s momentum. Such a wave of fixed momentum is spread 
out indefinitely in space as a plane wave.

A wave packet, localized in space, is a superposition of 
sinusoidal waves with a range of momenta.

For a particle confined to an infinitely deep square well 
potential, or rigid box, the Schrodinger equation gives the wave 
functions as

if/ = A  sin k£,

where i  is the width of the box, A  = \ f l f l , and k  = m r/l 
with n an integer, as solutions inside the well. The energy is 
quantized,

2 ;,2
E = hLk

2m

2u2n h 
S m f

(38-13)

In a finite potential well, the wave function extends into the 
classically forbidden region where the total energy is less than 
the potential energy. That this is possible is consistent with the 
uncertainty principle. The solutions to the Schrodinger equation 
in these areas are decaying exponentials.

Because quantum-mechanical particles can penetrate such 
classically forbidden areas, they can tunnel through thin barriers 
even though the potential energy in the barrier is greater than 
the total energy of the particle.

Questions
1. Compare a matter wave if/ to (a) a wave on a string, (b) an 

EM wave. Discuss similarities and differences.
2. Explain why Bohr’s theory of the atom is not compatible 

with quantum mechanics, particularly the uncertainty 
principle.

3. Explain why it is that the more massive an object is, the 
easier it becomes to predict its future position.

4. In view of the uncertainty principle, why does a baseball 
seem to have a well-defined position and speed, whereas an 
electron does not?
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5. Would it ever be possible to balance a very sharp needle 
precisely on its point? Explain.

6. When you check the pressure in a tire, doesn’t some air 
inevitably escape? Is it possible to avoid this escape of 
air altogether? What is the relation to the uncertainty 
principle?

7. It has been said that the ground-state energy in the 
hydrogen atom can be precisely known but that the excited 
states have some uncertainty in their values (an “energy 
width”). Is this consistent with the uncertainty principle in 
its energy form? Explain.

8. If Planck’s constant were much larger than it is, how would 
this affect our everyday life?

9. In what ways is Newtonian mechanics contradicted by 
quantum mechanics?

10. If you knew the position of an object precisely, with no 
uncertainty, how well would you know its momentum?

11. A cold thermometer is placed in a hot bowl of soup. Will the 
temperature reading of the thermometer be the same as the 
temperature of the hot soup before the measurement was 
made? Explain.

12. Does the uncertainty principle set a limit to how well you 
can make any single measurement of position?

13. Discuss the connection between the zero-point energy for a 
particle in a rigid box and the uncertainty principle.

14. The wave function for a particle in a rigid box is zero at 
points within the box (except for n = 1). Does this mean 
that the probability of finding the particle at these points is 
zero? Does it mean that the particle cannot pass by these 
points? Explain.

15. What does the probability density look like for a particle in 
an infinite potential well for large values of n, say n = 100 
or n = 1000? As n becomes very large, do your predictions 
approach classical predictions in accord with the correspon­
dence principle?

16. For a particle in an infinite potential well the separation 
between energy states increases as n increases (see Eq. 38-13). 
But doesn’t the correspondence principle require closer 
spacing between states as n increases so as to approach a 
classical (nonquantized) situation? Explain.

17. A particle is trapped in an infinite potential well. Describe 
what happens to the particle’s ground-state energy and wave 
function as the potential walls become finite and get lower 
and lower until they finally reach zero (U = 0 everywhere).

18. A hydrogen atom and a helium atom, each with 4eV of 
kinetic energy, approach a thin barrier 6 MeV high. Which 
has the greater probability of tunneling through?

| Problems_________________
38-2 Wave Function, Double-Slit
1. (II) The neutrons in a parallel beam, each having kinetic 

energy 0.030 eV, are directed through two slits 0.60 mm apart. 
How far apart will the interference peaks be on a screen
1.0 m away? [Hint: First find the wavelength of the neutron.]

2. (II) Pellets of mass 3.0 g are fired in parallel paths with 
speeds of 150 m/s through a hole 3.0 mm in diameter. How 
far from the hole must you be to detect a 1.0-cm-diameter 
spread in the beam of pellets?

38-3 Uncertainty Principle
3. (I) A proton is traveling with a speed of 

(7.560 + 0.012) X 105 m/s. With what maximum precision 
can its position be ascertained?

4. (I) An electron remains in an excited state of an atom for 
typically 10-8 s. What is the minimum uncertainty in the 
energy of the state (in eV)?

5. (I) If an electron’s position can be measured to a precision 
of 2.6 X 10 8 m, how precisely can its speed be known?

6. (I) The lifetime of a typical excited state in an atom is about 
10 ns. Suppose an atom falls from one such excited state and 
emits a photon of wavelength about 500 nm. Find the 
fractional energy uncertainty A E /E  and wavelength 
uncertainty A A/A of this photon.

7. (I) A radioactive element undergoes an alpha decay with a 
lifetime of 12 /as. If alpha particles are emitted with 5.5-keV 
kinetic energy, find the uncertainty A E /E  in the particle 
energy.

8. (II) A 12-g bullet leaves a rifle horizontally at a speed of 
180 m/s. (a) What is the wavelength of this bullet? (b) If the 
position of the bullet is known to a precision of 0.65 cm 
(radius of the barrel), what is the minimum uncertainty in its 
vertical momentum?

9. (II) An electron and a 140-g baseball are each traveling 
95 m/s measured to a precision of 0.085%. Calculate and 
compare the uncertainty in position of each.

10. (II) What is the uncertainty in the mass of a muon 
(ra = 105.7 MeV/c2), specified in eV/c2, given its lifetime 
of 2.20 fi s?

11. (II) A free neutron (ra = 1.67 X 10 27 kg) has a mean life 
of 900 s. What is the uncertainty in its mass (in kg)?

12. (II) Use the uncertainty principle to show that if an 
electron were present in the nucleus (r «  10-15 m), its 
kinetic energy (use relativity) would be hundreds of 
MeV. (Since such electron energies are not observed, 
we conclude that electrons are not present in the 
nucleus.) [Hint: Assume a particle can have energy as large 
as its uncertainty.]

13. (II) An electron in the n = 2 state of hydrogen remains 
there on average about 10-8 s before jumping to the n = 1 state.
(a) Estimate the uncertainty in the energy of the n = 2 
state, (b) What fraction of the transition energy is this?
(c) What is the wavelength, and width (in nm), of this line 
in the spectrum of hydrogen?

14. (II) How accurately can the position of a 3.50-keV electron 
be measured assuming its energy is known to 1.00%?
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15. (Ill) In a double-slit experiment on electrons (or photons), 
suppose that we use indicators to determine which slit each 
electron went through (Section 38-2). These indicators 
must tell us the y coordinate to within d/2, where d is the 
distance between slits. Use the uncertainty principle to 
show that the interference pattern will be destroyed. 
[Note: First show that the angle 6 between maxima 
and minima of the interference pattern is given by \ \ /d ,

FIGURE 38-19 Problem 15.

38-6 Time-Dependent Schrodinger Equation
16. (II) Show that the superposition principle holds for the time- 

dependent Schrodinger equation. That is, show that if ^ ( x ,  t) 
and 0  are solutions, then y4^r1(x, t) + B ^ 2(x, 0  is 
also a solution where A  and B are arbitrary constants.

17. (Ill) (a) Show that ¥ ( x , t) = Ae^kx~a*) is a solution to 
the time-dependent Schrodinger equation for a free particle 
[£/(*) = U0 = constant] but that ^(.x, t) = A  cos(A:x -  (ot) 
and W(x, t) = A sin k x  — cot) are not. (b) Show that the 
valid solution of part (a) satisfies conservation of energy if 
the de Broglie relations hold; A = h/p, w = E /h . That is, 
show that direct substitution into Eq. 38-7 gives

38-7 Free Particles; Plane Waves; Wave Packets
18. (I) A free electron has a wave function if/(x) = 

A  sin(2.0 X IO10*), where x is given in meters. Determine 
the electron’s (a) wavelength, (b) momentum, (c) speed, and 
((d) kinetic energy.

19. (I) Write the wave function for (a) a free electron and 
(b) a free proton, each having a constant velocity 
v = 3.0 X 105 m/s.

20. (Ill) Show that the uncertainty principle holds for a “wave 
packet” that is formed by two waves of similar wavelength 
A1 and A2. To do so, follow the argument leading up to 
Eq. 16-8, but use as the two waves fa = A s in k x  and 
fa = A  sin k2 x. Then show that the width of each “wave 
packet” is Ajc = 27r/(A:1 -  k2) = 2it/  Ak (from t = 0.05 s 
to t = 0.15 s in Fig. 16-17). Finally, show that Ax Ap = h 
for this simple situation.

38-8 Infinite Square Well
21. (II) What is the minimum speed of an electron trapped in a 

0.20-nm-wide infinitely deep square well?
22. (II) Show that for a particle in a perfectly rigid box, the 

wavelength of the wave function for any state is the 
de Broglie wavelength.

23. (II) An electron trapped in an infinitely deep square well 
has a ground-state energy E  = 9.0 eV. (a) What is the 
longest wavelength photon that an excited state of this 
system can emit? (b) What is the width of the well?

24. (II) An n = 4 to n = 1 transition for an electron trapped 
in a rigid box produces a 340-nm photon. What is the width 
of the box?

25. (II) For a particle in a box with rigid walls, determine 
whether our results for the ground state are consistent with 
the uncertainty principle by calculating the product Ap Ax. 
Take Ax «  £, since the particle is somewhere within the 
box. For Ap, note that although p  is known (= hk), the 
direction of p is not known, so the x component could vary 
from —p to +p; hence take Ap ~ 2p.

26. (II) The longest-wavelength line in the spectrum emitted by 
an electron trapped in an infinitely deep square well is 
610 nm. What is the width of the well?

27. (II) Determine the lowest four energy levels and wave func­
tions for an electron trapped in an infinitely deep potential 
well of width 2.0 nm.

28. (II) Write a formula for the positions of (a) the maxima and 
(ib) the minima in \if/\2 for a particle in the nth state in an 
infinite square well.

29. (II) Consider an atomic nucleus to be a rigid box of width
2.0 X 10-14 m. What would be the ground-state energy for
(a) an electron, (b) a neutron, and (c) a proton in this nucleus?

30. (II) A proton in a nucleus can be roughly modeled as a 
particle in a box of nuclear dimensions. Calculate the 
energy released when a proton confined in a nucleus of 
width 1.0 X 10-14 m makes a transition from the first excited 
state to the ground state.

31. (II) Consider a single oxygen molecule confined in a one­
dimensional rigid box of width 4.0 mm. (a) Treating this as a 
particle in a rigid box, determine the ground-state 
energy, (b) If the molecule has an energy equal to the one­
dimensional average thermal energy \k T  at T = 300 K, what 
is the quantum number nl (c) What is the energy difference 
between the «th state and the next higher state?

32. (II) An electron is trapped in a 1.00-nm-wide rigid box. 
Determine the probability of finding the electron within
0.15 nm of the center of the box (on either side of center) 
for (a) n = 1, (b) n = 5, and (c) n = 20. (d) Compare to 
the classical prediction.

33. (Ill) If an infinitely deep well of width £ is redefined to be 
located from x = —\ l  to x = \ l  (as opposed to x = 0 to 
x = £), speculate how this will change the wave function 
for a particle in this well. Investigate your speculation(s) by 
determining the wave functions and energy levels for this 
newly defined well. [Hint: Try if/ = A  sin (kx +

38-9 Finite Potential Well
34. (II) An electron with 180 eV of kinetic energy in free space 

passes over a finite potential well 56 eV deep that stretches from 
x = 0 to x = 0.50 nm. What is the electron’s wavelength
(a) in free space, (b) when over the well? (c) Draw a diagram 
showing the potential energy and total energy as a function 
of x, and on the diagram sketch a possible wave function.

35. (II) Sketch the wave functions and the probability distribu­
tions for the n = 4 and n = 5 states for a particle trapped 
in a finite square well.
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36. (II) Suppose that a particle of mass ra is trapped in a finite 
potential well that has a rigid wall at x  = 0 (U = oo for x <  0) 
and a finite wall of
height U = U0 at x = £,
Fig. 38-20. (a) Sketch 
the wave functions for 
the lowest three states.
(b) What is the form of 
the wave function in 
the ground state in the 
three regions x <  0,
0 < jc < I, x >  17

FIGURE 38-20 “
Problem 36.

37. (II) An electron is trapped in a 0.16-nm-wide finite square 
well of height U0 = 2.0 keV. Estimate at what distance 
outside the walls of the well the ground state wave function 
drops to 1.0% of its value at the walls.

38-10 Tunneling
38. (II) A potential barrier has a height U0 = 14 eV and 

thickness £ = 0.85 nm. If the transmission coefficient for 
an incident electron is 0.00050, what is the electron’s energy?

39. (II) An electron approaches a potential barrier 18 eV high 
and 0.55 nm wide. If the electron has a 1.0% probability of 
tunneling through the barrier, what is the electron’s energy?

40. (II) A proton and a helium nucleus approach a 25-MeV potential 
energy barrier. If each has a kinetic energy of 5.0 MeV, 
what is the probability of each to tunnel through the 
barrier, assuming it is rectangular and 3.6 fm thick?

41. (II) An electron with an energy of 8.0 eV is incident on a 
potential barrier which is 9.2 eV high and 0.25 nm wide.
(a) What is the probability that the electron will pass 
through the barrier? (b) What is the probability that the 
electron will be reflected?

42. (II) A 1.0-mA current of 1.6-MeV protons strikes a 
2.6-MeV-high potential barrier 2.8 X 10-13 m thick. Estimate 
the transmitted current.

43. (II) For part (b) of Example 38-11, what effect will there be 
on the transmission coefficient if (a) the barrier height is 
raised 2.0%, (b) the barrier thickness is increased by 2.0%?

44. (II) Show that the transmission coefficient is given roughly 
by Eqs. 38-17 for a high or thick barrier, by calculating 
\ij/(x = £)|2/|^(0)|2. [Hint: Assume that if/ is a decaying expo­
nential inside the barrier.]

45. (Ill) A uranium-238 nucleus (Q = +92e) lasts about
4.5 X 109 years before it decays by emission of an alpha particle 
(q = + 2e, M  = 4Mproton). (a) Assuming that the a particle is 
a point, and the nucleus is roughly 8 fm in radius, estimate the 
height of the Coulomb barrier (the peak in Fig. 38-17).
(b) The alpha particle, when free, has kinetic energy 
~ 4 MeV. Estimate the width of the barrier, (c) Assuming 
that the square well has U = 0 inside (and U = 0 
far from the nucleus), calculate the speed of the alpha 
particle and how often it hits the barrier inside, and from 
this (and Eqs. 38-17) estimate the uranium lifetime. [Hint: 
Replace the llr Coulomb barrier with an “averaged” rectan­
gular barrier (as in Fig. 38-15) of width equal to |  that 
calculated in (b).]

| General Problems
46. The Z° boson, discovered in 1985, is the mediator of the 

weak nuclear force, and it typically decays very quickly. Its 
average rest energy is 91.19 GeV, but its short lifetime shows 
up as an intrinsic width of 2.5 GeV. What is the lifetime of 
this particle?

47. Estimate the lowest possible energy of a neutron contained 
in a typical nucleus of radius 1.2 X 10-15 m. [Hint: A particle 
can have an energy at least as large as its uncertainty.]

48. A neutron is trapped in an infinitely deep potential well
2.5 fm in width. Determine (a) the four lowest possible 
energy states and (b) their wave functions, (c) What is the 
wavelength and energy of a photon emitted when the neutron 
makes a transition between the two lowest states? In 
what region of the EM spectrum does this photon lie? 
[Note: This is a rough model of an atomic nucleus.]

49. Protons are accelerated from rest across 650 V. They are 
then directed at two slits 0.80 mm apart. How far apart will 
the interference peaks be on a screen 18 m away?

50. An electron and a proton, each initially at rest, are acceler­
ated across the same voltage. Assuming that the uncertainty 
in their position is given by their de Broglie wavelength, 
find the ratio of the uncertainty in their momentum.

51. Use the uncertainty principle to estimate the position uncer­
tainty for the electron in the ground state of the hydrogen 
atom. [Hint: Determine the momentum using the Bohr 
model of Section 37-11 and assume the momentum can be 
anywhere between this value and zero.] How does this 
compare to the Bohr radius?

52. Simple Harmonic Oscillator. Suppose that a particle of 
mass ra is trapped not in a square well, but in one whose 
potential energy is that of a simple harmonic oscillator: 
U(x) = \C x2. That is, if the particle is displaced from x = 0, 
a restoring force F = —Cx acts on it, where C is constant.
(a) Sketch this potential energy. (b) Show that if/ = Ae~B*2 
is a solution to the Schrodinger equation and that the energy 
of this state is E  = \  ho), where o) = \ /C /m  (as classi­
cally, Eq. 14-5) and B = raw/2/L [Note: This is the ground 
state, and this energy \ha) is the zero-point energy for a 
harmonic oscillator. The energies of higher states are 
En = (n + l)ha), where n is an integer.]

53. Estimate the kinetic energy and speed of an alpha 
particle (q = +2e, M = 4Mproton) trapped in a nucleus
1.5 X 10-14m wide. Assume an infinitely deep square 
well potential.
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54. A small ball of mass 3.0 X 10-6 kg is dropped on a table 
from a height of 2.0 m. After each bounce the ball rises 
to 65% of its height before the bounce because of its 
inelastic collision with the table. Estimate how many 
bounces occur before the uncertainty principle plays a role 
in the problem. [Hint. Determine when the uncertainty in 
the ball’s speed is comparable to its speed of impact on 
the table.]

55. By how much does the tunneling current through the tip of an 
STM change if the tip rises 0.020 nm from some initial height 
above a sodium surface with a work function W0 = 2.28 eV? 
[Hint. Let the work function (see Section 37-2) equal 
the energy needed to raise the electron to the top of 
the barrier.]

56. Show that the function = Aelkx, where A  is a 
constant and k  is given by Eq. 38-11, is a solution of 
the time-independent Schrodinger equation for the case 
U = 0.

57. Show that the average value of the square of the position x  
of a particle in state n inside an infinite well of width I is 
x 2 ^  f x 2\if/n\2 d x  = f2[| -  Calculate the values 
of x 2 for n = 1 to 20 and make a graph of x 2 versus n. [Hint: 
You may want to consult a detailed Table of integrals.]

58. Consider a particle that can exist anywhere in space with a 
wave function given by if/(x) = b~^\x/bf e~(x/b̂ /2, where 
b = 1.0 nm. (a) Check that the wave function is normalized.
(b) What is the most probable position for the particle in 
the region x >  0? (c) What is the probability of finding the 
particle between x  = 0 nm and x = 0.50 nm?

59. A 7.0-gram pencil, 18 cm long, is balanced on its point. 
Classically, this is a configuration of (unstable) equilibrium, 
so the pencil could remain there forever if it were 
perfectly placed. A quantum mechanical analysis shows 
that the pencil must fall, (a) Why is this the case?
(b) Estimate (within a factor of 2) how long it will take 
the pencil to hit the table if it is initially positioned as well 
as possible? [Hint: Use the uncertainty principle in its 
angular form to obtain an expression for the initial 
angle <f>0 « A<f>.]

* Numerical/Computer
* 60. (Ill) An electron is trapped in the ground state of an infinite 

potential well of width £ = 0.10 nm. The probability that 
the electron will be found in the central 1% of the well was 
estimated in Example 38-7 by \if/\2Ax. Use numerical 
methods to determine how large Ax could be to cause less 
than a 10% error in such an estimate.

*61. (Ill) Consider a particle of mass m and energy E traveling to 
the right where it encounters a narrow potential barrier of 
height U0 and width £ as shown in Fig. 38-21. It can 
be shown that:
(i) for E < UQ, the transmission probability is

1 +
16(£/t/0)(l -  E/U0)

where

G =
2m(U0 -  E)

h2

and the reflection probability is R = 1 — T.
(ii) For E > Uq, the transmission probability is

T = 1 +
sin2 (G'l)

4(E/U0) (£/£/„ -  1)J

where

G' =
2m{E -  U0)

h2

and R = 1 -  T. Consider that the particle is an electron and 
it is incident on a rectangular barrier of height Uq = 10 eV 
and width £ = 1.0 X 1 0 10 m. (a) Calculate T and R for the 
electron from E/U0 = 0 to 10, in steps of 0.1. Make a single 
graph showing the two curves of T  and R as a function oiE/UQ.
(b) From the graph determine the energies (E/Uq) at which 
the electron will have transmission probabilities of 10%, 
20%, 50%, and 80%.

FIGURE 38-21 Problem 61.

Answers to Exercises

A: (c).
B: (e).
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A neon tube is a thin glass tube, 
moldable into various shapes, filled 
with neon (or other) gas that 
glows with a particular color when 
a current at high voltage passes 
through it. Gas atoms, excited to 
upper energy levels, jump down to 
lower energy levels and emit light 
(photons) whose wavelengths (color) 
are characteristic of the type of gas.

In this Chapter we study what 
quantum mechanics tells us about 
atoms, their wave functions and 
energy levels, including the effect of 
the exclusion principle. We also 
discuss interesting applications such 
as lasers and holography.

T £

Quantum Mechanics of 
Atoms
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CHAPTER-OPENING QUESTIOl 1—Guess now!
1. Thousands of hydrogen atoms are all in their ground state. Which statement below

is true?
(a) All of the atoms have the electron in a circular orbit at the Bohr radius.
(b) All of the atoms have the electron in the same orbit, but it’s not the same 

orbit for the ground state in the Bohr model.
(c) The electron is not in an actual orbit, but the distance between the nucleus 

and the electron is the same in all of the atoms.
(d) If the distance from the nucleus to the electron could be measured, it would 

be found at different locations in different atoms. The most probable 
distance would be the Bohr radius.

2. The state of an electron in an atom can be specified by a set of quantum numbers.
Which of the following statements are valid?
(a) No two electrons in the universe can be identical to each other.
(b) All electrons in the universe are identical.
(c) No two electrons in an atom can occupy the same quantum state.
(d) There cannot be more than one electron in a given electron orbit.
(e) Electrons must be excluded from the nucleus because only positive charges 

are allowed in the nucleus to give rise to stable electronic orbits according 
to Bohr’s model.

A
t the beginning of Chapter 38 we discussed the limitations of the Bohr theory 
of atomic structure and why a new theory was needed. Although the Bohr 
theory had great success in predicting the wavelengths of light emitted and 
absorbed by the hydrogen atom, it could not do so for more complex atoms.

Nor did it explain fine structure, the splitting of emission lines into two or more closely
spaced lines. And, as a theory, it was an uneasy mixture of classical and quantum ideas.
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Quantum mechanics came to the rescue in 1925 and 1926, and in this Chapter 
we examine the quantum-mechanical theory of atomic structure, which is far more 
complete than the old Bohr theory.

3 9 -1  Quantum-Mechanical View of Atoms
Although the Bohr model has been discarded as an accurate description of nature, 
nonetheless, quantum mechanics reaffirms certain aspects of the older theory, such 
as that electrons in an atom exist only in discrete states of definite energy, and that 
a photon of light is emitted (or absorbed) when an electron makes a transition 
from one state to another. But quantum mechanics is a much deeper theory, and 
has provided us with a very different view of the atom. According to quantum 
mechanics, electrons do not exist in well-defined circular orbits as in the Bohr 
theory. Rather, the electron (because of its wave nature) can be thought of as 
spread out in space as if it were a “cloud.” The size and shape of the electron cloud 
can be calculated for a given state of an atom. For the ground state in the 
hydrogen atom, the solution of the Schrodinger equation, as we will discuss in 
more detail in Section 39-3, gives

Here is the wave function as a function of position, and it depends only on 
the radial distance r from the center, and not on angular position 0 or <£. (The 
constant r0 happens to be equal to the first Bohr radius.) Thus the electron cloud, 
whose density is for the ground state of hydrogen is spherically symmetric as 
shown in Fig. 39-1. The extent of the electron cloud at its higher densities 
roughly indicates the “size” of an atom, but just as a cloud may not have a 
distinct border, atoms do not have a precise boundary or a well-defined size. 
Not all electron clouds have a spherical shape, as we shall see later in this 
Chapter. But note that iA(r), while becoming extremely small for large r (see the 
equation above), does not equal zero in any finite region. So quantum mechanics 
suggests that an atom is not mostly empty space. (Indeed, since i/r —> 0 only for 
r —> oo, we might question the idea that there is any truly empty space in the 
universe.)

The electron cloud can be interpreted from either the particle or the wave 
viewpoint. Remember that by a particle we mean something that is localized in 
space—it has a definite position at any given instant. By contrast, a wave is spread 
out in space. The electron cloud, spread out in space as in Fig. 39-1, is a result of 
the wave nature of electrons. Electron clouds can also be interpreted as 
probability distributions (or probability density) for a particle. As we saw in 
Section 38-3, we cannot predict the path an electron will follow. After one 
measurement of its position we cannot predict exactly where it will be at a later 
time. We can only calculate the probability that it will be found at different points. 
If you were to make 500 different measurements of the position of an electron, 
considering it as a particle, the majority of the results would show the electron at 
points where the probability is high (darker area in Fig. 39-1). Only occasionally 
would the electron be found where the probability is low.

3 9 -2  Hydrogen Atom: Schrodinger 
Equation and Quantum Numbers

The hydrogen atom is the simplest of all atoms, consisting of a single electron of 
charge —e moving around a central nucleus (a single proton) of charge +e. It is 
with hydrogen that a study of atomic structure must begin.

FIGURE 3 9 -1  Electron cloud or 
“probability distribution” \if/\2 for the 
ground state of the hydrogen atom, 
as seen from afar. The circle 
represents the Bohr radius r0. The 
dots represent a hypothetical 
detection of an electron at that 
point: dots closer together represent 
more probable presence of an 
electron (denser cloud).
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FIGURE 3 9 -2  Potential energy U(r) for the hydrogen atom. The 
radial distance r of the electron from  
the nucleus is given in terms of the 
Bohr radius r0 .

The Schrodinger equation (see Eq. 38-5) includes a term containing the 
potential energy. For the hydrogen (H) atom, the potential energy is due to 
the Coulomb force between electron and proton:

1 *2
U = -

47re0 r
where r is the radial distance from the proton (situated at r = 0 ) to the electron. 
See Fig. 39-2. The (time-independent) Schrodinger equation, which must now be 
written in three dimensions, is then

2m
d2ip
a ?

d2ip d2ijj
dy2 dz2

1 e2
47ref =  Ei/j, (39-1)

where d2ifj/dx2,d2ilj/dy2, and d2if//dz2 are partial derivatives with respect to jc, y, 
and z. To solve the Schrodinger equation for the H atom, it is usual to write it in 
terms of spherical coordinates (r, 0, <f>). We will not, however, actually go through 
the process of solving it. Instead, we look at the properties of the solutions, and (in 
the next Section) at the wave functions themselves.

Recall from Chapter 38 that the solutions of the Schrodinger equation in one 
dimension for the infinite square well were characterized by a single quantum 
number, which we called n, which arises from applying the boundary conditions. In the 
three-dimensional problem of the H atom, the solutions of the Schrodinger equation 
are characterized by three quantum numbers corresponding to boundary conditions 
applied in the three dimensions. However, four different quantum numbers are actu­
ally needed to specify each state in the H atom, the fourth coming from a relativistic 
treatment. We now discuss each of these quantum numbers. Much of our analysis here 
will also apply to more complex atoms, which we discuss starting in Section 39-4.

Quantum mechanics predicts the same energy levels (Fig. 37-26) for the H 
atom as does the Bohr theory. That is,

13.6 eV
En = --------z—  n = 1,2,3, (39-2)

FIGURE 3 9 -3  Quantization of 
angular momentum direction for 
£ =  2. (Magnitude of L is V 6 h).

where n is an integer. In the simple Bohr theory, there was only one quantum 
number, n. In quantum mechanics, four different quantum numbers are needed to 
specify each state in the atom:

(1) The quantum number, n, from the Bohr theory is found also in quantum 
mechanics and is called the principal quantum number. It can have any integer 
value from 1 to oo. The total energy of a state in the hydrogen atom depends 
on n, as we saw above.

(2) The orbital quantum number, £, is related to the magnitude of the angular 
momentum of the electron; £ can take on integer values from 0 to (n — 1). For the 
ground state (n = 1), £ can only be zero.f For n = 3, £ can be 0,1, or 2. The 
actual magnitude of the angular momentum L  is related to the quantum number £ by

L = V t ( t  + 1 ) h .  (39-3)
The value of £ has almost no effect on the total energy in the hydrogen atom; 
only n does to any appreciable extent (but see fine structure below). In atoms 
with two or more electrons, the energy does depend on £ as well as n, as we 
shall see.

(3) The magnetic quantum number, mt , is related to the direction of the electron’s 
angular momentum, and it can take on integer values ranging from -£  
to +£. For example, if £ = 2, then me can be - 2 ,- 1 ,0 ,+ 1 ,  or +2. 
Since angular momentum is a vector, it is not surprising that both its 
magnitude and its direction would be quantized. For £ = 2, the five 
different directions allowed can be represented by the diagram of Fig. 39-3.

fThis replaces Bohr theory, which had I = 1 for the ground state (Eq. 37-10).
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This limitation on the direction of L is often called space quantization. 
In quantum mechanics, the direction of the angular momentum is usually 
specified by giving its component along the z axis (this choice is arbitrary). 
Then L z is related to mt by the equation

Lz = mt h. (39-4)

The values of Lx and Ly are not definite, however. The name for derives not 
from theory (which relates it to Lz), but from experiment. It was found that when 
a gas-discharge tube was placed in a magnetic field, the spectral lines were split 
into several very closely spaced lines. This splitting, known as the Zeeman effect, 
implies that the energy levels must be split (Fig. 39-4), and thus that the energy 
of a state depends not only on n but also on me when a magnetic field is applied— 
hence the name “magnetic quantum number.”

(4) Finally, there is the spin quantum number, ms, which for an electron can have 
only two values, ms = + \ and ms = The existence of this quantum 
number did not come out of Schrodinger’s original theory, as did n, £, and mt . 
Instead, a subsequent modification by P. A. M. Dirac (1902-1984) explained its 
presence as a relativistic effect. The first hint that ms was needed, however, 
came from experiment. A careful study of the spectral lines of hydrogen 
showed that each actually consisted of two (or more) very closely spaced lines 
even in the absence of an external magnetic field. It was at first hypothesized 
that this tiny splitting of energy levels, called fine structure, was due to angular 
momentum associated with a spinning of the electron. That is, the electron 
might spin on its axis as well as orbit the nucleus, just as the Earth spins on its 
axis as it orbits the Sun. The interaction between the tiny current of the 
spinning electron could then interact with the magnetic field due to the orbiting 
charge and cause the small observed splitting of energy levels. (The energy 
thus depends slightly on me and ms. Fine structure is said to be due to a 
spin-orbit interaction.) Today we consider the picture of a spinning electron as 
not legitimate. We cannot even view an electron as a localized object, much 
less a spinning one. What is important is that the electron can have two 
different states due to some intrinsic property that behaves like an angular 
momentum, and we still call this property “spin.” The electron is said to have a 
spin quantum number s = \ , which produces a spin angular momentum

S = \ /s ( s  + l) h = fi•

The z component is

Sz = msh

where the two possible values of ms (+ \  and - are often said to be “spin up” 
and “spin down,” referring to the two possible directions of the spin angular 
momentum. See Fig. 39-5. A state with spin down (ms = — §) has slightly 
lower energy than one with spin up. (Note that we include ms, but not 5, in our 
list of quantum numbers since s is the same for all electrons.)

The possible values of the four quantum numbers for an electron in the 
hydrogen atom are summarized in Table 39-1.

TABLE 39-1 Quantum Numbers for an Electron
Name Symbol Possible Values

Principal n 1, 2, 3, •••, oo.
Orbital £ For a given n: i can be 0 ,1 , 2, • • •, n — 1.
Magnetic mu For given n and £: can be £, £ — 1, • • •, 0, • • •, — L
Spin ms For each set of n, £, and mt : ms can be +  \ or -  \.

FIGURE 3 9 -4  When a magnetic 
field is applied, an n =  3,£ =  2 
energy level is split into five separate 
levels (shown exaggerated— not to 
scale) corresponding to the five 
values of (2 ,1 , 0, —1, —2). A n  n =  2 , £ =  1 level is split into three 
levels (m£ =  1 ,0 , —l) . Transitions 
can occur between levels (not all 
transitions are shown), with photons 
of several slightly different 
frequencies being given off (the 
Zeeman effect).

FIGURE 3 9 -5  The spin angular 
momentum S can take on only two 
directions, ms =  +  \ or — \ , called 
“spin up” and “spin down.”

Si— ------ - m -  \ (“down”)
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CONCEPTUAL EXAMPLE 39-1 I Possible states for n = 3. How many different 
states are possible for an electron whose principal quantum number is n = 3?
RESPONSE For n = 3, £ can have the values £ = 2,1,0. For £ = 2, mt can be
2, 1, 0, -1 , -2 , which is five different possibilities. For each of these, ms can 
be either up or down (+ \ or -§); so for £ = 2, there are 2 X 5 = 10 states. 
For £ = 1, m* can be 1, 0, -1 , and since ms can be + \  or for each of these, 
we have 6 more possible states. Finally, for £ = 0, can only be 0, and there are 
only 2 states corresponding to ms = + \ and The total number of states

2 = 18, as detailed in the following Table:

71 I mt ms 71 £ 77!{ ms
3 2 2 12 3 1 1 12
3 2 2 12 3 1 1 12
3 2 1 12 3 1 0 12
3 2 1 12 3 1 0 12
3 2 0 12 3 1 -1 12
3 2 0 12 3 1 -1 12
3 2 -1 12 3 0 0 12
3 2 -1 12 3 0 0 12
3 2 -2 12
3 2 -2 12

EXERCISE A A n electron has n =  4, £ =  2. Which of the following values of m̂ are 
possible: 4 ,3 ,2 ,1 ,0 ,  - 1 ,  - 2 ,  - 3 ,  - 4 ?

E and  ̂ for n = 3. Determine (a) the energy and (fe) the 
orbital angular momentum for an electron in each of the hydrogen atom states of 
Example 39-1.
APPROACH The energy of a state depends only on n, except for the very small 
corrections mentioned above, which we will ignore. Energy is calculated as in the 
Bohr theory, En = -13.6 eV/rc2. For angular momentum we use Eq. 39-3. 
SOLUTION (a) Since n = 3 for all these states, they all have the same energy,

(b) For £ = 0, Eq. 39-3 gives

L = V t ( t  + l) f t  = 0.
For t  = 1,

L  = V l ( l  + 1 )h  = V 2 h  = 1.49 X 10_34J-s.
For 1 = 2, L = V2(2 + 1) h = VfTh.
NOTE Atomic angular momenta are generally given as a multiple of h (V 2 h or 
V 6 h in this case), rather than in SI units.

EXERCISE B What is the magnitude of the orbital angular momentum for orbital quantum 
number £ = 3? {a) 3h; (b) 3.5h; (c) 4h; (d) 12/L

Selection Rules: Allowed and Forbidden Transitions
Another prediction of quantum mechanics is that when a photon is emitted or 
absorbed, transitions can occur only between states with values of £ that differ by 
exactly one unit:

M  = +1.
According to this selection rule, an electron in an £ = 2 state can jump only to 
a state with £ = 1 or £ = 3. It cannot jump to a state with £ = 2 or £ = 0.
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A transition such as 1 = 2 to I = 0 is called a forbidden transition. Actually, 
such a transition is not absolutely forbidden and can occur, but only with very 
low probability compared to allowed transitions—those that satisfy the selection 
rule M  = +1. Since the orbital angular momentum of an H atom must change 
by one unit when it emits a photon, conservation of angular momentum tells us 
that the photon must carry off angular momentum. Indeed, experimental 
evidence of many sorts shows that the photon can be assigned a spin angular 
momentum of 1 h.

3 9 -3  Hydrogen Atom Wave Functions
The solution of the Schrodinger equation for the ground state of hydrogen (the 
state with lowest energy) has an energy E1 = -13.6 eV, as we have seen. The wave 
function for the ground state depends only on r and so is spherically symmetric. 
As already mentioned in Section 39-1, its form is

<Aioo = (39-5a)

where r0 = h2e0firme2 = 0.0529 nm is the Bohr radius (Section 37-11). The 
subscript 100 on if/ represents the quantum numbers n, £, m f

nt
For the ground state, n = 1, £ = 0, me = 0, and there is only one wave function 
that serves for both ms = + \  and ms = — \  (the value of ms does not affect the 
spatial dependence of the wave function for any state, since spin is an internal or 
intrinsic property of the electron). The probability density for the ground state is

l^iool2 = (39-5b)TJTjS

which falls off exponentially with r. Note that î ioo* like all other wave functions 
we discuss, has been normalized:

[  \<l>l00\2dV = 1.
J all space

The quantity \if/\2 dV  gives the probability of finding the electron in a volume 
dV  about a given point. It is often more useful to specify the radial probability 
distribution, PT, which is defined so that Pr dr is the probability of finding the 
electron at a radial distance between r and r + dr from the nucleus. That is, PT dr 
specifies the probability of finding the electron within a thin shell of thickness dr 
of inner radius r and outer radius r + dr, regardless of direction (see Fig. 39-6). 
The volume of this shell is the product of its surface area, 4irr2, and its thickness, dr.

dV = Airr2 dr.
Hence

\ifj\2 dV = |i/f|2477r2 dr 

and the radial probability distribution is

PT = 47rr2\if/\2. (39-6)

For the ground state of hydrogen, Pr becomes

r2 -2lPt = 4 —  e ro (39-7)

and is plotted in Fig. 39-7. The peak of the curve is the “most probable” value of r 
and occurs for r = r0, the Bohr radius, which we show in the following Example.

z

i
FIGURE 3 9 - 6  A  spherical shell of 
thickness dr, inner radius r, and 
outer radius r + dr. Its volume is dV =  47rr2 dr.
FIGURE 3 9 - 7  The radial 
probability distribution PT for the 
ground state of hydrogen, n =  1, ft = 0. The peak occurs at r = r0, 
the Bohr radius.

0 1 r0 2 r0 3 r0 4 r0
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Pr 
(n

m
-1

)

FIGURE 3 9 - 7  (Repeated.)
The radial probability distribution PT 
for the ground state of hydrogen, 
n = 1, ft = 0. The peak occurs at 
r = r0, the Bohr radius.

EXAMPLE 39-3 Most probable electron radius in hydrogen. Determine 
the most probable distance r from the nucleus at which to find the electron in the 
ground state of hydrogen.
APPROACH The peak of the curve in Fig. 39-7 corresponds to the most probable 
value of r. At this point the curve has zero slope, so we take the derivative of 
Eq. 39-7, set it equal to zero, and solve for r.
SOLUTION We find

r 8r2\  _2r ^
t  — r  )e °- fo 4  J

_1L
Since e r° goes to zero only at r = oo, it is the term in parentheses that must be zero:

2r r
8 ^  -  8 ^  = 0.

*o n
Therefore,

-3 r 4 r0 r0
or

r = r0.
The most probable radial distance of the electron from the nucleus according to 
quantum mechanics is at the Bohr radius, an interesting coincidence.

EXERCISE C Return to the first Chapter-Opening Question, page 1044, and answer it again 
now. Try to explain why you may have answered differently the first time.

Calculating probability. Determine the probability of finding 
the electron in the ground state of hydrogen within two Bohr radii of the nucleus.
APPROACH We need to integrate PT from r = 0 out to r = 2r0.
SOLUTION We want to find ,2

P = I |(b\2dV = I 4 ^  e“ ro dr.
f27-0 C2r0 2 _2r_

W  d v  = 4 - j  e~ r“ 
Jr = 0 JO r 0

We first make the substitution

x = 2 -  
ro

and then integrate by parts (j u d v  = uv — J v du) letting u = x2 and dv = e~x dx 
(and note that dx = 2 dr/r0, and the upper limit is x = 2(2r0)/r0 = 4):

P = |  J  x2e~x dx = \  - x 2e~x + |2 x e _xdx^|| .

The second term we also integrate by parts with u = 2x and dv = e~x dx:

x dx~^

= ( ~ ^ x 2 -  x -  l)e x
o

We evaluate this at x = 0 and at x = 4:
P = ( - 8  -  4 -  l)e~4 + e° = 0.76

or 76%. Thus the electron would be found 76% of the time within 2 Bohr radii of 
the nucleus and 24% of the time farther away.
NOTE This result depends on our wave function being properly normalized, which it 
is, as is readily shown by letting r —> oo and integrating over all space: J0°°|i//|2 dV = 1; 
that is, let the upper limit in the equation above be oo.
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I *A 20012 ■

Nucleus

(a) n = 2, £ = 0, mu = 0

n = 2,1 FIGURE 3 9 -8  (a) Electron cloud, or 
probability distribution, for n =  2, £ =  0 
state in hydrogen, (b) The radial 
probability distribution Pr for the n = 2, £ = 0 state in hydrogen.

(39-8)

The first excited state in hydrogen has n = 2. For £ = 0, the solution of the 
Schrodinger equation (Eq. 39-1) is a wave function that is again spherically symmetric:

*4o° = v k ? 0 i 2 ~ i
Figure 39-8a shows the probability distribution \if/2oo\2 and Fig. 39-8b shows* a plot 
of the radial probability distribution

1 r2 (

There are two peaks in this curve; the second, at r «  5r0, is higher and corresponds 
to the most probable value for r in the n = 2, £ = 0 state. We see that the 
electron tends to be somewhat farther from the nucleus in the n = 2, £ = 0 state 
than in the n = 1, £ = 0 state. (Compare to the Bohr model that gave r2 = 4r0.)

For the state with n = 2, £ = 1, there are three possible wave functions, 
corresponding to mt = +1, 0, or -1 :

7 r
^210 =

V 3 2 irrl

ii
x + iy --L- 7 e 2 r0

*̂ 21-1 —

V 6 4 ^ I
x — iy -

(39-9)

where i is the imaginary number i = y / —l .  These wave functions are not spheri- 
cally symmetric. The probability distributions, are shown in Fig. 39-9a, where 
we can see their directional orientation.

You may wonder how such non-spherically symmetric wave functions arise 
when the potential energy in the Schrodinger equation has spherical symmetry. 
Indeed, how could an electron select one of these states? In the absence of any 
external influence, such as a magnetic field in a particular direction, all three of 
these states are equally likely, and they all have the same energy. Thus an electron 
can be considered to spend one-third of its time in each of these states. The net 
effect, then, is the sum of these three wave functions squared:

I f e o P  +  1*̂ 21 lP  +  1*̂ 2 l  — l |2?

which is spherically symmetric, since x2 + y2 + z2 = r2. The radial probability 
distribution for this sum is shown in Fig. 39-9b.

Although the spatial distributions of the electron can be calculated for the various 
states, it is difficult to measure them experimentally. Indeed, most of the experimental 
information about atoms has come from a careful examination of the emission spectra 
under various conditions.

fJust as for a particle in a deep square well potential (see Figs. 38-9 and 38-10), the higher the energy, 
the more nodes there are in if/ and \if/\2 also for the H atom.

FIGURE 3 9 - 9  (a) The probability 
distribution for the three states with n =  2, £ =  1. (b) Radial probability 
distribution for the sum of the three 
states with n = 2 , £ = 1, and mu =  + 1, 0, or —1.

(b)
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TABLE 39-2 Ground-State 
Quantum Numbers

Helium, Z =  2

n £ m t m s

1 0 0 1
2

1 0 0 1
2

Lithium, Z =  3

n £ mt m s

1 0 0 1
2

1 0 0 1
2

2 0 0 1
2

Sodium, Z = 11
71 £ m t m s

1 0 0 1
2

1 0 0 1
2

2 0 0 1
2

2 0 0 1
2

2 1 1 1
2

2 1 1 1
2

2 1 0 1
2

2 1 0 1
2

2 1 - 1 1
2

2 1 - 1 1
2

3 0 0 1
2

3 9 -4  Complex Atoms; 
the Exclusion Principle

We have discussed the hydrogen atom in detail because it is the simplest to deal 
with. Now we briefly discuss more complex atoms, those that contain more than 
one electron. Their energy levels can be determined experimentally from an 
analysis of their emission spectra. The energy levels are not the same as in the 
H atom, since the electrons interact with each other as well as with the nucleus. Each 
electron in a complex atom still occupies a particular state characterized by the 
same quantum numbers n, £, raf , and ms. For atoms with more than one electron, 
the energy levels depend on both n and £.

The number of electrons in a neutral atom is called its atomic number, Z; 
Z is also the number of positive charges (protons) in the nucleus, and determines what 
kind of atom it is. That is, Z determines the fundamental properties that distinguish 
one type of atom from another.

Quantum mechanics in the years after 1925 proved successful also in dealing 
with complex atoms. The mathematics becomes very difficult, however, since in 
multi-electron atoms, each electron is not only attracted to the nucleus but is also 
repelled by the other electrons.

To understand the possible arrangements of electrons in an atom, a new principle 
was needed. It was introduced by Wolfgang Pauli (1900-1958; Fig. 38-2) and is 
called the Pauli exclusion principle. It states:

No two electrons in an atom can occupy the same quantum state.
Thus, no two electrons in an atom can have exactly the same set of the quantum 
numbers n, £, m t , and ms. The Pauli exclusion principle forms the basis not only 
for understanding complex atoms, but also for understanding molecules and 
bonding, and other phenomena as well.

Let us now look at the structure of some of the simpler atoms when they are 
in the ground state. After hydrogen, the next simplest atom is helium with two 
electrons. Both electrons can have n = 1, since one can have spin up (ms = +§) 
and the other spin down (ms = -  j), thus satisfying the exclusion principle. Since 
n = 1, then £ and mt must be zero (Table 39-1, p. 1047). Thus the two electrons 
have the quantum numbers indicated in Table 39-2.

Lithium has three electrons, two of which can have n = 1. But the third 
cannot have n = 1 without violating the exclusion principle. Hence the third electron 
must have n = 2. It happens that the n = 2, £ = 0 level has a lower energy than 
n = 2, £ = 1. So the electrons in the ground state have the quantum numbers 
indicated in Table 39-2. The quantum numbers of the third electron could also be, say, 
(n , £, raf , ms) = (3,1, -1 , )̂. But the atom in this case would be in an excited state 
since it would have greater energy. It would not be long before it jumped to the ground 
state with the emission of a photon. At room temperature, unless extra energy is 
supplied (as in a discharge tube), the vast majority of atoms are in the ground state.

We can continue in this way to describe the quantum numbers of each electron 
in the ground state of larger and larger atoms. The quantum numbers for sodium, 
with its eleven electrons, are shown in Table 39-2.

Figure 39-10 shows a simple energy level diagram where occupied states are 
shown as up or down arrows (ms = + \ or - | ) ,  and possible empty states are 
shown as a small circle.

n = 3,£ = 0 4 -

FIGURE 3 9 -1 0  Energy level diagram (not to 
scale) showing occupied states (arrows) and 
unoccupied states ( o  ) for the 
ground states of He, Li, and Na.
Note that we have shown the n =  2, £ = 1 level of Li even  
though it is empty. Helium (He, Z = 2)

n =  2 , £ = 1  oo oo oo 

ra = 2, £ = 0 | o

ra = 1, £ = 0 ra = 1, £ = 0
Lithium (Li, Z = 3)

n  =  2 j = l  t l l l t  

n = 2, £ = 0 --------

ra = 1, £ = 0 -(-(--------
Sodium (Na, Z =  11)
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The ground-state configuration for all atoms is given in the Periodic Table, 
which is displayed inside the back cover of this book, and discussed in the next 
Section.

I EXERCISE D Construct a Table of the ground-state quantum numbers for beryllium,
I Z  =  4 (like those in Table 39-2).

The exclusion principle applies to identical particles whose spin quantum 
number is a half-integer ( |, §, and so on), including electrons, protons, and neutrons; 
such particles are called fermions, after Enrico Fermi who derived a statistical 
theory describing them. A basic assumption is that all electrons are identical, 
indistinguishable one from another. Similarly, all protons are identical, all neutrons 
are identical, and so on. The exclusion principle does not apply to particles with 
integer spin (0,1, 2, and so on), such as the photon and ir meson, all of which are 
referred to as bosons (after Satyendranath Bose, who derived a statistical theory 
for them).

I
 EXERCISE E Return to the second Chapter-Opening Question, page 1044, and answer it 

again now. Try to explain why you may have answered differently the first time.

3 9 -5  Periodic Table o f Elements
More than a century ago, Dmitri Mendeleev (1834-1907) arranged the (then) 
known elements into what we now call the Periodic Table of the elements. The 
atoms were arranged according to increasing mass, but also so that elements with 
similar chemical properties would fall in the same column. Today’s version is 
shown inside the back cover of this book. Each square contains the atomic number 
Z, the symbol for the element, and the atomic mass (in atomic mass units). Finally, 
the lower left corner shows the configuration of the ground state of the atom. This 
requires some explanation. Electrons with the same value of n are referred to as 
being in the same shell. Electrons with n = 1 are in one shell (the K shell), those 
with n = 2 are in a second shell (the L shell), those with n = 3 are in the third (M) 
shell, and so on. Electrons with the same values of n and £ are referred to as 
being in the same subshell. Letters are often used to specify the value of £ as 
shown in Table 39-3. That is, £ = 0 is the s subshell; £ = 1 is the p  subshell; 
£ = 2 is the d subshell; beginning with £ = 3, the letters follow the alphabet, / ,  g, 
h, i, and so on. (The first letters s, p, d, and /  were originally abbreviations 
of “sharp,” “principal,” “diffuse,” and “fundamental,” experimental terms referring 
to the spectra.)

The Pauli exclusion principle limits the number of electrons possible in 
each shell and subshell. For any value of £, there are 2£ + 1 possible mt 
values (ra* can be any integer from 1 to £, from -1  to -£, or zero), and two 
possible ms values. There can be, therefore, at most 2{2£ + 1) electrons in any 
£ subshell. For example, for £ = 2, five mt values are possible (2, 1, 0, -1 , -2 ) , 
and for each of these, ms can be + \ or for a total of 2(5) = 10 states. 
Table 39-3 lists the maximum number of electrons that can occupy each 
subshell.

Since the energy levels depend almost entirely on the values of n and £, 
it is customary to specify the electron configuration simply by giving the 
n value and the appropriate letter for £, with the number of electrons in each 
subshell given as a superscript. The ground-state configuration of sodium, for 
example, is written as 1 s22s22 p ^sx. This is simplified in the Periodic Table by 
specifying the configuration only of the outermost electrons and any other 
nonfilled subshells (see Table 39-4 here, and the Periodic Table inside the 
back cover).

TABLE 39-3 Value off

Value
off

Letter
Symbol

Maximum 
Number of 
Electrons in 

Subshell

0 s 2
1 P 6
2 d 10
3 f 14
4 g 18
5 h 22

TABLE 39-4 
Electron Configuration 
of Some Elements

Ground
State

Z Configuration
(Number of (outer
Electrons) Element  ̂ electrons)

1 H Is1
2 H e Is2
3 Li 2s1
4 Be 2 s2
5 B 2s12p1
6 C 2s22pz
7 N 2s22p3
8 O 2s12p4
9 F 2s22p5

10 N e 2s22p6
11 Na 3 s1
12 Mg 3 s2
13 A1 3s23pl
14 Si 3s23p2
15 P 3s23p3
16 S 3s23p4
17 Cl 3s23p5
18 Ar 3s23p6
19 K 4 s1
20 Ca 4s2
21 Sc 3d14s2
22 Ti 3d24s2
23 V 3d34s2
24 Cr 3d54s1
25 Mn 3d54s2
26 Fe 3d64s2

t Names of elements can be found in 
Appendix F.
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CONCEPTUAL EXAMPLE 59-5 I Electron configurations. Which of the following 
electron configurations are possible, and which are not: (a) ls22s22p63s3;
(b) \s22s22pe3s23p54s2; (c) 1 s ^ s ^ p ^ d 1?
RESPONSE (a) This is not allowed, because too many electrons (three) are shown 
in the s subshell of the M (n = 3) shell. The s subshell has mt = 0, with two 
slots only, for “spin up” and “spin down” electrons. (b) This is allowed, but it is an 
excited state. One of the electrons from the 3p subshell has jumped up to the 4s 
subshell. Since there are 19 electrons, the element is potassium, (c) This is not 
allowed, because there is no d (£ = 2) subshell in the n = 2 shell (Table 39-1). 
The outermost electron will have to be (at least) in the n = 3 shell.

| EXERCISE F Write the complete ground-state configuration for gallium, with its 31 electrons.

The grouping of atoms in the Periodic Table is according to increasing atomic 
number, Z. There is also a strong regularity according to chemical properties. 
Although this is treated in chemistry textbooks, we discuss it here briefly because 
it is a result of quantum mechanics. See the Periodic Table inside the back cover.

All the noble gases (in column VIII of the Periodic Table) have completely 
filled shells or subshells. That is, their outermost subshell is completely full, and the 
electron distribution is spherically symmetric. With such full spherical symmetry, 
other electrons are not attracted nor are electrons readily lost (ionization energy is 
high). This is why the noble gases are chemically inert (more on this when we 
discuss molecules and bonding in Chapter 40). Column VII contains the halogens, 
which lack one electron from a filled shell. Because of the shapes of the orbits (see 
Section 40-1), an additional electron can be accepted from another atom, and 
hence these elements are quite reactive. They have a valence of -1 , meaning that 
when an extra electron is acquired, the resulting ion has a net charge of - le .  
Column I of the Periodic Table contains the alkali metals, all of which have a single 
outer s electron. This electron spends most of its time outside the inner closed 
shells and subshells which shield it from most of the nuclear charge. Indeed, it is 
relatively far from the nucleus and is attracted to it by a net charge of only about 
+le, because of the shielding effect of the other electrons. Hence this outer 
electron is easily removed and can spend much of its time around another atom, 
forming a molecule. This is why the alkali metals are chemically active and have a 
valence of +1. The other columns of the Periodic Table can be treated similarly.

The presence of the transition elements in the center of the Table, as well as the 
lanthanides (rare earths) and actinides below, is a result of incomplete inner shells. 
For the lowest Z elements, the subshells are filled in a simple order: first Is, then 2s, 

/ j \  CAUTI ON followed by 2p, 3s, and 3p. You might expect that 3d (n = 3, i  = 2) would be filled
Subshells are not always next, but it isn’t. Instead, the 45 level actually has a slightly lower energy than the 3d 

filled in “order” (due to electrons interacting with each other), so it fills first (K and Ca). Only then 
does the 3d shell start to fill up, beginning with Sc, as can be seen in Table 39-4. (The 
4s and 3d levels are close, so some elements have only one As electron, such as Cr.) 
Most of the chemical properties of these transition elements are governed by the 
relatively loosely held 4s electrons, and hence they usually have valences of +1 or 
+2. A similar effect is responsible for the lanthanides and actinides, which are shown 
at the bottom of the Periodic Table for convenience. All have very similar chemical 
properties, which are determined by their two outer 65 or Is electrons, whereas the 
different numbers of electrons in the unfilled inner shells have little effect.

3 9 -6  X-Ray Spectra and Atomic Number
The line spectra of atoms in the visible, UV, and IR regions of the EM spectrum are 
mainly due to transitions between states of the outer electrons. Much of the charge 
of the nucleus is shielded from these electrons by the negative charge on the inner 
electrons. But the innermost electrons in the n = 1 shell “see” the full charge of the 
nucleus. Since the energy of a level is proportional to Z 2 (see Eq. 37-14), for an 
atom with Z = 50, we would expect wavelengths about 502 = 2500 times shorter 
than those found in the Lyman series of hydrogen (around 100 nm), or 10 2 to 
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X-rays are produced when electrons accelerated by a high voltage strike the 
metal target inside the X-ray tube (Section 35-10). If we look at the spectrum of 
wavelengths emitted by an X-ray tube, we see that the spectrum consists of two 
parts: a continuous spectrum with a cutoff at some A0 which depends only on 
the voltage across the tube, and a series of peaks superimposed. A typical 
example is shown in Fig. 39-11. The smooth curve and the cutoff wavelength A0 
move to the left as the voltage across the tube increases. The sharp lines or peaks 
(labeled Ka and in Fig. 39-11), however, remain at the same wavelength 
when the voltage is changed, although they are located at different wavelengths 
when different target materials are used. This observation suggests that the peaks 
are characteristic of the target material used. Indeed, we can explain the peaks by 
imagining that the electrons accelerated by the high voltage of the tube can 
reach sufficient energies that when they collide with the atoms of the target, 
they can knock out one of the very tightly held inner electrons. Then we explain 
these characteristic X-rays (the peaks in Fig. 39-11) as photons emitted when an 
electron in an upper state drops down to fill the vacated lower state. The 
K lines result from transitions into the K shell (n = 1). The Ka line consists of 
photons emitted in a transition that originates from the n = 2 (L) shell and 
drops to the n = 1 (K) shell, whereas the line reflects a transition from 
the n = 3 (M) shell down to the K shell. An L line, on the other hand, is due to 
a transition into the L shell, and so on.

Measurement of the characteristic X-ray spectra has allowed a determination 
of the inner energy levels of atoms. It has also allowed the determination of 
Z values for many atoms, since (as we have seen) the wavelength of the shortest 
characteristic X-rays emitted will be inversely proportional to Z 2. Actually, for an 
electron jumping from, say, the n = 2 to the n = 1 level (Ka line), the wavelength 
is inversely proportional to (Z -  l ) 2 because the nucleus is shielded by the one 
electron that still remains in the Is level. In 1914, H. G. J. Moseley (1887-1915) 
found that a plot of V l/A  vs. Z produced a straight line, Fig. 39-12 where A is the 
wavelength of the Ka line. The Z values of a number of elements were determined 
by fitting them to such a Moseley plot. The work of Moseley put the concept of 
atomic number on a firm experimental basis.

EXAMPLE 39-6 X-ray wavelength. Estimate the wavelength for an n = 2 
to n = 1 transition in molybdenum (Z = 42). What is the energy of such 
a photon?

APPROACH We use the Bohr formula, Eq. 37-15 for 1/A, with Z 2 replaced by 
(Z -  l ) 2 = (41 )2.
SOLUTION Equation 37-15 gives

1 ( e4m \  „/ 1 1
A \8e20h3c ) {Z  1 } \ n '2 n2 

where n = 2 and n' = 1. We substitute in values

So

i  = (1.097 X lO’ nT1) (41)2( ^  J = 1.38 X IO10 m_1.

A = ------------ ------7 = 0.072 nm.

This is close to the measured value (Fig. 39-11) of 0.071 nm. Each of these 
photons would have energy (in eV) of:

he (6.63 X 10-34 J*s)(3.00 X 108 m/s)
E = h f = —  = t ------------„ w A---------- -— -^r = 17 keV.

A (7.2 X 10 m)(l.60 X 10 J/eV)

The denominator includes the conversion factor from joules to eV.

Wavelength, A (nm)

FIGURE 3 9 -1 1  Spectrum of 
X-rays emitted from a molybdenum  
target in an X-ray tube operated at 
50 kV.

FIGURE 3 9 -1 2  Plot of V l / I  vs. Z  
for Ka X-ray lines.

Z
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Wavelength, A (nm)

FIGURE 3 9 -1 1  (Repeated.) 
Spectrum of X-rays emitted from a 
molybdenum target in an X-ray tube 
operated at 50 kV.

Photon

K'

FIGURE 3 9 -1 3  Bremsstrahlung 
photon produced by an electron  
decelerated by interaction with a 
target atom.

EXAMPLE 39-7 Determining atomic number. High-energy electrons are 
used to bombard an unknown material. The strongest peak is found for X-rays 
emitted with an energy of 66.3 keV. Guess what the material is.
APPROACH The highest intensity X-rays are generally for the Ka line (see 
Fig. 39-11) which occurs when high-energy external electrons knock out K shell 
electrons (the innermost orbit, n = 1) and their place is taken by electrons from 
the L shell (n = 2). We use the Bohr model, and assume the electrons “see” a 
nuclear charge of Z -  1 (screened by one electron).
SOLUTION The hydrogen transition n = 2 to n = 1 would yield about 10.2 eV 
(see Fig. 37-26 or Example 37-13). Energy E  is proportional to Z 2 (Eq. 37-14), 
or rather (Z -  l ) 2 because the nucleus is shielded by the one electron in a Is 
state (see above), so we can use ratios:

(Z -  l ) 2 66.3 X 103 eV
P 10.2 , V  ■ “ " »

so Z -  1 = V6500 = 81, and Z = 82, which makes it lead.

Now we briefly analyze the continuous part of an X-ray spectrum (Fig. 39-11) 
based on the photon theory of light. When electrons strike the target, they collide 
with atoms of the material and give up most of their energy as heat (about 99%, so 
X-ray tubes must be cooled). Electrons can also give up energy by emitting a 
photon: an electron decelerated by interaction with atoms of the target (Fig. 39-13) 
emits radiation because of its deceleration (Chapter 31), and in this case it is called 
bremsstrahlung (German for “braking radiation”). Because energy is conserved, 
the energy of the emitted photon, h f, must equal the loss of kinetic energy of the 
electron, AK = K  -  K ', so 

h f = A K.
An electron may lose all or a part of its energy in such a collision. The continuous 
X-ray spectrum (Fig. 39-11) is explained as being due to such bremsstrahlung 
collisions in which varying amounts of energy are lost by the electrons. The 
shortest-wavelength X-ray (the highest frequency) must be due to an electron 
that gives up all its kinetic energy to produce one photon in a single collision. 
Since the initial kinetic energy of an electron is equal to the energy given it by the 
accelerating voltage, V, then K  = eV. In a single collision in which the electron is 
brought to rest (K ' = 0), then AK  = eV and 

hf0 = eV.
We set / 0 = c/A0 where A0 is the cutoff wavelength (Fig. 39-11) and find

K  = ~  (39-10)

This prediction for A0 corresponds precisely with that observed experimentally. 
This result is further evidence that X-rays are a form of electromagnetic radiation 
(light)1 and that the photon theory of light is valid.

Cutoff wavelength. What is the shortest-wavelength X-ray 
photon emitted in an X-ray tube subjected to 50 kV?
APPROACH The electrons striking the target will have a kinetic energy of
50 keV. The shortest-wavelength photons are due to collisions in which all of the
electron’s kinetic energy is given to the photon so K = eV = hf0.
SOLUTION From Eq. 39-10,

he (6.63 X IO”34 J • s) (3.0 X 108 m/s)
Ao =  -T7 =  —r r -------------r - ^ - L  =  2.5 X 10 m,

eV (1.6 X 10 C) (5.0 X 10 V)
or 0.025 nm.
NOTE This result agrees well with experiment, Fig. 39-11.

fIf X-rays were not photons but rather neutral particles with mass m, Eq. 39-10 would not hold.
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*39—7 Magnetic Dipole Moment; 
Total Angular Momentum

* Magnetic Dipole Moment and the Bohr Magneton
An electron orbiting the nucleus of an atom can be considered as a current loop, 
classically, and thus might be expected to have a magnetic dipole moment as 
discussed in Chapter 27. Indeed, in Example 27-12 we did a classical calculation of 
the magnetic dipole moment of the electron in the ground state of hydrogen 
based, essentially, on the Bohr model, and found it to give

|jl =  IA  =  \evr.

Here v is the orbital velocity of the electron, and for a particle moving in a circle 
of radius r, its angular momentum is

L = mvr.

So we can write

1 e T|JL = —---L.2 m

The direction of the angular momentum L is perpendicular to the plane of the 
current loop. So is the direction of the magnetic dipole moment vector pi, although 
in the opposite direction since the electron’s charge is negative. Hence we can 
write the vector equation

<»-U >

This rough semiclassical derivation was based on the Bohr theory. The same 
result (Eq. 39-11) is obtained using quantum mechanics. Since L is quantized in 
quantum mechanics, the magnetic dipole moment, too, must be quantized. The 
magnitude of the dipole moment is given by (see Eq. 39-3)

,  -  g v ^ T T ) .

When a magnetic dipole moment is in a magnetic field B, it experiences a 
torque as we saw in Section 27-5, and the potential energy U of such a system 
depends on B and the orientation of pi relative to B (Eq. 27-12):

U = -jOLB.

If the magnetic field B is in the z direction, then

U = ~[lz Bz

and from Eq. 39-4 (L z = meh) and Eq. 39-11, we have 
eh

Hz = - ^ r n ,

(Be careful here not to confuse the electron mass m with the magnetic quantum 
number, mf .) It is useful to define the quantity

I* = £  (39-12)

which is called the Bohr magneton and has the value jjlb =  9.27 X 10_24J/T  
(joule/tesla). Then we can write

\lz =  — |jlb mi, ( 3 9 -1 3 )

where mt has integer values from 0 to + £ (see Table 39-1). An atom placed in a 
magnetic field would have its energy split into levels that differ by A.U = [lbB; 
this is the Zeeman effect, and was shown in Fig. 39-4.
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FIGURE 3 9 -1 4  The Stern-Gerlach 
experiment, which is done inside a 
vacuum chamber.

* Stern-Gerlach Experiment and the g-Factor for Electron Spin
The first evidence of this space quantization (Section 39-2) came in 1922 in a 
famous experiment known as the Stern-Gerlach experiment. Silver atoms (and 
later others) were heated in an oven from which they escaped as shown in 
Fig. 39-14. The atoms were made to pass through a collimator, which eliminated

all but a narrow beam. The beam then passed into a nonhomogeneous magnetic 
field. The field was deliberately made nonhomogeneous so that it would exert a 
force on atomic magnetic moments: remember that the potential energy (in this 
case -  pi-B) must change in space if there is to be a force (Fx = —dU/dx, etc., 
Section 8-2). If B has a gradient along the z axis, as in Fig. 39-14, then the force is 
along z:

„ dU _  dBz
dz ^  dz '

Thus the silver atoms would be deflected up or down depending on the value of |jl 
for each atom. Classically, we would expect to see a continuous distribution on the 
viewing screen, since we would expect the atoms to have randomly oriented 
magnetic moments. But Stern and Gerlach saw instead two distinct lines for silver 
(and for other atoms sometimes more than two lines). These observations were the 
first evidence for space quantization, though not fully explained until a few years 
later. If the lines were due to orbital angular momentum, there should have been 
an odd number of them, corresponding to the possible values of (since 
jjl £ = — |xBmf). For £ = 0, there is only one possibility, me = 0. For £ = l ,m e 
can be 1,0, or -1 , and we would expect three lines, and so on. Why there are only 
two lines was eventually explained by the concept of electron spin. With a spin of 

the electron spin can have only two orientations in space, as we saw in Fig. 39-5. 
Hence a magnetic dipole moment associated with spin would have only two 
positions. Thus, the two states for silver seen in the Stern-Gerlach experiment must 
be due to the spin of its one valence electron. Silver atoms must thus have zero 
orbital angular momentum but a total spin of \  due to this one valence electron. 
(Of silver’s 47 electrons, the spins of the first 46 cancel.) For the H atom in its 
ground state, again only two lines were seen on the screen of Fig. 39-14: due to the 
spin \  of its electron since the orbital angular momentum is zero.

The Stern-Gerlach deflection is proportional to the magnetic dipole moment, 
jjlz , and for a spin \  particle we expect |jlz = - \ i Bms = -Qj)(eh/2m) as for the 
case of orbital angular momentum, Eq. 39-13. Instead, |xz for spin was found to be 
about twice as large:

Iiz = -g |xBms, [electron spin] (39-14)

where g, called the g-factor or gyromagnetic ratio, has been measured to be 
slightly larger than 2: g = 2.0023 • • • for a free electron. This unexpected factor of 
(about) 2 clearly indicates that spin cannot be viewed as a classical angular 
momentum. It is a purely quantum-mechanical effect. Equation 39-14 is the same 
as Eq. 39-13 for orbital angular momentum with ms replacing ra*. But for the 
orbital case, g = 1.
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* Total Angular Momentum J
An atom can have both orbital and spin angular momenta. For example, in the 2p 
state of hydrogen £ = 1 and s = \ .  In the 4d state, 1 = 2 and s = \ . The total 
angular momentum is the vector sum of the orbital angular momentum L and the 
spin S:

J = L  + S.

According to quantum mechanics, the magnitude of the total angular momentum J 
is quantized:

J  = V j(j  + 1) h. (39-15)

For the single electron in the H atom, quantum mechanics gives the result that j  
can be

j  = £ + s = £ + \

j  = l -  s = l -  I

but never less than zero, just as for £ and s. For the Is state, £ = 0 and j  = \  is 
the only possibility. For p  states, say the 2p state, £ = 1 and j  can be either § or \ . 
The z component for j  is quantized in the usual way:

mj = j , i  ~  1

For a 2p state with j  = \ , m;- can be \  or -  \ ; for j  = §, ra;- can be §, \ , -  \ , - 1, 
for a total of four states. Note that the state of a single electron can be specified 
by giving n, £, mt ,m s, or by giving n, j, £, mj (only one of these descriptions at a 
time).

EXERCISE G What are the possibilities for j in the 3d state of hydrogen? (a) §, \; (b) §, §, \;
( c ) I , l , l , i ; ( ^ ) l , l ; ( e ) I , | .

The interaction of magnetic fields with atoms, as in the Zeeman effect and 
the Stern-Gerlach experiment, involves the total angular momentum. Thus the 
Stern-Gerlach experiment on H atoms in the ground state shows two lines (for 
mj = + \ and - 1), but for the first excited state it shows four lines corresponding 
to the four possible ra;- values (§, \ , -  \ , -  §).

* Spectroscopic Notation
We can specify the state of an atom, including the total angular momentum 
quantum number j , using the following spectroscopic notation. For a single electron 
state we can write

nLj,

where the value of L  (the orbital quantum number) is specified using the same 
letters as in Table 39-3, but in upper case:

L = 0 1 2 3 4 - - .  
letter = S P D F G •••.

So the 2P3/2 state has n = 2, £ = 1, j  = §> whereas lS1/2 specifies the ground state 
in hydrogen.
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* Fine Structure; Spin-Orbit Interaction
A magnetic effect also produces the fine structure splitting mentioned in 
Section 39-2, but it occurs in the absence of any external field. Instead, it is 
due to a magnetic field produced by the atom itself. We can see how it occurs 
by putting ourselves in the reference frame of the electron, in which case we 
see the nucleus revolving about us as a moving charge or electric current that 
produces a magnetic field, Bn. The electron has an intrinsic magnetic dipole 
moment (Eq. 39-14) and hence its energy will be altered by an amount 
(Eq. 27-12)

AU = - f i s • Bn.

Since |xs takes on quantized values according to the values of ms, the energy of a 
single electron state will split into two closely spaced energy levels (for ms = +\ 
and - 1). This tiny splitting of energy levels produces a tiny splitting in spectral 
lines. For example, in the H atom, the 2P —> IS transition is split into two lines 
corresponding to 2P1/2 —» lS1/2 and 2P3/2 —> lS1/2. The difference in energy 
between these two is only about 5 X 10“5 eV, which is very small compared to the 
2P —» IS transition energy of 13.6 eV -  3.4 eV = 10.2 eV.

The magnetic field Bn produced by the orbital motion is proportional to the 
orbital angular momentum L, and since |jL5 is proportional to the spin S, then 
A U = -  • Bn can be written

At/ oc L • S.

This interaction, which produces the fine structure, is thus called the spin-orbit 
interaction. Its magnitude is related to a dimensionless constant known as the fine 
structure constant,

2 enhc
1

137

One
photon

absorbed

Two
photons
emitted

FIGURE 3 9 -1 5  Fluorescence.

FIGURE 3 9 -1 6  When U V  light (a 
range of wavelengths) illuminates 
these various “fluorescent” rocks, 
they fluoresce in the visible region 
of the spectrum.

which also appears elsewhere in atomic physics.

3 9 —8 Fluorescence and Phosphorescence
When an atom is excited from one energy state to a higher one by the absorption 
of a photon, it may return to the lower level in a series of two (or more) jumps if 
there is an energy level in between (Fig. 39-15). The photons emitted will 
consequently have lower energy and frequency than the absorbed photon. When 
the absorbed photon is in the UV and the emitted photons are in the visible region 
of the spectrum, this phenomenon is called fluorescence (Fig. 39-16).

The wavelength for which fluorescence will occur depends on the energy levels 
of the particular atoms. Because the frequencies are different for different substances, 
and because many substances fluoresce readily, fluorescence is a powerful tool for 
identification of compounds. It is also used for assaying—determining how much of a 
substance is present—and for following substances along a natural pathway as in 
plants and animals. For detection of a given compound, the stimulating light must be 
monochromatic, and solvents or other materials present must not fluoresce in the 
same region of the spectrum. Sometimes the observation of fluorescent light being 
emitted is sufficient to detect a compound. In other cases, spectrometers are used to 
measure the wavelengths and intensities of the emitted light.

Fluorescent lightbulbs work in a two-step process. The applied voltage 
accelerates electrons that strike atoms of the gas in the tube and cause them to be 
excited. When the excited atoms jump down to their normal levels, they emit UV 
photons which strike a fluorescent coating on the inside of the tube. The light we 
see is a result of this material fluorescing in response to the UV light striking it.
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Materials such as those used for luminous watch dials are said to be 
phosphorescent. When an atom is raised to a normal excited state, it drops back 
down w ithin about 10“8 s. In phosphorescent substances, atoms can be excited by 
photon absorption to energy levels, called metastable, which are states that last 
much longer because to jump down is a “ forbidden” transition as discussed in 
Section 39-2. Metastable states can last even a few seconds or longer. In a collection 
of such atoms, many of the atoms w ill descend to the lower state fa irly soon, but 
many w ill remain in the excited state for over an hour. Hence light w ill be emitted 
even after long periods. When you put your luminous watch dial close to a bright 
lamp, many atoms are excited to metastable states, and you can see the glow for a 
long time afterward.

3 9 —9 Lasers
A  laser is a device that can produce a very narrow intense beam of monochromatic 
coherent light. (By coherent, we mean that across any cross section of the beam, all 
parts have the same phase.) The emitted beam is a nearly perfect plane wave. An 
ordinary light source, on the other hand, emits light in all directions (so the intensity 
decreases rapidly with distance), and the emitted light is incoherent (the different 
parts of a beam are not in phase with each other). The excited atoms that emit the 
light in an ordinary lightbulb act independently, so each photon emitted can be 
considered as a short wave train that lasts about 10 8 s. D ifferent wave trains bear 
no phase relation to one another. Just the opposite is true of lasers.

The action of a laser is based on quantum theory. We have seen that a photon 
can be absorbed by an atom if  (and only if) the photon energy h f  corresponds to the 
energy difference between an occupied energy level of the atom and an available 
excited state, Fig. 39-17a. I f  the atom is already in the excited state, it may of 
course jump down spontaneously (i.e., no apparent stimulus) to the lower state with 
the emission of a photon. However, if  a photon with this same energy strikes the 
excited atom, it can stimulate the atom to make the transition sooner to the lower 
state, Fig. 39-17b. This phenomenon is called stimulated emission: not only do 
we still have the original photon, but also a second one of the same frequency as a 
result of the atom’s transition. These two photons are exactly in phase, and they 
are moving in the same direction. This is how coherent light is produced in a laser. 
Hence the name “ laser,” which is an acronym for Light Am plification by 
Stimulated Emission of Radiation.

The natural population in energy states of atoms in thermal equilibrium at any 
temperature T  (in K) is given by the Boltzmann distribution (or Boltzmann factor):

hf

(a) hf = Eu-  En

¥

(b) hf = Eu-E i

FIGURE 39-17 (a) Absorption of a 
photon, (b) Stimulated emission.
Eu and Ee refer to “upper” and 
“lower” energy states.

Nn =  Ce~ (39-16a)

where Nn is the number of atoms in the state w ith energy En. For two states n and 
n \  the ratio o f the number of atoms in the two states is

Nn
N„.

=  e kT (39-16b)

Thus most atoms are in the ground state unless the temperature is very high. In 
the two-level system of Fig. 39-17, most atoms are normally in the lower state, so 
the m ajority o f incident photons w ill be absorbed. In  order to obtain the coherent 
light from stimulated emission, two conditions must be satisfied. First, atoms must 
be excited to the higher state, so that an inverted population is produced, one in 
which more atoms are in the upper state than in the lower one (Fig. 39-18). Then 
emission o f photons w ill dominate over absorption. Hence the system w ill not be 
in thermal equilibrium. And second, the higher state must be a metastable state— 
a state in which the electrons remain longer than usual* so that the transition to 
the lower state occurs by stimulated emission rather than spontaneously. (How 
inverted populations are created w ill be discussed shortly.)

fAn atom excited to such a state can jump to a lower state only by a so-called forbidden transition 
(discussed in Section 39-2), which is why the lifetime is longer than normal.

FIGURE 39-18 Two energy levels 
for a collection of atoms. Each dot 
represents the energy state of one 
atom, (a) A normal situation; (b) an 
inverted population.

Normal
population

(a)

Inverted
population

(b)
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FIGURE 39-19 Laser diagram, 
showing excited atoms stimulated to 
emit light.

Partially
transparent
mirror

Laser
output
beam

E\ (metastable)

FIGURE 39-20 Energy levels of 
chromium in a ruby crystal. Photons 
of energy 2.2 eV “pump” atoms from 
Eq to E2, which then decay to 
metastable state E\ . Lasing action 
occurs by stimulated emission of 
photons in transition from E\ to Eq .

FIGURE 39-21 Energy levels for 
He and Ne. He is excited in the 
electric discharge to the E\ state. 
This energy is transferred to the E3 
level of the Ne by collision. E3 is 
metastable and decays to E'2 by 
stimulated emission.

Collision
Helium

Figure 39-19 is a schematic diagram of a laser: the “ lasing” material is placed 
in a long narrow tube at the ends of which are two mirrors, one of which is 
partially transparent (transmitting perhaps 1 or 2%). Some of the excited atoms 
drop down fa irly soon after being excited. One of these is the blue atom shown on 
the far le ft in Fig. 39-19. I f  the emitted photon strikes another atom in the excited 
state, it stimulates this atom to emit a photon of the same frequency, moving in the 
same direction, and in phase  w ith it. These two photons then move on to strike 
other atoms causing more stimulated emission. As the process continues, the 
number of photons multiplies. When the photons strike the end mirrors, most are 
reflected back, and as they move in the opposite direction, they continue to stimu­
late more atoms to emit photons. As the photons move back and forth between the 
mirrors, a small percentage passes through the partially transparent m irror at one 
end. These photons make up the narrow coherent external laser beam.

Inside the tube, some spontaneously emitted photons w ill be emitted at an 
angle to the axis, and these w ill merely go out the side of the tube and not affect the 
narrowness of the main beam. In  a well-designed laser, the spreading of the beam is 
lim ited only by diffraction, so the angular spread is «  A/D  (see Eq. 35-1 or 35-10), 
where D  is the diameter of the end mirror. The diffraction spreading can be incredibly 
small. The light energy, instead of spreading out in space as it does for an 
ordinary light source, can be a pencil-thin beam.

Creating an Inverted Population
The excitation of the atoms in a laser can be done in several ways to produce 
the necessary inverted population. In  a ruby laser, the lasing m aterial is a ruby 
rod consisting of A120 3 w ith a small percentage o f aluminum (A l) atoms 
replaced by chromium (Cr) atoms. The Cr atoms are the ones involved in lasing. 
In  a process called optical pumping, the atoms are excited by strong flashes of 
light of wavelength 550 nm, which corresponds to a photon energy of 2.2 eV. 
As shown in Fig. 39-20, the atoms are excited from  state E0 to state E2. The 
atoms quickly decay either back to E0 or to the intermediate state E1, which is 
metastable w ith a lifetim e of about 3 X IO-3 s (compared to 10-8 s fo r ordinary 
levels). W ith strong pumping action, more atoms can be found in the E1 state 
than are in the E0 state. Thus we have the inverted population needed fo r lasing. 
As soon as a few atoms in the E x state jump down to E0, they emit photons that 
produce stimulated emission of the other atoms, and the lasing action begins. A  
ruby laser thus emits a beam whose photons have energy 1.8 eV and a wave­
length of 694.3 nm (or “ ruby-red” light).

In a helium-neon (He-Ne) laser, the lasing material is a gas, a mixture of about 
85% He and 15% Ne. The atoms are excited by applying a high voltage to the tube so 
that an electric discharge takes place within the gas. In the process, some of the He 
atoms are raised to the metastable state E  ̂ shown in Fig. 39-21, which corresponds 
to a jump of 20.61 eV, almost exactly equal to an excited state in neon, 20.66 eV. The 
He atoms do not quickly return to the ground state by spontaneous emission, but 
instead often give their excess energy to a Ne atom when they collide— see 
Fig. 39-21. In such a collision, the He drops to the ground state and the Ne atom is 
excited to the state E '3 (the prime refers to neon states). The slight difference in 
energy (0.05 eV) is supplied by the kinetic energy of the moving atoms. In this 
manner, the E 3 state in Ne— which is metastable— becomes more populated than 
the E 2 level. This inverted population between E 3 and E 2 is what is needed for lasing.
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Very common now are semiconductor diode lasers, also called pn junction lasers,
which utilize an inverted population of electrons between the conduction band of the 
n side of the diode and the lower-energy valence band of the p  side (Sections 40-7 to
40-9). When an electron jumps down, a photon can be emitted, which in turn can 
stimulate another electron to make the transition and emit another photon, in 
phase. The needed mirrors (as in Fig. 39-19) are made by the polished ends of the 
pn  crystal. Semiconductor lasers are used in CD and DVD players (see below), and 
in many other applications.

Other types of laser include: chemical lasers, in which the energy input comes 
from the chemical reaction of highly reactive gases; dye lasers, whose frequency 
is tunable; C 02 gas lasers, capable of high-power output in the infrared; and 
rare-earth solid-state lasers such as the high-power Nd:YAG laser.

The excitation of the atoms in a laser can be done continuously or in pulses. In 
a pulsed laser, the atoms are excited by periodic inputs of energy. In a continuous 
laser, the energy input is continuous: as atoms are stimulated to jump down to the 
lower level, they are soon excited back up to the upper level so the output is a 
continuous laser beam.

No laser is a source of energy. Energy must be put in, and the laser converts a / j \  C A U T I ON______
part of it into an intense narrow beam output. Laser not an energy source

* Applications
The unique feature of light from a laser, that it is a coherent narrow beam, has p h y s i c s  a p p l i e d
found many applications. In everyday life, lasers are used as bar-code readers (at pyD  and CD players 
store checkout stands) and in compact disc (CD) and digital video disc (DVD) barcodes 
players. The laser beam reflects off the stripes and spaces of a bar code, and 
off the tiny pits of a CD or DVD as shown in Fig. 39-22a. The recorded informa­
tion on a CD or DVD is a series of pits and spaces representing Os and Is (or “ o ff” 
and “ on” ) of a binary code that is decoded electronically before being sent to 
the audio or video system. The laser of a CD player starts reading at the inside 
of the disc which rotates at about 500 rpm at the start. As the disc rotates, the 
laser follows the spiral track (Fig. 39-22b), and as it moves outward the disc must 
slow down because each successive circumference (C = 2irr) is slightly longer 
as r increases; at the outer edge, the disc is rotating about 200 rpm. A  1-hour CD 
has a track roughly 5 km long; the track width is about 1600 nm (= 1.6 /jlm) and the 
distance between pits is about 800 nm. DVDs contain much more information.
Standard DVDs use a thinner track (0.7 jum) and shorter p it length (400 nm). New 
high-definition DVDs use a “blue” laser with a short wavelength (405 nm) and 
narrower beam, allowing a narrower track (0.3 fim) that can store much more data 
for high definition. DVDs can also have two layers, one below the other. When 
the laser focuses on the second layer, the light passes through the semitransparent 
surface layer. The second layer may start reading at the outer edge instead of inside.
DVDs can also have a single or double layer on both surfaces of the disc.

FIGURE 39-22 (a) Reading a CD (or 
DVD). The fine beam of a laser, focused 
even more finely with lenses, is directed at 
the undersurface of a rotating compact disc. 
The beam is reflected back from the areas 
between pits but reflects much less from 
pits. The reflected light is detected as shown, 
reflected by a half-reflecting mirror MS. The 
strong and weak reflections correspond to 
the 0  s and Is of the binary code representing 
the audio or video signal, (b) A laser follows 
the CD track which starts near the center 
and spirals outward.
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P H Y S I C S  A P P L I E D
Medical and other uses of lasers

« A' >
FIGURE 39-23
in eye surgery.

Laser being used

© . P H Y S I C S  A P P L I E D
Holography

Lasers are a useful surgical tool. The narrow intense beam can be used to 
destroy tissue in a localized area, or to break up gallstones and kidney stones. 
Because of the heat produced, a laser beam can be used to “weld” broken tissue, 
such as a detached retina, Fig. 39-23, or to mold the cornea of the eye (by vaporizing 
tiny bits of material) to correct myopia and other eye defects (LASIK surgery). The 
laser beam can be carried by an optical fiber (Section 32-7) to the surgical point, 
sometimes as an additional fiber-optic path on an endoscope (again Section 32-7). 
An example is the removal of plaque clogging human arteries. Tiny organelles within 
a living cell have been destroyed using lasers by researchers studying how the 
absence of that organelle affects the behavior of the cell. Laser beams are used to 
destroy cancerous and precancerous cells; and the heat seals off capillaries and 
lymph vessels, thus “cauterizing” the wound to prevent spread of the disease.

The intense heat produced in a small area by a laser beam is used for welding and 
machining metals and for drilling tiny holes in hard materials. Because a laser beam is 
coherent, monochromatic, narrow, and essentially parallel, lenses can be used to focus 
the light into even smaller areas. The precise straightness of a laser beam is also useful 
to surveyors for lining up equipment accurately, especially in inaccessible places.

* 39-10  Holography
One of the most interesting applications of laser light is the production of three- 
dimensional images called holograms (see Fig. 39-24). In an ordinary photograph, 
the film  simply records the intensity of light reaching it at each point. When the 
photograph or transparency is viewed, light reflecting from it or passing through it 
gives us a two-dimensional picture. In holography, the images are formed by 
interference, without lenses. When a laser hologram is made on film , a broadened 
laser beam is split into two parts by a half-silvered m irror, Fig. 39-24a. One part 
goes directly to the film ; the rest passes to the object to be photographed, from 
which it is reflected to the film. Light from every point on the object reaches 
each point on the film , and the interference of the two beams allows the film  to 
record both the intensity and relative phase of the light at each point. It is crucial 
that the incident light be coherent— that is, in phase at all points— which is why 
a laser is used. A fter the film  is developed, it is placed again in a laser beam and a 
three-dimensional image of the object is created. You can walk around such an 
image and see it from different sides as if it were the original object (Fig. 39-24b). 
Yet, if  you try to touch it with your hand, there w ill be nothing material there.

FIGURE 39-24 (a) Making a hologram. Light reflected from various points on the object interferes (at the film) 
with light from the direct beam, (b) A boy is looking at a hologram of two women talking on telephones. Holograms 
do not photograph well—they must be seen directly.

(b)
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The details of how the image is formed are quite complicated. But we can get the 
basic idea by considering one single point on the object. In Fig. 39-25a the rays OA 
and OB have reflected from one point on our object. The rays CA and DB come 
directly from the source and interfere with OA and OB at points A  and B on the film. 
A  set of interference fringes is produced as shown in Fig. 39-25b. The spacing between 
the fringes changes from top to bottom as shown. Why this happens is explained in 
Fig. 39-26. Thus the hologram of a single point object would have the fringe pattern 
shown in Fig. 39-25b. The film  in this case looks like a diffraction grating with variable 
spacing. Hence, when coherent laser light is passed back through the developed film  
to reconstruct the image, the diffracted rays in the first order maxima occur at slightly 
different angles because the spacing changes. (Remember Eq. 35-13, sin 6 =  k /d: 
where the spacing d  is greater, the angle 0 is less.) Hence, the rays diffracted upward 
(in first order) seem to diverge from a single point, Fig. 39-27. This is a virtual image 
of the original object, which can be seen with the eye. Rays diffracted in first order 
downward converge to make a real image, which can be seen and also photographed. 
(Note that the straight-through undiffracted rays are of no interest.) Of course real 
objects consist of many points, so a hologram will be a complex interference pattern 
which, when laser light is incident on it, w ill reproduce an image of the object. Each 
image point w ill be at the correct (three-dimensional) position with respect to other 
points, so the image accurately represents the original object. And it can be viewed 
from different angles as if viewing the original object. Holograms can be made in 
which a viewer can walk entirely around the image (360°) and see all sides of it.

Film

(object)

(a) (b)

FIGURE 39-25 (a) Light from point O 
on the object interferes with light of 
the direct beam (rays CA and DB). 
(b) Interference fringes produced.

x/ Min

Min
/ / k>

/ /  /  \ Min
/ / jT K> M ax------------

/ /  —  \
\

Min

FIGURE 39-26 Each of the rays shown 
leaving point O is one wavelength 
shorter than the one above it. If the top 
ray is in phase with the direct beam (not 
shown), which has the same phase at all 
points on the screen, each of the rays 
shown produces a constructive 
interference fringe. From this diagram it 
can be seen that the fringe spacing 
increases toward the bottom.

Laser
light

Virtual
image

Real
image

FIGURE 39-27 Reconstructing the image of one point on the 
object. Laser beam strikes the developed film, which is like a 
diffraction grating of variable spacing. Rays corresponding to the first 
diffraction maxima are shown emerging. The angle 0A > 0B because 
the spacing at B is greater than at A (sin 0 = A/d). Hence real and 
virtual images of the point are reproduced as shown.

Volume or white-light holograms do not require a laser to see the image, but 
can be viewed with ordinary white light (preferably a nearly point source, such as 
the Sun or a clear bulb with a small bright filament). Such holograms must be 
made, however, with a laser. They are made not on thin film , but on a thick 
emulsion. The interference pattern in the film  emulsion can be thought of as an 
array of bands or ribbons where constructive interference occurred. This array, and 
the reconstruction of the image, can be compared to Bragg scattering of X-rays 
from the atoms in a crystal (see Section 35-10). White light can reconstruct the 
image because the Bragg condition (raA = 2d sin 0) selects out the appropriate 
single wavelength. I f  the hologram is originally produced by lasers emitting the 
three additive primary colors (red, green, and blue), the three-dimensional image 
can be seen in fu ll color when viewed with white light.

Developed
film
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Summary
In the quantum-mechanical view of the atom, the electrons do not 
have well-defined orbits, but instead exist as a “cloud.” Electron 
clouds can be interpreted as an electron wave spread out in space, 
or as a probability distribution for electrons considered as particles.

For the simplest atom, hydrogen, the Schrodinger equation 
contains the potential energy

U =  — ■
47re0 r

The solutions give the same values of energy as the old Bohr 
theory.

According to quantum mechanics, the state of an electron in 
an atom is specified by four quantum numbers: n, £, m i, and ms :

1 . n, the principal quantum number, can take on any integer 
value (1, 2, 3, • • •) and corresponds to the quantum number 
of the old Bohr theory;

2. £, the orbital quantum number, can take on integer values 
from 0 up to n -  1;

3. mu, the magnetic quantum number, can take on integer 
values from - £  to +£;

4. m s, the spin quantum number, can be + \  or
The energy levels in the hydrogen atom depend on n, 

whereas in other atoms they depend on n and £.
The orbital angular momentum of an atom has magnitude 

L  = \/£ (£  + 1 )h  and z  component Lz = meh. Spin angular 
momentum has magnitude S = \ / s ( s  +  l)  h and z  component 
Sz = m sh where s =  \  and ms =  ± \ .

When an external magnetic field is applied, the spectral 
lines are split (the Zeeman effect), indicating that the energy 
depends also on in this case.

Even in the absence of a magnetic field, precise measure­
ments of spectral lines show a tiny splitting of the lines called 
fine structure, whose explanation is that the energy depends 
very slightly onm f and m s .

Transitions between states that obey the selection rule 
M  = ± 1 are far more probable than other so-called 
forbidden transitions.

The ground-state wave function in hydrogen has spherical 
symmetry, as do other i  = 0 states. States with £ >  0 have 
some directionality in space.

The probability density (or probability distribution), |*/r|2, 
and the radial probability density, PT = 4irrz\if/\2, are both 
useful to illustrate the spatial extent of the electron cloud.

Questions
1. Discuss the differences between Bohr’s view of the atom 

and the quantum-mechanical view.
2. The probability density \if/\2 is a maximum at the center of 

the H atom (r = 0 ) for the ground state, whereas the 
radial probability density PT = 47rr2\if/\2 is zero at this 
point. Explain why.

3. Which model of the hydrogen atom, the Bohr model or the 
quantum-mechanical model, predicts that the electron 
spends more time near the nucleus?

4. The size of atoms varies by only a factor of three or so, from 
largest to smallest, yet the number of electrons varies from 
one to over 100. Why?

The arrangement of electrons in multi-electron atoms is 
governed by the Pauli exclusion principle, which states that no 
two electrons can occupy the same quantum state— that is, they 
cannot have the same set of quantum numbers n, £, mu, and m s .

As a result, electrons in multi-electron atoms are grouped 
into shells (according to the value of n) and subshells (according 
to £).

Electron configurations are specified using the numerical 
values of n, and using letters for £: s, p , d, / ,  etc., for 
£ = 0, 1, 2,3, and so on, plus a superscript for the number of 
electrons in that subshell. Thus, the ground state of hydrogen is 
Is1, whereas that for oxygen is 1 s ^ s ^ p 4.

In the Periodic Table, the elements are arranged in horizontal 
rows according to increasing atomic number (number of elec­
trons in the neutral atom). The shell structure gives rise to a 
periodicity in the properties of the elements, so that each 
vertical column can contain elements with similar chemical 
properties.

X-rays, which are a form of electromagnetic radiation of 
very short wavelength, are produced when high-speed electrons 
strike a target. The spectrum of X-rays so produced consists of 
two parts, a continuous spectrum produced when the electrons 
are decelerated by atoms of the target, and peaks representing 
photons emitted by atoms of the target after being excited by 
collision with the high-speed electrons. Measurement of these 
peaks allows determination of inner energy levels of atoms and 
determination of atomic number Z.

[*An atom has a magnetic dipole moment jl related to its 
orbital angular momentum L, which produces a potential energy 
when in a magnetic field, U =  — (ji-B. Electron spin also 
yields a magnetic moment, but the energy in a magnetic field is a 
factor g  = 2.0023 • • • times larger than expected, as determined in 
Stern-Gerlach experiments.]

[*Atoms have a total angular momentum J = L + S 
which is quantized as for L  and S, namely J  = V /(y  + 1 )h  
where j  is a half-integer equal to £ + \  in hydrogen.]

Fluorescence occurs when absorbed UV photons are 
followed by emission of visible light, due to the special arrange­
ment of energy levels of atoms of the material. Phosphorescent 
materials have metastable states (long-lived) that emit light 
seconds or minutes after absorption of light.

Lasers produce a narrow beam of monochromatic coherent 
light (light waves in phase). [^Holograms are images with a 
3-dimensional quality, formed by interference of laser light.]

5. Excited hydrogen and excited helium atoms both radiate 
light as they jump down to the n = 1, £ = 0 , m  ̂ = 0 state. 
Yet the two elements have very different emission spectra. 
Why?

6. In Fig. 39-4, why do the upper and lower levels have 
different energy splittings in a magnetic field?

7. Why do three quantum numbers come out of the 
Schrodinger theory (rather than, say, two or four)?

8. The 589-nm yellow line in sodium is actually two very 
closely spaced lines. This splitting is due to an “ internal” 
Zeeman effect. Can you explain this? [Hint: Put yourself in 
the reference frame of the electron.]
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9. Which of the following electron configurations are 
not allowed: (a) l s22s22p43s24p2; (b) l s22s22p^3sl \
(c) l s22s22p63s23p54s24d54 f 1l  I f  not allowed, explain why.

10. Give the complete electron configuration for a uranium 
atom (careful scrutiny across the Periodic Table on the 
inside back cover w ill provide useful hints).

11. In what column of the Periodic Table would you expect to 
find the atom with each of the following configurations?
(a) ls 22s22p63s2; (b) ls 22s22 /3 s 23/>6; (c) l s ^ s ^ p ^ s ^ p ^ s 1;
(d) l s22s22p 5.

12. On what factors does the periodicity of the Periodic Table 
depend? Consider the exclusion principle, quantization of 
angular momentum, spin, and any others you can think of.

13. How would the Periodic Table look if  there were no electron 
spin but otherwise quantum mechanics were valid? 
Consider the first 20 elements or so.

14. The ionization energy for neon (Z  = 10) is 21.6 eV and 
that for sodium (Z  = 11) is 5.1 eV. Explain the large 
difference.

15. Why do chlorine and iodine exhibit similar properties?
16. Explain why potassium and sodium exhibit similar properties.
17. Why are the chemical properties of the rare earths so similar?
18. Why do we not expect perfect agreement between measured 

values of characteristic X-ray line wavelengths and those 
calculated using Bohr theory, as in Example 39-6?

19. Why does the Bohr theory, which does not work at all well for 
normal transitions involving the outer electrons for He and 
more complex atoms, nevertheless predict reasonably well the 
atomic X-ray spectra for transitions deep inside the atom?

20. Why does the cutoff wavelength in Fig. 39-11 imply a 
photon nature for light?

21. How would you figure out which lines in an X-ray spectrum 
correspond to K a, K p , L, etc., transitions?

22. Why do the characteristic X-ray spectra vary in a systematic 
way with Z, whereas the visible spectra (Fig. 35-22) do not?

23. Why do we expect electron transitions deep within an atom 
to produce shorter wavelengths than transitions by outer 
electrons?

*24. Why is the direction of the magnetic dipole moment of an 
electron opposite to that of its orbital angular momentum?

*25. Why is a nonhomogeneous field used in the Stern-Gerlach 
experiment?

26. Compare spontaneous emission to stimulated emission.

27. Does the intensity of light from a laser fall o ff as the inverse 
square of the distance?

28. How does laser light differ from ordinary light? How is it 
the same?

29. Explain how a 0.0005-W laser beam, photographed at a 
distance, can seem much stronger than a 1000-W street lamp 
at the same distance.

| Problems_________________
39-2 Hydrogen Atom Quantum Numbers
1. (I) For n =  7, what values can £ have?
2. (I) For n = 6 , £ = 3, what are the possible values of mi 

and m sl

3. (I) How many different states are possible for an electron 
whose principal quantum number is n = 5? W rite down 
the quantum numbers for each state.

4. (I) I f  a hydrogen atom has mi =  -4 , what are the possible 
values of n, £, and m sl

5. (I) A  hydrogen atom has £ =  5. What are the possible 
values for n, m i , and m s?

6. (I) Calculate the magnitude of the angular momentum of an 
electron in the n = 5, £ = 3 state of hydrogen.

7. (II) A  hydrogen atom is in the Ig  state. Determine (a) the 
principal quantum number, (b) the energy of the state, 
(c) the orbital angular momentum and its quantum 
number £, and (d) the possible values for the magnetic 
quantum number.

8. (II) (a) Show that the number of different states possible 
for a given value of £ is equal to 2(2£ + 1). (b) What is this 
number for £ =  0 , 1, 2 ,3 ,4 ,5, and 6?

9. (II) Show that the number of different electron states 
possible for a given value of n is 2n2. (See Problem 8 .)

10. (II) An excited H atom is in a 5d  state, (a) Name all the 
states to which the atom is “ allowed” to jump with the 
emission of a photon, (b) How many different wavelengths 
are there (ignoring fine structure)?

11. (II) The magnitude of the orbital angular momentum in 
an excited state of hydrogen is 6.84 X 10 34 J-s and the 
z component is 2.11 X 10-34 J-s. What are all the possible 
values of n, £, and mt for this state?

39-3 Hydrogen Atom Wave Functions
12. (I) Show that the ground-state wave function, Eq. 39-5, is 

normalized. [Hint: See Example 39-4.]

13. (II) For the ground state of hydrogen, what is the value of 
(«) i/j, (b) \if/\2, and (c) PT, at r =  1.5 r0?

14. (II) For the n =  2, £ =  0 state of hydrogen, what is the 
value of (a) if/, (b) |j/f|2, and (c) PT, at r =  4/*0?

15. (II) By what factor is it more likely to find the electron in 
the ground state of hydrogen at the Bohr radius (r0) than at 
twice the Bohr radius (2r0)?

16. (II) (a) Show that the probability of finding the electron in 
the ground state of hydrogen at less than one Bohr radius 
from the nucleus is 32%. (b) What is the probability of 
finding a Is electron between r = r0 and r = 2r0?

17. (II) Determine the radius r of a sphere centered on the 
nucleus within which the probability of finding the electron 
for the ground state of hydrogen is (a) 50%, (b) 90%, 
(c) 99%.

18. (II) (a) Estimate the probability of finding an electron, in 
the ground state of hydrogen, within the nucleus assuming it 
to be a sphere of radius r = 1.1 fm. (b) Repeat the esti­
mate assuming the electron is replaced with a muon, which 
is very similar to an electron (Chapter 43) except that 
its mass is 207 times greater.
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19. (II) Show that the mean value of r for an electron in the 
ground state of hydrogen is r = | r 0, by calculating

r =  f r\*100\2 dV  =
J all space

20. (II) Show that 1A200 as given by Eq. 39-8 is normalized.
21. (II) Determine the average radial probability distribution Pr 

for the n =  2 ,£ = 1 state in hydrogen by calculating

Pr = 4t7T2[||iA2io |2 + I  f e l l 2 + il«A2i - i | 2]-

22. (II) Use the result of Problem 21 to show that the most 
probable distance r from the nucleus for an electron in the 2p  state of hydrogen is r =  4r0, which is just the second 
Bohr radius (Eq. 37-11, Fig. 37-25).

23. (II) For the ground state of hydrogen, what is the proba­
b ility of finding the electron within a spherical shell of inner 
radius 0.99r0 and outer radius 1.01 r0?

24. (Ill) For the n = 2, £ = 0 state of hydrogen, what is the 
probability of finding the electron within a spherical shell of 
inner radius 4.00 r0 and outer radius 5.00/q? [Hint: You might 
integrate by parts.]

25. ( I ll)  Show that i//100 (Eq. 39-5a) satisfies the Schrodinger 
equation (Eq. 39-1) with the Coulomb potential, for energy 
E = - m e 4/S e lh 2.

26. ( I ll)  Show that the probability of finding the electron within 
1 Bohr radius of the nucleus in the hydrogen atom is
(a) 3.4% for the n = 2, £ = 0 state, and (b) 0.37% for the 
n =  2, £ =  1 state. (See Problem 21.)

27. ( I ll)  The wave function for the n =  3, £ =  0 state in 
hydrogen is

1 /  2r 2r2 \  - j l
iff200 = — , 1 — ------1-------r  \e 3ro.

\ j 21irr\ V 3r0 27r0/

(a) Determine the radial probability distribution Pr for this 
state, and (b) draw the curve for it on a graph, (c) Deter­
mine the most probable distance from the nucleus for an 
electron in this state.

39-4 and 39-5 Complex Atoms
28. (I) List the quantum numbers for each electron in the 

ground state of oxygen (Z  = 8 ).
29. (I) List the quantum numbers for each electron in the ground 

state of (a) carbon (Z  = 6 ), (b) aluminum (Z  = 13).
30. (I) How many electrons can be in the n = 6 , £ = 4 subshell?
31. (II) An electron has mt = 2 and is in its lowest possible 

energy state. What are the values of n and £ for this electron?

32. (II) If  the principal quantum number n were limited to the range 
from 1 to 6, how many elements would we find in nature?

33. (II) What is the fu ll electron configuration for (a) nickel (Ni),
(b) silver (Ag), (c )  uranium (U)? [Hint: See the Periodic 
Table inside the back cover.]

34. (II) Estimate the binding energy of the third electron in 
lithium  using Bohr theory. [Hint: This electron has n = 2 
and “ sees” a net charge of approximately + le .] The 
measured value is 5.36 eV.

35. (II) Using the Bohr formula for the radius of an electron 
orbit, estimate the average distance from the nucleus for an 
electron in the innermost (n =  1 ) orbit in uranium 
(Z  = 92). Approximately how much energy would be 
required to remove this innermost electron?

36. (II) Let us apply the exclusion principle to an infinitely high 
square well (Section 38-8). Let there be five electrons confined 
to this rigid box whose width is £. Find the lowest energy state 
of this system, by placing the electrons in the lowest available 
levels, consistent with the Pauli exclusion principle.

37. (II) Show that the total angular momentum is zero for a 
filled subshell.

39-6 X-rays
38. (I) I f  the shortest-wavelength bremsstrahlung X-rays 

emitted from an X-ray tube have A = 0.027 nm, what is the 
voltage across the tube?

39. (I) What are the shortest-wavelength X-rays emitted by 
electrons striking the face of a 32.5-kV TV picture tube? 
What are the longest wavelengths?

40. (I) Show that the cutoff wavelength A0 in an X-ray spectrum 
is given by

1240 
A0 = —  nm,

where V  is the X-ray tube voltage in volts.
41. (II) Estimate the wavelength for an n = 2 to n = 1 

transition in iron (Z  = 26).
42. (II) Use the result of Example 39-6 to estimate the X-ray 

wavelength emitted when a cobalt atom (Z  = 27) makes a 
transition from n = 2 to n = 1.

43. (II) A  mixture of iron and an unknown material are 
bombarded with electrons. The wavelength of the K a lines 
are 194 pm for iron and 229 pm for the unknown. What is 
the unknown material?

44. (II) Use Bohr theory to estimate the wavelength for an 
n = 3 to n = 1 transition in molybdenum (Z  = 42). The 
measured value is 0.063 nm. Why do we not expect perfect 
agreement?

45. (II) Use conservation of energy and momentum to show that 
a moving electron cannot give off an X-ray photon unless 
there is a third object present, such as an atom or nucleus.

*39-7 Magnetic Dipole Moment; J
*46. (I) Verify that the Bohr magneton has the value 

|xB = 9.27 X 10“24 J /T  (see Eq. 39-12).

*47. (I) I f  the quantum state of an electron is specified by 
(n, £, mg, m s), estimate the energy difference between the 
states ( l, 0 , 0 , -  5) and ( l, 0 , 0 , + 5) of an electron in the Is 
state of helium in an external magnetic field of 2.5 T.

*48. (II) Silver atoms (spin = §) are placed in a 1.0-T magnetic 
field which splits the ground state into two close levels.
(a) What is the difference in energy between these two 
levels, and (b) what wavelength photon could cause a 
transition from the lower level to the upper one? 
(c) How would your answer differ if  the atoms were 
hydrogen?

*49. (II) In a Stern-Gerlach experiment, Ag atoms exit the oven 
with an average speed of 780 m/s and pass through a 
magnetic field gradient d B /d z  =  1.8 X 103 T/m  for a 
distance of 5.0 cm. (a) What is the separation of the two 
beams as they emerge from the magnet? (b) What would 
the separation be if  the g-factor were 1 for electron spin?

* 50. (II) For an electron in a 5g  state, what are all the possible 
values of j, m j , / ,  and J{1

#iool24'nr2 dr.
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*51. (II) What are the possible values of j  for an electron in
(a) the Ap, (b) the Af, and (c) the 3d  state of hydrogen? 
(<d) What is J  in each case?

* 52. (II) (a) Write down the quantum numbers for each electron 
in the gallium atom, (b) Which subshells are filled? 
(c) The last electron is in the 4p state; what are the possible 
values of the total angular momentum quantum number, j, 
for this electron? (d) Explain why the angular momentum 
of this last electron also represents the total angular 
momentum for the entire atom (ignoring any angular 
momentum of the nucleus). (e) How could you use a 
Stern-Gerlach experiment to determine which value of j  the 
atom has?

*53. ( I ll)  The difference between the 2P3/2 and 2P1/2 energy 
levels in hydrogen is about 5 X IO-5 eV, due to the spin- 
orbit interaction, (a) Taking the electron’s (orbital) 
magnetic moment to be 1 Bohr magneton, estimate the 
internal magnetic field due to the electron’s orbital 
motion, (b) Estimate the internal magnetic field using a 
simple model of the nucleus revolving in a circle about the 
electron.

39-9 Lasers
54. (II) A  laser used to weld detached retinas puts out 23-ms- 

long pulses of 640-nm light which average 0.63-W output 
during a pulse. How much energy can be deposited per 
pulse and how many photons does each pulse contain?

55. (II) Estimate the angular spread of a laser beam due to 
diffraction if  the beam emerges through a 3.6-mm-diameter 
mirror. Assume that A = 694 nm. What would be the 
diameter of this beam if  it struck (a) a satellite 380 km 
above the Earth, (b ) the Moon? [Hint: See Chapter 35.]

56. (II) A  low-power laser used in a physics lab might have a 
power of 0.50 mW and a beam diameter of 3.0 mm. 
Calculate (a) the average light intensity of the laser beam, 
and (b) compare it to the intensity of a lightbulb emitting 
15 W of light viewed from a distance of 2.0 m.

57. (II) Calculate the wavelength of a He-Ne laser.

58. (II) Suppose that the energy level system in Fig. 39-20 is 
not being pumped and is in thermal equilibrium. Determine 
the fraction of atoms in levels E2 and E1 relative to E0 at 
T =  300 K.

59. (II) To what temperature would the system in Fig. 39-20 
have to be raised (see Problem 58) so that in thermal equi­
librium the level E2 would have half as many atoms as EqI 
(Note that pumping mechanisms do not maintain thermal 
equilibrium.)

60. (II) Show that a population inversion for two levels (as in a 
pumped laser) corresponds to a negative Kelvin temperature 
in the Boltzmann distribution. Explain why such a situation 
does not contradict the idea that negative Kelvin tempera­
tures cannot be reached in the normal sense of temperature.

| General Problems
61. The ionization (binding) energy of the outermost electron 

in boron is 8.26 eV. (a) Use the Bohr model to estimate the 
“ effective charge,” Zeff, seen by this electron. (b ) Estimate 
the average orbital radius.

62. How many electrons can there be in an “h ” subshell?

63. What is the fu ll electron configuration in the ground state 
for elements with Z  equal to (a) 25, (b) 34, (c) 39? [Hint: See 
the Periodic Table inside the back cover.]

64. What are the largest and smallest possible values for the 
angular momentum L  of an electron in the n = 6 shell?

65. Estimate (a) the quantum number £ for the orbital angular 
momentum of the Earth about the Sun, and (b) the number 
of possible orientations for the plane of Earth’s orbit.

66. Use the Bohr theory (especially Eq. 37-15) to show that the 
Moseley plot (Fig. 39-12) can be written

-  = a(Z  -  b ),

69. In the so-called vector model of the atom, space quantization 
of angular momentum (Fig. 39-3) is illustrated as shown in 
Fig. 39-28. The angular momentum vector of magnitude 
L  = \/£ (£  + 1) h is thought of as precessing around the 
z axis (like a spinning top or gyroscope) in such a way that the 
z component of angular momentum, L z = m^h, also stays 
constant. Calculate the possible values for the angle 6 
between L and the z axis (a) for £ = 1, (b) £ = 2, and 
(c) £ = 3. (d) Determine the minimum value of 6 for 
£ =  100 and £ =  106. Is z
this consistent with the 
correspondence principle?

FIG U RE 3 9 -2 8  The vector 
model for orbital angular 
momentum. The orbital angular 
momentum vector L is imagined 
to precess about the z axis; L  and 
L z remain constant, but L x and
Ly  continually change. 
Problems 69 and 70.

where b & 1, and evaluate a.

67. Determine the most probable distance from the nucleus of 
an electron in the n = 2 , £ = 0 state of hydrogen.

68. Show that the diffractive spread of a laser beam, «A /D  as 
described in Section 39-9, is precisely what you might 
expect from the uncertainty principle. [Hint: Since the 
beam’s width is constrained by the dimension of the 
aperture D, the component of the light’s momentum 
perpendicular to the laser axis is uncertain.]

70. The vector model (Problem 69) gives some insight into the 
uncertainty principle for angular momentum, which is 

A.Lz A(f> > h
for the z component. Here cf> is the angular position 
measured in the plane perpendicular to the z axis. Once mt 
for an atom is known, L z is known precisely, so AL z = 0.
(a) What does this tell us about 0? (b) What can you say about 
L x and L y , which are not quantized (only L  and L z are)? 
(c) Show that although L x and L y are not quantized, 
nonetheless (L x + L y)1/2 =  [f( f + 1) -  m j]1/2 h is.
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71. (a) Show that the mean value for 1/r of an electron in 
the ground state of hydrogen equals 1 /r 0, and from this 
conclude that the mean value of the potential energy is

(b) Using E = U + K , find a relationship between the 
average kinetic energy and the average potential energy in the 
ground state. [Hint. For (a), see Problem 19 or Example 38-9.]

72. The angular momentum in the hydrogen atom is given both 
by the Bohr model and by quantum mechanics. Compare 
the results for n = 2 .

73. For each of the following atomic transitions, state whether 
the transition is allowed or forbidden, and why: (a) 4p  —» 3p;
(b) 3p  Is ; (c) 4d 3d; (d) 4d ->  3s; (e) 4s ->  2p.

74. It is possible for atoms to be excited into states with very high 
values of the principal quantum number. Electrons in these so- 
called Rydberg states have very small ionization energies and 
huge orbital radii. This makes them particularly sensitive to 
external perturbation, as would be the case if the atom were in 
an electric field. Consider the n = 45 state of the hydrogen 
atom. Determine the binding energy, the radius of the orbit, 
and the effective cross-sectional area of this Rydberg state.

75. Suppose that the spectrum of an unknown element shows a 
series of lines with one out of every four matching a line 
from the Lyman series of hydrogen. Assuming that the 
unknown element is an ion with Z  protons and one elec­
tron, determine Z  and the element in question.

*76. Suppose that the splitting of energy levels shown in 
Fig. 39-4 was produced by a 1.6-T magnetic field, (a) What is 
the separation in energy between adjacent mg levels for the 
same £? (b) How many different wavelengths w ill there be 
for 3d to 2p  transitions, if can change only by ± 1 or 0?
(c) What is the wavelength for each of these transitions?

77. Populations in the H  atom. Use the Boltzmann factor 
(Eq. 39-16) to estimate the fraction of H atoms in the 
n = 2 and n = 3 levels (relative to the ground state) for 
thermal equilibrium at (a) T  = 300 K and (b) T  = 6000 K. 
[Note: Since there are eight states with n = 2 and only two 
with n =  1, multiply your result for n =  2 by § = 4; do 
similarly for n =  3. ] (c) Given 1.0 g of hydrogen, estimate 
the number of atoms in each state at T =  6000 K. (d ) Esti­
mate the number of n = 3 to n = 1 and n = 2 to n = 1 
photons that w ill be emitted per second at T = 6000 K. 
Assume that the lifetime of each excited state is 10_8 s. 
[Hint: To evaluate a large exponent, you can use base-10 
logarithms, Appendix A.]

Answers to Exercises

A: 2 ,1 ,0 ,-1 ,-2 . E: (b ),(c).
B: (b). F: 1 s ^ s ^ p ^ s ^ p ^ H s H p 1.

C: (d). G: (d).

D: Add one line to L i in Table 39-2: 2, 0,0, —
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This computer processor chip 
contains over 800 million transistors, 
plus diodes and other semiconductor 
electronic elements, all in a space 
smaller than a penny.

Before discussing semiconductors 
and their applications, we study 
the quantum theory description of 
bonding between atoms to form 
molecules, and how it explains 
molecular behavior. We then examine 
how atoms and molecules form 
solids, with emphasis on metals as 
well as on semiconductors and their 
use in electronics.

T £

M o l e c u l e s  a n d  S o l i d s
CHAPTER-OPENING QUESTIOr — G uess now!
As a metal is heated, how does the rms speed (vTms) of the electrons change? Assume 
a temperature change of about 30C° near room temperature.

(a) vTms increases linearly with temperature.
(b) TVs decreases linearly with temperature.
(c) vTms increases exponentially with temperature.
(d) V s  decreases exponentially with temperature.
(e) r̂ms changes very little  as the temperature is increased.

S ince its development in the 1920s, quantum mechanics has had a profound 
influence on our lives, both intellectually and technologically. Even the way 
we view the world has changed, as we have seen in the last few Chapters. 
Now we discuss how quantum mechanics has given us an understanding of 

the structure of molecules and matter in bulk, as well as a number of important 
applications including semiconductor devices.

CONTENTS
40-1 Bonding in Molecules
40-2 Potential-Energy 

Diagrams for Molecules
40-3 Weak (van der Waals) 

Bonds
40-4 Molecular Spectra
40-5 Bonding in Solids
40-6 Free-Electron Theory of 

Metals; Fermi Energy
40-7 Band Theory of Solids
40-8 Semiconductors and 

Doping
40-9 Semiconductor Diodes
40-10 Transistors and 

Integrated Circuits

40—1 Bonding in Molecules
One of the great successes of quantum mechanics was to give scientists, at last, an 
understanding of the nature of chemical bonds. Since it is based in physics, and 
because this understanding is so important in many fields, we discuss it here.
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By a molecule, we mean a group of two or more atoms that are strongly held 
together so as to function as a single unit. When atoms make such an attachment, 
we say that a chemical bond has been formed. There are two main types of strong 
chemical bond: covalent and ionic. Many bonds are actually intermediate between 
these two types.

Nucleus 
(■+ le )

Nucleus
(+ 1*)

(a)

nucleus nucleus
(b)

FIGURE 40-1 Electron probability 
distribution (electron cloud) for two 
H atoms when the spins are the same 
(S = 1 ): (a) electron cloud;
(b) projection of \ij/\2 along the line 
through the centers of the two atoms.

FIGURE 40-2 Electron probability 
distribution for two H atoms when 
the spins are opposite (S = 0 ):
(a) electron cloud; (b) projection of 
\iff\2 along the line through the centers 
of the atoms. In this case a bond is 
formed because the positive nuclei 
are attracted to the concentration of 
negative charge between them. This is 
a hydrogen molecule, H2.

Nucleus
(+ 1«)

Nucleus 
(■+ le )

(a)

nucleus nucleus
(b)

Covalent Bonds
To understand how covalent bonds are formed, we take the simplest case, the 
bond that holds two hydrogen atoms together to form the hydrogen molecule, H 2. 
The mechanism is basically the same for other covalent bonds. As two 
H atoms approach each other, the electron clouds begin to overlap, and the 
electrons from each atom can “ orb it” both nuclei. (This is sometimes called 
“ sharing” electrons.) I f  both electrons are in the ground state (n = 1) of their 
respective atoms, there are two possibilities: their spins can be parallel (both up 
or both down), in which case the total spin is 5 = |  + |  = 1; or their spins can 
be opposite (m s = + \  for one, m s = for the other), so that the total 
spin 5 = 0. We shall now see that a bond is formed only for the 5 = 0 state, 
when the spins are opposite.

First we consider the 5 = 1 state, for which the spins are the same. The two 
electrons cannot both be in the lowest energy state and be attached to the 
same atom, for then they would have identical quantum numbers in violation 
of the exclusion principle. The exclusion principle tells us that, because no two 
electrons can occupy the same quantum state, if two electrons have the 
same quantum numbers, they must be different in some other way— namely, 
by being in different places in space (for example, attached to different 
atoms). Thus, for 5 = 1, when the two atoms approach each other, the electrons 
w ill stay away from each other as shown by the probability distribution of 
Fig. 40-1. The electrons spend very little  time between the two nuclei, so the 
positively charged nuclei repel each other and no bond is formed.

For the 5 = 0 state, on the other hand, the spins are opposite and the two 
electrons are consequently in different quantum states (m s is different, + \  for 
one, -  \  for the other). Hence the two electrons can come close together, and the 
probability distribution looks like Fig. 40-2: the electrons can spend much of 
their time between the two nuclei. The two positively charged nuclei are attracted 
to the negatively charged electron cloud between them, and this is the attraction 
that holds the two hydrogen atoms together to form a hydrogen molecule. This is a 
covalent bond.

The probability distributions of Figs. 40-1 and 40-2 can perhaps be better 
understood on the basis of waves. What the exclusion principle requires is that 
when the spins are the same, there is destructive interference of the electron wave 
functions in the region between the two atoms. But when the spins are opposite, 
constructive interference occurs in the region between the two atoms, resulting in 
a large amount of negative charge there. Thus a covalent bond can be said to be 
the result of constructive interference of the electron wave functions in the space 
between the two atoms, and of the electrostatic attraction of the two positive 
nuclei for the negative charge concentration between them.

Why a bond is formed can also be understood from the energy point of view. 
When the two H atoms approach close to one another, if the spins of their 
electrons are opposite, the electrons can occupy the same space, as discussed 
above. This means that each electron can now move about in the space of two 
atoms instead of in the volume of only one. Because each electron now occupies 
more space, it is less well localized. From the uncertainty principle with 
Ax larger, we see that Ap  and the minimum momentum can be less. 
With less momentum, each electron has less energy when the two atoms combine 
than when they are separate. That is, the molecule has less energy than the 
two separate atoms, and so is more stable. An energy input is required to break 
the H 2 molecule into two separate H atoms, so the H 2 molecule is a stable entity.
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This is what we mean by a bond. The energy required to break a bond is called the 
bond energy, the binding energy, or the dissociation energy. For the hydrogen 
molecule, H 2, the bond energy is 4.5 eV.

Ionic Bonds
An ionic bond is, in a sense, a special case of the covalent bond. Instead of the 
electrons being shared equally, they are shared unequally. For example, in sodium 
chloride (NaCl), the outer electron of the sodium spends nearly all its time around 
the chlorine (Fig. 40-3). The chlorine atom acquires a net negative charge as a 
result of the extra electron, whereas the sodium atom is left with a net positive 
charge. The electrostatic attraction between these two charged atoms holds them 
together. The resulting bond is called an ionic bond because it is created by the 
attraction between the two ions (Na+ and Cl“ ). But to understand the ionic bond, 
we must understand why the extra electron from the sodium spends so much of its 
time around the chlorine. A fter all, the chlorine atom is neutral; why should it 
attract another electron?

The answer lies in the probability distributions of the two neutral atoms. 
Sodium contains 11 electrons, 10 of which are in spherically symmetric closed 
shells (Fig. 40-4). The last electron spends most of its time beyond these closed 
shells. Because the closed shells have a total charge of —lOe and the nucleus has 
charge + l le ,  the outermost electron in sodium “ feels” a net attraction due to + le . 
It is not held very strongly. On the other hand, 12 of chlorine’s 17 electrons form 
closed shells, or subshells (corresponding to l s22s22p63s2). These 12 electrons form 
a spherically symmetric shield around the nucleus. The other five electrons are in 
3p  states whose probability distributions are not spherically symmetric and have a 
form similar to those for the 2p  states in hydrogen shown in Fig. 39-9. Four of 
these 3p  electrons can have “ doughnut-shaped” distributions symmetric about the 
z  axis, as shown in Fig. 40-5. The fifth  can have a “barbell-shaped” distribution (as 
for m l =  0 in Fig. 39-9), which in Fig. 40-5 is shown only in dashed outline 
because it is half empty. That is, the exclusion principle allows one more electron to 
be in this state (it w ill have spin opposite to that of the electron already there). If 
an extra electron— say from a Na atom— happens to be in the vicinity, it can be in 
this state, perhaps at point x in Fig. 40-5. It could experience an attraction due to as 
much as +5e because the +17e of the nucleus is partly shielded at this point by the 
12 inner electrons. Thus, the outer electron of a sodium atom w ill be more strongly 
attracted by the +5e of the chlorine atom than by the + le  of its own atom. This, 
combined with the strong attraction between the two ions when the extra electron 
stays with the Cl- , produces the charge distribution of Fig. 40-3, and hence the 
ionic bond.

FIGURE 40-3 Probability 
distribution \if/\2 for the outermost 
electron of Na in NaCl.

FIGURE 40-4 In a neutral sodium 
atom, the 1 0  inner electrons shield 
the nucleus, so the single outer 
electron is attracted by a net charge 
of +le.

-lOe Last (3,s)̂ electron

+lle

FIGURE 40-5 Neutral chlorine atom.
The +11 e of the nucleus is shielded by the 
1 2  electrons in the inner shells and subshells. 
Four of the five 3p electrons are shown in 
doughnut-shaped clouds (seen in cross section 
at left and right), and the fifth is in the 
dashed-line cloud concentrated about the 
z axis (vertical). An extra electron at x will be 
attracted by a net charge that can be as much

/  \
/ \
/ x \
\ X I
\  /

I2ê  V .__

+ 17e
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H(+)

+ le

+ 8e

O (—)

H(+)
FIGURE 40-6  The water molecule 
H20  is polar.

FIGURE 40-7 Potential energy U as 
a function of separation r for two 
point charges of (a) like sign and 
(b) opposite sign.

Partial Ionic Character of Covalent Bonds
A  pure covalent bond in which the electrons are shared equally occurs mainly in 
symmetrical molecules such as H 2, 0 2, and Cl2. When the atoms involved are 
different from each other, it is usual to find that the shared electrons are more 
likely to be in the vicinity of one atom than the other. The extreme case is an ionic 
bond; in intermediate cases the covalent bond is said to have a partial ionic character. 
The molecules themselves are polar— that is, one part (or parts) of the molecule has 
a net positive charge and other parts a net negative charge. An example is the 
water molecule, H 20  (Fig. 40-6). The shared electrons are more likely to be found 
around the oxygen atom than around the two hydrogens. The reason is similar to 
that discussed above in connection with ionic bonds. Oxygen has eight electrons 
(ls 22s22/?4), of which four form a spherically symmetric core and the other four 
could have, for example, a doughnut-shaped distribution. The barbell-shaped 
distribution on the z  axis (like that shown dashed in Fig. 40-5) could be empty, so 
electrons from hydrogen atoms can be attracted by a net charge of +4e. They are also 
attracted by the H nuclei, so they partly orbit the H atoms as well as the O atom. The 
net effect is that there is a net positive charge on each H atom (less than + le ), 
because the electrons spend only part of their time there. And, there is a net 
negative charge on the O atom.

40-2 Potential-Energy Diagrams for 
Molecules

It is useful to analyze the interaction between two objects— say, between two 
atoms or molecules— with the use of a potential-energy diagram, which is a plot of 
the potential energy versus the separation distance.

For the simple case of two point charges, qx and q2, the potential energy U  is 
given by (see Chapter 23)

1 <7i<72U =

where r is the distance between the charges, and the constant (1/ 47re0) is equal to
9.0 X 109 N • m2/C 2. If  the two charges have the same sign, the potential energy U is 
positive for all values of r, and a graph of U versus r in this case is shown in Fig. 40-7a. 
The force is repulsive (the charges have the same sign) and the curve rises as r 
decreases; this makes sense since work is done to bring the charges together, thereby 
increasing their potential energy. If, on the other hand, the two charges are of the 
opposite sign, the potential energy is negative because the product q1 q2 is negative. 
The force is attractive in this case, and the graph of U (oc —1 /r) versus r looks like 
Fig. 40-7b. The potential energy becomes more negative as r decreases.

Now let us look at the potential-energy diagram for the formation of a covalent 
bond, such as for the hydrogen molecule, H 2. The potential energy U of one H atom 
in the presence of the other is plotted in Fig. 40-8. Starting at large r, U  decreases as 
the atoms approach, because the electrons concentrate between the two nuclei 
(Fig. 40-2), so attraction occurs. However, at very short distances, the electrons 
would be “ squeezed out” — there is no room for them between the two nuclei.

FIGURE 40-8 (right) Potential-energy diagram for 
H2  molecule; r is the separation of the two H atoms. 
The binding energy (the energy difference between 
U = 0 and the lowest energy state near the bottom 
of the well) is 4.5 eV, and r0  = 0.074 nm.

\ ? r
\ \
\  Binding 

energy
This p a r t V I /

part corresponds 
to attractive force

__ T n «7 A c t  *»«f»rrr\7 ctat<=»corresponds ---  13

to repulsive force
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Without the electrons between them, each nucleus would feel a repulsive force due to 
the other, so the curve rises as r decreases further. There is an optimum separation of 
the atoms, r0 in Fig. 40-8, at which the energy is lowest. This is the point of greatest 
stability for the hydrogen molecule, and r0 is the average separation of atoms in the 
H 2 molecule. The depth of this “well” is the binding energy,f as shown. This is how 
much energy must be put into the system to separate the two atoms to infinity, where 
U = 0. For the H 2 molecule, the binding energy is about 4.5 eV and rQ =  0.074 nm.

In molecules made of larger atoms, say, oxygen or nitrogen, repulsion also 
occurs at short distances, because the closed inner electron shells begin to overlap 
and the exclusion principle forbids their coming too close. The repulsive part of the 
curve rises even more steeply than 1 /r. A  reasonable approximation to the poten­
tial energy, at least in the vicinity of r0, is

where A  and B are constants associated with the attractive and repulsive parts of 
the potential energy and the exponents m and n are small integers. For ionic and 
some covalent bonds, the attractive term can often be written with m = 1 
(Coulomb potential).

For many bonds, the potential-energy curve has the shape shown in Fig. 40-9. 
There is still an optimum distance r0 at which the molecule is stable. But when the 
atoms approach from a large distance, the force is initia lly repulsive rather than 
attractive. The atoms thus do not interact spontaneously. Instead, some additional 
energy must be injected into the system to get it over the “hump” (or barrier) in 
the potential-energy diagram. This required energy is called the activation energy.

The curve of Fig. 40-9 is much more common than that of Fig. 40-8. The 
activation energy often reflects a need to break other bonds, before the one under 
discussion can be made. For example, to make water from 0 2 and H 2, the H 2 and
0 2 molecules must first be broken into H and O atoms by an input of energy; this 
is what the activation energy represents. Then the H and O atoms can combine to 
form H 20  with the release of a great deal more energy than was put in initially. 
The in itia l activation energy can be provided by applying an electric spark to a 
mixture of H 2 and 0 2, breaking a few of these molecules into H and O atoms. The 
resulting explosive release of energy when these atoms combine to form H 20  
quickly provides the activation energy needed for further reactions, so additional 
H 2 and 0 2 molecules are broken up and recombined to form H 20 .

The potential-energy diagrams for ionic bonds can have similar shapes. In 
NaCl, for example, the Na+ and Cl-  ions attract each other at distances a b it larger 
than some r0, but at shorter distances the overlapping of inner electron shells 
gives rise to repulsion. The two atoms thus are most stable at some intermediate 
separation, r0, and for many bonds there is an activation energy.

fThe binding energy corresponds not quite to the bottom of the potential energy curve, but to the 
lowest quantum energy state, slightly above the bottom, as shown in Fig. 40-8.

(40-1)

u

0 FIGURE 40-9 Potential-energy 
diagram for a bond requiring an 
activation energy.

Repulsion Attraction Repulsion

SECTION 40-2 Potential-Energy Diagrams for Molecules 1075



EXAMPLE 40-1 ESTIMATE"! Sodium chloride bond. A  potential-energy 
diagram for the NaCl ionic bond is shown in Fig. 40-10, where we have set U =  0 
for free Na and Cl neutral atoms (which are represented on the right in Fig. 40-10). 
Measurements show that 5.14 eV are required to remove an electron from a 
neutral Na atom to produce the Na+ ion; and 3.61 eV of energy is released when an 
electron is “grabbed” by a Cl atom to form the Cl- ion. Thus, forming Na+ and Cl- 
ions from neutral Na and Cl atoms requires 5.14 eV -  3.61 eV = 1.53 eV of 
energy, a form of activation energy. This is shown as the “bump” in Fig. 40-10. But 
note that the potential-energy diagram from here out to the right is not really a 
function of distance— it is drawn dashed to remind us that it only represents the 
energy difference between the ions and the neutral atoms (for which we have 
chosen U =  0). (a) Calculate the separation distance, rx, at which the potential of 
the Na+ and Cl- ions drops to zero (measured value is rx =  0.94 nm). (b) Estimate 
the binding energy of the NaCl bond, which occurs at a separation r0 =  0.24 nm. 
Ignore the repulsion of the overlapping electron shells that occurs at this distance 
(and causes the rise of the potential-energy curve for r <  r0, Fig. 40-10).

FIGURE 40-10 Example 40-1. Potential- 
energy diagram for the NaCl bond. Beyond 
about r = 1 . 2  nm, the diagram is schematic 
only, and represents the energy difference 
between ions and neutral atoms. 17 = 0 is 
chosen for the two separated atoms Na and Cl 
(not for the ions). [For the two ions, Na+ and 
Cl- , the zero of potential energy at r = oo 
corresponds to U ~ 1.53 eV on this diagram.]

- r x = 0.94 nm

Na and Cl Na and Cl
(ions) (atoms)

SOLUTION (a) The potential energy of two point charges is given by Coulomb’s law:
jj, _ 1U -  ------------ >

47re0 r
where we distinguish U' from the U  in Fig. 40-10. This formula works for our two 
ions if we set £7' = 0 at r =  oo, which in the plot of Fig. 40-10 corresponds to 
U =  +1.53 eV (Fig. 40-10 is drawn for U =  0 for the free atoms). The point rx 
in Fig. 40-10 corresponds to U' =  -1.53 eV relative to the two free ions. We 
solve the U' equation above for r, setting q1 =  + e  and q2 = —e :

1 qiq2 (9.0 X 109N • m2/C 2)(—1.60 X 10“ 19C)( + 1.60 X 10“ 19C)
h =

477€n U' (-1.53 eV)(l.60 X 10-19 J/eV)
= 0.94 nm, 

which is just the measured value.
(b) A t r0 =  0.24 nm, the potential energy of the two ions (relative to r =  oo for 
the two ions) is 

1£7' =
4776,
(9.0 X 109 N • m2/C 2)( -1.60 X 10“19 C)(+1.60 X 10“ 19C)

6.0 eV.
(0.24 X 10“9m)(l.60 X 10“ 19J/eV)

Thus, we estimate that 6.0 eV of energy is given up when Na+ and C r ions form 
a NaCl bond. Put another way, it takes 6.0 eV to break the NaCl bond and form 
the Na+ and Cl-  ions. To get the binding energy— the energy to separate the 
NaCl into Na and Cl atoms— we need to subtract out the 1.53 eV (the “bump” in 
Fig. 40-10) needed to ionize them:

binding energy = 6.0 eV -  1.53 eV = 4.5 eV.
The measured value (shown on Fig. 40-10) is 4.2 eV. The difference can be attributed 
to the energy associated with the repulsion of the electron shells at this distance.

P H Y S I C S  A P P L I E D

1076

Sometimes the potential energy of a bond looks like that of Fig. 40-11. In this 
ATP and energy in the cell case, the energy of the bonded molecule, at a separation rQ, is greater than when there 

is no bond (r = oo). That is, an energy input is required to make the bond (hence 
CHAPTER 40 the binding energy is negative), and there is energy release when the bond is broken.



Such a bond is stable only because there is the barrier of the activation energy. This 
type of bond is important in living cells, for it is in such bonds that energy can be 
stored efficiently in certain molecules, particularly ATP (adenosine triphosphate). The 
bond that connects the last phosphate group (designated ®  in Fig. 40-11) to the rest 
of the molecule (ADP, meaning adenosine diphosphate, since it contains only two 
phosphates) has potential energy of the shape shown in Fig. 40-11. Energy is stored 
in this bond. When the bond is broken (ATP — ADP + ® ), energy is released and 
this energy can be used to make other chemical reactions “go.”

In living cells, many chemical reactions have activation energies that are often on 
the order of several eV. Such energy barriers are not easy to overcome in the cell. This 
is where enzymes come in. They act as catalysts, which means they act to lower the 
activation energy so that reactions can occur that otherwise would not. Enzymes act 
via the electrostatic force to distort the bonding electron clouds, so that the initial 
bonds are easily broken.

Bond length. Suppose a diatomic molecule has a potential 
energy given by U = -  (1/4776 o)(e2/r )  + B /r 6 where B =  1.0 X 10-78 J-m6 and 
r is the distance between the centers of the two atoms. Determine the expected 
equilibrium separation of the two atoms (bond length of the molecule).

APPROACH The force between the two atoms is given by F = - d U /d r  (analo­
gous to Eq. 8-7). The classical equilibrium separation is found by setting F =  0. 
SOLUTION

F = - d U /d r  = (1/ 47re0)(— e2/ r 2) -  B ( -6/ r 7) =  —(l/4 ire0)(e2/ r 2) + 6B /r1 = 0. 
Then

r5 =  6B(47re0)/e2 =  2.6 X 10-50m5.

So r = 1 2  X 10“ 10m = 0.12 nm.
NOTE This can be shown to be a stable equilibrium point by checking the sign 
of d2U /d r2, or by evaluating F  at positions slightly larger and smaller than the 
equilibrium position.

40—3 Weak (van der Waals) Bonds
Once a bond between two atoms or ions is made, energy must normally be 
supplied to break the bond and separate the atoms. As mentioned in Section 40-1, 
this energy is called the bond energy or binding energy. The binding energy for 
covalent and ionic bonds is typically 2 to 5 eV. These bonds, which hold atoms 
together to form  molecules, are often called strong bonds to distinguish them from 
so-called “weak bonds.” The term weak bond, as we use it here, refers to 
attachments between molecules due to simple electrostatic attraction— such as 
between polar molecules (and not within a polar molecule, which is a strong bond). 
The strength of the attachment is much less than for the strong bonds. Binding 
energies are typically in the range 0.04 to 0.3 eV— hence their name “weak bonds.” 

Weak bonds are generally the result of attraction between dipoles (Sections 21-11, 
23-6). For example, Fig. 40-12 shows two molecules, which have permanent dipole 
moments, attracting one another. Besides such dipole-dipole bonds, there can also be 
dipole-induced dipole bonds, in which a polar molecule with a permanent dipole 
moment can induce a dipole moment in an otherwise electrically balanced (nonpolar) 
molecule, just as a single charge can induce a separation of charge in a nearby object 
(see Fig. 21-7). There can even be an attraction between two nonpolar molecules, 
because their electrons are moving about: at any instant there may be a transient 
separation of charge, creating a brief dipole moment and weak attraction. A ll these 
weak bonds are referred to as van der Waals bonds, and the forces involved 
van der Waals forces. The potential energy has the general shape shown in Fig. 40-8, 
with the attractive van der Waals potential energy varying as 1 /r6.

When one of the atoms in a dipole-dipole bond is hydrogen, as in Fig. 40-12, it is 
called a hydrogen bond. A  hydrogen bond is generally the strongest of the weak bonds, 
because the hydrogen atom is the smallest atom and can be approached more closely. 
Hydrogen bonds also have a partial “covalent” character: that is, electrons between the 
two dipoles may be shared to a small extent, making a stronger, more lasting bond.

EXAMPLE 40-2

FIGURE 40-11 Potential-energy 
diagram for the formation of ATP 
from ADP and phosphate (0).

FIGURE 40-12 TheC+ — CT and 
H+ — N- dipoles attract each other. 
(These dipoles may be part of, for 
example, the nucleotide bases cytosine 
and guanine in DNA molecules. See 
Fig. 40-13.) The + and — charges 
typically have magnitudes of a 
fraction of e.
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FIGURE 40-13 (a) Section of a DNA 
double helix. The red dots represent 
hydrogen bonds between the two 
strands, (b) “Close-up” view: cytosine 
(C) and guanine (G) molecules on 
separate strands of a DNA double 
helix are held together by the hydrogen 
bonds (red dots) involving an H+ on 
one molecule attracted to an N_ or 
C+ — O of a molecule on the adjacent 
chain. See also Section 21-12 and 
Figs. 21-47 and 21-48.

0 P H Y S I C S  A P P L I E D
DNA

(a)

Weak bonds are important in liquids and solids when strong bonds are absent (see 
Section 40-5). They are also very important for understanding the activities of cells, 
such as the double helix shape of DNA (Fig. 40-13), and DNA replication. The average 
kinetic energy of molecules in a living cell at normal temperatures (T ~ 300 K) is 
around \k T  « 0.04 eV, about the magnitude of weak bonds.This means that a weak 
bond can readily be broken just by a molecular collision. Hence weak bonds are not 
very permanent— they are, instead, brief attachments. This helps them play particular 
roles in the cell. On the other hand, strong bonds— those that hold molecules together—  
are almost never broken simply by molecular collision. Thus they are relatively perma­
nent. They can be broken by chemical action (the making of even stronger bonds), and 
this usually happens in the cell with the aid of an enzyme, which is a protein molecule.

Nucleotide energy. Calculate the potential energy between 
a C =  O dipole of the nucleotide base cytosine and the nearby H —  N dipole of 
guanine, assuming that the two dipoles are lined up as shown in Fig. 40-12. 
Dipole moment (= q i) measurements (see Table 23-2 and Fig. 40-12) give

3.0 X IO- 30C-m
Qh  <7n — 0.10 X 10 m

= 3.0 X 10-20C = 0.19c.

and 8.0 X 10-30C' m
Q c  ~  <lo 0.12 X 10 m

= 6.7 X 10“20 C = 0.42e.

APPROACH We want to find the potential energy of the two charges in one 
dipole due to the two charges in the other, since this w ill be equal to the 
work needed to pull the two dipoles infinitely far apart. The potential energy U  of a 
charge q1 in the presence of a charge q2 is U = (l/47re0)(q1q2/r12) where 
l / 4 7 r e  o =  9.0 X 109N-m 2/C 2 and r12 is the distance between the two charges. 
SOLUTION The potential energy U consists of four terms:

U = UCH + UCN + UQ H + UON, 
where UCH means the potential energy of C in the presence of H, and similarly 
for the other terms. We do not have terms corresponding to C and O, or N and 
H, because the two dipoles are assumed to be stable entities. Then, using the 
distances shown in Fig. 40-12, we get:

1 |~~ + ffcffN + ffoffH + ffoffN~|
4t760

U =
rCH rCN rOU rON

c )2
-  (9.0 x  I f f  N . „ . /C - ) ( 6 .7 ) ( 3 .0 ) |5 i I  -  j i j  -  j L  +  5̂ ) ^

= -1.86 X 10“20J = -0.12 eV.

The potential energy is negative, meaning 0.12 eV of work (or energy input) is 
required to separate the dipoles. That is, the binding energy of this “weak” or 
hydrogen bond is 0.12 eV. This is only an estimate, of course, since other charges 
in the vicinity would have an influence too.
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New protein chain of 
4 amino acids 
(a 5th is being added)

Codon
4

Codon
5

Weak bonds, especially hydrogen bonds, are crucial to the process of protein 
synthesis. Proteins serve as structural parts of the cell and as enzymes to catalyze 
chemical reactions needed for the growth and survival of the organism. A  protein 
molecule consists of one or more chains of small molecules known as amino acids. 
There are 20 different amino acids, and a single protein chain may contain hundreds of 
them in a specific order. The standard model for how amino adds are connected together 
in the correct order to form a protein molecule is shown schematically in Fig. 40-14.

It begins at the DNA double helix: each gene on a chromosome contains the 
information for producing one protein. The ordering of the four bases, A, C, G, and T, 
provides the “code,” the genetic code, for the order of amino acids in the protein. First, 
the DNA double helix unwinds and a new molecule called messenger-KNA (m-RNA) 
is synthesized using one strand of the DNA as a “template.” m-RNA is a chain molecule 
containing four different bases, like those of DNA (Section 21-12) except that thymine (T) 
is replaced by the similar uracil molecule (U). Near the top left in Fig. 40-14, a C has just 
been added to the growing m-RNA chain in much the same way that DNA replicates; 
and an A, attracted and held close to the T on the DNA chain by the electrostatic 
force, w ill soon be attached to the C by an enzyme. The order of the bases, and 
thus the genetic information, is preserved in the m-RNA because the shapes of the 
molecules only allow the “proper” one to get close enough so the electrostatic force 
can act to form weak bonds.

Next, the m-RNA is buffeted about in the cell (kinetic theory) until it gets close to a 
tiny organelle known as a ribosome, to which it can become attached by electrostatic 
attraction (on the right in Fig. 40-14). Also held by the electrostatic force to the 
ribosome are one or two transfer-KNA (t-RNA) molecules. These t-RNA molecules 
“ translate” the genetic code of nucleotide bases into amino acids in the following way. 
There is a different t-RNA molecule for each amino acid and each combination of 
three bases. On one end of a t-RNA molecule is an amino acid. On the other end of the 
t-RNA molecule is the appropriate “anticodona set of three nucleotide bases that “code” 
for that amino acid. If all three bases of an anticodon match the three bases of the 
“codon” on the m-RNA (in the sense of G to C and A  to U), the anticodon is attracted 
electrostatically to the m-RNA codon and that t-RNA molecule is held there briefly. The 
ribosome has two particular attachment sites which hold two t-RNA molecules while 
enzymes link their two amino acids together to lengthen the amino acid chain (yellow in 
Fig. 40-14). As each amino acid is connected by an enzyme (four are already connected 
in Fig. 40-14, top right, and a fifth is about to be connected), the old t-RNA molecule 
is removed— perhaps by a random collision with some molecule in the cellular fluid. 
A  new one soon becomes attracted as the ribosome moves along the m-RNA.

FIGURE 40-14 Protein synthesis. 
See text for details.

®L P H Y S I C S  A P P L I E D
Protein synthesis
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3p

2s

Isolated atom

(a)

Atom in a molecule 

(b)
FIGURE 40-15 (a) The individual 
energy levels of an isolated atom 
become (b) bands of closely spaced 
levels in molecules, as well as in 
solids and liquids.

FIGURE 40-16 Diatomic molecule 
rotating about a vertical axis.

This process of protein synthesis is often presented as if it occurred in 
clockwork fashion— as if  each molecule knew its role and went to its assigned 
place. But this is not the case. The forces of attraction between the electric charges 
of the molecules are rather weak and become significant only when the molecules 
can come close together and several weak bonds can be made. Indeed, if the 
shapes are not just right, there is almost no electrostatic attraction, which is why 
there are few mistakes. The fact that weak bonds are weak is very important. If  
they were strong, collisions with other molecules would not allow a t-RNA molecule 
to be released from the ribosome, or the m-RNA to be released from the DNA. If  
they were not temporary encounters, metabolism would grind to a halt.

As each amino acid is added to the next, the protein molecule grows in length 
until it is complete. Even as it is being made, this chain is being buffeted about in 
the cellular sea— we might think of a wiggling worm. But a protein molecule has 
electrically charged polar groups along its length. And as it takes on various 
shapes, the electric forces of attraction between different parts of the molecule w ill 
eventually lead to a particular configuration that is quite stable. Each type of 
protein has its own special shape, depending on the location of charged atoms. In 
the last analysis, the final shape depends on the order of the amino acids.

4 0 -4  Molecular Spectra
When atoms combine to form molecules, the probability distributions of the outer 
electrons overlap and this interaction alters the energy levels. Nonetheless, 
molecules can undergo transitions between electron energy levels just as atoms do. 
For example, the H 2 molecule can absorb a photon of just the right frequency to 
excite one of its ground-state electrons to an excited state. The excited electron can 
then return to the ground state, emitting a photon. The energy of photons emitted 
by molecules can be of the same order of magnitude as for atoms, typically 1 to 10 eV, 
or less.

Additional energy levels become possible for molecules (but not for atoms) 
because the molecule as a whole can rotate, and the atoms of the molecule can 
vibrate relative to each other. The energy levels for both rotational and vibrational 
levels are quantized, and are generally spaced much more closely (10-3 to 10-1 eV) 
than the electronic levels. Each atomic energy level thus becomes a set of closely 
spaced levels corresponding to the vibrational and rotational motions, Fig. 40-15. 
Transitions from one level to another appear as many very closely spaced lines. In fact, 
the lines are not always distinguishable, and these spectra are called band spectra. 
Each type of molecule has its own characteristic spectrum, which can be used for 
identification and for determination of structure. We now look in more detail at 
rotational and vibrational states in molecules.

Rotational Energy Levels in Molecules
We consider only diatomic molecules, although the analysis can be extended to 
polyatomic molecules. When a diatomic molecule rotates about its center of mass 
as shown in Fig. 40-16, its kinetic energy of rotation (see Section 10-8) is

'rot \ 21
where I(o is the angular momentum (Section 11-1). Quantum mechanics predicts 
quantization of angular momentum just as in atoms (see Eq. 39-3):

Ia> = V<(< + 1 )h , t  = 0,1,2, •••,
where £ is an integer called the rotational angular momentum quantum number.
Thus the rotational energy is quantized:

■'rot M21 t  = 0 , 1, 2 , (40-2)

Transitions between rotational energy levels are subject to the selection rule 
(as in Section 39-2):

M  =  + 1.
1080 CHAPTER 40 The energy of a photon emitted or absorbed for a transition between rotational



states w ith angular momentum quantum number £ and £ — 1 w ill be 

A£rot = E, -  = ^ f ( f  + 1) -  | j ( f  -  l) ( f )

= ¥<■ [£ is fo r upperl 
energy state J (40-3)

We see that the transition energy increases directly with £. Figure 40-17 shows some 
of the allowed rotational energy levels and transitions. Measured absorption lines 
fa ll in the microwave or far-infrared regions of the spectrum, and their frequencies 
are generally 2 ,3,4, • • • times higher than the lowest one, as predicted by Eq. 40-3.

EXERCISE A Determine the three lowest rotational energy states (in eV) for a nitrogen 
molecule which has a moment of inertia I  =  1.39 X 10_46kg-m2.

The moment of inertia of the molecule in Fig. 40-16 rotating about its center 
of mass (Section 10-5) is

I  =  m xr\ + m2r \ ,

where rx and r2 are the distances of each atom from their common center of mass. 
We can show (in Example 40-4 below) that I  can be written

m 1m2
I  = rL = /x,r , (40-4)

m1 + m2
where r =  rx + r2 is the distance between the two atoms of the molecule and 
fi =  m 1 m2/ ( m 1 +  m 2) is called the reduced mass. I f  m 1 =  m 2, then /x = \ m x = \m 2.

Reduced mass. Show that the moment of inertia of a 
diatomic molecule rotating about its center of mass can be written 

I  =  /ir2,

where

m 1 +  m2
is the reduced mass, Eq. 40-4, and r is the distance between the atoms. 

SOLUTION The moment of inertia of a single particle of mass m  a distance r from the 
rotation axis is I  =  m r2 (Eq. 10-11 or 10-13). For our diatomic molecule (Fig. 40-16)

I  = m 1r2 + m2r2.

Now r = rx +  r2 and = m2r2 because the axis of rotation passes through
the center of mass. Hence

m i
rx = r — r2 = r ------- rx.

Solving for rx gives 

h  =  ~

m2
m 2r

1 +
m 1 m1 +  m2

Similarly,

r2 =

m2
m 1r

m x + m2
Then (see first equation o f this Solution)

I  =  m x
m 2r

where

m 1 4 
m1 m2 

m 1 +  m2
m 1m2

m2 + m2 mi r
m 1 +  m2

m 1 m2(m1 + m2)r2 
(m 1 + m2)2

rL =

m x + m2 
which is what we wished to show.

£ = 5

£ = 4

£ = 3

£ = 2
£ = l  
£ = 0

15 f

l o f

, t i2 
6 t

3 f  

1 M 
o 7

AE = 5 n2/i

AE = 4h2fr

ae  = 3 n2h

AE = 2fi2/l
ae = n2h

FIGURE 40-17 Rotational energy 
levels and allowed transitions 
(emission and absorption) for a 
diatomic molecule. Upward-pointing 
arrows represent absorption of a 
photon, and downward arrows 
represent emission of a photon.
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EXAMPLE 40-5 Rotational transition. A  rotational transition £ =  1 to 
£ =  0 for the molecule CO has a measured absorption wavelength ^  = 2.60 mm 
(microwave region). Use this to calculate (a) the moment of inertia of the CO 
molecule, and (b) the CO bond length, r. (c) Calculate the wavelengths of the 
next three rotational transitions, and the energies of the photon emitted for each 
of these four transitions.
APPROACH The absorption wavelength is used to find the energy of the 
absorbed photon. The moment of inertia I  is found from Eq. 40-3, and the bond 
length r from Eq. 40-4.
SOLUTION (a) The photon energy, E  = h f  = hc/ \ , equals the rotational 
energy level difference, AETOt. From Eq. 40-3, we can write 

£
With i  =  1 (the upper state) in this case, we solve for /:

hX1 (6.63 X 10-34 J • s)(2.60 X 10~3m)

A E  = i f  hc 
h f - T '

I  =
hH
he 1 47T2c

= 1.46 X 10-46kg-m2.
(b) The masses of C and O are 12.0 u and 
1 u = 1.66 X 10_27kg. Thus the reduced mass is 

m1m2 (12.0)(16.0)

4tt2(3.00 X 108 m/s)

16.0 u, respectively, where

(1.66 X 10“27kg) = 1.14 X 10“26kg

= 1.13 X 10-10 m = 0.113 nm.

m1 + m2 28.0
or 6.86 u. Then, from Eq. 40-4, the bond length is

7  _ 11-46 X 10~46 kg • m2 

M ~~ V  1.14 X 10_26kg

(c) From Eq. 40-3, AE  oc L Hence A = c / f  = h c/A E  is proportional to 1/L  
Thus, for i  =  2 to £ =  1 transitions, k2=\\1 =  1.30 mm. For £ =  3 to 
£ =  2, A3 = jA i = 0.87 mm. And for £ =  4 to £ =  3, A4 = 0.65 mm. A ll are 
close to measured values. The energies of the photons, h f  = hc/X, are 
respectively 4.8 X 10“4 eV, 9.5 X 10“4 eV, 1.4 X 10“3 eV, and 1.9 X 10“3eV.

Vibrational Energy Levels in Molecules
The potential energy of the two atoms in a typical diatomic molecule has the 
shape shown in Fig. 40-8 or 40-9, and Fig. 40-18 again shows the potential 
energy for the H 2 molecule. We note that the potential energy, at least in 
the vicinity of the equilibrium separation r0, closely resembles the potential 
energy of a simple harmonic oscillator, U = \  kx2, which is shown superposed in 
dashed lines. Thus, for small displacements from r0, each atom experiences a

FIGURE 40-18 Potential energy 
for the H2  molecule and for a simple 
harmonic oscillator (t/sHO = \kx 2  

with |jc| = |r — r0|).The 0.50-eV 
energy height marked is for use in 
Example 40-6 to estimate k. [Note 
that t/sHO = 0  is not the same as 
U = 0 for the molecule.!

restoring force approximately proportional to the displacement, and the 
molecule vibrates as a simple harmonic oscillator (SHO). The classical frequency 
of vibration is

/  = -  J - ’3 2t t  V m-
(40-5)

CHAPTER 40
where k  is the “ stiffness constant” (as for a spring, Chapter 14) and instead of the 
mass m we must again use the reduced mass fi = m1m2/(m 1 +  m2). (This is



shown in Problem 19.) The Schrodinger equation for the SHO potential energy 
yields solutions for energy that are quantized according to

£vib = (v + i ) ¥  V = 0 ,1 ,2 ,- ,  (40-6)
where /  is given by Eq. 40-5 and v is an integer called the vibrational quantum 
number. The lowest energy state (v = 0) is not zero (as for rotation) but has 
E = \h f .  This is called the zero-point energy.f Higher states have energy \h f ,  \ h f , 
and so on, as shown in Fig. 40-19. Transitions are subject to the selection rule 

Av = +1,
so allowed transitions occur only between adjacent states and all give o ff photons 
of energy

A £vib = h f. (40-7)
This is very close to experimental values for small v; but for higher energies, the 
potential-energy curve (Fig. 40-18) begins to deviate from a perfect SHO curve, 
which affects the wavelengths and frequencies of the transitions. Typical transition 
energies are on the order of 10_1 eV, about 10 to 100 times larger than for 
rotational transitions, with wavelengths in the infrared region of the spectrum 
(» 10-5 m).*

ESTIMATE I Wavelength for H2. (a) Use the curve ofEXAMPLE 40-6
Fig. 40-18 to estimate the value of the stiffness constant k  for the H 2 molecule, 
and then (b) estimate the fundamental wavelength for vibrational transitions.

APPROACH To find k, we arbitrarily choose an energy height of 0.50 eV which is indi­
cated in Fig. 40-18. By measuring directly on the graph, we find that this energy 
corresponds to a vibration on either side of r0 =  0.074 nm of about x =  ±  0.017 nm.

SOLUTION (a) For SHO, USHO = \  kx2 and t/SHO = 0 at x = 0 (r = r0); then 

2C/sho 2(0.50 e V )(l.6 X 10“19 J/eV)
k =

(1.7 X 10-11 m)2
550 N/m.

NOTE This value of k  would also be reasonable for a macroscopic spring.
(ib) The reduced mass is fi  = m l m2/ (m 1 +  m2) = m j l  = \  (1.0u)(l.66 X 10-27kg) =
0.83 X 10“27 kg. Hence, using Eq. 40-5,

A = y  = 27TCy J ^  = 27t(3.0 X 108 m/s) 

which is in the infrared region of the spectrum.

0.83 X 10“z/ kg 
550 N/m

= 2300 nm,

Experimentally, we do the inverse process: The wavelengths of vibrational 
transitions for a given molecule are measured, and from this the stiffness constant 
k  can be calculated. The values of k  calculated in this way are a measure of the 
strength of the molecular bond.

Vibrational energy levels in hydrogen. Hydrogen molecule 
vibrations emit infrared radiation of wavelength around 2300 nm. (a) What is the 
separation in energy between adjacent vibrational levels? (b) What is the lowest 
vibrational energy state?
APPROACH The energy separation between adjacent vibrational levels is 
AEwih = h f  = hc/X. The lowest energy (Eq. 40-6) has v =  0.
SOLUTION (a) / „ w .

he (6.63 X 10 J • s)(3.00 X 10 m/s)
A £vib = h f  = —  =

(2300 X 10-9 m)(l.60 X 10“ 19J/eV)
= 0.54 eV,

where the denominator includes the conversion factor from joules to eV.
(b) The lowest vibrational energy has v =  0 in Eq. 40-6:

ib = (v + i) / i/  = \ h f  = 0.27 eV.

Vibrational Vibrational 
quantum energy
number v 

5-

A E

Energy A E 

1 -----

0

hf

hf

hf

hf

\hf

FIGURE 40-19 Allowed 
vibrational energies of a diatomic 
molecule, where /  is the 
fundamental frequency of vibration, 
given by Eq. 40-5. The energy levels 
are equally spaced. Transitions 
are allowed only between adjacent 
levels (Av = +1).

fRecall this phenomenon for a square well, Fig. 38-8.
^Forbidden transitions with Av = 2 are emitted somewhat more weakly, but their observation can be 
important in some cases, such as in astronomy. SECTION 40-4 1083
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electronic

state

“2s”
electronic
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FIGURE 40-20 Combined 
electronic, vibrational, and rotational 
energy levels. Transitions marked with 
an X are not allowed by selection rules.

Rotational plus Vibrational Levels
When energy is imparted to a molecule, both the rotational and vibrational modes 
can be excited. Because rotational energies are an order of magnitude or so smaller 
than vibrational energies, which in turn are smaller than the electronic energy 
levels, we can represent the grouping of levels as shown in Fig. 40-20. Transitions 
between energy levels, w ith emission of a photon, are subject to the selection rules:

Av = +1 and A£ = +1.

Some allowed and forbidden (marked X) transitions are indicated in Fig. 40-20. 
Not all transitions and levels are shown, and the separation between vibrational 
levels, and (even more) between rotational levels, has been exaggerated. But we 
can clearly see the origin of the very closely spaced lines that give rise to the band 
spectra, as mentioned with reference to Fig. 40-15 earlier in this Section.

The spectra are quite complicated, so we consider briefly only transitions 
within the same electronic level, such as those at the top of Fig. 40-20. A  transition 
from a state with quantum numbers v and £, to one with quantum numbers 
v +  1 and 1 +  1 (see the selection rules above), w ill absorb a photon of energy:

A E  =  A Ewib +  A Eirot

ft2
= h f  +  ( i  +  i )  —

\  £ —  £ +  1 1 
[ ( M  =  + 1) \ £ =  0 , 1 , 2 ,- (40-8a)

r *  - i - i ]  
[(A £  =  -1)J> £ =  1,2,3, , (40-8b)

where we have used Eqs. 40-3 and 40-7. Note that for £ —> £ -  1 transitions, 
£ cannot be zero because there is then no state w ith £ =  -1 . Equations 40-8 
predict an absorption spectrum like that shown schematically in Fig. 40-21, 
w ith transitions £ —> £ -  1 on the le ft and £ —>• £ +  1 on the right. Figure 40-22 
shows the molecular absorption spectrum of HC1, which follows this pattern very well. 
fEqs. 40-8 are for absorption; for emission of a photon, the transition would be v —> v — 1, £ —» £ + 1.

A£ A £ A £
= - 1  = - 1  = - 1

FIGURE 40-21 Expected spectrum for 
transitions between combined rotational 
and vibrational states.

A £ A£ A£ A£
: + l = + 1 = + 1 = + 1

FIGURE 40-22 Absorption 
spectrum for HC1 molecules. Lines 
on the left correspond to transitions 
where £ —> £ — 1; those on the right 
are for £ —> £ + 1. Each line has a 
double peak because chlorine has 
two isotopes of different mass and 
different moment of inertia.
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(Each line in the spectrum of Fig. 40-22 is split into two because Cl consists of two 
isotopes of different mass; hence there are two kinds of HC1 molecule with 
different moments of inertia I.)

estimate! Hie Hd molecule. Estimate the moment of inertia 
of the HC1 molecule using the absorption spectrum shown in Fig. 40-22. For the 
purposes of a rough estimate you can ignore the difference between the two isotopes.

APPROACH The locations of the peaks in Fig. 40-22 should correspond to 
Eqs. 40-8. We don’t know what value of I each peak corresponds to in Fig. 40-22, but 
we can estimate the energy difference between peaks to be about AE' =  0.0025 eV. 
SOLUTION From Eqs. 40-8, the energy difference between two peaks is given by

A E ’ = AEi<+i

Then

I  =
h2 

AE'

A fi = K -

(6.626 X 10-34 J-s/2 ir):
, 1Q = 2.8 X 10 47kg*m2.

(0.0025 e V )(l.6 X 10“19 J/eV) 5

NOTE To get an idea of what this number means, we write I  =  iir2 (Eq. 40-4), 
where fi is the reduced mass (Example 40-4); then we calculate /jl:

m i m 2 (1 .0 u ) (3 5 u )  ^  ^  x  10_27kg /u ) =  1 6  x  10-27k g .

m1 + m2 36 u
the bond length is given by (Eq. 40-4)

2.8 X 10-47 kg • m2
r - = 1.3 X 10 m,

1.6 X 10“27kg
which is the expected order of magnitude for a bond length.

40—5 Bonding in Solids
Quantum mechanics has been a great tool for understanding the structure of solids. This 
active field of research today is called solid-state physics, or condensed-matter physics so 
as to include liquids as well. The rest of this Chapter is devoted to this subject, and we 
begin with a brief look at the structure of solids and the bonds that hold them together.

Although some solid materials are amorphous in structure, in that the atoms 
and molecules show no long-range order, we w ill be interested here in the large class 
of crystalline substances whose atoms, ions, or molecules are generally believed to 
form an orderly array known as a lattice. Figure 40-23 shows three of the possible 
arrangements of atoms in a crystal: simple cubic, face-centered cubic, and body- 
centered cubic. The NaCl crystal is face-centered cubic (see Fig. 40-24), with one 
Na+ ion or one Cl-  ion at each lattice point (i.e., considering Na and Cl separately).

The molecules of a solid are held together in a number of ways. The most 
common are by covalent bonding (such as between the carbon atoms of the 
diamond crystal) or ionic bonding (as in a NaCl crystal). Often the bonds are 
partially covalent and partially ionic. Our discussion of these bonds earlier in this 
Chapter for molecules applies equally well here to solids.

Let us look for a moment at the NaCl crystal of Fig. 40-24. Each Na+ ion feels 
an attractive Coulomb potential due to each of the six “nearest neighbor” Cl“ ions 
surrounding it. Note that one Na+ does not “belong” exclusively to one Cl“ , so we 
must not think of ionic solids as consisting of individual molecules. Each Na+ also 
feels a repulsive Coulomb potential due to other Na+ ions, although this is weaker 
since the other Na+ ions are farther away. Thus we expect a net attractive potential

47re0 r
The factor a  is called the Madelung constant. I f  each Na+ were surrounded by only 
the six Cl- ions, a  would be 6 , but the influence of all the other ions reduces it to a 
value a  = 1.75 for the NaCl crystal. The potential must also include a term 
representing the repulsive force when the wave functions of the inner shells and 
subshells overlap, and this has the form U = B /r m, where m is a small integer.

(c)

FIGURE 40-23 Arrangement of 
atoms in (a) a simple cubic crystal, 
(b) face-centered cubic crystal (note 
the atom at the center of each face), 
and (c) body-centered cubic crystal. 
Each shows the relationship of the 
bonds. Each of these “cells” is 
repeated in three dimensions to the 
edges of the macroscopic crystal.

FIGURE 40-24 Diagram of an 
NaCl crystal, showing the “packing” 
of atoms.

^  ct- Na* 

cr |t$ C1-
- Cl- Na* u

k  u O  P
a  o
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The sum of these two terms suggests a potential energy

which has the same form as Eq. 40-1 for molecules (Section 40-2). It can be 
shown (Problem 25) that, at the equilibrium distance r0,

This U0 is known as the ionic cohesive energy', it is a sort of “binding energy” — the 
energy (per ion) needed to take the solid apart into separated ions, one by one.

A  different type of bond occurs in metals. Metal atoms have relatively loosely 
held outer electrons. Present-day metallic bond theories propose that in a metallic 
solid, these outer electrons roam rather freely among all the metal atoms which, 
without their outer electrons, act like positive ions. The electrostatic attraction 
between the metal ions and this negative electron “gas” is what is believed, at least 
in part, to hold the solid together. The binding energy of metal bonds are typically
1 to 3 eV, somewhat weaker than ionic or covalent bonds (5 to 10 eV in solids). The 
“ free electrons,” according to this theory, are responsible for the high electrical and 
thermal conductivity of metals (see Sections 40-6 and 40-7). This theory also 
nicely accounts for the shininess of smooth metal surfaces: the electrons are free 
and can vibrate at any frequency, so when light of a range of frequencies falls on a 
metal, the electrons can vibrate in response and re-emit light of those same 
frequencies. Hence the reflected light w ill consist largely of the same frequencies 
as the incident light. Compare this to nonmetallic materials that have a distinct 
color— the atomic electrons exist only in certain energy states, and when white 
light falls on them, the atoms absorb at certain frequencies, and reflect other 
frequencies which make up the color we see.

Here is a brief summary of important strong bonds:

• ionic: an electron is stolen from one atom by another;
• covalent: electrons are shared by atoms within a single molecule;
• metallic: electrons are shared by all atoms in the metal.

The atoms or molecules of some materials, such as the noble gases, can form 
only weak bonds with each other. As we saw in Section 40-3, weak bonds have 
very low binding energies and would not be expected to hold atoms together as a 
liquid or solid at room temperature. The noble gases condense only at very low 
temperatures, where the atomic kinetic energy is small and the weak attraction can 
then hold the atoms together.

40—6 Free-Electron Theory o f Metals; 
Fermi Energy

Let us look more closely at the free-electron theory of metals mentioned in the 
preceding Section. Let us imagine the electrons trapped within the metal as 
being in a potential well: inside the metal, the potential energy is zero, but at the 
edges of the metal there are high potential walls. Since very few electrons leave 
the metal at room temperature, we can imagine the walls as being infinitely 
high (as in Section 38-8). A t higher temperatures, electrons do leave the metal (we 
know that thermionic emission occurs, Section 23-9), so we must recognize that 
the well is of finite depth. In this simple model, the electrons are trapped within 
the metal, but are free to move about inside the well whose size is macroscopic— the 
size of the piece of metal. The energy w ill be quantized, but the spacing between 
energy levels w ill be very tiny (see Eq. 38-13) because the width of the potential 
well I is very large. Indeed, for a cube 1 cm on a side, the number of states with 
energy between, say, 5.0 and 5.5 eV, is on the order of 1022 (see Example 40-9).
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To deal with such vast numbers of states, which are so closely spaced as to 
seem continuous, we need to use statistical methods. We define a quantity known as 
the density of states, g (E ), whose meaning is similar to the Maxwell distribution, 
Eq. 18-6 (see Section 18-2). That is, the quantity g (E ) dE  represents the number 
of states per unit volume that have energy between E  and E + dE. A  careful 
calculation (see Problem 41), which must treat the potential well as three 
dimensional, shows that

g{E)  =
8 V 2 77 m3/2

’V2
h3

(40-10)

where m  is the mass of the electron. This function is plotted in Fig. 40-25.

EXAMPLE 40-9 ESTIMATE! Electron states in copper. Estimate the number 
of states in the range 5.0 to 5.5 eV available to electrons in a 1.0-cm cube of 
copper metal.

APPROACH Since g (E ) is the number of states per unit volume per unit energy 
interval, the number N  of states is approximately (it is approximate because AE  
is not small)

N  « g (E )V  AE,

where the volume V  =  1.0 cm3 = 1.0 X 10_6m3 and AE  = 0.50 eV.
SOLUTION We evaluate g (E ) at 5.25 eV, and find (Eq. 40-10):

8V2ir(9.1 X IO-31 kg)§ ,______________________
N  « g (E )V  AE  =  - ^ 7 7 : -----■ —34 T „\3 V(5-25 e V )(l.6 X 10~19 J/eV)

J-s)

/ \  .̂L.U /s  ja' 6 w*3

«  8  X 1021

states in 1.0 cm3. Note that the type of metal did not enter the calculation.

5.63 X 10

X (1.0 X 10-6 m3)(0.50 e V )(l.6 X 10-19J/eV)

Equation 40-10 gives us the density of states. Now we must ask: How are the 
states available to an electron gas actually populated? Let us first consider the 
situation at absolute zero, T =  OK. For a classical ideal gas, all the particles 
would be in the lowest state, with zero kinetic energy (= § kT  =  0). But the situation 
is vastly different for an electron gas because electrons obey the exclusion 
principle. Electrons do not obey classical statistics but rather a quantum statistics 
called Ferm i-Dirac statistics1̂ that takes into account the exclusion principle. A ll 
particles that have spin \  (or other half-integral spin: §, §, etc.), such as electrons, 
protons, and neutrons, obey Fermi-Dirac statistics and are referred to as fermions.* 
The electron gas in a metal is often called a Fermi gas. According to the exclusion 
principle, no two electrons in the metal can have the same set of quantum numbers. 
Therefore, in each of the states of our potential well, there can be at most two 
electrons: one with spin up (m s = + 5) and one with spin down (ms = — 5). (This 
factor of 2 has already been included in Eq. 40-10.) Thus, at T =  0 K, the possible 
energy levels w ill be filled, two electrons each, up to a maximum level called the 
Fermi level. This is shown in Fig. 40-26, where the vertical axis is labeled n0(E ) 
for “ density of occupied states.” The energy of the state at the Fermi level is called 
the Fermi energy, EF. To determine EF, we integrate Eq. 40-10 from E = 0 
to E  = EF (all states up to EF are filled at T  = 0 K):

8(E ) dE , (40-11)

where N /V  is the number of conduction electrons per unit volume in the metal.

developed independently by Enrico Fermi (Figs. 41-8, 38-2, 37-10) in early 1926 and by P. A. M. 
Dirac a few months later.
^Particles with integer spin (0, 1, 2, etc.), such as the photon, obey Bose-Einstein statistics and are 
called bosons, as mentioned in Section 39-4.

FIGURE 40-25 Density of states 
g(E) as a function of energy E 
(Eq. 40-10).

FIGURE 40-26 At T = OK, all
states up to energy EF, called the 
Fermi energy, are filled.
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FIGURE 40-27 The Fermi-Dirac 
probability function for two 
temperatures, T = OK (blackline) 
and T = 1200 K (blue curve). For 
f ( E ) = 1, a state with energy E  is 
certainly occupied. For f (E )  = 0.5, 
which occurs at E  = EF, the state 
with EF has a 50% chance of being 
occupied.

FIGURE 40-28 The density of 
occupied states for the electron gas 
in copper. The width kT shown 
above the graph represents thermal 
energy at T = 1200 K.

Then, solving for EF, the result (see Example 40-10 below) is

F 8 m \'T T V  

The average energy in this distribution (see Problem 35) is
~E — 3 ir

(40-12)

(40-13)
For copper, EF =  7.0 eV (see Example 40-10) and E =  4.2 eV. This is very much 
greater than the energy of thermal motion at room temperature (§ kT  ~ 0.04 eV). 
Clearly, all motion does not stop at absolute zero.

Thus, at T =  0, all states with energy below EF are occupied, and all states 
above EF are empty. What happens for T >  0? We expect that some (at least) of 
the electrons w ill increase in energy due to thermal motion. Classically, the 
distribution of occupied states would be given by the Boltzmann factor, e~E/kT 
(see Eqs. 39-16). But for our electron gas, a quantum-mechanical system obeying 
the exclusion principle, the probability of a given state of energy E  being occupied 
is given by the Ferm i-Dirac probability function (or Fermi factor):

m  = e(E- . F)/ l  + 1 ’ < * -« >

where EF is the Fermi energy. This function is plotted in Fig. 40-27 for two 
temperatures, T =  OK and T =  1200K (just below the melting point of 
copper). A t T =  0 (or as T  approaches zero) the factor e Ê~Ê /kT in Eq. 40-14 is 
zero if E <  EF and is oo if E >  EF. Thus

1 E < E f
^ r  at r  = o.

0 E  ^  Ef

This is what is plotted in black in Fig. 40-27 and is consistent with Fig. 40-26: all 
states up to the Fermi level are occupied [probability f ( E )  =  1 ] and all states 
above are unoccupied. For T =  1200 K, the Fermi factor changes only a little , as 
shown in Fig. 40-27 as the blue curve. Note that at any temperature T, when 
E  =  Ef , then Eq. 40-14 gives f ( E )  = 0.50, meaning the state at E = EF has a 
50% chance of being occupied. To see how f ( E )  affects the actual distribution of 
electrons in energy states, we must weight the density of possible states, g(E ), by 
the probability that those states w ill be occupied, f ( E ) .  The product of these two 
functions then gives the density of occupied states,

f ( E )  =

na(E ) = g (E )f (E )  =
8V 5i7 m3/2 -1/2

(40-15)
h3 ^ E - E r) /k T  +  1

Then n0(E ) dE  represents the number of electrons per unit volume with energy 
between E  and E + dE  in thermal equilibrium at temperature T. This is plotted in 
Fig. 40-28 for T =  1200 K, a temperature at which a metal is so hot it would 
glow. We see immediately that the distribution differs very little  from that at 
T =  0. We see also that the changes that do occur are concentrated about the 
Fermi level. A  few electrons from slightly below the Fermi level move to energy 
states slightly above it. The average energy of the electrons increases only very 
slightly when the temperature is increased from T =  0 K to T =  1200 K. This is 
very different from the behavior of an ideal gas, for which kinetic energy increases 
directly with T. Nonetheless, this behavior is readily understood as follows. Energy 
of thermal motion at T =  1200 K is about \k T  « 0.1 eV. The Fermi level, on the 
other hand, is on the order of several eV: for copper it is EF « 7.0 eV. An electron 
at T =  1200 K may have 7 eV of energy, but it can acquire at most only a few 
times 0.1 eV of energy by a (thermal) collision with the lattice. Only electrons very 
near the Fermi level would find vacant states close enough to make such a transi­
tion. Essentially none of the electrons could increase in energy by, say, 3 eV, so 
electrons farther down in the electron gas are unaffected. Only electrons near the 
top of the energy distribution can be thermally excited to higher states. And their 
new energy is on the average only slightly higher than their old energy.
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EXERCISE B Return to the Chapter-Opening Question, page 1071, and answer it again 
now. Try to explain why you may have answered differently the first time.

EXAMPLE 40-10 The Fermi level. For the metal copper, determine (a) the 
Fermi energy, (b) the average energy of electrons, and (c) the speed of electrons 
at the Fermi level (this is called the Fermi speed).

APPROACH We first derive Eq. 40-12 by combining Eqs. 40-10 and 40-11:

N  8 V 2  7rm3/2 f E? y2 8V 2 7rm3/2 2 3/,
E ' dE  = ------------------ EJ

h2 (  3 N \ l

V rf

Solving for EF, we obtain

Ev -  i
8 m \ 7 r V

2 3 2
[note: (2V2)s = (22)3 = 2], and this is Eq. 40-12. We calculated N /V , the 
number of conduction electrons per unit volume in copper, in Example 25-14 to 
be N /V  =  8.4 X 1028nT3.
SOLUTION (a) The Fermi energy for copper is thus

(6.63 X 10“34J-s)2 T3(8.4 X 1028nT3) ] i  l

lp ~~ 8(9.1 X IO-31 kg) [ i r  J 1.6 X IO-19 J/eV

(6) From Eq. 40-13,

~E = §£f  = 4.2 eV.

(c) In our model, we have taken U =  0 inside the metal (assuming a 3-D 
infinite potential well, Section 38-8, Eq. 40-10, and Problem 41). Then E  is only 
kinetic energy = \m v 2. Therefore, at the Fermi level, the Fermi speed is

.'2(7.0 eV)(l.6 X l(T 19J/eV) ,
% = \  -----  = \  ----------- -------— 7̂------------- = 1.6 X 10° m/s,

A/ m  V 9.1 X 10 kg

a very high speed. The temperature of a classical gas would have to be extremely 
high to produce an average particle speed this large.

Incorrect classical calculation. Let us see what result we get 
if  the electrons are treated as a classical ideal gas. That is, estimate the average 
kinetic energy of electrons at room temperature using the kinetic theory of gases, 
Chapter 18.

APPROACH The average kinetic energy of particles in an ideal gas was given in 
Chapter 18, Eq. 18-4, as

K  = \kT ,

where k  is Boltzmann’s constant and T  « 300 K.
SOLUTION The ideal gas model gives

K  =  |(1.38 X IO-23 J /K )(3 0 0 K )(---------- — ) = 0.039 eV.
2 A \  1.6 x 10 J/eV /

This result is far from correct. It is off by a factor of 100: Example 40-10 gave 4.2 eV. 
The ideal gas model does not work for electrons which obey the exclusion principle. 
Indeed, we see here how important and powerful the exclusion principle is.

EXERCISE C Determine the Fermi energy for gold (density = 19,300 kg/m3), (a) 5.5 eV,
(b) 6.2 eV, (c) 7.2 eV, (d) 8.1 eV, (e)8.4eV.

EXAMPLE 40-11
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FIGURE 40-29 Potential energy 
for an electron in a metal crystal, 
with deep potential wells in the 
vicinity of each ion in the crystal 
lattice.

FIGURE 40-30 The splitting of 
Is and 2s atomic energy levels as 
(a) two atoms approach each 
other (the atomic separation 
decreases toward the left on the 
graph), (b) the same for six atoms, 
and (c) for many atoms when they 
come together to form a solid.

Position
Positions of metallic 
ions in lattice

The simple model of an electron gas presented here provides good explana­
tions for the electrical and thermal properties of conductors. But it does not 
explain why some materials are good conductors and others are good insulators. 
To provide an explanation, our model of electrons inside a metal moving in a uniform 
potential well needs to be refined to include the effect of the lattice. Figure 40-29 
shows a “periodic” potential that takes into account the attraction of electrons for 
each atomic ion in the lattice. Here we have taken U =  0 for an electron free of 
the metal; so within the metal, electron energies are less than zero (just as for 
molecules, or for the H atom in which the ground state has E =  -13.6 eV). 
The quantity eW0 represents the minimum energy to remove an electron from the 
metal, where W0 is the work function (see Section 37-2). The crucial outcome of 
putting a periodic potential (more easily approximated with narrow square wells) 
into the Schrodinger equation is that the allowed energy states are divided into 
bands, with energy gaps in between. Only electrons in the highest band, close to 
the Fermi level, are able to move about freely within the metal crystal. In the next 
Section we w ill see physically why there are bands and how they explain the 
properties of conductors, insulators, and semiconductors.

40— Band Theory of Solids
We saw in Section 40-1 that when two hydrogen atoms approach each other, 
the wave functions overlap, and the two Is states (one for each atom) divide 
into two states of different energy. (As we saw, only one of these states, 
5 = 0, has low enough energy to give a bound H 2 molecule.) Figure 40-30a 
shows this situation for Is and 2s states for two atoms: as the two atoms get 
closer (toward the left in Fig. 40-30a), the Is and 2s states split into two levels. If  
six atoms come together, as in Fig. 40-30b, each of the states splits into six levels. 
I f  a large number of atoms come together to form a solid, then each of the original 
atomic levels becomes a band as shown in Fig. 40-30c. The energy levels are so 
close together in each band that they seem essentially continuous. This is why the 
spectrum of heated solids (Section 37-1) appears continuous. (See also Fig. 40-15 
and its discussion at the start of Section 40-4.)

(a) (b) (c)
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The crucial aspect of a good conductor is that the highest energy band containing 
electrons is only partially filled. Consider sodium metal, for example, whose energy bands are 
shown in Fig. 40-31. The Is, 2s, and 2p  bands are full (just as in a sodium atom) and don’t 
concern us. The 3s band, however, is only half full. To see why, recall that the exclusion 
principle stipulates that in an atom, only two electrons can be in the 3s state, one with 
spin up and one with spin down. These two states have slightly different energy. For a 
solid consisting of N  atoms, the 35 band w ill contain 2N  possible energy states. A  
sodium atom has a single 3s electron, so in a sample of sodium metal containing 
N  atoms, there are N  electrons in the 3s band, and N  unoccupied states. When a 
potential difference is applied across the metal, electrons can respond by accelerating 
and increasing their energy, since there are plenty of unoccupied states of slightly 
higher energy available. Hence, a current flows readily and sodium is a good 
conductor. The characteristic of all good conductors is that the highest energy band is 
only partially filled, or two bands overlap so that unoccupied states are available. An 
example of the latter is magnesium, which has two 3s electrons, so its 3s band is filled. 
But the unfilled 3p  band overlaps the 35 band in energy, so there are lots of available 
states for the electrons to move into. Thus magnesium, too, is a good conductor.

In a material that is a good insulator, on the other hand, the highest band 
containing electrons, called the valence band, is completely filled. The next highest 
energy band, called the conduction band, is separated from the valence band by a 
“ forbidden” energy gap (or band gap), Eg, of typically 5 to 10eV. So at room 
temperature (300 K), where thermal energies (that is, average kinetic energy— see 
Chapter 18) are on the order of \k T  ~ 0.04 eV, almost no electrons can acquire 
the 5 eV needed to reach the conduction band. When a potential difference is 
applied across the material, no available states are accessible to the electrons, and 
no current flows. Hence, the material is a good insulator.

Figure 40-32 compares the relevant energy bands (a) for conductors, (b) for 
insulators, and also (c) for the important class of materials known as semiconductors. 
The bands for a pure (or intrinsic) semiconductor, such as silicon or germanium, 
are like those for an insulator, except that the unfilled conduction band is 
separated from the filled valence band by a much smaller energy gap, Eg, typically 
on the order of 1 eV. A t room temperature, a few electrons can acquire enough 
thermal energy to reach the conduction band, and so a very small current may flow 
when a voltage is applied. A t higher temperatures, more electrons have enough 
energy to jump the gap. Often this effect can more than offset the effects of more 
frequent collisions due to increased disorder at higher temperature, so the resistivity 
of semiconductors can decrease with increasing temperature (see Table 25-1). But 
this is not the whole story of semiconductor conduction. When a potential difference 
is applied to a semiconductor, the few electrons in the conduction band move 
toward the positive electrode. Electrons in the valence band try to do the same 
thing, and a few can because there are a small number of unoccupied states which 
were left empty by the electrons reaching the conduction band. Such unfilled 
electron states are called holes. Each electron in the valence band that fills a hole 
in this way as it moves toward the positive electrode leaves behind its own hole, so 
the holes migrate toward the negative electrode. As the electrons tend to accumulate 
at one side of the material, the holes tend to accumulate on the opposite side. We 
w ill look at this phenomenon in more detail in the next Section.

Conduction band

Conduction band

Valence band Valence band

(a) Conductor (b) Insulator (c) Semiconductor

3s

2P

2s

Is __________________

FIGURE 40-31 Energy bands for 
sodium (Na).

FIGURE 40-32 Energy bands for
(a) a conductor, (b) an insulator, which 
has a large energy gap Eg, and (c) a 
semiconductor, which has a small 
energy gap Eg. Shading represents 
occupied states. Pale shading in
(c) represents electrons that can pass 
from the top of the valence band to 
the bottom of the conduction band 
due to thermal agitation at room 
temperature (exaggerated).
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Calculating the energy gap. It is found that the conduc­
tivity of a certain semiconductor increases when light of wavelength 345 nm or 
shorter strikes it, suggesting that electrons are being promoted from the valence 
band to the conduction band. What is the energy gap, Eg, for this semiconductor?

APPROACH The longest wavelength (lowest energy) photon to cause an increase 
in conductivity has A = 345 nm, and its energy (= h f)  equals the energy gap. 
SOLUTION The gap energy equals the energy of a A = 345-nm photon:

he (6.63 x  10“34J-s)(3.00 x  108m/s)
EQ = h f  = —  = 7------------- -— T7-------------- —------- r = 3.6 eV.

g A (345 x  10 m)(l.60 x  10“19J/eV)

EXAMPLE 40-12

Conduction band

Valence band

FIGURE 40-33 The Fermi energy 
is midway between the valence band 
and the conduction band.

EXAMPLE 40-13 ESTIMATE! Free electrons in semiconductors and 
insulators. Use the Fermi-Dirac probability function, Eq. 40-14, to estimate the 
order of magnitude of the numbers of free electrons in the conduction band of a 
solid containing 1021 atoms, assuming the solid is at room temperature 
(T =  300 K) and is (a) a semiconductor with Eg ~ 1.1 eV, (b) an insulator with 
Eg « 5 eV. Compare to a conductor.

APPROACH A t T =  0, all states above the Fermi energy EF are empty, and 
all those below are full. So for semiconductors and insulators we can take EF 
to be about midway between the valence and conduction bands, Fig. 40-33, 
and it does not change significantly as we go to room temperature. We can thus 
use Eq. 40-14 to find the fraction of electrons in the conduction band at room 
temperature for the two cases.
SOLUTION (a) For the semiconductor, the gap Eg « 1.1 eV, so E — EF « 0.55 eV 
for the lowest states in the conduction band. Since at room temperature we have 
kT  « 0.026 eV, then (E -  EF)/k T  « 0.55 eV/0.026 eV « 21 and

f ( E )  = ,{E-E¥)/kT + 1

Thus about 1 atom in 109 can contribute an electron to the conductivity.
(b) For the insulator with E -  EF «  5.0 eV -  §(5.0 eV) = 2.5 eV, we get

f ( E ) *  10-

Thus in an ordinary sample containing 1021 atoms, there would be no free 
electrons in an insulator (lO21 X 10-42 = 10-21), about 1012 (lO21 X 10-9) free 
electrons in a semiconductor, and about 1021 free electrons in a good conductor.

0 P H Y S I C S  A P P L I E D
Transparency

CONCEPTUAL EXAMPLE 40-14~l Which is transparent? The energy gap for 
silicon is 1.14 eV at room temperature, whereas that of zinc sulfide (ZnS) is 3.6 eV. 
Which one of these is opaque to visible light, and which is transparent?

RESPONSE Visible light photons span energies from roughly 1.8 eV to 3.1 eV 
(E = h f  = hc/X  where A = 400 nm to 700 nm and 1 eV = 1.6 X 10-19 J). Light 
is absorbed by the electrons in a material. Silicon’s energy gap is small enough to 
absorb these photons, thus bumping electrons well up into the conduction band, so 
silicon is opaque. On the other hand, zinc sulfide’s energy gap is so large 
that no visible light photons would be absorbed; they would pass right through 
the material which would thus be transparent.
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4 0 —8 Semiconductors and Doping
Nearly all electronic devices today use semiconductors. The most common are 
silicon (Si) and germanium (Ge). An atom of silicon or germanium has four outer 
electrons that act to hold the atoms in the regular lattice structure of the crystal, 
shown schematically in Fig. 40-34a. Germanium and silicon acquire properties 
useful for electronics when a tiny amount of impurity is introduced into the crystal 
structure (perhaps 1 part in 106 or 107).This is called doping the semiconductor. Two 
kinds of doped semiconductor can be made, depending on the type of impurity 
used. I f  the im purity is an element whose atoms have five outer electrons, such as 
arsenic, we have the situation shown in Fig. 40-34b, with the arsenic atoms holding 
positions in the crystal lattice where normally silicon atoms would be. Only four of 
arsenic’s electrons fit into the bonding structure. The fifth  does not fit in and can 
move relatively freely, somewhat like the electrons in a conductor. Because of this 
small number of extra electrons, a doped semiconductor becomes slightly conducting.

S

Electron

[icon atom

\ l  * • • o  • • o

Silicon atom

Q  • * O  * * O
• •
• •

• * o * • o
• • 

(a)

Extra
electron

o
(b)

FIGURE 40-34 Two-dimensional 
representation of a silicon crystal.
(a) Four (outer) electrons surround 
each silicon atom, (b) Silicon crystal 
doped with a small percentage of 
arsenic atoms: the extra electron 
doesn’t fit into the crystal lattice and 
so is free to move about. This is an 
n-type semiconductor.

The density of conduction electrons in an intrinsic (undoped) semiconductor at room 
temperature is very low, usually less than 1 per 109 atoms. W ith an im purity concen­
tration of 1 in 106 or 107 when doped, the conductivity w ill be much higher and it can 
be controlled with great precision. An arsenic-doped silicon crystal is called an 
u-type semiconductor because negative charges (electrons) carry the electric current.

In  a p-type semiconductor, a small percentage of semiconductor atoms are 
replaced by atoms with three outer electrons— such as gallium. As shown in 
Fig. 40-35a, there is a “ hole” in the lattice structure near a gallium atom since it 
has only three outer electrons. Electrons from nearby silicon atoms can jump into 
this hole and fill it. But this leaves a hole where that electron had previously been, 
Fig. 40-35b. The vast m ajority of atoms are silicon, so holes are almost always next 
to a silicon atom. Since silicon atoms require four outer electrons to be neutral, 
this means that there is a net positive charge at the hole. Whenever an electron 
moves to f ill a hole, the positive hole is then at the previous position of that 
electron. Another electron can then f ill this hole, and the hole thus moves to a new 
location; and so on. This type of semiconductor is called p -type  because it is the 
positive holes that seem to carry the electric current. Note, however, that both 
p-type  and n-type semiconductors have no net charge on them.

Q  • • Q  • • Q  •
• • •
• • •

Q  • • Q  Q  •
• • •
• • •

Q  • • Q  • • Q  •
• • •

(b)

FIGURE 40-35 A p -type semiconductor, gallium- 
doped silicon, (a) Gallium has only three outer 
electrons, so there is an empty spot, or hole in the 
structure, (b) Electrons from silicon atoms can 
jump into the hole and fill it. As a result, the hole 
moves to a new location (to the right in this 
Figure), to where the electron used to be.
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(a) n-type (b) p-type

FIGURE 40-36 Impurity energy levels in doped semiconductors.

According to the band theory (Section 40-7), in a doped semiconductor 
the impurity provides additional energy states between the bands as shown 
in Fig. 40-36. In an w-type semiconductor, the im purity energy level lies 
just below the conduction band, Fig. 40-36a. Electrons in this energy level 
need only about 0.05 eV in Si (even less in Ge) to reach the conduction 
band; this is on the order of the thermal energy, \  kT  (=0.04eV at 300 K), 
so transitions occur readily at room temperature. This energy level can thus 
supply electrons to the conduction band, so it is called a donor level. In 
p -type semiconductors, the im purity energy level is just above the valence 
band (Fig. 40-36b). It is called an acceptor level because electrons from the 
valence band can easily jump into it. Positive holes are left behind in the valence 
band, and as other electrons move into these holes, the holes move as discussed 
earlier.

x x x C x x x x
+ + + + + + "T"

e h
-  < x x x x p< d

^ 7 ^ :  :  :  T t  i
X X * D X x x x

(a)

x x x  c x x x x

(b)
FIGURE 27-32 (Repeated.) The 
Hall effect, (a) Negative charges 
moving to the right as the current, 
(b) The same current, but as positive 
charges moving to the left.

EXERCISE D Which of the following impurity atoms would produce a p-type semiconductor?
(a) Ge; (b) Ne; (c) Al; (d) As; (e) none of the above.

CONCEPTUAL EXAMPLE 40—15~1 Determining charge of conductors. How
can we determine if a p - type semiconductor has a current that is really due to the 
motion of holes? Or, is this just a convenient model?

RESPONSE Recall from Section 27-8 that the Hall effect can be used to 
distinguish the sign of the charges involved in a current. When placed in a 
magnetic field, the current in a particular direction can result in a voltage 
perpendicular to that current due to the magnetic force on the moving charges 
(Fig. 27-32, repeated here). The direction of this Hall voltage depends on the 
sign of the charges carrying the current. In this way, it has been demonstrated 
that it really is moving holes that are responsible for the current in a p - type 
semiconductor.

4 0 -9  Semiconductor Diodes
Semiconductor diodes and transistors are essential components of modern 
electronic devices. The miniaturization achieved today allows many thousands of 
diodes, transistors, resistors, and so on, to be placed on a single chip less than a 
millimeter on a side. We now discuss, briefly and qualitatively, the operation of 
diodes and transistors.

When an n-type semiconductor is joined to a p - type, a p n  junction diode 
is formed. Separately, the two semiconductors are electrically neutral. When 
joined, a few electrons near the junction diffuse from the n-type into the i?-type 
semiconductor, where they fill a few of the holes. The n-type is left with a positive 
charge, and the p -type acquires a net negative charge. Thus a potential difference is 
established, with the n side positive relative to the p  side, and this prevents further 
diffusion of electrons.
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I f  a battery is connected to a diode with the positive terminal to the p  side 
and the negative terminal to the n side as in Fig. 40-37a, the externally applied 
voltage opposes the internal potential difference and the diode is said to be 
forward biased. I f  the voltage is great enough (about 0.3 V for Ge, 0.6 V  for Si at 
room temperature), a current w ill flow. The positive holes in the p-type semicon­
ductor are repelled by the positive terminal of the battery, and the electrons in 
the n-type are repelled by the negative terminal of the battery. The holes and 
electrons meet at the junction, and the electrons cross over and fill the holes. A  
current is flowing. Meanwhile, the positive terminal of the battery is continually 
pulling electrons o ff the p  end, forming new holes, and electrons are being 
supplied by the negative terminal at the n end. Consequently, a large current 
flows through the diode.

When the diode is reverse biased, as in Fig. 40-37b, the holes in the p  end are 
attracted to the battery’s negative terminal and the electrons in the n end 
are attracted to the positive terminal. The current carriers do not meet near the 
junction and, ideally, no current flows.

A  graph of current versus voltage for a typical diode is shown in Fig. 40-38. As 
can be seen, a real diode does allow a small amount of reverse current to flow. For 
most practical purposes, it is negligible. (A t room temperature, the reverse current 
is a few fiA  in Ge and a few pA in Si; but it increases rapidly with temperature, 
and may render a diode ineffective above 200°C.)

(Conventional)
current
flow

+ + +

Voltage 
source 
+ <

------- n

No current 
flow

---- V
- 12.0

r

(b)
FIGURE 40-37 Schematic diagram 
showing how a semiconductor diode 
operates. Current flows when the 
voltage is connected in forward bias, 
as in (a), but not when connected in 
reverse bias, as in (b).

V (volts)
FIGURE 40-38 Current through a silicon pn 
diode as a function of applied voltage.

EXAMPLE 40-16 A diode. The diode whose current-voltage characteristics 
are shown in Fig. 40-38 is connected in series with a 4.0-V battery in forward bias 
and a resistor. I f  a current of 15 mA is to pass through the diode, what resistance 
must the resistor have?

APPROACH We use Fig. 40-38, where we see that the voltage drop across the 
diode is about 0.7 V when the current is 15 mA. Then we use simple circuit 
analysis and Ohm’s law (Chapters 25 and 26).
SOLUTION The voltage drop across the resistor is 4.0 V -  0.7 V  = 3.3 V, so 
R = V /I  = (3.3 V )/(l.5  X 1(T2A ) = 220 fl.

The symbol for a diode is 

----N--- [diode]

where the arrow represents the direction conventional (+ ) current flows readily.
I f  the voltage across a diode connected in reverse bias is increased greatly, a 

point is reached where breakdown occurs. The electric field across the junction 
becomes so large that ionization of atoms results. The electrons thus pulled off 
their atoms contribute to a larger and larger current as breakdown continues. The 
voltage remains constant over a wide range of currents. This is shown on the far 
left in Fig. 40-38. This property of diodes can be used to accurately regulate a volt­
age supply. A  diode designed for this purpose is called a zener diode. When placed 
across the output of an unregulated power supply, a zener diode can maintain the 
voltage at its own breakdown voltage as long as the supply voltage is always above 
this point. Zener diodes can be obtained corresponding to voltages of a few volts 
to hundreds of volts.
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FIGURE 40-39 (a) A simple 
(half-wave) rectifier circuit using a 
semiconductor diode, (b) AC source 
input voltage, and output voltage 
across R, as functions of time.

Since a pn  junction diode allows current to flow only in one direction 
(as long as the voltage is not too high), it can serve as a rectifier— to change 
ac into dc. A  simple rectifier circuit is shown in Fig. 40-39a. The ac source 
applies a voltage across the diode alternately positive and negative. Only 
during half of each cycle w ill a current pass through the diode; only then is 
there a current through the resistor R. Hence, a graph of the voltage Vah across R  
as a function of time looks like the output voltage shown in Fig. 40-39b. 
This half-wave rectification is not exactly dc, but it is unidirectional. 
More useful is a full-wave rectifier circuit, which uses two diodes (or sometimes 
four) as shown in Fig. 40-40a. A t any given instant, either one diode or the 
other w ill conduct current to the right. Therefore, the output across the load 
resistor R w ill be as shown in Fig. 40-40b. Actually this is the voltage if  the 
capacitor C were not in the circuit. The capacitor tends to store charge and, if  the 
time constant R C  is sufficiently long, helps to smooth out the current as shown in 
Fig. 40-40c. (The variation in output shown in Fig. 40-40c is called ripple voltage.)

Rectifier circuits are important because most line voltage in buildings is ac, 
and most electronic devices require a dc voltage for their operation. Hence, diodes 
are found in nearly all electronic devices including radio and TV sets, calculators, 
and computers.

FIGURE 40-40 (a) Full-wave rectifier 
circuit (including a transformer so the 
magnitude of the voltage can be changed), 
(b) Output voltage in the absence of 
capacitor C. (c) Output voltage with 
the capacitor in the circuit.

Output

1
(a)

output A A A A v.output

Time
(b) Without capacitor

Time 
(c) With capacitor

0 P H Y S I C S  A P P L I E D
LEDs and applications 

Car safety (brakes)

FIGURE 40-41 LED traffic light.

Another useful device is a light-emitting diode (LED), invented in the 
1960s. When a pn  junction is forward biased, a current begins to flow. Electrons 
cross from the n region into the p  region and combine with holes, and a 
photon can be emitted with an energy approximately equal to the band gap, 
Eg (see Figs. 40-32c and 40-36). Often the energy, and hence the wavelength, 
is in the red region of the visible spectrum, producing the fam iliar LED 
displays on electronic devices, car instrument panels, digital clocks, and so on. 
Infrared (i.e., nonvisible) LEDs are used in remote controls for TVs, DVDs, 
and stereos. New types of LEDs emit other colors, and LED “bulbs” are 
beginning to replace other types of lighting in applications such as flashlights, 
traffic signals, car brake lights, and outdoor signs, billboards, and theater 
displays. LED bulbs, sometimes called solid-state lighting, are costly, but they 
offer advantages: they are long-lived, efficient, and rugged. LED traffic 
lights, for example (Fig. 40-41), last 5 to 10 times longer than traditional 
incandescent bulbs, and use only 20% of the energy for the same light output. 
As car brake lights, they light up a fraction of a second sooner, allowing a 
driver an extra 5 or 6 meters (15-20 ft) more stopping distance at highway speeds.

Solar cells and photodiodes (Section 37-2) are pn  junctions used in 
the reverse way. Photons are absorbed, creating electron-hole pairs if the 
photon energy is greater than the band gap energy, Eg. The created electrons 
and holes produce a current that, when connected to an external circuit, becomes 
a source of emf and power. Particle detectors (Section 41-11) operate similarly.

A  diode is called a nonlinear device because the current is not proportional to 
the voltage. That is, a graph of current versus voltage (Fig. 40-38) is not a straight line, 
as it is for a resistor (which ideally is linear). Transistors are also nonlinear devices.
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40—10 Transistors and 
Integrated Circuits (Chips)

A  simple junction transistor consists of a crystal of one type of doped semicon­
ductor sandwiched between two crystals of the opposite type. Both npn and pnp  
transistors are made, and they are shown schematically in Fig. 40-42a. The three 
semiconductors are given the names collector, base, and emitter. The symbols for 
npn and pnp  transistors are shown in Fig. 40-42b. The arrow is always placed on 
the emitter and indicates the direction of (conventional) current flow in normal 
operation.

n Collector
Base

n Emitter

npn transistor (a)

1
p Collector

n Base
P Emitter

pnp transistor

Base

<

Collector
Base

Collector

EmitterEmitter
npn W  pnp

FIGURE 40-42 (a) Schematic diagram of npn and pnp 
transistors, (b) Symbols for npn and pnp transistors.

FIGURE 40-43 An npn transistor used as an amplifier. 
IB is the current produced by %B (in the absence of a 
signal), iB is the ac signal current (= changes in /B).

The operation of a transistor can be analyzed qualitatively— very briefly— as 
follows. Consider an npn transistor connected as shown in Fig. 40-43. A  voltage VbE 
is maintained between the collector and emitter by the battery %c . The voltage 
applied to the base is called the base bias voltage, ^BE- I f  VBE is positive, 
conduction electrons in the emitter are attracted into the base. Since the base 
region is very thin (less than 1 pm — much less if  on a chip), most of these electrons 
flow right across into the collector, which is maintained at a positive voltage. A  
large current, Ic , flows between collector and emitter and a much smaller current, 
IB, through the base. In the steady state, IB and Ic can be considered dc. A  small 
variation in the base voltage due to an input signal causes a large change in the 
collector current and therefore a large change in the voltage drop across the 
output resistor R c . Hence a transistor can amplify a small signal into a larger one.

Typically a small ac signal (call it iB) is to be amplified, and when added to the 
base bias voltage and current causes the voltage and current at the collector to vary 
at the same rate but magnified. Thus, what is important for amplification is the 
change in collector current for a given input change in base current. We label these 
ac signal currents (= changes in Ic and /B) as ic and iB. The current gain is defined 
as the ratio

output (collector) ac current ic 
input (base) ac current iB

(3j is typically on the order of 10 to 100. Similarly, the voltage gain is 

output (collector) ac voltage 
^v  input (base) ac voltage

Transistors are the basic elements in modern electronic amplifiers of all sorts.
A  pnp transistor operates like an npn, except that holes move instead of electrons. 

The collector voltage is negative, and so is the base voltage in normal operation.
In digital circuits, including computers, where “ o ff” and “ on” (or zero and one) 

make up the binary code, transistors act like a gate or switch. That is, they let 
current pass (“ on” ) or they block it (“ o ff” ).
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Transistors were a great advance in miniaturization of electronic circuits. 
Although individual transistors are very small compared to the once-used vacuum 
tubes, they are huge compared to integrated circuits or chips (see photo at start of 
this Chapter). Tiny amounts of impurities can be placed at particular locations 
within a single silicon crystal. These can be arranged to form diodes, transistors, 
and resistors (undoped semiconductors). Capacitors and inductors can also be 
formed, although they are often connected separately. A tiny chip, a few millimeters 
on a side, may contain millions of transistors and other circuit elements. Integrated 
circuits are the heart of computers, televisions, calculators, cameras, and the 
electronic instruments that control aircraft, space vehicles, and automobiles. The 
“miniaturization” produced by integrated circuits not only allows extremely 
complicated circuits to be placed in a small space, but also has allowed a great 
increase in the speed of operation of, say, computers, because the distances the 
electronic signals travel are so tiny.

Summary
Quantum mechanics explains the bonding together of atoms to 
form molecules. In  a covalent bond, the electron clouds of two or 
more atoms overlap because of constructive interference between 
the electron waves. The positive nuclei are attracted to this concen­
tration of negative charge between them, forming the bond.

An ionic bond is an extreme case of a covalent bond in 
which one or more electrons from one atom spend much more 
time around the other atom than around their own. The atoms 
then act as oppositely charged ions that attract each other, 
forming the bond.

These strong bonds hold molecules together, and also hold 
atoms and molecules together in solids. Also important are weak 
bonds (or van der Waals bonds), which are generally dipole 
attractions between molecules.

When atoms combine to form  molecules, the energy levels 
of the outer electrons are altered because they now interact 
w ith each other. Additional energy levels also become possible 
because the atoms can vibrate w ith respect to each other, and 
the molecule as a whole can rotate. The energy levels for both 
vibrational and rotational motion are quantized, and are very 
close together (typically, 10-1 eV to 10-3 eV apart). Each atomic 
energy level thus becomes a set o f closely spaced levels corre­
sponding to the vibrational and rotational motions. Transitions 
from  one level to another appear as many very closely spaced 
lines. The resulting spectra are called band spectra.

The quantized rotational energy levels are given by

^rot — £(£ + 1 ) 21 ’ i  =  0 , 1 , 2 ,- (40-2)

where I  is the moment o f inertia of the molecule.
The energy levels for vibrational motion are given by

Evib = (v + \ ) h f ,  v =  0,1, 2, •••, (40-6)

where /  is the classical natural frequency of vibration for the 
molecule. Transitions between energy levels are subject to the 
selection rules M  = ±1 and Av = ±1.

Some solids are bound together by covalent and ionic bonds, 
just as molecules are. In  metals, the electrostatic force between 
free electrons and positive ions helps form the metallic bond.

In  the free-electron theory o f metals, electrons occupy the 
possible energy states according to the exclusion principle. A t 
T  = 0 K, all possible states are filled up to a maximum energy 
level called the Fermi energy, EF, the magnitude o f which is 
typically a few eV. A ll states above EF are vacant at T  = 0 K.

A t normal temperatures (300 K) the distribution o f occupied 
states is only slightly altered and is given by the Ferm i-D irac  
probability function

/ ( £ ) = ew  + 1 - « • - “ >

In a crystalline solid, the possible energy states for electrons 
are arranged in bands. W ithin each band the levels are very 
close together, but between the bands there may be forbidden 
energy gaps. Good conductors are characterized by the highest 
occupied band (the conduction band) being only partially fu ll, 
so there are many accessible states available to electrons to 
move about and accelerate when a voltage is applied. In  a good 
insulator, the highest occupied energy band (the valence band) 
is completely fu ll, and there is a large energy gap (5 to 10 eV) to 
the next highest band, the conduction band. A t room temperature, 
molecular kinetic energy (thermal energy) available due to 
collisions is only about 0.04 eV, so almost no electrons can jump 
from the valence to the conduction band. In  a semiconductor, 
the gap between valence and conduction bands is much smaller, 
on the order o f 1 eV, so a few electrons can make the transition 
from the essentially fu ll valence band to the nearly empty 
conduction band.

In  a doped semiconductor, a small percentage of im purity 
atoms w ith five or three valence electrons replace a few of 
the normal silicon atoms with their four valence electrons. A  
five-electron im purity produces an n-type semiconductor w ith 
negative electrons as carriers of current. A  three-electron impurity 
produces a /7-type semiconductor in which positive holes carry 
the current. The energy level o f im purity atoms lies slightly 
below the conduction band in an n-type semiconductor, and 
acts as a donor from  which electrons readily pass into the 
conduction band. The energy level o f im purity atoms in a 
p -type semiconductor lies slightly above the valence band and 
acts as an acceptor level, since electrons from the valence band 
easily reach it, leaving holes behind to act as charge carriers.

A  semiconductor diode consists of a p n  junction and allows 
current to flow in one direction only; it can be used as a rectifier 
to change ac to dc. Common transistors consist o f three 
semiconductor sections, either as p n p  or n p n . Transistors can 
amplify electrical signals and in computers serve as switches or 
gates for the Is and 0s. An integrated circuit consists of a tiny 
semiconductor crystal or chip on which many transistors, diodes, 
resistors, and other circuit elements have been constructed using 
careful placement o f impurities.
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Questions
1. What type of bond would you expect for (a) the N2 molecule,

(b) the HC1 molecule, (c) Fe atoms in a solid?
2. Describe how the molecule CaCl2 could be formed.
3. Does the H 2 molecule have a permanent dipole moment? 

Does 0 2? Does H 20? Explain.
4. Although the molecule H 3 is not stable, the ion H 3+ is. 

Explain, using the Pauli exclusion principle.
5. The energy of a molecule can be divided into four categories. 

What are they?
6 . Would you expect the molecule H 2+ to be stable? I f  so, 

where would the single electron spend most of its time?
7. Explain why the carbon atom (Z  = 6 ) usually forms four 

bonds with hydrogen-like atoms.
8 . Explain on the basis of energy bands why the sodium 

chloride crystal is a good insulator. [Hint: Consider the 
shells of Na+ and CP ions.]

9. I f  conduction electrons are free to roam about in a metal, 
why don’t they leave the metal entirely?

10. Explain why the resistivity of metals increases with increasing 
temperature whereas the resistivity of semiconductors may 
decrease with increasing temperature.

11. Figure 40-44 shows a 
Explain how the current 
is rectified and how 
current flows during each 
half cycle.

FIGURE 40-44
Question 11.

| Problems

‘bridge-type” full-wave rectifier.

12. Discuss the differences between an ideal gas and a Fermi 
electron gas.

13. Compare the resistance of a pn  junction diode connected in 
forward bias to its resistance when connected in reverse 
bias.

14. Which aspects of Fig. 40-28 are peculiar to copper, and 
which are valid in general for other metals?

15. Explain how a transistor can be used as a switch.

16. What is the main difference between n-type and p-type 
semiconductors?

17. Draw a circuit diagram showing how a pnp  transistor can 
operate as an amplifier.

18. In a transistor, the base-emitter junction and the base- 
collector junction are essentially diodes. Are these junctions 
reverse-biased or forward-biased in the application shown 
in Fig. 40-43?

19. A  transistor can amplify an electronic signal, meaning it can 
increase the power of an input signal. Where does it get the 
energy to increase the power?

20. A  silicon semiconductor is doped with phosphorus. W ill 
these atoms be donors or acceptors? What type of semicon­
ductor w ill this be?

21. Do diodes and transistors obey Ohm’s law? Explain.

22. Can a diode be used to amplify a signal? Explain.

23. I f  %q were reversed in Fig. 40-43, how would the amplifica­
tion be altered?

40-1 to 40-3 Molecular Bonds
1. (I) Estimate the binding energy of a KC1 molecule by calcu­

lating the electrostatic potential energy when the K+ and 
Cl-  ions are at their stable separation of 0.28 nm. Assume 
each has a charge of magnitude l.Oe.

2. (II) The measured binding energy of KC1 is 4.43 eV. From 
the result of Problem 1, estimate the contribution to the 
binding energy of the repelling electron clouds at the 
equilibrium distance r0 = 0.28 nm.

3. (II) Estimate the binding energy of the H 2 molecule, 
assuming the two H nuclei are 0.074 nm apart and the 
two electrons spend 33% of their time midway between 
them.

4. ( II) The equilibrium distance r0 between two atoms in a 
molecule is called the bond length. Using the bond lengths 
of homogeneous molecules (like H 2, 0 2, and N2), one can 
estimate the bond length of heterogeneous molecules (like 
CO, CN, and NO). This is done by summing half of each 
bond length of the homogenous molecules to estimate that 
of the heterogeneous molecule. Given the following bond 
lengths: H2 (= 74 pm), N2 (= 145 pm), 0 2 (=121 pm), 
C2 (= 154 pm), estimate the bond lengths for: HN, CN, 
and NO.

5. (II) Estimate the energy associated with the repulsion of the 
electron shells of a lithium fluoride (LiF) molecule. The 
ionization energy of lithium is 5.39 eV, and it takes 3.41 eV 
to remove the extra electron from an F " ion. The bond 
length is 0.156 nm, and the binding energy of LiF is 5.95 eV.

6. (II) Binding energies are often measured experimentally in 
kcal per mole, and then the binding energy in eV per mole­
cule is calculated from that result. What is the conversion 
factor in going from kcal per mole to eV per molecule? What 
is the binding energy of KC1 (= 4.43 eV) in kcal per mole?

7. ( Ill)  (a) Apply reasoning similar to that in the text for the 
5 = 0 and 5 = 1 states in the formation of the H 2 molecule 
to show why the molecule He2 is not formed. (b) Explain why 
the He2+ molecular ion could form. (Experiment shows it has 
a binding energy of 3.1 eV at r0 = 0.11 nm.)

40-4 Molecular Spectra
8. (I) Show that the quantity h2/1  has units of energy.
9. (I) What is the reduced mass of the molecules (a) KC1; 

0b) 0 2; (c) HC1?
10. (II) (a) Calculate the “characteristic rotational energy,” h2/ 21, 

for the 0 2 molecule whose bond length is 0.121 nm.
(b) What are the energy and wavelength of photons emitted 
in an Z = 2 to i  = 1 transition?
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11. ( II)  The “ characteristic rotational energy,” h2/2 I , fo r N2 is 
2.48 X 10 4 eV. Calculate the N2 bond length.

12. ( II)  Estimate the longest wavelength emitted by a lithium  
hydride (L iH ) molecule for a change in its rotational state if 
its equilibrium  separation is 0.16 nm.

13. ( II)  The equilibrium  separation of H  atoms in the H 2 
molecule is 0.074 nm (Fig. 40-8). Calculate the energies 
and wavelengths of photons for the rotational transitions
(a) i  =  1 to i  = 0, (b) I =  2 to I =  1, and (c) I =  3 to
I =  2 .

14. ( II)  Explain why there is no transition for AE  = h f  in 
Fig. 40-21 (and Fig. 40-22). See Eqs. 40-8.

15. ( II)  The fundamental vibration frequency for the CO 
molecule is 6.42 X 1013Hz. Determine (a) the reduced 
mass, and (b) the effective value of the “ stiffness” constant k. 
Compare to k  for the H 2 molecule.

16. ( II)  L i and Br form  a molecule for which the lowest 
vibrational frequency is 1.7 X 1013 Hz. What is the effective 
stiffness constant k l

17. ( II)  Calculate the bond length for the NaCl molecule given 
that three successive wavelengths for rotational transitions 
are 23.1 mm, 11.6 mm, and 7.71 mm.

18. ( II)  (a) Use the curve o f Fig. 40-18 to estimate the stiffness 
constant k  for the H 2 molecule. (Recall that U =  \ k x 2.) 
(ib) Then estimate the fundamental wavelength for vibrational 
transitions using the classical formula (Chapter 14), but use 
only \  the mass of an H  atom (because both H  atoms move).

19. ( I ll)  Imagine the two atoms of a diatomic molecule as if  they 
were connected by a spring, Fig. 40-45. Show that the classical 
frequency o f vibration is given by Eq. 40-5. [Hint: Let jq  
and x2 be the displacements of each mass from 
in itia l equilibrium  positions; then m \d } x \ /d t2 = - k x ,  and 
m2 d2x2/d t2 =  —kx, where x =  X\ +  x2 . Find another 
relationship between x1 and x2, assuming that the center of 
mass o f the system stays 
at rest, and then show x 
that (xd2x /d t2 = — kx.]

FIGURE 40-45
Problem 19.

40-5 Bonding in Solids
20. (I) Estimate the ionic cohesive energy for NaCl taking 

a  = 1.75, ra = 8 , and r0 =  0.28 nm.

21. ( II)  Common salt, NaCl, has a density o f 2.165 g/cm3. The 
molecular weight o f NaCl is 58.44. Estimate the distance 
between nearest neighbor Na and Cl ions. [Hint: Each ion 
can be considered to have one “ cube” or “ cell”  of side s (our 
unknown) extending out from it.]

22. ( II)  Repeat the previous Problem fo r KC1 whose density is 
1.99 g/cm3.

23. ( II)  The spacing between “ nearest neighbor” Na and Cl ions 
in a NaCl crystal is 0.24 nm. What is the spacing between 
two nearest neighbor Na ions?

24. ( I ll)  For a long one-dimensional chain of alternating 
positive and negative ions, show that the Madelung constant 
would be a  =  2 In 2. [Hint: Use a series expansion for 
In (1 + x).]

25. ( I ll)  (a) Starting from Eq. 40-9, show that the ionic cohesive 
energy is given by U0 = — (ae2/ 4'7re0r0) ( l  — 1 /m ). Determine 
U0 fo r (b ) N al (r0 = 0.33 nm) and (c) MgO (r0 = 0.21 nm). 
Assume m  =  10. (d ) I f  you used m  =  8 instead, how far 
o ff would your answers be? Assume a  =  1.75.

40-6 Free-Electron Theory of Metals
26. (II)  Estimate the number of possible electron states in a

1.00-cm3 cube of silver between 0.985£F and EF (=  5.48 eV).
27. (II) Estimate the number of states between 7.00 eV and 

7.05 eV that are available to electrons in a 1.0-cm3 cube of 
copper.

28. (II)  What, roughly, is the ratio of the density of molecules in 
an ideal gas at 285 K  and 1 atm (say 0 2) to the density of 
free electrons (assume one per atom) in a metal (copper) 
also at 285 K?

29. (II)  Calculate the energy which has 85.0% occupancy proba­
b ility  for copper at (a) T  =  295 K; (b) T  =  750 K.

30. (II)  Calculate the energy which has 15.0% occupancy 
probability for copper at (a) T  = 295 K; (b) T  = 950 K.

31. (II)  What is the occupancy probability for a conduction 
electron in copper at T  =  295 K  for an energy 
E  =  1.015 E f 1

32. (II) The atoms in zinc metal (p = 7.1 X 103 kg/m 3) each have 
two free electrons. Calculate (a) the density o f conduction 
electrons, (b) their Fermi energy, and (c) their Fermi 
speed.

33. (II)  Calculate the Fermi energy and Fermi speed for 
sodium, which has a density of 0.97 X 103 kg/m 3 and has 
one conduction electron per atom.

34. (II)  Given that the Fermi energy of aluminum is 11.63 eV,
(a) calculate the density of free electrons using Eq. 40-12, 
and (b ) estimate the valence o f aluminum using this model 
and the known density (2.70 X 103 kg/m 3) and atomic 
mass (27.0) of aluminum.

35. ( II)  Show that the average energy o f conduction electrons 
in a metal at T  = OK is E  =  \E f (Eq. 40-13) by 
calculating

E  =
E n 0(E ) dE

n0(E ) dE

36. (II)  The neutrons in a neutron star (Chapter 44) can be 
treated as a Fermi gas w ith neutrons in place of the 
electrons in our model of an electron gas. Determine the Fermi 
energy for a neutron star of radius 12 km and mass 2.5 times 
that o f our Sun. Assume that the star is made entirely of 
neutrons and is of uniform  density.

37. (II)  For a one-dimensional potential well of w idth i , start 
w ith Eq. 38-13 and show that the number o f states per unit 
energy interval for an electron gas is given by

g t(E ) =
8 m l2 
h2E  ’

Remember that there can be two electrons (spin up and 
spin down) fo r each value o f n. [Hint: W rite the quantum 
number n in  terms o f E. Then gt(E ) = 2 d n /d E  
where dn is the number of energy levels between E  and 
E  + dE.]
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38. (II) Show that the probability for the state at the Fermi energy 
being occupied is exactly independent of temperature.

39. ( II)  A  very simple model of a “ one-dimensional” metal 
consists of N  electrons confined to a rigid box o f w idth i. 
We neglect the Coulomb interaction between the electrons.
(a) Calculate the Fermi energy fo r this one-dimensional 
metal (E F =  the energy o f the most energetic electron at 
T  = 0 K ), taking into account the Pauli exclusion principle. 
You can assume for simplicity that N  is even. (b) What is 
the smallest amount o f energy, A E, that this 1-D metal 
can absorb? (c) Find the lim it o f AE /E F fo r large N. 
What does this result say about how well metals can 
conduct?

40. ( II)  (a) For copper at room temperature (T  = 293 K ), 
calculate the Fermi factor, Eq. 40-14, for an electron with 
energy 0.12 eV above the Fermi energy. This represents the 
probability that this state is occupied. Is this reasonable?
(b) What is the probability that a state 0.12 eV below the 
Fermi energy is occupied? (c) What is the probability that 
the state in part (b ) is unoccupied?

41. ( I ll)  Proceed as follows to derive the density of states, g (E ), 
the number of states per unit volume per unit energy 
interval, Eq. 40-10. Let the metal be a cube of side L 
Extend the discussion of Section 38-8 for an infin ite  well to 
three dimensions, giving energy levels

(Explain the meaning of n \ , n2, n3.) Each set o f values for 
the quantum numbers n i , n2, n3 corresponds to one state. 
Imagine a space where n±, n2, n3 are the axes, and each 
state is represented by a point on a cubic lattice in this 
space, each separated by 1 unit along an axis. Consider the 
octant ni >  0, n2 >  0, n3 >  0. Show tha^the number of 
states N  w ithin a radius R =  (n \ +  n2 + 7*3)2 is 2 (|)(f 77\R3). 
Then, to get Eq. 40-10, set g (E ) =  (l /V ) { d N /d E ), where
V  = t 3 is the volume of the metal.

40-7 Band Theory of Solids
42. (I) A  semiconductor is struck by light o f slowly increasing 

frequency and begins to conduct when the wavelength 
o f the light is 580 nm; estimate the size of the energy gap Eg .

43. (I) Calculate the longest-wavelength photon that can cause 
an electron in silicon (Eg = 1.14 eV) to jump from the 
valence band to the conduction band.

44. ( II)  The energy gap between valence and conduction bands 
in germanium is 0.72 eV. What range o f wavelengths can a 
photon have to excite an electron from the top o f the 
valence band into the conduction band?

45. ( II)  We saw that there are 2N  possible electron states in the 
35 band of Na, where N  is the total number of atoms. How 
many possible electron states are there in  the (a) 2s band,
(b) 2p  band, and (c) 3p  band? (d) State a general formula 
for the total number o f possible states in any given electron 
band.

46. ( II)  The energy gap Eg in germanium is 0.72 eV. When used 
as a photon detector, roughly how many electrons can be 
made to jump from the valence to the conduction band by 
the passage of a 730-keV photon that loses all its energy in 
this fashion?

40-8 Semiconductors and Doping
47. (II)  Suppose that a silicon semiconductor is doped with 

phosphorus so that one silicon atom in 1.2 X 106 is 
replaced by a phosphorus atom. Assuming that the “ extra” 
electron in every phosphorus atom is donated to the 
conduction band, by what factor is the density o f conduction 
electrons increased? The density o f silicon is 2330 kg/m 3, 
and the density of conduction electrons in pure silicon is 
about 1016 m-3  at room temperature.

40-9 Diodes
48. (I) A t what wavelength w ill an LED radiate if  made from a 

material w ith an energy gap E g =  1.6 eV?

49. (I) I f  an LED emits light of wavelength A = 680 nm, what is 
the energy gap (in eV) between valence and conduction bands?

50. (II)  A  silicon diode, whose current-voltage characteristics 
are given in Fig. 40-38, is connected in series w ith a battery 
and an 860-11 resistor. What battery voltage is needed to 
produce a 12-mA current?

51. (II)  Suppose that the diode o f Fig. 40-38 is connected in 
series to a 150-0 resistor and a 2.0-V battery. What current 
flows in the circuit? [Hint. Draw a line on Fig. 40-38 repre­
senting the current in the resistor as a function of the 
voltage across the diode; the intersection of this line with 
the characteristic curve w ill give the answer.]

52. (II)  Sketch the resistance as a function of current, for
V  >  0, for the diode shown in Fig. 40-38.

53. (II)  A n ac voltage of 120 V  rms is to be rectified. Estimate 
very roughly the average current in the output resistor R  
(35 kH ) fo r (a) a half-wave rectifier (Fig. 40-39), and
(b) a full-wave rectifier (Fig. 40-40) without capacitor.

54. (II)  A  semiconductor diode laser emits 1.3-/xm light. 
Assuming that the light comes from electrons and holes 
recombining, what is the band gap in this laser material?

55. (II)  A  silicon diode passes significant current only if  the 
forward-bias voltage exceeds about 0.6 V. Make a rough 
estimate of the average current in the output resistor R  of
(a) a half-wave rectifier (Fig. 40-39), and (b ) a full-wave 
rectifier (Fig. 40-40) without a capacitor. Assume that 
R =  120 f l  in  each case and that the ac voltage is 9.0 V  rms 
in each case.

56. ( I ll)  A  120-V rms 60-Hz voltage is to be rectified w ith a 
full-wave rectifier as in Fig. 40-40, where R  =  28 k fl, and 
C = 35 /aF. (a) Make a rough estimate o f the average 
current. (b ) What happens if  C = 0.10 /jlF? [Hint. See 
Section 26-5.]

40-10 Transistors
57. (II)  I f  the current gain of the transistor amplifier in 

Fig. 40-43 is (3 = /c/ iB = 95, what value must R c  have if  a
1.0-fiA  ac base current is to produce an ac output voltage of 
0.35 V?

58. (II)  Suppose that the current gain of the transistor in 
Fig. 40-43 is /3 = z'c/zB = 85. I f  R c  = 4.3 k fl, calculate the 
ac output voltage for an ac input current of 2.0 fiA .

59. (II)  An amplifier has a voltage gain o f 65 and a 25-k fl load 
(output) resistance. What is the peak output current through 
the load resistor if  the input voltage is an ac signal w ith a 
peak of 0.080 V?
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60. (II) A  transistor, whose current gain /3 = zc/zB = 75, is 
connected as in Fig. 40-43 w ith R B =  3.8 k fl and 
R c =  7.8 k fl. Calculate (a) the voltage gain, and (b ) the 
power amplification.

61. (II) From Fig. 40-43, write an equation for the relationship 
between the base current ( /B), the collector current ( /c), 
and the emitter current ( /E, not labeled in Fig. 40-43). 
Assume iB =  ic =  0.

| General Problems
62. Use the uncertainty principle to estimate the binding energy 

o f the H 2 molecule by calculating the difference in kinetic 
energy of the electrons between when they are in separate 
atoms and when they are in the molecule. Take A x  
fo r the electrons in the separated atoms to be the radius of 
the first Bohr orbit, 0.053 nm, and for the molecule take A x  
to be the separation o f the nuclei, 0.074 nm. [Hint. Let 
Ap «  A px .]

63. The average translational kinetic energy of an atom or 
molecule is about K  =  \k T  (see Chapter 18), where 
k  =  1.38 X 10- 23J /K  is Boltzmann’s constant. A t what 
temperature T  w ill K  be on the order of the bond energy 
(and hence the bond easily broken by thermal motion) 
fo r (a) a covalent bond (say H 2) o f binding energy 4.0 eV, 
and (b ) a “ weak” hydrogen bond o f binding energy 0.12 eV?

64. In  the ionic salt KF, the separation distance between ions is 
about 0.27 nm. (a) Estimate the electrostatic potential 
energy between the ions assuming them to be point charges 
(magnitude le ) . (b) When F “ grabs” an electron, it releases 
3.41 eV of energy, whereas 4.34 eV is required to ionize K. 
Find the binding energy of KF relative to free K  and F atoms, 
neglecting the energy o f repulsion.

65. A  diatomic molecule is found to have an activation energy of 
1.4 eV. When the molecule is disassociated, 1.6 eV of energy 
is released. Draw a potential energy curve for this molecule.

66 . One possible form for the potential energy (U) o f a diatomic 
molecule (Fig. 40-8) is called the M orse Potential:

U  =  UQ [1 -  e~a^ ] 2.

(a) Show that r0 represents the equilibrium  distance and U0 
the dissociation energy. (b) Graph U  from r = 0 to r = 4r0, 
assuming a =  18 nm-1, U0 =  4.6 eV, and r0 =  0.13 nm.

67. The fundamental vibration frequency for the HC1 molecule 
is 8 . 6 6  X 1013H z. Determine (a) the reduced mass, and
(b) the effective value of the stiffness constant k. Compare 
to k  fo r the H 2 molecule.

68 . For H 2, estimate how many rotational states there are 
between vibrational states.

69. Explain, using the Boltzmann factor (Eq. 39-16), why the 
heights of the peaks in Fig. 40-22 are different from one 
another. Explain also why the lines are not equally spaced. 
[Hint: Does the moment of inertia necessarily remain 
constant?]

70. The rotational absorption spectrum of a molecule displays 
peaks about 8.4 X 1011 Hz apart. Determine the moment 
o f inertia o f this molecule.

71. A  TV remote control emits IR  light. I f  the detector on the 
TV set is not to react to visible light, could it make use of 
silicon as a “window” w ith its energy gap Eg =  1.14 eV? 
What is the shortest-wavelength light that can strike silicon 
without causing electrons to jump from the valence band to 
the conduction band?

72. Do we need to consider quantum effects for everyday 
rotating objects? Estimate the differences between rota­
tional energy levels for a spinning baton compared to the 
energy of the baton. Assume the baton consists o f a uniform  
32-cm-long bar w ith a mass of 260 g and two small end 
masses, each of mass 380 g, and that it rotates at 1.6 rev/s 
about the bar’s center.

73. Consider a monatomic solid with a weakly bound cubic 
lattice, w ith each atom connected to six neighbors, each bond 
having a binding energy o f 3.9 X  10-3 eV. When this solid 
melts, its latent heat of fusion goes directly into breaking the 
bonds between the atoms. Estimate the latent heat of fusion 
for this solid, in J/m ol. [Hint: Show that in a simple cubic 
lattice (Fig. 40-46), there are three times as many bonds as 
there are atoms, when the number of atoms is large.]

Problem 73.

74. The energy gap between valence and conduction bands in 
zinc sulfide is 3.6 eV. What range o f wavelengths can a 
photon have to excite an electron from the top o f the 
valence band into the conduction band?

75. When EM  radiation is incident on diamond, it  is found that 
light w ith wavelengths shorter than 226 nm w ill cause the 
diamond to conduct. What is the energy gap between the 
valence band and the conduction band fo r diamond?

76. The Fermi temperature TF is defined as that temperature at 
which the thermal energy k T  (w ithout the §) is equal to the 
Fermi energy: kTF =  EF. (a) Determine the Fermi temper­
ature for copper, (b) Show that fo r T  »  TF, the Fermi 
factor (Eq. 40-14) approaches the Boltzmann factor. 
(Note: This last result is not very useful for understanding 
conductors. Why?)

77. Estimate the number o f states from 4.0 eV to 6.2 eV 
available to electrons in a 10-cm cube o f iron.
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78. The band gap of silicon is 1.14 eV. (a) For what range of wave­
lengths w ill silicon be transparent? (See Example 40-14.) 
In what region of the electromagnetic spectrum does this 
transparent range begin? (b) I f  window glass is transparent 
for all visible wavelengths, what is the minimum possible 
band gap value for glass (assume A = 450nm to 750nm)? 
[Hint: I f  the photon has less energy than the band gap, 
the photon w ill pass through the solid without being 
absorbed.]

79. For a certain semiconductor, the longest wavelength radia­
tion that can be absorbed is 1.92 mm. What is the energy 
gap in this semiconductor?

80. Assume conduction electrons in a semiconductor behave as an 
ideal gas. (This is not true for conduction electrons in a 
metal.) (a) Taking mass m =  9 X 10-31 kg and temperature 
T  = 300 K, determine the de Broglie wavelength of a 
semiconductor’s conduction electrons. (b) Given that the 
spacing between atoms in a semiconductor’s atomic lattice is 
on the order of 0.3 nm, would you expect room-temperature 
conduction electrons to travel in straight lines or diffract 
when traveling through this lattice? Explain.

81. Most of the Sun’s radiation has wavelengths shorter than 
1100 nm. For a solar cell to absorb all this, what energy gap 
ought the material have?

82. Green and blue LEDs became available many years after 
red LEDs were first developed. Approximately what energy 
gaps would you expect to find in green (525 nm) and in blue 
(465 nm) LEDs?

83. For an arsenic donor atom in a doped silicon semicon­
ductor, assume that the “ extra” electron moves in a Bohr 
orbit about the arsenic ion. For this electron in the ground 
state, take into account the dielectric constant K  =  12 of 
the Si lattice (which represents the weakening of the 
Coulomb force due to all the other atoms or ions in the 
lattice), and estimate (a) the binding energy, and (b) the 
orbit radius for this extra electron. [Hint: Substitute 
e = ^ e 0 in Coulomb’s law; see Section 24-5.]

84. A  strip of silicon 1.8 cm wide and 1.0 mm thick is immersed 
in a magnetic field of strength 1.3 T perpendicular to the 
strip (Fig. 40-47). When a current of 0.28 mA is run through 
the strip, there is a resulting Hall effect voltage of 18 mV 
across the strip (Section 27-8). How many electrons per 
silicon atom are in the conduction band? The density of 
silicon is 2330 kg/m3.

85. A  zener diode voltage regulator is shown in Fig. 40-48. 
Suppose that R  = 2.80 k fl and that the diode breaks down 
at a reverse voltage of 130 V. (The current increases rapidly 
at this point, as shown on the far left of Fig. 40-38 at a 
voltage of — 12 V on that diagram.) The diode is rated at a 
maximum current of 120 mA. (a) I f  Rioad =  18.0 k fl, over 
what range of supply voltages w ill the circuit maintain the 
output voltage at 130 V? (b) I f  the supply voltage is 245 V,
over what range 
of load resistance 
w ill the voltage 
be regulated?

FIGURE 40-48
Problem 85.

R|—vwv—
ŝupply Ltpilt

1
[load

86. A  full-wave rectifier (Fig. 40-40) uses two diodes to rectify a 
95-V rms 60 Hz ac voltage. I f  R =  7.8 k fl and C = 36 /xF, 
what w ill be the approximate percent variation in the output 
voltage? The variation in output voltage (Fig. 40-40c) is 
called ripple voltage. [Hint: See Section 26-5 and assume the 
discharge of the capacitor is approximately linear.]

* Numerical/Computer
*87. (II) Write a program that w ill determine the Fermi-Dirac 

probability function (Eq. 40-14). Make separate plots of 
this function versus E /E F for copper at (a) T  = 500 K;
(b) T = 1000 K; (c) T =  5000 K; and (d) T  =  10,000 K. 
For copper, EF =  7.0 eV. Interpret each plot accordingly.

* 88. ( I ll)  A  simple picture of an H 2 molecule sharing two elec­
trons is shown in Fig. 40-49. We assume the electrons are 
symmetrically located between the two protons, which are 
separated by r0 = 0.074 nm. (a) When the electrons are 
separated by a distance d, write the total potential energy U 
in terms of d  and r0. (b) Make a graph of U in eV as a function 
of d  in nm, and state where U has a minimum on your graph, and 
for what range of d  values U is negative, (c) Determine analyti­
cally the value of d  that gives minimum U (greatest stability).

+e
nucleus

+e
nucleus

FIGURE 40-49 Problem 88.

* 89. ( I ll)  Estimate the current produced per cm2 of area in a flat 
silicon semiconductor placed perpendicular to sunlight. Assume 
the sunlight has an intensity of 1000 W /m 2 and that only photons 
that have more energy than the band gap can create an 
electron-hole pair in the semiconductor. Assume the Sun 
is a blackbody emitter (at 6000 K, and find the fraction of 
photons that have energy above the band gap (1.14 eV). See 
Section 37-1 and integrate the Planck formula numerically.

Answers to Exercises

A: 0,5.00 X 10-4 eV, 1.50 X 10“ 3 eV. C: (a).
B: (e). D: (c).
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This archeologist has unearthed the 
remains of a sea-turtle w ithin an 
ancient man-made stone circle. 
Carbon dating of the remains can 
te ll her when humans inhabited the 
site.

In  this Chapter we begin our 
discussion o f nuclear physics. We 
study the properties o f nuclei, 
the various forms of radioactivity, 
and how radioactive decay can be 
used in a variety o f fields to 
determine the age of old objects, 
from  bones and trees to rocks and 
other mineral substances, and obtain 
information on the history o f the 
Earth.

** T ** 
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Nuclear Physics and 
Radioactivity
C H A P T E R -O P E N IN G  Q U E S T IO N — Guess now!
If half of an 80-/xg sample of 27C0 decays in 5.3 years, how much 27C0 is left in 
15.9 years?

(a) 1 0 /jLg.
(b) 20 fig.
(c) 30 fig
(d) 40 fig
(e) 0  fig

I n the early part of the twentieth century, Rutherford’s experiments led to the 
idea that at the center of an atom there is a tiny but massive nucleus. At 
the same time that quantum theory was being developed and scientists 
were attempting to understand the structure of the atom and its electrons, 

investigations into the nucleus itself had also begun. In this Chapter and the next, 
we take a brief look at nuclear physics.
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41—1 Structure and Properties of the 
Nucleus

An important question for physicists was whether the nucleus had a structure, and 
what that structure might be. We now understand the nucleus to be a complicated 
entity that is not fully understood even today. By the early 1930s, a model of the 
nucleus had been developed that is still useful. According to this model, a nucleus 
is considered to be an aggregate of two types of particles: protons and neutrons.
(These “particles” also have wave properties, but for ease of visualization and 
language, we often refer to them simply as “particles.” ) A  proton is the nucleus of 
the simplest atom, hydrogen. It has a positive charge (= + e =  +1.60 X 10- 19C, 
the same magnitude as for the electron) and a mass

rap = 1.67262 X 10_27kg.

The neutron, whose existence was ascertained in 1932 by the English physicist 
James Chadwick (1891-1974), is electrically neutral (q =  0), as its name implies.
Its mass is very slightly larger than that of the proton:

ran = 1.67493 X 10-27kg.

These two constituents of a nucleus, neutrons and protons, are referred to collectively 
as nucleons.

Although the hydrogen nucleus consists of a single proton alone, the nuclei of all 
other elements consist of both neutrons and protons. The different nuclei are often 
referred to as nuclides. The number of protons in a nucleus (or nuclide) is called the 
atomic number and is designated by the symbol Z. The total number of nucleons, 
neutrons plus protons, is designated by the symbol A  and is called the atomic mass 
number, or sometimes simply mass number. This name is used since the mass of a 
nucleus is very closely A  times the mass of one nucleon. A  nuclide with 7 protons and 
8 neutrons thus has Z  = 7 and A  =  15. The neutron number N  is N  = A  -  Z.

To specify a given nuclide, we need give only A  and Z. A  special symbol is 
commonly used which takes the form

2X,

where X is the chemical symbol for the element (see Appendix F, and the Periodic 
Table inside the back cover), A  is the atomic mass number, and Z  is the atomic 
number. For example, ^N  means a nitrogen nucleus containing 7 protons and
8 neutrons for a total of 15 nucleons. In a neutral atom, the number of electrons 
orbiting the nucleus is equal to the atomic number Z  (since the charge on an electron 
has the same magnitude but opposite sign to that of a proton). The main properties 
of an atom, and how it interacts with other atoms, are largely determined by the 
number of electrons in the neutral atom. Hence Z  determines what kind of atom it 
is: carbon, oxygen, gold, or whatever. It is redundant to specify both the symbol of a 
nucleus and its atomic number Z  as described above. If  the nucleus is nitrogen, for 
example, we know immediately that Z  = 7. The subscript Z  is thus sometimes 
dropped and ^N  is then written simply 15N; in words we say “nitrogen fifteen.”

For a particular type of atom (say, carbon), nuclei are found to contain 
different numbers of neutrons, although they all have the same number of protons.
For example, carbon nuclei always have 6 protons, but they may have 5, 6 , 7, 8 , 9, 
or 10 neutrons. Nuclei that contain the same number of protons but different 
numbers of neutrons are called isotopes. Thus, 1JC, l\C, 1gC, l\C, ^C, and 1gC are 
all isotopes of carbon. The isotopes of a given element are not all equally common.
For example, 98.9% of naturally occurring carbon (on Earth) is the isotope n6C, and 
about 1.1% is 1gC. These percentages are referred to as the natural abundances.1- 
Even hydrogen has isotopes: 99.99% of natural hydrogen is }H, a simple proton, as 
the nucleus; there are also 2H, called deuterium, and ^H, tritium, which besides the 
proton contain 1 or 2 neutrons.
trThe mass value for each element as given in the Periodic Table (inside back cover) is an average 
weighted according to the natural abundances of its isotopes.
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Many isotopes that do not occur naturally can be produced in the laboratory 
by means of nuclear reactions (more on this later). Indeed, all elements beyond 
uranium (Z  >  92) do not occur naturally on Earth and are only produced artificially 
(that is, in the laboratory), as are many nuclides with Z  <  92.

The approximate size of nuclei was determined originally by Rutherford from 
the scattering of charged particles by thin metal foils (Fig. 37-17). We cannot speak 
about a definite size for nuclei because of the wave-particle duality: their spatial 
extent must remain somewhat fuzzy. Nonetheless a rough “ size” can be measured 
by scattering high-speed electrons off nuclei. It is found that nuclei have a roughly 
spherical shape with a radius that increases with A  according to the approximate 
formula

r ra (1.2 X 10“ 15m)(A3). (41-1)
Since the volume of a sphere is V  =  f  n r3, we see that the volume of a nucleus is 
approximately proportional to the number of nucleons, V  oc A. This is what we 
would expect if nucleons were like impenetrable billiard balls: if  you double 
the number of balls, you double the total volume. Hence, all nuclei have nearly the 
same density, and it is enormous (see Example 41-1).

The metric abbreviation for 10-15m is the fermi (after Enrico Fermi) or the 
femtometer, fm (Table 1-4  or inside the front cover). Thus 1.2 X 10“15 m = 1.2 fm 
or 1.2 fermis. 1

Because nuclear radii vary as A 3, the largest nuclei, such as uranium with A  =  238, 
have a radius only about ^238 « 6 times that of the smallest, hydrogen (A =  1).

ESTIMATE"! Nuclear and atomic densities. Compare the 
density of nuclear matter to the density of normal solids.

APPROACH The density of normal liquids and solids is on the order of 103 to 
104kg/m 3 (see Table 13-1), and because the atoms are close packed, atoms have 
about this density too. We therefore compare the density (mass per volume) of a 
nucleus to that of its atom as a whole.
SOLUTION The mass of a proton is greater than the mass of an electron by a 
factor

1.7 X 10-27kg
9.1 X IO-31 kg ~ 2 X 10 '

Thus, over 99.9% of the mass of an atom is in the nucleus, and for our estimate we 
can say the mass of the atom equals the mass of the nucleus, w nucl/m atom = 1. 
Atoms have a radius of about IO-10 m (Chapter 37) and nuclei on the order of 
IO-15 m (Eq. 41-1). Thus the ratio of nuclear density to atomic density is about

Pnucl _ (mnucl/Kucl) _ /  ^nucl \  j  ̂ atom ^  (1 ) ^  ^  = 1015 
Patom (w atom/Ktom) \ matom/ f  ̂ n iid  (10 15)3

The nucleus is 1015 times more dense than ordinary matter.

/ f \  CA U T I ON ______
Masses are for neutral atom 

(nucleus plus electrons)

The masses of nuclei can be determined from the radius of curvature of fast- 
moving nuclei (as ions) in a known magnetic field using a mass spectrometer, as 
discussed in Section 27-9. Indeed the existence of different isotopes of the same 
element (different number of neutrons) was discovered using this device. Nuclear 
masses can be specified in unified atomic mass units (u). On this scale, a neutral 
12eC atom is given the precise value 12.000000 u. A  neutron then has a measured 
mass of 1.008665 u, a proton 1.007276 u, and a neutral hydrogen atom }H (proton 
plus electron) 1.007825 u. The masses of many nuclides are given in Appendix F. It 
should be noted that the masses in this Table, as is customary, are for the neutral 
atom  (including electrons), and not for a bare nucleus.

EXAMPLE 41-1
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Masses are often specified using the electron-volt energy unit. This can be 
done because mass and energy are related, and the precise relationship is given by 
Einstein’s equation E = mc2 (Chapter 36). Since the mass of a proton is 
1.67262 X IO-27 kg, or 1.007276 u, then

J  1.67262 X 10“27 kg \
1.0000 u = (1.0000 u) ----- ----------------- - = 1.66054 X 10 kg;

v \  1.007276 u )  5’

this is equivalent to an energy (see Table inside front cover) in MeV (= 106 eV) of

2 _ (1.66054 X 10“27kg)(2.9979 X 108 m /s)2
E = me

(1.6022 X 10-19 J/eV)
= 931.5 MeV.

Thus

lu  = 1.6605 X 10“27kg = 931.5M eV/c2.

The masses of some of the basic particles are given in Table 41-1.

TABLE 41-1 Masses in Kilograms, Unified Atomic Mass Units, and MeV/c2

Mass
Object u MeV/c2

Electron 9.1094 X 10“ 3 1 0.00054858 0.51100
Proton 1.67262 X IO” 2 7 1.007276 938.27
iH atom 1.67353 X 10“ 2 7 1.007825 938.78
Neutron 1.67493 X 10“ 2 7 1.008665 939.57

Just as an electron has intrinsic spin and orbital angular momentum quantum 
numbers, so too do nuclei and their constituents, the proton and neutron. Both the 
proton and the neutron are spin-| particles, just like the electron. A  nucleus, made 
up of protons and neutrons, has a nuclear spin quantum number I  that is the vector 
sum of the spins of all its nucleons (plus any orbital angular momentum), and 
can be either integer or half integer, depending on whether it is made up of 
an even or an odd number of nucleons. [Orbital angular momentum is integer and 
doesn’t affect half integer or whole for /.] The total nuclear angular momentum of 
a nucleus is given, as might be expected (see Section 39-2 and Eq. 39-15), by 
V / ( /  + 1 )h .

Nuclear magnetic moments are measured in terms of the nuclear magneton

M'N
eh 

2 m T
(41-2)

which is defined by analogy with the Bohr magneton for electrons (|xB = eh /2 m e, 
Section 39-7). Since fxN contains the proton mass, rap, instead of the electron mass, 
it is about 2000 times smaller. The electron spin magnetic moment is about 2 Bohr 
magnetons. The proton’s magnetic moment |xp has been measured to be

|xp = 2.7928 |xN.

There is no satisfactory explanation for this large factor. The neutron has a 
magnetic moment

|xn = -1.9135 |xN,

which suggests that, although the neutron carries no net charge, it may have 
internal structure (quarks, as we discuss later). The minus sign for |xn indicates that 
its magnetic moment is opposite to its spin.

Important applications based on nuclear spin are nuclear magnetic resonance 
(NMR) and magnetic resonance imaging (M RI). They are discussed in the next 
Chapter (Section 42-10).
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P R O B L EM SOL V I NG
Keep track of 

electron masses

41—2 Binding Energy and 
Nuclear Forces

Binding Energies
The total mass of a stable nucleus is always less than the sum of the masses of its 
separate protons and neutrons, as the following Example shows.

jHe mass compared to its constituents. Compare the 
mass of a ^He atom to the total mass of its constituent particles.
APPROACH The jHe nucleus contains 2 protons and 2 neutrons. Tables normally 
give the masses of neutral atoms— that is, nucleus plus its Z  electrons— since this 
is how masses are measured. We must therefore be sure to balance out the elec­
trons when we compare masses. Thus we use the mass of }H rather than that of a 
proton alone. We look up the mass of the ^He atom in Appendix F (it includes 
the mass of 2 electrons), as well as the mass for the 2 neutrons and 2 hydrogen 
atoms (= 2 protons + 2 electrons).
SOLUTION The mass of a neutral jHe atom, from Appendix F, is 4.002603 u. The 
mass of two neutrons and two H atoms (2 protons including the 2 electrons) is

2 mn = 2(1.008665 u) = 2.017330 u 
2m(jH) = 2(1.007825 u) = 2.015650 u 

sum = 4.032980 u.
Thus the mass of ^He is measured to be less than the masses of its constituents by 
an amount 4.032980 u -  4.002603 u = 0.030377 u.

Where has this lost mass of 0.030377 u disappeared to? It must be E = me1.
I f  the four nucleons suddenly came together to form a ^He nucleus, the mass 

“ loss” would appear as energy of another kind (such as y  radiation, or kinetic 
energy). The mass (or energy) difference in the case of ^He, given in energy units, 
is (0.030377 u )(931.5 M eV/u) = 28.30 MeV. This difference is referred to as 
the total binding energy of the nucleus. The total binding energy represents 
the amount of energy that must be put into a nucleus in order to break 
it apart into its constituents. I f  the mass of, say, a ^He nucleus were exactly equal to 
the mass of two neutrons plus two protons, the nucleus could fall apart without any 
input of energy. To be stable, the mass of a nucleus must be less than that of its 
constituent nucleons, so that energy input is needed to break it apart. Note that the 
binding energy is not something a nucleus has— it is energy it “ lacks” relative to 
the total mass of its separate constituents.

We saw in Chapter 37 that the binding energy of the one electron in the hydrogen 
atom is 13.6 eV; so the mass of a }H atom is less than that of a single proton plus a 
single electron by 13.6 eV/c2. Compared to the total mass of the hydrogen atom 
(939 M eV/c2), this is incredibly small, 1 part in 108. The binding energies of nuclei are 
on the order of MeV, so the eV binding energies of electrons can be ignored. Note 
that nuclear binding energies, compared to nuclear masses, are on the order of 
(28 MeV/4000 MeV) » 1 X 10 2, where we used helium’s binding energy (see 
above) and mass « 4 X 940 MeV « 4000 MeV.

EXERCISE A Determine how much less the mass of the L̂i nucleus is compared to that of 
I its constituents.

The binding energy per nucleon is defined as the total binding energy of a 
nucleus divided by A , the total number of nucleons. We calculated above that the 
binding energy of ^He is 28.3 MeV, so its binding energy per nucleon is 
28.3 MeV/4 = 7.1 MeV. Figure 41-1 shows the binding energy per nucleon as a 
function of A  for stable nuclei. The curve rises as A  increases and reaches a 
plateau at about 8.7 MeV per nucleon above A  « 40. Beyond A  « 80, the curve 
decreases slowly, indicating that larger nuclei are held together a little  less tightly 
than those in the middle of the Periodic Table. We w ill see later that these charac­
teristics allow the release of nuclear energy in the processes of fission and fusion.
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FIGURE 41-1 Binding energy per 
nucleon for the more stable nuclides 
as a function of mass number A.

EXAMPLE 41-3 Binding energy for iron. Calculate the total binding energy and 
the binding energy per nucleon for ^Fe, the most common stable isotope of iron.

APPROACH We subtract the mass of an atom from the total mass of 26 
hydrogen atoms and 30 neutrons, all found in Appendix F. Then we convert mass 
units to energy units; finally we divide by A  =  56, the total number of nucleons. 
SOLUTION ^Fe has 26 protons and 30 neutrons whose separate masses are

26m (}H) = (26) (1.007825 u) = 

30 mn = (30) (1.008665 u) =

26.20345 u (includes 26 electrons) 

30.25995 u

sum =
56t

56.46340 u.

-55.93494 u (Appendix F) 

0.52846 u.

Subtract mass of gjFe: =

Am =

The total binding energy is thus

(0.52846 u) (931.5 M eV /u) = 492.26 MeV 

and the binding energy per nucleon is

_ 8 .7 9 MeV.
56 nucleons

NOTE The binding energy per nucleon graph (Fig. 41-1) peaks about here, for 
iron, so the iron nucleus (and its neighbors) is the most stable of nuclei.

I EXERCISE B Determine the binding energy per nucleon for 1gO.

EXAMPLE 41 -4 Binding energy of last neutron. What is the binding energy

APPROACH I f  ^C  lost one neutron, it would be ^C. We subtract the mass of ^C  
from the masses of and a free neutron.
SOLUTION Obtaining the masses from Appendix F, we have 

Mass “ C = 12.000000 u 
Mass Jn = 1.008665 u 

Total =
Subtract mass of 1lC:6'

Am =

13.008665 u. 
-13.003355 u 

0.005310 u

which in energy is (931.5 M eV /u) (0.005310 u) = 4.95 MeV. That is, it would 
require 4.95 MeV input of energy to remove one neutron from 1gC.
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Nudear Forces

Stable
^ - - 1 0 0  nuclei.;ij:

--120

Proton number (Z)

FIGURE 41-2 Number of neutrons 
versus number of protons for stable 
nuclides, which are represented by dots. 
The straight line represents N = Z.

FIGURE 41-3 Marie and Pierre 
Curie in their laboratory (about 
1906) where radium was discovered.

We can analyze nuclei not only from the point of view of energy, but also from the 
point of view of the forces that hold them together. We would not expect a collection 
of protons and neutrons to come together spontaneously, since protons are all 
positively charged and thus exert repulsive electric forces on each other. Since stable 
nuclei do stay together, it is clear that another force must be acting. Because this new 
force is stronger than the electric force, it is called the strong nuclear force. The 
strong nuclear force is an attractive force that acts between all nucleons— protons 
and neutrons alike. Thus protons attract each other via the strong nuclear force at 
the same time they repel each other via the electric force. Neutrons, since they are 
electrically neutral, only attract other neutrons or protons via the strong nuclear 
force.

The strong nuclear force turns out to be far more complicated than the gravi­
tational and electromagnetic forces. One important aspect of the strong nuclear 
force is that it is a short-range force: it acts only over a very short distance. It is 
very strong between two nucleons if they are less than about 10“15 m apart, but it 
is essentially zero if they are separated by a distance greater than this. Compare 
this to electric and gravitational forces, which decrease as 1/ r 2 but continue acting 
over any distances and are therefore called long-range forces.

The strong nuclear force has some strange features. For example, if a nuclide 
contains too many or too few neutrons relative to the number of protons, the 
binding of the nucleons is reduced; nuclides that are too unbalanced in this regard 
are unstable. As shown in Fig. 41-2, stable nuclei tend to have the same number of 
protons as neutrons (N  = Z ) up to about A  =  30. Beyond this, stable nuclei 
contain more neutrons than protons. This makes sense since, as Z  increases, the 
electrical repulsion increases, so a greater number of neutrons— which exert only 
the attractive strong nuclear force— are required to maintain stability. For very 
large Z, no number of neutrons can overcome the greatly increased electric repulsion. 
Indeed, there are no completely stable nuclides above Z  = 82.

What we mean by a stable nucleus is one that stays together indefinitely. What 
then is an unstable nucleus? It is one that comes apart; and this results in radioac­
tive decay. Before we discuss the important subject of radioactivity (next Section), 
we note that there is a second type of nuclear force that is much weaker than the 
strong nuclear force. It is called the weak nuclear force, and we are aware of its 
existence only because it shows itself in certain types of radioactive decay. These 
two nuclear forces, the strong and the weak, together with the gravitational and 
electromagnetic forces, comprise the four basic types of force in nature.

41—3 Radioactivity
Nuclear physics had its beginnings in 1896. In that year, Henri Becquerel (1852-1908) 
made an important discovery: in his studies of phosphorescence, he found that a 
certain mineral (which happened to contain uranium) would darken a photographic 
plate even when the plate was wrapped to exclude light. It was clear that the mineral 
emitted some new kind of radiation that, unlike X-rays, occurred without any 
external stimulus. This new phenomenon eventually came to be called radioactivity.

Soon after BecquereFs discovery, Marie Curie (1867-1934) and her husband, 
Pierre Curie (1859-1906), isolated two previously unknown elements that were 
very highly radioactive (Fig. 41-3). These were named polonium and radium. 
Other radioactive elements were soon discovered as well. The radioactivity 
was found in every case to be unaffected by the strongest physical and chemical 
treatments, including strong heating or cooling or the action of strong chemical 
reagents. It was suspected that the source of radioactivity must be deep within the 
atom, emanating from the nucleus. It became apparent that radioactivity is the 
result of the disintegration or decay of an unstable nucleus. Certain isotopes are 
not stable, and they decay with the emission of some type of radiation or “ rays.”
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Many unstable isotopes occur in nature, and such radioactivity is called 
“natural radioactivity.” Other unstable isotopes can be produced in the laboratory 
by nuclear reactions (Section 42-1); these are said to be produced “ artificially” and 
to have “ artificial radioactivity.” Radioactive isotopes are sometimes referred to as 
radioisotopes or radionuclides.

Rutherford and others began studying the nature of the rays emitted in 
radioactivity about 1898. They classified the rays into three distinct types according 
to their penetrating power. One type of radiation could barely penetrate a piece of 
paper. The second type could pass through as much as 3 mm of aluminum. The 
third was extremely penetrating: it could pass through several centimeters of lead 
and still be detected on the other side. They named these three types of radiation 
alpha (a), beta (/3), and gamma (7), respectively, after the first three letters of the 
Greek alphabet.

Each type of ray was found to have a different charge and hence is bent differently 
in a magnetic field, Fig. 41^1; a  rays are positively charged, /3 rays are negatively 
charged, and 7 rays are neutral. It was soon found that all three types of radiation 
consisted of familiar kinds of particles. Gamma rays are very high-energy photons 
whose energy is even higher than that of X-rays. Beta rays are electrons, identical 
to those that orbit the nucleus, but they are created within the nucleus itself. Alpha 
rays (or a  particles) are simply the nuclei of helium atoms, ^He; that is, an a  ray 
consists of two protons and two neutrons bound together.

We now discuss each of these three types of radioactivity, or decay, in more 
detail.

sample (radium)
FIGURE 41-4 Alpha and beta rays 
are bent in opposite directions by a 
magnetic field, whereas gamma rays 
are not bent at all.

4 1 -4  Alpha Decay
Experiments show that when nuclei decay, the number of nucleons (=  mass 
number A ) is conserved, as well as electric charge (= Z e). When a nucleus emits 
an a  particle (^He), the remaining nucleus w ill be different from the original: it has 
lost two protons and two neutrons. Radium 226 (2gfRa), for example, is an 
a  emitter. It decays to a nucleus with Z  = 88 -  2 = 86 and A  =  226 — 4 = 222. 
The nucleus with Z  = 86 is radon (Rn)— see Appendix F or the Periodic Table. 
Thus the radium decays to radon with the emission of an a  particle. This is written

2|R a  - *  2iR n  + 4He.

See Fig. 41-5.
When a  decay occurs, a different element is formed. The daughter nucleus 

(2ggRn in this case) is different from the parent nucleus (2|sRa in this case). This 
changing of one element into another is called transmutation.

Alpha decay can be written in general as

Z-2N ' + ^He [a: decay]

where N  is the parent, N ' the daughter, and Z  and A  are the atomic number and 
atomic mass number, respectively, of the parent.

FIGURE 41-5 Radioactive decay 
of radium to radon with emission of 
an alpha particle.

/1 3 8 ® \ /l3 6 ® \

V 8 8® / \ 8 6 w

226 Ra 88 Ka 222 Rn 86̂ 2He

I EXERCISE C ^Dy decays by a emission to what element? (a) Pb, (b) Gd, (c) Sm,
I (d)Er,(e)Yb.

Alpha decay occurs because the strong nuclear force is unable to hold very 
large nuclei together. The nuclear force is a short-range force: it acts only between 
neighboring nucleons. But the electric force acts all the way across a large nucleus. 
For very large nuclei, the large Z  means the repulsive electric force becomes so 
large (Coulomb’s law) that the strong nuclear force is unable to hold the nucleus 
together.
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FIGURE 41-6 Momentum 
conservation in Example 41-6.

We can express the instability of the parent nucleus in terms of energy (or mass): 
the mass of the parent nucleus is greater than the mass of the daughter nucleus plus 
the mass of the a  particle. The mass difference appears as kinetic energy, which is 
carried away by the a  particle and the recoiling daughter nucleus. The total energy 
released is called the disintegration energy, Q, or the 0 -value of the decay. From 
conservation of energy,

MPc2 = M d c2 + m ac2 + Q ,

where Q equals the kinetic energy of the daughter and a  particle, and MP, MD, 
and m a are the masses of the parent, daughter, and a  particle, respectively. Thus

Q = Mj>c2 -  (AfD + m a)c2. (41-3)

I f  the parent had less mass than the daughter plus the a  particle (so Q <  0), the 
decay could not occur spontaneously, for the conservation of energy law would be 
violated.

EXAMPLE 41-5 Uranium decay energy release. Calculate the disintegration 
energy when (mass = 232.037156 u) decays to 29(jTh (228.028741 u) with the 
emission of an a  particle. (As always, masses given are for neutral atoms.)

APPROACH We use conservation of energy as expressed in Eq. 41-3. 2g2U  is the 
parent, 29§Th is the daughter.
SOLUTION Since the mass of the ^He is 4.002603 u (Appendix F), the total mass 
in the final state is

228.028741 u + 4.002603 u = 232.031344 u.

The mass lost when the 2HU decays is

232.037156 u -  232.031344 u = 0.005812 u.

Since 1 u = 931.5 MeV, the energy Q  released is

Q =  (0.005812 u) (931.5 M eV/u) = 5.4 MeV

and this energy appears as kinetic energy of the a  particle and the daughter 
nucleus.

Kinetic energy of the a  in 2||U decay. For the 2l2U decay 
of Example 41-5, how much of the 5.4-MeV disintegration energy w ill be carried 
off by the a  particle?

APPROACH In any reaction, momentum must be conserved as well as energy. 
SOLUTION Before disintegration, the nucleus can be assumed to be at rest, so 
the total momentum was zero. A fter disintegration, the total vector momentum 
must still be zero so the magnitude of the a  particle’s momentum must equal the 
magnitude of the daughter’s momentum (Fig. 41-6):

mava = m DvD.

Thus va = m T>vT)/m a and the a ’s kinetic energy is

^  1 2 1 ( m DVD\2 ! 2 ^ 0 ^
K a =  2 m ava = =  W D  —  = —  * D

228.028741 u 
4.002603 u

K » = 51Kjy,

The total disintegration energy is Q = K a + K B =  57K B + K B =  58Kjy. 
Hence

K « = § 2  = 5.3 MeV.

The lighter a particle carries off (57/58) or 98% of the total kinetic energy.
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a-Decay Theory—Tunneling
I f  the mass of the daughter nucleus plus the mass of the a  particle is less than 
the mass of the parent nucleus (so the parent is energetically allowed to decay), 
why are there any parent nuclei at all? That is, why haven’t radioactive nuclei all 
decayed long ago, right after they were formed (in supernovae)? We can under­
stand decay using a model of a nucleus that has an alpha particle trapped inside 
it. The potential energy “ seen” by the a  particle would have a shape something 
like that shown in Fig. 41-7. The potential energy well (approximately square) 
between r = 0 and r =  R0 represents the short-range attractive nuclear force.

FIGURE 41-7 Potential energy for alpha particle 
and (daughter) nucleus, showing the Coulomb barrier 
through which the a particle must tunnel to escape.
The Q-value of the reaction is also shown. This plot 
assumes spherical symmetry, so the central well has 
diameter 2 R0.

Beyond the nuclear radius, R0, the Coulomb repulsion dominates (since the 
nuclear force drops to zero) and we see the characteristic 1/ r  dependence of the 
Coulomb potential. The a  particle, trapped within the nucleus, can be thought of 
as moving back and forth between the potential walls. Since the potential energy just 
beyond r = R0 is greater than the energy of the a  particle (dashed line), the 
a  particle could not escape the nucleus if it were governed by classical physics. But 
according to quantum mechanics, there is a nonzero probability that the a  particle 
can tunnel through the Coulomb barrier, from point A  to point B in Fig. 41-7, as we 
discussed in Section 38-10. The height and width of the barrier affect the rate at 
which nuclei decay (Section 41-8). Because of this barrier, the lifetimes of 
a-unstable nuclei can be quite long, from a fraction of a microsecond to over 
IO10 years. Note in Fig. 41-7 that the Q-value represents the total kinetic energy 
when the a  particle is far from the nucleus.

A  simple way to look at tunneling is via the uncertainty principle which tells 
us that energy conservation can be violated by an amount AE  for a length of time 
A t given by

(A £ )(A 0  -  ~

Thus quantum mechanics allows conservation of energy to be violated for brief 
periods that may be long enough for an a  particle to “ tunnel” through the barrier. 
AE  would represent the energy difference between the average barrier height and 
the particle’s energy, and A t the time to pass through the barrier. The higher and 
wider the barrier, the less time the a  particle has to escape and the less likely it is 
to do so. It is therefore the height and width of this barrier that controls the rate of 
decay and half-life of an isotope.

SECTION 41 -4 Alpha Decay 1113



@  P H Y S I C S A P P L I E D
Smoke detector

/ j \  C A U T I ON _________
fi-decay e~ comes from nucleus 

(it is not an orbital electron)

Why a  Particles?
Why, you may wonder, do nuclei emit this combination of four nucleons called an 
a  particle? Why not just four separate nucleons, or even one? The answer is that 
the a  particle is very strongly bound, so that its mass is significantly less than that 
of four separate nucleons. As we saw in Example 41-2, two protons and two 
neutrons separately have a total mass of about 4.032980 u (electrons included). For 
the decay of discussed in Example 41-5, the total mass of the daughter 29(jTh 
plus four separate nucleons is 232.061721 u, which is greater than the mass of the 
292U parent (232.037156). Such a decay could not occur because it would violate 
the conservation of energy. Indeed, we have never seen —> 29§Th + 2n + 2p. 
Similarly, it is almost always true that the emission of a single nucleon is energetically 
not possible.

Smoke Detectors—An Application
One widespread application of nuclear physics is present in nearly every home 
in the form of an ordinary smoke detector. The most common type of detector 
contains about 0.2 mg of the radioactive americium isotope, ^A m , in the form 
of A m 02. The radiation continually ionizes the nitrogen and oxygen molecules 
in the air space between two oppositely charged plates. The resulting conduc­
tivity allows a small steady electric current. I f  smoke enters, the radiation is absorbed 
by the smoke particles rather than by the air molecules, thus reducing the current. 
The current drop is detected by the device’s electronics and sets o ff the alarm. 
The radiation dose that escapes from an intact americium smoke detector is 
much less than the natural radioactive background, and so can be considered 
relatively harmless. There is no question that smoke detectors save lives and 
reduce property damage.

41-5  Beta Decay
P~ Decay
Transmutation of elements also occurs when a nucleus decays by (3 decay— that is, 
with the emission of an electron or (3~ particle. The nucleus l\C, for example, emits 
an electron when it decays:

1JC —> 14N + e_ + neutrino,

where e“ is the symbol for the electron. The particle known as the neutrino, whose 
charge q =  0 and whose mass is very small or zero, was not initia lly detected 
and was only later hypothesized to exist, as we shall discuss later in this Section. 
No nucleons are lost when an electron is emitted, and the total number of 
nucleons, A , is the same in the daughter nucleus as in the parent. But because an 
electron has been emitted from the nucleus itself, the charge on the daughter 
nucleus is + le  greater than that on the parent. The parent nucleus in the decay 
written above had Z  = + 6 , so from charge conservation the nucleus remaining 
behind must have a charge of + le . So the daughter nucleus has Z  = 7, which is 
nitrogen.

It must be carefully noted that the electron emitted in /3 decay is not an orbital 
electron. Instead, the electron is created within the nucleus itself. What happens is 
that one of the neutrons changes to a proton and in the process (to conserve 
charge) emits an electron. Indeed, free neutrons actually do decay in this fashion:

n —> p + e“ + neutrino.

To remind us of their origin in the nucleus, the electrons emitted in j8 decay are 
often referred to as “(3 particles.” They are, nonetheless, indistinguishable from 
orbital electrons.
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Energy release in decay. How much energy is released 
when 1gC decays to 14N by /3 emission?
EXAMPLE 41 -7

APPROACH We find the mass difference before and after decay, Am. The energy 
released is E =  (Am )c2. The masses given in Appendix F are those of the 
neutral atom, and we have to keep track of the electrons involved. Assume the 
parent nucleus has six orbiting electrons so it is neutral; its mass is 14.003242 u. 
The daughter in this decay, 14N, is not neutral since it has the same six orbital 
electrons circling it but the nucleus has a charge of + le . However, the mass of 
this daughter with its six electrons, plus the mass of the emitted electron (which 
makes a total of seven electrons), is just the mass of a neutral nitrogen atom. 
SOLUTION The total mass in the final state is

(mass of 14N nucleus + 6 electrons) + (mass of 1 electron), 

and this is equal to

mass of neutral 14N (includes 7 electrons),

which from Appendix F is a mass of 14.003074 u. So the mass difference is 
14.003242 u -  14.003074 u = 0.000168 u, which is equivalent to an energy 
change A m e2 =  (0.000168 u) (931.5 M eV/u) = 0.156 MeV orl56keV .
NOTE The neutrino doesn’t contribute to either the mass or charge balance since 
it has q = 0 and m  ~ 0 .

According to Example 41-7, we would expect the emitted electron to have a 
kinetic energy of 156 keV. (The daughter nucleus, because its mass is very much 
larger than that of the electron, recoils with very low velocity and hence gets very 
little  of the kinetic energy— see Example 41-6.) Indeed, very careful measurements 
indicate that a few emitted j8 particles do have kinetic energy close to this calculated 
value. But the vast majority of emitted electrons have somewhat less energy. In fact, 
the energy of the emitted electron can be anywhere from zero up to the maximum 
value as calculated above. This range of electron kinetic energy was found for any 
jS decay. It was as if the law of conservation of energy was being violated, and indeed 
Bohr actually considered this possibility. Careful experiments indicated that linear 
momentum and angular momentum also did not seem to be conserved. Physicists 
were troubled at the prospect of giving up these laws, which had worked so well in 
all previous situations.

In 1930, Wolfgang Pauli proposed an alternate solution: perhaps a new 
particle that was very d ifficu lt to detect was emitted during /3 decay in 
addition to the electron. This hypothesized particle could be carrying o ff the 
energy, momentum, and angular momentum required to maintain the conservation 
laws. This new particle was named the neutrino— meaning “ little  neutral one”— by 
the great Italian physicist Enrico Fermi (1901-1954; Fig. 41-8), who in 1934 
worked out a detailed theory of /3 decay. (It was Fermi who, in this theory, postu­
lated the existence of the fourth force in nature which we call the w eak nuclear 
force.) The electron neutrino has zero charge, spin of \h ,  and was long thought to 
have zero mass, although today we are quite sure that it has a very tiny mass 
(<  0.14 eV/c2). I f  its mass were zero, it would be much like a photon in that it is 
neutral and would travel at the speed of light. But the neutrino is very difficult to 
detect. In 1956, complex experiments produced further evidence for the existence 
of the neutrino; but by then, most physicists had already accepted its existence.

The symbol for the neutrino is the Greek letter nu (v). The correct way of 
writing the decay of 1JC is then

^C -> 14N + e" + v.

The bar (- ) over the neutrino symbol is to indicate that it is an “ antineutrino.” 
(Why this is called an antineutrino rather than simply a neutrino need not concern 
us now; it is discussed in Chapter 43.)

/? \ c a u t i o n ____________
Be careful with atomic and electron 
masses in f3 decay

FIGURE 41-8 Enrico Fermi, as 
portrayed on a US postage stamp. 
Fermi contributed significantly to 
both theoretical and experimental 
physics, a feat almost unique in 
modern times.
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Stable j : 
I - - 1 0 0  nuclei.ii;:

-120

Proton number (Z)

FIGURE 41-2 (Repeated.) 
Number of neutrons versus number 
of protons for stable nuclides, which 
are represented by dots. The straight 
line represents N = Z.

FIGURE 41-9 Energy-level 
diagram showing how 12B can decay 
to the ground state of l\C by j8  decay 
(total energy released = 13.4 MeV), 
or can instead j8  decay to an excited 
state of X\C (indicated by *), which 
subsequently decays to its ground 
state by emitting a 4.4-MeV 7 ray.

Many isotopes decay by electron emission. They are always isotopes that have too 
many neutrons compared to the number of protons. That is, they are isotopes that 
lie above the stable isotopes plotted in Fig. 41-2. But what about unstable isotopes 
that have too few neutrons compared to their number of protons— those that fall 
below the stable isotopes of Fig. 41-2? These, it turns out, decay by emitting a 
positron instead of an electron. A  positron (sometimes called an e+ or /3+ particle) 
has the same mass as the electron, but it has a positive charge of + le . Because it is 
so like an electron, except for its charge, the positron is called the antiparticle1̂ to 
the electron. An example of a (3+ decay is that of JoNe:

JgNe - ►  19F + e+ + v,

where e+ stands for a positron. Note that the v emitted here is a neutrino, whereas 
that emitted in (3 decay is called an antineutrino. Thus an antielectron (= positron) 
is emitted with a neutrino, whereas an antineutrino is emitted with an electron; this 
gives a certain balance as discussed in Chapter 43.

We can write /3“ and /3+ decay, in general, as follows:

zN ->  z+iN ' + e“ + v [/3“ decay]
zN ->  z -iN ' + e+ + v, [p + decay]

where N is the parent nucleus and N ' is the daughter.

Electron Capture
Besides /3“ and /3+ emission, there is a third related process. This is electron capture 
(abbreviated EC in Appendix F) and occurs when a nucleus absorbs one of its 
orbiting electrons. An example is jBe, which as a result becomes ^Li. The process is 
written

jBe + e“ —» ^Li + v,

or, in general,

+ e“ —>• z -iN ' + v. [electron capture]

Usually it is an electron in the innermost (K) shell that is captured, in which case 
the process is called K-capture. The electron disappears in the process, and a 
proton in the nucleus becomes a neutron; a neutrino is emitted as a result. This 
process is inferred experimentally by detection of emitted X-rays (due to other 
electrons jumping down to fill the empty state) of just the proper energy.

In jS decay, it is the weak nuclear force that plays the crucial role. The neutrino 
is unique in that it interacts with matter only via the weak force, which is why it is 
so hard to detect.

41-6  Gamma Decay
Gamma rays are photons having very high energy. They have their origin in the 
decay of a nucleus, much like emission of photons by excited atoms. Like an atom, 
a nucleus itself can be in an excited state. When it jumps down to a lower energy 
state, or to the ground state, it emits a photon which we call a 7 ray. The possible 
energy levels of a nucleus are much farther apart than those of an atom: on the 
order of keV or MeV, as compared to a few eV for electrons in an atom. Hence, 
the emitted photons have energies that can range from a few keV to several MeV. 
For a given decay, the 7 ray always has the same energy. Since a 7 ray carries no 
charge, there is no change in the element as a result of a 7 decay.

How does a nucleus get into an excited state? It may occur because of a 
violent collision with another particle. More commonly, the nucleus remaining 
after a previous radioactive decay may be in an excited state. A  typical example is 
shown in the energy-level diagram of Fig. 41-9. ^B can decay by /3 decay directly

P + Decay
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to the ground state of ^C; or it can go by /3 decay to an excited state of 1gC, which 
then decays by emission of a 4.4-MeV 7 ray to the ground state.

We can write 7 decay as

a n * _1-7, [7 decay]

where the asterisk means “ excited state” of that nucleus.
What, you may wonder, is the difference between a 7 ray and an X-ray? They 

both are electromagnetic radiation (photons) and, though 7 rays usually have higher 
energy than X-rays, their range of energies overlap to some extent. The difference is 
not intrinsic. We use the term X-ray if the photon is produced by an electron-atom 
interaction, and 7 ray if the photon is produced in a nuclear process.

Isomers; Internal Conversion
In some cases, a nucleus may remain in an excited state for some time before it 
emits a 7 ray. The nucleus is then said to be in a metastable state and is called an 
isomer.

An excited nucleus can sometimes return to the ground state by another 
process known as internal conversion with no 7 ray emitted. In this process, the 
excited nucleus interacts with one of the orbital electrons and ejects this electron 
from the atom with the same kinetic energy (minus the binding energy of the elec­
tron) that an emitted 7 ray would have had.

41 -7  Conservation of Nudeon Number 
and Other Conservation Laws

In all three types of radioactive decay, the classical conservation laws hold. 
Energy, linear momentum, angular momentum, and electric charge are all 
conserved. These quantities are the same before the decay as after. But a new 
conservation law is also revealed, the law of conservation of nucleon number. 
According to this law, the total number of nucleons {A) remains constant in any 
process, although one type can change into the other type (protons into neutrons 
or vice versa). This law holds in all three types of decay. Table 41-2 gives a 
summary of a, /3, and 7 decay. [In Chapter 43 we w ill generalize this and call it 
conservation of baryon number.]

41—8 Half-Life and Rate o f Decay
A  macroscopic sample of any radioactive isotope consists of a vast number of 
radioactive nuclei. These nuclei do not all decay at one time. Rather, they decay 
one by one over a period of time. This is a random process: we can not predict 
exactly when a given nucleus w ill decay. But we can determine, on a probabilistic 
basis, approximately how many nuclei in a sample w ill decay over a given time 
period, by assuming that each nucleus has the same probability of decaying in each 
second that it exists.

The number of decays A N  that occur in a very short time interval At is then 
proportional to At and to the total number N  of radioactive nuclei present:

A N  = -X N  At (41-4a)

where the minus sign means N  is decreasing. We rewrite this to get the rate of 
decay:

A N
—  = -X N . (41-4b)

In these equations, A is a constant of proportionality called the decay constant, 
which is different for different isotopes. The greater A is, the greater the rate of 
decay and the more “ radioactive” that isotope is said to be. The number of decays 
that occur in the short time interval At is designated A N  because each decay that

TABLE 41-2 The Three 
Types of Radioactive Decay

a decay:
zN Z-2N' + ^He 

fi decay: 
zN z+iN' + e" + v 
|N  -► |_iN' + e+ + v

+ e“ -► z-iN' + v [EC]f 
7 decay:

|N * - ►  + y

f Electron capture.
* Indicates the excited state of a nucleus.
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FIGURE 41-10 Radioactive nuclei decay 
one by one. Hence, the number of parent 
nuclei in a sample is continually decreasing. 
When a 1gC nucleus emits an electron, the 
nucleus becomes

o  
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occurs corresponds to a decrease by one in the number N  of nuclei present. That is, 
radioactive decay is a “ one-shot” process, Fig. 41-10. Once a particular parent 
nucleus decays into its daughter, it cannot do it again.

If  we take the lim it At —► 0 in Eq. 41-4, A N  w ill be small compared to N, and 
we can write the equation in infinitesimal form as

dN  = -X N  dt.

We can determine Af as a function of t by rearranging this equation to 

dN  
N  ~

and then integrating from t =  0 to t = t\
•N

^  =  -  I A dt,

(41-5)

where N0 is the number of parent nuclei present at t =  0 and N  is the number 
remaining at time t. The integration gives

i NIn —  = -A  t

or
(41-6)

Equation 41-6 is called the radioactive decay law. It tells us that the number of 
radioactive nuclei in a given sample decreases exponentially in time. This is shown
in Fig. 41-1 la  for the case of 1JC whose decay constant is 3.83 X 10 -12 C-1

The rate of decay in a pure sample, or number of decays per second, is 

dN
dt

also called the activity of the sample. We use absolute value signs to make activity a posi­
tive number (dN /d t is negative because the number of parent nuclei N  is decreasing). 
The symbol R  is also used for activity, R = \dN/dt\.

FIGURE 41-11 (a) The number N  of parent nuclei in a given sample of decreases exponentially. 
We set N0 = 1.00 X 1022 here, as we do in the text shortly, (b) The number of decays per second also 
decreases exponentially. The half-life (Eq. 41-8) of 1gC is about 5730 yr, which means that the number of 
parent nuclei, N, and the rate of decay, \dN/dt\, decrease by half every 5730 yr.

1.0 X 1022)

5730 11,460 
Time, t (yr)

(a)

17,190

(b)
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From Eqs. 41-5 and 41-6, 

dN = \N  = \N0e M. (41-7a)
dt

A t t =  0, the activity is 

dN
dt

Hence, at any other time t the activity is

= AA/q. (41-7b)

dN dN
dt dt

*TAr, (41-7c)
o

so the activity decreases exponentially in time at the same rate as for N  (Fig. 41-llb ). 
Equation 41-7c is sometimes referred to as the radioactive decay law (so is Eq. 41-6), 
and can be written using R to represent activity, R = \dN /dt\, as

R = R0e~xt. (41-7d)
The rate of decay of any isotope is often specified by giving its half-life rather 

than the decay constant A. The half-life of an isotope is defined as the time it takes 
for half the original amount of isotope in a given sample to decay. For example, 
the half-life of 1JC is about 5730 years. I f  at some time a piece of petrified 
wood contains, say, 1.00 X 1022 1JC nuclei, then 5730 yr later it w ill contain only 
0.50 X 1022 nuclei. A fter another 5730 yr it w ill contain 0.25 X 1022 nuclei, 
and so on. This is characteristic of the exponential function, and is shown in 
Fig. 4 1 -lla . Since the rate of decay \dN/dt\ is proportional to N, it too decreases 
by a factor of 2 every half-life, Fig. 4 1 -llb .

EXERCISE D The half-life of 22Na is 2.6 years. How much will be left of a 1.0-̂ tg sample 
of 22Na after 5.2 yr? (a) None, (b) I fig. (c) I fig. (,d) \fig. (e) 0.693 fig.

I EXERCISE E Return to the Chapter-Opening Question, page 1104, and answer it again
I now. Try to explain why you may have answered differently the first time.

The half-lives of known radioactive isotopes vary from as short as 10_22s 
to about 1028s (about 1021yr). The half-lives of many isotopes are given in 
Appendix F. It should be clear that the half-life (which we designate 71) bears an 
inverse relationship to the decay constant. The longer the half-life of an isotope, 
the more slowly it decays, and hence A is smaller. The precise relation is obtained 
from Eq. 41-6 by setting N  = N0/2  at t =  Tv.

y  = N oe-xi or ekTi = 2 .

We take natural logs of both sides (“ In” and “e” are inverse operations, meaning 
ln(e*) = x) and find

ln(eA7l)  = In 2, so A71 = In 2

71 = —  = 9 ^ 3 .  (41-8)
2 A A

We can then write Eq. 41-6 as

N  = N0e~°'693t/Tl.

Sometimes the mean life r  of an isotope is quoted, which is defined as r  = 1/A 
(see also Problem 80), so then Eq. 41-6 can be written

N  = N0e~,/T

just as for RC  and LR  circuits (Chapters 26 and 30, where r  is called the time constant). 
Since ^

(41-9a)
A 0.693

the mean life and half-life differ by a factor 0.693; confusing them can cause serious 
error. The radioactive decay law, Eq. 41-7d, can be written simply as

R = Roe~t/r. (41-9b) SECTION 41-8 1119



EXAMPLE 41 -8 Sample activity. The isotope l\C  has a half-life of 5730 yr. If  
a sample contains 1.00 X 1022 carbon-14 nuclei, what is the activity of the sample?

APPROACH We first use the half-life to find the decay constant (Eq. 41-8), and
use that to find the activity, Eq. 41-7b or 41-5. The number of seconds in a year is
(60s/m in)(60m in/h)(24h/d)(365^d/yr) = 3.156 X 107 s.
SOLUTION The decay constant A from Eq. 41-8 is

0.693 0.693 19 ,
' ------------------------------------------------------= 3.83 X 10 s .

71 (5730 yr)(3.156 X 107 s/yr)
From Eq. 41-7b, the activity or rate of decay is 

dN  
dt

Notice that the graph of Fig. 41-1 lb  starts at this value, corresponding to the 
original value of N  = 1.0 X 1022 nuclei in Fig. 41-1 la.
NOTE The unit “ decays/s” is often written simply as s-1 since “ decays” is not a 
unit but refers only to the number. This simple unit of activity is called the 
becquerel: 1 Bq = 1 decay/s, as discussed in Chapter 42.

= XN0 =  (3.83 X 10-12 s_1)(l.00 X 1022) = 3.83 X 1010 decays/s.

| EXERCISE F Determine the decay constant for radium (71 = 1600 yr).

CONCEPTUAL EXAMPLE 41-9 I Safety: Activity versus half-life. One might
think that a short half-life material is safer than a long half-life material because it 
w ill not last as long. Is that true?

RESPONSE No. A  shorter half-life means the activity is higher and thus more 
“ radioactive” and can cause more biological damage. On the other hand, a longer 
half-life for the same sample size N  means a lower activity but we have to worry 
about it for longer and find safe storage until it reaches a safe (low) level of activity.

[22H I3SH H E1 A sample of radioactive ]|N. A  laboratory has 1.49 /xg of pure 
13N, which has a half-life of 10.0 min (600 s). (a) How many nuclei are present initially?
(b) What is the activity initially? (c) What is the activity after 1.00 h? (d) After 
approximately how long w ill the activity drop to less than one per second (= Is -1)?

APPROACH We use the definition of the mole and Avogadro’s number 
(Sections 17-7 and 17-9) to find the number of nuclei. For (b) we get A from 
the given half-life and use Eq. 41-7b for the activity. For (c) and (d) we use 
Eq. 41-7c, and/or make a Table of the times.
SOLUTION (a) The atomic mass is 13.0, so 13.0 g w ill contain 6.02 X 1023 nuclei 
(Avogadro’s number). We have only 1.49 X 10_6 g, so the number of nuclei N0 
that we have in itia lly is given by the ratio 

N0 1.49 X 10_6g
6.02 X 1023 “  13.0 g 

Solving, we find N0 =  6.90 X 1016 nuclei.
(b) From Eq. 41-8,

A = 0.693/71 = (0.693)/(600s) = 1.155 X 10"3s_1.

Then, at t =  0 (Eq. 41-7b),

^  = AJV0 = (1.155 x  10-3 s_1)(6.90 x  1016) = 7.97 x  1013 decays/s. 
dt o

(c) A fter 1.00 h = 3600 s, the magnitude of the activity w ill be (Eq. 41-7c)

g-A* = (7>9? x  1013s- l) e-(l.l55xl0-3s-1)(3600s) = L25 X 1012 S”1.
I

(d) We want to determine the time t when \dN/dt\ =  1.00 s-1. From Eq. 41-7c, we have

\dN/dt\ 1.00 s-1

dN dN
dt dt

\dN/dt\0
= 1.25 X 10‘
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We take the natural log (In) of both sides (In e kt = 
In (1.25 X 1(T14)

Xt) and divide by A to find 

= 2.77 X 104s = 7.70 h.

Easy Alternate Solution to (c) 1.00 h = 60.0 minutes is 6 half-lives, so the activity will 
decrease to (§)(§)(§)(§)(§)(§) = (i)6 = ® of its original value, or (7.97 X 1013)/(64) 
= 1.25 X 1012 per second.

EXERCISE G Technicium 43TC has a half-life of 4.2 X 10° yr. 
of 28.79 yr. Which statements are true?
(a) The decay constant of Sr is greater than the decay constant of Tc.(b) The activity of 100 g of Sr is less than the activity of 100 g of Tc.
(c) The long half-life of Tc means that it decays by alpha decay.(d) A  Tc atom has a higher probability of decaying in 1 yr than a Sr atom.
(e) 28.79 g of Sr has the same activity as 4.2 X 106 g of Tc.

half-life

41—9 Decay Series
It is often the case that one radioactive isotope decays to another isotope that is 
also radioactive. Sometimes this daughter decays to yet a third isotope which also 
is radioactive. Such successive decays are said to form a decay series. An important 
example is illustrated in Fig. 41-12. As can be seen, decays by a emission to 
29oTh, which in turn decays by /3 decay to 294Pa. The series continues as shown, with 
several possible branches near the bottom, ending at the stable lead isotope, 2g2Pb. 
The two last decays can be

7% n 2°fPb + e- +  v,
or

206i a.84r  u  — r  82r  D

Other radioactive series also exist.

(71 = 4.2 min) 

(71 = 138 days)

238,

FIGURE 41-12 D ecay series 
beginning with 292U . Nuclei in the 
series are specified by a dot 
representing A and Z  values. 
Half-lives are given in seconds (s), 
minutes (min), hours (h), days (d), 
or years (yr). N ote that a 
horizontal arrow represents j8 decay (A does not change), whereas a 
diagonal line represents a decay (.A changes by 4, Z  changes by 2). 
For the four nuclides shown that 
can decay by both a and /3 decay, 
the more prominent decay (in these 
four cases, >  99.9%) is shown as a 
solid arrow and the less common 
decay (<  0.1%) as a dashed arrow.
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Because of such decay series, certain radioactive elements are found in nature 
that otherwise would not be. When the solar system (including Earth) was formed 
about 5 billion years ago, it is believed that nearly all nuclides were present, having 
been formed (by fusion and neutron capture, Sections 42^4 and 44-2) in a nearby 
supernova explosion (Section 44-2). Many isotopes with short half-lives decayed 
quickly and no longer are detected in nature today. But long-lived isotopes, such as
29fU with a half-life of 4.5 X 109 yr, still do exist in nature today. Indeed, about half 
of the original still remains. We might expect, however, that radium (2|fRa), 
with a half-life of 1600 yr, would long since have disappeared from the Earth. 
Indeed, the original 2i|Ra nuclei must by now have all decayed. However, because 
2ifU decays (in several steps) to 2i|Ra, the supply of 2||R a is continually replen­
ished, which is why it is still found on Earth today. The same can be said for many 
other radioactive nuclides.

CONCEPTUAL EXAMPLE 41-11 I Decay chain. In the decay chain of Fig. 41-12, 
if we start looking below 2̂ U , we see four successive nuclides with half-lives of
250,000 yr, 75,000 yr, 1600 yr, and a little under 4 days. Each decay in the chain has 
an alpha particle of a characteristic energy, and so we can monitor the radioactive 
decay rate of each nuclide. Given a sample that was pure a million years ago, 
which alpha decay would you expect to have the highest activity in the sample?
RESPONSE The first instinct is to say that the process with the shortest half-life 
would show the highest activity. Surprisingly, perhaps, the activities of the four 
nuclides in this sample are all the same. The reason is that in each case the decay 
of the parent acts as a bottleneck to the decay of the daughter. Compared to the 
1600-yr half-life of 2|§Ra, for example, its daughter 2|^Rn decays almost immediately, 
but it cannot decay until it is made. (This is like an automobile assembly line: if 
worker A takes 20 minutes to do a task and then worker B takes only 1 minute to 
do the next task, worker B still does only one car every 20 minutes.)

41-10  Radioactive Dating
Radioactive decay has many interesting applications. One is the technique of 
radioactive dating by which the age of ancient materials can be determined.

S A P P L I E D  The age of any object made from once-living matter, such as wood, can be
Carbon-14 dating determined using the natural radioactivity of 1JC. All living plants absorb carbon 

dioxide (C 02) from the air and use it to synthesize organic molecules. The vast 
majority of these carbon atoms are l\C, but a small fraction, about 1.3 X 10“12, is 
the radioactive isotope ^C. The ratio of 1JC to l\C in the atmosphere has remained 
roughly constant over many thousands of years, in spite of the fact that ^C decays 
with a half-life of about 5730 yr. This is because energetic nuclei in the cosmic radi­
ation, which impinges on the Earth from outer space, strike nuclei of atoms in the 
atmosphere and break those nuclei into pieces, releasing free neutrons. Those 
neutrons can collide with nitrogen nuclei in the atmosphere to produce the 
nuclear transformation n + ^C + p. That is, a neutron strikes and is
absorbed by a nucleus, and a proton is knocked out in the process. The 
remaining nucleus is 1gC. This continual production of JJC in the atmosphere 
roughly balances the loss of C by radioactive decay.

As long as a plant or tree is alive, it continually uses the carbon from carbon 
dioxide in the air to build new tissue and to replace old. Animals eat plants, 
so they too are continually receiving a fresh supply of carbon for their tissues. 
Organisms cannot distinguish ^C from ^C, and since the ratio of ^C to ^C in 
the atmosphere remains nearly constant, the ratio of the two isotopes within the 
living organism remains nearly constant as well. When an organism dies, carbon 
dioxide is no longer absorbed and utilized. Because the ^C decays radioactively, the 
ratio of XJC to X\C in a dead organism decreases over time. Since the half-life of 
^C is about 5730 yr, the u6C /l\C ratio decreases by half every 5730 yr. If, for example,
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the l\C /l\C ratio of an ancient wooden tool is half of what it is in living trees, then 
the object must have been made from a tree that was felled about 5730 years ago.

Actually, corrections must be made for the fact that the ratio in
the atmosphere has not remained precisely constant over time. The determination 
of what this ratio has been over the centuries has required techniques such as 
comparing the expected ratio to the actual ratio for objects whose age is known, 
such as very old trees whose annual rings can be counted reasonably accurately.

■ m u j i s i B n  An ancient animal. The mass of carbon in an animal bone 
fragment found in an archeological site is 200 g. If the bone registers an activity 
of 16 decays/s, what is its age?
APPROACH First we determine how many 1JC atoms there were in our 
200-g sample when the animal was alive, given the known fraction of ^C,
1.3 X 1 0 12. Then we use Eq. 41-7b to find the activity back then, and Eq. 41-7c 
to find out how long ago that was by solving for the time t.
SOLUTION The 200 g of carbon is nearly all ^C; 12.0 g of contains 
6.02 X 1023 atoms, so 200 g contains

6.02 X 1023 atoms/mol 
12 g/mol

When the animal was alive, the ratio of to in the bone was 1.3 X 10-12. 
The number of 1gC nuclei at that time was

(200 g) = 1.00 X 1025 atoms.

dt
From Eq. 41-7c,

N0 = (l.OO X 1025 atoms)(l.3 X 10 12) = 1.3 X 1013 atoms.

:ample L 
0) was

= AA/q = (3.83 X 10_12s_1)(l.3 X 1013) = 50 s_1.

From Eq. 41-7b, with A = 3.83 X 10 12 s 1 for (Example 41-8), the magni­
tude of the activity when the animal was still alive (t

dN

dN dN
dt dt

where \dN/dt\ is given as 16 s 1. Then 

\dN/dt\0 50 s-1
=

\dN/dt\ 16 s_1 

We take the natural log (In) of both sides (and divide by A) to get

1 r  \dN/dt\0l  
A nL \dN/dt\ J In

50 s-i'

16 s-lA “ |_ \dN/dt\

= 2.98 X 1011 s = 9400 yr, 

which is the time elapsed since the death of the animal.

Geological Time Scale Dating
Carbon dating is useful only for determining the age of objects less than about
60,000 years old. The amount of ^C remaining in objects older than that is usually 
too small to measure accurately, although new techniques are allowing detection of 
even smaller amounts of 1JC, pushing the time frame further back. On the other 
hand, radioactive isotopes with longer half-lives can be used in certain circum­
stances to obtain the age of older objects. For example, the decay of 29fU, because 
of its long half-life of 4.5 X 109 years, is useful in determining the ages of rocks 
on a geologic time scale. When molten material on Earth long ago solidified into 
rock as the temperature dropped, different compounds solidified according to the 
melting points, and thus different compounds separated to some extent. Uranium

P H Y S I C S  A P P L I E D
Archeological dating

P H Y S I C S  A P P L I E D
Geological dating
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P H Y S I C S  A P P L I E DOldest Earth rocks and earliest life

FIGURE 4 1 -1 3  Diagram of a 
Geiger counter.

FIGURE 4 1 -1 4  Scintillation 
counter with a photomultiplier tube.

Incoming Scintillation

(to counter)

present in a material became fixed in position and the daughter nuclei that result 
from the decay of uranium were also fixed in that position. Thus, by measuring the 
amount of remaining in the material relative to the amount of daughter 
nuclei, the time when the rock solidified can be determined.

Radioactive dating methods using and other isotopes have shown the age 
of the oldest Earth rocks to be about 4 X 109yr. The age of rocks in which the 
oldest fossilized organisms are embedded indicates that life appeared more than 
3§ billion years ago. The earliest fossilized remains of mammals are found in rocks 
200 million years old, and humanlike creatures seem to have appeared about 
2 million years ago. Radioactive dating has been indispensable for the reconstruc­
tion of Earth’s history.

41—11 Detection of Radiation
Individual particles such as electrons, protons, a particles, neutrons, and 7 rays are 
not detected directly by our senses. Consequently, a variety of instruments have 
been developed to detect them.

Counters
One of the most common is the Geiger counter. As shown in Fig. 41-13, it 
consists of a cylindrical metal tube filled with a certain type of gas. A long wire 
runs down the center and is kept at a high positive voltage (« 103 V) with respect 
to the outer cylinder. The voltage is just slightly less than that required to ionize 
the gas atoms. When a charged particle enters through the thin “window” at one 
end of the tube, it ionizes a few atoms of the gas. The freed electrons are attracted 
toward the positive wire, and as they are accelerated they strike and ionize 
additional atoms. An “avalanche” of electrons is quickly produced, and when it reaches 
the wire anode, it produces a voltage pulse. The pulse, after being amplified, can be 
sent to an electronic counter, which counts how many particles have been 
detected. Or the pulses can be sent to a loudspeaker and each detection of a 
particle is heard as a “click.” Only a fraction of the radiation emitted by a sample 
is detected by any detector.

A scintillation counter makes use of a solid, liquid, or gas known as a 
scintillator or phosphor. The atoms of a scintillator are easily excited when struck 
by an incoming particle and emit visible light when they return to their ground 
states. Typical scintillators are crystals of Nal and certain plastics. One face of a 
solid scintillator is cemented to a photomultiplier tube, and the whole is wrapped 
with opaque material to keep it light-tight (in the dark) or is placed within a 
light-tight container. The photomultiplier (PM) tube converts the energy of the 
scintillator-emitted photon(s) into an electric signal. A PM tube is a vacuum 
tube containing several electrodes (typically 8 to 14), called dy nodes, which are 
maintained at successively higher voltages as shown in Fig. 41-14. At its top 
surface is a photoelectric surface, called the photocathode, whose work function 
(Section 37-2) is low enough that an electron is easily released when struck by a 
photon from the scintillator. Such an electron is accelerated toward the positive 
voltage of the first dynode. When it strikes the first dynode, the electron has 
acquired sufficient kinetic energy so that it can eject two to five more electrons. 
These, in turn, are accelerated toward the higher voltage second dynode, and a 
multiplication process begins. The number of electrons striking the last dynode 
may be 106 or more. Thus the passage of a particle through the scintillator 
results in an electric signal at the output of the PM tube that can be sent to an 
electronic counter just as for a Geiger tube. Solid scintillators are much more dense 
than the gas of a Geiger counter, and so are much more efficient detectors— 
especially for 7 rays, which interact less with matter than do a or /3 particles. 
Scintillators that can measure the total energy deposited are much used today and 
are called calorimeters.

103 V
-VWV--- r - ^ 1—

To counter

Thin window

Wire electrode 
= +) 

Metal tube 
(cathode =  —) 
Insulator
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In tracer work (Section 42-8), liquid scintillators are often used. Radioactive 
samples taken at different times or from different parts of an organism are placed 
directly in small bottles containing the liquid scintillator. This is particularly conve­
nient for detection of /3 rays from 3H and l\C, which have very low energies and 
have difficulty passing through the outer covering of a crystal scintillator or Geiger 
tube. A PM tube is still used to produce the electric signal from the liquid scintillator.

A semiconductor detector consists of a reverse-biased pn junction diode 
(Sections 40-8 and 40-9). A particle passing through the junction can excite 
electrons into the conduction band, leaving holes in the valence band. The freed 
charges produce a short electrical pulse that can be counted just as for Geiger and 
scintillation counters.

Hospital workers and others who work around radiation may carry film 
badges which detect the accumulation of radiation exposure. The film inside is 
periodically replaced and developed, the darkness being related to total exposure 
(see Section 42-6).

Visualization
The devices discussed so far are used for counting the number of particles (or 
decays of a radioactive isotope). There are also devices that allow the track of 
charged particles to be seen. Very important are semiconductor detectors. Silicon 
wafer semiconductors have their surface etched into separate tiny pixels, each 
providing particle position information. They are much used in elementary particle 
physics (Chapter 43) to track the positions of particles produced and to determine 
their point of origin and/or their momentum (with the help of a magnetic field). 
The pixel arrangement can be CCD or CMOS (Section 33-5), the latter able to 
incorporate electronics inside, allowing fast readout.

One of the oldest tracking devices is the photographic emulsion, which can be 
small and portable, used now particularly for cosmic-ray studies from balloons. A 
charged particle passing through an emulsion ionizes the atoms along its path. 
These points undergo a chemical change, and when the emulsion is developed (like 
film) the particle’s path is revealed.

In a cloud chamber, used in the early days of nuclear physics, a gas is cooled to 
a temperature slightly below its usual condensation point (“supercooled”), and gas 
molecules condense on any ionized molecules present. Tiny droplets form around 
ions produced when a charged particle passes through (Fig. 41-15). Light 
scattering from these droplets reveals the track of the particle.

The bubble chamber, invented in 1952 by D. A. Glaser (1926- ), makes 
use of a superheated liquid kept close to its normal boiling point. Bubbles 
characteristic of boiling form around ions produced by the passage of a charged 
particle, revealing paths of particles that recently passed through. Because a 
bubble chamber uses a liquid, often liquid hydrogen, many more interactions can 
occur than in a cloud chamber. A magnetic field is usually applied across the chamber 
so the momentum of the moving particles can be determined from the radius of 
curvature of their paths.

A wire drift chamber consists of a set of closely spaced fine wires immersed in 
a gas (Fig. 41-16). Many wires are grounded, and the others between are kept at 
very high voltage. A charged particle passing through produces ions in the gas. 
Freed electrons drift toward the nearest high voltage wire, creating an 
“avalanche” of many more ions, and producing an electric pulse or signal at that 
wire. The positions of the particles are determined electronically by the position of 
the wire and by the time it takes the pulses to reach “readout” electronics at the 
ends of the wires. The paths of the particles are reconstructed electronically by 
computers which can “draw” a picture of the tracks, as shown in the photo at the 
start of Chapter 43. An external magnetic field curves the paths, allowing the 
momentum of the particles to be measured.

In many detectors, the energy of the particles can be measured by the strength of the 
electronic signal; such detectors are referred to as calorimeters, as already mentioned.

Path of particle

FIGURE 4 1 -1 5  In a cloud chamber 
or bubble chamber, droplets or 
bubbles are formed around ions 
produced by the passage of a 
charged particle.

FIGURE 4 1 -1 6  Wire-drift chamber 
inside the Collider Detector at 
Fermilab (CDF). The photo at the 
start of Chapter 43 (page 1164) was 
done with this detector.
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Summary
Nuclear physics is the study of atomic nuclei. Nuclei contain 
protons and neutrons, which are collectively known as nucleons. 
The total number of nucleons, A , is the nucleus’s atomic mass 
number. The number of protons, Z, is the atomic number. The 
number of neutrons equals A  -  Z. Isotopes are nuclei with the 
same Z, but with different numbers of neutrons. For an element 
X, an isotope of given Z  and A  is represented by

The nuclear radius is approximately proportional to A  
indicating that all nuclei have about the same density. Nuclear 
masses are specified in unified atomic mass units (u), where the 
mass of C (including its 6 electrons) is defined as exactly
12.000000 u. In terms of the energy equivalent (because 
E = me2),

l u  = 931.5 M eV/c2 = 1.66 X 10“27kg.

The mass of a stable nucleus is less than the sum of the masses 
of its constituent nucleons. The difference in mass (times c2) is the 
total binding energy. It represents the energy needed to break 
the nucleus into its constituent nucleons. The binding energy per 
nucleon averages about 8 MeV per nucleon, and is lowest for 
low mass and high mass nuclei.

Unstable nuclei undergo radioactive decay; they change 
into other nuclei with the emission of an a, (3, or 7 particle. An 
a particle is a 2He nucleus; a /3 particle is an electron or 
positron; and a 7 ray is a high-energy photon. In /3 decay, a 
neutrino is also emitted. The transformation of the parent into 
the daughter nucleus is called transmutation of the elements. 
Radioactive decay occurs spontaneously only when the mass of 
the products is less than the mass of the parent nucleus. The loss 
in mass appears as kinetic energy of the products.

Alpha decay occurs via the purely quantum mechanical 
process of tunneling through a barrier.

Nuclei are held together by the strong nuclear force. The 
weak nuclear force makes itself apparent in (3 decay. These two 
forces, plus the gravitational and electromagnetic forces, are the 
four known types of force.

Electric charge, linear and angular momentum, mass- 
energy, and nucleon number are conserved in all decays.

Radioactive decay is a statistical process. For a given type 
of radioactive nucleus, the number of nuclei that decay (AN) in 
a time AMs proportional to the number N  of parent nuclei 
present:

AN = - \ N  At; (41-4a)

the minus sign means N  decreases in time.
The proportionality constant A is called the decay constant 

and is characteristic of the given nucleus. The number N  of 
nuclei remaining after a time t decreases exponentially

N  = N0e~M, 

as does the activity, R = \dN/dt\:

dN dN
dt dt

(41-6)

(41-7c)

The half-life, 7i, is the time required for half the nuclei of a 
radioactive sample to decay. It is related to the decay constant by

0.69371 = (41-8)

Radioactive decay can be used to determine the age of 
certain objects, such as once-living biological material (^C ) or 
geological formations ( ^ U ) .

Particle detectors include Geiger counters, scintillators with 
attached photomultiplier tubes, and semiconductor detectors. 
Detectors that can image particle tracks include semiconductors, 
photographic emulsions, bubble chambers, and wire drift 
chambers.

Questions
1. What do different isotopes of a given element have in 

common? How are they different?
2. What are the elements represented by the X in the 

following: (a) *lX; (b) ^X; (c) JX; (d) gX; (e) 2$X?
3. How many protons and how many neutrons do each of the 

isotopes in Question 2 have?
4. Identify the element that has 88 nucleons and 50 neutrons.
5. Why are the atomic masses of many elements (see the Peri­

odic Table) not close to whole numbers?
6. How do we know there is such a thing as the strong nuclear 

force?
7. What are the similarities and the differences between the 

strong nuclear force and the electric force?
8. What is the experimental evidence in favor of radioactivity 

being a nuclear process?
9. The isotope 29CU is unusual in that it can decay by 7, (3 , and 

IQ+ emission. What is the resulting nuclide for each case?
10. A 2q|U nucleus decays via a decay to a nucleus containing 

how many neutrons?

11. Describe, in as many ways as you can, the difference 
between a, (3, and 7 rays.

12. What element is formed by the radioactive decay of
(a) i}Na (fir); (6) i?Na (/3+); (e) ^P o  (a)1

13. What element is formed by the decay of (a) 15P (fi );
( b ) HSf/r); (c)2̂ Bi (a)?

14. Fill in the missing particle or nucleus:
(a) 2oCa —» ? + e_ + v
(ib) §Cu* -► ? + 7
(c) gC r 46y + ?
(d) 2%\Pu ? + a
(e) 2jgNp 2$Pu + ?

15. Immediately after a 298U nucleus decays to 29oTh + 2He, 
the daughter thorium nucleus may still have 92 electrons circling 
it. Since thorium normally holds only 90 electrons, what do 
you suppose happens to the two extra ones?

16. When a nucleus undergoes either (3~ or j8+ decay, what 
happens to the energy levels of the atomic electrons? What 
is likely to happen to these electrons following the decay?
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17. The alpha particles from a given alpha-emitting nuclide are 
generally monoenergetic; that is, they all have the same 
kinetic energy. But the beta particles from a beta-emitting 
nuclide have a spectrum of energies. Explain the difference 
between these two cases.

18. Do isotopes that undergo electron capture generally lie 
above or below the stable nuclides in Fig. 41-2?

19. Can hydrogen or deuterium emit an a particle? Explain.
20. Why are many artificially produced radioactive isotopes 

rare in nature?
21. An isotope has a half-life of one month. After two months, 

will a given sample of this isotope have completely 
decayed? If not, how much remains?

22. Why are none of the elements with Z > 92 stable?

Problems_________________
41 -1  N uclear P roperties
1. (I) A pi meson has a mass of 139 MeV/c2. What is this in 

atomic mass units?
2. (I) What is the approximate radius of an alpha particle (^He)?
3. (I) By what % is the radius of 21$\J greater than the radius 

of 2jgU?
4. (II) (a) What is the approximate radius of a 14§Cd nucleus?

(b) Approximately what is the value of A  for a nucleus 
whose radius is 3.7 X 10-15 m?

5. (II) What is the mass of a bare a particle (without electrons) 
in MeV/c2?

6. (II) Suppose two alpha particles were held together so they 
were just touching. Estimate the electrostatic repulsive force 
each would exert on the other. What would be the accelera­
tion of an alpha particle subjected to this force?

7. (II) (a) Show that the density of nuclear matter is essen­
tially the same for all nuclei. (b) What would be the radius 
of the Earth if it had its actual mass but had the density of 
nuclei? (c) What would be the radius of a 21$\J nucleus if it 
had the density of the Earth?

8. (II) What stable nucleus has approximately half the radius of a 
uranium nucleus? [Hint Find A  and use Appendix F to get Z.]

9. (II) If an alpha particle were released from rest near the 
surface of a looFm nucleus, what would its kinetic energy be 
when far away?

10. (II) (a) What is the fraction of the hydrogen atom’s mass 
that is in the nucleus? (b) What is the fraction of the 
hydrogen atom’s volume that is occupied by the nucleus?

11. (II) Approximately how many nucleons are there in a 1.0-kg 
object? Does it matter what the object is made of? Why or 
why not?

12. (II) How much kinetic energy must an a particle have to just 
“touch” the surface of a 29§U nucleus?

41 - 2  Binding Energy
13. (I) Estimate the total binding energy for 29CU, using Fig. 41-1.
14. (II) Use Appendix F to calculate the binding energy of 2H 

(deuterium).
15. (II) Determine the binding energy of the last neutron in a 

15P nucleus.

23. A proton strikes a 3Li nucleus. As a result, an a particle and 
another particle are released. What is the other particle?

24. Can ^C dating be used to measure the age of stone walls 
and tablets of ancient civilizations? Explain.

25. In both internal conversion and fi decay, an electron is 
emitted. How could you determine which decay process 
occurred?

26. Describe how the potential energy curve for an a particle in 
an a-emitting nucleus differs from that for a stable nucleus.

27. Explain the absence of fi+ emitters in the radioactive decay 
series of Fig. 41-12.

28. As 2ggRn decays into ^ P b , how many alpha and beta parti­
cles are emitted? Does it matter which path in the decay 
series is chosen? Why or why not?

16. (II) Calculate the total binding energy, and the binding 
energy per nucleon, for (a) ^Li, (b) ^ A u . Use Appendix F.

17. (II) Compare the average binding energy of a nucleon in 
§Na to that in 24Na.

18. (Ill) How much energy is required to remove (a) a proton, 
(b) a neutron, from 1yN? Explain the difference in your 
answers.

19. (Ill) (a) Show that the nucleus ®Be (mass = 8.005305 u) is 
unstable and will decay into two a particles. (b) Is stable 
against decay into three a particles? Show why or why not.

41 - 3  to  41 - 7  Radioactive Decay
20. (I) How much energy is released when tritium, fH, decays 

by fi~ emission?
21. (I) What is the maximum kinetic energy of an electron 

emitted in the fi decay of a free neutron?
22. (I) Show that the decay 1JC —► ^B + p is not possible 

because energy would not be conserved.
23. (I) The ^Li nucleus has an excited state 0.48 MeV above the 

ground state. What wavelength gamma photon is emitted 
when the nucleus decays from the excited state to the 
ground state?

24. (II) Give the result of a calculation that shows whether or 
not the following decays are possible:
(a) ->■ + n;
(b) 14N 13N + n;
(c) gK 19K + n.

25. (II) 2iNa is radioactive, (a) Is it a fi~ or fi+ emitter? 
(b) Write down the decay reaction, and estimate the 
maximum kinetic energy of the emitted fi.

26.(11) When ?§Ne (mass = 22.9945 u) decays to §Na 
(mass = 22.9898 u), what is the maximum kinetic energy of 
the emitted electron? What is its minimum energy? What is 
the energy of the neutrino in each case? Ignore recoil of the 
daughter nucleus.

27. (II) A 298U nucleus emits an a particle with kinetic 
energy = 4.20 MeV. (a) What is the daughter nucleus, and
(b) what is the approximate atomic mass (in u) of the 
daughter atom? Ignore recoil of the daughter nucleus.

28. (II) What is the maximum kinetic energy of the emitted 
fi particle during the decay of 27C0?
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29. (II) A nucleus of mass 256 u, initially at rest, emits an 
a particle with a kinetic energy of 5.0 MeV. What is the 
kinetic energy of the recoiling daughter nucleus?

30. (II) The isotope 284Po can decay by either a or j8“ emission. 
What is the energy release in each case? The mass of 
2̂ Po is 218.008965 u.

31. (II) The nuclide 32P decays by emitting an electron whose 
maximum kinetic energy can be 1.71 MeV. (a) What is the 
daughter nucleus? (b) Calculate the daughter’s atomic mass 
(in u).

32. (II) A photon with a wavelength of 1.00 X 10-13m is 
ejected from an atom. Calculate its energy and explain why 
it is a 7 ray from the nucleus or a photon from the atom.

33. (II) How much energy is released in electron capture by 
beryllium: 4Be + e_ —> 3Li + vl

34. (II) How much recoil energy does a i§K nucleus get when 
it emits a 1.46-MeV gamma ray?

35. (II) Determine the maximum kinetic energy of j8+ particles 
released when X\C decays to ^B. What is the maximum energy 
the neutrino can have? What is the minimum energy of each?

36. (Ill) The a particle emitted when decays has 4.20 MeV 
of kinetic energy. Calculate the recoil kinetic energy of the 
daughter nucleus and the Q-value of the decay.

37. (Ill) What is the energy of the a particle emitted in the 
decay ^ P o  —» ^ P b  + a? Take into account the recoil of 
the daughter nucleus.

38. (Ill) Show that when a nucleus decays by /3+ decay, the total 
energy released is equal to

(MP -  Md — 2m e)c2,

where MP and MD are the masses of the parent and 
daughter atoms (neutral), and rae is the mass of an electron 
or positron.

41 - 8  to  41 - 1 0  Half-Life, D ecay R ates, D ecay S eries, 
D ating
39. (I) (a) What is the decay constant of whose half-life is

4.5 X 109 yr? (b) The decay constant of a given nucleus is
3.2 X 10“5 s-1. What is its half-life?

40. (I) A radioactive material produces 1280 decays per minute 
at one time, and 3.6 h later produces 320 decays per minute. 
What is its half-life?

41. (I) What fraction of a sample of ^G e, whose half-life is 
about 9 months, will remain after 2.0 yr?

42. (I) What is the activity of a sample of ^C  that contains 
8.1 X IO20 nuclei?

43. (I) What fraction of a sample is left after exactly
6 half-lives?

44. (II) A sample of 27C0 and a sample of 153I both have N0 
atoms at t = 0. How long will it take until both have the 
same activity? (Use Appendix F for half-life data.)

45. (II) How many nuclei of 21$\J remain in a rock if the activity 
registers 340 decays per second?

46. (II) In a series of decays, the nuclide becomes ^ P b . 
How many a and j8_ particles are emitted in this series?

47. (II) The iodine isotope 133I is used in hospitals for diagnosis 
of thyroid function. If 782 fig are ingested by a patient, 
determine the activity (a) immediately, (b) 1.00 h later when 
the thyroid is being tested, and (c) 4.0 months later. Use 
Appendix F.

48. (II) 155Cs has a half-life of 30.8 s. (a) If we have 7.8 fig 
initially, how many Cs nuclei are present? (b) How many 
are present 2.6 min later? (c) What is the activity at this 
time? (d) After how much time will the activity drop to less 
than about 1 per second?

49. (II) Calculate the mass of a sample of pure 19K with an 
initial decay rate of 2.0 X 105s-1. The half-life of 4<]K is 
1.265 X 109 yr.

50. (II) Calculate the activity of a pure 8.7-fig sample of 
gP  (71 = 1-23 X 106s).

51. (II) The activity of a sample of igS (71 = 87.32 days) is 
3.65 X 104 decays per second. What is the mass of the 
sample?

52. (II) A sample of 2jj|U (71 = 1.59 X 105yr) contains 
5.50 X 1018 nuclei, (a) W hat2 is the decay constant?
(b) Approximately how many disintegrations will occur per 
minute?

53. (II) The activity of a sample drops by a factor of 4.0 in 
8.6 minutes. What is its half-life?

54. (II) A 385-g sample of pure carbon contains 1.3 parts in 1012 
(atoms) of 1gC. How many disintegrations occur per 
second?

55. (II) A sample of 21$\J is decaying at a rate of 
3.70 X 102 decays/s. What is the mass of the sample?

56. (II) Rubidium-strontium dating. The rubidium isotope 37Rb, 
a j8 emitter with a half-life of 4.75 X 1010yr, is used to 
determine the age of rocks and fossils. Rocks containing 
fossils of ancient animals contain a ratio of 3gSr to 37Rb of
0.0260. Assuming that there was no 3gSr present when the 
rocks were formed, estimate the age of these fossils.

57. (II) The activity of a radioactive source decreases by 2.5% in
31.0 hours. What is the half-life of this source?

58. (II) jBe decays with a half-life of about 53 d. It is produced 
in the upper atmosphere, and filters down onto the Earth’s 
surface. If a plant leaf is detected to have 350 decays/s of 
jBe, (a) how long do we have to wait for the decay rate to 
drop to 15 per second? (b) Estimate the initial mass of 
jBe on the leaf.

59. (II) Two of the naturally occurring radioactive decay 
sequences start with 29§Th and with 2̂ \J . The first five decays 
of these two sequences are:

a, /3, p, a, a
and

a, /3, a, (3, a.

Determine the resulting intermediate daughter nuclei in 
each case.

60. (II) An ancient wooden club is found that contains 85 g of 
carbon and has an activity of 7.0 decays per second. Deter­
mine its age assuming that in living trees the ratio of 
14C /12C atoms is about 1.3 X 10-12.

61. (Ill) At t = 0, a pure sample of radioactive nuclei contains 
N0 nuclei whose decay constant is A. Determine a formula 
for the number of daughter nuclei, Afo, as a function of 
time; assume the daughter is stable and that AfD = 0 at 
t = 0.
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| General Problems
62. Which radioactive isotope of lead is being produced if the 

measured activity of a sample drops to 1.050% of its original 
activity in 4.00 h?

63. An old wooden tool is found to contain only 6.0% 
of the that an equal mass of fresh wood would. How old 
is the tool?

64. A neutron star consists of neutrons at approximately 
nuclear density. Estimate, for a 10-km-diameter neutron 
star, (a) its mass number, (b) its mass (kg), and (c) the accel­
eration of gravity at its surface.

65. Tritium dating. The 3H isotope of hydrogen, which is called 
tritium (because it contains three nucleons), has a half-life 
of 12.3 yr. It can be used to measure the age of objects up 
to about 100 yr. It is produced in the upper atmosphere by 
cosmic rays and brought to Earth by rain. As an application, 
determine approximately the age of a bottle of wine whose 
3H radiation is about ^  that present in new wine.

66. Some elementary particle theories (Section 43-11) suggest 
that the proton may be unstable, with a half-life >  1033 yr. 
How long would you expect to wait for one proton in your 
body to decay (approximate your body as all water)?

67. Show, using the decays given in Section 41-5, that the 
neutrino has either spin \  or § •

68. The original experiments which established that an atom 
has a heavy, positive nucleus were done by shooting alpha 
particles through gold foil. The alpha particles used had a 
kinetic energy of 7.7 MeV. What is the closest they could get 
to a gold nucleus? How does this compare with the size of 
the nucleus?

69. How long must you wait (in half-lives) for a radioactive 
sample to drop to 1 .00% of its original activity?

70. If the potassium isotope i§K gives 45 decays/s in a liter of 
milk, estimate how much jcjK and regular 19K are in a liter 
of milk. Use Appendix F.

71. (a) In a  decay of, say, a 2ggRa nucleus, show that the nucleus 
carries away a fraction 1/(1 + °f the total energy 
available, where A D is the mass number of the daughter 
nucleus. [Hint: Use conservation of momentum as well as 
conservation of energy.] (b) Approximately what 
percentage of the energy available is thus carried off by the 
a particle when 2ggRa decays?

72. Strontium-90 is produced as a nuclear fission product of 
uranium in both reactors and atomic bombs. Look at its 
location in the Periodic Table to see what other elements it 
might be similar to chemically, and tell why you think it 
might be dangerous to ingest. It has too many neutrons, and 
it decays with a half-life of about 29 yr. How long will we 
have to wait for the amount of ^Sr on the Earth’s surface 
to reach 1% of its current level, assuming no new material is 
scattered about? Write down the decay reaction, including 
the daughter nucleus. The daughter is radioactive: write 
down its decay.

73. Using the uncertainty principle and the radius of a nucleus, 
estimate the minimum possible kinetic energy of a nucleon 
in, say, iron. Ignore relativistic corrections. [Hint: A particle 
can have a momentum at least as large as its momentum 
uncertainty.]

74. (a) Calculate the kinetic energy of the a  particle emitted 
when 292U decays. (b) Use Eq. 41-1 to estimate the radius of an 
a particle and a 29oTh nucleus. Use this to estimate (c) the 
maximum height of the Coulomb barrier, and (d) its width 
AB in Fig. 41-7.

75. The nuclide ^ O s  decays with (3~ energy of 0.14 MeV 
accompanied by J  rays of energy 0.042 MeV and 0.129 MeV.
(a) What is the daughter nucleus? (b) Draw an energy-level 
diagram showing the ground states of the parent and 
daughter and excited states of the daughter, (c) To which of 
the daughter states does (3~ decay of ^ O s  occur?

76. Determine the activities of (a) 1.0 g of ^ I  (71 = 8.02 days) 
and (b) 1.0 g of 29328U (Ti = 4.47 X 109yr). 2

77. Use Fig. 41-1 to estimate the total binding energy for 
copper and then estimate the energy, in joules, needed to 
break a 3.0-g copper penny into its constituent nucleons.

78. Instead of giving atomic masses for nuclides as in 
Appendix F, some Tables give the mass excess, A, defined as 
A = M  — A, where A  is the atomic mass number and M  is 
the mass in u. Determine the mass excess, in u and in MeV/c2, 
for: (a) 2He; (b) C; (c) 8gSr; (d) 292U. (e) From a glance at 
Appendix F, can you make a generalization about the sign 
of A as a function of Z  or A l

79. When water is placed near an intense neutron source, the 
neutrons can be slowed down by collisions with the water 
molecules and eventually captured by a hydrogen nucleus to 
form the stable isotope called deuterium, 2H, giving off a 
gamma ray. What is the energy of the gamma ray?

80. (a) Show that the mean life of a radioactive nuclide, 
defined as

OO
t N (t) dt

)________

[ N (t) dt

is r  = 1/A. (b) What fraction of the original number of 
nuclei remains after one mean life?

81. (a) A 72-gram sample of natural carbon contains the usual 
fraction of C. Estimate how long it will take before there 
is only one C nucleus left. (b) How does the answer in
(a) change if the sample is 270 grams? What does this tell 
you about the limits of carbon dating?

82. If the mass of the proton were just a little closer to the mass 
of the neutron, the following reaction would be possible 
even at low collision energies:

e_ + p —> n + v.

(fl) Why would this situation be catastrophic? (b) By what 
percentage would the proton’s mass have to be increased to 
make this reaction possible?

83. What is the ratio of the kinetic energies for an alpha particle 
and a beta particle if both make tracks with the same radius 
of curvature in a magnetic field, oriented perpendicular to 
the paths of the particles?
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84. A 1.00-g sample of natural samarium emits a particles at a 
rate of 120 s_1 due to the presence of 16?Sm. The natural 
abundance of ^ S m  is 15%. Calculate the half-life for this 
decay process.

85. Almost all of naturally occurring uranium is 21$\J with a 
half-life of 4.468 X 109yr. Most of the rest of natural 
uranium is with a half-life of 7.04 X 108yr. Today a 
sample contains 0.720% ^ U .  (a) What was this percentage
1.0 billion years ago? (b) What percentage of will 
remain 100 million years from now?

86. A typical banana contains 400 mg of potassium, of which 
a small fraction is the radioactive isotope }§K (see 
Appendix F). Estimate the activity of an average banana 
due to i§K.

87. Some radioactive isotopes have half-lives that are larger 
than the age of the universe (like gadolinium or samarium). 
The only way to determine these half-lives is to monitor the 
decay rate of a sample that contains these isotopes. For 
example, suppose we find an asteroid that currently contains 
about 15,000 kg of ^ G d  (gadolinium) and we detect an 
activity of 1 decay/s. What is the half-life of gadolinium (in 
years)?

88. Decay series, such as that shown in Fig. 41-12, can be classi­
fied into four families, depending on whether the mass 
numbers have the form An, An + 1, An + 2, or An + 3, 
where n is an integer. Justify this statement and show that 
for a nuclide in any family, all its daughters will be in the 
same family.

18 Numerical/Computer

“89. (I) A laboratory has a 1.80-^tg sample of radioactive 13N 
whose decay constant A = 1.16 X 10- 3s-1. Calculate the 
initial number of nuclei, Nq, present in the sample. Use 
the radioactive decay law, N  = N0 e~kt, to determine the 
number of nuclei N  present at time t for t = 0 to
30 minutes (1800 s) in steps of 0.5 min (30 s). Make a graph 
of N  versus t and from the graph determine the half-life of 
the sample.

"90. (II) Construct a spreadsheet (or other numerical tool) that 
will reproduce Fig. 41-1, the graph of binding energy 
per nucleon (in MeV) vs. the mass number A . Using 
Appendix F, calculate the binding energy per nucleon for 
the most stable isotope of each possible mass number 
A  >  2. [The first few values will be for jH, ^He (it is more 
stable than 3H), ^He, §Li, and 3IJ  (since it is more stable 
than jBe).] To reduce the amount of data, for A  >  20 plot 
only points for even values of A , and plot to a maximum of 
A  = 142.

A nsw ers  to  E xercises

A: 0.042130 u. E: (a).
B: 7.98 MeV/ nucleon. F: 1.37 X l O ^ V 1.

C: (b). G: (a).
D: (c).
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Diagram of ITER (International Thermonuclear 
Experimental Reactor), which will hopefully begin 
operation around 2016. Inside its cavity, over 12 m 
in diameter, a plasma of electrons and light nuclei 
will be heated to high temperatures that rival the 
Sun. Confining a plasma by magnetic fields has 
proved difficult, and intense research is needed if 
the fusion of light nuclei is to fulfill its promise as a 
source of abundant and relatively clean power.

This Chapter covers the basic physics topics of 
nuclear reactions, nuclear fission, nuclear fusion, and 
how we obtain nuclear energy. We also examine the 
health aspects of radiation dosimetry, therapy, and 
im agin g  by CAT, PET, SPE T, and M R I.

Nuclear Energy; Effects 
and Uses of Radiation
CHAPTER-OPENING QUESTIONS—Guess now!
1. The Sun is powered by

(a) nuclear alpha decay.
(b) nuclear beta decay.
(c) nuclear gamma decay.
(d) nuclear fission.
(e) nuclear fusion.

2. Which radiation induces the most biological damage for a given amount of 
energy deposited in tissue?
(a) Alpha particles.
(b) Gamma radiation.
(c) Beta radiation.
(d) They all do the same damage for the same deposited energy.
(e) It depends on the type of tissue.

W
e continue our study of nuclear physics in this Chapter. We begin with 
a discussion of nuclear reactions, and then we examine the 
important large energy-releasing processes of fission and fusion. This 
Chapter also deals with the effects of nuclear radiation passing 

through matter, particularly biological matter, and how radiation is used medically 
for therapy, diagnosis, and imaging techniques.

CONTENTS
42-1 Nuclear Reactions and the 

Transmutation of Elements
42-2 Cross Section
42-3 Nuclear Fission; Nuclear 

Reactors
4 2-4 Nuclear Fusion
42-5 Passage of Radiation Through 

Matter; Radiation Damage
42-6 Measurement of 

Radiation—Dosimetry
* 42-7 Radiation Therapy
*42-8 Tracers in Research and 

Medicine
*42-9 Imaging by Tomography: 

CAT Scans and Emission 
Tomography

*42-10 Nuclear Magnetic 
Resonance (NMR); 
Magnetic Resonance 
Imaging (MRI)
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42—1 Nuclear Reactions and the 
Transmutation of Elements

When a nucleus undergoes a or /3 decay, the daughter nucleus is a different 
element from the parent. The transformation of one element into another, called 
transmutation, also occurs by means of nuclear reactions. A nuclear reaction is said 
to occur when a given nucleus is struck by another nucleus, or by a simpler particle 
such as a 7 ray or neutron, and an interaction takes place. Ernest Rutherford was 
the first to report seeing a nuclear reaction. In 1919 he observed that some of the 
a particles passing through nitrogen gas were absorbed and protons emitted. He 
concluded that nitrogen nuclei had been transformed into oxygen nuclei via the 
reaction

2He + 14N -> 17sO + }H,

where 2He is an a particle, and }H is a proton.
Since then, a great many nuclear reactions have been observed. Indeed, many 

of the radioactive isotopes used in the laboratory are made by means of nuclear 
reactions. Nuclear reactions can be made to occur in the laboratory, but they also 
occur regularly in nature. In Chapter 41 we saw an example: 1JC is continually 
being made in the atmosphere via the reaction n + 14N —> ^C + p.

Nuclear reactions are sometimes written in a shortened form: for example, the 
reaction

n + 14N —» U6C + p 

can be written

(n, p) “ C.

The symbols outside the parentheses on the left and right represent the initial and 
final nuclei, respectively. The symbols inside the parentheses represent the 
bombarding particle (first) and the emitted small particle (second).

In any nuclear reaction, both electric charge and nucleon number are conserved. 
These conservation laws are often useful, as the following Example shows.

CONCEPTUAL EXAMPLE 42-1 I Deuterium reaction. A neutron is observed to 
strike an 1|0  nucleus, and a deuteron is given off. (A deuteron, or deuterium, is the 
isotope of hydrogen containing one proton and one neutron, 2H; it is sometimes 
given the symbol d or D.) What is the nucleus that results?

RESPONSE We have the reaction n + J|0  —>> ? + ?H. The total number of 
nucleons initially is 1 + 16 = 17, and the total charge is 0 + 8 = 8. The same 
totals apply after the reaction. Hence the product nucleus must have Z = 7 and 
A  = 15. From the Periodic Table, we find that it is nitrogen that has Z = 7, so 
the nucleus produced is ^N.

EXERCISE A Determ ine the resulting nucleus in the reaction n +  ^ B a  ^  ? +  7.

Energy and momentum are also conserved in nuclear reactions, and can be 
used to determine whether or not a given reaction can occur. For example, if the 
total mass of the final products is less than the total mass of the initial particles, 
this decrease in mass (recall AE = Am c2) is converted to kinetic energy (K) of 
the outgoing particles. But if the total mass of the products is greater than the total 
mass of the initial reactants, the reaction requires energy. The reaction will then 
not occur unless the bombarding particle has sufficient kinetic energy. Consider a 
nuclear reaction of the general form

a + X —» Y + b, (4 2 -1 )

where a is a projectile particle (or small nucleus) that strikes nucleus X, producing

1132 CHAPTER 42 Nuclear Energy; Effects and Uses of Radiation



nucleus Y and particle b (typically, p, n, a, 7). We define the reaction energy, 
or Q-yalue, in terms of the masses involved, as

Q = (Ma + Mx -  Mb -  My)c2. (42-2a)

For a J  ray, M = 0.
Because energy is conserved, Q has to be equal to the change in kinetic energy 

(final minus initial):
Q = Kh + KY -  Ka -  Kx . (42-2b)

If X is a target nucleus at rest (or nearly so) struck by incoming particle a, then 
Kx = 0. For Q > 0, the reaction is said to be exothermic or exoergic; energy is 
released in the reaction, so the total kinetic energy is greater after the reaction 
than before. If Q is negative (Q <  0), the reaction is said to be endothermic or 
endoergic: the final total kinetic energy is less than the initial kinetic energy, and an 
energy input is required to make the reaction happen. The energy input comes 
from the kinetic energy of the initial colliding particles (a and X).

EXAMPLE 42-2 A slow-neutron reaction. The nuclear reaction

n + X§B ]U + ^He

is observed to occur even when very slow-moving neutrons (mass Mn = 1.0087 u) 
strike a boron atom at rest. For a particular reaction in which Kn «  0, the 
outgoing helium (MHe = 4.0026 u) is observed to have a speed of 9.30 X 106 m/s. 
Determine (a) the kinetic energy of the lithium (MLi = 7.0160 u), and (b) the 
(2-value of the reaction.

APPROACH Since the neutron and boron are both essentially at rest, the total 
momentum before the reaction is zero; momentum is conserved and so must be 
zero afterward as well. Thus,

VU = ^He^He-

We solve this for vLi and substitute it into the equation for kinetic energy. In 
(b) we use Eq. 42-2b.
SOLUTION (a) We can use classical kinetic energy with little error, rather than 
relativistic formulas, because vHe = 9.30 X 106m/s is not close to the speed of 
light c, and vL{ will be even less since MLi > MHe. Thus we can write:

KLi ~ 2 Mu vu -  2 M^

^Hc vHe

We put in numbers, changing the mass in u to kg and recall that 
1.60 x 10“13J = 1 MeV:

(4.0026 u)2(1.66 x  10~27 kg/u)2(9.30 x  106m /s)2
K \ ; —

2(7.0160 u )(l.66 X 10-27 kg/u)

= 1.64 X 10-13J = 1.02 MeV.

(b) We are given the data Ka = Kx = 0 in Eq. 42-2b, so Q = Khi + KHe, where

^ H e  =  \ ^ H e  vHe

= |  (4.0026 u )(l.66 X 10“27kg/u)(9.30 X 106m/s)2 

= 2.87 X 10-13J = 1.80 MeV.

Hence, Q = 1.02 MeV + 1.80 MeV = 2.82 MeV.
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EXAMPLE 42-3 Will the reaction "go"? Can the reaction

Neutron captured by 2̂ U .

2f2U decays by j8 decay 
to neptunium-239.

2||N p  itself decays by 
j8 decay to produce 
plutonium-239.

FIGURE 42-1 Neptunium  and 
plutonium  are produced in this 
series o f reactions, after 
bombardm ent o f 21$\J by neutrons.

p + ^C -► 13N + n 

occur when ^C is bombarded by 2.0-MeV protons?

APPROACH The reaction will “go” if the reaction is exothermic (Q > 0) and 
even if Q < 0 if the input momentum and kinetic energy are sufficient. First 
we calculate Q from the difference between final and initial masses using 
Eq. 42-2a, and looking up the masses in Appendix F.

SOLUTION The total masses before and after the reaction are:

Before After

M(1lC) = 13.003355 M(^N) = 13.005739
M0H) = 1.007825 M(n) = 1.008665

14.011180 14.014404

(We must use the mass of the }H atom rather than that of the bare proton 
because the masses of l\C and 13N include the electrons, and we must include an 
equal number of electron masses on each side of the equation since none are 
created or destroyed.) The products have an excess mass of

(14.014404 -  14.011180)u = 0.003224 u X 931.5 M eV/u = 3.00 MeV.

Thus Q = -3.00 MeV, and the reaction is endothermic. This reaction requires 
energy, and the 2.0-MeV protons do not have enough to make it go.
NOTE The incoming proton in this Example would have to have somewhat more than
3.00 MeV of kinetic energy to make this reaction go; 3.00 MeV would be enough 
to conserve energy, but a proton of this energy would produce the 13N and n with 
no kinetic energy and hence no momentum. Since an incident 3.0-MeV proton 
has momentum, conservation of momentum would be violated. A calculation 
using conservation of energy and of momentum, as we did in Examples 41-6 and 
42-2, shows that the minimum proton energy, called the threshold energy, is 
3.23 MeV in this case (= Problem 16).

Neutron Physics
The artificial transmutation of elements took a great leap forward in the 1930s 
when Enrico Fermi realized that neutrons would be the most effective projectiles 
for causing nuclear reactions and in particular for producing new elements. 
Because neutrons have no net electric charge, they are not repelled by positively 
charged nuclei as are protons or alpha particles. Hence the probability of a 
neutron reaching the nucleus and causing a reaction is much greater than for 
charged projectiles,f particularly at low energies. Between 1934 and 1936, Fermi 
and his co-workers in Rome produced many previously unknown isotopes by 
bombarding different elements with neutrons. Fermi realized that if the heaviest 
known element, uranium, is bombarded with neutrons, it might be possible to 
produce new elements with atomic numbers greater than that of uranium. After 
several years of hard work, it was suspected that two new elements had been 
produced, neptunium (Z = 93) and plutonium (Z = 94). The full confirmation 
that such “transuranic” elements could be produced came several years later at the 
University of California, Berkeley. The reactions are shown in Fig. 42-1.

It was soon shown that what Fermi had actually observed when he bombarded 
uranium was an even stranger process—one that was destined to play an extraor­
dinary role in the world at large. We discuss it in Section 42-3.

trThat is, positively charged particles. Electrons rarely cause nuclear reactions because they do not 
interact via the strong nuclear force.
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42—2  Cross Section
Some reactions have a higher probability of occurring than others. The reaction 
probability is specified by a quantity called the cross section. Although the size 
of a nucleus, like that of an atom, is not a clearly defined quantity since the 
edges are not distinct like those of a tennis ball or baseball, we can nonetheless 
define a cross section for nuclei undergoing collisions by using an analogy. 
Suppose that projectile particles strike a stationary target of total area A  and 
thickness £, as shown in Fig. 42-2. Assume also that the target is made up of identical 
objects (such as marbles or nuclei), each of which has a cross-sectional area cr, and 
we assume the incoming projectiles are small by comparison. We assume that the target 
objects are fairly far apart and the thickness £ is so small that we don’t have to worry 
about overlapping. This is often a reasonable assumption because nuclei have diameters 
on the order of 10-14 m but are at least 10-10 m (atomic size) apart even in solids. If there 
are n nuclei per unit volume, the total cross-sectional area of all these tiny targets is

A' = nAlcr
since nAl = (n)(volume) is the total number of targets and cr is the cross- 
sectional area of each. If A ' «  A, most of the incident projectile particles will 
pass through the target without colliding. If R0 is the rate at which the projectile 
particles strike the target (number/second), the rate at which collisions occur, R, is

^ 0
° 0

0 0
Projectiles 0 ----

0 0 u
--- 0

0
h-£-H

FIGURE 4 2 -2  Projectile particles 
strike a target of area A and 
thickness £ made up of n nuclei per 
unit volume.

R — Rn — Rn
nA£a

so
R = R0 n£(i.

Thus, by measuring the collision rate, R, we can determine cr: 
Rcr =

Rn n£ (4 2 -3 )

If nuclei were simple billiard balls, and R  the number of particles that are deflected 
per second, cr would represent the real cross-sectional area of each ball. But nuclei 
are complicated objects that cannot be considered to have distinct boundaries. 
Furthermore, collisions can be either elastic or inelastic, and reactions can occur in 
which the nature of the particles can change. By measuring R  for each possible 
process, we can determine an effective cross section, cr, for each process. None of 
these cross sections is necessarily related to a geometric cross-sectional area. 
Rather, cr is an “effective” target area. It is a measure o f the probability o f a 
collision or o f a particular reaction occurring per target nucleus, independent of 
the dimensions of the entire target. The concept of cross section is useful because 
cr depends only on the properties of the interacting particles, whereas R depends 
on the thickness and area of the physical (macroscopic) target, on the number of 
particles in the incident beam, and so on.

When a given pair of particles interact, we define their elastic cross section crel 
using Eq. 42-3, where R for a given experimental setup is the rate of elastic collisions 
(or elastic scattering), by which we mean collisions for which the final particles are 
the same as the initial particles (a = b, X = Y in Eq. 42-1) and <2 = 0. Similarly, the 
inelastic cross section, crinel, is related to the rate of inelastic collisions, or inelastic 
scattering, which involves the same final and initial particles but Q #  0, usually 
because excited states are involved. For each reaction in which the final particles are 
different than the initial particles, there is a particular cross section. For protons (p) 
incident on 1gC, for example, we could have various reactions, such as 
p + X\C —> 13N + n or p + ^C —> ^B + jHe, and so on. The sum of all the 
separate reaction cross sections (for a given pair of initial particles) is called the 
total reaction cross section, crR. The total cross section, crT, is

° T  =  ° e l  +  ° m e l +

and is a measure of all possible interactions or collisions starting with given initial 
particles. Said another way, crx is a measure of how many of the incident particles 
interact in some way and hence are eliminated from the incident beam. SECTION 42-2  1135
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FIGURE 4 2 -3  The neutron cross 
section for cadmium-114 as a 
function of incoming neutron kinetic 
energy. It is extraordinarily large for K ^  1 eV. N ote that both scales are 
logarithmic.

FIGURE 4 2 - 4  Fission of a 2MU  
nucleus after capture of a neutron, 
according to the liquid-drop model.

(d)
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We can also define differential cross sections, which represent the probability of 
the deflected (or emitted) particles leaving at particular angles.

It is said that when one of the first nuclear cross sections was measured, a 
physicist, surprised that it was as large as it was (~ 10_28m2), remarked, “it’s as 
big as a barn.” Ever since then nuclear cross sections have been measured in 
“barns,” where 1 barn (bn) = 10“28m2.

The value of cr for a given reaction depends on, among other things, the 
incident kinetic energy. Typical nuclear cross sections are on the order of barns, but 
they can vary from millibarns to kilobarns or more. Figure 42-3 shows the cross 
section for neutron capture in cadmium (n + 'JJCd -> ^C d  + y) as a function 
of neutron kinetic energy. Neutron cross sections for most materials are greater at 
low energies, as in Fig. 42-3. To produce nuclear reactions at a high rate it is 
therefore desirable that the bombarding neutrons have low energy. Neutrons that 
have been slowed down and have reached equilibrium with matter at room 
temperature (§ kT  ~ 0.04 eV at T = 300 K) are called thermal neutrons.

Using cross section. The reaction 
p + —> 27C0 + n 

has a cross section of 0.65 bn for a particular incident proton energy. Suppose the 
iron target has an area of 1.5 cm2, and is 2.0/um thick. The density of iron is 
7.8 X 103kg/m3. If the protons are incident at a rate of 2.0 X 1013 particles/s, 
calculate the rate at which neutrons are produced.

APPROACH We use Eq. 42-3 in the form: R = R0 nicr.
SOLUTION We are given R0 = 2.0 X 1013 particles/s, i  = 2.0 X 10_6m, and 
ct = 0.65 bn. Recalling from Chapter 17 that one mole (mass = 56 g for iron) 
contains 6.02 X 1023 atoms, then the number of iron atoms per unit volume is

x (7.8 X 103 kg/m3)
n = (6.02 X 1023 atoms/mole) 7----------- ------------ r = 8.4 X 1028 atoms/m3.

v '  (56 X 10“3 kg/mole)
Then we find that the rate at which neutrons are produced is 

R = R0 nicr
= (2.0 X 1013 particles/s)(8.4 X 1028 atoms/m3)(2.0 X 10“6 m)(0.65 X 10“28 m2) 
= 2.2 X 108 particles/s.

42—3 Nuclear Fission; Nuclear Reactors
In 1938, the German scientists Otto Hahn and Fritz Strassmann made an amazing 
discovery. Following up on Fermi’s work, they found that uranium bombarded by 
neutrons sometimes produced smaller nuclei that were roughly half the size of the 
original uranium nucleus. Lise Meitner and Otto Frisch quickly realized what had 
happened: the uranium nucleus, after absorbing a neutron, actually had split into two 
roughly equal pieces. This was startling, for until then the known nuclear reactions 
involved knocking out only a tiny fragment (for example, n, p, or a) from a nucleus.

Nuclear Fission and Chain Reactions
This new phenomenon was named nuclear fission because of its resemblance to 
biological fission (cell division). It occurs much more readily for than for the more 
common 298U. The process can be visualized by imagining the uranium nucleus to be 
like a liquid drop. According to this liquid-drop model, the neutron absorbed by the
292U nucleus gives the nucleus extra internal energy (like heating a drop of water). This
intermediate state, or compound nucleus, is (because of the absorbed neutron).
The extra energy of this nucleus—it is in an excited state—appears as increased
motion of the individual nucleons, which causes the nucleus to take on abnormal 
elongated shapes, Fig. 42-4. When the nucleus elongates (in this model) into the 
shape shown in Fig. 42-4c, the attraction of the two ends via the short-range nuclear
force is greatly weakened by the increased separation distance, and the electric
repulsive force becomes dominant, and the nucleus splits in two (Fig. 42-4d). The two
resulting nuclei, X 1 and X2, are called fission fragments, and in the process a number
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of neutrons (typically two or three) are also given off. The reaction can be written
n + 2gU Xj + X2 + neutrons. (4 2 -4 )

The compound nucleus, 2i2U, exists for less than IO-12 s, so the process occurs very 
quickly. The two fission fragments, X 1 and X2, more often split the original uranium 
mass as about 40%-60% rather than precisely half and half. A typical fission reaction is

n + 23iU  -> ^ B a  + gKr + 3n, (4 2 -5 )

although many others also occur.

CONCEPTUAL EXAMPLE 42-5  I Counting nucleons. Identify the element X in 
the fission reaction n + 292U —> ^X + ^Sr + 2n.

RESPONSE The number of nucleons is conserved (Section 41-7). The uranium 
nucleus with 235 nucleons plus the incoming neutron make 235 + 1 = 236 
nucleons. So there must be 236 nucleons after the reaction. The Sr has 
93 nucleons, and the two neutrons make 95 nucleons, so X has 
A  = 236 -  95 = 141. Electric charge is also conserved: before the reaction, the 
total charge is 92e. After the reaction the total charge is (Z + 38) e and must 
equal 92e. Thus Z = 92 -  38 = 54. The element with Z = 54 is xenon (see 
Appendix F or the Periodic Table inside the back cover), so the isotope is ‘gXe.

Figure 42-5 shows the distribution of 292U fission fragments according to mass. Only 
rarely (about 1 in 104) does a fission result in equal mass fragments (arrow in Fig. 42-5).

A tremendous amount of energy is released in a fission reaction because the 
mass of 292U is considerably greater than the total mass of the fission fragments 
plus released neutrons. This can be seen from the binding-energy-per-nucleon curve of 
Fig. 41-1; the binding energy per nucleon for uranium is about 7.6 MeV/nucleon, 
but for fission fragments that have intermediate mass (in the center portion of 
the graph, A  ~ 100), the average binding energy per nucleon is about
8.5 MeV/nucleon. Since the fission fragments are more tightly bound, the sum of 
their masses is less than the mass of the uranium. The difference in mass, or energy, 
between the original uranium nucleus and the fission fragments is about
8.5 — 7.6 = 0.9 MeV per nucleon. Since there are 236 nucleons involved in each 
fission, the total energy released per fission is

(0.9 MeV/nucleon)(236 nucleons) «  200 MeV. (4 2 -6 )

This is an enormous amount of energy for one single nuclear event. At a practical 
level, the energy from one fission is tiny. But if many such fissions could occur in a 
short time, an enormous amount of energy at the macroscopic level would be 
available. A number of physicists, including Fermi, recognized that the neutrons 
released in each fission (Eqs. 42-4 and 42-5) could be used to create a chain reaction. 
That is, one neutron initially causes one fission of a uranium nucleus; the two 
or three neutrons released can go on to cause additional fissions, so the process 
multiplies as shown schematically in Fig. 42-6.

FIGURE 42-6
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Mass number, A

FIGURE 42-5 Mass distribution of 
fission fragments from 292U  +  n.
The small arrow indicates equal mass 
fragments (I X (236 — 2) = 117, 
assuming 2 neutrons are liberated). 
N ote that the vertical scale is 
logarithmic.

Chain reaction.
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FIGURE 4 2 - 7  This is the only photograph of the first 
nuclear reactor, built by Fermi under the grandstand of 
Stagg Field at the University of Chicago. It is shown 
here under construction as a layer of graphite (used as 
moderator) was being placed over a layer of natural 
uranium. On December 2,1942, Fermi slowly withdrew 
the cadmium control rods and the reactor went critical. 
This first self-sustaining chain reaction was announced 
to Washington, via telephone, by Arthur Compton who 
witnessed the event and reported: “The Italian 
navigator has just landed in the new world.”

FIGURE 4 2 - 8  If the amount of 
uranium exceeds the critical mass, as 
in (b), a sustained chain reaction is 
possible. If the mass is less than 
critical, as in (a), too many neutrons 
escape before additional fissions 
occur, and the chain reaction is not 
sustained.

(a)

If a self-sustaining chain reaction was actually possible in practice, the enormous 
energy available in fission could be released on a larger scale. Fermi and his 
co-workers (at the University of Chicago) showed it was possible by constructing 
the first nuclear reactor in 1942 (Fig. 42-7).

Nudear Reactors
Several problems have to be overcome to make any nuclear reactor function. First, 
the probability that a ^ U  nucleus will absorb a neutron is large only for slow 
neutrons, but the neutrons emitted during a fission (which are needed to sustain a 
chain reaction) are moving very fast. A substance known as a moderator must be 
used to slow down the neutrons. The most effective moderator will consist of 
atoms whose mass is as close as possible to that of the neutrons. (To see why this is 
true, recall from Chapter 9 that a billiard ball striking an equal mass ball at rest 
can itself be stopped in one collision; but a billiard ball striking a heavy object 
bounces off with nearly unchanged speed.) The best moderator would thus contain 
}H atoms. Unfortunately, }H tends to absorb neutrons. But the isotope of hydrogen 
called deuterium, 2H, does not absorb many neutrons and is thus an almost ideal 
moderator. Either {H or 2H can be used in the form of water. In the latter case, it 
is heavy water, in which the hydrogen atoms have been replaced by deuterium. 
Another common moderator is graphite, which consists of 126C atoms.

A second problem is that the neutrons produced in one fission may be 
absorbed and produce other nuclear reactions with other nuclei in the reactor, 
rather than produce further fissions. In a “light-water” reactor, the }H nuclei 
absorb neutrons, as does 2̂ U  to form 2̂ U  in the reaction n + 2̂ U  —» 2̂ U  + 7. 
Naturally occurring uranium1 contains 99.3% 2̂ U  and only 0.7% fissionable ^ U . 
To increase the probability of fission of ^ U  nuclei, natural uranium can be 
enriched to increase the percentage of 2̂ U  by using processes such as diffusion or 
centrifugation. Enrichment is not usually necessary for reactors using heavy water 
as moderator since heavy water doesn’t absorb neutrons.

The third problem is that some neutrons will escape through the surface of the 
reactor core before they can cause further fissions (Fig. 42-8). Thus the mass of 
fuel must be sufficiently large for a self-sustaining chain reaction to take place. The 
minimum mass of uranium needed is called the critical mass. The value of the crit­
ical mass depends on the moderator, the fuel (299Pu may be used instead of ^ U ) , 
and how much the fuel is enriched, if at all. Typical values are on the order of a few 
kilograms (that is, neither grams nor thousands of kilograms).

To have a self-sustaining chain reaction, on average at least one neutron 
produced in each fission must go on to produce another fission. The average number 
of neutrons per fission that do go on to produce further fissions is called the 
multiplication factor, / .  For a self-sustaining chain reaction, we must have /  >  1.
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If /  <  1, the reactor is “subcritical.” If /  > 1, it is “supercritical” (and could 
become dangerously explosive). Reactors are equipped with movable control rods 
(good neutron absorbers like cadmium or boron), whose function is to absorb 
neutrons and maintain the reactor at just barely “critical,” /  = 1. The release of 
neutrons and subsequent fissions occur so quickly that manipulation of the control 
rods to maintain /  = 1 would not be possible if it weren’t for the small 
percentage (« 1%) of so-called delayed neutrons. They come from the decay of 
neutron-rich fission fragments (or their daughters) having lifetimes on the order of 
seconds—sufficient to allow enough reaction time to operate the control rods and 
maintain /  = 1.

Nuclear reactors have been built for use in research and to produce electric 
power. Fission produces many neutrons and a “research reactor” is basically an 
intense source of neutrons. These neutrons can be used as projectiles in nuclear 
reactions to produce nuclides not found in nature, including isotopes used as 
tracers and for therapy. A “power reactor” is used to produce electric power. The 
energy released in the fission process appears as heat, which is used to boil water 
and produce steam to drive a turbine connected to an electric generator 
(Fig. 42-9). The core of a nuclear reactor consists of the fuel and a moderator 
(water in most U.S. commercial reactors). The fuel is usually uranium enriched so 
that it contains 2 to 4 percent ^ U . Water at high pressure or other liquid (such as 
liquid sodium) is allowed to flow through the core. The thermal energy it absorbs 
is used to produce steam in the heat exchanger, so the fissionable fuel acts as the 
heat input for a heat engine (Chapter 20).

Primary system ... Secondary system H
Core
(fuel and moderator)

Hot water 
(or liquid 
sodium)

Heat
exchanger Electric

generator
r\

Shielding

FIGURE 4 2 - 9  A  nuclear reactor.
The heat generated by the fission process 
in the fuel rods is carried off by hot water 
or liquid sodium and is used to boil 
water to steam in the heat exchanger.
The steam drives a turbine to generate 
electricity and is then cooled in the condenser.

FIGURE 4 2 -1 0  Devastation  
around Chernobyl in Russia, after 
the nuclear power plant meltdown in 
1986.

Cooling water

There are problems associated with nuclear power plants. Besides the usual 
thermal pollution associated with any heat engine (Section 20-11), there is the 
serious problem of disposal of the radioactive fission fragments produced in the 
reactor, plus radioactive nuclides produced by neutrons interacting with the 
structural parts of the reactor. Fission fragments, like their uranium or plutonium 
parents, have about 50% more neutrons than protons. Nuclei with atomic number 
in the typical range for fission fragments (Z «  30 to 60) are stable only if they 
have more nearly equal numbers of protons and neutrons (see Fig. 41-2). Hence 
the highly neutron-rich fission fragments are very unstable and decay radio- 
actively. The accidental release of highly radioactive fission fragments into the 
atmosphere poses a serious threat to human health (Section 42-5), as does 
possible leakage of the radioactive wastes when they are disposed of. The accidents 
at Three Mile Island, Pennsylvania (1979), and at Chernobyl, Russia (1986), have 
illustrated some of the dangers and have shown that nuclear plants must be 
constructed, maintained, and operated with great care and precision (Fig. 42-10).
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Finally, the lifetime of nuclear power plants is limited to 30-some years, due to 
buildup of radioactivity and the fact that the structural materials themselves are 
weakened by the intense conditions inside. “Decommissioning” of a power plant 
could take a number of forms, but the cost of any method of decommissioning a 
large plant is very great.

So-called breeder reactors were proposed as a solution to the problem of 
limited supplies of fissionable uranium, ̂ U . A breeder reactor is one in which some of 
the neutrons produced in the fission of are absorbed by 292U, and 2g9Pu is 
produced via the set of reactions shown in Fig. 42-1. 2g9Pu is fissionable with slow 
neutrons, so after separation it can be used as a fuel in a nuclear reactor. Thus a 
breeder reactor “breeds” new fuel (299Pu) from otherwise useless ^fU. Since 
natural uranium is 99.3% 292U, this means that the supply of fissionable fuel could 
be increased by more than a factor of 100. But breeder reactors have the same 
problems as other reactors, plus other serious problems. Not only is plutonium 
considered to be a serious health hazard in itself (radioactive with a half-life 
of 24,000 years), but plutonium produced in a reactor can readily be used in a 
bomb, increasing the danger of nuclear proliferation and theft of fuel by terrorists 
to produce a bomb.

Nuclear power presents risks. Other large-scale energy-conversion methods, 
such as conventional oil and coal-burning steam plants, also present health and 
environmental hazards; some of them were discussed in Section 20-11, and include 
air pollution, oil spills, and the release of C 02 gas which can trap heat as in a 
greenhouse to raise the Earth’s temperature. The solution to the world’s needs for 
energy is not only technological, but also economic and political. A major factor 
surely is to “conserve”—to minimize our use of energy. “Reduce, reuse, recycle.”

0 P H Y S I C S  A P P L I E D
Energy in coal vs. uranium

Uranium fuel amount. Estimate the minimum amount of 
292U that needs to undergo fission in order to run a 1000-MW power reactor per 
year of continuous operation. Assume an efficiency (Chapter 20) of about 33%.

APPROACH At 33% efficiency, we need 3 X 1000 MW = 3000 X 106 J/s input. 
Each fission releases about 200 MeV (Eq. 42-6), so we divide the energy for a 
year by 200 MeV to get the number of fissions needed per year. Then we multiply 
by the mass of one uranium atom.
SOLUTION For 1000 MW output, the total power generation needs to be 
3000 MW, of which 2000 MW is dumped as “waste” heat. Thus the total energy 
release in 1 yr (3 X 107 s) from fission needs to be about

(3 X 109J / s)(3 X 107 s) «  1017J.

If each fission releases 200 MeV of energy, the number of fissions required for a 
year is

7------- ----- -—-—J --------- —-—r ra 3 x 1027 fissions.
(2 X 10 eV/fission)(l.6 X 10“19J/eV)

The mass of a single uranium atom is about (235 u )(l.66 X 10-27kg/u) ra
4 X 10 25 kg, so the total uranium mass needed is

(4 X 10_25kg/fission)(3 X 1027 fissions) ra 1000 kg,

or about a ton of 292U.
NOTE Since 292U makes up only 0.7% of natural uranium, the yearly requirement 
for uranium is on the order of a hundred tons. This is orders of magnitude less 
than coal, both in mass and volume. Coal releases 2.8 X 107 J/kg, whereas 292U 
can release 1017 J/103 kg = 1014 J/kg. For natural uranium, the figure is 100 times 
less, 1012J/kg.

EXAMPLE 42 -6
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EXERCISE B A nuclear-powered submarine needs 6000-kW input power. How many 
292U fissions is this per second?

Atom Bomb
The first use of fission, however, was not to produce electric power. Instead, it was 
first used as a fission bomb (called the “atomic bomb”). In early 1940, with Europe 
already at war, Germany’s leader, Adolf Hitler, banned the sale of uranium from 
the Czech mines he had recently taken over. Research into the fission process 
suddenly was enshrouded in secrecy. Physicists in the United States were alarmed. 
A group of them approached Einstein—a man whose name was a household 
word—to send a letter to President Franklin Roosevelt about the possibilities of 
using nuclear fission for a bomb far more powerful than any previously known, 
and inform him that Germany might already have begun development of such a 
bomb. Roosevelt responded by authorizing the program known as the Manhattan 
Project, to see if a bomb could be built. Work began in earnest after Fermi’s 
demonstration in 1942 that a sustained chain reaction was possible. A new secret 
laboratory was developed on an isolated mesa in New Mexico known as Los 
Alamos. Under the direction of J. Robert Oppenheimer (1904-1967; Fig. 42-11), it 
became the home of famous scientists from all over Europe and the United States.

To build a bomb that was subcritical during transport but that could be made 
supercritical (to produce a chain reaction) at just the right moment, two pieces of 
uranium were used, each less than the critical mass but together greater than the 
critical mass. The two masses, kept separate until the moment of detonation, were 
then forced together quickly by a kind of gun, and a chain reaction of explosive 
proportions occurred. An alternate bomb detonated conventional explosives 
(TNT) surrounding a plutonium sphere to compress it by implosion to double its 
density, making it more than critical and causing a nuclear explosion. The first 
fission bomb was tested in the New Mexico desert in July 1945. It was successful. 
In early August, a fission bomb using uranium was dropped on Hiroshima and a 
second, using plutonium, was dropped on Nagasaki (Fig. 42-12), both in Japan. 
World War II ended shortly thereafter.

Besides its great destructive power, a fission bomb produces many highly 
radioactive fission fragments, as does a nuclear reactor. When a fission bomb 
explodes, these radioactive isotopes are released into the atmosphere and are 
known as radioactive fallout.

Testing of nuclear bombs in the atmosphere after World War II was a cause of 
concern, for the movement of air masses spread the fallout all over the globe. 
Radioactive fallout eventually settles to the Earth, particularly in rainfall, and is 
absorbed by plants and grasses and enters the food chain. This is a far more serious 
problem than the same radioactivity on the exterior of our bodies, since a and /3 
particles are largely absorbed by clothing and the outer (dead) layer of skin. But 
inside our bodies via food, the isotopes are in direct contact with living cells. One 
particularly dangerous radioactive isotope is ^Sr, which is chemically much like 
calcium and becomes concentrated in bone, where it causes bone cancer and 
destruction of bone marrow. The 1963 treaty signed by over 100 nations that bans 
nuclear weapons testing in the atmosphere was motivated because of the hazards 
of fallout.

4 2 —4  Nuclear Fusion
The mass of every stable nucleus is less than the sum of the masses of its 
constituent protons and neutrons. For example, the mass of the helium isotope 2He 
is less than the mass of two protons plus the mass of two neutrons, as we saw in 
Example 41-2. Thus, if two protons and two neutrons were to come together to 
form a helium nucleus, there would be a loss of mass. This mass loss is manifested 
in the release of a large amount of energy.

FIGURE 4 2 -1 1  J. Robert 
Oppenheimer, on the left, with 
General Leslie Groves, who was the 
administrative head of Los Alamos 
during World War II. The 
photograph was taken at the Trinity 
site in the New Mexico desert, where 
the first atomic bomb was exploded.

FIGURE 4 2 -1 2  Photo taken a 
month after the bomb was dropped 
on Nagasaki. The shacks were 
constructed afterwards from debris 
in the ruins.
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FIGURE 4 2 -1 3  Average binding 
energy per nucleon as a function of 
mass number A for stable nuclei. Same 
as Fig. 41-1.

Number of nucleons, A (mass number)

Nuclear Fusion; Stars
The process of building up nuclei by bringing together individual protons and 
neutrons, or building larger nuclei by combining small nuclei, is called nuclear fusion. 
A glance at Fig. 42-13 (same as Fig. 41-1) shows why small nuclei can combine to 
form larger ones with the release of energy: it is because the binding energy per 
nucleon is smaller for light nuclei than it is for those of increasing mass (up to 
about A  «  60). It is believed that many of the elements in the universe were orig­
inally formed through the process of fusion (see Chapter 44), and that fusion is 
today continually taking place within the stars, including our Sun, producing the 
prodigious amounts of radiant energy they emit.

Fusion energy release. One of the simplest fusion reactions 
involves the production of deuterium, 2H, from a neutron and a proton: 
}H + n —> iH + If. How much energy is released in this reaction?

APPROACH The energy released equals the difference in mass (times c2) between 
the initial and final masses.
SOLUTION From Appendix F, the initial mass is

1.007825 u + 1.008665 u = 2.016490 u,
and after the reaction the mass is that of the ?H, namely 2.014082 u (the 7 is mass­
less). The mass difference is

2.016490 u -  2.014082 u = 0.002408 u, 
so the energy released is

(A m)c2 = (0.002408 u) (931.5 MeV/u) = 2.24 MeV, 
and it is carried off by the ?H nucleus and the 7 ray.

The energy output of our Sun is believed to be due principally to the following 
sequence of fusion reactions:

}H + }H —> ?H + e+ + v (0.44 MeV) (42-7a)

}H + ?H —> |He + J (5.48 MeV) (42-7b)

iHe + iHe -> ^He + {H + jH (12.86 MeV) (42-7c)

where the energy released (Q-value) for each reaction is given in parentheses. The net 
effect of this sequence, which is called the proton-proton cycle, is for four protons to

EXAMPLE 42 -7

1142 CHAPTER 42 Nuclear Energy; Effects and Uses of Radiation



combine to form one ^He nucleus plus two positrons, two neutrinos, and two gamma 
rays:

4 }H —>• ^He + 2e+ + 2v + 27. (42-8)

Note that it takes two of each of the first two reactions (Eqs. 42-7a and b) to produce 
the two |He for the third reaction. So the total energy release for the net reaction, 
Eq. 42-8, is (2 X 0.44 MeV + 2 X 5.48 MeV + 12.86 MeV) = 24.7 MeV. In addi­
tion, each of the two e+ (Eq. 42-7a) quickly annihilates with an electron to produce 
2m e c2 = 1.02 MeV; so the total energy released is (24.7 MeV + 2 X 1.02 MeV) = 
26.7 MeV. The first reaction, the formation of deuterium from two protons 
(Eq. 42-7a), has a very low probability, and the infrequency of that reaction serves to 
limit the rate at which the Sun produces energy.

EXERCISE C Return to the first Chapter-Opening Question, page 1131, and answer it again 
now. Try to explain why you may have answered it differently the first time.

EXERCISE D If the Sun is generating a constant amount of energy via fusion, the mass of 
the Sun must be (a) increasing, (b) decreasing, (c) constant, (d) irregular.

ESTIMATE"! Estimating fusion energy. Estimate the energy 
released if the following reaction occurred:

?H + ?H —» ^He.

APPROACH We use Fig. 42-13 for a quick estimate.
SOLUTION We see in Fig. 42-13 that each 2H has a binding energy of about 
l^MeV/nucleon, which for 2 nuclei of mass 2 is 4 X ( lj)  «  5 MeV. The ^He has 
a binding energy per nucleon of about 7 MeV for a total of 4 X 7 MeV = 28 MeV. 
Hence the energy release is about 28 MeV -  5 MeV = 23 MeV.

In stars hotter than the Sun, it is more likely that the energy output comes 
principally from the carbon (or CNO) cycle, which comprises the following sequence 
of reactions:

126C + }H + 7
13N ^C + e+ + v

136C + }H -> + 7 
+ }H + 7

+ e+ + v 
+ }H n6C + ^He.

It is easy to see (see Problem 47) that no carbon is consumed in this cycle (see first 
and last equations) and that the net effect is the same as the proton-proton cycle, 
Eq. 42-8 (plus one extra 7). The theory of the proton-proton cycle and of the 
carbon cycle as the source of energy for the Sun and stars was first worked out 
by Hans Bethe (1906-2005) in 1939.

CONCEPTUAL EXAMPLE 4 2 -9  I Stellar fusion. What is the heaviest element 
likely to be produced in fusion processes in stars?
RESPONSE Fusion is possible if the final products have more binding energy 
(less mass) than the reactants, for then there is a net release of energy. Since the 
binding energy curve in Fig. 42-13 (or Fig. 41-1) peaks near A  ~ 56 to 58 which 
corresponds to iron or nickel, it would not be energetically favorable to produce 
elements heavier than that. Nevertheless, in the center of massive stars or in 
supernova explosions, there is enough initial kinetic energy available to drive 
endothermic reactions that produce heavier elements, as well.

EXAMPLE 42 -8
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Possible Fusion Reactors
0 P H Y S I C S  A P P L I E D

Fusion energy reactors

1144 CHAPTER 42

The possibility of utilizing the energy released in fusion to make a power reactor is 
very attractive. The fusion reactions most likely to succeed in a reactor involve the 
isotopes of hydrogen, ?H (deuterium) and ?H (tritium), and are as follows, with the 
energy released given in parentheses:

?H + ?H -► la  + }H (4.00 MeV) (42-9a)
?H + ?H iHe + n (3.23 MeV) (42-9b)
?H + lH -> 2He + n. (17.57 MeV) (42-9c)

Comparing these energy yields with that for the fission of ^ U , we can see that the 
energy released in fusion reactions can be greater for a given mass of fuel than in fission. 
Furthermore, as fuel, a fusion reactor could use deuterium, which is very plentiful in 
the water of the oceans (the natural abundance of ?H is 0.0115% on average, or about 
1 g of deuterium per 80 L of water). The simple proton-proton reaction of Eq. 42-7a, 
which could use a much more plentiful source of fuel, }H, has such a small probability 
of occurring that it cannot be considered a possibility on Earth.

Although a useful fusion reactor has not yet been achieved, considerable 
progress has been made in overcoming the inherent difficulties. The problems are 
associated with the fact that all nuclei have a positive charge and repel each other. 
However, if they can be brought close enough together so that the short-range 
attractive strong nuclear force can come into play, it can pull the nuclei together 
and fusion will occur. For the nuclei to get close enough together, they must have 
large kinetic energy to overcome the electric repulsion. High kinetic energies are 
easily attainable with particle accelerators (Chapter 43), but the number of parti­
cles involved is too small. To produce realistic amounts of energy, we must deal 
with matter in bulk, for which high kinetic energy means higher temperatures. 
Indeed, very high temperatures are required for fusion to occur, and fusion devices 
are often referred to as thermonuclear devices. The interiors of the Sun and other 
stars are very hot, many millions of degrees, so the nuclei are moving fast enough 
for fusion to take place, and the energy released keeps the temperature high so 
that further fusion reactions can occur. The Sun and the stars represent huge 
self-sustaining thermonuclear reactors that stay together because of their great 
gravitational mass; but on Earth, containment of the fast-moving nuclei at the high 
temperatures and densities required has proven difficult.

It was realized after World War II that the temperature produced within a fission 
(or “atomic”) bomb was close to 108 K. This suggested that a fission bomb could be 
used to ignite a fusion bomb (popularly known as a thermonuclear or hydrogen 
bomb) to release the vast energy of fusion. The uncontrollable release of fusion energy 
in an H-bomb (in 1952) was relatively easy to obtain. But to realize usable energy 
from fusion at a slow and controlled rate has turned out to be a serious challenge.

ESTIMATE I Temperature needed for d -t fusion. Estimate 
the temperature required for deuterium-tritium fusion (d-t) to occur.

APPROACH We assume the nuclei approach head-on, each with kinetic energy K, and 
that the nuclear force comes into play when the distance between their centers equals 
the sum of their nuclear radii. The electrostatic potential energy (Chapter 23) of the two 
particles at this distance equals the minimum total kinetic energy of the two particles 
when far apart. The average kinetic energy is related to Kelvin temperature by Eq. 18-4. 
SOLUTION The radii of the two nuclei (A d = 2 and A t = 3) are given by 
Eq. 41-1: rd «  1.5 fm, rt «  1.7 fm, so rd +  rt = 3.2 X 10“15m. We equate the 
kinetic energy of the two initial particles to the potential energy when at this distance: 

2K ~ 4lreo (/d +  rt)

0N-m2\  (1.6 X 10“19C)2
9.0 X 109— 5-  t ----------  „  ..---------— r «  0.45 MeV.

C2 J (3.2 x  10 m )(l.6 x 10 J/eV)
Thus, K  «  0.22 MeV, and if we ask that the average kinetic energy be this high,



T = 2 X 10 K.

then from Eq. 18-4, § kT = K, we have a temperature of
2K  2(0.22 MeV)(l.6 X 10“13J/MeV)
3k ~ 3(1.38 X 10“23 J/K)

NOTE More careful calculations show that the temperature required for fusion is 
actually about an order of magnitude less than this rough estimate, partly 
because it is not necessary that the average kinetic energy be 0.22 MeV—a small 
percentage with this much energy (particles in the high-energy tail of the 
Maxwell distribution, Fig. 18-3) would be sufficient. Reasonable estimates for a 
usable fusion reactor are in the range T  ^  1 to 4 X 108 K.

It is not only a high temperature that is required for a fusion reactor. There 
must also be a high density of nuclei to ensure a sufficiently high collision rate. 
A real difficulty with controlled fusion is to contain nuclei long enough and at a 
high enough density for sufficient reactions to occur that a usable amount of 
energy is obtained. At the temperatures needed for fusion, the atoms are ionized, 
and the resulting collection of nuclei and electrons is referred to as a plasma. 
Ordinary materials vaporize at a few thousand degrees at most, and hence cannot 
be used to contain a high-temperature plasma. Two major containment techniques 
are magnetic confinement and inertial confinement.

In magnetic confinement, magnetic fields are used to try to contain the hot 
plasma. A simple approach is the “magnetic bottle” shown in Fig. 42-14. The paths 
of the charged particles in the plasma are bent by the magnetic field; where 
magnetic field lines are close together, the force on the particles reflects them back 
toward the center. Unfortunately, magnetic bottles develop “leaks” and the 
charged particles slip out before sufficient fusion takes place. The most promising 
design today is the tokamak, first developed in Russia. A tokamak (Fig. 42-15) 
is toroid-shaped and involves complicated magnetic fields: current-carrying 
conductors produce a magnetic field directed along the axis of the toroid 
(“toroidal” field); an additional field is produced by currents within the plasma 
itself (“poloidal” field). The combination produces a helical field as shown in 
Fig. 42-15, confining the plasma, at least briefly, so it doesn’t touch the vacuum 
chamber’s metal walls.

Toroidal
vacuum
chamber

Current-carrving wires

Magnetic field lines Plasma

FIGURE 4 2 -1 4  “Magnetic bottle’ 
used to confine

FIGURE 4 2 -1 5  Tokamak configuration, 
showing the total B field due to external 
current plus current in the plasma itself.

In 1957, J. D. Lawson showed that the product of ion density n and confine­
ment time r  must exceed a minimum value of approximately

n r > 3 X  IO20 s/m3.
This Lawson criterion must be reached to produce ignition, meaning fusion that 
continues after all external heating is turned off. Practically, it is expected to be 
achieved with n ~  1 to 3 X IO20 m-3 and r  ~ 1-3 s. To reach break-even, the 
point at which the energy output due to fusion is equal to the energy input to heat 
the plasma, requires an m  about an order of magnitude less. The break-even point 
was very closely approached in the 1990s at the Tokamak Fusion Test Reactor (TFTR) 
at Princeton, and the very high temperature needed for ignition (4 X 108 K) was 
exceeded—although not both of these at the same time.
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P H Y S I C S  A P P L I E D
Biological radiation damage

Tokamak fusion research continues throughout the world, from the Princeton 
Plasma Physics Laboratory (PPPL) in the U.S. to the KSTAR tokamak in South 
Korea. This research will help us in developing the huge multinational test device 
(European Union, India, Japan, South Korea, Russia, China, and the U.S.), called 
ITER (International Thermonuclear Experimental Reactor). It is hoped that ITER 
will be finished and running by 2016, in southeast France, with an expected power 
output of about 500 MW, 10 times the input energy. ITER (see Chapter-Opening 
Photograph on page 1131) is planned to be the final research step before building 
a commercial reactor.

The second method for containing the fuel for fusion is inertial confinement: a 
small pellet or capsule of deuterium and tritium is struck simultaneously from 
several directions by very intense laser beams. The intense influx of energy heats 
and ionizes the pellet into a plasma, compressing it and heating it to temperatures 
at which fusion can occur. The confinement time is on the order of 10-11 to 10-9 s, 
during which time the ions do not move appreciably because of their own inertia, 
and fusion can take place.

4 2 —5 Passage of Radiation Through 
Matter; Radiation Damage

When we speak of radiation, we include a, /3, 7, and X-rays, as well as protons, 
neutrons, and other particles such as pions (see Chapter 43). Because charged 
particles can ionize the atoms or molecules of any material they pass through, they 
are referred to as ionizing radiation. And because radiation produces ionization, it 
can cause considerable damage to materials, particularly to biological tissue.

Charged particles, such as a and f3 rays and protons, cause ionization because 
of electric forces. That is, when they pass through a material, they can attract or 
repel electrons strongly enough to remove them from the atoms of the material. 
Since the a and /3 rays emitted by radioactive substances have energies on the 
order of 1 MeV (104 to 107 eV), whereas ionization of atoms and molecules 
requires on the order of 10 eV, it is clear that a single a or /3 particle can cause 
thousands of ionizations.

Neutral particles also give rise to ionization when they pass through materials. 
For example, X-ray and 7-ray photons can ionize atoms by knocking out electrons 
by means of the photoelectric and Compton effects (Chapter 37). Furthermore, if a 
7 ray has sufficient energy (greater than 1.02 MeV), it can undergo pair 
production: an electron and a positron are produced (Section 37-5). The charged 
particles produced in all of these processes can themselves go on to produce 
further ionization. Neutrons, on the other hand, interact with matter mainly by 
collisions with nuclei, with which they interact strongly. Often the nucleus is 
broken apart by such a collision, altering the molecule of which it was a part. 
The fragments produced can in turn cause ionization.

Radiation passing through matter can do considerable damage. Metals and 
other structural materials become brittle and their strength can be weakened if the 
radiation is very intense, as in nuclear reactor power plants and for space vehicles 
that must pass through areas of intense cosmic radiation.

* Biological Damage
The radiation damage produced in biological organisms is due primarily to 
ionization produced in cells. Several related processes can occur. Ions or radicals 
are produced that are highly reactive and take part in chemical reactions that inter­
fere with the normal operation of the cell. All forms of radiation can ionize atoms 
by knocking out electrons. If these are bonding electrons, the molecule may break 
apart, or its structure may be altered so it does not perform its normal function or 
may perform a harmful function. In the case of proteins, the loss of one molecule is 
not serious if there are other copies of it in the cell and additional copies can be
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made from the gene that codes for it. However, large doses of radiation may damage 
so many molecules that new copies cannot be made quickly enough, and the cell 
dies. Damage to the DNA is more serious, since a cell may have only one copy. 
Each alteration in the DNA can affect a gene and alter the molecule it codes for 
(Section 40-3), so that needed proteins or other materials may not be made at all. 
Again the cell may die. The death of a single cell is not normally a problem, since the 
body can replace it with a new one. (There are exceptions, such as neurons, which are 
mostly not replaceable, so their loss is serious.) But if many cells die, the organism may 
not be able to recover. On the other hand, a cell may survive but be defective. 
It may go on dividing and produce many more defective cells, to the detriment of 
the whole organism. Thus radiation can cause cancer—the rapid uncontrolled 
production of cells.

The possible damage done by the medical use of X-rays and other radiation must 
be balanced against the medical benefits and prolongation of life as a result of their use.

4 2 -6  Measurement of Radiation— 
Dosimetry

Although the passage of ionizing radiation through the human body can cause 
considerable damage, radiation can also be used to treat certain diseases, 
particularly cancer, often by using very narrow beams directed at a cancerous 
tumor in order to destroy it (Section 42-7). It is therefore important to be able to 
quantify the amount, or dose, of radiation. This is the subject of dosimetry.

The strength of a source can be specified at a given time by stating the source 
activity: how many nuclear decays (or disintegrations) occur per second. The 
traditional unit is the curie (Ci), defined as

1 Ci = 3.70 X IO10 decays per second.

(This number comes from the original definition as the activity of exactly one 
gram of radium.) Although the curie is still in common use, the SI unit for source 
activity is the becquerel (Bq), defined as

1 Bq = 1 decay/s.

Commercial suppliers of radionuclides (radioactive nuclides) specify the activity at 
a given time. Since the activity decreases over time, more so for short-lived 
isotopes, it is important to take this into account.

The magnitude of the source activity \dN/dt\ is related to the number of 
radioactive nuclei present, N, and to the half-life, 71, by (see Section 41-8):

dN
dt

EXAMPLE 42-11

= AiV =

Radioactivity taken up by cells. In a certain experiment,
0.016 /xCi of 15P is injected into a medium containing a culture of bacteria. After
1.0 h the cells are washed and a 70% efficient detector (counts 70% of emitted 
(3 rays) records 720 counts per minute from the cells. What percentage of the orig­
inal 15P was taken up by the cells?
APPROACH The half-life of 15P is about 14 days (Appendix F), so we can ignore any 
loss of activity over 1 hour. From the given activity, we find how many /3 rays are 
emitted. We can compare 70% of this to the (720/min)/(60s/min) = 12 per second 
detected.
SOLUTION The total number of decays per second originally was 
(0.016 X 10_6)(3.7 X 1010) = 590. The counter could be expected to count 70% 
of this, or 410 per second. Since it counted 720/60 = 12 per second, then 
12/410 = 0.029 or 2.9% was incorporated into the cells.

@ P H Y S I C S  A P P L I E D
Dosimetry
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TABLE 42-1 Quality Factor 
(QF) of Different Kinds of 
Radiation
Type QF

X- and 7 rays 1
/3 (electrons) « 1
Fast protons 1
Slow neutrons « 3
Fast neutrons Up to 10a particles and 

heavy ions
Up to 20

0 P H Y S I C S  A P P L I E D
Radon

P H Y S I C S  A P P L I E D
Human radiation exposure

Another type of measurement is the exposure or absorbed dose—that is, the 
effect the radiation has on the absorbing material. The earliest unit of dosage was 
the roentgen (R), defined in terms of the amount of ionization produced by the 
radiation (1 R = 1.6 X 1012 ion pairs per gram of dry air at standard conditions). 
Today, 1 R is defined as the amount of X or 7 radiation that deposits
0.878 X 10-2 J of energy per kilogram of air. The roentgen was largely superseded 
by another unit of absorbed dose applicable to any type of radiation, the rad: 1 rad 
is that amount o f radiation which deposits energy per unit mass o f1.00 X 10 2 J/kg in 
any absorbing material. (This is quite close to the roentgen for X- and 7 rays.) The 
proper SI unit for absorbed dose is the gray (Gy):

1 Gy = lJ /k g  = 100 rad. (42-10)
The absorbed dose depends not only on the strength of a given radiation beam 
(number of particles per second) and the energy per particle, but also on the type 
of material that is absorbing the radiation. Bone, for example, absorbs more of the 
radiation normally used than does flesh, so the same beam passing through a 
human body deposits a greater dose (in rads or grays) in bone than in flesh.

The gray and the rad are physical units of dose—the energy deposited per unit 
mass of material. They are, however, not the most meaningful units for measuring 
the biological damage produced by radiation because equal doses of different 
types of radiation cause differing amounts of damage. For example, 1 rad of 
a radiation does 10 to 20 times the amount of damage as 1 rad of (3 or 7 rays. This 
difference arises largely because a rays (and other heavy particles such as protons 
and neutrons) move much more slowly than f3 and 7 rays of equal energy due to 
their greater mass. Hence, ionizing collisions occur closer together, so more 
irreparable damage can be done. The relative biological effectiveness (RBE) or 
quality factor (QF) of a given type of radiation is defined as the number of rads of 
X or 7 radiation that produces the same biological damage as 1 rad of the given 
radiation. Table 42-1 gives the QF for several types of radiation. The numbers are 
approximate since they depend somewhat on the energy of the particles and on 
the type of damage that is used as the criterion.

The effective dose can be given as the product of the dose in rads and the QF, 
and this unit is known as the rem (which stands for rad equivalent man):

effective dose (in rem) = dose (in rad) X QF. (42-lla)

This unit is being replaced by the SI unit for “effective dose,” the sievert (Sv):

effective dose (Sv) = dose (Gy) X QF. (42-llb)

By these definitions, 1 rem (or 1 Sv) of any type of radiation does approximately 
the same amount of biological damage. For example, 50 rem of fast neutrons does 
the same damage as 50 rem of 7 rays. But note that 50 rem of fast neutrons is only
5 rads, whereas 50 rem of 7 rays is 50 rads.

I
 EXERCISE E Return to the second Chapter-Opening Question, page 1131, and answer it 

again now. Try to explain why you many have answered it differently the first time.

Human Exposure to Radiation
We are constantly exposed to low-level radiation from natural sources: cosmic 
rays, natural radioactivity in rocks and soil, and naturally occurring radioactive 
isotopes in our food, such as 4!]K. Radon, ^R n , is of considerable concern today. It 
is the product of radium decay and is an intermediate in the decay series from 
uranium (see Fig. 41-12). Most intermediates remain in the rocks where formed, but 
radon is a gas that can escape from rock (and from building material like concrete) 
to enter the air we breathe, and attack the interior of the lung.

The natural radioactive background averages about 0.30 rem (300 mrem) per 
year per person in the U.S., although there are large variations. From medical 
X-rays and scans, the average person receives about 50 to 60 mrem per year, giving 
an average total dose of about 360 mrem (3.6 mSv) per person. Government 
regulators suggest an upper limit of allowed radiation for an individual in the

1148 CHAPTER 42



general populace at about 100 mrem (1 mSv) per year in addition to natural back­
ground. It is believed that even low doses of radiation increase the chances of 
cancer or genetic defects; there is no safe level or threshold of radiation exposure.

The upper limit for people who work around radiation—in hospitals, in power 
plants, in research—has been set higher, a maximum of 5 rem (50 mSv) whole-body 
dose in any one year, and significantly less averaged over more years (below 
2rem/yr averaged over 5 years). To monitor exposure, those people who work 
around radiation generally carry some type of dosimeter, one common type being 
a radiation film badge which is a piece of film wrapped in light-tight material. The 
passage of ionizing radiation through the film changes it so that the film is 
darkened upon development, and thus indicates the received dose. Newer types 
include the thermoluminescent dosimeter (TLD). Dosimeters and badges do not 
protect the worker, but high levels detected suggest reassignment or modified 
work practices to reduce radiation exposure to acceptable levels.

Large doses of radiation can cause unpleasant symptoms such as nausea, 
fatigue, and loss of body hair. Such effects are sometimes referred to as radiation 
sickness. Large doses can be fatal, although the time span of the dose is important. 
A short dose of 1000 rem (10 Sv) is nearly always fatal. A 400-rem (4-Sv) dose in a 
short period of time is fatal in 50% of the cases. However, the body possesses 
remarkable repair processes, so that a 400-rem dose spread over several weeks is 
usually not fatal. It will, nonetheless, cause considerable damage to the body.

The effects of low doses over a long time are difficult to determine and are not 
well known as yet.

U 5 E E H E H 3  Whole-body dose. What whole-body dose is received by a 
70-kg laboratory worker exposed to a 40-mCi 27C0 source, assuming the 
person’s body has cross-sectional area 1.5 m2 and is normally about 4.0 m from 
the source for 4.0 h per day? 27C0 emits 7 rays of energy 1.33 MeV and 
1.17 MeV in quick succession. Approximately 50% of the 7 rays interact in the 
body and deposit all their energy. (The rest pass through.)

APPROACH Of the given energy emitted, only a fraction passes through the 
worker, equal to her area divided by the total area over a full sphere of radius
4.0 m (Fig. 42-16).
SOLUTION The total 7-ray energy per decay is (1.33 + 1.17) MeV = 2.50 MeV, 
so the total energy emitted by the source per second is

(0.040 Ci)(3.7 X 1010decays/Ci*s)(2.50 MeV) = 3.7 X 109MeV/s.
The proportion of this energy intercepted by the body is its 1.5-m2 area divided by the 
area of a sphere of radius 4.0 m (Fig. 42-16):

1.5 m2 1.5 m2 -
^ — r  = , = 7-5 x 10 •Airr 47t(4.0 m)

So the rate energy is deposited in the body (remembering that only 50% of the 
7 rays interact in the body) is

E = g)(7.5 X 10“3)(3.7 X 109 M eV/s)(l.6 X 10“13J/MeV) = 2.2 X 10“6J/s.

Since lG y  = lJ /k g , the whole-body dose rate for this 70-kg person is 
(2.2 X 10-6 J/s)/(70kg) = 3.1 X 10_8Gy/s. In 4.0 h, this amounts to a dose of

(4.0 h)(3600 s/h)(3.1 X 10“8 Gy/s) = 4.5 X 10“4Gy.
Since QF « 1 for gammas, the effective dose is 450 /iSv (Eqs. 42-llb and 42-10) 
or:

(100 rad/Gy)(4.5 X 10_4Gy)(l rem/rad) = 45 mrem = 0.45 mSv.

NOTE This 45-mrem effective dose is almost 50% of the normal allowed dose for 
a whole year (100 mrem/yr), or 1% of the maximum one-year allowance for radi­
ation workers. This worker should not receive such a large dose every day and 
should seek ways to reduce it (shield the source, vary the work, work farther 
from the source, work less time this close to source, etc.).

0 P H Y S I C S  A P P L I E DRadiation worker exposure Film badge

0 P H Y S I C S  A P P L I E DRadiation sickness

FIGURE 4 2 -1 6  Radiation spreads 
out in all directions. A  person 4.0 m 
away intercepts only a fraction: her 
cross-sectional area divided by the 
area of a sphere of radius 4.0 m. 
Example 42-12.
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@  P H Y S I C S A P P L I E DRadon exposure EXAMPLE 42-13 Radon exposure. In the U.S., yearly deaths from radon 
exposure (the second leading cause of lung cancer) are estimated to exceed the 
yearly deaths from drunk driving. The Environmental Protection Agency 
recommends taking action to reduce the radon concentration in living areas if it 
exceeds 4pCi/L of air. In some areas 50% of houses exceed this level from 
naturally occurring radon in the soil. Estimate the mass of radon that emits 
4.0 pCi of ^ R n  radiation.

APPROACH We can use the definition of the curie to determine how many decays 
per second correspond to 4 pCi, then Eq. 41-7b to determine how many nuclei of 
radon it takes to have this activity \dN/dt\.
SOLUTION We saw at the start of Section 42-6 that 1 Ci = 3.70 X IO10 decays/s. 
Thus

dN
dt

= 4.0 pCi

= (4.0 X 10- 
= 0.148 s-1.

Ci)(3.70 x 1010 decays/s/Ci)

From Eqs. 41-7a and 41-

dN
dt

0.693 
= A N  = —= ~ N .  712

Appendix F tells us 71 = 3.8232 days, so

N  =
dN
dt 0.693

(3.8232 days)(8.64 x 104 s/day)
(°-148s  ̂ 0693

= 7.05 X 104 atoms of radon-222.

The molar mass (222 u) and Avogadro’s number are used to find the mass:

m (7.05 X 104 atoms)(222 g/mol) 
6.02 X 1023 atoms/mol

= 2.6 X IO”17 g

or 26 attograms in 1L of air. This 2.6 X 10 17g/L = 2.6 X 10 14 g/m3 of radon 
is about 150 atoms decaying per second in every meter of air at the limit of 4 pCi/L.
NOTE Each radon atom emits 4 a particles and 4 /3 particles before the decay 
sequence reaches a stable element, each one capable of causing many harmful 
ionizations.

*4 2 -7  Radiation Therapy
The medical application of radioactivity and radiation to human beings involves 
two basic aspects: (1) radiation therapy—the treatment of disease (mainly 
cancer)—which we discuss in this Section; and (2) the diagnosis of disease, which 
we discuss in the following Sections of this Chapter.

@  P H Y S I C S  A P P L I E D  Radiation can cause cancer. It can also be used to treat it. Rapidly growingRadiation therapy cancer cells are especially susceptible to destruction by radiation. Nonetheless, 
large doses are needed to kill the cancer cells, and some of the surrounding normal 
cells are inevitably killed as well. It is for this reason that cancer patients receiving 
radiation therapy often suffer side effects characteristic of radiation sickness. To
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minimize the destruction of normal cells, a narrow beam of 7 or X-rays is often 
used when a cancerous tumor is well localized. The beam is directed at the tumor, 
and the source (or body) is rotated so that the beam passes through various parts 
of the body to keep the dose at any one place as low as possible—except at the 
tumor and its immediate surroundings, where the beam passes at all times 
(Fig. 42-17). The radiation may be from a radioactive source such as 27C0, or it 
may be from an X-ray machine that produces photons in the range 200 keV to
5 MeV. Protons, neutrons, electrons, and pions, which are produced in particle 
accelerators (Section 43-1), are also being used in cancer therapy.

Protons used to kill tumors have a special property that makes them 
particularly useful. As shown in Fig. 42-18, when protons enter tissue, most 
of their energy is deposited at the end of their path. The protons’ initial 
kinetic energy can be chosen so that most of the energy is deposited at the 
depth of the tumor itself, to destroy it. The incoming protons deposit only a small 
amount of energy in the tissue in front of the tumor, and none at all behind the 
tumor, thus having less negative effect on healthy tissue than X- or 7 rays. 
Because tumors have physical size, even several centimeters in diameter, a 
range of proton energies is often used. Heavier ions, such as a particles or 
carbon ions, are similarly useful. This proton therapy technique is more than a half 
century old, but the necessity of having a large accelerator has meant that few 
hospitals have used the technique until now. Many such “proton centers” are now 
being built.

FIGURE 4 2 -1 7  Radiation source 
rotates so that the beam always 
passes through the diseased tissue, 
but minimizes the dose in the rest of 
the body.

@ P H Y S I C S  A P P L I E D
Proton therapy

FIGURE 4 2 -1 8  Energy deposited in tissue 
as a function of depth for 170-MeV protons 
(red curve) and 190-MeV protons (green). 
The peak of each curve is often called the 
Bragg peak.

Depth in tissue (cm)

Another form of treatment is to insert a tiny radioactive source directly inside 
a tumor, which will eventually kill the majority of the cells. A similar technique is 
used to treat cancer of the thyroid with the radioactive isotope ^ I .  The thyroid 
gland concentrates iodine present in the bloodstream, particularly in any area 
where abnormal growth is taking place. Its intense radioactivity can destroy the 
defective cells.

Another application of radiation is for sterilizing bandages, surgical equipment, 
and even packaged foods, since bacteria and viruses can be killed or deactivated by 
large doses of radiation.

*42-8  Tracers in Research and 
Medicine

Radioactive isotopes are commonly used in biological and medical research as
tracers. A given compound is artificially synthesized using a radioactive isotope ( P H Y S I C S  A P P L I E D
such as 1gC or ^H. Such “tagged” molecules can then be traced as they move Tracers in medicine and biology
through an organism or as they undergo chemical reactions. The presence of these
tagged molecules (or parts of them, if they undergo chemical change) can be
detected by a Geiger or scintillation counter, which detects emitted radiation
(see Section 41-11). How food molecules are digested, and to what parts of the
body they are diverted, can be traced in this way.
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(a)

(b)

FIGURE 4 2 -1 9  (a) Autoradiograph 
of a leaf exposed for 30 s to 14C 0 2. 
The photosynthetic (green) tissue 
has become radioactive; the 
nonphotosynthetic tissue of the veins 
is free of 14C and therefore does not 
blacken the X-ray sheet. This 
technique is useful in following 
patterns of nutrient transport in 
plants, (b) Autoradiograph of 
chromosomal D N A . The dashed arrays 
of film grains show the Y-shaped 
growing point of replicating DN A .
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Radioactive tracers have been used to determine how amino acids and other 
essential compounds are synthesized by organisms. The permeability of cell walls 
to various molecules and ions can be determined using radioactive isotopes: the 
tagged molecule or ion is injected into the extracellular fluid, and the radioactivity 
present inside and outside the cells is measured as a function of time.

In a technique known as autoradiography, the position of the radioactive 
isotopes is detected on film. For example, the distribution of carbohydrates 
produced in the leaves of plants from absorbed C 0 2 can be observed by keeping 
the plant in an atmosphere where the carbon atom in the C 0 2 is x\C. After a time, 
a leaf is placed firmly on a photographic plate and the emitted radiation darkens 
the film most strongly where the isotope is most strongly concentrated 
(Fig. 42-19a). Autoradiography using labeled nucleotides (components of DNA) 
has revealed much about the details of DNA replication (Fig. 42-19b).

For medical diagnosis, the radionuclide commonly used today is 94™Tc, a 
long-lived excited state of technetium-99 (the “m” in the symbol stands for 
“metastable” state). It is formed when 92Mo decays. The great usefulness of 
943*Tc derives from its convenient half-life of 6 h (short, but not too short) and 
the fact that it can combine with a large variety of compounds. The compound 
to be labeled with the radionuclide is so chosen because it concentrates in the 
organ or region of the anatomy to be studied. Detectors outside the body then 
record, or image, the distribution of the radioactively labeled compound. The 
detection could be done by a single detector (Fig. 42-20a) which is moved across 
the body, measuring the intensity of radioactivity at a large number of points. 
The image represents the relative intensity of radioactivity at each point. The 
relative radioactivity is a diagnostic tool. For example, high or low radioactivity 
may represent overactivity or underactivity of an organ or part of an organ, or 
in another case may represent a lesion or tumor. More complex gamma 
cameras make use of many detectors which simultaneously record the radioac­
tivity at many points. The measured intensities can be displayed on a TV or 
computer monitor. The image is sometimes called a scintigram (after scintillator), 
Fig. 42-20b. Gamma cameras are relatively inexpensive, but their resolution is 
limited (by non-perfect collimation*). But they allow “dynamic” studies (that 
is, images that change in time, like a movie) to be performed.
fTo “collimate” means to “make parallel,” usually by blocking non-parallel rays with a narrow tube 
inside lead, as in Fig. 42-20a.

-Photomultiplier
tube

Scintillator
crystal

Lead collimator 

- Collimating hole

Patient

(a) (b)

FIGURE 4 2 -2 0  (a) Collimated gamma-ray detector for scanning (moving) over 
a patient. The collimator selects 7  rays that come in a (nearly) straight line 
from the patient. Without the collimator, 7 rays from all parts of the body 
could strike the scintillator, producing a poor image. Detectors today usually 
have many collimator tubes and are called gamma cameras, (b) Gamma camera 
image (scintigram) of a leg with a fatigue fracture detecting 7s from "43TC.
The image is gray scale, but is colored here for visibility.



*42—9 Imaging by Tomography: CAT 
Scans and Emission Tomography

* Normal X-ray Image
For a conventional medical or dental X-ray photograph, the X-rays emerging from 
the tube (Section 35-10) pass through the body and are detected on photographic
film or a fluorescent screen, Fig. 42-21. The rays travel in very nearly straight lines @  P H Y S I C S  A P P L I E D
through the body with minimal deviation since at X-ray wavelengths there is little Normal X-ray image is a sort of shadow
diffraction or refraction. There is absorption (and scattering), however; and the (no lenses involved)
difference in absorption by different structures in the body is what gives rise to
the image produced by the transmitted rays. The less the absorption, the greater the
transmission and the darker the film. The image is, in a sense, a “shadow” of what
the rays have passed through. The X-ray image is not produced by focusing rays
with lenses as for the instruments discussed in Chapter 33.

FIGURE 4 2 -2 1  Conventional 
X-ray imaging, which is essentially 
shadowing.

Computed tomography images

Tomography Images (CT)
In conventional X-ray images, the entire thickness of the body is projected onto 
the film; structures overlap and in many cases are difficult to distinguish. In the 
1970s, a revolutionary new X-ray technique was developed called computed
tomography (CT), which produces an image of a slice through the body. (The word W  p H Y S l C S— A P P L I E D  
tomography comes from the Greek: tomos = slice, graph = picture.) Structures 
and lesions previously impossible to visualize can now be seen with remarkable 
clarity. The principle behind CT is shown in Fig. 42-22: a thin collimated beam of 
X-rays (to “collimate” means to “make parallel”) passes through the body to a 
detector that measures the transmitted intensity. Measurements are made at a 
large number of points as the source and detector are moved past the body 
together. The apparatus is then rotated slightly about the body axis and again 
scanned; this is repeated at (perhaps) 1° intervals for 180°. The intensity of the 
transmitted beam for the many points of each scan, and for each angle, are sent to 
a computer that reconstructs the image of the slice. Note that the imaged slice is 
perpendicular to the long axis of the body. For this reason, CT is sometimes called 
computerized axial tomography (CAT), although the abbreviation CAT, as in CAT 
scan, can also be read as computer-assisted tomography.

The use of a single detector as in Fig. 42-22 would require a few minutes for 
the many scans needed to form a complete image. Much faster scanners use

FIGURE 4 2 -2 2  Tomographic 
imaging: the X-ray source and detector 
m ove together across the body, the 
transmitted intensity being measured 
at a large number of points. Then the 
source-detector assembly is rotated 
slightly (say, 1°) and another scan is 
made. This process is repeated for 
perhaps 180°. The computer 
reconstructs the image of the slice and 
it is presented on a TV or computer 
monitor.

Video monitor

Collimator

source
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(a) (b)

FIGURE 4 2 -2 3  (a) Fan-beam scanner. Rays transmitted through the entire body are measured simultaneously 
at each angle. The source and detector rotate to take measurements at different angles. In another type of 
fan-beam scanner, there are detectors around the entire 360° of the circle which remain fixed as the source 
moves, (b) In still another type, a beam of electrons from a source is directed by magnetic fields at tungsten 
targets surrounding the patient.

FIGURE 4 2 -2 4  Two CT images, 
with different resolutions, each 
showing a cross section of a brain. 
Photo (a) is of low resolution. 
Photo (b), of higher resolution, 
shows a brain tumor, and uses false 
color to highlight it.

(a)

1154
(b)
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a fan beam, Fig. 42-23a, in which beams passing through the entire cross section of the 
body are detected simultaneously by many detectors. The source and detectors are 
then rotated about the patient, and an image requires only a few seconds. Even 
faster, and therefore useful for heart scans, are fixed source machines wherein an 
electron beam is directed (by magnetic fields) to tungsten targets surrounding the 
patient, creating the X-rays. See Fig. 42-23b.

* Image Formation
But how is the image formed? We can think of the slice to be imaged as being 
divided into many tiny picture elements (or pixels), which could be squares. (See 
Fig. 35-42.) For CT, the width of each pixel is chosen according to the width of the 
detectors and/or the width of the X-ray beams, and this determines the resolution 
of the image, which might be 1 mm. An X-ray detector measures the intensity of 
the transmitted beam. When we subtract this value from the intensity of the beam at 
the source, we obtain the total absorption (called a “projection”) along that beam 
line. Complicated mathematical techniques are used to analyze all the absorption 
projections for the huge number of beam scans measured (see the next Subsec­
tion), obtaining the absorption at each pixel and assigning each a “grayness value” 
according to how much radiation was absorbed. The image is made up of tiny spots 
(pixels) of varying shades of gray. Often the amount of absorption is color-coded. 
The colors in the resulting false-color image have nothing to do, however, with 
the actual color of the object. The real medical images are monochromatic (various 
shades of gray). Only visible light has color, X-rays and y rays don’t.

Figure 42-24 illustrates what actual CT images look like. It is generally agreed 
that CT scanning has revolutionized some areas of medicine by providing much 
less invasive, and/or more accurate, diagnosis.

Computed tomography can also be applied to ultrasound imaging (Section 16-9) 
and to emissions from radioisotopes and nuclear magnetic resonance, which we 
discuss in Section 42-10.

* Tomographic Image Reconstruction
How can the “grayness” of each pixel be determined even though all we can 
measure is the total absorption along each beam line in the slice? It can be done 
only by using the many beam scans made at a great many different angles. Suppose 
the image is to be an array of 100 X 100 elements for a total of 104 pixels. If we 
have 100 detectors and measure the absorption projections at 100 different angles, 
then we get 104 pieces of information. From this information, an image can be 
reconstructed, but not precisely. If more angles are measured, the reconstruction of 
the image can be done more accurately.

Magnetic
deflection

coil
Electron 
source

Electron
beam

X-rays



To suggest how mathematical reconstruction is done, we consider a very simple 
case using the “iterative” technique (“to iterate” is from the Latin “to repeat”). 
Suppose our sample slice is divided into the simple 2 X 2  pixels as shown in 
Fig. 42-25. The number inside each pixel represents the amount of absorption by the 
material in that area (say, in tenths of a percent): that is, 4 represents twice as much 
absorption as 2. But we cannot directly measure these values—they are the 
unknowns we want to solve for. All we can measure are the projections—the total 
absorption along each beam line—and these are shown in the diagram as the sum 
of the absorptions for the pixels along each line at four different angles. These 
projections (given at the tip of each arrow) are what we can measure, and we now 
want to work back from them to see how close we can get to the true absorption 
value for each pixel. We start our analysis with each pixel being assigned a zero 
value, Fig. 42-26a. In the iterative technique, we use the projections to estimate the 
absorption value in each square, and repeat for each angle. The angle 1 projections 
are 7 and 13. We divide each of these equally between their two squares: each 
square in the left column gets 3 \ (half of 7), and each square in the right column 
gets 6\  (half of 13); see Fig. 42-26b. Next we use the projections at angle 2. We

13

FIGURE 4 2 -2 5  A  simple 2 X 2  
image showing true absorption 
values and measured projections.

FIGURE 4 2 -2 6  Reconstructing the image using projections 
in an iterative procedure.

7 13

|  Angle 1 |

(a) (b)

Angle 2 
(measured)
—►14

4 4

5\ OO
(c)

&
(d)

11

calculate the difference between the measured projections at angle 2 (6 and 14) and 
the projections based on the previous estimate (top row: 3 \ + 6 \ = 10; same for 
bottom row). Then we distribute this difference equally to the squares in that row. 
For the top row, we have

3b
6 - 1 0 6 - 1 0

and for the bottom row,
„i 14 -  10
3\ + ---- ------ 5^ and 6k

14 -  10
8i-

These values are inserted as shown in Fig. 42-26c. Next, the projection at angle 3 gives

(upper left) l \  +
11 -  10

= 2 and (lower right) +
11 -  10

= 9:

and that for angle 4 gives
9 — 10

(lower left) 5 \ + = 5 and (upper right) A\ +
10

= 4.
2 ° ' z 2 

The result, shown in Fig. 42-26d, corresponds exactly to the true values. (In real 
situations, the true values are not known, which is why these computer techniques 
are required.) To obtain these numbers exactly, we used six pieces of information 
(two each at angles 1 and 2, one each at angles 3 and 4). For the much larger 
number of pixels used for actual images, exact values are generally not attained. 
Many iterations may be needed, and the calculation is considered sufficiently 
precise when the difference between calculated and measured projections is 
sufficiently small. The above example illustrates the “convergence” of the process: 
the first iteration (b to c in Fig. 42-26) changed the values by 2, the last iteration 
(c to d) by only \  •
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FIGURE 4 2 -2 7  SPECT scan of 
brain (false color) with M esulam’s 
syndrome, labeled with "^Tc.

P H Y S I C S  A P P L I E DEmission tomography (SPECT, PET)
FIGURE 4 2 -2 8  Positron emission 
tomography (PET) system showing 
a ring of detectors to detect the two 
annihilation 7 rays (e+ +  e“ —► 27) 
emitted at 180° to each other.

f? A

It is possible to image the emissions of a radioactive tracer (see Section 42-8) in a 
single plane or slice through a body using computed tomography techniques. 
A basic gamma detector (Fig. 42-20a) can be moved around the patient to measure 
the radioactive intensity from the tracer at many points and angles; the data are 
processed in much the same way as for X-ray CT scans. This technique is referred 
to as single photon emission tomography (SPET), or SPECT (single photon emission 
computed tomography); see Fig. 42-27.

Another important technique is positron emission tomography (PET), which 
makes use of positron emitters such as ^C, 13N, ^O, and 18F. These isotopes are 
incorporated into molecules that, when inhaled or injected, accumulate in the 
organ or region of the body to be studied. When such a nuclide undergoes 
jS+ decay, the emitted positron travels at most a few millimeters before it collides 
with a normal electron. In this collision, the positron and electron are annihilated, 
producing two 7 rays (e+ + e“ —» 27). The two 7 rays fly off in opposite directions 
(180° + 0.25°) since they must have almost exactly equal and opposite momenta 
to conserve momentum (the momenta of the initial e+ and e“ are essentially 
zero compared to the momenta of the 7 rays). Because the photons travel 
along the same line in opposite directions, their detection in coincidence by 
rings of detectors surrounding the patient (Fig. 42-28) readily establishes the 
line along which the emission took place. If the difference in time of 
arrival of the two photons could be determined accurately, the actual position 
of the emitting nuclide along that line could be calculated. Present-day 
electronics can measure times to at best + 300 ps, so at the 7 ray’s speed 
(c  = 3 X 108m/s), the actual position could be determined to an accuracy 
on the order of about d = vt ~ (3 X 108m/s)(300 X 10“12s) ~ 10 cm, which 
is not very useful. Although there may be future potential for time-of-flight 
measurements to determine position, today computed tomography techniques are 
used instead, similar to those for X-ray CT, which can reconstruct PET images 
with a resolution on the order of 3-5 mm. One big advantage of PET is that 
no collimators are needed (as for detection of a single photon—see Fig. 42-20a). 
Thus, fewer photons are “wasted” and lower doses can be administered to the 
patient with PET.

Both PET and SPET systems can give images related to biochemistry, 
metabolism, and function. This is to be compared to X-ray CT scans, whose images 
reflect shape and structure—that is, the anatomy of the imaged region.

E m iss io n  T o m o g rap h y

FIGURE 4 2 -2 9  Schematic picture 
of a proton in a magnetic field B 
(pointing upward) with the two 
possible states of proton spin, 
up and down.

6
Up 9

Down

42-10 Nudear Magnetic Resonance (NMR); 
Magnetic Resonance Imaging (MRI)

Nuclear magnetic resonance (NMR) is a phenomenon which soon after its discovery 
in 1946 became a powerful research tool in a variety of fields from physics to chem­
istry and biochemistry. It is also an important medical imaging technique. We first 
briefly discuss the phenomenon, and then look at its applications.

Nuclear Magnetic Resonance (NMR)
We saw in Chapter 39 that the energy levels in atoms are split when they are 
placed in a magnetic field B (the Zeeman effect) according to the angular 
momentum or spin of the state. The splitting is proportional to B and to the 
magnetic moment, |x. Nuclei too have magnetic moments (Section 41-1), and we 
examine only the simplest, the hydrogen (|H) nucleus which consists of a single 
proton. Its spin angular momentum (and its magnetic moment), like that of the elec­
tron, can take on only two values when placed in a magnetic field: spin up (parallel 
to the field) and spin down (antiparallel to the field) as suggested in Fig. 42-29.
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Eq-

Spin /  down

(P = 0)
Spin
up

hf = AE 
= 2|XpB

FIGURE 4 2 -3 0  Energy E0 in the 
absence of a magnetic field splits 
into two levels in the presence of a 
magnetic field.

When a magnetic field is present, an energy state splits into two levels as shown in 
Fig. 42-30 with the spin-up state (parallel to field) having the lower energy. The 
spin-down state acquires an additional energy fJLpJBx and the spin-up state has 
its energy changed by - |x pBx (Eq. 27-12 and Section 39-7), where BT is the total 
magnetic field at the nucleus. The difference in energy between the two states 
(Fig. 42-30) is thus

AE  = 2 |xpi?x ,

where is the magnetic moment of the proton.
In a standard nuclear magnetic resonance (NMR) setup, the sample to be 

examined is placed in a static magnetic field. A radiofrequency (RF) pulse of elec­
tromagnetic radiation (that is, photons) is applied to the sample. If the frequency,/, 
of this pulse corresponds precisely to the energy difference between the two 
energy levels (Fig. 42-30), so that

h f = AE = 2\LpBTf (42-12)

then the photons of the RF beam will be absorbed, exciting many of the nuclei 
from the lower state to the upper state. This is a resonance phenomenon since 
there is significant absorption only if /is  very near /  = 2jjlpBT/h. Hence the name 
“nuclear magnetic resonance.” For free {H nuclei, the frequency is 42.58 MHz for a 
field Bt = 1.0 T (Example 42-14). If the H atoms are bound in a molecule, the 
total magnetic field BT at the H nuclei will be the sum of the external applied field 
(Bext) plus the local magnetic field (B{oc) due to electrons and nuclei of neighboring 
atoms. Since /  is proportional to BT, the value of /  for a given external field will 
be slightly different for bound H atoms than for free atoms:

h f  = 2/ip (Bext + Bloc).

This change in frequency, which can be measured, is called the “chemical shift.” A 
great deal has been learned about the structure of molecules and bonds using this 
NMR technique.

EXAMPLE 42-14 NMR for free protons. Calculate the resonant frequency 
for free protons in a 1.000-T magnetic field.

APPROACH We use Eq. 42-12, where the magnetic moment of the proton 
(Section 41-1) is

( pfi, \  ( ph 
= 2.7928|jln = 2.7928 - —  = 2.7928

x 2mp J \ 4irmp

SOLUTION We solve for / in  Eq. 42-12 and find 

A E _  2(ipB
* ~ h h

( eB \  f  (1-6022 X 10~19 C)(1.000 T)
= (2.7928) ------- = 2.7928 '

2nm pJ ' L 2ir(l.6726 X IO-27 kg)

= 42.58 MHz.
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* M agnetic  R eso n an ce  Im ag in g  (M RI)
For producing medically useful NMR images—now commonly called MRI, or 

v£/ P HYS I CS —AP P L I E D— magnetic resonance imaging—the element most used is hydrogen since it is the 
NMR imaging (MRI) commonest element in the human body and gives the strongest NMR signals. The 

experimental apparatus is shown in Fig. 42-31. The large coils set up the static 
magnetic field, and the RF coils produce the RF pulse of electromagnetic waves 
(photons) that cause the nuclei to jump from the lower state to the upper one 
(Fig. 42-30). These same coils (or another coil) can detect the absorption of energy 
or the emitted radiation (also of frequency /  = AE/h) when the nuclei jump back 
down to the lower state.

Patient FIGURE 4 2 -3 1  Typical MRI imaging setup: (a) diagram; (b) photograph.

B low

FIGURE 4 2 -3 2  A  static field that 
is stronger at the bottom than at the 
top. The frequency of absorbed or 
emitted radiation is proportional to 
B in NMR.

FIGURE 4 2 -3 3  False-color NM R  
image (M RI) of a vertical section  
through the head showing structures 
in the normal brain.

The formation of a two-dimensional or three-dimensional image can be done 
using techniques similar to those for computed tomography (Section 42-9). 
The simplest thing to measure for creating an image is the intensity of absorbed 
and/or reemitted radiation from many different points of the body, and this would 
be a measure of the density of H atoms at each point. But how do we determine 
from what part of the body a given photon comes? One technique is to give the 
static magnetic field a gradient; that is, instead of applying a uniform magnetic 
field, Bt , the field is made to vary with position across the width of the sample 
(or patient). Since the frequency absorbed by the H nuclei is proportional to BT 
(Eq. 42-12), only one plane within the body will have the proper value of BT to 
absorb photons of a particular frequency /. By varying /, absorption by different 
planes can be measured. Alternately, if the field gradient is applied after the RF pulse, 
the frequency of the emitted photons will be a measure of where they were emitted. 
See Fig. 42-32. If a magnetic field gradient in one direction is applied during 
excitation (absorption of photons) and photons of a single frequency are trans­
mitted, only H nuclei in one thin slice will be excited. By applying a gradient 
during reemission in a direction perpendicular to the first, the frequency /  of 
the reemitted radiation will represent depth in that slice. Other ways of varying the 
magnetic field throughout the volume of the body can be used in order to 
correlate NMR frequency with position.

A reconstructed image based on the density of H atoms (that is, the intensity 
of absorbed or emitted radiation) is not very interesting. More useful are images 
based on the rate at which the nuclei decay back to the ground state, and such 
images can produce resolution of 1 mm or better. This NMR technique (sometimes 
called spin-echo) produces images of great diagnostic value, both in the 
delineation of structure (anatomy) and in the study of metabolic processes. An 
NMR image is shown in Fig. 42-33, color enhanced—no medical imaging uses 
visible light, so the colors shown here are added. The original images, those looked 
at by your doctor, are various shades of gray, representing intensity (or counts).
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N M R  imaging is considered to be noninvasive. We can calculate the 
energy of the photons involved: as determined in Exam ple 42- 14, in a 
1.0-T magnetic field, /  =  42.58 MHz for }H. This corresponds to an energy of 
h f  = (6.6 X IO-34 J  • s)(43 X 106 Hz) «  3 X IO-26 J  or about IO-7 eV. Since molec­
ular bonds are on the order of 1 eV, it is clear that the R F  photons can cause little 
cellular disruption. This should be compared to X- or 7 rays whose energies are 
104 to 106 eV  and thus can cause significant damage. The static magnetic fields, 
though often large ( ~ 0.1 to IT ) , are believed to be harmless (except for people 
wearing heart pacemakers).

Table 42-2 lists the major techniques we have discussed for imaging the interior 
of the human body, along with the optimum resolution attainable today. Resolution 
is just one factor that must be considered, as the different imaging techniques 
provide different types of information, useful for different types of diagnosis.

Summary

TABLE 4 2 -2  M edical
Im ag ing  T echn iques

Technique Resolution

Conventional X-ray 2 mm
CT scan, X-ray \  mm
Nuclear medicine 1 cm

(tracers)
SPET (single 1 cm
photon emission)

PET 3-5 mm
(positron emission)

NMR (MRI) \ - l  mm
Ultrasound 2 mm

(Section 16-9)

A nuclear reaction occurs when two nuclei collide and two or 
more other nuclei (or particles) are produced. In this process, as 
in radioactivity, transmutation (change) of elements occurs.

The reaction energy or g-value of a reaction 
a + X —» Y  + b is

Q = (Ma + Mx -  Mh -  My )c2 (42-2a) 

= Kh + KY -  K a -  Kx . (42-2b)
The effective cross section a  for a reaction is a measure of 

the reaction probability per target nucleus.
In fission, a heavy nucleus such as uranium splits into two 

intermediate-sized nuclei after being struck by a neutron. 2;j2U is 
fissionable by slow neutrons, whereas some fissionable nuclei 
require fast neutrons. Much energy is released in fission 
(~ 200 MeV per fission) because the binding energy per 
nucleon is lower for heavy nuclei than it is for intermediate­
sized nuclei, so the mass of a heavy nucleus is greater than 
the total mass of its fission products. The fission process 
releases neutrons, so that a chain reaction is possible. The 
critical mass is the minimum mass of fuel needed to sustain 
a chain reaction. In a nuclear reactor or nuclear bomb, a 
moderator is used to slow down the released neutrons.

The fusion process, in which small nuclei combine to form 
larger ones, also releases energy. The energy from our Sun origi­
nates in the fusion reactions known as the proton-proton cycle 
in which four protons fuse to form a 2He nucleus producing 
25 MeV of energy. A useful fusion reactor for power gener­
ation has not yet proved possible because of the difficulty in 
containing the fuel (e.g., deuterium) long enough at the extremely

high temperature required (~ 108K). Nonetheless, great progress 
has been made in confining the collection of charged ions 
known as a plasma. The two main methods are magnetic 
confinement, using a magnetic field in a device such as 
the toroidal-shaped tokamak, and inertial confinement in 
which intense laser beams compress a fuel pellet of 
deuterium and tritium.

Radiation can cause damage to materials, including biolog­
ical tissue. Quantifying amounts of radiation is the subject of 
dosimetry. The curie (Ci) and the becquerel (Bq) are units that 
measure the source activity or rate of decay of a sample: 
1 Ci = 3.70 X IO10 decays per second, whereas 
lB q  = 1 decay/s. The absorbed dose, often specified in rads, 
measures the amount of energy deposited per unit mass of 
absorbing material: lra d  is the amount of radiation that 
deposits energy at the rate of 10-2 J/kg of material. The SI unit 
of absorbed dose is the gray: 1 Gy = U /k g  = 100 rad. The 
effective dose is often specified by the rem = rad X QF, 
where QF is the “quality factor” of a given type of radiation; 
lrem  of any type of radiation does approximately the same 
amount of biological damage. The average dose received per 
person per year in the United States is about 360mrem. The
SI unit for effective dose is the sievert: 1 Sv = 102 rem.

[*Nuclear radiation is used in medicine for cancer therapy, 
and for imaging of biological structure and processes. 
Tomographic imaging of the human body, which can provide 
3-dimensional detail, includes several types: CT scans, PET, 
SPET (= SPECT), and MRI; the latter makes use of nuclear 
magnetic resonance (NMR).]

Questions
(NOTE: Masses are found in Appendix F.)
1. Fill in the missing particles or nuclei:

(a) n + ^ B a  -*  ? + 7;
0b) n + ^ B a  -»  ^ C s  + ?;
(c) d + 2H —>• 2He + ?;
(d) a + ^ A u  -»  ? + d 
where d stands for deuterium.

2. The isotope 32P is produced by the reaction: 
n + ? —» 32P + p. What must be the target nucleus?

3. When 22Na is bombarded by deuterons (2H), an a particle is 
emitted. What is the resulting nuclide?

4. Why are neutrons such good projectiles for producing 
nuclear reactions?

5. A proton strikes a 2oNe nucleus, and an a particle is 
observed to emerge. What is the residual nucleus? Write 
down the reaction equation.

6. Are fission fragments (3+ or (3~ emitters? Explain.
7. The energy from nuclear fission appears in the form of 

thermal energy—but the thermal energy of what?
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8. 292U releases an average of 2.5 neutrons per fission 
compared to 2.9 for ^ P u .  Which of these two nuclei do you 
think would have the smaller critical mass? Explain.

9. If 292U released only 1.5 neutrons per fission on the average, 
would a chain reaction be possible? If so, how would the 
chain reaction be different than if 3 neutrons were released 
per fission?

10. Why can’t uranium be enriched by chemical means?
11. How can a neutron, with practically no kinetic energy, excite 

a nucleus to the extent shown in Fig. 42-4?
12. Why would a porous block of uranium be more likely to 

explode if kept under water rather than in air?
13. A reactor that uses highly enriched uranium can use ordi­

nary water (instead of heavy water) as a moderator and still 
have a self-sustaining chain reaction. Explain.

14. Why must the fission process release neutrons if it is to be useful?
15. Why are neutrons released in a fission reaction?
16. What is the reason for the “secondary system” in a nuclear 

reactor, Fig. 42-9? That is, why is the water heated by the 
fuel in a nuclear reactor not used directly to drive the 
turbines?

17. What is the basic difference between fission and fusion?

18. Discuss the relative merits and disadvantages, including 
pollution and safety, of power generation by fossil fuels, 
nuclear fission, and nuclear fusion.

19. A higher temperature is required for deuterium-deuterium 
ignition than for deuterium-tritium. Explain.

20. Light energy emitted by the Sun and stars comes from the 
fusion process. What conditions in the interior of stars make 
this possible?

21. How do stars, and our Sun, maintain confinement of the 
plasma for fusion?

22. Why is the recommended maximum radiation dose higher 
for women beyond the child-bearing age than for younger 
women?

23. People who work around metals that emit alpha particles 
are trained that there is little danger from proximity or 
touching the material, but they must take extreme 
precautions against ingesting it. Why? (Eating and drinking 
while working are forbidden.)

24. What is the difference between absorbed dose and effective 
dose? What are the SI units for each?

25. Radiation is sometimes used to sterilize medical supplies 
and even food. Explain how it works.

* 26. How might radioactive tracers be used to find a leak in a pipe?

Problems
(NOTE: Masses are found in Appendix F.)

42  -1  N uclear R eac tio n s, T ran sm u ta tio n
1. (I) Natural aluminum is all 13Al. If it absorbs a neutron, 

what does it become? Does it decay by j8+ or j3- ? What will 
be the product nucleus?

2. (I) Determine whether the reaction 2H + 2H —> |H e + n 
requires a threshold energy.

3. (I) Is the reaction n + —> 2̂ \J  + J  possible with slow 
neutrons? Explain.

4. (II) Does the reaction p + ^Li —> ^He + a require energy, 
or does it release energy? How much energy?

5. (II) Calculate the energy released (or energy input 
required) for the reaction a + 9Be —» 1gC + n.

6. (II) (a) Can the reaction n + 2̂ Mg —» 23Na + d occur if 
the bombarding particles have 16.00 MeV of kinetic energy? 
(d stands for deuterium, 2H.) (b) If so, how much energy is 
released? If not, what kinetic energy is needed?

7. (II) (a) Can the reaction p + ^Li —» 2He + a  occur if the 
incident proton has kinetic energy = 3500 keV? (b) If so, 
what is the total kinetic energy of the products? If not, what 
kinetic energy is needed?

8. (II) In the reaction a + 14N —> 1gO + p, the incident 
a particles have 9.68 MeV of kinetic energy. The mass of 17sO 
is 16.999132 u. (a) Can this reaction occur? (b) If so, what is 
the total kinetic energy of the products? If not, what kinetic 
energy is needed?

9. (II) Calculate the g-value for the “capture” reaction 
CL + 110  2oNe + y.

10. (II) Calculate the total kinetic energy of the products of the 
reaction d + l\C  —► 14N + n if the incoming deuteron 
has kinetic energy K  = 44.4 MeV.

11. (II) Radioactive C is produced in the atmosphere when a 
neutron is absorbed by 14N. Write the reaction and find its 
Q-value.

12. (II) An example of a stripping nuclear reaction is 
d + 3Li —> X + p. (a) What is X, the resulting nucleus?
(b) Why is it called a “stripping” reaction? (c) What is the 
Q-value of this reaction? Is the reaction endothermic or 
exothermic?

13. (II) An example of a pick-up nuclear reaction is 
fHe + x\C —» X + a. (a) Why is it called a “pick-up” 
reaction? (b) What is the resulting nucleus? (c) What is the 
(2-value of this reaction? Is the reaction endothermic or 
exothermic?

14. (II) (a) Complete the following nuclear reaction, 
p + ? —> fgS + J. (b) What is the Q-value?

15. (II) The reaction p + 1gO —► 18F + n requires an input 
of energy equal to 2.438 MeV. What is the mass of 1$F?

16. (Ill) Use conservation of energy and momentum to show 
that a bombarding proton must have an energy of 3.23 MeV 
in order to make the reaction ^ ( p ,  n )13N occur. (See 
Example 42-3.)

17. (Ill) How much kinetic energy (if any) would the proton 
require for the reaction 1̂ C(p, n)14N to proceed?

4 2 - 2  C ross S ection
18. (I) The cross section for the reaction n + 1§B —► ^Li + ^He 

is about 40 bn for an incident neutron of low energy 
(kinetic energy «  0). The boron is contained in a gas with 
n =  1.7 X 1021 nuclei/m3 and the target has thickness 
£ = 12.0 cm. What fraction of incident neutrons will be 
scattered?

19. (I) What is the effective cross section for the collision of two 
hard spheres of radius Ri and R2?
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20. (II) When the target is thick, the rate at which projectile 
particles collide with nuclei in the rear of the target is less 
than in the front of the target, since some scattering (i.e., 
collisions) takes place in the front layers. Let R0 be the rate 
at which incident particles strike the front of the target, and 
Rx be the rate at a distance x  into the target (Rx = R0 at 
x  = 0). Then show that the rate at which particles are 
scattered (and therefore lost from the incident beam) in a 
thickness dx is —dRx = Rx no-dx, where the minus sign 
means that Rx is decreasing and n is the number of nuclei 
per unit volume. Then show that Rx = R0 e~nax, where a  is 
the total cross section. If the thickness of the target is £, 
what does Rx = R0e~n<7̂  represent?

21. (II) A 1.0-cm-thick lead target reduces a beam of gamma 
rays to 25% of its original intensity. What thickness of lead 
will allow only one 7 in 106 to penetrate (see Problem 20)?

22. (II) Use Fig. 42-3 to estimate what thickness of ^ C d  
p = 8650 kg/m3) will cause a 2.0% reaction rate 
R /R q = 0.020) for (a) 0.10-eV neutrons (b) 5.0-eV neutrons.

4 2 - 3  N uclear F ission
23. (I) What is the energy released in the fission reaction of 

Eq. 42-5? (The masses of ^jB a and ^K r are 140.914411 u 
and 91.926156 u, respectively.)

24. (I) Calculate the energy released in the fission reaction 
n + 23fU —» fgSr + 154Xe + 12n. Use Appendix F, and 
assume the initial kinetic energy of the neutron is very small.

25. (I) How many fissions take place per second in a 200-MW 
reactor? Assume 200 MeV is released per fission.

26. (I) The energy produced by a fission reactor is about 
200 MeV per fission. What fraction of the mass of a 2̂ U  
nucleus is this?

27. (II) Suppose that the average electric power consumption, 
day and night, in a typical house is 880 W. What initial mass 
of 292U would have to undergo fission to supply the elec­
trical needs of such a house for a year? (Assume 200 MeV is 
released per fission, as well as 100% efficiency.)

28. (II) Consider the fission reaction

U + n ^ S b  + ^N b + ?n.

(a) How many neutrons are produced in this reaction?
(b) Calculate the energy release. The atomic masses for Sb and 
Nb isotopes are 132.915250 u and 97.910328 u, respectively.

29. (II) How much mass of 2g|U is required to produce the same 
amount of energy as burning 1.0 kg of coal (about 3 X 107J)?

30. (II) What initial mass of 2| 2U is required to operate a 
950-MW reactor for 1 yr? Assume 38% efficiency.

31. (II) If a 1.0-MeV neutron emitted in a fission reaction loses 
one-half of its kinetic energy in each collision with moder­
ator nuclei, how many collisions must it make to reach 
thermal energy Q kT = 0.040 eV)?

32. (II) Assuming a fission of 2̂ U  into two roughly equal 
fragments, estimate the electric potential energy just as the 
fragments separate from each other. Assume that the fragments 
are spherical (see Eq. 41-1) and compare your calculation 
to the nuclear fission energy released, about 200 MeV.

33. (II) Estimate the ratio of the height of the Coulomb barrier 
for a decay to that for fission of 2q2U. (Both are described by 
a potential energy diagram of the shape shown in Fig. 41-7.)

34. (II) Suppose that the neutron multiplication factor is 1.0004. 
If the average time between successive fissions in a chain of 
reactions is 1.0 ms, by what factor will the reaction rate 
increase in 1.0 s?

4 2 - 4  N uclear Fusion
35. (I) What is the average kinetic energy of protons at the 

center of a star where the temperature is 2 X 107 K? [Hint: 
See Eq. 18-4.]

36. (II) Show that the energy released in the fusion reaction 
?H + ?H |H e + n is 17.57 MeV.

37. (II) Show that the energy released when two deuterium nuclei 
fuse to form 2He with the release of a neutron is 3.23 MeV.

38. (II) Verify the <2-value stated for each of the reactions of 
Eqs. 42-7. [Hint: Be careful with electrons.]

39. (II) (a) Calculate the energy release per gram of fuel for the 
reactions of Eqs. 42-9a, b, and c. (b) Calculate the energy 
release per gram of uranium 2q2U in fission, and give its 
ratio to each reaction in (a).

40. (II) How much energy is released when 2g2U absorbs a slow 
neutron (kinetic energy «  0) and becomes 2i u ?

41. (II) If a typical house requires 850 W of electric power on 
average, what minimum amount of deuterium fuel would 
have to be used in a year to supply these electrical needs? 
Assume the reaction of Eq. 42-9b.

42. (II) If ^Li is struck by a slow neutron, it can form 2He and 
another isotope, (a) What is the second isotope? (This is a 
method of generating this isotope.) (b) How much energy is 
released in the process?

43. (II) Suppose a fusion reactor ran on “d-d” reactions, 
Eqs. 42-9a and b in equal amounts. Estimate how much 
natural water, for fuel, would be needed per hour to run a 
1250-MW reactor, assuming 33% efficiency.

44. (II) Show that the energies carried off by the 2He nucleus 
and the neutron for the reaction of Eq. 42-9c are about
3.5 MeV and 14 MeV, respectively. Are these fixed values, 
independent of the plasma temperature?

45. (II) How much energy (J) is contained in 1.00 kg of water if 
its natural deuterium is used in the fusion reaction of 
Eq. 42-9a? Compare to the energy obtained from the 
burning of 1.0 kg of gasoline, about 5 X 107J.

46. (Ill) (a) Give the ratio of the energy needed for the first reaction 
of the carbon cycle to the energy needed for a deuterium-tritium 
reaction (Example 42-10). (b) If a deuterium-tritium reaction 
requires T  «  3 X 108K, estimate the temperature needed 
for the first carbon-cycle reaction.

47. (Ill) The energy output of massive stars is believed to be 
due to the carbon cycle (see text), (a) Show that no carbon 
is consumed in this cycle and that the net effect is the same 
as for the proton-proton cycle. (b) What is the total energy 
release? (c) Determine the energy output for each reaction 
and decay, (d) Why might the carbon cycle require a higher 
temperature (~  2 X 107K) than the proton-proton cycle 
(«1.5 X 107 K)?

4 2 - 6  D osim etry
48. (I) 250 rads of a-particle radiation is equivalent to how 

many rads of X-rays in terms of biological damage?
49. (I) A dose of 4.0 Sv of 7 rays in a short period would be lethal 

to about half the people subjected to it. How many grays is this?
50. (I) How much energy is deposited in the body of a 65-kg 

adult exposed to a 3.0-Gy dose?
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51. (I) How many rads of slow neutrons will do as much biolog­
ical damage as 65 rads of fast neutrons?

52. (II) A cancer patient is undergoing radiation therapy in 
which protons with an energy of 1.2 MeV are incident on a
0.25-kg tumor, (a) If the patient receives an effective dose of
1.0 rem, what is the absorbed dose? (b) How many protons 
are absorbed by the tumor? Assume QF « 1.

53. (II) A 0.035-fjbCi sample of §P is injected into an animal for 
tracer studies. If a Geiger counter intercepts 25% of the 
emitted (3 particles, what will be the counting rate, assumed 
85% efficient?

54. (II) About 35 eV is required to produce one ion pair in air. 
Show that this is consistent with the two definitions of the 
roentgen given in the text.

55. (II) A 1.6-mCi source of i2P (in NaHP04), a j8 emitter, is 
implanted in a tumor where it is to administer 36 Gy. The 
half-life of 15P is 14.3 days, and 1.0 mCi delivers about 
lOmGy/min. Approximately how long should the source 
remain implanted?

56. (II) What is the mass of a 2.00-ju-Ci 1gC source?
57. (II) Huge amounts of radioactive ^ I  were released in the 

accident at Chernobyl in 1986. Chemically, iodine goes to 
the human thyroid. (Doctors can use it for diagnosis and 
treatment of thyroid problems.) In a normal thyroid, ^ I  
absorption can cause damage to the thyroid. (a) Write down 
the reaction for the decay of ^ I .  (b) Its half-life is 8.0 d; 
how long would it take for ingested ^ I  to become 7.0% of 
the initial value? (c) Absorbing lm Ci of ^ I  can be 
harmful; what mass of iodine is this?

58. (II) Assume a liter of milk typically has an activity of 
2000 pCi due to 19K. If a person drinks two glasses (0.5 L) 
per day, estimate the total effective dose (in Sv and in rem) 
received in a year. As a crude model, assume the milk stays 
in the stomach 12 hr and is then released. Assume also that 
very roughly 10% of the 1.5 MeV released per decay is 
absorbed by the body. Compare your result to the normal 
allowed dose of 100 mrem per year. Make your estimate for 
(1a) a 60-kg adult, and (b) a 6-kg baby.

| General Problems__________
65. J. Chadwick discovered the neutron by bombarding 9Be 

with the popular projectile of the day, alpha particles, (a) If 
one of the reaction products was the then unknown 
neutron, what was the other product? (b) What is the 
Q-value of this reaction?

66. Fusion temperatures are often given in keV. Determine the 
conversion factor from kelvins to keV using, as is common 
in this field, K  = kT  without the factor § •

67. One means of enriching uranium is by diffusion of the gas 
UF6. Calculate the ratio of the speeds of molecules of this 
gas containing 21$\J and on which this process depends.

68. (a) What mass of 2̂ U  was actually fissioned in the first 
atomic bomb, whose energy was the equivalent of about 
20 kilotons of TNT (1 kiloton of TNT releases 5 X 1012 J)?
(b) What was the actual mass transformed to energy?

69. The average yearly background radiation in a certain town 
consists of 29 mrad of X-rays and 7 rays plus 3.6 mrad of 
particles having a QF of 10. How many rem will a person 
receive per year on the average?

59. (II) 27C0 emits 122-keV 7 rays. If a 58-kg person swallowed 
1.55 j^Ci of 27C0, what would be the dose rate (Gy/day) 
averaged over the whole body? Assume that 50% of the 
7-ray energy is deposited in the body. [Hint: Determine the 
rate of energy deposited in the body and use the definition 
of the gray.]

60. (II) Ionizing radiation can be used on meat products to reduce 
the levels of microbial pathogens. Refrigerated meat is limited 
to 4.5 kGy. If 1.2-MeV electrons irradiate 5 kg of beef, how 
many electrons would it take to reach the allowable limit?

61. (II) Radon gas, ^ R n , is considered a serious health hazard 
(see discussion in text). It decays by a-emission. (a) What is 
the daughter nucleus? (b) Is the daughter nucleus stable or 
radioactive? If the latter, how does it decay, and what is its 
half-life? (See Fig. 41-12.) (c) Is the daughter nucleus also a 
noble gas, or is it chemically reactive? (d) Suppose 1.6 ng of 
2ggRn seeps into a basement. What will be its activity? If the 
basement is then sealed, what will be the activity 1 month 
later?

* 4 2 -9  Im aging by Tom ography
*62. (II) {a) Suppose for a conventional X-ray image that the 

X-ray beam consists of parallel rays. What would be the 
magnification of the image? (b) Suppose, instead, that the 
X-rays come from a point source (as in Fig. 42-21) that is 
15 cm in front of a human body which is 25 cm thick, and 
the film is pressed against the person’s back. Determine and 
discuss the range of magnifications that result.

* 4 2 -1 0  NMR
* 63. (I) Calculate the wavelength of photons needed to produce 

NMR transitions in free protons in a 1.000-T field. In what 
region of the spectrum is this wavelength?

*64. (II) Carbon-13 has a magnetic moment |x = 0.7023 |xN. 
What magnetic field would be necessary if 13C were to 
be detected in a proton NMR spectrometer operating 
at 42.58 MHz? (This large field necessitates that a ^C 
spectrometer operate at a lower frequency.)

70. Deuterium makes up 0.0115% of natural hydrogen on average. 
Make a rough estimate of the total deuterium in the Earth’s 
oceans and estimate the total energy released if all of it 
were used in fusion reactors.

71. A shielded 7-ray source yields a dose rate of 0.052 rad/h at 
a distance of 1.0 m for an average-sized person. If workers 
are allowed a maximum dose of 5.0 rem in 1 year, how close 
to the source may they operate, assuming a 35-h work 
week? Assume that the intensity of radiation falls off as the 
square of the distance. (It actually falls off more rapidly 
than 1/ r 2 because of absorption in the air, so your answer 
will give a better-than-permissible value.)

72. Radon gas, ^ R n , is formed by a decay, (a) Write the decay 
equation. (b) Ignoring the kinetic energy of the daughter 
nucleus (it’s so massive), estimate the kinetic energy of the 
a particle produced, (c) Estimate the momentum of the 
alpha and of the daughter nucleus. (d) Estimate the kinetic 
energy of the daughter, and show that your approximation 
in (b) was valid.
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73. Consider a system of nuclear power plants that produce 
2400 MW. (a) What total mass of 2̂ U  fuel would be 
required to operate these plants for ly r , assuming that 
200 MeV is released per fission? (b) Typically 6% of the 
292U nuclei that fission produce ^jSr, a (3~ emitter with a 
half-life of 29 yr. What is the total radioactivity of the fgSr, 
in curies, produced in 1 yr? (Neglect the fact that some of it 
decays during the 1-yr period.)

74. In the net reaction, Eq. 42-8, for the proton-proton cycle in 
the Sun, the neutrinos escape from the Sun with energy of 
about 0.5 MeV. The remaining energy, 26.2 MeV, is available 
within the Sun. Use this value to calculate the “heat of 
combustion” per kilogram of hydrogen fuel and compare it 
to the heat of combustion of coal, about 3 X 107 J/kg.

75. Energy reaches Earth from the Sun at a rate of about 
1300 W /m2. Calculate (a) the total power output of the Sun, 
and (b) the number of protons consumed per second in the 
reaction of Eq. 42-8, assuming that this is the source of all the 
Sun’s energy, (c) Assuming that the Sun’s mass of 2.0 X IO30 kg 
was originally all protons and that all could be involved in 
nuclear reactions in the Sun’s core, how long would you expect 
the Sun to “glow” at its present rate? See Problem 74.

76. Estimate how many solar neutrinos pass through a 
180-m2 ceiling of a room, at latitude 38°, for an hour around 
midnight on midsummer night. [Hint. See Problems 74 and 75.]

77. Estimate how much total energy would be released via 
fission if 2.0 kg of uranium were enriched to 5% of the 
isotope 292U.

78. Some stars, in a later stage of evolution, may begin to fuse two 
l\C  nuclei into one 24Mg nucleus, (a) How much energy would 
be released in such a reaction? (b) What kinetic energy must 
two carbon nuclei each have when far apart, if they can then 
approach each other to within 6.0 fm, center-to-center?
(c) Approximately what temperature would this require?

79. An average adult body contains about 0.10/xCi of jgK, 
which comes from food, (a) How many decays occur per 
second? (b) The potassium decay produces beta particles 
with energies of around 1.4 MeV. Estimate the dose per 
year in sieverts for a 55-kg adult. Is this a significant fraction 
of the 3.6-mSv/yr background rate?

80. When the nuclear reactor accident occurred at Chernobyl in 
1986, 2.0 X 107 Ci were released into the atmosphere. 
Assuming that this radiation was distributed uniformly over 
the surface of the Earth, what was the activity per square 
meter? (The actual activity was not uniform; even within 
Europe wet areas received more radioactivity from rainfall.)

81. A star with a large helium abundance can burn helium in 
the reaction ^He + ^He + 2He —> ^C. What is the 
Q-value for this reaction?

82. A 1.2-^Ci 15?Cs source is used for 1.6 hours by a 65-kg 
worker. Radioactive 15?Cs decays by /3_ decay with a half- 
life of 30 yr. The average energy of the emitted betas is 
about 190 keV per decay. The (3 decay is quickly followed by 
a 7 with an energy of 660 keV. Assuming the person absorbs 
all emitted energy, what effective dose (in rem) is received?

83. A large amount of ^Sr was released during the Chernobyl 
nuclear reactor accident in 1986. The 3§Sr enters the body 
through the food chain. How long will it take for 85% of the 
3gSr released during the accident to decay? See Appendix E

84. Three radioactive sources have the same activity, 35mCi. 
Source A emits 1.0-MeV 7 rays, source B emits 2.0-MeV
7 rays, and source C emits 2.0-MeV alphas. What is the 
relative danger of these sources?

85. A 60-kg patient is to be given a medical test involving the 
ingestion of " 4 3 TC (Section 42-8) which decays by emitting 
a 140-keV gamma. The half-life for this decay is 6 hours. 
Assuming that about half the gamma photons exit the body 
without interacting with anything, what must be the initial 
activity of the Tc sample if the whole-body dose cannot 
exceed 50 mrem? Make the rough approximation that 
biological elimination of Tc can be ignored.

86. Centuries ago, paint generally contained a different amount 
of cobalt (27C0) than paint today. A certain “old” painting is 
suspected of being a new forgery, and an examiner has 
decided to use neutron activation analysis to test this 
hypothesis. After placing the painting in a neutron flux 
of 5.0 X 1012 neutrons/cm2/s for 5.0 minutes, an activity 
of 55 decays/s of 27C0 (71 = 5.27 yr) is observed. 
Assuming 27C0 has a cross section of 19 bn, how much cobalt 
(in grams) does the paint contain?

87. Show, using the laws of conservation of energy and 
momentum, that for a nuclear reaction requiring energy, 
the minimum kinetic energy of the bombarding particle (the 
threshold energy) is equal to [-Q m pr/(rapr -  mb)], where 
—Q is the energy required (difference in total mass between 
products and reactants), m b is the mass of the bombarding 
particle, and mpr is the total mass of the products. Assume the 
target nucleus is at rest before an interaction takes place, and 
that all speeds are nonrelativistic.

88. The early scattering experiments performed around 1910 in 
Ernest Rutherford’s laboratory in England produced the 
first evidence that an atom consists of a heavy nucleus 
surrounded by electrons. In one of these experiments, 
a particles struck a gold-foil target 4.0 X 10_5cm thick in 
which there were 5.9 X 1028 gold atoms per cubic meter. 
Although most a particles either passed straight through the 
foil or were scattered at small angles, approximately
1.6 X 10 3 percent were scattered at angles greater than 
90°—that is, in the backward direction, (a) Calculate the 
cross section, in barns, for backward scattering. (b) Ruther­
ford concluded that such backward scattering could occur 
only if an atom consisted of a very tiny, massive, and 
positively charged nucleus with electrons orbiting some 
distance away. Assuming that backward scattering occurs 
for nearly direct collisions (i.e., a  «  area of nucleus), 
estimate the diameter of a gold nucleus.

A nsw ers to  Exercises

A: ^ B a . D: (b).
B: 2 X 1017. E: (a).
C: (e).
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This computer-generated reconstruction of a proton-antiproton collision at Fermilab 
(Fig. 4 3 -3 ) occurred at a combined energy of nearly 2TeV. It is one of the events that 
provided evidence for the top quark (1995). The wire 
drift chamber (Section 41-11) is in a magnetic field, 
and the radius of curvature of the charged particle 
tracks is a measure of each particle’s momentum  
(Section 27-4).

The white dots represent the signals seen on the 
electric wires of the drift chamber. The colored lines 
are the particle paths.

The top quark (t) has too brief a lifetime 
(~  10- 23s) to be detected itself, so we look for its
possible decay products. Analysis indicates 
following interaction and subsequent decays:

the

p +  p t +  t
W + b 

L>jet

vv

L L^jet 
u + d

L-net 
I-------- >jet

The tracks in the photo include jets (groups of 
particles moving in roughly the same direction), and 
a muon (/jl~) whose track is the pink one enclosed by 
a yellow rectangle to make it stand out. After reading 
this Chapter, try to name each symbol above and 
comment on whether all conservation laws hold.
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CHAPTER-OPENING QUESTION —Guess now!
1. Electrons are still considered fundamental particles (in the group called leptons). 

But protons and neutrons are no longer considered fundamental; they have 
substructure and are made up of

(a) pions.
(b) leptons.
(c) quarks.
(d) bosons.
(e) photons.

2. Thus the elementary particles as we see them today are
(a) atoms and electrons.
(b) protons, neutrons, and electrons.
(c) protons, neutrons, electrons, and photons.
(d) quarks, leptons, and gauge bosons.
(e) hadrons, leptons, and gauge bosons.

I
n the final two Chapters of this book we discuss two of the most exciting 
areas of contemporary physics: elementary particles in this Chapter, and 
cosmology and astrophysics in Chapter 44. These are subjects at the forefront 
of knowledge—elementary particles treats the smallest objects in the 

universe; cosmology treats the largest (and oldest) aspects of the universe.
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In this penultimate Chapter we discuss elementary particle physics, which 
represents the human endeavor to understand the basic building blocks of all 
matter, and the fundamental forces that govern their interactions. By the mid- 
1930s, it was recognized that all atoms can be considered to be made up of 
neutrons, protons, and electrons. The basic constituents of the universe were no 
longer considered to be atoms but rather the proton, neutron, and electron.
Besides these three “elementary particles,” several others were also known: the 
positron (a positive electron), the neutrino, and the 7 particle (or photon), for a 
total of six elementary particles.

By the 1950s and 1960s many new types of particles similar to the neutron and 
proton were discovered, as well as many “midsized” particles called mesons 
whose masses were mostly less than nucleon masses but more than the electron 
mass. (Other mesons, found later, have masses greater than nucleons.) Physicists 
felt that all of these particles could not be fundamental, and must be made up of even 
smaller constituents (later confirmed by experiment), which were given the name quarks.

Today, the basic constituents of matter are considered to be quarks (they make 
up protons and neutrons as well as mesons) and leptons (a class that includes 
electrons, positrons, and neutrinos). In addition, there are the “carriers of force” 
including gluons, the photon, and other “gauge bosons.” The theory that describes 
our present view is called the Standard Model. How we came to our present 
understanding of elementary particles is the subject of this Chapter.

One of the exciting recent developments of the last few years is an emerging 
synthesis between the study of elementary particles and astrophysics (Chapter 44).
In fact, recent observations in astrophysics have led to the conclusion that the 
greater part of the mass-energy content of the universe is not ordinary matter but 
two mysterious and invisible forms known as “dark matter” and “dark energy” 
which cannot be explained by the Standard Model in its present form.

Indeed, we are now aware that the Standard Model is not sufficient. There are 
problems and important questions still unanswered, and we will mention some of 
them in this Chapter and how we hope to answer them.

4 3 -1  High-Energy Particles and 
Accelerators

In the years after World War II, it was found that if the incoming particle in a 
nuclear reaction has sufficient energy, new types of particles can be produced. The 
earliest experiments used cosmic rays—particles that impinge on the Earth from 
space. In the laboratory, various types of particle accelerators have been 
constructed to accelerate protons or electrons to high energies, although heavy 
ions can also be accelerated. These high-energy accelerators have been used to 
probe more deeply into matter, to produce and study new particles, and to give us 
information about the basic forces and constituents of nature. Because the projec­
tile particles are at high energy, this field is sometimes called high-energy physics.

Wavelength and Resolution
Particles accelerated to high energy can probe the interior of nuclei and nucleons 
or other particles they strike. An important factor is that faster-moving projectiles 
can reveal more detail. The wavelength of projectile particles is given by 
de Broglie’s wavelength formula (Eq. 37-7),

A =  —> (4 3 -1 )
P
showing that the greater the momentum p of the bombarding particle, the shorter 
its wavelength. As discussed in Chapter 35 on diffraction, resolution of details in 
images is limited by the wavelength: the shorter the wavelength, the finer the 
detail that can be obtained. This is one reason why particle accelerators of higher 
and higher energy have been built in recent years: to probe ever deeper into the 
structure of matter, to smaller and smaller size.
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FIGURE 4 3 -1  Ernest O. Lawrence, 
around 1930, holding the first 
cyclotron (we see the vacuum  
chamber enclosing it).

FIGURE 4 3 -2  Diagram of a 
cyclotron. The magnetic field, 
applied by a large electromagnet, 
points into the page. The protons 
start at A , the ion source. The red 
electric field lines shown are for 
the alternating electric field 
in the gap at a certain moment.

External beam

EXAMPLE 43-1 High resolution with electrons. What is the wavelength, 
and hence the expected resolution, for 1.3-GeV electrons?

APPROACH Because 1.3 GeV is much larger than the electron mass, we must 
be dealing with relativistic speeds. The momentum of the electrons is found from 
Eq. 36-13, and the wavelength is A = h/p.
SOLUTION Each electron has K  = 1.3 GeV = 1300 MeV, which is about 
2500 times the rest energy of the electron (me2 = 0.51 MeV). Thus we can 
ignore the term (me2)2 in Eq. 36-13, E2 = p2c2 + m2c4, and we solve for p:

E 2 -  m e IE2 _ E  
e

Therefore the de Broglie wavelength is 

_ h _ he
x - - p - ~ e '

where E = 1.3 GeV. Hence

(6.63 X 10“34J-s)(3.0 X 108m/s)
A (1.3 x  109eV)(l.6 x  IO-19 J/eV)

or 0.96 fm. This resolution of about 1 fm is on the order of the size of nuclei (see 
Eq. 41-1).
NOTE The maximum possible resolution of this beam of electrons is far greater 
than for a light beam in a light microscope (A «  500 nm).

I EXERCISE A What is the wavelength of a proton with K =  1.00 TeV?

Another major reason for building high-energy accelerators is that new parti­
cles of greater mass can be produced at higher energies, transforming the kinetic 
energy of the colliding particles into massive particles by E = me2, as we will 
discuss shortly. Now we look at particle accelerators.

Cyclotron
The cyclotron was developed in 1930 by E. O. Lawrence (1901-1958; Fig. 43-1) at 
the University of California, Berkeley. It uses a magnetic field to maintain charged 
ions—usually protons—in nearly circular paths. Although particle physicists no 
longer use simple cyclotrons, they are used in medicine for treating cancer, and 
their operating principles are useful for understanding modern accelerators. The 
protons move in a vacuum inside two D-shaped cavities, as shown in Fig. 43-2. 
Each time they pass into the gap between the “dees,” a voltage accelerates them 
(the electric force), increasing their speed and increasing the radius of curvature of 
their path in the magnetic field. After many revolutions, the protons acquire high 
kinetic energy and reach the outer edge of the cyclotron where they strike a target. 
The protons speed up only when they are in the gap between the dees, and the 
voltage must be alternating. When protons are moving to the right across the gap 
in Fig. 43-2, the right dee must be electrically negative and the left one positive. A 
half-cycle later, the protons are moving to the left, so the left dee must be negative 
in order to accelerate them.

The frequency,/, of the applied voltage must be equal to that of the circulating 
protons. When ions of charge q are circulating within the hollow dees, the net force F 
on each is due to the magnetic field B, so F = qvB, where v is the speed of the 
ion at a given moment (Eq. 27-5). The magnetic force is perpendicular to both v 
and B and causes the ions to move in circles; the acceleration within the dees is thus 
centripetal and equals v2/r, where r is the radius of the ion’s path at a given moment.
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We use Newton’s second law, F = ma, and find that 
F = ma

mv2
qvB = -----r

when the protons are within the dees (not the gap), so
qBr

v ---------m
The time required for a complete revolution is the period T and is equal to 

_  distance _ 2irr _  lirm  
speed qBr/m qB 

Hence the frequency of revolution/is

f  = b  = (43-2)T 2irm
This is known as the cyclotron frequency.

" E 2 E E H E 2 S  Cyclotron. A small cyclotron of maximum radius 
R = 0.25 m accelerates protons in a 1.7-T magnetic field. Calculate (a) the 
frequency needed for the applied alternating voltage, and (b) the kinetic energy 
of protons when they leave the cyclotron.

APPROACH The frequency of the protons revolving within the dees (Eq. 43-2) 
must equal the frequency of the voltage applied across the gap if the protons are 
going to increase in speed.
SOLUTION (a) From Eq. 43-2,

/ -  932irm
(1.6 x  10-19 C)(1.7 T)

= 2.6 X 107Hz = 26 MHz,
(6.28)(l.67 x  10-27 kg) 

which is in the radio-wave region of the EM spectrum (Fig. 31-12).
(b) The protons leave the cyclotron at r = R = 0.25 m. From qvB = mv2/r  
(see above), we have v  = qBr/m, so their kinetic energy is

1 , 1 q2B2R2 q2B2R2 
K  = — mv = — m

2 2 m2 2m
(1.6 X 10-19 C)2(1.7 T)2(0.25 m)2

= 1.4 X 10_12J = 8.7 MeV.
(2)(l.67 X 10-27 kg)

The kinetic energy is much less than the rest energy of the proton (938 MeV), so 
relativity is not needed.
NOTE The magnitude of the voltage applied to the dees does not appear in the 
formula for K, and so does not affect the final energy. But the higher this voltage, 
the fewer the revolutions required to bring the protons to full energy.

An important aspect of the cyclotron is that the frequency of the applied 
voltage, as given by Eq. 43-2, does not depend on the radius r of the particle’s 
path. Thus the frequency does not have to be changed as the protons or ions start 
from the source and are accelerated to paths of larger and larger radii. But this is 
only true at nonrelativistic energies. At higher speeds, the momentum (Eq. 36-8) is 
p = mv / V l  “  v2/c2, so m in Eq. 43-2 has to be replaced by 7m and the 
cyclotron frequency /  (Eq. 43-2) depends on speed v. To keep the particles in 
sync, machines called synchrocyclotrons reduce their frequency in time to corre­
spond with Eq. 43-2 as m increases, as a packet of charged particles increases in 
speed at larger orbits.
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(a) (b)
FIGURE 4 3 -3  (a) Aerial view of Fermilab, near Chicago in Illinois; the main accelerator is a circular ring 1.0 km in radius.
(b) The interior of the tunnel of the main accelerator at Fermilab, showing (red) the ring of superconducting magnets for the 
1-TeV Tevatron.

Synchrotron
Another way to accelerate relativistic particles is to increase the magnetic field B 
in time so as to keep /  (Eq. 43-2) constant as the particles speed up. Such devices 
are called synchrotrons; the particles move in a circle of fixed radius, which can be 
very large. At the European Center for Nuclear Research (CERN) in Geneva, 
Switzerland, the new (2008) Large Hadron Collider (LHC) is 4.3 km in radius and 
accelerates protons to 7TeV. The Tevatron accelerator at Fermilab (the Fermi 
National Accelerator Laboratory) at Batavia, Illinois, has a radius of 1.0 km.1 
The Tevatron uses superconducting magnets to accelerate protons to about 
1000 GeV = 1 TeV (hence its name); 1 TeV = 1012 eV. These large synchrotrons 
use a narrow ring of magnets (see Fig. 43-3) with each magnet placed at the same 
radius from the center of the circle. The magnets are interrupted by gaps where 
high voltage accelerates the particles. Another way to describe the acceleration is to 
say the particles “surf” on a traveling electromagnetic wave within radiofrequency 
(RF) cavities. (The particles are first given considerable energy in a smaller accelerator, 
“the injector,” before being injected into the large ring of the large synchrotron.)

One problem of any accelerator is that accelerating electric charges radiate 
electromagnetic energy (see Chapter 31). Since ions or electrons are accelerated in 
an accelerator, we can expect considerable energy to be lost by radiation. The 
effect increases with energy and is especially important in circular machines where 
centripetal acceleration is present, such as synchrotrons, and hence is called 
synchrotron radiation. Synchrotron radiation can be useful, however. Intense 
beams of photons (7 rays) are sometimes needed, and they are usually obtained 
from an electron synchrotron.
I EXERCISE B By what factor is the diameter of the Fermilab Tevatron (Fig. 43-3) greater 
I than Lawrence’s original cyclotron (estimate from Fig. 43-1)?

tRobert Wilson, who helped design the Tevatron, and founded the field of proton therapy 
(Section 42-7), expressed his views on accelerators and national security in this exchange with Senator 
John Pastore during testimony before a Congressional Committee in 1969:

Pastore: “Is there anything connected with the hopes of this accelerator [the Tevatron] that in any 
way involves the security of the country?”

Robert Wilson: “No sir, I don’t believe so.”
Pastore: “Nothing at all?”
Wilson: “Nothing at all.. . . ”
Pastore: “It has no value in that respect?”
Wilson: “It has only to do with the respect with which we regard one another, the dignity of men, 

our love of culture.. . .  It has to do with are we good painters, good sculptors, great poets? I 
mean all the things we really venerate in our country and are patriotic about. . .  it has nothing 
to do directly with defending our country except to make it worth defending.”
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L inear A ccelerators
In a linear accelerator (linac), electrons or ions are accelerated along a straight- 
line path, Fig. 43-4, passing through a series of tubular conductors. Voltage 
applied to the tubes is alternating so that when electrons (say) reach a gap, the 
tube in front of them is positive and the one they just left is negative. At low 
speeds, the particles cover less distance in the same amount of time, so the tubes 
are shorter at first. Electrons, with their small mass, get close to the speed of light 
quickly, v ~ c, and the tubes are nearly equal in length. Linear accelerators are 
particularly important for accelerating electrons to avoid loss of energy due to 
synchrotron radiation. The largest electron linear accelerator has been at Stanford 
University (Stanford Linear Accelerator Center, or SLAC), about 3 km (2 mi) long, 
accelerating electrons to 50 GeV. It is now being decommissioned. Linacs accelerating 
protons are used as injectors into circular machines to provide initial kinetic 
energy. Many hospitals have 10-MeV electron linacs that strike a metal foil to 
produce 7 ray photons to irradiate tumors.

0
Smiigc _^ a9 U T f y X£ > £ FIGURE 4 3 - 4  Diagram of a simple 

linear accelerator.

Colliding Beams
High-energy physics experiments were once done by aiming a beam of particles from 
an accelerator at a stationary target. But to obtain the maximum possible collision 
energy from a given accelerator, two beams of particles are now accelerated 
to very high energy and are steered so that they collide head-on. One way to 
accomplish such colliding beams with a single accelerator is through the use of 
storage rings, in which oppositely circulating beams can be repeatedly brought into 
collision with one another at particular points. For example, in the experiments 
that provided strong evidence for the top quark (Chapter-Opening Photo and 
Section 43-9), the Fermilab Tevatron accelerated protons and antiprotons each to 
900 GeV, so that the combined energy of head-on collisions was 1.8 TeV.

The largest collider is the Large Hadron Collider (LHC) at CERN, with a 
circumference of 26.7 km (Fig. 43-5), scheduled to begin operating as this book is 
about to be published. The two colliding beams each carry 7-TeV protons for a 
total interaction energy of 14 TeV.

FIGURE 4 3 -5  The large circle represents the position 
of the tunnel, about 100 m below the ground at CERN  
(near Geneva) on the French-Swiss border, which 
houses the LHC. The smaller circle shows the position of 
the Super Proton Synchrotron that will be used for 
accelerating protons prior to injection into the LHC.
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FIGURE 4 3 - 6  ATLAS, one of 
several large com plex detectors at 
the LHC, is shown here as it was 
being built. It is hoped the LHC will 
provide evidence for the Higgs 
boson (to help understand the 
Standard M odel), and perhaps to 
find supersymmetric particles which 
are candidates for the unknown dark 
matter that makes up a large part of 
the m ass-energy of the universe. We 
will touch on these topics later in 
this Chapter.

Figure 43-6 shows part of one of the detectors (ATLAS) as it was being 
constructed at the LHC. The detectors within ATLAS include silicon semicon­
ductor detectors with huge numbers of pixels used to track particle paths, to find 
their point of interaction, and to measure their radius of curvature in a magnetic 
field and thus determine their momentum (Section 27-4). Their energy is determined 
in “calorimeters” utilizing plastic, liquid, or dense metal compound crystal 
scintillators (Section 41-11).

In the planning stage is the International Linear Collider (ILC) which would 
have colliding beams of e_ and e+ at around 0.3 to ITeV, with semiconductor 
detectors using CMOS (Section 33-5) with embedded transistors to allow fast readout.

Vi Protons a t relativistic speeds. Determine the energy
required to accelerate a proton in a high-energy accelerator (a) from rest to 
v = 0.900 c, and (b) from v = 0.900 c to v = 0.999 c. (c) What is the kinetic 
energy achieved by the proton in each case?

APPROACH We use the work-energy principle, which is still valid relativistically 
as mentioned in Section 36-11: W  = A K
SOLUTION The kinetic energy of a proton of mass m  is given by Eq. 36-10,

K  = (J -  1 )mc2, 

where the relativistic factor 7 is 

1

V l  -  v2/c2

The work-energy theorem becomes

W  = b K  = (AT)mc2

since m  and c are constant.
(a) For v = 0, 7 = 1; and for v = 0.900c

2.29.
\ / l  -  (0.900)2

For a proton, me2 = 938 MeV, so the work (or energy) needed to accelerate it 
from rest to v = 0.900 c is

W = AK = (A7) me2

= (2.29 -  1.00)(938 MeV) = 1.21 GeV.
(b) For v = 0.999 c,

1

VT 22.4.
(0.999)2

So the work needed to accelerate a proton from 0.900 c to 0.999 c is 

W = AK = (A7) me2

= (22.4 -  2.29)(938 MeV) = 18.9 GeV, 

which is 15 times as much.
(c) The kinetic energy reached by the proton in (a) is just equal to the work done 
on it, K  = 1.21 GeV. The final kinetic energy of the proton in (b), moving at 
v = 0.999 c, is

K  = (7 -  l)m c2 = (21.4)(938 MeV) = 20.1 GeV,

which makes sense since, starting from rest, we did work W  = 1.21 GeV + 18.9 GeV 
= 20.1 GeV on it.
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EXAMPLE 43-4 Speed of a 1.0-TeV proton. What is the speed of a 1.0-TeV 
proton produced at Fermilab?
APPROACH The kinetic energy K  = 1.0 TeV = 1.0 X 1012eV is much greater 
than the mass of the proton, 0.938 X 109 eV, so relativistic calculations must be 
used. In particular, we use Eq. 36-10:

2 _ me2 2
K = (7 -  l)m c =

\ / \  -  v2/c2

SOLUTION Compared to K  = 1.0 X 1012eV, the rest energy (« 10 3TeV) can 
be neglected, so we write

K =

Then

or

1 - *  =c2 \ K

v _  /racM 2 _ I _ (938 X 106e V \2
c V \ K J  V \ 1.0 X 10 eV 

v = 0.9999996 c.
The proton is traveling at a speed extremely close to c, the speed of light.

4 3 -2  Beginnings of Elementary Particle 
Physics—Particle Exchange

The accepted model for elementary particles today views quarks and leptons as the 
basic constituents of ordinary matter. To understand our present-day view of 
elementary particles, it is necessary to understand the ideas leading up to its 
formulation.

Elementary particle physics might be said to have begun in 1935 when the 
Japanese physicist Hideki Yukawa (1907-1981) predicted the existence of a new 
particle that would in some way mediate the strong nuclear force. To understand 
Yukawa’s idea, we first consider the electromagnetic force. When we first discussed 
electricity, we saw that the electric force acts over a distance, without contact. To 
better perceive how a force can act over a distance, we used the idea of a field. The 
force that one charged particle exerts on a second can be said to be due to the 
electric field set up by the first. Similarly, the magnetic field can be said to carry 
the magnetic force. Later (Chapter 31), we saw that electromagnetic (EM) fields 
can travel through space as waves. Finally, in Chapter 37, we saw that electromag­
netic radiation (light) can be considered as either a wave or as a collection of 
particles called photons. Because of this wave-particle duality, it is possible to 
imagine that the electromagnetic force between charged particles is due to
(1) the EM field set up by one charged particle and felt by the other, or
(2) an exchange of photons (7 particles) between them.
It is (2) that we want to concentrate on here, and a crude analogy for how an 
exchange of particles could give rise to a force is suggested in Fig. 43-7. In 
part (a), two children start throwing heavy pillows at each other; each throw and 
each catch results in the child being pushed backward by the impulse. This is the 
equivalent of a repulsive force. On the other hand, if the two children exchange 
pillows by grabbing them out of the other person’s hand, they will be pulled toward 
each other, as when an attractive force acts.

FIGURE 4 3 - 7  Forces equivalent to 
particle exchange, (a) Repulsive 
force (children on roller skates 
throwing pillows at each other).
(b) Attractive force (children grabbing 
pillows from each other’s hands).

r  - « f

J y S k -  -  A A
(a) Repulsive force (children 

throwing pillows) 

fc j
(b) Attractive force (children grabbing 

pillows from each other’s hands)
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FIGURE 4 3 - 8  Feynman diagram 
showing a photon acting as the 
carrier of the electromagnetic force 
between two electrons. This is sort of 
an x vs. t graph, with t increasing 
upward. Starting at the bottom, two 
electrons approach each other (the 
distance between them decreases in 
time). A s they get close, momentum  
and energy get transferred from one 
to the other, carried by a photon (or, 
perhaps, by more than one), and the 
two electrons bounce apart.

FIGURE 4 3 - 9  Early model 
showing meson exchange when a 
proton and neutron interact via the 
strong nuclear force. (Today, as we 
shall see shortly, we view the strong 
force as carried by gluons between  
quarks.)

p n

Meson

n 
P

For the electromagnetic force, it is photons that are exchanged between two 
charged particles that give rise to the force between them. A simple diagram 
describing this photon exchange is shown in Fig. 43-8. Such a diagram, called a 
Feynman diagram after its inventor, the American physicist Richard Feynman 
(1918-1988), is based on the theory of quantum electrodynamics (QED).

Figure 43-8 represents the simplest case in QED, in which a single photon is 
exchanged. One of the charged particles emits the photon and recoils somewhat as 
a result; and the second particle absorbs the photon. In any collision or interaction, 
energy and momentum are transferred from one charged particle to the other, 
carried by the photon. The photon is absorbed by the second particle after it is 
emitted by the first and is not observable. Hence it is referred to as a virtual 
photon, in contrast to one that is free and can be detected by instruments. The 
photon is said to mediate, or carry, the electromagnetic force.

By analogy with photon exchange that mediates the electromagnetic force, 
Yukawa argued that there ought to be a particle that mediates the strong nuclear 
force—the force that holds nucleons together in the nucleus. Yukawa called this 
predicted particle a meson (meaning “medium mass”). Figure 43-9 is a Feynman 
diagram showing the original model of meson exchange: a meson carrying the 
strong force between a neutron and a proton.

A rough estimate of the mass of the meson can be made as follows. Suppose 
the proton on the left in Fig. 43-9 is at rest. For it to emit a meson would require 
energy (to make the meson’s mass) which, coming from nowhere, would violate 
conservation of energy. But the uncertainty principle allows nonconservation of 
energy by an amount AE  if it occurs only for a time At given by 
(AE)(At) «  h /277. We set AE  equal to the energy needed to create the mass m 
of the meson: AE = me2. Conservation of energy is violated only as long as the 
meson exists, which is the time At required for the meson to pass from one 
nucleon to the other, where it is absorbed and disappears. If we assume the meson 
travels at relativistic speed, close to the speed of light c, then Â  need be at most 
about At = d/c, where d is the maximum distance that can separate the inter­
acting nucleons. Thus we can write

A E A t «  A  2ir

d \
2tt

me* -  (4 3 -3 )

The range of the strong nuclear force (the maximum distance away it can be felt) 
is small—not much more than the size of a nucleon or small nucleus (see 
Eq. 41-1)—so let us take d tt 1.5 x 10“15 m. Then from Eq. 43-3,

me21 —

me
he (6.6 X 10-34 J • s)(3.0 X 108 m/s) 

2ird ~ (6.28)(l.5 X 10-15m)
2.1 X 10“n J = 130 MeV.

The mass of the predicted meson, roughly 130 MeV/c2, is about 250 times the 
electron mass of 0.51 MeV/c2.

EXERCISE C What effect does an increase in the mass of the virtual exchange particle 
have on the range of the force it mediates? (a) Decreases it; (b) increases it; (c) has no 
appreciable effect; (d) decreases the range for charged particles and increases the range 
for neutral particles.

Note that since the electromagnetic force has infinite range, Eq. 43-3 with 
d = oo tells us that the exchanged particle for the electromagnetic force, the 
photon, will have zero mass, which it does.
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The particle predicted by Yukawa was discovered in cosmic rays by C. F. 
Powell and G. Occhialini in 1947, and is called the “77” or pi meson, or simply the 
pion. It comes in three charge states: +e, —e, or 0, where e = 1.6 X 10_19C. 
The 7r+ and tt~ have mass of 139.6 MeV/c2 and the 77° a mass of 135.0 MeV/c2, all 
close to Yukawa’s prediction. All three interact strongly with matter. Reactions 
observed in the laboratory, using a particle accelerator, include

p + p 
p + p

P  +  P  +  77°,

p + n + tt+. (4 3 -4 )

The incident proton from the accelerator must have sufficient energy to produce 
the additional mass of the free pion.

Yukawa’s theory of pion exchange as carrier of the strong force has been 
superseded by quantum chromodynamics in which protons, neutrons, and other 
strongly interacting particles are made up of basic entities called quarks, and the 
basic carriers of the strong force are gluons, as we shall discuss shortly. But the 
basic idea of the earlier theory, that forces can be understood as the exchange of 
particles, remains valid.

There are four known types of force—or interactions—in nature. The electro­
magnetic force is carried by the photon, the strong force by gluons. What about the 
other two: the weak force and gravity? These too are believed to be mediated by 
particles. The particles that transmit the weak force are referred to as the W+, W“, 
and Z°, and were detected in 1983 (Fig. 43-10). The quantum (or carrier) of the 
gravitational force is called the graviton, and if it exists it has not yet been observed.

FIGURE 4 3 -1 0  (a) Computer 
reconstruction of a Z-particle decay 
into an electron and a positron
(Zc + e ) whose tracks are
shown in white, which took place in 
the UA1 detector at CERN.
(b) Photo of the UA1 detector at 
CERN as it was being built.

A comparison of the four forces is given in Table 43-1, where they are listed 
according to their (approximate) relative strengths. Notice that although gravity may 
be the most obvious force in daily life (because of the huge mass of the Earth), on a 
nuclear scale it is by far the weakest of the four forces, and its effect at the particle 
level can nearly always be ignored.

TABLE 43-1 The Four Forces in Nature

Type
Relative Strength (approx., 

for 2 protons in nucleus) Field Particle

Strong 1 Gluons
Electromagnetic IO"2 Photon
Weak 10“6 W * and Z°
Gravitational 10-38 Graviton (?)

SECTION 43-2  Beginnings of Elementary Particle Physics—Particle Exchange 1173



4 3 -3  Particles and Antiparticles

+mc2

-mc*

normal
electrons

negative
sea

Photonhf > 2me2

(a)

FIGURE 4 3 -1 1  (a) Possible energy 
states for an electron. N ote the vast 
sea of fully occupied electron states at E < —me2, (b) A n electron in the 
negative sea is hit by a photon  {E > 2me2) and knocks it up to a 
normal positive energy state. The 
positive “hole” left behind acts like a 
positive electron— it is a positron.

The positron, as we discussed in Sections 37-5 (pair production) and 41-5 (/3+ decay), 
is basically a positive electron. That is, many of its properties are the same as for 
the electron, such as mass, but it has the opposite electric charge (+e). Other 
quantum numbers that we will discuss shortly are also reversed. The positron is 
said to be the antiparticle to the electron.

The original idea for antiparticles came from a relativistic wave equation 
developed in 1928 by the Englishman P. A. M. Dirac (1902-1984). Recall that the 
non-relativistic Schrodinger equation took conservation of energy as a starting 
point. The Dirac equation too was based in part on conservation of energy. In 
Chapter 36, we saw that the total energy E  of a particle with mass m and 
momentum p  and zero potential energy is given by Eq. 36-13, E2 = p2c2 + ra2c4. 
Thus

E = ± v V c 2 + m2c4.
Dirac applied his new equation and found that it included solutions with both + and 
-  signs. He could not ignore the solution with the negative sign, which we might 
have thought unphysical. If those negative energy states are real, then we would 
expect normal free electrons to drop down into those states, emitting photons— 
never experimentally seen. To deal with this difficulty, Dirac postulated that all those 
negative energy states are normally occupied. That is, what we thought was the 
vacuum is instead a vast sea of electrons in negative energy states (Fig. 43-lla). 
These electrons are not normally observable. But if a photon strikes one of these 
negative energy electrons, that electron can be knocked up to a normal (E > me2) 
energy state as shown in Fig. 43-llb. (Note in Fig. 43-11 that there are no energy 
states between E = - mc2 and E = +mc2 because p2 cannot be negative in the 
equation E = ± V p2c2 +  m 2c4. )  The photon that knocks an e“ from the negative 
sea up to a normal state (Fig. 43-llb) must have an energy greater than 2me2. What 
is left behind is a hole (as in semiconductors, Sections 40-7 and 40-8) with positive 
charge. We call that “hole” a positron, and it can move around as a free particle with 
positive energy. Thus Fig. 43-llb represents (Section 37-5) pair production: 7 —> e“e+.

The positron was first detected as a curved path in a cloud chamber in a 
magnetic field by Carl Anderson in 1932. It was predicted that other particles also 
would have antiparticles. It was decades before another type was found. Finally, in 
1955 the antiparticle to the proton, the antiproton (p), which carries a negative 
charge (Fig. 43-12), was discovered at the University of California, Berkeley,

FIGURE 4 3 -1 2  Liquid-hydrogen bubble- 
chamber photograph of an antiproton (p) 
colliding with a proton at rest, producing a 
X i-anti-X i pair (p +  p —» H-  +  H+) that 
subsequently decay into other particles. The 
drawing indicates the assignment of 
particles to each track, which is based on 
how or if that particle decays, and on mass 
values estimated from measurement of 
momentum (curvature of track in magnetic 
field) and energy (thickness of track, for 
example). Neutral particle paths are shown 
by dashed lines since neutral particles 
produce no bubbles and hence no tracks.

1174 CHAPTER 43 Elementary Particles



by Emilio Segre (1905-1989, Fig. 43-13) and Owen Chamberlain (1920-2006). A bar, 
such as over the p, is used in general to indicate the antiparticle (p). Soon after, the 
antineutron (n) was found. All particles have antiparticles. But a few, like the photon and 
the 77°, do not have distinct antiparticles—we say that they are their own antiparticles.

Antiparticles are produced in nuclear reactions when there is sufficient energy 
available to produce the required mass, and they do not live very long in the pres­
ence of matter. For example, a positron is stable when by itself; but if it encounters 
an electron, the two annihilate each other. The energy of their vanished mass, plus 
any kinetic energy they possessed, is converted into the energy of 7 rays or of 
other particles. Annihilation also occurs for all other particle-antiparticle pairs.

The vast sea of electrons with negative energy in Fig. 43-11 is the vacuum (or 
vacuum state). According to quantum mechanics, the vacuum is not empty, but 
contains electrons and other particles as well. The uncertainty principle allows a 
particle to jump briefly up to a normal energy, thus creating a particle-antiparticle 
pair. It is possible that they could be the source of the recently discovered dark 
energy that fills the universe (Chapter 44). We still have a lot to learn.

Antimatter is a term referring to material that would be made up of 
“antiatoms” in which antiprotons and antineutrons would form the nucleus around 
which positrons (antielectrons) would move. The term is also used for antiparticles 
in general. If there were pockets of antimatter in the universe, a huge explosion 
would occur if it should encounter normal matter. It is believed that antimatter was 
prevalent in the very early universe (Section 44-7).

4 3 -4  Particle Interactions and 
Conservation Laws

One of the important uses of high-energy accelerators is to study the interactions 
of elementary particles with each other. As a means of ordering this subnuclear 
world, the conservation laws are indispensable. The laws of conservation of energy, 
of momentum, of angular momentum, and of electric charge are found to hold 
precisely in all particle interactions.

A study of particle interactions has revealed a number of new conservation 
laws which (just like the old ones) are ordering principles: they help to explain why 
some reactions occur and others do not. For example, the following reaction has 
never been observed:

p + n \ » p  + p + p 
even though charge, energy, and so on, are conserved (\> means the reaction does 
not occur). To understand why such a reaction does not occur, physicists 
hypothesized a new conservation law, the conservation of baryon number. (Baryon 
number is a generalization of nucleon number, which we saw earlier is conserved 
in nuclear reactions and decays.) All nucleons are defined to have baryon number 
B = +1, and all antinucleons (antiprotons, antineutrons) have B = - 1. All 
other types of particles, such as photons, mesons, and electrons and other leptons, 
have B = 0. The reaction shown at the start of this paragraph does not conserve 
baryon number since the left side has B = ( + 1) + ( + 1) = +2, and the right has 
B = ( + 1) + ( + 1) + ( -1 )  = +1. On the other hand, the following reaction does 
conserve B and does occur if the incoming proton has sufficient energy: 

p + p - > p  + p + p + p,
B = +1 + 1 = +1 + 1 - 1  + 1.

As indicated, B = +2 on both sides of this equation. From these and other reactions, 
the conservation of baryon number has been established as a basic principle of physics.

Also useful are conservation laws for the three lepton numbers, associated with weak 
interactions including decays. In ordinary j8 decay, an electron or positron is emitted 
along with a neutrino or antineutrino. In another type of decay, a particle known as a 
“/u” or mu meson, or muon, can be emitted instead of an electron. The muon (discov­
ered in 1937) seems to be much like an electron, except its mass is 207 times larger 
(106 MeV/c2). The neutrino (ve) that accompanies an emitted electron is found to 
be different from the neutrino (v^) that accompanies an emitted muon.

FIGURE 4 3 -1 3  Emilio Segre: he 
worked with Fermi in the 1930s, later 
discovered the first “man-made” 
element, technetium, and other 
elements, and then the antiproton. 
The inscription below the photo is 
from a book by Segre given to this 
book’s author.

/ j \  C A U T I O NThe different types of neutrinos are not identical
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Each of these neutrinos has an antiparticle: ve and v . In ordinary /3 decay we have, 
for example,

n —» p + e_ + ve
but not n \> p + e_ + v^. To explain why these do not occur, the concept of 
electron lepton number, Le, was invented. If the electron (e“) and the electron 
neutrino (ve) are assigned Le = + 1 , and e+ and ve are assigned Le = - 1, whereas 
all other particles have Le = 0, then all observed decays conserve Le. For example, 
in n —> p + e“ + ve, initially Le = 0, and afterward Le = 0 + ( + 1 ) + ( - 1 ) = 0. 
Decays that do not conserve Le, even though they would obey the other 
conservation laws, are not observed to occur.

In a decay involving muons, such as
7T+ -> fl+ + Vp,

a second quantum number, muon lepton number ( L ll) ,  is conserved. The /jl and are 
assigned Ll l = + 1, and their antiparticles fi+ and have = — 1, whereas all other 
particles have = 0. too is conserved in interactions and decays. Similar assign­
ments can be made for the tau lepton number, LT, associated with the r  lepton 
(discovered in 1976 with mass more than 3000 times the electron mass) and its neutrino, vT.

Keep in mind that antiparticles have not only opposite electric charge from 
their particles, but also opposite B, Le, L^, and Lr . For example, a neutron has 
B = +1, an antineutron has B = -1  (and all the L’s are zero).

CONCEPTUAL EXAMPLE 45 -5  I Lepton number in muon decay. Which of the 
following decay schemes is possible for muon decay: (a) /jl~  —> e“ + ve;
(b) /jl~ e_ + v& + ; (c) /jl~ —» e_ + vQl  All of these particles have LT = 0.
RESPONSE A fi has = +1 and Le = 0. This is the initial state for all decays 
given, and the final state must also have = +1, Le = 0. In (a), the final state 
has = 0 + 0 = 0, and Le = +1 -  1 = 0; LM would not be conserved and 
indeed this decay is not observed to occur. The final state of (b) has 

= 0 + 0 + 1 = +1 and Le = +1 -  1 + 0 = 0, so both L M and Le are 
conserved. This is in fact the most common decay mode of the Lastly, (c) does 
not occur because Le (= +2 in the final state) is not conserved, nor is L^.

Energy and momentum are conserved. In addition to the 
“number” conservation laws which help explain the decay schemes of particles, we 
can also apply the laws of conservation of energy and momentum. The decay of a 2 + 
particle at rest with a mass of 1189 MeV/c2 (Table 43-2 in Section 43-6) commonly 
yields a proton (mass = 938 MeV/c2) and a neutral pion, 7r° (mass = 135 MeV/c2):

2 + -► p + 77°.
What are the kinetic energies of the decay products, assuming the 2 + parent 
particle was at rest?
APPROACH We find the energy release from the change in mass (E  = me2) as 
we did for nuclear processes (Eq. 41-3 or 42-2a), and apply conservation of 
energy and momentum.
SOLUTION The energy released, or Q-value, is the change in mass times c2:

Q = [™?+ ~ (w*p + rn^)]c2 = [1189 -  (938 + 135)] MeV = 116MeV. 
This energy Q becomes the kinetic energy of the resulting decay particles, p and 77°: 

Q = Kp + Kv 0
with each particle’s kinetic energy related to its momentum by (Eqs. 36-11 and 13): 

Kp = Ep -  mvc2 = V G v T " ~+Tm^c2f  mpc2, 
and similarly for the pion. From momentum conservation, the proton and pion have 
the same magnitude of momentum since the original 2 + was at rest: pv = /V  = p • 
Then, Q = K v + K,« gives 116 MeV = \ \ / ( p c f  + (938 MeV)2 -  938 MeV] + 
W ( p c f  + (135 MeV)2 -  135 MeV], We solve this for pc, which gives 
pc = 189 MeV. Substituting into the expression above for the kinetic energy, first 
for the proton, then for the pion, we obtain Kp = 19 MeV and Kvo = 97 MeV.

EXAMPLE 43 -6
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43—5 Neutrinos—Recent Results
We first met neutrinos with regard to (3~ decay in Section 41-5. The study of 
neutrinos is a “hot” subject today. Experiments are being carried out in deep 
underground laboratories, sometimes in deep mine shafts. The thick layer of earth 
above is meant to filter out all other “background” particles, leaving mainly the 
very weakly interacting neutrinos to arrive at the detectors.

Some very important results have come to the fore in recent years. First there 
was the solar neutrino problem. The energy output of the Sun is believed to be due 
to the nuclear fusion reactions discussed in Chapter 42, Eqs. 42-7 and 42-8. The 
neutrinos emitted in these reactions are all ve (accompanied by e+). But the rate at 
which ve arrive at Earth is measured to be much less than expected based on the 
power output of the Sun. It was then proposed that perhaps, on the long trip 
between Sun and Earth, ve might turn into or vT. Subsequent experiments 
confirmed this hypothesis.Thus the three neutrinos, ve,v jJi,v T, can change into one 
another in certain circumstances, a phenomenon called neutrino flavor oscillation 
(each of the three neutrino types being called, whimsically, a different “flavor”). This result 
suggests that the lepton numbers Le, , and L T are not perfectly conserved. But 
the sum, Le + + LT, is believed to be always conserved.

The second exceptional result has long been speculated on: are neutrinos 
massless as originally thought, or do they have a nonzero mass? Rough upper 
limits on the masses have been made. Today astrophysical experiments show that 
the sum of all three neutrino masses is less than about 0.14 eV/c2. But can the 
masses be zero? Not if there are the flavor oscillations discussed above. It seems 
likely that at least one neutrino type has a mass of at least 0.04 eV/c2.

As a result of neutrino oscillations, the three types of neutrino may not be exactly 
what we thought they were (e, /jl, t ) .  If not, the three basic neutrinos, called 1, 2, 
and 3, are linear combinations of and vT.

Another outstanding question is whether or not neutrinos are in the category 
called Majorana particles/ meaning they would be their own antiparticles. If so, a 
lot of other questions (and answers) would appear.

* Neutrino Mass Estimate from a Supernova
The supernova of 1987 offered an opportunity to estimate electron neutrino mass. 
If neutrinos do have mass, then v < c and neutrinos of different energy would 
take different times to travel the 170,000 light-years from the supernova to Earth. To 
get an idea of how such a measurement could be done, suppose two neutrinos from 
“SN1987a” were emitted at the same time and detected on Earth (via the reaction 
v& + p —> n + e+) 10 seconds apart, with measured kinetic energies of about 
20 MeV and 10 MeV. Since we expect the neutrino mass to be surely less than 100 eV 
(from other laboratory measurements), and since our neutrinos have kinetic energy 
of 20 MeV and 10 MeV, we can make the approximation mv c2 «  E, so that E  (the 
total energy) is essentially equal to the kinetic energy. We use Eq. 36-11, which tells us

where again we used the binomial expansion [(1 -  x) 1 = 1 + x + 
trThe brilliant young physicist Ettore Majorana (1906-1938) disappeared from a ship under mysterious

We solve this for v, the velocity of a neutrino with energy E\

where we have used the binomial expansion (1 — x ¥  = 1 — \x  + •■*, and we 
ignore higher-order terms since ra2 c4 «  E2. The time t for a neutrino to travel a 
distance d (= 170,000 ly) is

circumstances in 1938 at the age of 31. SECTION 43-5  1177



The difference in arrival times for our two neutrinos of energies Ex = 20 MeV and 
E2 = 10 MeV is

d m Avc 
11 — ~c 2 E\

1
E l

We solve this for mv c2 and set t2 — tx = 10 s:

m„c - [  

[(1 /7

E \E \
E \ -  E \ a

2(3.0 X 108m/s)(10s) (400 MeV2)(l00 MeV2) “Ii
(1.7 X 105ly)(l.0 X 1016m/ly) (400 MeV2 -  100 MeV2) 

= 22 X K r6 MeV = 22 eV.

]
We thus estimate the mass of the neutrino to be 22 eV /c2, but there would of course 
be experimental uncertainties, not to mention the unwarranted assumption that 
the two neutrinos were emitted at the same time.

Theoretical models of supernova explosions suggest that the neutrinos are 
emitted in a burst that lasts from a second or two up to perhaps 10 s. If we assume 
the neutrinos are not emitted simultaneously but rather at any time over a 10-s 
interval, what then could we say about the neutrino mass based on the data given 
above? The 10-s difference in their arrival times could be due to a 10-s difference 
in their emission time. In this case our data would be consistent with zero mass, 
and it puts an approximate upper limit on the neutrino mass of 22 eV/c2.

The actual detection of these neutrinos was brilliant—it was a rare event that 
allowed us to detect something other than EM radiation from beyond the solar 
system, and was an exceptional confirmation of theory. In the experiments, the 
most sensitive detector consisted of several thousand tons of water in an under­
ground chamber. It detected 11 events in 12 seconds, probably via the reaction 
ve + p —> n + e+. There was not a clear correlation between energy and time of 
arrival. Nonetheless, a careful analysis of that experiment set a rough upper limit 
on the electron anti-neutrino mass of about 4 eV/c2. The more recent results 
mentioned above are much more definitive—they provide evidence that mass is 
much smaller, and that it is not zero.

4 3 - 6  Particle Classification
In the decades following the discovery of the tt meson in the late 1940s, hundreds of 
other subnuclear particles were discovered. One way of arranging the particles in 
categories is according to their interactions, since not all particles interact by means 
of all four of the forces known in nature (though all interact via gravity). Table 43-2 
(next page) lists some of the more common particles classified in this way along with 
many of their properties. At the top of Table 43-2 are the so-called “fundamental” 
particles which we believe have no internal structure. Below them are some of the 
“composite” particles which are made up of quarks, according to the Standard Model.

The fundamental particles include the gauge bosons (so-named after the 
theory that describes them, “gauge theory”), which include the gluons, the photon, 
and the W and Z particles; these are the particles that mediate the strong, 
electromagnetic, and weak interactions, respectively. Also fundamental are the 
leptons, which are particles that do not interact via the strong force but do interact 
via the weak nuclear force. Leptons that carry electric charge also interact via the 
electromagnetic force. The leptons include the electron, the muon, and the tau, and 
three types of neutrino: the electron neutrino (ve), the muon neutrino ( i 'J , and the 
tau neutrino (vT). Each has an antiparticle.
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TABLE 43-2 Particles (selected)^

Category
Forces Particle 
involved name Symbol

Anti-
particle Spin

Mass
(M eV/c2)

B  Le Lp Lt S Mean life 
[antiparticles have opposite sign] (s) Principal Decay Modes

Fundamental
Gauge bosons str Gluons g Self 1 0 0 0 0 0 0 Stable

(torce em Photon 7 Self 1 0 0 0 0 0 0 Stablecarriers) w, em W W+ W “ 1 80.40 X  103 0 0 0 0 0 « io - 24 eve, f iV p ,  t v t , hadrons
w Z Z° Self 1 91.19 X  103 0 0 0 0 0 ^ K T 24 e+e_, t +t ~, hadrons

Leptons w, em* Electron e“ e+ l 0.511 0 +1 0 0 0 Stable
Neutrino (e) i'e

l 0 (<0.14 eV)* 0 +1 0 0 0 Stable
Muon l 105.7 0 0 +1 0 0 2.20 X  10“6 e“ve*V
Neutrino (/x) l 0 (<0.14 eV)* 0 0 +1 0 0 Stable
Tau T T+ l 1777 0 0 0 +1 0 2.91 X  10“13 lj, vfJyT, e~vevT, hadrons +vT
Neutrino (r) J'r VT

l
2 0 (<0.14 eV)* 0 0 0 +1 0 Stable

Hadrons (composite), selected

Mesons str, em,w Pion 7T+ 7T~ 0 139.6 0 0 0 0 0 2.60 X  10“8
(quark- 77° Self 0 135.0 0 0 0 0 0 0.84 X  10“16 27antiquark) Kaon K+ K“ 0 493.7 0 0 0 0 + 1 1.24 X  10“8 fl+ V p , TT+TT°

K g n 0 497.7 0 0 0 0 + 1 0.89 X  10-10 7T+7T~, 2tT°
k £ n 0 497.7 0 0 0 0 +1 5.17 X  10“8 7T± e+ti'e, 7T± /A+(J^, 377

Eta Self 0 547.5 0 0 0 0 0 « io - 18 27, 3 tt°, TT+Tr~Tr°
Rho P° Self 1 775 0 0 0 0 0 «  10“23

%CN'fc

P+ P~ 1 775 0 0 0 0 0 « i o - 23 1=

and others

Baryons str, em,w Proton P P
1
2 938.3 +1 0 0 0 0 Stable

(3 quarks) Neutron n n 1
2 939.6 +1 0 0 0 0 886 pe Vq

Lambda A0 A0 1
2 1115.7 +1 0 0 0 -1 2.63 X  10“10 p77"_ , n7T°

Sigma 2 + 2 “ 1
2 1189.4 +1 0 0 0 -1 0.80 X  IO-10 P7T°, n7T+

2° 2° 1
2 1192.6 +1 0 0 0 -1 7.4 X  10“20 A°y

2 " 2 + 1
2 1197.4 +1 0 0 0 -1 1.48 X  10“10 n7r_

Xi H° a 0
1
2 1314.8 +1 0 0 0 -2 2.90 X  10“10 A V

B +
1
2 1321.3 +1 0 0 0 - 2 1.64 X  10“10 A°7T_

Omega Cl~ 12+ 3
2 1672.5 +1 0 0 0 - 3 0.82 X  10“10 B°77- A°K- H “7T°

and others

tSee also Table 43-4 for particles with charm and bottomness. S in this Table stands for “strangeness” (see Section 43-8). More detail online at: pdg.lbl.gov. 
^Neutrinos partake only in the weak interaction. Experimental upper limits on neutrino masses are given in parentheses, as obtained mainly from the WMAP survey 
(Chapter 44). Detection of neutrino oscillations suggests that at least one type of neutrino has a nonzero mass greater than 0.04 eV.

The second category of particle in Table 43-2 is the hadrons, which are 
composite particles as we will discuss shortly. Hadrons are those particles that 
interact via the strong nuclear force. Hence they are said to be strongly interacting 
particles. They also interact via the other forces, but the strong force predominates 
at short distances. The hadrons include the proton, neutron, pion, and a large 
number of other particles. They are divided into two subgroups: baryons, which are 
those particles that have baryon number +1 (or - 1  in the case of their antiparti­
cles) and, as we shall see, are each made up of three quarks; and mesons, which have 
baryon number = 0, and are made up of a quark and an antiquark.

Only a few of the hundreds of hadrons (a veritable “zoo”) are included in 
Table 43-2. Notice that the baryons A, 2 , B, and II all decay to lighter-mass 
baryons, and eventually to a proton or neutron. All these processes conserve 
baryon number. Since there is no particle lighter than the proton with B = +1, if 
baryon number is strictly conserved, the proton itself cannot decay and is stable. 
(But see Section 43-11.) Note that Table 43-2 gives the mean life (r) of each 
particle (as is done in particle physics), not the half-life (71). Recall that they 
differ by a factor 0.693: r  = 71/ln 2 = 71/0.693, Eq. 41-$. The term lifetime 
in particle physics means the mean life r  (= mean lifetime).

The baryon and lepton numbers (B, L e , L^, L T), as well as strangeness S 
(Section 43-8), as given in Table 43-2 are for particles; their antiparticles have 
opposite sign for these numbers.
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l=Kf:Uim=E:Egr^ Baryon decay. Show that the decay modes of the 2 + baryon 
 given in Table 43-2 do not violate the conservation laws we have studied up to now: 
energy, charge, baryon number, lepton numbers.

APPROACH Table 43-2 shows two possible decay modes, (a) 2 + —» p + 7r°,
(b) 2 + —> n + 7r+. We check each for energy conservation, charge conservation, 
and conservation of baryon number. All the particles have lepton numbers equal 
to zero.
SOLUTION (a) Energy: for 2 + —» p + 77° the change in mass-energy is

AM = m ^c2 — mpc2 — m ^ c 2
= 1189.4 MeV/c2 -  938.3 MeV/c2 -  135.0 MeV/c2 = +116.1 MeV/c2,

so energy can be conserved with the resulting particles having kinetic energy. 
Charge: +e = +e + 0, so charge is conserved.
Baryon number: +1 = +1 + 0, so baryon number is conserved.
(1b) Energy: for 2 + —» n + tt+, the mass-energy change is

AM = m ^c2 — mnc2 — m^+c2

= 1189.4 MeV/c2 -  939.6 MeV/c2 -  139.6 MeV/c2 = 110.2 MeV/c2.

This reaction releases 110.2 MeV of energy as kinetic energy of the products. 
Charge: +e = 0 + e, so charge is conserved.
Baryon number: +1 = +1 + 0, so baryon number is conserved.

43—7 Particle Stability and Resonances
Many particles listed in Table 43-2 are unstable. The lifetime of an unstable 
particle depends on which force is most active in causing the decay. When a 
stronger force influences a decay, that decay occurs more quickly. Decays caused 
by the weak force typically have lifetimes of 10“13s or longer (W and Z are 
exceptions). Decays via the electromagnetic force have much shorter lifetimes, 
typically about 10“16 to 10-19 s, and normally involve a 7 (photon). The unstable 
particles listed in Table 43-2 decay either via the weak or the electromagnetic 
interaction.

Many particles have been found that decay via the strong interaction, with 
very short lifetimes, typically about 10 23 s. Their lifetimes are so short they do not 
travel far enough to be detected before decaying. The existence of such short-lived 
particles is inferred from their decay products. Consider the first such particle 
discovered (by Fermi), using a beam of 7r+ particles with varying amounts of 
energy directed through a hydrogen target (protons). The number of interactions 
(7r+ scattered) plotted versus the pion’s kinetic energy is shown in Fig. 43-14.

A

resonance shape represents the formation 
of a short-lived particle, the A, which has 
a charge in this case of +2e (A++).

FIGURE 4 3 -1 4  Number of 7r+ particles 
scattered by a proton target as a function 
of the incident tt+ kinetic energy. The

0 200 400 600 800 
Kinetic energy of 7r+ (MeV)
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The large number of interactions around 200 MeV led Fermi to conclude that the 
7r+ and proton combined momentarily to form a short-lived particle before coming 
apart again, or at least that they resonated together for a short time. Indeed, the 
large peak in Fig. 43-14 resembles a resonance curve (see Figs. 14-23,14-26, and 
30-22), and this new “particle” — now called the A— is referred to as a resonance. 
Hundreds of other resonances have been found, and are regarded as excited states 
of lighter mass particles such as the nucleon.

The width of a resonance— in Fig. 43-14 the fu ll width of the A peak at half the 
peak height is on the order of 100 MeV— is an interesting application of the uncertainty 
principle. I f  a particle lives only 10-23 s, then its mass (i.e., its rest energy) w ill be 
uncertain by an amount

AE  ra h /{2 irA t)

tt (6.6 X 10-34 J -s )/(6 )(l0 _23s) « 10-n J « 100 MeV,

which is what is observed. Actually, the lifetimes of « 10_23s for such reso­
nances are inferred by the reverse process: from the measured width being 
» 100 MeV.

4 3 -8  Strange Particles? Charm? 
Towards a New Model

In the early 1950s, the newly found particles K, A, and 2  were found to behave 
rather strangely in two ways. First, they were always produced in pairs. For 
example, the reaction

77“ + p K° + A°

occurred with high probability, but the similar reaction 7r“  + p \>  K° + n, was 
never observed to occur even though it did not violate any known conservation 
law. The second feature of these strange particles, as they came to be called, was 
that they were produced via the strong interaction (that is, at a high interaction 
rate), but did not decay at a fast rate characteristic of the strong interaction (even 
though they decayed into strongly interacting particles).

To explain these observations, a new quantum number, strangeness, and a new 
conservation law, conservation of strangeness, were introduced. By assigning the 
strangeness numbers (S) indicated in Table 43-2, the production of strange parti­
cles in pairs was explained. Antiparticles were assigned opposite strangeness from 
their particles. For example, in the reaction 7r“ + p —» K° + A0, the in itia l state 
has strangeness S = 0 + 0 = 0, and the final state has S = + l  — 1 = 0, so 
strangeness is conserved. But for 7r“ + p \>  K° + n, the initia l state has S =  0 
and the final state has S ' = + l  + 0 = + l ,  so strangeness would not be 
conserved; and this reaction is not observed.

To explain the decay of strange particles, it is assumed that strangeness is 
conserved in the strong interaction but is not conserved in the weak interaction. 
Thus, strange particles were forbidden by strangeness conservation to decay 
to nonstrange particles of lower mass via the strong interaction, but could 
decay by means of the weak interaction at the observed longer lifetimes of 10-10 to 
10-8 s.

The conservation of strangeness was the first example of a partially conserved 
quantity. In this case, the quantity strangeness is conserved by strong interactions 
but not by weak.

A c a u t i o n ____________
Partially conserved quantities
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CONCEPTUAL EXAMPLE 45-8~| Guess the missing particle. Using the conser­
vation laws for particle interactions, determine the possibilities for the missing 
particle in the reaction

7T~ + p K° + ?

in addition to K° + A0 mentioned above.

RESPONSE We write equations for the conserved numbers in this reaction, with 
B, L e, S, and Q as unknowns whose determination w ill reveal what the possible 
particle might be:

Baryon number: 0 + 1 = 0 + B
Lepton number: 0 + 0 = 0 + L e
Charge: -1  + 1 = 0 + Q
Strangeness: 0 + 0 = 1 + S.

The unknown product particle would have to have these characteristics:

B =  +1 L e = 0 Q =  0 S = - 1.

In addition to A0, a neutral sigma particle, 2°, is also consistent with these numbers.

In the next Section we w ill discuss another partially conserved quantity which 
was given the name charm. The discovery in 1974 of a particle with charm helped 
solidify a new theory involving quarks, which we now discuss.

4 3 -9  Quarks
A ll particles, except the gauge bosons (Section 43-6), are either leptons or 
hadrons. One difference between these two groups is that the hadrons interact 
via the strong interaction, whereas the leptons do not.

There is another major difference. The six leptons (e“ , /jl~, t~, ve, , vT) are 
considered to be truly fundamental particles because they do not show any internal 
structure, and have no measurable size. (Attempts to determine the size of leptons 
have put an upper lim it of about 10-18 m.) On the other hand, there are hundreds of 
hadrons, and experiments indicate they do have an internal structure.

In 1963, M. Gell-Mann and G. Zweig proposed that none of the hadrons, 
not even the proton and neutron, are tru ly fundamental, but instead are made 
up of combinations of three more fundamental pointlike entities called 
(somewhat whimsically) quarks.1 Today, the quark theory is well-accepted, 
and quarks are considered truly fundamental particles, like leptons. The 
three quarks originally proposed were labeled u, d, s, and have the names up, 
down, and strange. The theory today has six quarks, just as there are six leptons—  
based on a presumed symmetry in nature. The other three quarks are called 
charmed, bottom, and top. The names apply also to new properties of each 
(quantum numbers c ,b ,t)  that distinguish the new quarks from the old quarks (see 
Table 43-3), and which (like strangeness) are conserved in strong, but not weak, 
interactions.
tGell-Mann chose the word from a phrase in James Joyce’s Finnegans Wake.

TABLE 43-3 Properties of Quarks (Antiquarks have opposite sign Q, B, S, c, t, b)

Quarks

Name Symbol
Mass

(MeV/c2)
Charge

Q
Baryon Number 

B
Strangeness

S
Charm

c
Bottomness

b
Topness

t

Up u 2 + le l
3 0 0 0 0

Down d 5 13 0 0 0 0
Strange s 95 ~ \e

1
3 -1 0 0 0

Charmed c 1250 + i e 1
3 0 +1 0 0

Bottom b 4200 13 0 0 - 1 0
Top t 173,000 + i e 1

3 0 0 0 +1
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TABLE 43-4 Partial List of Heavy Hadrons, with Charm and Bottomness (Le = IIb-II4 0)

Category Particle
Anti­

particle Spin
Mass

(MeV/c2)

Baryon
Number

B
Strangeness

S
Charm Bottomness 

c b
: Mean life

00 Principal Decay Modes

Mesons D+ D“ 0 1869.4 0 0 + 1 0 10.6 X 10“13 K + others, e + others
D° D° 0 1864.5 0 0 + 1 0 4.1 X 10“13 K + others, juor e + others

D 5 0 1968 0 +1 + 1 0 5.0 X 10“13 K + others
J/iA (3097) Self 1 3096.9 0 0 0 0 « io-20 Hadrons, e+e_, /jl+/jT
Y (9460) Self 1 9460 0 0 0 0 « io-20 Hadrons, e+e“, t+t“
B“ B+ 0 5279 0 0 0 -1 1.6 X 10“12 D° + others
B° B° 0 5279 0 0 0 -1 1.5 X 10“12 D° + others

Baryons Ac A- 12 2286 +1 0 +1 0 2.0 X 10-13 Hadrons (e.g., A + others)
2 C++ 2 r 12 2454 +1 0 +1 0 « 10“21 A+7T+
2C+ 2 C“ 12 2453 +1 0 +1 0 « 10“21 A<!" IT0
2° 2° 12 2454 +1 0 +1 0 « 10“21 A cTT~
Ag n 12 5620 +1 0 0 -1 1.2 X 10“12 J/j/fA°, pD°7r_, Ac7r+Tr~7r~

A ll quarks have spin \  and an electric charge of either + \ e  or —\e 
(that is, a fraction of the previously thought smallest charge e). Antiquarks have 
opposite sign of electric charge Q, baryon number B, strangeness S, charm c, 
bottomness b, and topness t. Other properties of quarks are shown in Table 43-3.

A ll hadrons are considered to be made up of combinations of quarks (plus the 
gluons that hold them together), and their properties are described by looking at 
their quark content. Mesons consist of a quark-antiquark pair. For example, 
a 7r+ meson is a ud combination: note that for the ud pair (Table 43-3), 
Q = \ e  +  \ e  =  + le , B = \  — \  =  0, 5 = 0 + 0 = 0, as they must for a 7r+; 
and a K+ = us, with Q = +1, B = 0, S = +1.

Baryons, on the other hand, consist of three quarks. For example, a neutron is 
n = ddu, whereas an antiproton is p = u ud . See Fig. 43-15. Strange particles 
all contain an s or s quark, whereas charmed particles contain a c or c quark. A  
few of these hadrons are listed in Table 43-4.

A fter the quark theory was proposed, physicists began looking for these frac­
tionally charged particles, but direct detection has not been successful. Current 
models suggest that quarks may be so tightly bound together that they may not 
ever exist singly in the free state. But observations of very high energy electrons 
scattered off protons suggest that protons are indeed made up of constituents.

Today, the truly fundamental particles are considered to be the six quarks, 
the six leptons, and the gauge bosons that carry the fundamental forces. See 
Table 43-5, where the quarks and leptons are arranged in three “ families” or 
“ generations.” Ordinary matter— atoms made of protons, neutrons, and electrons—  
is contained in the “ first generation.” The others are thought to have existed in 
the very early universe, but are seen by us today only at powerful accelerators 
or in cosmic rays. A ll of the hundreds of hadrons can be accounted for by combi­
nations of the six quarks and six antiquarks.

I
 EXERCISE D Return to the Chapter-Opening Questions, page 1164, and answer them again 

now. Try to explain why you may have answered differently the first time.

TABLE 43-5 The Fundamental Particlest as Seen Today

Gauge bosons Force
First

generation
Second

generation
Third

generation

Gluons Strong Quarks u, d s, c b, t
W ± , z 0 Weak Leptons e, ve /A, Vp T, VT
7 (photon) EM

FIGURE 43-15 Quark 
compositions for several particles.

fThe quarks and leptons are arranged into three generations each.
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CONCEPTUAL EXAMPLE 45-91 Quark combinations. Find the baryon 
number, charge, and strangeness for the following quark combinations, and identify 
the hadron particle that is made up of these quark combinations: (a) udd, (b) uu, 
(c) uss, (d ) sdd, and (e) bu.

RESPONSE We use Table 43-3 to get the properties of the quarks, then 
Table 43-2 or 43-4 to find the particle that has these properties.
(a) udd has

Q = + \e  -  \e ~ \e = 0,
B = 5 + 5 + 5 = 1,
5 = 0 + 0 + 0 = 0, 

as well as c = 0, bottomness = 0, topness = 0. The only baryon (B = +1) 
that has Q = 0, S = 0, etc., is the neutron (Table 43-2).
(b) uu has Q = \ e  — \ e  = 0, B = \  — \  = 0, and all other quantum 
numbers = 0. Sounds like a ir° (dd also gives a 7r°).
(c) uss has Q =  0, B =  +1, S = -2 , others = 0. This is a H°.
((d) sdd has Q = -1 , B = +1, S = -1 , so must be a 2 _.
(ie) bu has Q = -1 , B =  0, 5 = 0, c = 0, bottomness = — 1, topness = 0. 
This must be a B“ meson (Table 43-4).

| EXERCISE E What is the quark composition of a KT meson?

43-10 The "Standard Model": 
Quantum Chromodynamics (QCD) and 
Electroweak Theory
Not long after the quark theory was proposed, it was suggested that quarks have 
another property (or quality) called color, or “ color charge” (analogous to electric 
charge). The distinction between the six types of quark (u, d, s, c, b, t) was referred 
to as flavor. According to theory, each of the flavors of quark can have three 
colors, usually designated red, green, and blue. (These are the three primary colors 
which, when added together in appropriate amounts, as on a TV screen, produce 
white.) Note that the names “color” and “ flavor” have nothing to do with our 
senses, but are purely whimsical— as are other names, such as charm, in this new 
field. (We did, however, “ color” the quarks in Fig. 43-15.) The antiquarks are 
colored antired, antigreen, and antiblue. Baryons are made up of three quarks, one 
of each color. Mesons consist of a quark-antiquark pair of a particular color and 
its anticolor. Both baryons and mesons are thus colorless or white.

Originally, the idea of quark color was proposed to preserve the Pauli exclu­
sion principle (Section 39-4). Not all particles obey the exclusion principle. Those 
that do, such as electrons, protons, and neutrons, are called fermions. Those that 
don’t are called bosons. These two categories are distinguished also in their spin 
(Section 39-2): bosons have integer spin (0,1,2, etc.) whereas fermions have half­
integer spin, usually \  as for electrons and nucleons, but other fermions have 
spin | , f , etc. Matter is made up mainly of fermions, but the carriers of the forces 
(7, W, Z, and gluons) are all bosons. Quarks are fermions (they have spin \)  and 
therefore should obey the exclusion principle. Yet for three particular baryons 
(uuu, ddd, and sss), all three quarks would have the same quantum numbers, and 
at least two quarks have their spin in the same direction (since there are only two 
choices, spin up [ms = + or spin down [ms = — | ] ). This would seem to violate 
the exclusion principle; but if quarks have an additional quantum number (color), 
which is different for each quark, it would serve to distinguish them and allow the 
exclusion principle to hold. Although quark color, and the resulting threefold 
increase in the number of quarks, was originally an ad hoc idea, it also served to 
bring the theory into better agreement with experiment, such as predicting the 
correct lifetime of the ir° meson, and the measured rate of hadron production in 
observed e+e” collisions at accelerators. The idea of color soon became a central feature 
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FIGURE 43-16 (a) The force between two quarks holding them together as part of a proton, for example, is 
carried by a gluon, which in this case involves a change in color, (b) Strong interaction n + p —» n + p with 
the exchange of a charged tt meson (+ or - ,  depending on whether it is considered moving to the left or to the 
right), (c) Quark representation of the same interaction n + p —» n + p. The blue coiled lines between 
quarks represent gluon exchanges holding the hadrons together. (The exchanged meson may be regarded as ud 
emitted by the n and absorbed by the p, or as ud emitted by p and absorbed by n, because a u (or d) quark 
going to the left in the diagram is equivalent to a u (or d) going to the right.)

Each quark is assumed to carry a color charge, analogous to electric charge, 
and the strong force between quarks is referred to as the color force. This theory 
of the strong force is called quantum chromodynamics (chroma =  color in Greek), 
or QCD, to indicate that the force acts between color charges (and not between, 
say, electric charges). The strong force between two hadrons is considered to be a 
force between the quarks that make them up, as suggested in Fig. 43-16. The parti­
cles that transmit the color force (analogous to photons for the EM force) are 
called gluons (a play on “ glue” ). They are included in Tables 43-2 and 43-5. There 
are eight gluons, according to the theory, all massless and all have color charged

You might ask what would happen if we try to see a single quark with color by 
reaching deep inside a hadron and extracting a single quark. Quarks are so tightly 
bound to other quarks that extracting one would require a tremendous amount of 
energy, so much that it would be sufficient to create more quarks (E =  me1).
Indeed, such experiments are done at modern particle colliders and all we get is 
more hadrons (quark-antiquark pairs, or triplets, which we observe as mesons or 
baryons), never an isolated quark. This property of quarks, that they are always 
bound in groups that are colorless, is called confinement.

The color force has the interesting property that, as two quarks approach each 
other very closely (equivalently, have high energy), the force between them 
becomes small. This aspect is referred to as asymptotic freedom.

The weak force, as we have seen, is thought to be mediated by the W +, W - , 
and Z° particles. It acts between the “weak charges” that each particle has. Each 
elementary particle can thus have electric charge, weak charge, color charge, and 
gravitational mass, although one or more of these could be zero. For example, all 
leptons have color charge of zero, so they do not interact via the strong force.

CONCEPTUAL EXAMPLE 45-10 I Beta decay. Draw a Feynman diagram,

FIGURE 43-17 Quark 
representation of the Feynman 
diagram for fi decay of a neutron 
into a proton.

showing what happens in beta decay using quarks.

RESPONSE Beta decay is a result of the weak interaction, and the mediator is 
either a W 1 or Z° particle. What happens, in part, is that a neutron (udd quarks) 
decays into a proton (uud). Apparently a d quark (charge — \e )  has turned into a 
u quark (charge + \e ) .  Charge conservation means that a negatively charged 
particle, namely a W “ , was emitted by the d quark. Since an electron and an anti­
neutrino appear in the final state, they must have come from the decay of the 
virtual W “ , as shown in Fig. 43-17.

Compare to the EM interaction, where the photon has no electric charge. Because gluons have color 
charge, they could attract each other and form composite particles (photons cannot). Such “glueballs” n
are being searched for.
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To summarize, the Standard Model says that the truly fundamental particles 
(Table 43-5) are the leptons, the quarks, and the gauge bosons (photon, W and Z, 
and the gluons). The photon, leptons, W +, W - , and Z° have all been observed in 
experiments. But so far only combinations of quarks (baryons and mesons) have 
been observed, and it seems likely that free quarks and gluons are unobservable.

One important aspect of theoretical work is the attempt to find a unified basis 
for the different forces in nature. This was a long-held hope of Einstein, which he 
was never able to fu lfill. A  so-called gauge theory that unifies the weak and elec­
tromagnetic interactions was put forward in the 1960s by S. Weinberg, S. Glashow, 
and A. Salam. In this electroweak theory, the weak and electromagnetic forces are 
seen as two different manifestations of a single, more fundamental, electroweak 
interaction. The electroweak theory has had many successes, including the 
prediction of the W * particles as carriers of the weak force, with masses 
of 80.38 + 0.02GeV/c2 in excellent agreement with the measured values of 
80.403 + 0.029 GeV/c2 (and similar accuracy for the Z°).

The combination of electroweak theory plus QCD for the strong interaction is 
often referred to today as the Standard Model.

ESTIMATE! Range of weak force. The weak nuclear force 
is of very short range, meaning it acts over only a very short distance. Estimate 
its range using the masses (Table 43-2) of the W * and Z: m  « 80 or 
90 GeV/c2 « 102 GeV/c2.

APPROACH We assume the W * or Z° exchange particles can exist for a time At 
given by the uncertainty principle, At ~ h /A E , where AE  ~ me2 is the energy 
needed to create the virtual particle (W ±, Z) that carries the weak force. 
SOLUTION Let Ax be the distance the virtual W or Z can move before it must 
be reabsorbed within the time At « h /A E . To find an upper lim it on Ax, and 
hence the maximum range of the weak force, we let the W or Z travel close to 
the speed of light, so Ax ^  c At. Recalling that 1 GeV = 1.6 X 10-10 J, then

Ch (3 x  108m /s)(l0-34J-s)
Ax S C A t ~  —— ~ 7— -̂------77--------------— ;------ r ss 10 15 m.

AE  (10 GeV)(l.6 X 10 J/GeV)

This is indeed a very small range.
NOTE Compare this to the range of the electromagnetic force whose range is 
infinite (1 /r2 never becomes zero for any finite r), which makes sense because 
the mass of its virtual exchange particle, the photon, is zero (in the denominator 
of the above equation).

We did a similar calculation for the strong force in Section 43-2, and esti­
mated the mass of the tt meson as exchange particle between nucleons, based on 
the apparent range of 10-15 m (size of nuclei). This is only one aspect of the strong 
force. In our deeper view, namely the color force between quarks within a 
nucleon, the gluons have zero mass, which implies (see the formula above in 
Example 43-11) infinite range. We might have expected a range of about 10-15 m; 
but according to the Standard Model, the color force is weak at very close distances 
and increases greatly with distance (causing quark confinement). Thus its range 
could be infinite.

Theoreticians have wondered why the W and Z have large masses rather than 
being massless like the photon. Electroweak theory suggests an explanation by 
means of an hypothesized Higgs field and its particle, the Higgs boson, which 
interact with the W and Z to “ slow them down.” In being forced to go slower 
than the speed of light, they would have to have mass (m =  0 only if v =  c). 
Indeed, the Higgs is thought to permeate the vacuum (“empty space”) and to perhaps 
confer mass on all particles with mass by slowing them down. The search for 
the Higgs boson w ill be a priority for experimental particle physicists when 
CERN’s Large Hadron Collider (Section 43-1) starts running. So far, searches 
suggest the Higgs mass is greater than 115 GeV/c2. Yet it is expected to have a mass 
no larger than 1 TeV/c2. We are narrowing in on it.

EXAMPLE 43-11
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43—11 Grand Unified Theories
The Standard Model, for all its success, cannot explain some important issues—  
such as why the charge on the electron has exactly the same magnitude as the 
charge on the proton. This is crucial, because if  the charge magnitudes were even a 
little  different, atoms would not be neutral and the resulting large electric forces 
would surely have made life impossible. Indeed, the Standard Model is now 
considered to be a low-energy approximation to a more complete theory.

With the success of unified electroweak theory, theorists are trying to incorporate 
it and QCD for the strong (color) force into a so-called grand unified theory (GUT).

One type of such a grand unified theory of the electromagnetic, 
weak, and strong forces has been worked out in which there is only one class of 
particle— leptons and quarks belong to the same family and are able to change 
freely from one type to the other— and the three forces are different aspects of a 
single underlying force. The unity is predicted to occur, however, only on a scale of 
less than about 10“31m, corresponding to a typical particle energy of about 
1016 GeV. If  two elementary particles (leptons or quarks) approach each other to 
within this unification scale, the apparently fundamental distinction between them 
would not exist at this level, and a quark could readily change to a lepton, or vice 
versa. Baryon and lepton numbers would not be conserved. The weak, electromag­
netic, and strong (color) force would blend to a force of a single strength.

What happens between the unification distance of 10-31 m and more normal 
(larger) distances is referred to as symmetry breaking. As an analogy, consider an 
atom in a crystal. Deep within the atom, there is much symmetry— in the innermost 
regions the electron cloud is spherically symmetric (Chapter 39). Farther out, this 
symmetry breaks down— the electron clouds are distributed preferentially along 
the lines (bonds) joining the atoms in the crystal. In a similar way, at 10“31m 
the force between elementary particles is theorized to be a single force— it is 
symmetrical and does not single out one type of “ charge” over another. But at 
larger distances, that symmetry is broken and we see three distinct forces. (In the 
“Standard Model” of electroweak interactions, Section 43-10, the symmetry breaking 
between the electromagnetic and the weak interactions occurs at about 1 0 18 m.)

CONCEPTUAL EXAMPLE 45-12 I Symmetry. The table in Fig. 43-18 has four 
identical place settings. Four people sit down to eat. Describe the symmetry of this 
table and what happens to it when someone starts the meal.

RESPONSE The table has several kinds of symmetry. It is symmetric to rotations 
of 90°: that is, the table w ill look the same if everyone moved one chair to the left 
or to the right. It is also north-south symmetric and east-west symmetric, so that 
swaps across the table don’t affect the way the table looks. It also doesn’t matter 
whether any person picks up the fork to the left of the plate or the fork to the 
right. But once that first person picks up either fork, the choice is set for all the 
rest at the table as well. The symmetry has been broken. The underlying symmetry 
is still there— the blue glasses could still be chosen either way— but some choice 
must get made and at that moment the symmetry of the diners is broken.

Another example of symmetry breaking is a pencil standing on its point before 
falling. Standing, it looks the same from any horizontal direction. From above, it is a 
tiny circle. But when it falls to the table, it points in one particular direction— the 
symmetry is broken.

Proton Decay
Since unification is thought to occur at such tiny distances and huge energies, 
the theory is difficult to test experimentally. But it is not completely impossible. 
One testable prediction is the idea that the proton might decay (via, for example, 
p —> 7T° + e+) and violate conservation of baryon number. This could happen if 
two quarks approached to within 10 31 m of each other. But it is very unlikely at 
normal temperature and energy, so the decay of a proton can only be an unlikely process.

FIGURE 43-18 Symmetry around 
a table. Example 43-12.
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FIGURE 43 -1 9  Time and energy 
plot of the four fundamental forces, 
unified at the Planck time, and how 
each condensed out. The symbol 
âbu = time after the birth of the 

universe. Note that the typical 
particle energy (and average 
temperature of the universe) 
decreases to the right, as time after 
the Big Bang increases. We discuss 
the Big Bang in the next Chapter.

Grand 
Unification 

Planck qUT 
time

Energy (GeV) 
T(K) 1033 
*abu(s) 10~43 S

In the simplest form of GUT, the theoretical estimate of the proton 
mean life for the decay mode p —> 7r° + e+ is about 1031yr, and this is now 
within the realm of testability/ Proton decays have still not been seen, and experi­
ments put the lower lim it on the proton mean life for the above mode to be about 
1033 yr, somewhat greater than this prediction. This may seem a disappointment, 
but on the other hand, it presents a challenge. Indeed more complex GUTs are not 
affected by this result.

ESTIMATE! Proton decay. An experiment uses 3300 tonsEXAMPLE 43-13
of water waiting to see a proton decay of the type p —>• 7r + e . I f  the 
experiment is run for 4 years without detecting a decay, estimate the lower lim it 
on the proton mean life.

APPROACH As with radioactive decay, the number of decays is proportional to 
the number of parent species (AT), the time interval (A t), and the decay constant 
(A) which is related to the mean life r  by (see Eqs. 41-4 and 41-9a):

AN  = - \ N  At =  -
N  At

SOLUTION Dealing only with magnitudes, we solve for r:

N  At 
T A N  '

Thus for A N  <  1 over the four-year trial,

r  >  N ( 4yr),

where N  is the number of protons in 3300 tons of water. To determine N, we note 
that each molecule of H 20  contains 2 + 8 = 10 protons. So one mole of water 
(18 g, 6 X 1023 molecules) contains 10 X 6 X 1023 protons in 18 g of water, or 
about 3 X 1026 protons per kilogram. One ton is 103 kg, so the chamber contains 
(3.3 X 106 kg)(3 X 1026 protons/kg) « 1 X 1033 protons. Then our very rough esti­
mate for a lower lim it on the proton mean life is r  >  (1033)(4 yr) « 4 X 1033 yr.

GUT and Cosmology
An interesting prediction of unified theories relates to cosmology (Chapter 44). 
It is thought that during the first 10-35 s after the theorized Big Bang that created the 
universe, the temperature was so extremely high that particles had energies 
corresponding to the unification scale. Baryon number would not have been 
conserved then, perhaps allowing an imbalance that might account for the observed 
predominance of matter (B  >  0) over antimatter (B  <  0) in the universe. The fact 
that we are surrounded by matter, with no significant antimatter in sight, is considered 
a problem in search of an explanation (not given by the Standard Model). See also 
Chapter 44. We call this the matter-antimatter problem. To understand it may require 
still undiscovered phenomena— perhaps related to quarks or neutrinos, or the Higgs 
boson or supersymmetry (next Section).

This last example is interesting, for it illustrates a deep connection between 
investigations at either end of the size scale: theories about the tiniest objects 
(elementary particles) have a strong bearing on the understanding of the universe 
on a large scale. We w ill look at this more in the next Chapter.

Figure 43-19 is a rough diagram indicating how the four fundamental forces in 
nature “ condensed out” (a symmetry was broken) as time went on after the Big 
Bang (Chapter 44), and as the mean temperature of the universe and the typical 
particle energy decreased.

fThis is much larger than the age of the universe (« 14 X 109 yr). But we don’t have to wait 1031 yr to 
see. Instead we can wait for one decay among 1031 protons over a year (see Eqs. 41-4 and 41-9a, 
AN = \N  At = N At/t ).
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43—12 Strings and Supersymmetry
We have seen that the Standard Model is unable to address important experimental 
issues, and that theoreticians are attacking the problem as experimenters search for 
new data, new particles, new concepts.

Even more ambitious than grand unified theories are attempts to also incorporate 
gravity, and thus unify all four forces in nature into a single theory. (Such theories 
are sometimes referred to misleadingly as theories of everything.) There are 
consistent theories that attempt to unify all four forces called string theories, 
in which each fundamental particle (Table 43-5) is imagined not as a point but as a 
one-dimensional string, perhaps 10 35 m long, which vibrates in a particular standing 
wave pattern. (You might say each particle is a different note on a tiny stretched 
string.) More sophisticated theories propose the fundamental entities as being 
multidimensional branes (after 2-D membranes).

A  related idea that also goes way beyond the Standard Model is supersymmetry, 
which applied to strings is known as superstring theory. Supersymmetry, 
developed by Bruno Zumino (1923- ) and Julius Wess (1934-2007), predicts that 
interactions exist that would change fermions into bosons and vice versa, and 
that each known fermion would have a supersymmetric boson partner of the 
same mass. Thus, for each quark (a fermion), there would be a squark 
(a boson) or “ supersymmetric” quark. For every lepton there would be a slepton. 
Likewise, for every known boson (photons and gluons, for example), there would 
be a supersymmetric fermion (photinos and gluinos). Supersymmetry predicts also 
that a graviton, which transmits the gravity force, has a partner, the gravitino. Super- 
symmetric particles are sometimes called “ SUSYs” for short, and are a candidate 
for the “dark matter” of the universe (discussed in Chapter 44). But why hasn’t this 
“missing part” of the universe ever been detected? The best guess is that supersym­
metric particles might be heavier than their conventional counterparts, perhaps too 
heavy to have been produced in today’s accelerators. A  search for supersymmetric 
particles is already in the works for CERN’s new Large Hadron Collider.

Versions of supersymmetry predict other interesting properties, such as that space 
has 11 dimensions, but 7 of them are “ coiled up” so we normally only notice the 
4-D of space-time. We would like to know if and how many extra dimensions 
there are, and how and why they are hidden. We hope to have some answers from 
the new LHC and the future ILC (Section 43-1).

The world of elementary particles is opening new vistas. What happens in the 
future is bound to be exciting.

Summary
Particle accelerators are used to accelerate charged particles, such 
as electrons and protons, to very high energy. High-energy particles 
have short wavelength and so can be used to probe the structure of 
matter in great detail (very small distances). High kinetic energy also 
allows the creation of new particles through collisions (via E = me2).

Cyclotrons and synchrotrons use a magnetic field to keep 
the particles in a circular path and accelerate them at intervals 
by high voltage. Linear accelerators accelerate particles along a 
line. Colliding beams allow higher interaction energy.

An antiparticle has the same mass as a particle but opposite 
charge. Certain other properties may also be opposite: for 
example, the antiproton has baryon number (nucleon number) 
opposite (B  = - 1 )  to that for the proton (B = +1).

In all nuclear and particle reactions, the following conserva­
tion laws hold: momentum, angular momentum, mass-energy, 
electric charge, baryon number, and lepton numbers.

Certain particles have a property called strangeness, which 
is conserved by the strong force but not by the weak force. The 
properties charm, bottomness, and topness also are conserved 
by the strong force but not by the weak force.

Just as the electromagnetic force can be said to be due to 
an exchange of photons, the strong nuclear force is carried by 
massless gluons. The W and Z particles carry the weak force. 
These fundamental force carriers (photon, W and Z, gluons) are 
called gauge bosons.

Other particles can be classified as either leptons or hadrons. 
Leptons participate only in gravity, the weak, and the electromagnetic 
interactions. Hadrons, which today are considered to be made up 
of quarks, participate in all four interactions, including the strong 
interaction. The hadrons can be classified as mesons, with baryon 
number zero, and baryons, with nonzero baryon number.

All particles, except for the photon, electron, neutrinos, and 
proton, decay with measurable mean lives varying from 10-25 s to 
103 s. The mean life depends on which force is predominant. Weak 
decays usually have mean lives greater than about 10-13 s. Electro­
magnetic decays typically have mean lives on the order of 1 0 16 to 
10-19 s. The shortest lived particles, called resonances, decay via 
the strong interaction and live typically for only about 1 0 23 s.

Today’s Standard Model of elementary particles considers 
quarks as the basic building blocks of the hadrons. The six quark
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“ flavors” are called up, down, strange, charmed, bottom, and
top. It is expected that there are the same number of quarks as 
leptons (six of each), and that quarks and leptons are the truly 
fundamental particles along with the gauge bosons (7, W, Z, 
gluons). Quarks are said to have color, and, according to 
quantum chromodynamics (QCD), the strong color force acts 
between their color charges and is transmitted by gluons. 
Electroweak theory views the weak and electromagnetic forces 
as two aspects of a single underlying interaction. QCD plus the 
electroweak theory are referred to as the Standard Model.

Grand unified theories of forces suggest that at very short 
distance (lO-31 m) and very high energy, the weak, electromag­
netic, and strong forces appear as a single force, and the 
fundamental difference between quarks and leptons disappears.

According to string theory, the fundamental particles may 
be tiny strings, 10-35m long, distinguished by their standing 
wave pattern. Supersymmetry hypothesizes that each fermion (or 
boson) has a corresponding boson (or fermion) partner.

Questions
1. Give a reaction between two nucleons, similar to Eq. 43-4, 

that could produce a .
2. I f  a proton is moving at very high speed, so that its kinetic 

energy is much greater than its rest energy (me2), can it then 
decay via p —> n + 7r+?

3. What would an “ antiatom,” made up of the antiparticles to 
the constituents of normal atoms, consist of? What might 
happen if  antimatter, made of such antiatoms, came in 
contact with our normal world of matter?

4. What particle in a decay signals the electromagnetic interaction?
5. (a) Does the presence of a neutrino among the decay products 

of a particle necessarily mean that the decay occurs via the 
weak interaction? (b) Do all decays via the weak interaction 
produce a neutrino? Explain.

6. Why is it that a neutron decays via the weak interaction 
even though the neutron and one of its decay products 
(proton) are strongly interacting?

7. Which of the four interactions (strong, electromagnetic, weak, 
gravitational) does an electron take part in? A  neutrino? A  proton?

8. Check that charge and baryon number are conserved in 
each of the decays in Table 43-2.

9. Which of the particle decays listed in Table 43-2 occur via the 
electromagnetic interaction?

10. Which of the particle decays listed in Table 43-2 occur by the 
weak interaction?

11. The A baryon has spin §> baryon number 1, and charge 
Q =  +2, +1, 0, or -l.W h y  is there no charge state Q = -2 1

12. Which of the particle decays in Table 43-4 occur via the 
electromagnetic interaction?

13. Which of the particle decays in Table 43-4 occur by the 
weak interaction?

14. Quarks have spin How do you account fo r the fact 
that baryons have spin \  or §, and mesons have spin 0 or 1?

15. Suppose there were a kind of “neutrinolet” that was mass­
less, had no color charge or electrical charge, and did not feel 
the weak force. Could you say that this particle even exists?

16. Is it possible for a particle to be both (a) a lepton and a 
baryon? (b) a baryon and a hadron? (c) a meson and a 
quark? (d) a hadron and a lepton? Explain.

17. Using the ideas of quantum chromodynamics, would it be 
possible to find particles made up of two quarks and no 
antiquarks? What about two quarks and two antiquarks?

18. Why can neutrons decay when they are free, but not when 
they are inside a stable nucleus?

19. Is the reaction e“  + p —> n + ve possible? Explain.

20. Occasionally, the A w ill decay by the following reaction: 
A0 —» p+ + e“  + ve. Which of the four forces in nature is 
responsible for this decay? How do you know?

| Problems
43 -1 Particles and Accelerators
1. (I) What is the total energy of a proton whose kinetic 

energy is 4.65 GeV?
2. (I) Calculate the wavelength of 28-GeV electrons.

3. (I) What strength of magnetic field is used in a cyclotron in 
which protons make 3.1 X 107 revolutions per second?

4. (I) What is the time for one complete revolution for a very 
high-energy proton in the 1.0-km-radius Fermilab accelerator?

5. (I) I f  a  particles are accelerated by the cyclotron of 
Example 43-2, what must be the frequency of the voltage 
applied to the dees?

6. (II) (a) I f  the cyclotron of Example 43-2 accelerated 
a  particles, what maximum energy could they attain? 
What would their speed be? (b) Repeat for deuterons (2H).
(c) In each case, what frequency of voltage is required?

7. (II) Which is better for resolving details of the nucleus: 
25-MeV alpha particles or 25-MeV protons? Compare each 
of their wavelengths with the size of a nucleon in a nucleus.

8. (II) What magnetic field intensity is needed at the 1.0-km- 
radius Fermilab synchrotron for 1.0-TeV protons?

9. (II) What magnetic field is required for the 7.0-TeV protons 
in the 4.25-km-radius Large Hadron Collider (LHC)?

10. (II) A  cyclotron with a radius of 1.0 m is to accelerate 
deuterons (2H) to an energy of 12 MeV. (fl) What is the 
required magnetic field? (b) What frequency is needed for 
the voltage between the dees? (c) I f  the potential difference 
between the dees averages 22 kV, how many revolutions w ill 
the particles make before exiting? (d) How much time does 
it take for one deuteron to go from start to exit? (e) Esti­
mate how far it travels during this time.

11. (II) What is the wavelength (= minimum resolvable 
size) of 7.0-TeV protons?

12. (II) The 1.0-km radius Fermilab Tevatron takes about 
20 seconds to bring the energies of the stored protons from 
150 GeV to 1.0 TeV. The acceleration is done once per turn. 
Estimate the energy given to the protons on each turn. (You 
can assume that the speed of the protons is essentially c the 
whole time.)

13. (II) Show that the energy of a particle (charge e) in a 
synchrotron, in the relativistic lim it {v ~ c), is given by 
E  (in eV) = Brc, where B is the magnetic field and 
r is the radius of the orbit (SI units).
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43-2 to 43-6 Particle Interactions, Particle Exchange
14. (I) About how much energy is released when a A0 decays to 

n + 77°? (See Table 43-2.)
15. (I) How much energy is released in the decay

w + - y  /*+ + v j  
See Table 43-2.

16. (I) Estimate the range o f the strong force if  the mediating 
particle were the kaon in place o f a pion.

17. (I) How much energy is required to produce a neutron- 
antineutron pair?

18. ( II)  Determine the energy released when 2 °  decays to A0 
and then to a proton.

19. ( II)  Two protons are heading toward each other w ith equal 
speeds. What minimum kinetic energy must each have if  a 
77° meson is to be created in the process? (See Table 43-2.)

20. ( II)  What minimum kinetic energy must two neutrons each 
have if  they are traveling at the same speed toward each 
other, collide, and produce a K +K “  pair in addition to 
themselves? (See Table 43-2.)

21. (II) For the decay K° —> tt~ + e+ + ve , determine the 
maximum kinetic energy of (a) the positron, and (b ) the tt~. 
Assume the K° is at rest.

22. ( II)  What are the wavelengths of the two photons produced 
when a proton and antiproton at rest annihilate?

23. ( II)  The A0 cannot decay by the following reactions. What 
conservation laws are violated in each of the reactions?
(a) A0 n + tt~
0b) A0 p + K “
(C ) A0 \ >  77+ +  77“

24. ( II)  For the decay A0 —► p + tt~, calculate (a) the Q-value 
(energy released), and (b) the kinetic energy of the p and tt~, 
assuming the A0 decays from rest. (Use relativistic 
formulas.)

25. ( II)  (a) Show, by conserving momentum and energy, that it 
is impossible for an isolated electron to radiate only a single 
photon, (b) W ith this result in mind, how can you defend the 
photon exchange diagram in Fig. 43-8?

26. ( II)  What would be the wavelengths of the two photons 
produced when an electron and a positron, each with 
420 keV of kinetic energy, annihilate in a head-on collision?

27. ( II)  In  the rare decay 77+ —> e+ + ve , what is the kinetic 
energy o f the positron? Assume the 77+ decays from rest.

28. (II) Which of the following reactions and decays are 
possible? For those forbidden, explain what laws are violated.

(a) 77_ + p —>• n + 17°
(b) 77+  + p —>• n + 77°

(c) 77+  + p —>• p + e+
(d) p e+ + v e
(e) /!+ -»• e+ +
(J) p ->  n + e+ +

| General Problems__________
46. The mean lifetimes listed in Table 43-2 are in terms of proper 

time, measured in a reference frame where the particle is at 
rest. I f  a tau lepton is created w ith a kinetic energy of 
950 MeV, how long would its track be as measured in the 
lab, on average, ignoring any collisions?

29. (II) Calculate the kinetic energy of each of the two products in 
the decay E-  — ► A0 + 77 . Assume the a ~  decays from rest.

30. (II) Antiprotons can be produced when a proton with suffi­
cient energy hits a stationary proton. Even if  there is enough 
energy, which of the following reactions w ill not happen?

P +  P P +  P 
p + p ^ p  + p + p 

P +  P - > P  +  P +  P +  P 
p + p —> p  + e+ + e+ + p

31. ( I ll)  Calculate the maximum kinetic energy o f the electron 
when a muon decays from rest via /jl~ —» e_ + ve +  v^. 
[Hint: In  what direction do the two neutrinos move relative 
to the electron in order to give the electron the maximum 
kinetic energy? Both energy and momentum are conserved; 
use relativistic formulas.]

32. ( I ll)  Could a 77+ meson be produced if  a 110-MeV proton 
struck a proton at rest? What minimum kinetic energy must 
the incoming proton have?

43-7 to 43-11 Resonances, Standard Model, 
Quarks, QCD, GUT

33. (I) The mean life of the 2 °  particle is 7 X IO-20 s. What is the 
uncertainty in its rest energy? Express your answer in MeV.

34. (I) The measured width of the if/ (3686) meson is about 300 keV. 
Estimate its mean life.

35. (I) The measured width of the J /ij/ meson is 88keV. Esti­
mate its mean life.

36. (I) The B_ meson is a bu quark combination, (a) Show that 
this is consistent for all quantum numbers. (b ) What are the 
quark combinations for B+, B°, B°?

37. (I) What is the energy width (or uncertainty) o f (a) r f , and 
(Z>)p+? See Table 43-2.

38. (II)  Which of the following decays are possible? For those 
that are forbidden, explain which laws are violated.
(a) H° 2 + + 77“
(b) Cl~ —> 2 °  +  77_  +  v
(c) 2° —» A0 + y  + y

39. (II)  What quark combinations produce (a) a H° baryon and
(b) a a ~  baryon?

40. (II)  What are the quark combinations that can form  (a) a 
neutron, (b ) an antineutron, (c) a A0, (d) a 2°?

41. (II)  What particles do the following quark combinations 
produce: (a) uud, (b ) u u s, (c) us, (d ) du, (e) cs?

42. (II)  What is the quark combination needed to produce a 
D° meson (Q  =  B =  S =  Q, c =  +1)?

43. (II)  The D j meson has S =  c =  +1, B  =  0. What quark 
combination would produce it?

44. (II)  Draw a possible Feynman diagram using quarks (as in 
Fig. 43-16c) for the reaction 77“  + p —> 770 + n.

45. (II)  Draw a Feynman diagram for the reaction 
n + Vp ->  p + /x“ .

47. Assume there are 5.0 X 1013 protons at 1.0 TeV stored in 
the 1.0-km-radius ring of the Tevatron. (a) How much 
current (amperes) is carried by this beam? (b) How fast 
would a 1500-kg car have to move to carry the same kinetic 
energy as this beam?
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48. (a) How much energy is released when an electron and a 
positron annihilate each other? (b) How much energy is 
released when a proton and an antiproton annihilate each 
other? (A ll particles have K  «  0.)

49. Protons are injected into the 1.0-km-radius Fermilab Teva- 
tron w ith an energy o f 150 GeV. I f  they are accelerated 
by 2.5 M V each revolution, how far do they travel and 
approximately how long does it take fo r them to reach
1.0 TeV?

50. Which of the following reactions are possible, and by what 
interaction could they occur? For those forbidden, explain why.

( a )  77_  +  p  —> K° +  p  +  77°

(b) K -  + p —» A0 + 77°
(c) K + + n - ►  2+ + 77° + 7
(d) K + —» 77° + 77° + 77+

(e) 77+ e+ +  ve

51. Which of the following reactions are possible, and by what 
interaction could they occur? For those forbidden, explain why.

(a) 77“  + p K + + 2 “

0b) 77+ + p K + + 2 +
(c) 77“  + p —> A° + K° + 77°
(d) 77+ + p —> 2 ° + 77°
(e) 77_ + p —> p + e_ + Vq

52. One decay mode for a 77+ is 77+ —> /a+ + v^ . What would 
be the equivalent decay for a tt~1 Check conservation laws.

53. Symmetry breaking occurs in the electroweak theory at 
about 10-18 m. Show that this corresponds to an energy that 
is on the order o f the mass of the W * .

54. Calculate the 0-value for each of the reactions, Eq. 43-4, 
fo r producing a pion.

55. How many fundamental fermions are there in  a water 
molecule?

56. The mass o f a 770 can be measured by observing the reaction 
77“  + p —> 77° + n at very low incident 77“  kinetic energy 
(assume it  is zero). The neutron is observed to be emitted 
w ith a kinetic energy of 0.60 MeV. Use conservation of 
energy and momentum to determine the 770 mass.

57. (a) Show that the so-called unification distance of 10-31 m 
in grand unified theory is equivalent to an energy of 
about 1016GeV. Use the uncertainty principle, and also 
de Broglie’s wavelength formula, and explain how they 
apply, (b) Calculate the temperature corresponding to 
1016 GeV.

58. Calculate the Q-value for the reaction 77“  + p —► A0 + K°, 
when negative pions strike stationary protons. Estimate the 
minimum pion kinetic energy needed to produce this reac­
tion. [H in t Assume A0 and K° move o ff w ith the same 
velocity.]

59. A  proton and an antiproton annihilate each other at rest 
and produce two pions, 77“  and 77+. What is the kinetic 
energy o f each pion?

60. For the reaction p + p —» 3p + p, where one of the in itia l 
protons is at rest, use relativistic formulas to show that the 
threshold energy is 6mp c2, equal to three times the magni­
tude of the Q-value of the reaction, where mp is the proton 
mass. [H in t Assume all final particles have the same 
velocity.]

61. What is the total energy o f a proton whose kinetic energy 
is 15 GeV? What is its wavelength?

62. A t about what kinetic energy (in eV) can the rest energy of 
a proton be ignored when calculating its wavelength, if  the 
wavelength is to be w ithin 1.0% of its true value? What are 
the corresponding wavelength and speed o f the proton?

63. Use the quark model to describe the reaction

p + n —> 77_ + 77°.

64. Identify the missing particle in the following reactions.

(a )p  + p —» p  + n + 77+ + ?

(b) p +  ? —► n +  /jl+

65. What fraction of the speed o f light c is the speed o f a 
7.0-TeV proton?

66. A  particle at rest, w ith a rest energy of m e2, decays into 
two fragments w ith rest energies o f m ic 2 and m2c2. Show 
that the kinetic energy of fragment 1 is

K l = - ^ [ K  -  *h c 2)2 -  f o * 2)2]-

* Numerical/Computer
* 67. (II)  In  a particle physics experiment to determine the mean

lifetim e of muons, the muons enter a scintillator and decay. 
Students have sampled the individual lifetimes of muons 
decaying w ithin a time interval between 1 /as and 10 /as after 
being stopped in the scintillator. I t  is assumed that the 
muons obey the radioactive decay law R  =  R q where 
R 0 is the unknown activity at t = 0 and R  is the activity 
(counts//As) at time t. Here is their data:

Time (/xs) 1.5 2.5 3.5 4.5 5.5 6.5 
R (t) 55 35 23 18 12 5

Make a graph of In (R /R 0) versus time t (/as), and from  the 
best fit o f the graph to a straight line find the mean life  t. 
The accepted value of the mean life  of the muon is 
t  = 2.19703 /as + 0.00004 /as. What is the percentage error 
o f their result from the accepted value?

Answers to Exercises

A : 1.24 X 10“ 18m = 1.24 am. D: (c); (d).
B: w 2 X 103 m/0.1 m « 104. E: su.

C: (a).
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This map of the entire sky (WMAP) is color-coded to represent slight temperature variations in the almost 
perfectly uniform 2.7-kelvin microwave background radiation that reaches us from all directions in the sky. 
This latest version (2006) is providing detailed information on the origins of our universe and its structures. 
The tiny temperature variations, red slightly hotter, blue slightly cooler (on the order of 1 part in 104) are 
“quantum fluctuations” that are the seeds on which galaxies and clusters of galaxies eventually grew.

To discuss the nature of the universe as we understand it today, we examine the latest theories on how 
stars and galaxies form and evolve, including the role of nucleosynthesis. We briefly discuss Einstein’s 
general theory of relativity, which deals with gravity and curvature of space. We take a thorough look at the

evidence for the expansion of the universe, and the 
Standard Model of the universe evolving 

from an initial Big Bang. Finally we 
point out some unsolved 

problems, including the 
nature of dark matter 

dark energy that 
make up most of our

Astrophysics and 
Cosmology
CHAPTER-OPENING QUESTIOI — Guess now!
U ntil recently, astronomers expected the expansion rate of the universe would be 
decreasing. Why?

(a) Friction.
(b) The second law of thermodynamics.
(c) Gravity.
(d) The electromagnetic force.

I n the previous Chapter, we studied the tiniest objects in the universe— the 
elementary particles. Now we leap to the grandest objects in the universe—  
stars, galaxies, and clusters of galaxies. These two extreme realms, elementary 
particles and the cosmos, are among the most intriguing and exciting subjects 

in science. And, surprisingly, these two extreme realms are related in a fundamental 
way, as already hinted in Chapter 43.

Use of the techniques and ideas of physics to study the heavens is often referred 
to as astrophysics. Central to our present theoretical understanding of the universe 
(or cosmos) is Einstein’s general theory o f relativity which represents our most complete 
understanding of gravitation. Many other aspects of physics are involved, from electro­
magnetism and thermodynamics to atomic and nuclear physics as well as elementary 
particles. General Relativity serves also as the foundation for modem cosmology, which 
is the study of the universe as a whole. Cosmology deals especially with the search for 
a theoretical framework to understand the observed universe, its origin, and its future.

CONTENTS
44-1 Stars and Galaxies
44-2 Stellar Evolution: Nucleosynthesis, 

and the Birth and Death of Stars
44-3 Distance Measurements
44-4 General Relativity: Gravity 

and the Curvature of Space
44-5 The Expanding Universe: 

Redshift and Hubble’s Law
44-6 The Big Bang and the 

Cosmic Microwave 
Background

44-7 The Standard Cosmological 
Model: Early History of the 
Universe

44-8 Inflation: Explaining
Flatness, Uniformity, and 
Structure

44-9 Dark Matter and 
Dark Energy

44-10 Large-Scale Structure of the 
Universe

44-11 Finally
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FIGURE 44-1 Sections of the Milky 
Way. In (a), the thin line is the trail of 
an artificial Earth satellite in this long 
time exposure. The dark diagonal area 
is due to dust absorption of visible 
light, blocking the view. In (b) the 
view is toward the center of the 
Galaxy; taken in summer from Arizona.

The questions posed by cosmology are profound and difficult; the possible 
answers stretch the imagination. They are questions like “ Has the 
universe always existed, or did it have a beginning in time?” Either alternative is 
difficult to imagine: time going back indefinitely into the past, or an actual 
moment when the universe began (but, then, what was there before?). And what 
about the size of the universe? Is it infinite in size? It is hard to imagine infinity. 
Or is it finite in size? This is also hard to imagine, for if  the universe is finite, it 
does not make sense to ask what is beyond it, because the universe is all there is.

In the last few years, so much progress has occurred in astrophysics and 
cosmology that many scientists are calling recent work a “ Golden Age” for 
cosmology. Our survey w ill be qualitative, but we w ill nonetheless touch on the 
major ideas. We begin with a look at what can be seen beyond the Earth.

44—1 Stars and Galaxies
According to the ancients, the stars, except for the few that seemed to move 
relative to the others (the planets), were fixed on a sphere beyond the last 
planet. The universe was neatly self-contained, and we on Earth were at or 
near its center. But in the centuries following Galileo’s first telescopic observa­
tions of the night sky in 1610, our view of the universe has changed dramatically. 
We no longer place ourselves at the center, and we view the universe 
as vastly larger. The distances involved are so great that we specify them 
in terms of the time it takes light to travel the given distance: for 
example, 1 light-second = (3.0 X 108m/s)(1.0s) = 3.0 X 108m = 300,000 km; 
1 light-minute = 18 X 106 km; and 1 light-year (ly) is

1 ly = (2.998 X 108m/s)(3.156 X 107s/yr)
= 9.46 X 1015m « 1013 km.

For specifying distances to the Sun and Moon, we usually use meters or kilometers, 
but we could specify them in terms of light. The Earth-Moon distance is
384,000 km, which is 1.281ight-seconds. The Earth-Sun distance is 1.50 X 10n m, 
or 150,000,000 km; this is equal to 8.3 light-minutes. Far out in our solar system, 
Pluto is about 6 X 109km from the Sun, or 6 X 10“4ly. The nearest star to us, 
other than the Sun, is Proxima Centauri, about 4.3 ly away.

On a clear moonless night, thousands of stars of varying degrees of brightness 
can be seen, as well as the long cloudy stripe known as the M ilky Way (Fig. 44-1). 
Galileo first observed, with his telescope, that the M ilky Way is comprised of 
countless individual stars. A  century and a half later (about 1750), Thomas Wright 
suggested that the M ilky Way was a flat disk of stars extending to great distances 
in a plane, which we call the Galaxy (Greek for “m ilky way” ).

(a)
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Our Galaxy has a diameter of almost 100,000 light-years and a thickness of 
roughly 2000 ly. It has a bulging central “nucleus” and spiral arms (Fig. 44-2). Our 
Sun, which is a star like many others, is located about halfway from the galactic center 
to the edge, some 26,000 ly from the center. Our Galaxy contains roughly 100 billion 
(lO11) stars. The Sun orbits the galactic center approximately once every 250 million 
years, so its speed is about 200km/s relative to the center of the Galaxy. The total 
mass of all the stars in our Galaxy is estimated to be about 3 X 1041 kg, which is 
ordinary matter. In addition, there is strong evidence that our Galaxy is surrounded 
by an invisible “halo” of “ dark matter,” which we discuss in Section 44-9.

FIGURE 44-2 Our Galaxy, as it would appear from the 
outside: (a) “edge view,” in the plane of the disk; (b) “top view,” 
looking down on the disk. (If only we could see it like this— 
from the outside!) (c) Infrared photograph of the inner reaches 
of the Milky Way, showing the central bulge and disk of our 
Galaxy. This very wide angle photo taken from the COBE 
satellite (Section 44-6) extends over 180° of sky, and to be 
viewed properly it should be wrapped in a semicircle with your 
eyes at the center. The white dots are nearby stars.

(c)

Our Galaxy's mass. Estimate the total mass of 
our Galaxy using the orbital data above for the Sun about the center 
of the Galaxy. Assume that most of the mass of the Galaxy is concentrated near 
the center of the Galaxy.

APPROACH We assume that the Sun (including our solar system) has total mass ra 
and moves in a circular orbit about the center of the Galaxy (total mass M), and that 
the mass M  can be considered as being located at the center of the Galaxy. We 
then apply Newton’s second law, F = ma, with a being the centripetal accel­
eration, a = v2/r , and F being the universal law of gravitation (Chapter 6). 
SOLUTION Our Sun and solar system orbit the center of the Galaxy, according to the 
best measurements as mentioned above, with a speed of about v =  200 km/s at a 
distance from the Galaxy center of about r =  26,000 ly. We use Newton’s second law:

ma
v 2 

m  —  
r

where M  is the mass of the Galaxy and m  is the mass of our Sun and solar 
system. Solving this, we find

rv2 (26,000ly )(l0 16m /ly)(2 X 105m/s)2 
M  ~  ~G 6.67 X 10-11 N • m2/kg2 ~ 2 X

NOTE In  terms of numbers of stars, if  they are like our Sun (ra = 2.0 X IO30 kg), 
there would be about (2 X 1041kg)/(2 X 1030kg) « 1011 or on the order of 
100 billion stars.

EXAMPLE 44-1

-100,000 ly
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In addition to stars both within and outside the M ilky Way, we can see by 
telescope many faint cloudy patches in the sky which were all referred to once as 
“nebulae” (Latin for “ clouds” ). A  few of these, such as those in the constellations 
Andromeda and Orion, can actually be discerned with the naked eye on a clear 
night. Some are star clusters (Fig. 44-3), groups of stars that are so numerous 
they appear to be a cloud. Others are glowing clouds of gas or dust (Fig. 44-4), 
and it is for these that we now mainly reserve the word nebula. Most fascinating 
are those that belong to a third category: they often have fairly regular elliptical 
shapes and seem to be a great distance beyond our Galaxy. Immanuel Kant 
(about 1755) seems to have been the first to suggest that these latter might be 
circular disks, but appear elliptical because we see them at an angle, and are faint 
because they are so distant. A t first it was not universally accepted that these 
objects were extragalactic— that is, outside our Galaxy. The very large telescopes 
constructed in the twentieth century revealed that individual stars could be 
resolved within these extragalactic objects and that many contain spiral arms. 
Edwin Hubble (1889-1953) did much of this observational work in the 1920s 
using the 2.5-m (100-inch) telescope* on Mt. Wilson near Los Angeles, California, 
then the world’s largest. Hubble demonstrated that these objects were indeed 
extragalactic because of their great distances. The distance to our nearest large 
galaxy/ Andromeda, is over 2 m illion light-years, a distance 20 times greater than 
the diameter of our Galaxy. It seemed logical that these nebulae must be galaxies 
similar to ours. (Note that it is usual to capitalize the word “ galaxy” only when it 
refers to our own.) Today it is thought there are roughly 1011 galaxies in the 
observable universe— that is, roughly as many galaxies as there are stars in a 
galaxy. See Fig. 44-5.

Many galaxies tend to be grouped in galaxy clusters held together by their 
mutual gravitational attraction. There may be anywhere from a few to many 
thousands of galaxies in each cluster. Furthermore, clusters themselves seem to be

f2.5 m (= 100 inches) refers to the diameter of the curved objective mirror. The bigger the mirror, 
the more light it collects (greater intensity) and the less diffraction there is (better resolution), so more 
and fainter stars can be seen. See Chapters 33 and 35. Until recently, photographic films or plates were used to 
take long time exposures. Now large solid-state CCD or CMOS sensors (Section 33-5) are available containing 
hundreds of millions of pixels (compared to 10 million pixels in a good-quality digital camera).
*The Magellanic clouds are much closer than Andromeda, but are small and are usually considered 
small satellite galaxies of our own Galaxy.

FIGURE 4 4 -5  Photographs of galaxies, (a) Spiral galaxy in the constellation Hydra, (b) Two galaxies: the 
larger and more dramatic one is known as the Whirlpool galaxy, (c) An infrared image (given “false” colors) 
of the same galaxies as in (b), here showing the arms of the spiral as having more substance than in the 
visible light photo (b); the different colors correspond to different light intensities. Visible light is scattered 
and absorbed by interstellar dust much more than infrared is, so infrared gives us a clearer image.

(a) (b) (c)
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FIGURE 4 4 -3  This globular star 
cluster is located in the constellation 
Hercules.

FIGURE 4 4 -4  This gaseous nebula, 
found in the constellation Carina, 
is about 9000 light-years from us.



organized into even larger aggregates: clusters of clusters of galaxies, or 
superclusters. The farthest detectable galaxies are more than 1010ly distant. 
See Table 44-1.

TABLE 44-1 Astronomical Distances

CONCEPTUAL EXAMPLE 44-2 I Looking back in time. Astronomers often think 
of their telescopes as time machines, looking back toward the origin of the universe. 
How far back do they look?

RESPONSE The distance in light-years measures how long in years the 
light has been traveling to reach us, so Table 44-1 tells us also how far back in 
time we are looking. For example, if we saw Proxima Centauri explode into a 
supernova today, then the event would have really occurred 4.3 years ago. The 
most distant galaxies emitted the light we see now roughly 1010 years ago. 
What we see was how they were then, 1010yr ago, or about 109 years after the 
universe was born in the Big Bang.

EXERCISE A Suppose we could place a huge mirror 1 light-year away from us. What would 
we see in this mirror if it is facing us on Earth? When did it take place? (This might be 
called a “time machine.”)

Besides the usual stars, clusters of stars, galaxies, and clusters and superclusters 
of galaxies, the universe contains many other interesting objects. Among these are 
stars known as re d  g ia n ts , w h ite  d w a rfs , n eu tron  stars, exploding stars called n o v a e  
and su p ern o va e , and b la ck  h o les  whose gravity is so strong even light can not 
escape them. In addition, there is electromagnetic radiation that reaches the Earth 
but does not emanate from the bright pointlike objects we call stars: particularly 
important is the microwave background radiation that arrives nearly uniformly 
from all directions in the universe. We w ill discuss all these phenomena.

Finally, there are a c tive  ga lactic  n u clei (AGN), which are very luminous 
pointlike sources of light in the centers of distant galaxies. The most dramatic 
examples of AGN are qu asars  (“ quasistellar objects” or QSOs), which are so lumi­
nous that the surrounding starlight of the galaxy is drowned out. Their luminosity 
is thought to come from matter falling into a giant black hole at a galaxy’s center.

4 4 -2  Stellar Evolution: Nucleosynthesis, 
and the Birth and Death of Stars

The stars appear unchanging. Night after night the night sky reveals no significant 
variations. Indeed, on a human time scale, the vast majority of stars change very 
little  (except for novae, supernovae, and certain variable stars). Although stars 
seem  fixed in relation to each other, many move sufficiently for the motion to be 
detected. Speeds of stars relative to neighboring stars can be hundreds of km/s, 
but at their great distance from us, this motion is detectable only by careful 
measurement. Furthermore, there is a great range of brightness among stars. The 
differences in brightness are due both to differences in the rate at which stars emit 
energy and to their different distances from us.

Luminosity and Brightness of Stars
A  useful parameter for a star or galaxy is its intrinsic luminosity, L  (or simply 
luminosity), by which we mean the total power radiated in watts. Also important is 
the apparent brightness, b , defined as the power crossing unit area at the Earth 
perpendicular to the path of the light. Given that energy is conserved, and ignoring 
any absorption in space, the total emitted power L  when it reaches a distance d  
from the star w ill be spread over a sphere of surface area A ird2. I f  d  is the distance 
from the star to the Earth, then L  must be equal to 4 ird 2 times b  (power per unit 
area at Earth). That is,

b  = (44-1)
477d

Object
Approx. Distance 
from Earth (ly)

Moon
Sun
Size of solar system 

(distance to Pluto)
Nearest star 

(Proxima Centauri)
Center of our Galaxy
Nearest large galaxy
Farthest galaxies

4 X 1CT8
1.6 X 1(T5

6 X 10“4

4.3
2.6 X 104
2.4 X 106

1010
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EXAMPLE 44-3 Apparent brightness. Suppose a particular star has intrinsic 
luminosity equal to that of our Sun, but is 10 ly away from Earth. By what factor 
w ill it appear dimmer than the Sun?

APPROACH The luminosity L  is the same for both stars, so the apparent bright­
ness depends only on their relative distances. We use the inverse square law as 
stated in Eq. 44-1 to determine the relative brightness.
SOLUTION Using the inverse square law, the star appears dimmer by a factor

(1.5 X 108 km) 

(10 ly )2(l0 13 km /ly)2
2 X 10“ 12.

Careful study of nearby stars has shown that the luminosity for most stars 
depends on the mass: the more massive the star, the greater its lu m in o s ity Indeed, 
we might expect that more massive stars would have higher core temperature and 
pressure to counterbalance the greater gravitational attraction, and thus be more 
luminous. Another important parameter of a star is its surface temperature, which 
can be determined from the spectrum of electromagnetic frequencies it emits 
(stars are “ good” blackbodies— see Section 37-1). As we saw in Chapter 37, as the 
temperature of a body increases, the spectrum shifts from predominantly lower 
frequencies (and longer wavelengths, such as red) to higher frequencies (and 
shorter wavelengths such as blue). Quantitatively, the relation is given by Wien’s 
law (Eq. 37-1): the peak wavelength AP in the spectrum of light emitted by a 
blackbody (we often approximate stars as blackbodies) is inversely proportional to 
its Kelvin temperature T; that is, APT = 2.90 X 10“3m -K. The surface tempera­
tures of stars typically range from about 3000 K (reddish) to about 50,000 K (UV).

■ Determining star temperature and star size. Suppose that
the distances from Earth to two nearby stars can be reasonably estimated, and that 
their measured apparent brightnesses suggest the two stars have about the same 
luminosity, L. The spectrum of one of the stars peaks at about 700 nm (so it is 
reddish). The spectrum of the other peaks at about 350 nm (bluish). Use Wien’s law 
(Eq. 37-1) and the Stefan-Boltzmann equation (Section 19-10) to determine (a) the 
surface temperature of each star, and (b) how much larger one star is than the other.

APPROACH We determine the surface temperature T  for each star using Wien’s 
law and each star’s peak wavelength. Then, using the Stefan-Boltzmann equation 
(power output or luminosity oc A T 4 where A  =  surface area of emitter), we can find 
the surface area ratio and relative sizes of the two stars.
SOLUTION (a) Wien’s law (Eq. 37-1) states that AFT =  2.90 X 10“3m*K. So 
the temperature of the reddish star is

2.90 X 10_3m *K
Tr 700 X 10“ 9

= 4140K.
m

The temperature of the bluish star w ill be double this since its peak wavelength is 
half (350 nm vs. 700 nm):

Th =  8280 K.

(b) The Stefan-Boltzmann equation, Eq. 19-17, states that the power radiated 
per unit area of surface from a blackbody is proportional to the fourth power of the 
Kelvin temperature, T 4. The temperature of the bluish star is double that of the 
reddish star, so the bluish one must radiate (24) = 16 times as much energy per 
unit area. But we are given that they have the same luminosity (the same total 
power output); so the surface area of the blue star must be ^  that of the red one. 
The surface area of a sphere is 47rr2, so the radius of the reddish star is 
V l6  = 4 times larger than the radius of the bluish star (or 43 = 64 times the volume).

f Applies to “main-sequence” stars (see next page). The mass of a star can be determined by observing 
its gravitational effects. Many stars are part of a cluster, the simplest being a binary star in which two 
stars orbit around each other, allowing their masses to be determined using rotational mechanics.
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FIGURE 44-6 Hertzsprung-Russell 
(H -R ) diagram is a logarithmic graph of 
luminosity vs. surface temperature T of stars 
(note that T increases to the left).
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H-R Diagram
An important astronomical discovery, made around 1900, was that for most stars, 
the color is related to the intrinsic luminosity and therefore to the mass. A  useful 
way to present this relationship is by the so-called Hertzsprung-Russell (H -R ) 
diagram. On the H -R  diagram, the horizontal axis shows the surface temperature T  
whereas the vertical axis is the luminosity L; each star is represented by a point 
on the diagram, Fig. 44-6. Most stars fall along the diagonal band termed the 
main sequence. Starting at the lower right we find the coolest stars, reddish in color; 
they are the least luminous and therefore of low mass. Farther up toward the left we 
find hotter and more luminous stars that are whitish, like our Sun. Still farther up 
we find even more massive and more luminous stars, bluish in color. Stars that fall 
on this diagonal band are called main-sequence stars. There are also stars that fall 
outside the main sequence. Above and to the right we find extremely large stars, 
with high luminosities but with low (reddish) color temperature: these are called 
red giants. A t the lower left, there are a few stars of low luminosity but with high 
temperature: these are the white dwarfs.

EXAMPLE 44-5 ESTIMATE"! Distance to a star using the H-R diagram and 
color. Suppose that detailed study of a certain star suggests that it most likely fits 
on the main sequence of an H -R  diagram. Its measured apparent brightness is 
b =  1.0 X 10_12W /m 2, and the peak wavelength of its spectrum is AP « 600 nm. 
Estimate its distance from us.

APPROACH We find the temperature using Wien’s law, Eq. 37-1. The luminosity 
is estimated for a main sequence star on the H -R  diagram of Fig. 44-6, and then 
the distance is found using the relation between brightness and luminosity, Eq. 44-1. 
SOLUTION The star’s temperature, from Wien’s law (Eq. 37-1), is

2.90 X 10_3m*K
600 X 10_9m

4800 K.

A  star on the main sequence of an H -R  diagram at this temperature has intrinsic 
luminosity of about L  « 1 X 1026 W, read o ff of Fig. 44-6. Then, from Eq. 44-1,

~ 7 T  I l  x  i o 2 6 w
Airb

d =
4(3.14)(l.O X 10-12 W /m 2) 

Its distance from us in light-years is

3 X 1018

3 X 1018m.

d =
m

1016 m /ly
300 ly.

EXERCISE B Estimate the distance to a 6000-K main-sequence star with an apparent 
brightness of 2.0 X 10-12 W /m2. SECTION 44-2 1199



FIGURE 4 4 -7  A  shell of “burning” 
hydrogen (fusing to become helium) 
surrounds the core where the newly 
formed helium gravitates.

Stellar Evolution; Nucleosynthesis
Why are there different types of stars, such as red giants and white dwarfs, as well 
as main-sequence stars? Were they all born this way, in the beginning? Or might 
each different type represent a different age in the life cycle of a star? 
Astronomers and astrophysicists today believe the latter is the case. Note, 
however, that we cannot actually follow any but the tiniest part of the life cycle of 
any given star since they live for ages vastly greater than ours, on the order of 
millions or billions of years. Nonetheless, let us follow the process of stellar 
evolution from the birth to the death of a star, as astrophysicists have theoretically 
reconstructed it today.

Stars are born, it is believed, when gaseous clouds (mostly hydrogen) contract 
due to the pull of gravity. A  huge gas cloud might fragment into numerous 
contracting masses, each mass centered in an area where the density was only 
slightly greater than that at nearby points. Once such “ globules” formed, gravity 
would cause each to contract in toward its center of mass. As the particles of 
such a protostar accelerate inward, their kinetic energy increases. When the kinetic 
energy is sufficiently high, the Coulomb repulsion between the positive charges 
is not strong enough to keep the hydrogen nuclei apart, and nuclear fusion can 
take place.

In a star like our Sun, the fusion of hydrogen (sometimes referred to as 
“ burning” )1 occurs via the proton-proton  cycle (Section 42-4, Eqs. 42-7), in 
which four protons fuse to form a ^He nucleus with the release of 7 rays, posi­
trons, and neutrinos: 4 }H —» jHe + 2 e+ + 2ve + 27. These reactions require 
a temperature of about 107 K, corresponding to an average kinetic energy (« kT) 
of about 1 keV (Eq. 18-4). In more massive stars, the carbon cycle produces the 
same net effect: four JH produce a jH e— see Section 42-4. The fusion reactions 
take place primarily in the core of a star, where T  may be on the order of 107 to 108 K. 
(The surface temperature is much lower— on the order of a few thousand 
kelvins.) The tremendous release of energy in these fusion reactions produces an 
outward pressure sufficient to halt the inward gravitational contraction. Our 
protostar, now really a young star, stabilizes on the main sequence. Exactly 
where the star falls along the main sequence depends on its mass. The more 
massive the star, the farther up (and to the left) it falls on the H -R  diagram of 
Fig. 44-6. Our Sun required perhaps 30 m illion years to reach the main sequence, 
and is expected to remain there about 10 b illion years (lO10 yr). Although most 
stars are billions of years old, evidence is strong that stars are actually being born 
at this moment. More massive stars have shorter lives, because they are hotter 
and the Coulomb repulsion is more easily overcome, so they use up their fuel 
faster. I f  our Sun remains on the main sequence for IO10 years, a star ten times 
more massive may reside there for only 107 years.

As hydrogen fuses to form helium, the helium that is formed is denser and 
tends to accumulate in the central core where it was formed. As the core of helium 
grows, hydrogen continues to fuse in a shell around it: see Fig. 44-7. When much of 
the hydrogen within the core has been consumed, the production of energy 
decreases at the center and is no longer sufficient to prevent the huge gravitational 
forces from once again causing the core to contract and heat up. The hydrogen in 
the shell around the core then fuses even more fiercely because of this rise in 
temperature, allowing the outer envelope of the star to expand and to cool. The 
surface temperature, thus reduced, produces a spectrum of light that peaks at 
longer wavelength (reddish).

trThe word “burn” is put in quotation marks because these high-temperature fusion reactions occur via 
a nuclear process, and must not be confused with ordinary burning (of, say, paper, wood, or coal) in air, 
which is a chemical reaction, occurring at the atomic level (and at a much lower temperature).
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By this time the star has left the main sequence. It has become redder, and 
as it has grown in size, it has become more luminous. So it w ill have moved to 
the right and upward on the H -R  diagram, as shown in Fig. 44-8. As it moves 
upward, it enters the red giant stage. Thus, theory explains the origin of red giants 
as a natural step in a star’s evolution. Our Sun, for example, has been on the 
main sequence for about 4 \  b illion years. It w ill probably remain there another 
4 or 5 billion years. When our Sun leaves the main sequence, it is expected to 
grow in diameter (as it becomes a red giant) by a factor of 100 or more, possibly 
swallowing up inner planets such as Mercury.

I f  the star is like our Sun, or larger, further fusion can occur. As the star’s outer 
envelope expands, its core continues to shrink and heat up. When the temperature 
reaches about 108 K, even helium nuclei, in spite of their greater charge and hence 
greater electrical repulsion, can come close enough to each other to undergo 
fusion. The reactions are

Be

|Be
12C
6'“/

(44-2)

with the emission of two 7 rays. These two reactions must occur in quick succes­
sion (because ®Be is very unstable), and the net effect is

3 ^He - ►  n6C. {Q =  7.3 MeV)

This fusion of helium causes a change in the star which moves rapidly to the 
“ horizontal branch” on the H -R  diagram (Fig. 44-8). Further fusion reactions 
are possible, with ^He fusing with l\C  to form 1|0 . In more massive stars, higher Z 
elements like JjjNe or ™Mg can be made. This process of creating heavier nuclei 
from lighter ones (or by absorption of neutrons which tends to occur at higher Z) 
is called nucleosynthesis.

The final fate of a star depends on its mass. Stars can lose mass as parts of 
their outer envelope move off into space. Stars born with a mass less than about 8 
(or perhaps 10) solar masses eventually end up with a residual mass less than 
about 1.4 solar masses, which is known as the Chandrasekhar limit. For them, no 
further fusion energy can be obtained. The core of such a “ low mass” star (original 
mass ^  8 -1 0  solar masses) contracts under gravity; the outer envelope expands 
again and the star becomes an even larger red giant. Eventually the outer layers 
escape into space, the core shrinks, the star cools, and typically follows the dashed 
route shown in Fig. 44-8, descending downward, becoming a white dwarf. A  white 
dwarf with a residual mass equal to that of the Sun would be about the size of the Earth. 
A  white dwarf contracts to the point at which the electron clouds start to overlap, but 
no further because, by the Pauli exclusion principle, no two electrons can be in the 
same quantum state. A t this point the star is supported against further collapse by 
this electron degeneracy pressure. A  white dwarf continues to lose internal energy 
by radiation, decreasing in temperature and becoming dimmer until it glows no 
more. It has then become a cold dark chunk of extremely dense material.

Stars whose residual mass is greater than the Chandrasekhar lim it of 1.4 solar 
masses (original mass greater than about 8 or 10 solar masses) are thought to 
follow a quite different scenario. A  star with this great a mass can contract under 
gravity and heat up even further. In the range T = (2.5-5) X 109K, nuclei as 
heavy as ^Fe and ^N i can be made. But here the formation of heavy nuclei from 
lighter ones, by fusion, ends. As we saw in Fig. 41-1, the average binding energy 
per nucleon begins to decrease for A  greater than about 60. Further fusions would 
require energy, rather than release it.

Elements heavier than Ni are thought to form mainly by neutron capture, 
particularly in exploding stars called supernovae (singular is supernova). Large 
numbers of free neutrons, resulting from nuclear reactions, are present inside these highly 
evolved stars and they can readily combine with, say, a ^Fe nucleus to form (if three 
are captured) ^Fe, which decays to 27C0 . The
becoming neutron rich and decaying by /3 
the highest Z  elements.

27C0 can capture neutrons, also 
to the next higher Z  element, and so on to

FIGURE 44-8 Evolutionary 
“track” of a star like our Sun 
represented on an H -R  diagram.

SECTION 44-2 Stellar Evolution: Nucleosynthesis, and the Birth and Death of Stars 1201



FIGURE 44-9 The star indicated by 
the arrow in (a) exploded in 1987 as 
a supernova (SN1987a), as shown in 
(b). The bright spot in (b) does not 
represent the physical size. Part (c) is 
a photo taken a few years later, 
showing shock waves moving 
outward from where SN1987a was 
(blow-up in corner). Part (c) is 
magnified relative 
to (a) and (b).

Yet at these extremely high temperatures, well above 109 K, the kinetic energy 
of the nuclei is so high that fusion of elements heavier than iron is still possible 
even though the reactions require energy input. But the high-energy collisions 
can also cause the breaking apart of iron and nickel nuclei into He nuclei, and 
eventually into protons and neutrons:

iF e 13 £ ie

2p

+ 4n 

2n.

These are energy-requiring (endothermic) reactions, but at such extremely high 
temperature and pressure there is plenty of energy available, enough even to force 
electrons and protons together to form neutrons in inverse f i  decay:

+ P n + v.

As a result of these reactions, the pressure in the core drops precipitously. As the 
core collapses under the huge gravitational forces, the tremendous mass becomes 
essentially an enormous nucleus made up almost exclusively of neutrons. The 
size of the star is no longer limited by the exclusion principle applied to electrons, 
but rather by neutron degeneracy pressure, and the star contracts 
rapidly to form an enormously dense neutron star. The core of a neutron 
star contracts to the point at which all neutrons are as close together as they 
are in an atomic nucleus. That is, the density of a neutron star is on the order of 
1014 times greater than normal solids and liquids on Earth. A  cupful of such 
dense matter would weigh billions of tons. A  neutron star that has a mass 1.5 times 
that of our Sun would have a diameter of only about 20 km. (Compare this to a white 
dwarf with 1 solar mass whose diameter would be « 104 km, as already mentioned.)

The contraction of the core of a massive star would mean a great reduction in 
gravitational potential energy. Somehow this energy would have to be released. 
Indeed, it was suggested in the 1930s that the final core collapse to a neutron star 
may be accompanied by a catastrophic explosion (a supernova— see previous page) 
whose tremendous energy could form virtually all elements of the Periodic Table and 
blow away the entire outer envelope of the star (Fig. 44-9), spreading its contents into 
interstellar space. The presence of heavy elements on Earth and in our solar system 
suggests that our solar system formed from the debris of such a supernova explosion.
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If  the final mass of a neutron star is less than about two or three solar masses, 
its subsequent evolution is thought to resemble that of a white dwarf. I f  the mass 
is greater than this, the star collapses under gravity, overcoming even the neutron 
exclusion principle. Gravity would then be so strong that even light emitted from 
the star could not escape— it would be pulled back in by the force of gravity. Since 
no radiation could escape from such a star, we could not see it— it would be black. 
An object may pass by it and be deflected by its gravitational field, but if it came 
too close it would be swallowed up, never to escape. This is a black hole.



Novae (singular is nova, meaning “new” in Latin) are faint stars that have suddenly 
increased in brightness by as much as a factor of 104 and last for a month or two 
before fading. Novae are thought to be faint white dwarfs that have pulled mass from 
a nearby companion (they make up a binary system), as illustrated in Fig. 44-10. The 
captured mass of hydrogen suddenly fuses into helium at a high rate for a few weeks. 
Many novae (maybe all) are recurrent— they repeat their bright glow years later.

Supernovae are also brief explosive events, but release millions of times more 
energy than novae, up to 1010 times more luminous than our Sun. The peak of 
brightness may exceed that of the entire galaxy in which they are located, but lasts 
only a few days or weeks. They slowly fade over a few months. Many supernovae 
form by core collapse to a neutron star as described above. See Fig. 44-9.

Type la  supemovae are different. They all seem to have very nearly the same 
luminosity. They are believed to be binary stars, one of which is a white dwarf that 
pulls mass from its companion, much like for a nova, Fig. 44-10. The mass is 
higher, and as mass is captured and the total mass reaches the Chandrasekhar lim it 
of 1.4 solar masses, it explodes as a supernova by undergoing a 
“ thermonuclear runaway” — an uncontrolled chain of nuclear reactions. What is 
left is a neutron star or ( if the mass is great enough) a black hole.

4 4 —3 D istance M easurem ents
We have talked about the vast distances of objects in the universe. But how do we 
measure these distances? One basic technique employs simple geometry to 
measure the parallax of a star. By parallax we mean the apparent motion of a star, 
against the background of much more distant stars, due to the Earth’s motion about the 
Sun. As shown in Fig. 44-11, the sighting angle of a star relative to the plane of 
Earth’s orbit (angle 6) can be determined at different times of the year. Since we 
know the distance d  from Earth to Sun, we can reconstruct the right triangles 
shown in Fig. 44-11 and can determine* the distance D  to the star. 
trThis is essentially the way the heights of mountains are determined, by “triangulation.” See Example 1-7.

Novae and Supemovae

FIGURE 44-10 Hypothetical 
model for novae and type la 
supernovae, showing how a white 
dwarf could pull mass from its 
normal companion.

->)(- ->(£■
^  Distant stars ^

* \  * J  *
*  \  /  *

Earth
(January)

Earth’s orbit

FIGURE 44-11 (a) Simple example of 
determining the distance D  to a relatively 
nearby star using parallax. Horizontal 
distances are greatly exaggerated: in reality (f> is 
a very small angle, (b) Diagram of the sky showing 
the apparent position of the “nearby” star 
relative to more distant stars, at two different 
times (January and July). The viewing angle in 
January puts the star more to the right relative 
to distant stars, whereas in July it is more to the 
left (dashed circle shows January location).

Sky as 
seen 
from 
Earth in 
January

As seen 
from

Earth Earth in
(July) July

(b)

transfer

Main-sequence
companion White

dwarf
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EXAMPLE 44-6 ESTIMATE~| Distance to a star using parallax. Estimate 
the distance D  to a star if the angle 0 in Fig. 44-11 is measured to be 89.99994°.

APPROACH From trigonometry, tan cf> =  d /D  in Fig. 44-11. The Sun-Earth 
distance is d =  1.5 X 108km.
SOLUTION The angle <f> =  90° -  89.99994° = 0.00006°, or about 1.0 X 10“ 6 radians. 
We can use tan<£ « cf) since (f) is very small. We solve for D  in tan<£ = d /D . 
The distance D  to the star is

^ d d  1.5 X 108km „ _ „
D  =  ------T ~ T  = ---- rrz 2— r = 1-5 X 10 km,tan <(> <f> 1.0 X 10 6 rad

or about 15 ly.

Distances to stars are often specified in terms of parallax angle (4> in 
Fig. 44-11 a) given in seconds of arc: 1 second (1") is ^  of one minute (1') of arc, 
which is ^  of a degree, so 1" =  3m  ° f a degree. The distance is then specified in 
parsecs (pc) (meaning parallax angle in seconds of arc): D  = l/4> with cf) in 
seconds of arc. In Example 44-6, (f> =  (6 X 10_5)°(3600) = 0.22" of arc, so we would 
say the star is at a distance of 1/0.22" = 4.5 pc. One parsec is given by (recall 
D = d/(j>, and we set the Sun-Earth distance (Fig. 44-1 la) as d =  1.496 X 1011 m): 

d  1.496 X l0 n m „ _  „
1PC = r  = ..... (  1' \  /  1° \  / 27t rad \ = 3-°86 X 10 m

= 3.26 ly.lp c  = (3.086 X 1016m )^ 1 iy
9.46 X 1015 m

Parallax can be used to determine the distance to stars as far away as about 
100 light-years (~ 30 parsecs) from Earth, and from an orbiting spacecraft perhaps 
5 to 10 times farther. Beyond that distance, parallax angles are too small to 
measure. For greater distances, more subtle techniques must be employed. We 
might compare the apparent brightnesses of two stars, or two galaxies, and use the 
inverse square law (apparent brightness drops o ff as the square of the distance) to 
roughly estimate their relative distances. We can’t expect this technique to be very 
precise because we don’t expect any two stars, or two galaxies, to have the same 
intrinsic luminosity. When comparing galaxies, a perhaps better estimate assumes 
the brightest stars in all galaxies (or the brightest galaxies in galaxy clusters) are 
similar and have about the same intrinsic luminosity. Consequently, their apparent 
brightness would be a measure of how far away they were.

Another technique makes use of the H -R  diagram. Measurement of a star’s 
surface temperature (from its spectrum) places it at a certain point (within 20%) 
on the H -R  diagram, assuming it is a main-sequence star, and then its luminosity 
can be estimated o ff the vertical axis (Fig. 44-6). Its apparent brightness and 
Eq. 44-1 give its approximate distance; see Example 44-5.

A  better estimate comes from comparing variable stars, especially Cepheid 
variables whose luminosity varies over time with a period that is found to be 
related to their average luminosity. Thus, from their period and apparent brightness 
we get their distance.

The largest distances are estimated by comparing the apparent brightnesses of 
type la supernovae (SNIa). Type la supernovae all have a similar origin 
(as described on the previous page, Fig. 44-10), and their brief explosive burst of 
light is expected to be of nearly the same luminosity. They are thus sometimes 
referred to as “ standard candles.”

Another important technique for estimating the distance of very distant stars 
is from the “ redshift” in the line spectra of elements and compounds. The redshift 
is related to the expansion of the universe, as we shall discuss in Section 44-5. It is 
useful for objects farther than 107 to 108 ly away.

As we look farther and farther away, the measurement techniques are less and 
less reliable, so there is more and more uncertainty in the measurements of large 
distances.
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44—4  General Relativity: Gravity and 
the Curvature of Space

We have seen that the force of gravity plays an important role in the processes that 
occur in stars. Gravity too is important for the evolution of the universe as a 
whole. The reasons gravity plays a dominant role in the universe, and not one of 
the other of the four forces in nature, are (1) it is long-range and (2) it is always 
attractive. The strong and weak nuclear forces act over very short distances only, 
on the order of the size of a nucleus; hence they do not act over astronomical 
distances (they do act between nuclei and nucleons in stars to produce nuclear 
reactions). The electromagnetic force, like gravity, acts over great distances. But it 
can be either attractive or repulsive. And since the universe does not seem to 
contain large areas of net electric charge, a large net force does not occur. But 
gravity acts as an attractive force between all masses, and there are large accumu­
lations in the universe of only the one “ sign” of mass (not + and -  as with electric 
charge). The force of gravity as Newton described it in his law of universal 
gravitation was modified by Einstein. In his general theory of relativity, Einstein 
developed a theory of gravity that now forms the basis of cosmological dynamics.

In the special theory o f  relativity (Chapter 36), Einstein concluded that there is 
no way for an observer to determine whether a given frame of reference is at rest 
or is moving at constant velocity in a straight line. Thus the laws of physics must be 
the same in different inertial reference frames. But what about the more general 
case of motion where reference frames can be accelerating?

Einstein tackled the problem of accelerating reference frames in his general 
theory of relativity and in it also developed a theory of gravity. The mathematics of 
General Relativity is complex, so our discussion w ill be mainly qualitative.

We begin with Einstein’s principle of equivalence, which states that

no experiment can be performed that could distinguish between a uniform
gravitational field and an equivalent uniform acceleration.

I f  observers sensed that they were accelerating (as in a vehicle speeding around a 
sharp curve), they could not prove by any experiment that in fact they weren’t 
simply experiencing the pull of a gravitational field. Conversely, we might think we 
are being pulled by gravity when in fact we are undergoing an acceleration having 
nothing to do with gravity.

As a thought experiment, consider a person in a freely falling elevator near 
the Earth’s surface. I f  our observer held out a book and let go of it, what would 
happen? Gravity would pull it downward toward the Earth, but at the same rate 
(g =  9.8 m/s2) at which the person and elevator were falling. So the book would 
hover right next to the person’s hand (Fig. 44-12). The effect is exactly the same 
as if this reference frame was at rest and no forces were acting. On the other 
hand, if the elevator was out in space where the gravitational field is essentially 
zero, the released book would float, just as it does in Fig. 44-12. Next, if  the 
elevator (out in space) is accelerating upward at an acceleration of 9.8 m/s2, the 
book as seen by our observer would fa ll to the floor with an acceleration of 
9.8 m/s2, just as if  it were falling due to gravity at the surface of the Earth. 
According to the principle of equivalence, the observer could not determine 
whether the book fe ll because the elevator was accelerating upward, or because 
a gravitational field was acting downward and the elevator was at rest. The two 
descriptions are equivalent.

The principle of equivalence is related to the concept that there are two types 
of mass. Newton’s second law, F = ma, uses inertial mass. We might say that 
inertial mass represents “ resistance” to any type of force. The second type of mass 
is gravitational mass. When one object attracts another by the gravitational force 
(Newton’s law of universal gravitation, F = G m 1 m j r 1, Chapter 6), the strength of 
the force is proportional to the product of the gravitational masses of the two objects.

FIGURE 44-12 In an elevator 
falling freely under gravity,
(a) a person releases a book;
(b) the released book hovers
next to the owner’s hand; (b) is a few 
moments after (a).

I

(b)
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This is much like Coulomb’s law for the electric force between two objects 
which is proportional to the product of their electric charges. The electric charge 
on an object is not related to its inertial mass; so why should we expect that an 
object’s gravitational mass (call it gravitational charge if  you like) be related 
to its inertial mass? A ll along we have assumed they were the same. Why? Because 
no experiment— not even of high precision— has been able to discern any 
measurable difference between inertial mass and gravitational mass. (For example, 
in the absence of air resistance, all objects fa ll at the same acceleration, g, on 
Earth.) This is another way to state the equivalence principle: gravitational mass 
is equivalent to inertial mass.

FIGURE 44-13 (a) Light beam goes straight 
across an elevator which is not accelerating.
(b) The light beam bends (exaggerated) in an 
accelerating elevator whose speed increases in the 
upward direction. Both views are as seen by an 
outside observer in an inertial reference frame.

(a) (b)

The principle of equivalence can be used to show that light ought to be 
deflected due to the gravitational force of a massive object. Consider another 
thought experiment, in which an elevator is in free space where virtually no 
gravity acts. I f  a light beam is emitted by a flashlight attached to the side of the 
elevator, the beam travels straight across the elevator and makes a spot on the 
opposite side if the elevator is at rest or moving at constant velocity (Fig. 44-13a). 
I f  instead the elevator is accelerating upward, as in Fig. 44-13b, the light beam 
still travels straight across in a reference frame at rest. In the upwardly acceler­
ating elevator, however, the beam is observed to curve downward. Why? Because 
during the time the light travels from one side of the elevator to the other, the 
elevator is moving upward at a vertical speed that is increasing relative to the 
light. Next we note that according to the equivalence principle, an upwardly 
accelerating reference frame is equivalent to a downward gravitational field. 
Hence, we can picture the curved light path in Fig. 44-13b as being due to 
the effect of a gravitational field. Thus, from the principle of equivalence, we 
expect gravity to exert a force on a beam of light and to bend it out of a straight- 
line path!

That light is affected by gravity is an important prediction of Einstein’s general 
theory of relativity. And it can be tested. The amount a light beam would be 
deflected from a straight-line path must be small even when passing a massive 
object. (For example, light near the Earth’s surface after traveling 1 km is predicted 
to drop only about KT10m, which is equal to the diameter of a small atom and 
not detectable.) The most massive object near us is the Sun, and it was calculated 
that light from a distant star would be deflected by 1.75" of arc (tiny but detectable) 
as it passed by the edge of the Sun (Fig. 44-14). However, such a measurement 
could be made only during a total eclipse of the Sun, so that the Sun’s tremendous 
brightness would not obscure the starlight passing near its edge. An opportune 
eclipse occurred in 1919, and scientists journeyed to the South Atlantic to observe it.

FIGURE 44-14 (a) Three stars in 
the sky observed from Earth, (b) If the 
light from one of these stars passes 
very near the Sun, whose gravity 
bends the rays, the star will appear 
higher than it actually is (follow the 
ray backwards).

Observer
on Earth (a)

Observer
on Earth (b)

1206 CHAPTER 44 Astrophysics and Cosmology



False 
image

(a) (b)

FIGURE 44-15 (a) Hubble Space Telescope photograph of the so-called “Einstein cross”, thought to represent 
“gravitational lensing”: the central spot is a relatively nearby galaxy, whereas the four other spots are thought to be 
images of a single quasar behind the galaxy, (b) Diagram showing how the galaxy could bend the light coming from the 
quasar behind it to produce the four images. See also Fig. 44-14. [If the shape of the nearby galaxy and distant quasar 
were perfect spheres, we would expect the “image” of the distant quasar to be a circular ring or halo instead of the four 
separate images seen here. Such a ring is called an “Einstein ring.”]

Their photos of stars around the Sun revealed shifts in accordance with Einstein’s 
prediction. Another example is gravitational lensing, as shown in Fig. 44-15.

Fermat showed that optical phenomena, including reflection, refraction, and 
effects of lenses, can be derived from a simple principle: that light traveling 
between two points follows the shortest path in space. Thus if gravity curves the 
path of light, then gravity must be able to curve space itself. That is, space itself 
can be curved, and it is gravitational mass that causes the curvature. Indeed, the 
curvature of space— or rather, of four-dimensional space-time— is a basic aspect 
of Einstein’s General Relativity (GR).

What is meant by curved space? To understand, recall that our normal method 
of viewing the world is via Euclidean plane geometry. In Euclidean geometry, there 
are many axioms and theorems we take for granted, such as that the sum of the 
angles of any triangle is 180°. Non-Euclidean geometries, which involve curved 
space, have also been imagined by mathematicians. It is hard enough to imagine 
three-dimensional curved space, much less curved four-dimensional space-time. 
So let us try to understand the idea of curved space by using two-dimensional surfaces.

Consider, for example, the two-dimensional surface of a sphere. It is clearly 
curved, Fig. 44-16, at least to us who view it from the outside— from our three- 
dimensional world. But how would hypothetical two-dimensional creatures 
determine whether their two-dimensional space was flat (a plane) or curved? One 
way would be to measure the sum of the angles of a triangle. I f  the surface is a 
plane, the sum of the angles is 180°, as we learn in plane geometry. But if the space 
is curved, and a sufficiently large triangle is constructed, the sum of the angles w ill 
not be 180°. To construct a triangle on a curved surface, say the sphere of 
Fig. 44-16, we must use the equivalent of a straight line: that is, the shortest 
distance between two points, which is called a geodesic. On a sphere, a geodesic is 
an arc of a great circle (an arc in a plane passing through the center of the sphere) 
such as the Earth’s equator and the Earth’s longitude lines. Consider, for example, 
the large triangle of Fig. 44-16: its sides are two longitude lines passing from the 
north pole to the equator, and the third side is a section of the equator as shown. 
The two longitude lines make 90° angles with the equator (look at a world globe to 
see this more clearly). They make an angle with each other at the north pole, which 
could be, say, 90° as shown; the sum of these angles is 90° + 90° + 90° = 270°. 
This is clearly not a Euclidean space. Note, however, that if the triangle is small in 
comparison to the radius of the sphere, the angles w ill add up to nearly 180°, and 
the triangle (and space) w ill seem flat.

FIGURE 44-16 On a
two-dimensional curved surface, 
the sum of the angles of a triangle 
may not be 180°.
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FIGURE 44—17 On a spherical surface FIGURE 44—18 Example of a
(a two-dimensional world) a circle of circumference C is two-dimensional surface with
drawn (red) about point O as the center. The radius negative curvature.
of the circle (not the sphere) is the distance r along the
surface. (Note that in our three-dimensional view, we
can tell that C = lira. Since r >  a, then C < 2irr.)

Another way to test the curvature of space is to measure the radius r and 
circumference C of a large circle. On a plane surface, C = 2irr. But on a two- 
dimensional spherical surface, C  is less than 2irr, as can be seen in Fig. 44-17. The 
proportionality between C and r is less than 2ir. Such a surface is said to have 
positive curvature. On the saddlelike surface of Fig. 44-18, the circumference of a 
circle is greater than 2irr, and the sum of the angles of a triangle is less than 180°. 
Such a surface is said to have a negative curvature.

Curvature of the Universe
What about our universe? On a large scale (not just near a large mass), what is the 
overall curvature of the universe? Does it have positive curvature, negative curva­
ture, or is it fla t (zero curvature)? We perceive our world as Euclidean (flat), but 
we can not exclude the possibility that space could have a curvature so slight that 
we don’t normally notice it. This is a crucial question in cosmology, and it can be 
answered only by precise experimentation.

I f  the universe had a positive curvature, the universe would be closed, or finite 
in volume. This would not mean that the stars and galaxies extended out to a certain 
boundary, beyond which there is empty space. There is no boundary or edge in such 
a universe. The universe is all there is. I f  a particle were to move in a straight line 
in a particular direction, it would eventually return to the starting point— perhaps 
eons of time later.

On the other hand, if  the curvature of space was zero or negative, the universe 
would be open. I t  could just go on forever. An open universe could be infinite', but 
according to recent research, even that may not necessarily be so.

Today the evidence is very strong that the universe on a large scale is very 
close to being flat. Indeed, it is so close to being fla t that we can’t te ll if  it might 
have very slightly positive or very slightly negative curvature.

Black Holes
FIGURE 44-19 Rubber-sheet analogy 
for space-time curved by matter.

Weight

1208 CHAPTER 44

According to Einstein’s theory, space-time is curved near massive objects. We 
might think of space as being like a thin rubber sheet: if  a heavy weight is hung 
from it, it curves as shown in Fig. 44-19. The weight corresponds to a huge mass 
that causes space (space itself!) to curve. Thus, in Einstein’s theory1 we do not 
speak of the “ force” of gravity acting on objects. Instead we say that objects and 
light rays move as they do because space-time is curved. An object starting at rest 
or moving slowly near the great mass of Fig. 44-19 would follow a geodesic (the 
equivalent of a straight line in plane geometry) toward that great mass.

Alexander Pope (1688-1744) wrote an epitaph for Newton:
“Nature, and Nature’s laws lay hid in night:
God said, Let Newton be! and all was light.”

Sir John Squire (1884-1958), perhaps uncomfortable with Einstein’s profound thoughts, added:
“It did not last: the Devil howling ‘Ho!
Let Einstein be/’ restored the status quo.”



The extreme curvature of space-time shown in Fig. 44-19 could be produced 
by a black hole. A  black hole, as we mentioned in Section 44-2, is so dense that 
even light cannot escape from it. To become a black hole, an object of mass M  
must undergo gravitational collapse, contracting by gravitational self-attraction to 
within a radius called the Schwarzschild radius:

_ 2G M

where G  is the gravitational constant and c the speed of light. I f  an object collapses 
to within this radius, it is predicted by general relativity to rapidly (« IO-5 s) 
collapse to a point at r =  0, forming an infinitely dense singularity. This predic­
tion is uncertain, however, because in this realm we need to combine quantum 
mechanics with gravity, a unification of theories not yet achieved (Section 43-12).

| EXERCISE C What is the Schwarzschild radius for an object with 2 solar masses?

The Schwarzschild radius also represents the event horizon of a black hole. By 
event horizon we mean the surface beyond which no emitted signals can ever 
reach us, and thus inform us of events that happen beyond that surface. As a star collapses 
toward a black hole, the light it emits is pulled harder and harder by gravity, but 
we can still see it. Once the matter passes within the event horizon, the emitted 
light cannot escape but is pulled back in by gravity.

A ll we can know about a black hole is its mass, its angular momentum (there 
could be rotating black holes), and its electric charge. No other information, no 
details of its structure or the kind of matter it was formed of, can be known 
because no information can escape.

How might we observe black holes? We cannot see them because no light can 
escape from them. They would be black objects against a black sky. But they do 
exert a gravitational force on nearby objects. The black hole believed to be at the 
center of our Galaxy (M  ~ 2 X 106 MSun) was discovered by examining the motion 
of matter in its vicinity. Another technique is to examine stars which appear to move 
as if they were one member of a binary system (two stars rotating about their common 
center of mass), but without a visible companion. If  the unseen star is a black hole, 
it might be expected to pull o ff gaseous material from its visible companion (as in 
Fig. 44-10). As this matter approached the black hole, it would be highly acceler­
ated and should emit X-rays of a characteristic type before plunging inside the 
event horizon. Such X-rays, plus a sufficiently high mass estimate from the 
rotational motion, can provide evidence for a black hole. One of the many 
candidates for a black hole is in the binary-star system Cygnus X -l. It is widely 
believed that the center of most galaxies is occupied by a black hole with a mass 
106 to 109 times the mass of a typical star like our Sun.

EXERCISE D A  black hole has radius R. Its mass is proportional to (a) R, (b) R2, (c) R3.
Justify your answer.

44—5 The Expanding Universe: 
Redshift and Hubble's Law

We discussed in Section 44-2 how individual stars evolve from their birth to their 
death as white dwarfs, neutron stars, and black holes. But what about the universe 
as a whole: is it static, or does it change? One of the most important scientific 
discoveries of the twentieth century was that distant galaxies are racing away from 
us, and that the farther they are from us, the faster they are moving away. How 
astronomers arrived at this astonishing idea, and what it means for the past history 
of the universe as well as its future, w ill occupy us for the remainder of the book.
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Low redshift galaxy spectrum 
z = 0.004

molecules emit and absorb light of 
particular frequencies depending on 
the spacing of their energy levels, as 
we saw in Chapters 37 to 40. (a) The 
spectrum of light received from a 
relatively slow-moving galaxy.
(b) Spectrum of a galaxy moving away 
from us at a much higher speed.
Note how the peaks (or lines) in the 
spectrum have moved to longer 
wavelengths. The redshift is
Z =  ( -̂obs — ^rest)/^-rest •

FIGURE 44-20 Atom s and

500 600
(a) Wavelength (nm)

700

Higher redshift galaxy spectrum 
z = 0.104

500 600 700
(b) Wavelength (nm)

That the universe is expanding was first put forth by Edwin Hubble in 1929. 
This idea was based on distance measurements of galaxies (Section 44-3), and 
determination of their velocities by the Doppler shift of spectral lines in the light 
received from them (Fig. 44-20). In Chapter 16 we saw how the frequency of 
sound is higher and the wavelength shorter if the source and observer move toward 
each other. I f  the source moves away from the observer, the frequency is lower and 
the wavelength longer. The Doppler effect occurs also for light, and we saw in 
Section 36-12 (Eq. 36-15) that according to special relativity, the Doppler shift is given by

where Arest is the emitted wavelength as seen in a reference frame at rest with 
respect to the source, and Aobs is the wavelength observed in a frame moving with 
velocity v  away from the source along the line of sight. (For relative motion 
toward  each other, v  <  0 in this formula.) When a distant source emits light of a 
particular wavelength, and the source is moving away from us, the wavelength 
appears longer to us: the color of the light (if it is visible) is shifted toward the red 
end of the visible spectrum, an effect known as a redshift. ( If the source moves 
toward us, the color shifts toward the blue or shorter wavelength.)

In the spectra of stars in other galaxies, lines are observed that correspond to 
lines in the known spectra of particular atoms (see Section 37-10 and Figs. 35-22 
and 37-20). What Hubble found was that the lines seen in the spectra from distant 
galaxies were generally redshifted, and that the amount of shift seemed to be approx­
imately proportional to the distance of the galaxy from us. That is, the velocity v  of 
a galaxy moving away from us is proportional to its distance d  from us:

This is Hubble’s law, one of the most fundamental astronomical ideas. The 
constant H  is called the Hubble parameter.

The value of H  until recently was uncertain by over 20%, and thought to be 
between 50 and 80km/s/Mpc. But recent measurements now put its value more 
precisely at

(that is, 71 km/s per megaparsec of distance). The current uncertainty is about 5%, or 
+ 4 km/s/Mpc. I f  we use light-years for distance, then H  =  22 km/s per million 
light-years of distance:

(44-3)

HUBBLE’S LAW v =  Hd. (44-4)

H  =  71 km/s/M pc

H  =  22 km /s/M ly
1210 CHAPTER 44 with an estimated uncertainty of +1 km/s/Mly.



Redshift Origins
Galaxies very near us seem to be moving randomly relative to us: some move 
towards us (blueshifted), others away from us (redshifted); their speeds are on the 
order of 0.001c. But for more distant galaxies, the velocity of recession is much 
greater than the velocity of local random motion, and so is dominant and Hubble’s 
law (Eq. 44-4) holds very well. More distant galaxies have higher recession velocity 
and a larger redshift, and we call their redshift a cosmological redshift. We interpret 
this redshift today as due to the expansion o f  space itself. We can think of the originally 
emitted wavelength Arest as being stretched out (becoming longer) along with the 
expanding space around it, as suggested in Fig. 44-21. Although Hubble thought of 
the redshift as a Doppler shift, now we understand it in this sense of expanding space.

Contrast the cosmological redshift, due to the expansion of space itself, with 
an ordinary D oppler redshift which is due to the relative motion of emitter and 
observer in a space that can be considered fixed over the time interval of observation.

There is a third way to produce a redshift, which we mention for 
completeness: a gravitational redshift. Light leaving a massive star is gaining in 
gravitational potential energy (just like a stone thrown upward from Earth). So the 
kinetic energy of each photon, hf, must be getting smaller (to conserve energy). 
A  smaller frequency /means a larger (longer) wavelength A {=  c / f ) ,  which is a redshift.

The amount of a redshift is specified by the redshift parameter, z, defined as

^•obs — ^-rest A  A
z =  ----- ---------- = - — ’ (44-5a)

r̂est r̂est
where Arest is a wavelength as seen by an observer at rest relative to the source, and 
Aobs is the wavelength measured by a moving observer. Equation 44-5a can also be 
written as

ôbs i
z =  --------- 1

Arest
(44-5b)

z  + 1 = (44-5c)

For low speeds not close to the speed of light (v  ^  0.1c), the Doppler formula 
(Eq. 44-3) can be used to show (Problem 29) that z  is proportional to the speed of 
the source toward or away from us:

•̂obs — r̂est V r a\« —  [v «  c] (44-6)z =
r̂est

But redshifts are not always small, in which case the approximation of Eq. 44-6 is 
not valid. Modern telescopes regularly observe galaxies with z  ~ 5 (Fig. 44-22); 
for large z  galaxies, not even Eq. 44-3 applies because the redshift is due to the 
expansion of space (cosmological redshift), not the Doppler effect.

Scale Factor
The expansion of space can be described as a simple scaling of the typical distance 
between two points or objects in the universe. If two distant galaxies are a distance d0 
apart at some initial time, then a time t later they w ill be separated by a greater 
distance d (t). The scale factor is the same as for light, expressed in Eq. 44-5a. That is,

d { t) — d0 AA

do A
= z

or

= 1 + z.
m  
d0

Thus, for example, if a galaxy has z  =  3, then the scale factor is now 
(1 + 3) = 4 times larger than when the light was emitted from that galaxy. That 
is, the average distance between galaxies has become 4 times larger. Thus the 
factor by which the wavelength has increased since it was emitted tells us by 
what factor the universe (or the typical distance between objects) has increased in size.

FIGURE 44-21 Simplified model 
of a 2-dimensional universe, 
imagined as a balloon. As you blow 
up the balloon (= expanding 
universe), the wavelength of a wave 
on its surface gets longer.

FIGURE 44-22 Hubble Ultra 
Deep Field photograph showing 
what may be among the most distant 
galaxies from us (small red dots, 
indicated by green squares), with 
z  ~  5 or 6, existing when the 
universe was only about 800 million 
years old. The two distant galaxies in 
this photo are shown enlarged below.
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FIGURE 44-23 Expansion of the universe looks the same from any point in the universe. If you are on Earth 
as shown in part (a) or you are instead at point A  (which is at rest in the reference frame shown in (b)), all 
other galaxies appear to be racing away from you.

Expansion, and the Cosmological Principle
What does it mean that distant galaxies are all moving away from us, and with ever 
greater speed the farther they are from us? It seems to suggest some kind of explo­
sive expansion that started at some very distant time in the past. And at first sight 
we seem to be in the middle of it all. But we aren’t. The expansion appears the 
same from any other point in the universe. To understand why, see Fig. 44-23. In 
Fig. 44-23a we have the view from Earth (or from our Galaxy). The velocities of 
surrounding galaxies are indicated by arrows, pointing away from us, and the 
arrows are longer for galaxies more distant from us. Now, what if we were on the 
galaxy labeled A  in Fig. 44-23a? From Earth, galaxy A  appears to be moving to 
the right at a velocity, call it vA, represented by the arrow pointing to the right. If  
we were on galaxy A , Earth would appear to be moving to the left at velocity — vA. 
To determine the velocities of other galaxies relative to A , we vectorially add the 
velocity vector, - v A, to all the velocity arrows shown in Fig. 44-23a. This yields 
Fig. 44-23b, where we see clearly that the universe is expanding away from 
galaxy A  as well; and the velocities of galaxies receding from A  are proportional to 
their current distance from A. The universe looks pretty much the same from 
different points.

Thus the expansion of the universe can be stated as follows: all galaxies are racing 
away from each other at an average rate of about 22 km/s per m illion light-years 
of distance between them. The ramifications of this idea are profound, and we 
discuss them in a moment.

A  basic assumption in cosmology has been that on a large scale, the universe 
would look the same to observers at different places at the same time. In other 
words, the universe is both isotropic (looks the same in all directions) and 
homogeneous (would look the same if  we were located elsewhere, say in another 
galaxy). This assumption is called the cosmological principle. On a local scale, say 
in our solar system or within our Galaxy, it clearly does not apply (the sky looks 
different in different directions). But it has long been thought to be valid if we 
look on a large enough scale, so that the average population density of galaxies 
and clusters of galaxies ought to be the same in different areas of the sky. This 
seems to be valid on distances greater than about 200 Mpc (700 M ly). The expan­
sion of the universe (Fig. 44-23) is consistent with the cosmological principle; and 
the near uniformity of the cosmic microwave background radiation (discussed in 
Section 44-6) supports it. Another way to state the cosmological principle is that 
our place in the universe is not special.

The expansion of the universe, as described by Hubble’s law, strongly suggests 
that galaxies must have been closer together in the past than they are now. This is, 
in fact, the basis of the Big Bang theory of the origin of the universe, which 
pictures the universe as a relentless expansion starting from a very hot and 
compressed beginning. We discuss the Big Bang in detail shortly, but first let us see 
what can be said about the age of the universe.
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One way to estimate the age of the universe uses the Hubble parameter. 
With H  « 22 km/s per 106 light-years, the time required for the galaxies to arrive 
at their present separations would be approximately (starting with v  = d / t  and 
using Hubble’s law, Eq. 44-4),

f  =  d = A .  = JL  (I06ly)(0.95 x  10n km /ly) ^

v  H d H  (22km/s)(3.16 X 107s/yr)

or 14 billion years. The age of the universe calculated in this way is called the 
characteristic expansion time or “Hubble age.” It is a very rough estimate and assumes 
the rate of expansion of the universe was constant (which today we are quite sure 
is not true). Today’s best measurements give the age of the universe as 13.7 X 109yr, 
in remarkable agreement with the rough Hubble age estimate.

* Steady-State Model
Before discussing the Big Bang in detail, we mention one alternative to the Big 
Bang— the steady-state model— which assumed that the universe is infinitely old 
and on average looks the same now as it always has. (This assumed uniform ity in 
time as well as space was called the perfect cosmological principle.) According to 
the steady-state model, no large-scale changes have taken place in the universe 
as a whole, particularly no Big Bang. To maintain this view in the face of the 
recession of galaxies away from each other, matter must be created continuously 
to maintain the assumption of uniformity. The rate of mass creation required is 
very small— about one nucleon per cubic meter every 109 years.

The steady-state model provided the Big Bang model with healthy competition 
in the mid-twentieth century. But the discovery of the cosmic microwave background 
radiation (next Section), as well as other observations of the universe, has made the 
Big Bang model universally accepted.

44—( The Big Bang and the Cosmic 
Microwave Background

The expansion of the universe suggests that typical objects in the universe were 
once much closer together than they are now. This is the basis for the idea that the 
universe began about 14 billion years ago as an expansion from a state of very high 
density and temperature known affectionately as the Big Bang.

The birth of the universe was not an explosion, because an explosion blows 
pieces out into the surrounding space. Instead, the Big Bang was the start of an 
expansion of space itself. The observable universe was very small at the start and 
has been expanding ever since. The in itia l tiny universe of extremely dense matter 
is not to be thought of as a concentrated mass in the midst of a much larger space 
around it. The in itia l tiny but dense universe was the entire universe. There 
wouldn’t have been anything else. When we say that the universe was once smaller 
than it is now, we mean that the average separation between objects (such as 
galaxies) was less. It is thought the universe was infinite in extent then, and it still is 
(only bigger). The observable universe, however, is finite.

A  major piece of evidence supporting the Big Bang is the cosmic microwave 
background radiation (or CMB) whose discovery came about as follows.

In 1964, Arno Penzias and Robert Wilson pointed their radiotelescope 
(a large antenna device for detecting radio waves) into the night sky (Fig. 44-24). 
W ith it they detected widespread emission, and became convinced that it was 
coming from outside our Galaxy. They made precise measurements at a wave­
length A = 7.35 cm, in the microwave region of the electromagnetic spectrum 
(Fig. 31-12). The intensity of this radiation was found in itia lly not to vary by day 
or night or time of year, nor to depend on direction. It came from all directions in 
the universe with equal intensity, to a precision of better than 1%. It could only be 
concluded that this radiation came from the universe as a whole.

FIGURE 44-24 Arno Penzias (left) 
and Robert Wilson, and behind them 
their “horn antenna.”
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FIGURE 44-25 Spectrum of cosmic microwave 
background radiation, showing blackbody curve 
and experimental measurements including at the 
frequency detected by Penzias and Wilson. |
(Thanks to G. F. Smoot and D. Scott. The vertical J  
bars represent the most recent experimental 
uncertainty in a measurement.)
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FIGURE 44-26 COBE scientists 
John Mather (left, chief scientist and 
responsible for measuring the 
blackbody form of the spectrum) 
and George Smoot (chief investigator 
for anisotropy experiment) shown 
here during celebrations for their 
Dec. 2006 Nobel Prize, given for 
their discovery of the spectrum and 
anisotropy of the CMB using the 
COBE instrument.

They measured this cosmic microwave background radiation at A = 7.35 cm, 
and its intensity corresponds to blackbody radiation (see Section 37-1) at a 
temperature of about 3 K. When radiation at other wavelengths was measured 
by the COBE satellite (COsmic Background Explorer), the intensities were found 
to fall on a nearly perfect blackbody curve as shown in Fig. 44-25, corresponding 
to a temperature of 2.725 K (+  0.002 K).

The remarkable uniform ity of the cosmic microwave background radiation 
was in accordance with the cosmological principle. But theorists fe lt that there 
needed to be some small inhomogeneities, or “ anisotropies,” in the CMB that 
would have provided “ seeds” around which galaxy formation could have 
started. Small areas of slightly higher density, which could have contracted 
under gravity to form stars and galaxies, were indeed found. These tiny inhomo­
geneities in density and temperature were detected first by the COBE satellite 
experiment in 1992, led by John Mather and George Smoot (Fig. 44-26).

This discovery of the anisotropy of the CMB ranks with the discovery of the 
CMB itself in the history of cosmology. It was the culmination of decades of research 
by pioneers such as Paul Richards and David Wilkinson. Subsequent experiments 
with greater detail culminated in 2003 with the WMAP (Wilkinson Microwave 
Anisotropy Probe) results. See Fig. 44-27 which presents the latest (2006) results.

The CMB provides strong evidence in support of the Big Bang, and gives us 
information about conditions in the very early universe. In fact, in the late 1940s, 
George Gamow and his collaborators calculated that a Big Bang origin of the 
universe should have generated just such a microwave background radiation.

To understand why, let us look at what a Big Bang might have been like. 
(Today we usually use the term “Big Bang” to refer to the process, starting from 
the birth of the universe through the subsequent expansion.) The temperature 
must have been extremely high at the start, so high that there could not have 
been any atoms in the very early stages of the universe. Instead, the universe

FIGURE 44-27 Measurements of the cosmic 
microwave background radiation over the entire 
sky, color-coded to represent differences in 
temperature from the average 2.725 K: the color 
scale ranges from +200 /x,K (red) to -200  fiK  
(dark blue), representing slightly hotter and 
colder spots (associated with variations in 
density). Results are from the WMAP satellite in 
2006: the angular resolution is 0.2°. The white 
lines are added to show the measured 
polarization direction of the earliest light, which 
gives further clues to the early universe.
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would have consisted solely of radiation (photons) and a plasma of charged 
electrons and other elementary particles. The universe would have been opaque—  
the photons in a sense “ trapped,” traveling very short distances before being 
scattered again, primarily by electrons. Indeed, the details of the microwave 
background radiation is strong evidence that matter and radiation were once in 
equilibrium at a very high temperature. As the universe expanded, the energy 
spread out over an increasingly larger volume and the temperature dropped.
Only when the temperature had fallen to about 3000 K, some 380,000 years later, could 
nuclei and electrons combine together as atoms. With the disappearance of free 
electrons, as they combined with nuclei to form atoms, the radiation would have been 
freed— decoupled from matter, we say. The universe became transparent because 
photons were now free to travel nearly unimpeded straight through the universe.

It is this radiation, from 380,000 years after the birth of the universe, that we 
now see as the CMB. As the universe expanded, so too the wavelengths of the 
radiation lengthened, thus redshifting to longer wavelengths that correspond to 
lower temperature (recall Wien’s law, APT = constant, Section 37-1), until they 
would have reached the 2.7-K background radiation we observe today.

Looking Back toward the Big Bang—Lookback Time
Figure 44-28 shows our Earth point of view, looking out in all directions back 
toward the Big Bang and the brief (380,000-year-long) period when radiation was 
trapped in the early plasma (yellow band). The time it takes light to reach us from an 
event is called its lookback time. The “close-up” insert in Fig. 44-28 shows a photon 
scattering repeatedly inside that early plasma and then exiting the plasma in a straight 
line. No matter what direction we look, our view of the very early universe is blocked 
by this wall of plasma. It is like trying to look into a very thick fog or into the surface of 
the Sun— we can see only as far as its surface, called the surface of last scattering, 
but not into it. Wavelengths from there are redshifted by z  ~  1100. Time At' in 
Fig. 44-28 is the lookback time (not real time that goes forward).

Recall that when we view an object far away, we are seeing it as it was then,

FIGURE 44-28 When we look out from the Earth, we look 
back in time. Any other observer in the universe would see 
more or less the same thing. The farther an object is from us, 
the longer ago the light we see had to have left it. We cannot 
see quite as far as the Big Bang; we can see only as far as the 
“surface of last scattering,” which radiated the CMB. The 
insert on the lower right shows the earliest 380,000 years of 
the universe when it was opaque: a photon is shown 
scattering many times and then (at decoupling, 380,000 yr 
after the birth of the universe) becoming free to travel in a 
straight line. If this photon wasn’t heading our way when 
“liberated,” many others were. Galaxies are not shown, but 
would be concentrated close to Earth in this diagram because 
they were created relatively recently. Note: This diagram is 
not a normal map. Maps show a section of the world as might 
be seen all at a given time. This diagram shows space (like a 
map), but each point is not at the same time. The light coming 
from a point a distance r from Earth took a time At' = r/c  
to reach Earth, and thus shows an event that took place long 
ago, a time A£' = r/c  in the past, which we call its “lookback 
time.” The universe began Atb = 13.7 Gyr ago.

The Observable Universe
Figure 44-28 is a b it dangerous: it is not a picture of the universe at a given instant, 
but is intended to suggest how we look out in all directions from our observation 
point (the Earth, or near it). Be careful not to think that the birth of the universe 
took place in a circle or a sphere surrounding us as if Fig. 44-28 were a photo 
taken at a given moment. What Fig. 44-28 does show is what we can see, the
observable universe. Better yet, it shows the m ost we could see. SECTION 44-6 1215
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FIGURE 44-29 Two observers, on 
widely separated galaxies, have 
different horizons, different 
observable universes.

We would undoubtedly be arrogant to think that we could see the entire 
universe. Indeed, theories assume that we cannot see everything, that the entire 
universe is greater than the observable universe, which is a sphere of radius 
r0 = ct0 centered on the observer, with t0 being the age of the universe. We can 
never see further back than the time it takes light to reach us.

Consider, for example, an observer in another galaxy, very far from us, located 
to the left of our observation point in Fig. 44-28. That observer would not yet have 
seen light coming from the far right of the large circle in Fig. 44-28 that we see—  
it w ill take some time for that light to reach her. But she w ill have already, some 
time ago, seen the light coming from the left that we are seeing now. In fact, her 
observable universe, superimposed on ours, is suggested by Fig. 44-29.

The edge of our observable universe is called the horizon. We could, in 
principle, see as far as the horizon, but not beyond it. An observer in another 
galaxy, far from us, w ill have a different horizon.

44—7 The Standard Cosmological Model: 
Early History of the Universe

In the last decade or two, a convincing theory of the origin and evolution of the 
universe has been developed, now called the Standard Cosmological Model, or (sometimes) 
the concordance model. Part of this theory is based on recent theoretical and 
experimental advances in elementary particle physics, and part from observations 
of the universe including COBE and WMAP. Indeed, cosmology and elementary 
particle physics have cross-fertilized to a surprising extent.

Let us go back to the earliest of times— as close as possible to the Big Bang—  
and follow a Standard Model scenario of events as the universe expanded and 
cooled after the Big Bang. In itia lly we talk of extremely small time intervals as 
well as extremely high temperatures, far beyond anything in the universe today. 
Figure 44-30 is a compressed graphical representation of the events, and it may be 
helpful to consult it as we go along.

Radiation era

Universe
Universe opaque

Dark^T 
energy |

FIGURE 44-30 Compressed graphical representation of the development of the universe 
after the Big Bang, according to modern cosmology. [The time scale is mostly logarithmic 
(each factor of 10 in time gets equal treatment), except at the start (there can be no 
t = 0 on a log scale), and just after t = 10-35 s (to save space). The vertical 
height is a rough indication of the size of the universe, mainly to 
suggest expansion of the universe
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The History
We begin at a time only a minuscule fraction of a second after the b irth  of the 
universe, 10-43 s. This time is sometimes referred to as the Planck time, which is 
a value determined by the fundamental constants. It is related to the Planck length AP 
which we obtained in Chapter 1 (Example 1-10) by dimensional analysis: 
AP = \ j G h j ?  ~ 4 X  10“35 m. The Planck time is the time it takes light to travel the 
Planck length: tF =  AP/c  « (4 X 10“35m )/(3 X 108m/s) « 10_43s. This is an unimag­
inably short time, and predictions can be only speculative. Earlier, we can say nothing 
because we do not have a theory of quantum gravity which would be needed for the 
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perhaps as early as IO-43 s, the four forces in nature were unified— there was only one force 
(Chapter 43, Rg. 43-19). The temperature would have been about 1032 K, corresponding to 
randomly moving particles with an average kinetic energy K  of 1019 GeV (see Eq. 18-4):

(1.4 X IO-23 J /K )(l0 32K)
K  « kT  « ------------------ 7^7--------- « 10 eV = 10 GeV.

1.6 X 10 J/eV

(Note that the factor § in Eq. 18-4 is usually ignored in such order of magnitude 
calculations.) A t t =  10_43s, a kind of “phase transition” is believed to have 
occurred during which the gravitational force, in effect, “ condensed out” as a 
separate force. This, and subsequent phase transitions, are analogous to the phase 
transitions water undergoes as it cools from a gas, condenses into a liquid, and with 
further cooling freezes into ice.* The symmetry of the four forces was broken, but 
the strong, weak, and electromagnetic forces were still unified, and the universe 
entered the grand unified era (GUT— see Chapter 43). There was no distinction 
between quarks and leptons; baryon and lepton numbers were not conserved. Very 
shortly thereafter, as the universe expanded considerably and the temperature had 
dropped to about 1027 K, there was another phase transition and the strong force 
condensed out at about 10“35 s after the Big Bang. Now the universe was filled with 
a “soup” of leptons and quarks. The quarks were initia lly free, but soon began to 
“ condense” into more normal particles: nucleons and the other hadrons and their 
antiparticles. With this confinement of quarks, the universe entered the hadron era.

About this time, when the universe was only 10“35 s old, a strange thing may have 
happened, according to theorists. A  brilliant idea, proposed around 1980, suggests that 
the universe underwent an incredible exponential expansion, increasing in size by a 
factor of IO40 or maybe much more, in a tiny fraction of a second, perhaps 10-35 s. The 
usefulness of this inflationary scenario is that it solved major problems with earlier 
Big Bang models, such as explaining why the universe is flat, as well as the thermal 
equilibrium to provide the nearly uniform CMB, as discussed below.

A fter the very brief inflationary period, the universe would have settled back 
into its more regular expansion. The universe was now a “soup” of leptons and 
hadrons. We can think of this “ soup” as a plasma of particles and antiparticles, as 
well as photons— all in roughly equal numbers— colliding with one another 
frequently and exchanging energy.

By the time the universe was only about a microsecond (l0 _6s) old, it had 
cooled to about 1013 K, corresponding to an average kinetic energy of 1 GeV, 
and the vast majority of hadrons disappeared. To see why, let us focus on the 
most familiar hadrons: nucleons and their antiparticles. When the average kinetic 
energy of particles was somewhat higher than 1 GeV, protons, neutrons, and their 
antiparticles were continually being created out of the energies of collisions 
involving photons and other particles, such as

photons —> p + p 
—> n + n.

But just as quickly, particles and antiparticles would annihilate: for example

p + p —» photons or leptons.

So the processes of creation and annihilation of nucleons were in equilibrium. The 
numbers of nucleons and antinucleons were high— roughly as many as there were 
electrons, positrons, or photons. But as the universe expanded and cooled, and the 
average kinetic energy of particles dropped below about 1 GeV, which is the 
minimum energy needed in a typical collision to create nucleons and antinucleons 
(about 940 MeV each), the process of nucleon creation could not continue. The 
process of annihilation could continue, however, with antinucleons annihilating 
nucleons, until there were almost no nucleons left. But not quite zero. Somehow 
we need to explain our present world of matter (nucleons and electrons) with very 
little  antimatter in sight.

fIt may be interesting to note that our story of origins here bears some resemblance to ancient accounts that 
mention the “void,” “formless wasteland” (or “darkness over the deep”), “abyss,” “divide the waters”
(possibly a phase transition?), not to mention the sudden appearance of light.
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To explain our world of matter, we might suppose that earlier in the universe, perhaps 
around IO-35 s after the Big Bang, a slight excess of quarks over antiquarks was formed.1 
This would have resulted in a slight excess of nucleons over antinucleons. And it is these 
“ leftover” nucleons that we are made of today. The excess of nucleons over anti­
nucleons was probably about one part in 109. During the hadron era, there should have been 
about as many nucleons as photons. A fter it ended, the “ leftover” nucleons thus 
numbered only about one nucleon per 109 photons, and this ratio has persisted to this 
day. Protons, neutrons, and all other heavier particles were thus tremendously 
reduced in number by about IO-6 s after the Big Bang. The lightest hadrons, the 
pions, soon disappeared, about IO-4 s after the Big Bang; because they are the lightest 
mass hadrons (140 MeV), they were the last hadrons to be able to be created as the 
temperature (and average kinetic energy) dropped. Lighter particles, including electrons 
and neutrinos, were the dominant form of matter, and the universe entered the lepton era.

By the time the first fu ll second had passed (clearly the most eventful second in 
history!), the universe had cooled to about 10 billion degrees, 1010K. The average 
kinetic energy was about 1 MeV. This was still sufficient energy to create electrons 
and positrons and balance their annihilation reactions, since their masses correspond 
to about 0.5 MeV So there were about as many e+ and e“ as there were photons. 
But within a few more seconds, the temperature had dropped sufficiently so that 
e+ and e” could no longer be formed. Annihilation (e+ + e_ —> photons) continued. 
And, like nucleons before them, electrons and positrons all but disappeared from 
the universe— except for a slight excess of electrons over positrons (later to join with 
nuclei to form atoms). Thus, about t =  10 s after the Big Bang, the universe entered 
the radiation era (Fig. 44-30). Its major constituents were photons and neutrinos. But the 
neutrinos, partaking only in the weak force, rarely interacted. So the universe, until 
then experiencing significant amounts of energy in matter and in radiation, now 
became radiation-dominated: much more energy was contained in radiation than in 
matter, a situation that would last more than 50,000 years.

Radiation era

Universe I 
transparent11Universe opaque

FIGURE 44-30 (Repeated.) Compressed graphical representation of the development of the universe 
after the Big Bang, according to modern cosmology.
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Meanwhile, during the next few minutes, crucial events were taking place. 
Beginning about 2 or 3 minutes after the Big Bang, nuclear fusion began to occur. 
The temperature had dropped to about 109 K, corresponding to an average kinetic 
energy K  « 100 keV, where nucleons could strike each other and be able to fuse 
(Section 42-4), but now cool enough so newly formed nuclei would not be imme­
diately broken apart by subsequent collisions. Deuterium, helium, and very tiny 
amounts of lithium  nuclei were made. But the universe was cooling too quickly, 
and larger nuclei were not made. A fter only a few minutes, probably not even a 
quarter of an hour after the Big Bang, the temperature dropped far enough that 
nucleosynthesis stopped, not to start again for millions of years (in stars).

fWhy this could have happened is a question for which we are seeking an answer today.
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Thus, after the first quarter hour or so of the universe, matter consisted mainly of 
bare nuclei of hydrogen (about 75%) and helium (about 25%)t and electrons. But 
radiation (photons) continued to dominate.

Our story is almost complete. The next important event is thought to have 
occurred 380,000 years later. The universe had expanded to about ^  ° f its present 
scale, and the temperature had cooled to about 3000 K. The average kinetic energy 
of nuclei, electrons, and photons was less than an electron volt. Since ionization ener­
gies of atoms are on the order of eV, then as the temperature dropped below this 
point, electrons could orbit the bare nuclei and remain there (without being ejected 
by collisions), thus forming atoms. This period is often called the recombination 
epoch (a misnomer since electrons had never before been combined with nuclei 
to form atoms). W ith the disappearance of free electrons and the birth 
of atoms, the photons— which had been continually scattering from the free 
electrons— now became free to spread throughout the universe. As mentioned in the 
previous Section, we say that the photons became decoupled from matter. Thus 
decoupling occurred at recombination. The total energy contained in radiation had 
been decreasing (lengthening in wavelength as the universe expanded); and at about 
t =  56,000 yr (even before decoupling) the total energy contained in matter became 
dominant over radiation. The universe was said to have become matter-dominated 
(marked on Fig. 44-30). As the universe continued to expand, the electromagnetic 
radiation cooled further, to 2.7 K today, forming the cosmic microwave background 
radiation we detect from everywhere in the universe.

A fter the birth of atoms, then stars and galaxies could begin to form: by self­
gravitation around mass concentrations (inhomogeneities). Stars began to form 
about 200 m illion years after the Big Bang, galaxies after almost 109 years. The 
universe continued to evolve until today, some 14 billion years after it started.

* * *
This scenario, like other scientific models, cannot be said to be “proven.” Yet this 

model is remarkably effective in explaining the evolution of the universe we live in, 
and makes predictions which can be tested against the next generation of observations.

A  major event, and something only discovered very recently, is that when the 
universe was more than half as old as it is now (about 5 Gyr ago), its expansion 
began to accelerate. This was a big surprise because it was assumed the expansion 
of the universe would slow down due to gravitational attraction of all objects 
towards each other. Another major recent discovery is that ordinary matter makes 
up very little  of the total mass-energy of the universe (« 5%). Instead, as we 
discuss in Section 44-9, the major contributors to the energy density of the 
universe are dark matter and dark energy. On the right in Fig. 44-30 is a narrow 
vertical strip that represents the most recent 5 billion years of the universe, during 
which dark energy seems to have dominated.

44—8 Inflation: Explaining Flatness, 
Uniformity, and Structure

The idea that the universe underwent a period of exponential inflation early in its life, 
expanding by a factor of 1040 or more (previous Section), was first put forth by Alan 
Guth in 1981. Many more sophisticated models have since been proposed. The energy 
required for this wild expansion may have been released when the electroweak force 
separated from the strong force (end of GUT era, Fig. 43-19). So far, the evidence for 
inflation is indirect; yet it is a feature of most viable cosmological models because it is 
able to provide natural explanations for several remarkable features of our universe.

trThis Standard Model prediction of a 25% primordial production of helium agrees with what we 
observe today—the universe does contain about 25% He—and it is strong evidence in support of the 
Standard Big Bang Model. Furthermore, the theory says that 25% He abundance is fully consistent with 
there being three neutrino types, which is the number we observe. And it sets an upper limit of four to 
the maximum number of possible neutrino types. This is a striking example of the exciting interface 
between particle physics and cosmology.
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FIGURE 44-31 (a) Simple 2-D 
model of the entire universe; the 
observable universe is suggested by 
the small circle centered on us (blue 
dot), (b) Edge of universe is 
essentially flat after the 1040-fold  
expansion during inflation.

(a) Before inflation (b) After inflation

Flatness
First of all, our best measurements suggest that the universe is flat, that it has 
zero curvature. As scientists, we would like some reason for this remarkable result. 
To see how inflation explains flatness, let us consider a simple 2-dimensional 
model of the universe (as we did earlier in Figs. 44-16 and 44-21). A  circle on 
the surface of this 2-dimensional universe (a sphere, Fig. 44-31) represents the 
observable universe as seen by an observer at the circle’s center. A  possible hypothesis is 
that inflation occurred over a time interval that very roughly doubled the age of the 
universe, from let us say, t =  1 X IO-35 s to t =  2 X IO-35 s. The size of the observ­
able universe (r = ct) would have increased by a factor of two during inflation, while 
the radius of curvature of the entire universe increased by an enormous factor of 
IO40 or more. Thus the edge of our 2-D sphere representing the entire universe would 
have seemed flat to a high degree of precision, Fig. 44-31b. Even if the time of inflation 
was a factor of 10 or 100 (instead of 2), the expansion factor of IO40 or more 
would have blotted out any possibility of observing anything but a flat universe.

CMB Uniformity
Inflation also explains why the CMB is so uniform. Without inflation, the tiny 
universe at 10-35 s was too large for all parts of it to have been in contact so as to 
reach the same temperature (information cannot travel faster than c). Imagine a 
universe about 1 cm in diameter at t =  10-36 s, as per original Big Bang theory. In that 
10_36s, light could have traveled d = ct = (3 X 108m /s)(l0_36s) = 10-27m, way 
too small for opposite sides of a 1-cm-wide universe to have been in communication. 
But if the universe had been IO40 times smaller (= 10_42m), as proposed by the 
inflation model, there could have been contact and thermal equilibrium to produce 
the observed nearly uniform CMB. Inflation, by making the early universe very 
small, assures that all parts could have been in thermal equilibrium; and after 
inflation the universe could be large enough to give us today’s observable universe.

Galaxy Seeds, Fluctuations, Magnetic Monopoles
Inflation also gives us a clue as to how the present structure of the universe 
(galaxies and clusters of galaxies) came about. We saw earlier that, according to 
the uncertainty principle, energy may not be conserved by an amount AE  for a 
time At ~ h /A E . Forces, whether electromagnetic or other types, can undergo 
such tiny quantum fluctuations according to quantum theory, but they are so tiny 
they are not detectable unless magnified in some way. That is what inflation 
might have done: it could have magnified those fluctuations perhaps IO40 times in 
size, which would give us the density irregularities seen in the cosmic 
microwave background (WMAP, Fig. 44-27). That would be very nice, because 
the density variations we see in the CMB are what we believe were the seeds that 
later coalesced under gravity into galaxies and galaxy clusters, including their 
substructures (stars and planets), and our models fit the data extremely well.

Sometimes it is said that the quantum fluctuations occurred in the vacuum state 
or vacuum energy. This could be possible because the vacuum is no longer considered 
to be empty, as we discussed in Section 43-3 relative to positrons and a negative energy 
sea of electrons. Indeed, the vacuum is thought to be filled with fields and particles 
occupying all the possible negative energy states. Also, the virtual exchange particles 
that carry the forces, as discussed in Chapter 43, could leave their brief virtual states 
and actually become real as a result of the IO40 magnification of space (according 
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Inflation helps us too with the puzzle of why magnetic monopoles have never been 
observed, yet isolated magnetic poles may well have been copiously produced at the start 
After inflation, they would have been so far apart that we have never stumbled on one.

Some theorists have proposed that inflation may not have occurred in the entire universe. 
Perhaps only some regions of that tiny early universe became unstable (maybe it was a 
quantum fluctuation) and inflated into cosmic “bubbles.” If so, we would be living in one 
of the bubbles. The universe outside the bubble would be hopelessly unobservable to us.

Inflation may solve outstanding problems, but it needs to be confirmed and we 
may need new physics just to understand how inflation occurred.

4 4 —9 Dark Matter and Dark Energy
According to the Standard Big Bang Model, the universe is evolving and changing. 
Individual stars are being created, evolving, and then dying to become white dwarfs, 
neutron stars, black holes. A t the same time, the universe as a whole is expanding. One 
important question is whether the universe w ill continue to expand forever. U ntil 
the late 1990s, the universe was thought to be dominated by matter which interacts 
by gravity, and this question was connected to the curvature of space-time 
(Section 44-4). I f  the universe had negative curvature, the expansion of the 
universe would never stop, although the rate of expansion would decrease due to 
the gravitational attraction of its parts. Such a universe would be open and infinite. 
I f  the universe is flat (no curvature), it would still be open and infinite but its 
expansion would slowly approach a zero rate. Finally, if  the universe had positive 
curvature, it would be closed and finite; the effect of gravity would be strong 
enough that the expansion would eventually stop and the universe would begin to 
contract, collapsing back onto itself in a big crunch.

I
 EXERCISE E Return to the Chapter-Opening Question, page 1193, and answer it again. Try 

to explain why you may have answered differently the first time.

Critical Density
According to the above scenario (which does not include inflation or the recently 
discovered acceleration of the universe), the fate of the universe would depend on 
the average mass-energy density in the universe. For an average mass density 
greater than a critical value known as the critical density, estimated to be about

pc « 10-26 kg/m3
(i.e., a few nucleons/m3 on average throughout the universe), gravity would 
prevent expansion from continuing forever. Eventually (if p >  pc) gravity would 
pull the universe back into a big crunch and space-time would have a positive 
curvature. I f  instead the actual density was equal to the critical density, p = pc, 
the universe would be flat and open. I f  the actual density was less than the critical 
density, p <  pc, the universe would have negative curvature. See Fig. 44-32. Today 
we believe the universe is very close to flat. But recent evidence suggests the 
universe is expanding at an accelerating rate, as discussed below.

FIGURE 44-32 Three future possibilities 
for the universe, depending on the density p 
of ordinary matter, plus a fourth 
possibility that includes dark energy. Note 
that all curves have been chosen to have 
the same slope (= H , the Hubble 
parameter) right now. Looking back in 
time, the Big Bang occurs where each 
curve touches the horizontal (time) axis.

depends on model)
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EXAMPLE 44-7 ESTIMATE~| Critical density of the universe. Use energy 
conservation and escape velocity (Section 8-7) to estimate the critical density of 
the universe.

APPROACH A t the critical density, pc, any given galaxy of mass m w ill just be 
able to “ escape” away from our Galaxy. As we saw in Section 8-7, escape can just 
occur if the total energy E  of the galaxy satisfies

E  = K  +  U  = \m v 2 -  G ^ ~  = 0.
R

Here R  is the distance of that galaxy m  from us. We approximate the total mass M  that 
pulls inward on m  as the total mass within a sphere of radius R around us (Appendix D). 
I f  we assume the density of galaxies is roughly constant, then M  =  f  TrpcR 2’. 
SOLUTION Substituting this M  into the equation above, and setting v = HR  
(Hubble’s law, Eq. 44-4), we obtain

GM
= w

or

R
We solve for pc:

_ 3 ^  3[(22 km /s/M ly)(l M ly/1019 km )]2 3

Pc 8ttG  ~ 8(3.14)(6.67 X ltT 11 N • m2/kg2) ~ 8/m '

Dark Matter
WMAP and other experiments have convinced scientists that the universe is flat 
and p =  pc. But this p cannot be only normal baryonic matter (atoms are 99.9% 
baryons— protons and neutrons— by weight). These recent experiments put the 
amount of normal baryonic matter in the universe at only about 5% of the critical 
density. What is the other 95%? There is strong evidence for a significant amount 
of nonluminous matter in the universe referred to as dark matter, which acts 
normally under gravity, but does not absorb or radiate light. For example, observa­
tions of the rotation of galaxies suggest that they rotate as if they had considerably 
more mass than we can see. Recall from Chapter 6, Eq. 6-5, that for a satellite of 
mass m revolving around Earth (mass M)

v2 _ m M  
m —  = G — z -

r r

and hence v = V G M /r . I f  we apply this equation to stars in a galaxy, we see that 
their speed depends on galactic mass. Observations show that stars farther from the 
galactic center revolve much faster than expected if there is only the pull of visible matter, 
suggesting a great deal of invisible matter. Similarly, observations of the motion of 
galaxies within clusters also suggest that they have considerably more mass than 
can be seen. Without dark matter, galaxies and stars probably would not have 
formed and would not exist; it would seem to hold the universe together. But what 
might this nonluminous matter in the universe be? We don’t know yet. But we hope to 
find out soon. It cannot be made of ordinary (baryonic) matter, so it must consist 
of some other sort of elementary particle, perhaps created at a very early time. 
Perhaps it is a supersymmetric particle (Section 43-12), maybe the lightest one. We 
are anxiously awaiting details both from particle accelerators and the cosmos.

Dark matter makes up about 20% of the mass-energy of the universe, 
according to the latest observations and models. Thus the total mass-energy is 20% 
dark matter plus 5% baryons for a total of about 25%, which does not bring p up to pc. 
What is the other 75%? We are not sure about that either, but we have given it a 
name: “ dark energy.”
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In 1998, just before the turn of the millennium, cosmologists received a huge 
surprise. Gravity was assumed to be the predominant force on a large scale in the 
universe, and it was thought that the expansion of the universe ought to be slowing 
down in time because gravity acts as an attractive force between objects. But 
measurements of type la supernovae (SNIa, our best standard candles— see 
Section 44-3) unexpectedly showed that very distant (high z) SNIa’s were dimmer 
than expected. That is, given their great distance d  as determined from their low 
brightness, their speed v  as determined from the measured z  was less than expected 
according to Hubble’s law. This result suggests that nearer galaxies are moving 
away from us relatively faster than those very distant ones, meaning the expansion 
of the universe in more recent epochs has sped up. This acceleration in the expan­
sion of the universe (in place of the expected deceleration due to gravitational 
attraction between masses) seems to have begun roughly 5 billion years ago 
(5 Gyr, which would be 8 to 9 Gyr after the Big Bang).

What could be causing the universe to accelerate in its expansion, against the 
attractive force of gravity? Does our understanding of gravity need to be revised? 
We don’t know the answers to these questions. Many scientists say dark energy is 
the biggest mystery facing physical science today. There are several speculations. 
But somehow it seems to have a long-range repulsive effect on space, like a negative 
gravity, causing objects to speed away from each other ever faster. Whatever it is, it 
has been given the name dark energy.

One idea is a sort of quantum field given the name quintessence. Another 
possibility suggests an energy latent in space itself (vacuum energy) and relates to 
an aspect of General Relativity known as the cosmological constant (symbol A). 
When Einstein developed his equations, he found that they offered no solutions 
for a static universe. In those days (1917) it was thought the universe was static—  
unchanging and everlasting. Einstein added an arbitrary constant to his equations 
to provide solutions for a static universe. A  decade later, when Hubble showed us 
an expanding universe, Einstein discarded his cosmological constant as no longer 
needed (A  = 0). But today, measurements are consistent with dark energy being 
due to a nonzero cosmological constant, although further measurements are 
needed to see subtle differences among theories.

There is increasing evidence that the effects of some form of dark energy are 
very real. Observations of the CMB, supemovae, and large-scale structure (Section 44-10) 
agree well with theories and computer models when they input dark energy 
as providing 75% of the mass-energy in the universe, and when the total 
mass-energy density equals the critical density pc.

Today’s best estimate of how the mass-energy in the universe is distributed is 
approximately (Fig. 44-33):

75% dark energy

25% matter, subject to the known gravitational force.

O f this 25%, about

20% is dark matter

5% is baryons (what atoms are made of); of this 5% only ^  is readily 
visible matter— stars and galaxies (that is, 0.5% of the total); the other 
jq of ordinary matter, which is not visible, is mainly gaseous plasma.

It is remarkable that only 0.5% of all the mass-energy in the universe is visible as 
stars and galaxies.

The idea that the universe is dominated by completely unknown forms of 
energy seems bizarre. Nonetheless, the ability of our present model to precisely 
explain observations of the CMB anisotropy, cosmic expansion, and large-scale 
structure (next Section) presents a compelling case.

Dark Energy—Cosmic Acceleration

FIGURE 44 -3 3  Portions of total 
mass-energy in the universe.

Normal matter =5% Stars and galaxies
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FIGURE 44-34 Distribution of some 
50,000 galaxies in a 2.5° slice through almost 
half of the sky above the equator, as 
measured by the Sloan Digital Sky Survey 
(SDSS). Each dot represents a galaxy. The 
distance from us is obtained from the 
redshift and Hubble’s law, and is given in 
units of 109 light-years (Gly). At greater 
distances, fewer galaxies are bright enough 
to be detected, thus resulting in an apparent 
thinning out of galaxies. The point 0 
represents us, our observation point. Note 
the “walls” and “voids” of galaxies.

Gly

0
(Our Galaxy)

44—10 Large-Scale Structure o f the 
Universe

The beautiful WMAP pictures of the sky (Fig. 44-27 and Chapter-Opening Photo) 
show small but significant inhomogeneities in the temperature of the CMB. These 
anisotropies reflect compressions and expansions in the primordial plasma just 
before decoupling, from which stars, galaxies, and clusters of galaxies formed. 
Analysis of the irregularities in the CMB using mammoth computer simulations 
predict a large-scale distribution of galaxies very similar to what is seen today 
(Fig. 44-34). These simulations are very successful if  they contain dark energy and 
dark_matter; and the dark matter needs to be cold (slow speed— think of Eq. 18-4, 
\m v2 = \k T  where T  is temperature), rather than “ hot” dark matter such as 
neutrinos which move at or very near the speed of light. Indeed, the modern 
cosmological model is called the A CD M  model, where lambda (A ) stands for the 
cosmological constant, and CDM is cold dark matter.

Cosmologists have gained substantial confidence in this cosmological model 
from such a precise fit between observations and theory. They can also extract very 
precise values for cosmological parameters which previously were only known 
with low accuracy. The CMB is such an important cosmological observable that 
every effort is being made to extract all of the information it contains. A  new 
generation of ground, balloon, and satellite experiments w ill observe the 
CMB with greater resolution and sensitivity. They may detect interaction of 
gravity waves (produced in the inflationary epoch) with the CMB and thereby provide 
direct evidence for cosmic inflation, and also provide information about elementary 
particle physics at energies far beyond the reach of man-made accelerators.

44—11 Finally . . .
When we look up into the night sky, we see stars; and with the best telescopes, we 
see galaxies and the exotic objects we discussed earlier, including rare supernovae. 
But even with our best instruments we do not see the processes going on inside 
stars and supernovae that we hypothesized (and believe). We are dependent on 
brilliant theorists who come up with viable theories and verifiable models. 
We depend on complicated computer models whose parameters are varied until 
the outputs compare favorably with our observations and analyses of WMAP and 
other experiments. And we now have a surprisingly precise idea about some 
aspects of our universe: it is flat, it is about 14 billion years old, it contains only 5% 
“normal” baryonic matter (for atoms), and so on.

The questions raised by cosmology are difficult and profound, and may seem 
removed from everyday “ reality.” We can always say, “ the Sun is shining, it ’s going 
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cosmology are deep ones that fascinate the human intellect. One aspect that is 
especially intriguing is this: calculations on the formation and evolution of the 
universe have been performed that deliberately varied the values—just slightly— 
of certain fundamental physical constants. The result? A  universe in which life as 
we know it could not exist. [For example, if the difference in mass between proton 
and neutron were zero, or small (less than the mass of the electron, 0 .511 M eV/c2), 
there would be no atoms: electrons would be captured by protons never to be 
freed again.] Such results have contributed to a philosophical idea called the 
A nthropic principle, which says that if the universe were even a little different than it 
is, we could not be here. We physicists are trying to find out if there are some undis­
covered fundamental laws that determined those conditions that allowed us to exist. 
A  poet might say that the universe is exquisitely tuned, almost as if to accommodate us.

Summary
The night sky contains myriads of stars including those in the 
M ilky Way, which is a “ side view” of our Galaxy looking along 
the plane of the disk. Our Galaxy includes over 1011 stars. 
Beyond our Galaxy are billions of other galaxies.

Astronomical distances are measured in light-years 
( l ly « 1013 km). The nearest star is about 4 ly away and the 
nearest large galaxy is 2 m illion ly away. Our Galactic disk has a 
diameter of about 100,000 ly. Distances are often specified in 
parsecs, where 1 parsec = 3.26 ly.

Stars are believed to begin life as collapsing masses of gas 
(protostars), largely hydrogen. As they contract, they heat up 
(potential energy is transformed to kinetic energy). When the 
temperature reaches about 10 million degrees, nuclear fusion 
begins and forms heavier elements (nucleosynthesis), mainly 
helium at first. The energy released during these reactions heats 
the gas so its outward pressure balances the inward gravitational 
force, and the young star stabilizes as a main-sequence star. The 
tremendous luminosity of stars comes from the energy released 
during these thermonuclear reactions. A fter billions of years, as 
helium is collected in the core and hydrogen is used up, the core 
contracts and heats further. The envelope expands and cools, and 
the star becomes a red giant (larger diameter, redder color).

The next stage of stellar evolution depends on the mass of 
the star, which may have lost much of its original mass as its 
outer envelope escaped into space. Stars of residual mass less 
than about 1.4 solar masses cool further and become white 
dwarfs, eventually fading and going out altogether. Heavier stars 
contract further due to their greater gravity: the density 
approaches nuclear density, the huge pressure forces electrons 
to combine with protons to form neutrons, and the star becomes 
essentially a huge nucleus of neutrons. This is a neutron star, and 
the energy released from its final core collapse is believed to 
produce supernova explosions. I f  the star is very massive, it may 
contract even further and form a black hole, which is so dense 
that no matter or light can escape from it.

In the general theory of relativity, the equivalence principle 
states that an observer cannot distinguish acceleration from a 
gravitational field. Said another way, gravitational and inertial 
masses are the same. The theory predicts gravitational bending 
of light rays to a degree consistent with experiment. Gravity is 
treated as a curvature in space and time, the curvature being 
greater near massive objects. The universe as a whole may be 
curved. With sufficient mass, the curvature of the universe would 
be positive, and the universe is closed and finite', otherwise, it 
would be open and infinite. Today we believe the universe is flat.

Distant galaxies display a redshift in their spectral lines, 
originally interpreted as a Doppler shift. The universe seems to be

expanding, its galaxies racing away from each other at speeds (v) 
proportional to the distance (d) between them:

v = Hd, (44-4)
which is known as Hubble’s law (H  is the Hubble parameter). 
This expansion of the universe suggests an explosive origin, the 
Big Bang, which occurred about 13.7 billion years ago. It is not 
like an ordinary explosion, but rather an expansion of space itself.

The cosmological principle assumes that the universe, on a 
large scale, is homogeneous and isotropic.

Important evidence for the Big Bang model of the universe 
was the discovery of the cosmic microwave background radia­
tion (CMB), which conforms to a blackbody radiation curve at a 
temperature of 2.725 K.

The Standard Model of the Big Bang provides a possible 
scenario as to how the universe developed as it expanded and 
cooled after the Big Bang. Starting at 10-43 seconds after the 
Big Bang, according to this model, there were a series of phase 
transitions during which previously unified forces of nature 
“condensed out” one by one. The inflationary scenario assumes 
that during one of these phase transitions, the universe underwent 
a brief but rapid exponential expansion. Until about 10 35 s, there 
was no distinction between quarks and leptons. Shortly thereafter, 
quarks were confined into hadrons (the hadron era). About 10 4 s 
after the Big Bang, the majority of hadrons disappeared, having 
combined with anti-hadrons, producing photons, leptons, and 
energy, leaving mainly photons and leptons to freely move, thus 
introducing the lepton era. By the time the universe was about 10 s 
old, the electrons too had mostly disappeared, having combined 
with their antiparticles; the universe was radiation-dominated. A  
couple of minutes later, nucleosynthesis began, but lasted only a 
few minutes. It then took almost four hundred thousand years before 
the universe was cool enough for electrons to combine with nuclei 
to form atoms (recombination). Photons, up to then continually 
being scattered off of free electrons, could now move freely— they 
were decoupled from matter and the universe became trans­
parent. The background radiation had expanded and cooled so 
much that its total energy became less than the energy in matter, 
and matter dominated increasingly over radiation. Then stars 
and galaxies formed, producing a universe not much different 
than it is today— some 14 billion years later.

Recent observations indicate that the universe is flat, that it 
contains an as-yet unknown type of dark matter, and that it is 
dominated by a mysterious dark energy which exerts a sort of 
negative gravity causing the expansion of the universe to 
accelerate. The total contributions of baryonic (normal) matter, 
dark matter, and dark energy sum up to the critical density.
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Questions
1. The Milky Way was once thought to be “murky” or “milky” 

but is now considered to be made up of point sources. Explain.

2. A  star is in equilibrium when it radiates at its surface all the 
energy generated in its core. What happens when it begins to 
generate more energy than it radiates? Less energy? Explain.

3. Describe a red giant star. List some of its properties.

4. Select a point on the H -R  diagram. Mark several directions 
away from this point. Now describe the changes that would 
take place in a star moving in each of these directions.

5. Does the H -R  diagram reveal anything about the core of a star?

6. Why do some stars end up as white dwarfs, and others as 
neutron stars or black holes?

7. Can we tell, by looking at the population on the H -R  diagram, 
that hotter main-sequence stars have shorter lives? Explain.

8. I f  you were measuring star parallaxes from the Moon 
instead of Earth, what corrections would you have to make? 
What changes would occur if  you were measuring parallaxes 
from Mars?

9. Cepheid variable stars change in luminosity with a typical period 
of several days. The period has been found to have a definite 
relationship with the intrinsic luminosity of the star. How 
could these stars be used to measure the distance to galaxies?

10. What is a geodesic? What is its role in General Relativity?

11. I f  it were discovered that the redshift of spectral lines of 
galaxies was due to something other than expansion, how 
might our view of the universe change? Would there be 
conflicting evidence? Discuss.

12. A ll galaxies appear to be moving away from us. Are we 
therefore at the center of the universe? Explain.

13. I f  you were located in a galaxy near the boundary of our 
observable universe, would galaxies in the direction of the 
M ilky Way appear to be approaching you or receding from 
you? Explain.

| Problems_________________
44-1 to 44-3 Stars, Galaxies, Stellar Evolution, 
Distances
1. (I) The parallax angle of a star is 0.00029°. How far away is 

the star?

2. (I) A  star exhibits a parallax of 0.27 seconds of arc. How far 
away is it?

3. (I) What is the parallax angle for a star that is 65 ly away? 
How many parsecs is this?

4. (I) A  star is 56 pc away. What is its parallax angle? State
(a) in seconds of arc, and (b) in degrees.

5. (I) I f  one star is twice as far away from us as a second star, 
w ill the parallax angle of the farther star be greater or less 
than that of the nearer star? By what factor?

6. (II) A  star is 85 pc away. How long does it take for its light 
to reach us?

7. (II) What is the relative brightness of the Sun as seen from 
Jupiter, as compared to its brightness from Earth? (Jupiter 
is 5.2 times farther from the Sun than the Earth is.)

14. Compare an explosion on Earth to the Big Bang. Consider 
such questions as: Would the debris spread at a higher speed 
for more distant particles, as in the Big Bang? Would the 
debris come to rest? What type of universe would this 
correspond to, open or closed?

15. I f  nothing, not even light, escapes from a black hole, then 
how can we tell if  one is there?

16. What mass w ill give a Schwarzschild radius equal to that of 
the hydrogen atom in its ground state?

17. The Earth’s age is often given as about 4 billion years. Find 
that time on Fig. 44-30. People have lived on Earth on the 
order of a m illion years. Where is that on Fig. 44-30?

18. Explain what the 2.7-K cosmic microwave background radi­
ation is. Where does it come from? Why is its temperature 
now so low?

19. Why were atoms, as opposed to bare nuclei, unable to exist 
until hundreds of thousands of years after the Big Bang?

20. (a) Why are type la supernovae so useful for determining 
the distances of galaxies? (b) How are their distances actually 
measured?

21. Explain why the CMB radiation should not be that of a 
perfect blackbody. (The deviations from a blackbody spec­
trum are slightly less than one part in 104.)

22. Under what circumstances would the universe eventually 
collapse in on itself?

23. When stable nuclei first formed, about 3 minutes after the 
Big Bang, there were about 7 times more protons than 
neutrons. Explain how this leads to a ratio of the mass of 
hydrogen to the mass of helium of 3:1. This is about the 
actual ratio observed in the universe.

24. (a) Why did astronomers expect that the expansion rate of 
the universe would be decreasing (decelerating) with time?
(b) How, in principle, could astronomers hope to determine 
whether the universe used to expand faster than it does now?

8. (II) We saw earlier (Chapter 19) that the rate energy reaches 
the Earth from the Sun (the “ solar constant” ) is about 
1.3 X 103W /m 2. What is (a) the apparent brightness b of 
the Sun, and (b) the intrinsic luminosity L  of the Sun?

9. (II) When our Sun becomes a red giant, what w ill be its 
average density if  it expands out to the orbit of Mercury 
(6 X 1010 m, from the Sun)?

10. (II) Estimate the angular width that our Galaxy would 
subtend if  observed from the nearest galaxy to us 
(Table 44-1). Compare to the angular width of the Moon 
from Earth.

11. (II) Calculate the Q-values for the He burning reactions of 
Eq. 44-2. (The mass of the very unstable ®Be is 8.005305 u.)

12. (II) When our Sun becomes a white dwarf, it is expected to 
be about the size of the Moon. What angular width would it 
subtend from the present distance to Earth?

13. (II) Calculate the density of a white dwarf whose mass is 
equal to the Sun’s and whose radius is equal to the Earth’s. 
How many times larger than Earth’s density is this?
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14. (II) A  neutron star whose mass is 1.5 solar masses has a radius 
of about 11 km. Calculate its average density and compare 
to that for a white dwarf (Problem 13) and to that of nuclear 
matter.

15. ( I ll)  Stars located in a certain cluster are thought to be 
about the same distance from us. Two such stars have 
spectra that peak at = 470 nm and A2 = 720 nm, and 
the ratio of their apparent brightness is b i/b 2 =  0.091. 
Estimate their relative sizes (give ratio of their diameters) 
using Wien’s law and the Stefan-Boltzmann equation, Eq. 19-17.

16. ( I ll)  Suppose two stars of the same apparent brightness b 
are also believed to be the same size. The spectrum of one 
star peaks at 750 nm whereas that of the other peaks at 
450 nm. Use Wien’s law and the Stefan-Boltzmann equation 
(Eq. 19-17) to estimate their relative distances from us.

44-4 General Relativity, Gravity and Curved Space
17. (I) Show that the Schwarzschild radius for a star with mass 

equal to that of Earth is 8.9 mm.
18. (II) What is the Schwarzschild radius for a typical galaxy 

(like ours)?
19. (II) What is the maximum sum-of-the-angles for a triangle 

on a sphere?
20. (II) Calculate the escape velocity, using Newtonian 

mechanics, from an object that has collapsed to its 
Schwarzschild radius.

21. (II) What is the apparent deflection of a light beam in an 
elevator (Fig. 44-13) which is 2.4 m wide if  the elevator is 
accelerating downward at 9.8 m/s2?

44-5 Redshift, Hubble's Law
22. (I) The redshift of a galaxy indicates a velocity of 

1850 km/s. How far away is it?
23. (I) I f  a galaxy is traveling away from us at 1.5% of the speed 

of light, roughly how far away is it?
24. (II) A  galaxy is moving away from Earth. The “blue” hydrogen 

line at 434 nm emitted from the galaxy is measured on 
Earth to be 455 nm. (a) How fast is the galaxy moving? 
(ib) How far is it from Earth?

25. (II) Estimate the wavelength shift for the 656-nm line 
in the Balmer series of hydrogen emitted from a galaxy 
whose distance from us is (a) 7.0 X 106 ly, (b) 7.0 X 107 ly.

| General Problems__________
37. The evolution of stars, as discussed in Section 44-2, can lead to 

a white dwarf, a neutron star, or even a black hole, depending 
on the mass, (a) Referring to Sections 44-2 and 44-4, give the 
radius of (i) a white dwarf of 1 solar mass, (ii) a neutron star of
1.5 solar masses, and (iii) a black hole of 3 solar masses, 
(ib) Express these three radii as ratios (^ : : 7^).

38. Use conservation of angular momentum to estimate the 
angular velocity of a neutron star which has collapsed to a 
diameter of 16 km, from a star whose radius was equal to that 
of our Sun (7 X 108 m). Assume its mass is 1.5 times that of the 
Sun, and that it rotated (like our Sun) about once a month.

39. By what factor does the rotational kinetic energy change 
when the star in Problem 38 collapses to a neutron star?

40. Assume that the nearest stars to us have an intrinsic 
luminosity about the same as the Sun’s. Their apparent 
brightness, however, is about 1011 times fainter than the Sun. 
From this, estimate the distance to the nearest stars. (Newton 
did this calculation, although he made a numerical error of 
a factor of 100.)

26. (II) I f  an absorption line of calcium is normally found at a 
wavelength of 393.4 nm in a laboratory gas, and you 
measure it to be at 423.4 nm in the spectrum of a galaxy, 
what is the approximate distance to the galaxy?

27. (II) What is the speed of a galaxy with z =  0.060?
28. (II) What would be the redshift parameter z for a galaxy 

traveling away from us at v =  0.075 c?
29. (II) Starting from Eq. 44-3, show that the Doppler shift 

in wavelength is AA/Arest « v /c  (Eq. 44-6) for v  «  c. 
[Hint: Use the binomial expansion.]

30. (II) Radiotelescopes are designed to observe 21-cm waves 
emitted by atomic hydrogen gas. A  signal from a distant 
radio-emitting galaxy is found to have a wavelength that is 
0.10 cm longer than the normal 21-cm wavelength. Estimate 
the distance to this galaxy.

44-6 to 44-8 The Big Bang, CMB, Universe Expansion
31. (I) Calculate the wavelength at the peak of the blackbody 

radiation distribution at 2.7 K using Wien’s law.
32. (II) Calculate the peak wavelength of the CMB at 1.0 s after 

the birth of the universe. In what part of the EM spectrum is 
this radiation?

33. (II) The critical density for closure of the universe is 
pc « 10_26kg/m3. State pc in terms of the average number 
of nucleons per cubic meter.

34. (II) The scale factor of the universe (average distance 
between galaxies) at any given time is believed to have 
been inversely proportional to the absolute temperature. 
Estimate the size of the universe, compared to today, at
(a) t =  106 yr, (b) t =  1 s, (c) t = 10-6 s, and (d) t = 10-35 s.

35. (II) A t approximately what time had the universe 
cooled below the threshold temperature for producing
(a) kaons (M  « 500 M eV/c2), (b) Y (M  ~ 9500 M eV/c2), 
and (c) muons (M  « 100 M eV/c2)?

44-9 Dark Matter, Dark Energy
36. (II) Only about 5% of the energy in the universe is composed 

of baryonic matter, (a) Estimate the average density of 
baryonic matter in the observable universe with a radius 
of 14 billion light-years that contains 1011 galaxies, each with 
about 1011 stars like our Sun. (b) Estimate the density of dark 
matter in the universe.

41. Suppose that three main-sequence stars could undergo the 
three changes represented by the three arrows, A, B, and C, 
in the H -R  diagram of Fig. 44-35. For each case, describe 
the changes in temperature, intrinsic luminosity, and size.
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42. A  certain pulsar, believed to be a neutron star o f mass
1.5 times that of the Sun, w ith diameter 16 km, is observed 
to have a rotation speed o f 1.0 rev/s. I f  it loses rotational 
kinetic energy at the rate of 1 part in 109 per day, which is 
all transformed into radiation, what is the power output of 
the star?

43. The nearest large galaxy to our Galaxy is about 2 X 106 ly 
away. I f  both galaxies have a mass o f 3 X 1041 kg, w ith what 
gravitational force does each galaxy attract the other?

44. Estimate what neutrino mass (in eV /c2) would provide the 
critical density to close the universe. Assume the neutrino 
density is, like photons, about 109 times that of nucleons, and 
that nucleons make up only (a) 2% of the mass needed, or
(b) 5% o f the mass needed.

45. Two stars, whose spectra peak at 660 nm and 480 nm, 
respectively, both lie on the main sequence. Use Wien’s 
law, the Stefan-Boltzmann equation, and the H -R  diagram 
(Fig. 44-6) to estimate the ratio of their diameters.

46. (a) In  order to measure distances with parallax at 100 parsecs, 
what minimum angular resolution (in degrees) is needed?
(b) What diameter m irror or lens would be needed?

47. What is the temperature that corresponds to 1.96-TeV co lli­
sions at the Fermilab collider? To what era in cosmological 
history does this correspond? [Hint: See Fig. 44-30.]

48. Astronomers have measured the rotation o f gas around 
a possible supermassive black hole o f about 2 b illion 
solar masses at the center of a galaxy. I f  the radius from  the 
galactic center to the gas clouds is 68 light-years, estimate 
the measured value o f z.

49. In  the later stages of stellar evolution, a star ( if massive 
enough) w ill begin fusing carbon nuclei to form, for 
example, magnesium:

126c  + 24-gM g + 7.

(a) How much energy is released in this reaction (see 
Appendix F)? (b) How much kinetic energy must each 
carbon nucleus have (assume equal) in a head-on collision if 
they are just to “ touch” (use Eq. 41-1) so that the strong 
force can come into play? (c) What temperature does this 
kinetic energy correspond to?

50. Consider the reaction

+ ijjo  ->  g s i + ^He,

and answer the same questions as in Problem 49.
51. Calculate the Schwarzschild radius using a semi-classical 

(Newtonian) gravitational theory, by calculating the 
minimum radius R  for a sphere of mass M  such that a 
photon can escape from the surface. (General Relativity 
gives R  = 2G M /c 1.)

52. How large would the Sun be if  its density equaled the 
critical density o f the universe, pc ~ 10_26kg/m 3? Express 
your answer in light-years and compare w ith the Earth-Sun 
distance and the diameter o f our Galaxy.

53. The Large Hadron Collider in Geneva, Switzerland, can 
collide two beams of protons at an energy o f 14 TeV. Esti­
mate the time after the Big Bang probed by this energy.

54. (a) Use special relativity and Newton’s law of gravitation to 
show that a photon of mass m  = E /c 2 just grazing the Sun 
w ill be deflected by an angle A6 given by

2G M
Ad =

c R
where G  is the gravitational constant, R  and M  are the 
radius and mass of the Sun, and c is the speed o f light.
(b) Put in values and show A0 = 0.87". (General Relativity 
predicts an angle twice as large, 1.74".)

55. Astronomers use an apparent magnitude (m) scale to describe 
apparent brightness. It uses a logarithmic scale, where a higher 
number corresponds to a less bright star. (For example, the 
Sun has magnitude -27 , whereas most stars have positive 
magnitudes.) On this scale, a change in apparent magnitude by 
+5 corresponds to a decrease in apparent brightness by a 
factor of 100. I f  Venus has an apparent magnitude of -4.4 , 
whereas Sirius has an apparent magnitude of — 1.4, which is 
brighter? What is the ratio of the apparent brightness of these 
two objects?

56. Estimate the radius of a white dwarf whose mass is equal to 
that o f the Sun by the following method, assuming there are 
N  nucleons and \  N  electrons (why §?): (a) Use Fermi-Dirac 
statistics (Section 40-6) to show that the total energy of all 
the electrons is ,

3 f l
E e =  - \ - N

h 1 /3  JV\3

5 V 2 ’ 7 8rae V 2V  J
[Hint: See Eqs. 40-12 and 40-13; we assume electrons f ill 
energy levels from 0 up to the Fermi energy.] (b) The 
nucleons contribute to the total energy mainly via the grav­
itational force (note that the Fermi energy for nucleons is 
negligible compared to that for electrons— why?). Use a 
gravitational form  of Gauss’s law to show that the total 
gravitational potential energy o f a uniform  sphere of 
radius R  is

3 G M 2 
5 R

by considering the potential energy of a spherical shell of 
radius r due only to the mass inside it (why?) and integrate 
from r = 0 to r =  R. (See also Appendix D.) (c) W rite 
the total energy as a sum of these two terms, and set 
d E /d R  = 0 to find the equilibrium  radius, and evaluate it 
for a mass equal to the Sun’s (2.0 X IO30 kg).

57. Determine the radius of a neutron star using the same argu­
ment as in Problem 56 but for N  neutrons only. Show that the 
radius of a neutron star, of 1.5 solar masses, is about 11 km.

58. Use dim ensional analysis w ith the fundamental constants c, 
G, and h to estimate the value of the so-called Planck time. 
I t  is thought that physics as we know it can say nothing 
about the universe before this time.

Answers to Exercises

B: 600 ly (estimating L  from Fig. 44-6 as L  «  8 X 1026 W; D: (a); not the usual R 3, but R: see formula for the
note that on a log scale, 6000 K  is closer to 7000 K  than it is Schwarzschild radius,
to 5000 K). g .

A: Ourselves, 2 years ago. C: 6 km.
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M a th e m a t ic a l  F o r m u la s

A—1 Quadratic Formula
If ax2 + bx + c = 0

- b ±  \ / b 2 -  4ac
then 2 a

A—2 Binomial Expansion
{1 ± x )n = 1 ± n x + ^ ^ x, ± < ! L ^ l ^ l x 3

(x + y r  = xJ 1 + l Y  = xJ 1 + n l + n ( n - l ) y 2
Xj  \ X 21 x2

A—3 Other Expansions
jl. X2 x3

e* = 1 + *  + -  + -  + -
2 3 4

ln (l + *) = x ~ Y  + Y ~ T  + '" 

sine = e -  | j -  +  | j -  -  -

- . - . - S - S - .

tan0 = e + J  + — d5 + ••• |0| <  |  

In general: f (x )  =  / (0 )  + a: + f -  + •••

A—4 Exponents
(an)(am) = a'I+m J_

(a")(fc") = (a*)"

(a")m = a®"

A—5 Areas and Volumes

= a-"

1

Object Surface area Volume

Circle, radius r Trr1 —
Sphere, radius r 4ttt2 Iirr3
Right circular cylinder, radius r, height h 2tt r2 + 27rrh 7rr2h
Right circular cone, radius r, height h ttt2 + irr\/r2 + h2 \irr2h

A-1



A—6 Plane Geometry

h
FIGURE A-4

FIGURE A -1 If  line ax is FIGURE A-2 If« !_L«2
parallel to line a2, then 61 = 02. and bx _L b2, then d1 =  02.

3. The sum of the angles in any plane triangle is 180°.

4. Pythagorean theorem :
In any right triangle (one angle = 90°) of sides a, b, and c:

a2 + b2 =  c2

where c is the length of the hypotenuse (opposite the 90° 
FIGURE A-3 angle).

5. Similar triangles: Two triangles are said to be similar if  all three of their angles 
are equal (in Fig. A -4 , 61 =  <f>i,d2 =  4>2, and 03 = (f>3). Similar triangles can 
have different sizes and different orientations.
(a) Two triangles are similar if any two of their angles are equal. (This follows 
because the third angles must also be equal since the sum of the angles of a 
triangle is 180°.)
(b) The ratios of corresponding sides of two similar triangles are equal (Fig. A -4):

a l _  a 2 _  a 3 

b\ b2 b3

6. Congruent triangles: Two triangles are congruent if one can be placed precisely 
on top of the other. That is, they are similar triangles and they have the same 
size. Two triangles are congruent if any of the following holds:
(a) The three corresponding sides are equal.
(b) Two sides and the enclosed angle are equal (“ side-angle-side” ).
(c) Two angles and the enclosed side are equal (“ angle-side-angle” ).

A—7 Logarithms
Logarithms are defined in the following way:

if y =  Ax, then x =  log Ay.

That is, the logarithm of a number y  to the base A  is that number which, as the 
exponent of A , gives back the number y. For common logarithms, the base is 10, so

if y =  10*, then x =  logy.

The subscript 10 on log10 is usually omitted when dealing with common logs. 
Another important base is the exponential base e = 2.718 ..., a natural number. 
Such logarithms are called natural logarithms and are written In. Thus,

if y =  ex, then x =  In y.

For any number y, the two types of logarithm are related by

ln y  = 2.3026 logy.

Some simple rules for logarithms are as follows:

log (ab) =  log a +  log b, (i)

which is true because if a =  10” and b =  10m, then ab =  10”+m. From the
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definition of logarithm, log a = n, log b =  ra, and log (ab) = n +  m; hence, 
\og(ab) =  n + m = log a + \ogb. In a similar way, we can show that

lo g ^ j = log a log b (ii)

and
log a" = ra log 0 . (iii)

These three rules apply to any kind of logarithm.
If  you do not have a calculator that calculates logs, you can easily use a log 

table, such as the small one shown here (Table A -1 ): the number N  whose log we 
want is given to two digits. The first digit is in the vertical column to the left, the 
second digit is in the horizontal row across the top. For example, Table A -1  tells us 
that log 1.0 = 0.000, log 1.1 = 0.041, and log 4.1 = 0.613. Table A -1  does not 
include the decimal point. The Table gives logs for numbers between 1.0 and 9.9. 
For larger or smaller numbers, we use rule (i) above, log (ab) = log a +  log b. 
For example, log(380) = log(3.8 X 102) = log(3.8) + log(l02). From the Table, 
log 3.8 = 0.580; and from rule (iii) above log(l02) = 21og(10) = 2, since 
log (10) = 1. [This follows from the definition of the logarithm: if  10 = 101, then 
1 = log(10).] Thus,

log (380) = log(3.8) + log(l02)
= 0.580 + 2 
= 2.580.

Similarly,
log (0.081) = log(8.1) + log(l0-2)

= 0.908 -  2 = -1.092.

The reverse process of finding the number N  whose log is, say, 2.670, is called 
“ taking the antilogarithm.” To do so, we separate our number 2.670 into two parts, 
making the separation at the decimal point: 

log N  = 2.670 = 2 + 0.670
= log 102 + 0.670.

We now look at Table A -1  to see what number has its log equal to 0.670; none 
does, so we must interpolate: we see that log 4.6 = 0.663 and log 4.7 = 0.672. So 
the number we want is between 4.6 and 4.7, and closer to the latter by \  • Approxi­
mately we can say that log 4.68 = 0.670. Thus 

log N  = 2 + 0.670
= log(l02) + log(4.68) = log(4.68 X 102), 

so N  =  4.68 X 102 = 468.
If  the given logarithm is negative, say, -2.180, we proceed as follows: 

log TV = -2.180 = -3  + 0.820
= loglO-3 + log 6.6 = log 6.6 X 10-3, 

so N  =  6.6 X 10 3. Notice that we added to our given logarithm the next largest 
integer (3 in this case) so that we have an integer, plus a decimal number between
0 and 1.0 whose antilogarithm can be looked up in the Table.

TABLE A-1 Short Table of Common Logarithms
N 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 000 041 079 114 146 176 204 230 255 279
2 301 322 342 362 380 398 415 431 447 462
3 477 491 505 519 531 544 556 568 580 591
4 602 613 623 633 643 653 663 672 681 690
5 699 708 716 724 732 740 748 756 763 771
6 778 785 792 799 806 813 820 826 833 839
7 845 851 857 863 869 875 881 886 892 898
8 903 908 914 919 924 929 935 940 944 949
9 954 959 964 968 973 978 982 987 991 996

SECTION A-7 Logarithms A-3



A—8 Vectors

FIGURE A-5

FIGURE A-6

First Quadrant 
(0° to 90°) 

x>0

sin 0 =y/r>0  
cos 8 = x/r>0 
tan 6 =y/x>Q

Third Quadrant 
(180° to 270°) 

x<0 
;y<0

sin 0<O 
cos 0<O 
tan 0>O

FIGURE A-7

Second Quadrant 
(90° to 180°) 

x<0

sin 0>O 
cos0<O 
tan 0< 0

Fourth Quadrant 
(270° to 360°) 

jt>0 
y<0

1 x f \x  1
i v y 1 \ i ^  

\ \ / r
y J \  y

S. 1
\ r ' 1  V /

sin 0<O 
cos0>O 
tan0<O

Vector addition is covered in Sections 3-2 to 3-5.
Vector multiplication is covered in Sections 3-3 ,7-2 , and 11-2.

A—9 Trigonometric Functions and Identities
The trigonometric functions are defined as follows (see Fig. A -5 , o = side opposite, 
a =  side adjacent, h =  hypotenuse. Values are given in Table A -2 ):

• ^  °  sin 0 = —  
h
a

cos 0 = —  
h
o sin 0

tan 0 = —  = ------
a cos 0

and recall that

a2 +  o2 =  h2 [Pythagorean theorem].

Figure A -6  shows the signs (+  or - )  that cosine, sine, and tangent take on for 
angles 0 in the four quadrants (0° to 360°). Note that angles are measured coun­
terclockwise from the x axis as shown; negative angles are measured from below  
the x axis, clockwise: for example, -30° = +330°, and so on.

The following are some useful identities among the trigonometric functions:

sin20 + cos20 = 1

sec20 -  tan20 = 1, csc20 -  cot20 = 1

CSC 0 =
1 h

sin0 o

sec0 =
1 h

COS0 a

cot 0 =
1 a

tan0 o

sin 20 = 2 sin 0 cos 0 

cos 20 = cos20 -  sin20 = 2cos20 
2tan0

1 = 1 -  2sin20

tan 20 =

sin(A + B 

cos(A+ B

tan(A + B

sin (180° -  0 

cos(180° -  0 

sin (90° -  0 

cos(90° -  0 

s in (-0  

cos(-0 

ta n (-0

1 -  tan20 

= sin A  cos B ±  cos A  sin B 

=  cos A  cos B + sin A  sin B 

tan A  + tan B
1 + tan A  tan B

=  sin0

= -cos 0

= cos 0

= sin0

= -s in  0

= cos 0

= -ta n 0

1 -  COS0 1 +  COS0

cos

A-4 APPENDIX A

2
(  A ± B

sin A  + sin B = 2 sin — -—
V 2

For any triangle (see Fig. A -7 ):

sin a _  sin /3 _ sin 7 
a b c

c2 = a2 + b2 -  la b  cos 7.

Values of sine, cosine, tangent are given in Table A -2 .

1 -  cos0
cos 0

A T  B

[Law of sines] 

[Law of cosines]



TABLE A-2 Trigonometric Table: Numerical Values of Sin, Cos, Tan

Angle
in

Degrees

Angle
in

Radians Sine Cosine Tangent

Angle
in

Degrees

Angle
in

Radians Sine Cosine Tangent

0° 0.000 0.000 1.000 0.000
1° 0.017 0.017 1.000 0.017 46° 0.803 0.719 0.695 1.036
2° 0.035 0.035 0.999 0.035 47° 0.820 0.731 0.682 1.072
3° 0.052 0.052 0.999 0.052 48° 0.838 0.743 0.669 1.111
4° 0.070 0.070 0.998 0.070 49° 0.855 0.755 0.656 1.150
5° 0.087 0.087 0.996 0.087 50° 0.873 0.766 0.643 1.192

6° 0.105 0.105 0.995 0.105 51° 0.890 0.777 0.629 1.235
7° 0.122 0.122 0.993 0.123 52° 0.908 0.788 0.616 1.280
8° 0.140 0.139 0.990 0.141 53° 0.925 0.799 0.602 1.327
9° 0.157 0.156 0.988 0.158 54° 0.942 0.809 0.588 1.376

10° 0.175 0.174 0.985 0.176 55° 0.960 0.819 0.574 1.428

11° 0.192 0.191 0.982 0.194 56° 0.977 0.829 0.559 1.483
12° 0.209 0.208 0.978 0.213 57° 0.995 0.839 0.545 1.540
13° 0.227 0.225 0.974 0.231 58° 1.012 0.848 0.530 1.600
14° 0.244 0.242 0.970 0.249 59° 1.030 0.857 0.515 1.664
15° 0.262 0.259 0.966 0.268 60° 1.047 0.866 0.500 1.732

16° 0.279 0.276 0.961 0.287 61° 1.065 0.875 0.485 1.804
17° 0.297 0.292 0.956 0.306 62° 1.082 0.883 0.469 1.881
18° 0.314 0.309 0.951 0.325 63° 1.100 0.891 0.454 1.963
19° 0.332 0.326 0.946 0.344 64° 1.117 0.899 0.438 2.050
20° 0.349 0.342 0.940 0.364 65° 1.134 0.906 0.423 2.145

21° 0.367 0.358 0.934 0.384 66° 1.152 0.914 0.407 2.246
22° 0.384 0.375 0.927 0.404 67° 1.169 0.921 0.391 2.356
23° 0.401 0.391 0.921 0.424 68° 1.187 0.927 0.375 2.475
24° 0.419 0.407 0.914 0.445 69° 1.204 0.934 0.358 2.605
25° 0.436 0.423 0.906 0.466 70° 1.222 0.940 0.342 2.747

26° 0.454 0.438 0.899 0.488 71° 1.239 0.946 0.326 2.904
27° 0.471 0.454 0.891 0.510 72° 1.257 0.951 0.309 3.078
28° 0.489 0.469 0.883 0.532 73° 1.274 0.956 0.292 3.271
29° 0.506 0.485 0.875 0.554 74° 1.292 0.961 0.276 3.487
30° 0.524 0.500 0.866 0.577 75° 1.309 0.966 0.259 3.732

31° 0.541 0.515 0.857 0.601 76° 1.326 0.970 0.242 4.011
32° 0.559 0.530 0.848 0.625 77° 1.344 0.974 0.225 4.331
33° 0.576 0.545 0.839 0.649 78° 1.361 0.978 0.208 4.705
34° 0.593 0.559 0.829 0.675 79° 1.379 0.982 0.191 5.145
35° 0.611 0.574 0.819 0.700 80° 1.396 0.985 0.174 5.671

36° 0.628 0.588 0.809 0.727 81° 1.414 0.988 0.156 6.314
37° 0.646 0.602 0.799 0.754 82° 1.431 0.990 0.139 7.115
38° 0.663 0.616 0.788 0.781 83° 1.449 0.993 0.122 8.144
39° 0.681 0.629 0.777 0.810 84° 1.466 0.995 0.105 9.514
40° 0.698 0.643 0.766 0.839 85° 1.484 0.996 0.087 11.43

41° 0.716 0.656 0.755 0.869 86° 1.501 0.998 0.070 14.301
42° 0.733 0.669 0.743 0.900 87° 1.518 0.999 0.052 19.081
43° 0.750 0.682 0.731 0.933 88° 1.536 0.999 0.035 28.636
44° 0.768 0.695 0.719 0.966 89° 1.553 1.000 0.017 57.290
45° 0.785 0.707 0.707 1.000 90° 1.571 1.000 0.000 oo

SECTION A-9 Trigonometric Functions and Identities A-5
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Derivatives and Integrals

B - l  D e r i v a t i v e s :  G e n e r a l  R u l e s

(See also Section 2-3.)
dx _  
~dx ~

d df
—  [af(x)\ = a —  [a = constant]
CIJL CIJC

£ [ « * )  + *(*)] =  £  + £

(*)*(*)] = f x s  + f f x

i V M ]  = f y %  [chain rule]

—  =  1 - n
f  < fy\ dx 

,d x /

B — 2  D e r i v a t i v e s :  P a r t i c u l a r  F u n c t i o n s

4 ^ = 0  [a = constant]
dx

- ^ - x n = n x " -1 dx
d .—  sin ax = a cos ax dx
d—  cos ax = —a sin ax 
dx
d 2—  tan ax = a sec ax dx

d 1—  In ax = — dx x
d_ 
dx

B — 3  I n d e f i n i t e  I n t e g r a l s :  G e n e r a l  R u l e s

(See also Section 7-3.)

\ dx = x

|af (x)dx = a^f(x)dx [a = constant]

[/(x) + g(x)]dx = |/(x) dx + jg(x)dx

u dv = uv — \v du [integration by parts: see also B-6]
A-6



B—4 Indefinite Integrals: Particular Functions
(An arbitrary constant can be added to the right side of each equation.)

+ x
[ a dx = ax \a = constant! [---------
J J (x 2± a :

f xmdx =  ^  xm+1 [ m * - 1] f xdx

m ,+ l ( x 2±d'

(x2 ± a2)l a2\J x 2± i

-1

sin ax dx = — — cos ax . . _a I . 0 T x sin 2ax
1 J 2  4 a 

cos ax dx = — sin axa [ e
xe~ax dx = ------Y ^ ax + 1 )

1“
/
|  tan ax dx = ^  ln|sec ax\

S'

+ ^  

I ^ = !  - “ " ( f )  -  - “ *“ ( ! )

(x2 ± a2)l y j x 2± a2

|  siisin2 ax dx = ^  —

I — dx = In x

■axdx = - e ax a

S'
f e~ax
x2e~ax dx = ------ j-  (ia2x2 + lax  + l)

f dx 1 , x
—z-------7  = — tan —

J xl + ar a a

\^ ~ 2  = f  In f—J x — a 2  a + fl
[x2 >  fl2]

= _ l j £ ± i L )  [x2 < a 2
la  \a  -  x J

B—5 A Few Definite Integrals

I,o
J V
Jo

n\
an+1

r oo
x2e~“ ‘ dx =

Jo
pTT r oo

x ^ - ^ d x  =
V 4 a Jo

1
1 x2ne~â  dx =

la Jo

77 
' 16fl3

2 a2

[ x e -^ d x  = J -  f°°j:2V_'“2dx = 1 '3 '5 '" (2”---- 51 J z
Jo 2a Jo 2“ fl V fl

B—6 Integration by Parts
Sometimes a difficult integral can be simplified by carefully choosing the functions u and v  in the identity: 

ju d v  = uv — Jv du. [Integration by parts]

This identity follows from the property of derivatives
d . , dv du 
- ( u v )  = u -  + v -

or as differentials: d(uv) = udv + vdu.
For example Jxe~x dx can be integrated by choosing u = x and dv = e x dx in the “integration by parts” equation above: 

| xe~x dx = (x ) ( - e ~x) + j e~x dx

= -xe~x — e~x = — (x + l)e~x.

SECTION B-6 A-7



More on Dimensional Analysis
An important use of dimensional analysis (Section 1-7) is to obtain the form  of an 
equation: how one quantity depends on others. To take a concrete example, let us 
try to find an expression for the period T  of a simple pendulum. First, we try to 
figure out what T  could depend on, and make a list of these variables. It might 
depend on its length £, on the mass m  of the bob, on the angle of swing 0, and on 
the acceleration due to gravity, g. It might also depend on air resistance (we would 
use the viscosity of air), the gravitational pull of the Moon, and so on; but everyday 
experience suggests that the Earth’s gravity is the major force involved, so we 
ignore the other possible forces. So let us assume that T  is a function of £, m, 0, and 
g, and that each of these factors is present to some power:

T = C£wmx6y gz .
C is a dimensionless constant, and w, x, y, and z  are exponents we want to solve 
for. We now write down the dimensional equation (Section 1-7) for this relationship: 

[T] = [L]w[M]x[L /T 2]z .
Because 0 has no dimensions (a radian is a length divided by a length— see 
Eq. 10-la), it does not appear. We simplify and obtain 

[T] =  [L]w+z[M]x[T]~2z 
To have dimensional consistency, we must have

1 =  —2z 
0 = w  + z 
0 = x.

We solve these equations and find that z =  =  and x =  0. Thus our
desired equation must be

t  = cVt/gf(e) ,  (C -i)
where /(0 ) is some function of 0 that we cannot determine using this technique. 
Nor can we determine in this way the dimensionless constant C. (To obtain C and 
/ ,  we would have to do an analysis such as that in Chapter 14 using Newton’s laws, 
which reveals that C = 2ir and /  « 1 for small 0). But look what we have found, 
using only dimensional consistency. We obtained the form of the expression that 
relates the period of a simple pendulum to the major variables of the situation, 
£ and g  (see Eq. 14-12c), and saw that it does not depend on the mass m.

How did we do it? And how useful is this technique? Basically, we had to use 
our intuition as to which variables were important and which were not. This is not 
always easy, and often requires a lot of insight. As to usefulness, the final result in 
our example could have been obtained from Newton’s laws, as in Chapter 14. But 
in many physical situations, such a derivation from other laws cannot be done. In 
those situations, dimensional analysis can be a powerful tool.

In the end, any expression derived by the use of dimensional analysis (or by any 
other means, for that matter) must be checked against experiment. For example, in our 
derivation of Eq. C -l, we can compare the periods of two pendulums of different 
lengths, lx and l 2 > whose amplitudes (0) are the same. For, using Eq. C -l, we would have

Ti o / i j g m  f t

t2 c V U g f ( e )  V i 2
Because C and /(0 ) are the same for both pendula, they cancel out, so we can 
experimentally determine if the ratio of the periods varies as the ratio of the 
square roots of the lengths. This comparison to experiment checks our derivation, 
at least in part; C and /(0 ) could be determined by further experiments.

A-8 APPENDIX C More on Dimensional Analysis



D Gravitational Force due to a 
Spherical Mass Distribution

In Chapter 6 we stated that the gravitational force exerted by or on a uniform 
sphere acts as if all the mass of the sphere were concentrated at its center, if  the 
other object (exerting or feeling the force) is outside the sphere. In other words, 
the gravitational force that a uniform sphere exerts on a particle outside it is 

ifiM
F = G  — » [ra outside sphere of mass M l

r
where ra is the mass of the particle, M  the mass of the sphere, and r the distance of 
ra from the center of the sphere. Now we w ill derive this result. We w ill use the 
concepts of infinitesimally small quantities and integration.

First we consider a very thin, uniform spherical shell (like a thin-walled 
basketball) of mass M  whose thickness t is small compared to its radius R  
(Fig. D - l) . The force on a particle of mass ra at a distance r from the center of the 
shell can be calculated as the vector sum of the forces due to all the particles of the 
shell. We imagine the shell divided up into thin (infinitesimal) circular strips so 
that all points on a strip are equidistant from our particle ra. One of these circular 
strips, labeled AB, is shown in Fig. D - l. It is R dd wide, t thick, and has a radius 
R  sin 0. The force on our particle ra due to a tiny piece of the strip at point A  is 
represented by the vector FA shown. The force due to a tiny piece of the strip at 
point B, which is diametrically opposite A , is the force FB. We take the two pieces 
at A  and B to be of equal mass, so FA = FQ. The horizontal components of FA 
and Fb are each equal to 

Fa c o s  (f>
and point toward the center of the shell. The vertical components of FA and FB are 
of equal magnitude and point in opposite directions, and so cancel. Since for every 
point on the strip there is a corresponding point diametrically opposite (as with A  
and B), we see that the net force due to the entire strip points toward the center of 
the shell. Its magnitude w ill be

^  ra dM  
dF = G — — cos 4>,

where dM  is the mass of the entire circular strip and £ is the distance from all 
points on the strip to ra, as shown. We write dM  in terms of the density p; by 
density we mean the mass per unit volume (Section 13-2). Hence, dM  = p dV, 
where dV  is the volume of the strip and equals (2ttR sin 6) ( t ) (R dd). Then the 
force dF  due to the circular strip shown is

^  m plirR h  sin 0 dd 
dF = G ---------- ^ ---------- cos (f>. (D -l)

FIGURE D-T Calculating the 
gravitational force on a particle of 
mass m  due to a uniform spherical 
shell of radius R and mass M.
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FIGURE D -l (repeated) 
Calculating the gravitational force 
on a particle of mass m due to a 
uniform spherical shell of radius R 
and mass M.

To get the total force F that the entire shell exerts on the particle ra, we must 
integrate over all the circular strips: that is, we integrate

mp2irR2t sin 6 dd
dF = G — ------j 2---------- cos<£ (D -l)

from 6 =  0° to 6 = 180°. But our expression for dF  contains £ and 4>, which are 
functions of 0. From Fig. D - l we can see that 

£cos $  = r -  R cos 6.
Furthermore, we can write the law of cosines for triangle CraA: 

r2 + R 2 _  f

cose  = — IT r -------  (D" 2)
With these two expressions we can reduce our three variables (£, 0, <f>) to only one, 
which we take to be L We do two things with Eq. D -2: (1) We put it into the equa­
tion for £ cos cb above:

cos cf) = — (r — R cos 6) =
£ '  ' 2 r£

and (2) we take the differential of both sides of Eq. D -2  (because sin 0 dd appears
in the expression for dF, Eq. D - l) , considering r and R to be constants when
summing over the strips:

• „ 2£ d£ . n £d£
-s in  Odd =  — — —  or sin 6 dd = —— •

2 rR rR
We insert these into Eq. D - l for dF  and find

R (  r2 — R2\  
dF = Gmpirt — ( 1 H-------—---- j  d£.

Now we integrate to get the net force on our thin shell of radius R. To integrate 
over all the strips (6 =  0° to 180°), we must go from £ =  r -  R  to £ =  r + R 
(see Fig. D - l) . Thus,

R I" r2 -  R2~\l=r+R

r 2 I  £ \ l  = r - R
F = Gmpirt \ £ —

= Gmpirt ^ (A R ).

The volume V  of the spherical shell is its area (4irR2) times the thickness t. Hence 
the mass M  = pV  = p4irR2t, and finally

p  -  q  [  particle of mass m outside a
r2 I thin uniform spherical shell of mass M  J

This result gives us the force a thin shell exerts on a particle of mass m a 
distance r from the center of the shell, and outside the shell. We see that the force 
is the same as that between m  and a particle of mass M  at the center of the 
shell. In other words, for purposes of calculating the gravitational force exerted 
on or by a uniform spherical shell, we can consider all its mass concentrated at 
its center.

What we have derived for a shell holds also for a solid sphere, since a solid 
sphere can be considered as made up of many concentric shells, from R =  0 to 
R = R0, where R0 is the radius of the solid sphere. Why? Because if each shell has
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mass dM, we write for each shell, dF = Gm d M /r2, where r is the distance from 
the center C to mass m  and is the same for all shells. Then the total force equals 
the sum or integral over dM, which gives the total mass M. Thus the result

_ m M  T particle of mass m  outside 1 _
r2 i  solid sphere of mass M  \

is valid for a solid sphere of mass M  even if  the density varies with distance from 
the center. (It is not valid if the density varies within each shell— that is, depends 
not only on R.) Thus the gravitational force exerted on or by spherical objects, 
including nearly spherical objects like the Earth, Sun, and Moon, can be consid­
ered to act as if  the objects were point particles.

This result, Eq. D -3, is true only if the mass m is outside the sphere. Let us 
next consider a point mass m that is located inside the spherical shell of Fig. D - l. 
Here, r would be less than R, and the integration over I would be from i  = R — r 
to I =  R +  r, so

R + r
=  0.

R - r

Thus the force on any mass inside the shell would be zero. This result has partic­
ular importance for the electrostatic force, which is also an inverse square law. For 
the gravitational situation, we see that at points within a solid sphere, say 1000 km 
below the Earth’s surface, only the mass up to that radius contributes to the net 
force. The outer shells beyond the point in question contribute zero net gravitational 
effect.

The results we have obtained here can also be reached using the gravitational 
analog of Gauss’s law for electrostatics (Chapter 22).
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E Differential Form of 
Maxwell's Equations

Maxwell’s equations can be written in another form that is often more convenient 
than Eqs. 31-5. This material is usually covered in more advanced courses, and is 
included here simply for completeness.

We quote here two theorems, without proof, that are derived in vector analysis 
textbooks. The first is called Gauss’s theorem or the divergence theorem. It relates 
the integral over a surface of any vector function F to a volume integral over the 
volume enclosed by the surface:

<j> F -d& =  I t-F rfF .
J Areâ 4 JVolume V

The operator V is the del operator, defined in Cartesian coordinates as

^  ~ d *3 ~ dV = i — + i — + k —  
dx dy dz

The quantity

^ ^ dFx dFy dFz
V F = ----  + —-  + ----

dx dy dz

is called the divergence of F. The second theorem is Stokes’s theorem, and relates 
a line integral around a closed path to a surface integral over any surface enclosed 
by that path:

F -d l =  [
-ine Ja

f  X  F - d A .
Line J Area A

The quantity V X F is called the curl of F. (See Section 11-2 on the vector product.)
We now use these two theorems to obtain the differential form of Maxwell’s 

equations in free space. We apply Gauss’s theorem to Eq. 31-5a (Gauss’s law):

j )  E - d A  =  j f - E  d V  =  — ■

Now the charge Q  can be written as a volume integral over the charge density p: 
Q = f p  dV.  Then

pd V .

Both sides contain volume integrals over the same volume, and for this to be true 
over any volume, whatever its size or shape, the integrands must be equal:

f-E  = —• (E-l)
e0

This is the differential form of Gauss’s law. The second of Maxwell’s equations, 
<J)B -dA  =  0, is treated in the same way, and we obtain

V-B = 0. (E-2)
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Next, we apply Stokes’s theorem to the third of Maxwell’s equations,

(j>E-d? =  j ?  X E -d A  =

Since the magnetic flux 4>5 = JB • dA,  we have

j v  X E-dA = -  1B• dA

where we use the partial derivative, dB/dt, since B may also depend on position. 
These are surface integrals over the same area, and to be true over any area, even 
a very small one, we must have

-  dB
V X E =  -  — • (E -3)

This is the third of Maxwell’s equations in differential form. Finally, to the last of 
Maxwell’s equations,

B -dl = fi0I + fi0e0 —— >

we apply Stokes’s theorem and write 4>£ =  jE -d A :

j v  X B dA = ix0I + |e*^A.

The conduction current I can be written in terms of the current density j , using 
Eq. 25-12:

/  = Jj-rfA .

Then Maxwell’s fourth equation becomes:

jvxB-dA = hqJj-dA + M0€0̂  jfi-dA.

For this to be true over any area A,  whatever its size or shape, the integrands on 
each side of the equation must be equal:

dE
v X B -  /A0j + (E-4)

Equations E - l ,  2, 3, and 4 are Maxwell’s equations in differential form for free 
space. They are summarized in Table E - l .

TABLE E-l Maxwell's Equations in Free Spacef
Integral form Differential form

<j)E-dA =  j - V-E =  —  
eo

<j)B-dA =  0 V -B  =  0

f dQ  d
i ) E - d i  =  -  — -  
J dt

*  *V X E = -------
dt

f — -*(DB-d t  =  n 0I  +  /A0e0 — —
*  ^  r  dE V X B =  fi0] +  /A0e0- —  

dt

f V stands for the del operator V = i —  + j —  + k — in Cartesian coordinates.dx dy dz
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Selected Isotopes

(1)
A tom ic
Number

Z

(2)

Elem ent

(3)

Symbol

(4)
Mass

Number
A

(5)

A tom ic
Mass1-

(6)
% Abundance 

(or Radioactive 
Decay* M ode)

(7)

Half-life 
(if radioactive)

0 (Neutron) n 1 1.008665 F 10.23 min
1 Hydrogen H 1 1.007825 99.9885%

Deuterium d or D 2 2.014082 0.0115%
Tritium to r T 3 3.016049 p r 12.312 yr

2 Helium H e 3 3.016029 0.000137%
4 4.002603 99.999863%

3 Lithium Li 6 6.015123 7.59%
7 7.016005 92.41%

4 Beryllium B e 7 7.016930 E C ,y 53.22 days

9 9.012182 100%
5 Boron B 10 10.012937 19.9%

11 11.009305 80.1%
6 Carbon C 11 11.011434 j6+, EC 20.370 min

12 12.000000 98.93%
13 13.003355 1.07%
14 14.003242 f r 5730 yr

7 Nitrogen N 13 13.005739 jS+,E C 9.9670 min
14 14.003074 99.632%
15 15.000109 0.368%

8 Oxygen O 15 15.003066 /3+, EC 122.5 min
16 15.994915 99.757%
18 17.999161 0.205%

9 Fluorine F 19 18.998403 100%
10 N eon N e 20 19.992440 90.48%

22 21.991385 9.25%
11 Sodium Na 22 21.994436 p +, e c ,  y 2.6027 yr

23 22.989769 100%
24 23.990963 / r , r 14.9574 h

12 Magnesium Mg 24 23.985042 78.99%
13 Aluminum A l 27 26.981539 100%
14 Silicon Si 28 27.976927 92.2297%

31 30.975363 y 157.3 min
15 Phosphorus P 31 30.973762 100%

32 31.973907 f r 14.284 days

trThe masses given in column (5) are those for the neutral atom, including the Z  electrons. 
* Chapter 41; EC = electron capture.
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(1)
Atomic
Number

Z

(2)

Element

(3)

Symbol

(4)
Mass

Number
A

(5)

Atomic
Mass

(6)
% Abundance 

(or Radioactive 
Decay Mode)

(7)

Half-life 
(if radioactive)

16 Sulfur S 32 31.972071 94.9%
35 34.969032 pr 87.32 days

17 Chlorine Cl 35 34.968853 75.78%
37 36.965903 24.22%

18 Argon Ar 40 39.962383 99.600%
19 Potassium K 39 38.963707 93.258%

40 39.963998 0.0117%
/ r ,  EC, y,/3+ 1.265 X 109 yr

20 Calcium Ca 40 39.962591 96.94%
21 Scandium Sc 45 44.955912 100%
22 Titanium Ti 48 47.947946 73.72%
23 Vanadium V 51 50.943960 99.750%
24 Chromium Cr 52 51.940508 83.789%
25 Manganese Mn 55 54.938045 100%
26 Iron Fe 56 55.934938 91.75%
27 Cobalt Co 59 58.933195 100%

60 59.933817 /3~ y 5.2710 yr
28 Nickel Ni 58 57.935343 68.077%

60 59.930786 26.223%
29 Copper Cu 63 62.929598 69.17%

65 64.927790 30.83%
30 Zinc Zn 64 63.929142 48.6%

66 65.926033 27.9%
31 Gallium Ga 69 68.925574 60.108%
32 Germanium Ge 72 71.922076 27.5%

74 73.921178 36.3%
33 Arsenic As 75 74.921596 100%
34 Selenium Se 80 79.916521 49.6%
35 Bromine Br 79 78.918337 50.69%
36 Krypton Kr 84 83.911507 57.00%
37 Rubidium Rb 85 84.911790 72.17%
38 Strontium Sr 86 85.909260 9.86%

88 87.905612 82.58%
90 89.907738 r 28.80 yr

39 Yttrium Y 89 88.905848 100%
40 Zirconium Zr 90 89.904704 51.4%
41 Niobium Nb 93 92.906378 100%
42 Molybdenum Mo 98 97.905408 24.1%
43 Technetium Tc 98 97.907216 /r ,  y 4.2 X 106 yr
44 Ruthenium Ru 102 101.904349 31.55%
45 Rhodium Rh 103 102.905504 100%
46 Palladium Pd 106 105.903486 27.33%
47 Silver Ag 107 106.905097 51.839%

109 108.904752 48.161%
48 Cadmium Cd 114 113.903359 28.7%
49 Indium In 115 114.903878 95.71%; iQ- 4.41 X 1014 yr
50 Tin Sn 120 119.902195 32.58%
51 Antimony Sb 121 120.903816 57.21%
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(1)
Atomic
Number

Z

(2)

Element

(3)

Symbol

(4)
Mass

Number
A

(5)

Atomic
Mass

(6)
% Abundance 

(or Radioactive 
Decay Mode)

(7)

Half-life 
(if radioactive)

52 Tellurium Te 130 129.906224 34.1%;/ r / r >9.7 X 1022 yr
53 Iodine I 127 126.904473 100%

131 130.906125 P~, y 8.0233 days
54 Xenon Xe 132 131.904154 26.89%

136 135.907219 8.87%; p-p~ >8.5 X 1021 yr
55 Cesium Cs 133 132.905452 100%
56 Barium Ba 137 136.905827 11.232%

138 137.905247 71.70%
57 Lanthanum La 139 138.906353 99.910%
58 Cerium Ce 140 139.905439 88.45%
59 Praseodymium Pr 141 140.907653 100%
60 Neodymium Nd 142 141.907723 27.2%
61 Promethium Pm 145 144.912749 EC, a 17.7 yr
62 Samarium Sm 152 151.919732 26.75%
63 Europium Eu 153 152.921230 52.19%
64 Gadolinium Gd 158 157.924104 24.84%
65 Terbium Tb 159 158.925347 100%
66 Dysprosium Dy 164 163.929175 28.2%
67 Holmium Ho 165 164.930322 100%
68 Erbium Er 166 165.930293 33.6%
69 Thulium Tm 169 168.934213 100%
70 Ytterbium Yb 174 173.938862 31.8%
71 Lutetium Lu 175 174.940772 97.41%
72 Hafnium Hf 180 179.946550 35.08%
73 Tantalum Ta 181 180.947996 99.988%
74 Tungsten (wolfram) W 184 183.950931 30.64%; a >8.9 X 1021 yr
75 Rhenium Re 187 186.955753 62.60%; p~ 4.35 X 1010 yr
76 Osmium Os 191 190.960930 P~,y 15.4 days

192 191.961481 40.78%
77 Iridium Ir 191 190.960594 37.3%

193 192.962926 62.7%
78 Platinum Pt 195 194.964791 33.832%
79 Gold Au 197 196.966569 100%
80 Mercury Hg 199 198.968280 16.87%

202 201.970643 29.9%
81 Thallium Tl 205 204.974428 70.476%
82 Lead Pb 206 205.974465 24.1%

207 206.975897 22.1%
208 207.976652 52.4%
210 209.984188 pr, y, a 22.23 yr
211 210.988737 pr, y 36.1 min
212 211.991898 P~,y 10.64 h
214 213.999805 p~ ,y 26.8 min

83 Bismuth Bi 209 208.980399 100%
211 210.987269 a ,  y,P~ 2.14 min

84 Polonium Po 210 209.982874 a, y, EC 138.376 days
214 213.995201 a ,y 162.3 jjls

85 Astatine At 218 218.008694 a, p~ 1.4 s
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(1)
A tom ic
Number

Z

(2)

Elem ent

(3)

Symbol

(4)
Mass

Number
A

(5)

Atom ic
Mass

(6)
% Abundance 

(or Radioactive 
D ecay M ode)

(7)

Half-life 
(if radioactive)

86 Radon Rn 222 222.017578 0 ,7 3.8232 days
87 Francium Fr 223 223.019736 p - , y, a 22.00 min
88 Radium Ra 226 226.025410 a ,7 1600 yr
89 Actinium A c 227 227.027752 /T , y, a 21.772 yr
90 Thorium Th 228 228.028741 a , y 698.60 days

232 232.038055 100%; a, y 1.405 X  1010 yr
91 Protactinium Pa 231 231.035884 a , y 3.276 X  104 yr
92 Uranium U 232 232.037156 a , y 68.9 yr

233 233.039635 a , y 1.592 X  105 yr
235 235.043930 0.720%; a , y 7.04 X  108 yr
236 236.045568 a , y 2.342 X  107 yr
238 238.050788 99.274%; a, 7 4.468 X  109 yr
239 239.054293 P~,y 23.46 min

93 Neptunium Np 237 237.048173 a, y 2.144 X 106 yr
239 239.052939 p ~ ,y 2.356 days

94 Plutonium Pu 239 239.052163 a , y 24,100 yr
244 244.064204 a 8.00 X  107 yr

95 Americium A m 243 243.061381 a , y 7370 yr
96 Curium Cm 247 247.070354 «, y 1.56 X  107 yr
97 Berkelium Bk 247 247.070307 a, y 1380 yr
98 Californium Cf 251 251.079587 a , y 898 yr
99 Einsteinium Es 252 252.082980 a, EC, y 471.7 days

100 Fermium Fm 257 257.095105 a , y 100.5 days
101 M endelevium Md 258 258.098431 a, y 51.5 days
102 Nobelium N o 259 259.10103 a, EC 58 min
103 Lawrencium Lr 262 262.10963 a, EC, fission ~ 4 h
104 Rutherfordium Rf 263 263.11255 fission 10 min
105 Dubnium Db 262 262.11408 a, fission, EC 35 s
106 Seaborgium Sg 266 266.12210 a, fission ~ 2 1  s
107 Bohrium Bh 264 264.12460 a «  0.44 s
108 Hassium Hs 269 269.13406 a « 1 0 s
109 Meitnerium Mt 268 268.13870 a 21 ms
110 Darmstadtium D s 271 271.14606 a ~ 7 0  ms
111 Roentgenium Rg 272 272.15360 a 3.8 ms

112 Uub 277 277.16394 a «  0.7 ms

Preliminary evidence (unconfirmed) has been reported for elements 113,114,115,116 and 118.
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Answers to Odd-Numbered Problems
CHAPTER 1________________________

1. (fl) 1.4 X IO10 y;

0b) 4.4 X 1017 s.

3. (a) 1.156 X 10°;

0b) 2.18 X 101;

(c) 6.8 X IO-3;

(rf) 3.2865 X 102;

(e) 2.19 X IO-1;

( /)4 .4 4  X 102.

5. 4.6%.

7. 1.00 X 105s.

9. 0.24 rad.

11. (a) 0.2866 m;

(fo) 0.000085 V;

(c) 0.00076 kg;

(rf) 0.0000000000600 s;

(e) 0.0000000000000225 m;

( / )  2,500,000,000 V.

13. 5'10" = 1.8 m, 165 lbs = 75.2 kg.

15. (a) 1 ft2 = 0.111 yd2;

(fo) 1 m2 = 10.8 ft2.

17. (a) 3.9 X 10-9 in.;

(fo) 1.0 X 108 a to m s.

19. (a) 1 km /h = 0.621 mi/h;

(fo) 1 m /s =  3.28 ft/s;

(c) 1 km /h = 0.278 m /s.

21. (a) 9.46 X 1015m;

(fo) 6.31 X 104 AU;

(c) 7.20 A U /h .

23. (a )  3.80 X 1013 m 2;

(fo) 13.4.

25. 6 X 105 books.

27. 5 X 104 L.

29. (a) 1800.

31. 5 X 104 m .

33. 6.5 X 106 m.

35. [M /L 3].

37. (a) Cannot;

(fo) can;

(c) can.

39. ( l  X 10_5)%, 8 significant figures.

41. (a) 3.16 X 107 s;
0b) 3.16 X 1016 ns;
(c) 3.17 X 10-8 y.

43. 2 X 10“4m.
45. 1 X 1011 gal/y.
47. 9cm /y.
49. 2 X 109 kg/y.
51. 75 min.
53. 4 X 105 metric tons, 1 X 108 gal. 
55. 1 X 103 days 
57. 210 yd, 190 m.
59. (fl) 0.10 nm;

(fo) 1.0 X 105 fm;
(c) 1.0 X IO10 A;
(rf) 9.5 X 1025 A.

61. (fl) 3%, 3%;
0b) 0.7%, 0.2%.

63. 8 X 10“2m3.
65. L/m , L /y, L.
67. (a) 13.4;

(fo) 49.3.
69. 4 X 1051 kg.

CHAPTER 2

1. 61 m.
3. 0.65 cm/s, no.
5. 300 m /s, 1 km every 3 sec.
7. (a) 9.26 m/s;

(b) 3.1 m /s.
9. (fl) 0.3 m/s;

0b) 1.2 m/s;
(c) 0.30 m/s;
(rf) 1.4 m/s;
(e) -0 .95  m /s.

11. 2.0 X 101 s.
13. (fl) 5.4 X 103 m;

(fo) 72 min.
15. (fl) 61 km/h;

ob) o.
17. (fl) 16 m/s;

(fo) +5 m /s.
19. 6.73 m /s.
21. 5 s.
23. (a) 48 s;

(fo) 90 s to 108 s;
(c) 0 to 42 s, 65 s to 83 s, 90 s to 108 s;
(rf) 65 s to 83 s.

25. (fl) 21.2 m/s;
cb) 2.00 m /s2.

27. 17.0 m /s2.
29. (fl) m /s, m /s2;

(fo) 22? m /s2;
(c) (A  + 105) m /s, 2B m /s2;
(rf) A  -  3 # r 4.

31. 1.5 m /s2, 99 m.
33. 240 m /s2.
35. 4.41 m /s2, 2.61 s.
37. 45.0 m.
39. (fl) 560 m;

(b) 47 s;
(c) 23 m, 21 m.

41. (a) 96 m;
(fo) 76 m.

43. 27 m /s.
45. 117 km/h.
47. 0.49 m /s2.
49. 1.6 s.
51. (fl) 20 m;

(fo) 4 s.
53. 1.16 s.
55. 5.18 s.
57. (a) 25 m/s;

(fo)3 3 m;
(c) 1.2 s;
(rf) 5.2 s.

59. (a) 14 m/s;
(fo) fifth floor.

61. 1.3 m.
63. 18.8 m /s, 18.1 m.
65. 52 m.
67. 106 m.

69.

71. 6.
73. 1.3 m.
75. (fo) 10 m;

(c) 40 m.
77. 5.2 X 10-2 m /s2.
79. 4.6 m /s to 5.4 m /s, 5.8 m /s to

6.7 m /s, smaller range of velocities.
81. (fl) 5.39 s;

(fo) 40.3 m/s;
(c) 90.9 m.
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83. (a) 8.7 min;
(b) 13  min.

85. 2.3.
87. Stop.
89. 1.5 poles.
91. 0.44 m/min, 2.9 burgers/min.
93. (a) Where the slopes are the same;

(b) bicycle A;
(c) when the two graphs cross; first 

crossing, B passing A; second 
crossing, A  passing B;

(id) B until the slopes are equal, A  
after that;

(e) same. 
95. (c)

u.u
 ̂n '"S

D.U/-N —
1 O ft ir
w  DX) 
o  9 0H Z.U 

^  10l.U

0 . 0 -

2 3 
Time (s)

Time (s)

97. (b) 6.8 m.

CHAPTER 3

1. 286 km, 11° south of west.

3. 10.1, -39.4°.

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

?
<D

33.

35.

37.

41.

43.

(b) -22 .8 , 9.85;

(c) 24.8,23.4° above the — x  axis.

(fl) 625 km/h, 553 km/h;

(ib) 1560 km, 1380 km.

(a) 4.2 at 315°;

(b) l.Oi -  5.0j or 5.1 at 280°.

(a) —53.7i +  1.31j or 53.7 at 1.4° 
above — x  axis;

(b) 53.71 -  1.3lj  or 53.7 at 1.4° 
below +x  axis, they are 
opposite.

(a) — 92.5i -  19.4j or 94.5 at 11.8° 
below —x  axis;

(b) 1221 -  86.6j or 150 at 35.3° 
below +x  axis.

( —2450 m )i +  (3870 m)j 
+ (2450 m)k, 5190 m.

(9.60i -  2.00tk) m /s,
(-2 .0 0 k ) m /s2.

Parabola.

(a) 4.0t m /s, 3.0? m/s;

(b) 5.0t m/s;

(c) (2.0t2i + 1.5t2]) m;

(d) vx = 8.0 m /s, vy = 6.0 m /s, 
v = 10.0 m /s,
r = (8.0i +  6.0j) m.

(a) (3.16i + 2.78j)cm /s;

(b) 4.21 cm /s at 41.3°.

(a) (6.0£i -  18.0?2j) m /s,
(6.0i — 36.0?j) m /s2;

(b) (19i — 94j)m , (15i -  110j)m /s.

414m at -65.0°.

44 m, 6.9 m.

18°, 72°.

Horizontal distance (m)

2.26 s. 

22.3 m. 

39 m.

(a) 12 s;

(b) 62 m. 

5.5 s.

45.

47.

51.
53.

55.

57.
59.
61.
63.

65.
67.

69.

71.
73.

75.
77.
79.
81.

(a) (2.3i +  2.5j) m/s;
(b) 5.3 m;
(c) (2.3i — 10.2j)m /s.
No, 0.76 m too low; 4.5 m to 
34.7 m. 
tan-1 g t/vQ.
(fl) 50.0 m;
(b) 6.39 s;
(c) 221 m;
(d) 38.3 m /s at 25.7°.

11
— tan
2

= ^  + — 
2 4 ’

83. (fl)

tan i
(10.5 m /s)i, (6.5 m /s)i.
1.41 m /s.
23 s, 23 m.
(a) 11.2 m /s, 27° above the 

horizontal;
(b) 11.2 m /s, 27° below the 

horizontal.
6.3°, west of south.
(fl) 46 m;
(b) 92 s.
(a) 1.13 m/s;
(b) 3.20 m/s.
43.6° north of east.
(66m )i -  (35m )j -  (12m )k,
76 m, 28° south of east, 9° below the 
horizontal.
131 km/h, 43.1° north of east.
7.0 m /s.
1.8 m /s2.
1.9 m /s, 2.7 s.

Dv

(b)

(v2 - u 2Y
D

85.
87.

89.

91.
93.

95.
97.

99.

54°.
[(1.5 m )i -  (2.0£ m)i]

+ [ ( -3 .1  m)j + (l.75r2m)j,
(3.5 m /s2)j, parabolic.

Row at an angle of 24.9° upstream 
and run 104 m along the bank in a 
total time of 862 seconds.
69.9° north of east.
(a) 13 m;
(ft) 31° below the horizontal.
5.1s.
(fl) 13 m /s, 12 m/s;
(b) 33 m.
(a) x =  (3.03* -  0.0265) m,

3.03 m/s;
(b) y = (0.158 -  0.855* + 6.09*2) 

12.2 m /s2.
m,
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CHAPTER 4 51. (a)
1. 77 N.
3. (a) 6.7 X 102 N;

(ft) 1.2 X 102 N;
(c) 2.5 X 102 N;
{d) 0.

5. 1.3 X 106 N, 39%, 1.3 X 106N.
7. 2.1 X 102N.
9. m > 1.5 kg.

11. 89.8 N.
13. 1.8 m /s 2, up.
15. Descend with a >  2.2 m/s2.
17. -2800 m /s 2, 280 g ’s, 1.9 X 105N. 
19. (a) 7.5 s, 13 s, 7.5 s;

(ft) 12%, 0%, -12%;
(c) 55%.

89. (a) g sin 0,

(b)

21. (a) 3.1 m/s2; 
(ft) 25 m/s; 
(c) 78 s.

23. 3.3 X 103N. 
25. (a) 150 N;

(ft) 14.5 m/s. 
27. (a) 47.0 N; 

(ft) 17.0 N; 
(c ) 0.

29. (a)

mg t mg

31. (a) 1.5 m;
(ft) 11.5 kN, no.

33. (a) 31 N, 63 N;
(ft) 35 N, 71N.

35. 6.3 X 103 N, 8.4 X 103N.
37. (a) 19.0 N at 237.5°, 1.03 m/s2 at 

237.5°;
(ft) 14.0 N at 51.0°, 0.758 m/s2 at 

51.0°.

39. |  —  t l  
2 m

41. 4.0 X 102 m.
43. 12°.
45. (a) 9.9 N;

(ft) 260 N.
47. (a) mEg -  FT = mEa',

Ft  -  mc g = mc a;
(ft) 0.68 m/s2, 10,500 N.

49. (a) 2.8 m;
(ft) 2.5 s.

NAi

mAg \m}

(b)g

mAg
raB

g

m B§

raAraB

raB +

raA + raA + mB

mc
53. g -mA + mB + me

55. (ra + M )gtan0.

57. 1.52 m/s2, 18.3 N, 19.8 N.

(raA + raB + rac)raB 
5 9 .--------. -------- g.

V ( m i -  ml)

61. ( a )  ( y  -  1 ]g ;

(*)-v/2«jtol 1 - y l ;

( c ) j V i L  

63. 6.3 N.

65. 2.0 s, no change.
_  . . (mA sin 6 -  raB)
67. (a) g — 7----- ------ r— ;

(raA + raBJ
(ft) raA sin 6 > raB

(raAdown the plane),
raAsin0 <  raB

(raAup the plane).

, n mB sin 6b ~ raA sin dA
69. ( a ) ----------------- -------------------g;

raA + raB

(ft) 6.8 kg, 26 N;
(c) 0.74.

71. 9.9°.

73-(“>41^
(ft) 1.4 X 102N.

75. (a) Mg/2;
(6) Mg/2, Mg/2,3Mg/2, Mg. 

77. 8.7 X 102N,
72° above the horizontal.

79. (a) 0.6 m/s2;
(ft) 1.5 X 105N.

81. 1.76 X 104N.
83. 3.8 X 102N, 7.6 X 102N.
85. 3.4 m/s.
87. (a) 23 N;

(ft) 3.8 N.

2i

(b)
10

g sin0 

sin 6 , mg cos 6;

a 8-
I  6
1  4-
£  2-
8 o

15 30 45 60 75 
Angle (degrees)

90

0 15 30 45 60 75 90 
Angle (degrees)

The graphs are all consistent with 
the results of the limiting cases.

CHAPTER 5

1. 65 N, 0.
3. 0.20.
5. 8.8 m/s2.
7. 1.0 X 102 N, 0.48.
9. 0.51.

11. 4.2 m.
13. 1.2 X 103 N.
15. (a) 0.67;

(ft) 6.8 m/s;
(c) 16 m/s.

17. (a) 1.7 m/s2;
(ft) 4.3 X 102N;
(c) 1.7 m/s2, 2.2 X 102N.

19. (a) 0.80 m;
(ft) 1.3 s.

21. (a) A will pull B along;
(ft) B will eventually catch up to A;
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(c) fxA < fxB: a =

[ ( ^ a +  rnB) sin 6 — (/xA m A + fiB mB) cos 6
I {mA + m B)

m A m B . \
Ft = g 7-------;------ t(^ b  ~  M a)cos6,

[mA +  m B)
ixA > Pb -Va  = g(sin0 -  fxA cosd),
aB = ^(sin 6 -  ixB cos d), FT = 0.

23. (a) 5.0 kg;
(b) 6.7 kg.

vo
25. (a) -  tan 0;

2dg  cos 0 
(fo) fxs >  tan 0.

27. (fl) 0.22 s;
(fo) 0.16 m.

29. 0.51.
31. (a) 82 N;

(b) 4.5 m /s2.
(sin0 + (jl cos 0)

33. (M  + m)g  

35.

37.
39.
41.
43.
45.
47.

49.
51.
53.

55.
57.

59.
61.

63.

65.

67.

(cos 0 — fx sin 0) ’
(a) 1.41 m /s2;
(ib) 31.7 N.
V rg .
30 m.
31 m /s.
0.9 g ’s.
9.0 rev/min.
(a )  1.9 X 103m;
(b) 5.4 X 103N;
(c) 3.8 X 103N.
3.0 X 102N.
0.164.
(a) 7960 N;
(b) 588 N;
(c) 29.4 m/s.
6.2 m/s.
(fo) v =  ( -6 .0  m /s) sin (3.0 rad/s £)i 

+ (6.0 m /s) cos (3.0 rad/s t) j, 
a = ( -1 8  m /s2) cos (3.0 rad/s t ) i  

+ ( -1 8  m /s2) sin(3.0rad/s£)j; 
(c) v = 6.0 m /s, a =  18 m /s2.
17 m /s <  v <  32 m /s.
(fl) flt =  (tt/ 2) m /s2, flc = 0;
(fo) flt =  (tt/ 2) m /s2, 

flc =  (^2/8 ) m /s2;
(c) flt =  (tt/ 2) m /s2,

«c = (^2/2 ) m /s2.
(a) 1.64 m/s;
(fo) 3.45 m /s.
m/b.

mg ( m g \
(«) —  + j e  m<;

m8 , (  ^ m8 \  _ b t 
(b) ~ —  + U 0 +  Je mt•

69. (a) 14 kg/m; 
(fo) 570 N.
mg W / b , . Jt + — {e mt -  1)J S

75. 10 m.
77. 0.46.
79. 102 N, 0.725.
81. Yes, 14 m /s.
83. 28.3 m /s, 0.410 rev/s.
85. 3500 N, 1900 N.
87. 35°.
89. 132 m.
91. (a) 55 s;

(fo) centripetal component of the 
normal force.

93. (a) 6 = cos"1 8 ;
47rr/2

(fo) 73.6°;
(c) no.

95. 82°.
97. (a) 16 m/s;

(fo) 13 m /s.
99. (fl) 0.88 m /s2;

(fo) 0.98 m /s2.
101. (fl) 42.2 m/s;

(fo) 35.6 m, 52.6 m.
103. (fl)

f (s)

f (s)
(c) speed: -12% , position: -6.6% .

CHAPTER 6________________________

1. 1610 N.
3. 1.9 m /s2.
c 2

7. 0.91 g’s.
9. 1.4 X 10-8 N at 45°.

3*o11. Gml
2

—  +
[xl (xl + yl)3/2\ 

3^o4
—  +
J l  (xl + ^ ) 3/2J '}■

13. 21/* ~  1.26 times larger.
15. 3.46 X 108 m from the center of the 

Earth.
19. (fo) g decreases as r increases;

(c) 9.42 m /s2 approximate,
9.43 m /s2 exact.

21. 9.78 m /s2, 0.099° south of radially 
inward.

23. 7.52 X 103 m /s.
25. 1.7 m /s2 upward.
27. 7.20 X 103 s.
29. (fl) 520 N;

(fo) 520 N;
(c) 690 N;
(d) 350 N;
(e) 0.

31. (a) 59 N, toward the Moon;
(fo) 110 N, away from the Moon.

33. (a) They are executing centripetal 
motion;

(fo) 9.6 X 1029 kg.

35
V  t

37. 5070 s, or 84.5 min.
39. 160 y.
41. 2 X 108y.
43. Europa: 671 X 103 km;

Ganymede: 1070 X 103 km;
Callisto: 1880 X 103 km.

45. (a) 180 AU;
(fo) 360 AU;
(c) 360/1.

4772
47. (fl) log T = |  log r + § log

Gmj
slope = | ,  

^-intercept = |lo g
4 TT 
Gmi

(b)
6.2 -i 1 1 1

\y = 1.50a: -1 .1

f t  "5.8

< Aj.4

rnJ.U
8.,6 8.1  8.8 8.9 9..0 9..1 9..2 9..3 9.

Log (r)

slope = 1.50 as predicted, 
mj = 1.97 X 1027 kg.

49. (a) 5.95 X 10-3 m /s2;
(fo) no, only by about 0.06%. 

51. 2.64 X 106 m .

53. (fl) 4.38 X 107 m /s2;
(fo) 2.8 X 109N;
(c) 9.4 X 103 m /s.

55. r inner = 2.0 X 104 s,
outer = 7.1 X 104 s.
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57. 5.4 X 1012 m, it is still in the solar 
system, nearest to Pluto’s orbit. 

59. 2.3 g ’s.
61. 7.4 X 1036 kg, 3.7 X 106 MSun.
65. 1.21 X 106 m.
67. V̂ jeposit =  5 X 10 m ,

Tdeposit — 200 m;
^deposit =  4 X  10 kg.

69. 8.99 days.
71. 0.44r.
73. (fl) 53 N;

(ft) 3.1 X 1026 kg.
77. 1 X 10-10 m3/kg  • s2.

79. (a)
30,000-

37. 3.0 X lO^J.

20,000-

h 10,000-

1
|y = 0.999‘)x + 0.3412

0 10,000 20,000 30,000
r3 (AU3)

(ft) 39.44 AU. 

CHAPTER 7

1. 7.7 X 103 J.
3. 1.47 X 104J.
5. 6000 J.
7. 4.5 X 105J.
9. 590 J.

11. (a) 1700 N;
(ft) -6600  J;
(c) 6600 J;
(<0 0.

13. (a) 1.1 X 107 J;
(ft) 5.0 X 107J.

15. -4 9 0  J, 0,490 J.
21. 1.5i -  3.0j.
23. (a) 7.1;

(ft) -250;
(c) 2.0 X 101.

25. — 1.4i + 2.0j.
27. 52.5°, 48.0°, 115°.
29. 113.4° or 301.4°.
31. (fl) 130°;

(ft) negative sign says that the angle
is obtuse. 

35. 0.11 J.

* (m)

39. 2800 J.
41. 670 J.
43. \kX2 + IaX4 + \bX5. 
45. 4.0 J.
47 V 3 ttR F

49. 72 J.
51. (fl) V 3 ;

(b) l  
53. -4 .5  X 105 J.
55. 3.0 X 102N.

Stretch distance

59. 8.3 X 104 N/m .
61. 1400 J.
63. (a ) 640 J;

(ft) -470  J;
(c) 0;
(d) 4.3 m /s.

65. 27 m /s.

67. (a ) \m v 2^1 +

(ft) \m vi,

(c) \ m v 2^1 + 2 ~ j  relative to

Earth, \ 1nv2 relative to train; 
(1d) the ball moves different

distances during the throwing 
process in the two frames of 
reference.

69. ( a ) 2.04 X 105 J;
(ft) 21.0 m/s;
(c) 2.37 m.

71. 1710 J.
73. (fl) 32.2 J;

(b) 554 J;
(c) -333 J;
(d) 0;
(e) 253 J.

75. 12.3 J.

77. j e - ° 10k.

79. 86 kJ, 42°.
81. 1.5 N.
83. 2 X 107 N/m .
85. 6.7°, 10°.
87. (a) 130 N, yes («291bs);

(b) 470 N, perhaps not («110 lbs). 
89. (a) 1.5 X 104 J;

(b) 18 m /s.
93. (a) F = 10.0*;

(b) 10.0 N/m;
(c) 2.00 N.

Stretch (m)

CHAPTER 8

1. 0.924 m.
3. 54 cm.
5. (fl) 42.0 J;

(b) 11 J;
(c) same as part (a), unrelated to 

part (b).
7. (a) Yes, the expression for the work 

depends only on the endpoints;
(b) U(x) =

\ k x 2 — \a x 4 — \b x 5 + C.

9 . P W  = — L  + _ ^ .
V ' 2x2 8 m2

11. 49m /s.
13. 6.5 m /s.
15. (fl) 93 N/m;

(b) 22 m /s2.
19. (fl) 7.47 m/s;

(b) 3.01 m.
21. No, D = 2d.

23. (a) ^Jvl + - ^ x l ;

(b) y j x l  + Y V0-

25. (fl) 2.29 m/s;
(ft) 1.98 m/s;
(c) 1.98 m/s;
(d) 0.870 N, 0.800 N, 0.800 N;
(e) 2.59 m /s, 2.31 m /s, 2.31 m /s.

12 Mg 
27. k  = — A . 

h
29. 3.9 X 107J.
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31. (a) 25 m/s;
(ft) 370 m.

33. 12 m /s.
35. 0.020.
37. 0.40.
39. (a) 25%;

(ft) 6.3 m /s, 5.4 m/s;
(c) primarily into heat energy.

41. For a mass of 75 kg, the energy 
change is 740 J.

43. (a) 0.13 m;
(ft) 0.77;
(c) 0.5 m /s.

GMEm s
45. (a)

(*>)

2rs ’ 
GMEm s

47.
49.

53.

(c) - I
4-
(a )  6 .2  X 1 0 5 m /s ;

(ft) 4 .2  X 1 0 4 m /s ,

^esc at Earth orbit — ^ 2 'yEarth orbit ■
(a) 1 .0 7  X 1 0 4 m /s ;

(ft) 1 .1 6  X 1 0 4 m /s ;

(c )  1 .1 2  X 1 0 4 m /s .

55. (a) -
GMF

57.

59.
63.
65.
67.
69.
71.
73.

75.

2r3 ’
(ft) 1.09 X 104 m/s.
GMm  
12 rE

1.12 X 104 m/s.
510 N.
2.9 X 104W or 38 hp.
4.2 X 103 N, opposing the velocity. 
510 W.
2 X 106W.
(a) -2 .0  X 102 W;
(ft) 3800 W;
(c) —120 W;
(d) 1200 W.
The mass oscillates between + x 0 
and — jc0, with a maximum speed 
at x = 0.

U(x)

{b)ru=0 -  © 6; 

(c)

CHAPTER 9

(d) E  <  0: bound oscillatory 
motion between two turning 
points, E  >  0: unbounded;

(e) rF>o <

rF<0 > (^)6’
rF=0 = W - -

79. 2.52 X io 4w .

81. (a) 42 m/s;

(ft) 2.6 X 105W.

83. (a) 28.2 m/s;
(ft) 116 m.

85. (a) V2g£;
(ft) V L 2^ .

89. (a) 8.9 X 105 J;

(ft) 5.0 X 101 W, 6.6 X 10-2 hp; 
(c) 330 W, 0.44 hp.

91. (a) 29°;
(ft) 480 N;

(c) 690 N.
93. 5800 W or 7.8 hp.

95. (a)  2.8 m;
(ft) 1.5 m;
(c) 1.5 m.

97. 1.7 X 105 m3.

99. (a) 5220 m/s;
(ft) 3190 m/s.

101. (a) 1500 m;

(ft) 170 m /s.
103. 60 m.

105. (a) 79 m/s;
(ft) 2.4 X 107 W.

107. (a) 2.2 X 105 J;

(ft) 22 m/s;
(c) -1 .4  m.

m  * =  •

1. 5.9 X 107N.

3. (9.6ti -  8.9k) N.

5. 4.35 k g-m /s (j -  i).

7. 1.40 X 102 kg.

9. 2.0 X 104 kg.

11. 4.9 X 103 m /s.

13. -0 .966  m /s.

15. 1:2.

17. l v 0i -  ^oj.

19. (4.0i + 3.3j -  3.3k) m /s.

21. (a) (1161 + 58-0j) m/s;

(ft) 5.02 X 105J.

23. (a) 2.0 kg-m /s, forward;

(ft) 5.8 X 102 N, forward.

25. 2.1 kg-m /s, to the left.

27. 0.11 N.

29. 1.5 kg-m /s.

\ 2mv 
3L (a) '

33. (a) 0.98 N + (1.4N /s)f;

(ft) 13.3 N;

(c) [(0.62 N/m2) X

V 2 5  m -  (0.070 m/s)?]

+ (1.4 N/s)?, 13.2 N.

35. 1.60 m /s (west), 3.20 m /s (east). 

37. (a) 3.7 m/s;

(ft) 0.67 kg.

39. (a) 1.00;

(ft) 0.890;

(c) 0.286;

(d) 0.0192.

41. (a) 0.37 m;

(ft) —1.6 m /s, 6.4 m/s;

(c) yes.

43- w ^ ;
(ft) -0 .96 .

45. 3.0 X 103 J, 4.5 X 103J.

47. 0.11 kg-m /s, upward.

FhJ
49. (ft) e = J y .

51. (a) 890 m/s;

(ft) 0.999 of initial kinetic energy 
lost.

Answers to Odd-Numbered Problems A-23



53.

55.

57.

59.
63.
65.

(a) 7.1 X 1(T2 m/s;
(fo) -5 .4  m /s, 4.1 m/s;
(c) 0, 0.13 m /s, reasonable;
(rf) 0.17 m /s, 0, not reasonable;
(e) in this case, -4 .0  m /s, 3.1 m /s, 

reasonable.
1.14 X 10_22kg-m /s, 147° from the 
electron’s momentum, 123° from 
the neutrino’s momentum.
(a) 30°;

(fo) v'A = v'B = ^ = ;

( c ) l
39.9 u.
6.5 X 10-11 m.
(1.2 m)i -  (1.2 m)j.
■f 2 r ~ 

Oi + — j.
77

67,

69. Oi + Oj + ihk .  

71.

73.

~ AR ■j 
01 +
(a) 4.66 X 106 m from the center of 

the Earth.
75. (a) 5.7 m;

(fo) 4.2 m;
(c) 4.3 m.

77. 0.41 m toward the initial position of 
the 85-kg person. 

m
79. v ----------— , upward, balloon also

m + M
stops.

81. 0.93 hp.
83. - 7 6  m /s.
85. Good possibility of a “scratch” shot. 
87. 11 bounces.
89. 1.4 m.
91. 50%.

M0vo
93. (a) v

dM  ’
Mo + ~dTt

95.
97.
99.

101.
103.

105.
107.
109.

111.

(fo) 8.2 m /s, yes.
112 km /h or 70 mi/h.
21 m.
(a) 1.9 m/s;
(fo) -0 .3  m /s, 1.5 m/s;
(c) 0.6 cm, 12 cm. 
m < \ M  or m < 2.33 kg.
(a) 8 .6  m;

(fo) 40 m.
29.6 km/s.
0.38 m, 1.5 m.
(a) 1.3 X 105 N;
(fo) -8 3  m /s2.
12 kg.

113. 0.2 km /s, in the original direction 
of m A .

CHAPTER 10_____________________

1. (a) ^  rad, 0.785 rad;

(fo) y  rad, 1.05 rad;

77
(c) — rad, 1.57 rad;

(d) 277 rad, 6.283 rad;

(e) ^ J r  rad, 7.77 rad.
36

3. 5.3 X 103 m.
5. (a) 260 rad/s;

(fo) 46 m /s, 1.2 X 104 m /s2.
7. (a) 1.05 X 10”1 rad/s;

(fo) 1.75 X 10“3 rad/s;
(c )  1.45 X 10“4 rad/s;
(rf) 0.

9. (fl) 464 m/s;
(fo) 185 m/s;
(c) 328 m/s.

11. 36,000 rev/min.
13. (a) 1.5 X 10-4 rad/s2;

(fo) 1.6 X 10_2m /s2,
6.2 X 10_4m /s2.

15. (a) - i ,  k;
(fo) 56.2 rad/s, 38.5° from —x  axis 

towards +z axis;
(c) 1540 rad/s2, —j.

17. 28,000 rev.
19. (a) -0 .4 7  rad/s2;

(fo) 190 s.
21. (a) 0.69 rad/s2;

(fo) 9.9 s.
23. (a) w = 15.Or3 -  18.512;

(fo) 0 = 4 5 .0 14 -  18.5r3;
(c) &>(2.0s) =  - 4  rad/s,

0(2.0 s) =  —5 rad.
25. 1.4m -N, clockwise.
27. mg{l2 — ■f'l), clockwise.
29. 270 N, 1700 N.
31. 1.81 kg -m2.
33. (fl) 9.0 X 10_2m-N;

(fo) 12 s.
35. 5 6 m -N.
37. (a) 0.94 kg -m2;

(fo) 2.4 X 10_2m -N.
39. (a) 78 rad/s2;

(fo) 670 N.
41. 2.2 X 104m -N.

43. 17.5 m /s.
45. (fl) 14Mf2;

(fo) liM icr,
(c) perpendicular to the rod and 

the axis.
47. (a) 1.90 X 103 kg • m2;

(fo) 7.5 X 103m -N.
49. (fl) R0 ;

(6) +  w - ,  
(c) V i R o ;
(d) V K ^ i +
(e) V |r 0;

(0  
(g)
W # H -

(mB -  mA)
51* « = t--------------------- r^ r  g,

(mA + mB + //-R )

compared to

_  (mB ~ mA)
Ul~° (rnA +  mB) g '

53. (a) 9.70 rad/s2;
(fo) 11.6 m /s2;
(c) 585 m /s2;
(rf) 4.27 X 103N;
(e) 1.14°.

57. (fl) 5.3Mrl; (fo) -15% .
59. (fl) 3.9 cm from center along line

connecting the small weight and 
the center;

(fo) 0.42 kg -m2.
61. ( b ) ^ M f , ^ M w 2.
63. 22,200 J.
65. 14,200 J.
67. 1.4 m /s.
69. 8.22 m/s.
71. 7.0 X 101 J.
73. (a) 8.37 m /s, 32.9 rad/sec.

( b ) h
(c) the translational speed and 

the energy relationship are 
independent of both mass and 
radius, but the rotational speed 
depends on the radius.

75. -  /■„)•

77. (fl) 4.06 m/s;
(fo) 8.99 J;
(c) 0.158.

79. (fl) 4.1 X 105 J;
(fo) 18%;
(c) 1.3 m /s2;
(rf) 6%.

81. (a) 1.6 m/s;
(fo) 0.48 m.
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i i
83- 2 ’ 2-
85. (a) 0.84 m/s;

(ft) 96%.
87. 2.0 m • N, from the arm swinging the 

sling.

89. (a) ^  f ;
(Op Nr

(b) 4.0;
(c) 1.5.

91. ( a ) 1.7 X 108 J;
(ft) 2.2 X 103rad/s;
(c) 25 min.
M g \j2 R h  -  h2

93.

95.

R - h
A 0f3

97. 5.0 X 102m -N.
99. (fl) 1.6 m;

(ft) 1.1 m.

101. (fl) ^ g;

(ft) x  should be as small as possible, 
y  should be as large as possible, 
and the rider should move 

upward and toward the rear of 
the bicycle;

(c) 3.6 m /s2.

/3g i103. J - § - .
V 4

105. r =

[(0.300 m) cos0 + 0.200 m](500 N)

30 45 60 
Angle (degrees)

CHAPTER 11

11. (a) 0.55 rad/s;
(ft) 420 J, 240 J.

13. 0.48 rad/s, 0.80 rad/s.

15. \a .
17. (fl) 3.7 X 1016 J;

(ft) 1.9 X 1020 kg-m 2/s.

19. -0 .3 2  rad/s.

23. 45°.

27. (25i ±  14j + 19k) m-kN.

29. (a) —7.0i -  l l j  +  0.5k;
(ft) 170°.

37. ( —551 -  45j +  49k) kg-m 2/s. 

39. (fl) g M  + lm ) f(o2',
(ft) ( |M  + ym )£2w.

41. (a) [(M a  +

MBg

45. Fa =

^B =

47.

49.

51.

Ma + Mb + —^
-Ko

(d + rAcos <f)mA rA a)2 sin (f>
2d

{d — rAcos cf>)mA rA (o2 sin<f)
2d

mLvL
g{m + M ) (rn +  |M )  

Aw/wq = -8 .4  X 10“13. 

ra

12ra

53.

55.

57.

59.

1. 3.98kg-m 2/s.
3. (a) L  is conserved: If I  increases, co 

must decrease;
(ft) increased by a factor of 1.3.

5. 0.38 rev/s.
7. (a) 7.1 X 1033 kg*m2/s;

(ft) 2.7 X 1040kg-m 2/s.

9* («) Ww5

( ) “ 2i r “ w;
,  v Av(c) ww — ;

(rf)0.

u™ = -----------'
M + ra

&) (about cm) = . , 
v ' V4M + 7ra

8.3 X 10-4 kg-m 2.

8.0 rad/s.

14 rev/min, CCW when viewed 
from above.

(a) 9.80 m /s2, along a radial line;

(ft) 9.78 m /s2, 0.0988° south from a 
radial line;

(c) 9.77 m /s2, along a radial line.

61. Due north or due south.

63. (mra)2 — Ffr)i

+ (/spoke -  2mo)v)j 
+ (Fn -  mg)k.

(fl) ( —24i + 28j -  14k)kg-m 2/s; 

(ft) (16j -  8.0k) m -N.

(ft) 0.750.

1>[ —sin(firf)i + COS(<W*)j],

(:
(fl) The wheel will turn to the right; 

(ft) AL / L q = 0.19.

65.

67.

69.

71.

73.

75.

77.
79.

81.

83.

(fl) 820kg-m 2/s 2;
(ft) 820m-N;
(c) 930 W.
atan = — /ta s in 0 i + Ra  cos 0j;
(fl) m R 2ak;
(ft) m R 2ak.
0.965.
(a) There is zero net torque exerted 

about any axis through the 
skater’s center of mass;

(b) /single axel = 2.5 rad/s,
/triple axel = 6.5 rad/s.

(fl) 17,000 rev/s;
(ft) 4300 rev/s.

(a)" = (12̂ )* ;
(6)

*(m)

CHAPTER 12

1. 528 N, (1.20 X 102)° clockwise from
Fa -

3. 6.73 kg.
5. (a) Fa = 1.5 X 103N down,

Fb = 2.0 X 103N up;
(ft) Fa =  1-8 X 103N down,

Fb = 2.6 X 103N up.
7. (a) 230 N;

(ft) 2100 N.
9. -2 .9  X 103 N, 1.5 X 104N.

11. 3400 N, 2900 N.
13. 0.28 m.
15. 6300 N, 6100 N.
17. 1600 N.
19. 1400 N, 2100 N.
21. (fl) 410 N;

(ft) 410 N, 328 N.
23. 120 N.
25. 550 N.

(ft) ^ah = 51 N, Fa y  = —9 N; 
(c) 2.4 m.
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31.

33.

35.

37.

29.

39.

41.

43.

45.

47.

49.

51.

53.

Ftop = 55.2 N  right, 63.7 N  up, 
^bottom =  55.2 N  left, 63.7 N  up.
5.2 m /s2.

2.5 m at the top.
(a) 1.8 X 105 N /m 2;

(b) 3.5 X 10“6.
(a) 1.4 X 106 N /m 2;

(b) 6.9 X IO-6;
(c) 6.6 X 10_5m.

9.6 X 106 N /m 2.

(a) 1.3 X 102m -N , clockwise;
(b) the wall;
(c) all three are present.

(a) 393 N;
(b) thicker.
(a) 3.7 X IO-5 m2;

(b) 2.7 X 10“3 m.

1.3 cm.

(a) Fx =  150 kN;
Fa  =  170 kN, 23° above AC; 

(ft)F DE = FDB =  FBC =  76kN , 
tension;
FCE =  38 kN, compression;

FDC = FAB =  76 kN, compression; 
*CA =  114 kN, compression.

(a) 5.5 X 10-2 m2;

(b) 8.6 X 10-2 m2.

Fab  = Fbd = Fde =  7.5 X 104N, 
compression;
FBC =  FCD =  7.5 X 104N, tension; 
^ce =  Fac  = 3.7 X 104N, tension. 

3 V 2

63.

65.

67.

69.

71.

73.

75.

77.

79.

81.

83.

85.

87.

89.

29°.
3.8.
5.0 X 105N, 3.2 m.
(a) 650 N;
(b) Fa  =  0 ,F b =  1300 N;
(c) Fa  = 160 N ,F b = 1140 N;

(d) Fa  = 810 N, FB =  490 N.
H e can walk only 0.95 m to the right 
of the right support, and 0.83 m to 
the left of the left support.
Fieft =  1 2 0 N ,F right =  210N .

F / A  =
3.8 X 105N /m 2 <  tissue strength. 

Fa  = 1.7 X 104 N,
FB = 7.7 X 103N.

2.5 m.

(a) 6500 m;

(b) 6400 m.

570 N.
45°.
(a) 2.4w;
(b) 2.6w, 32° above the horizontal. 
(a) (4.5 X 10“6)%;

0b) 9.0 X 10-18 m.
150 N, 0.83 m.

CHAPTER 13

>o

55. F a b  —  F ja  —'JG F, compression;

57.

59.

61.

Fac  ~  Fm  -  FCE -  FHE - \ F ,  
tension;
Fbc =  ^gh =  F, tension;

V 2
^BE =  Fge = —  F,  tension;

FBd =  Fqd =  2F,  compression; 
^de =  0.
0.249 kg, 0.194 kg, 0.0554 kg.

3.
2.

I  1. 
0.

91.

93. (a) mg\  1 -  77c o t0 ];

(b) — -  cot 6. 
ro

95. (b) 46°, 51°, 11%.

97. (a)

.0 x 108- 

.5 x 108- 

.0 x 108-

.5 X 108- 

.0 X 108- 

.5 X 107-
0 -

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
Strain

(a) Mg-
h (b)

2R -  h ’ 

V h ( 2 R  -  h)
y = (2.02 X IO11)* - (6.52 f< 105)

() l. 
XII

0
0“4 .

3.
 ̂ XI'

0
0“4 ,

5.
„ XI'

.00-4 7.
„ XII

.0
0-4 „

1. 3 X 1011 kg.

3. 6.7 X 102 kg.
5. 0.8547.
7. (a) 5510 kg/m 3;

(b) 5520 kg/m 3, 0.3%.
9. (a) 8.1 X 107 N /m 2;

(b) 2 X 105 N /m 2.
11. 13 m.
13. 6990 kg.
15. (a) 2.8 X 107N, 1.2 X 105N /m 2;

(b) 1.2 X 105 N /m 2.
17. 683 k g/m 3.
19. 3.35 X 104 N /m 2.
21. (a) 1.32 X 105 Pa;

(b) 9.7 X 104 Pa.
23. (c) 0.38ft, no.
27. 2990 k g/m 3.
29. 920 kg.
31. Iron or steel.
33. 1.1 X 10“2m3.
35. 10.5%.
37. (b) Above.
39. 3600 balloons.
43. 2.8 m /s.
45. 1.0 X 101 m /s.
47. 1.8 X 105 N /m 2.
49. 1.2 X 105N.
51. 9.7 X 104 Pa.

5 7 . 1

(b) m g = 65 N, Fright =  550 N, 
Fleft =  490 N;

(c) 11 m -N .

xio- XKT4
Strain

x io- X10

Elastic Modulus =  2.02 X 1011 N /m 2.

59. (b) h =  V h o  ~  t

(c) 92 s.
63. 7.9 X 10-2 Pa-s. 
65. 6.9 X 103 Pa.
67. 0.10 m .

69. (a) Laminar;
(b) turbulent.

71. 1.0 m.

73. 0.012 N.
75. 1.5 mm.
79. (a) 0.75 m;

(b) 0.65 m;
(c) 1.1 m.

81. 0.047 atm.
83. 0.24 N.
85. 1.0 m.

87. 5.3 km.
-4 89. (a) 88 Pa/s;

(b) 5.0 X 101 s.
91. 5 X 1018 kg.

g A l

2 (Ai ~ Ai)  J
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93. (a) 8.5 m/s;
(b) 0.24 L/s;
(c) 0.85 m/s. 

i
95. rf

vo + 2 gy 
97. 170 m/s.
99. 1.2 X 104N. 

101. 4.9 s.

CHAPTER 14

1. 0.72 m.
3. 1.5 Hz.
5. 350 N/m.
7. 0.13 m/s, 0.12 m/s2, 1.2%.
9. (fl) 0.16 N/m;

(b) 2.8 Hz.
V 3 k /M

' 2tt '
13. (fl) 2.5 m, 3.5 m;

(b) 0.25 Hz, 0.50 Hz;
(c) 4.0 s, 2.0 s;
(rf) xA = (2.5 m) sin(§7rt), 

xB = (3.5 m) cos(7rr).
15. (fl) y(t) =

(0.280 m) sin[(34.3 rad/s)*];
(P) l̂ongest =

4.59 X 10-2 s + «(0.183s), 
n = 0,1,2, •••;
ŝhortest =
1.38 X 10-1 s + w(0.183s), 
n = 0,1, 2, •••.

17. (a) 1.6 s, §Hz;
(b) 3.3 m, -7.5 m/s;
(c) -13  m/s, 29 m/s2.

19. 0.75 s.
21. 3.1s, 6.3 s, 9.4 s.
23. 88.8 N/m, 17.8 m.
27. (a) 0.650 m;

(b) 1.18 Hz;
(c) 13.3 J;
(rf) 11.2 J, 2.1 J.

29.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 
x (cm)

(fl) 0.011 J;
(b) 0.008 J;
(c) 0.5 m/s.

65.
67.
69.

71.
73.

75.

77.

79.

81.
83.

10.2 m/s.

^high energy = ^5^-low energy •
(fl) 430 N/m;
(ft) 3.7 kg.
309.8 m/s.
(fl) 0.410 s, 2.44 Hz;
(b) 0.148 m;
(c) 34.6 m/s2;
(rf) x  = (0.148 m) sin(4.877r£); 
(e) 2.00 J;
( / )  1.68 J.
2.2 s.
(a) -5.4°;
(b) 8.4°;
(c) -13°.

V 2gf(l -  COS 0) .
0.41 g.

(fl) 0 = 0ocos(w£ + <f>), co = tJ ^ Y ’

2.9 s.
1.08 s.
Decreased by a factor of 6.
(a) (-1.21 X 10_3)%;
(b) 32.3 periods.
(a) 0°;
(ft) 0, +A;
(c) \ tt or 90°.
3.1 m/s.
23.7.
(a) 170 s;
(b) 1.3 X 10“5W;
(c) 1.0 X 10_3Hz on either side.
0.11 m.
(a) 1.22 /;
(ft) 0.71/.
(a) 0.41 s;
(b) 9 mm.
0.9922 m, 1.6 mm, 0.164 m.

V 3 A
x = ± ± 0.866A

Pwater g(areabottom side)-
(fl) 130 N/m;
(b) 0.096 m.

V3x0
85. (fl) jc = ± ± 0.866xfi

(b) x = ± \ x Q. 
84.5 min.
1.25 Hz.
-3000 N/m.

Air
93. (a) k  = —-----, y-intercept = 0;

slope
(b) slope = 0.13 s2/kg, 

y-intercept = 0.14 s2

Mass (kg)

47r(c) k = ------= 310 N/m,
slope

y-intercept =
47r2m0

ra0 = 1.1 kg;
(rf) portion of spring’s mass that is 

effectively oscillating.

CHAPTER 15______________________

1. 2.7 m/s.
3. (a) 1400 m/s;

0b) 4100 m/s;
(c) 5100 m/s.

5. 0.62 m.
7. 4.3 N.
9. (fl) 78 m/s;

ob) 8300 N.
11. (fl)

2 cm - 
1 cm - 

0-
-1 cm - 
-2 cm -

---- Earlier
- - -  Later

A/
1 m 2 m 

down-4 -̂UP_
3 m

-«-down-*-

(b) —4 cm/s. 
13. 18 m.
15. more energy
19. (fl) 0.38 W;

(ft) 0.25 cm.
21. (ft) 420 W.

23. D --= A sin^

25. (fl) 41 m/s;

M iess energy

„ , X t
A + r + <f>

0ft) 6.4 X 104 m/s2;
(c) 35 m/s, 3.2 X 104m/s2.
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(0.45 m) cos[2.6(x -  2.00 + 1-2];
(d) D =

(0.45 m) cos[2.6(x + 2.00 + 1-2].

27. (b) D =

0.5
0.25

0
-0.25
-0.5

\  0 ( A  \
\ \  ! / \ \ N

o\o ? /i /l.5r' 2 . i
, V  v ' \ 3 ]

- 1 = 1 s, right
- t = Is, left

x(m)

29. D = (0.020 cm) X
sin[(9.54 m-1)* -  (3290rad/s)t + § tt\ 

31. Yes, it is a solution.
35. Yes, it is a solution.
37. (a) 0.84 m;

(b) 0.26 N;
(c) 0.59 m.

(b) slope = —r,

y-mtercept = —z DL.

41. (a)

0b)

(c) all kinetic energy. 
43. 662 Hz.

(1.5 s)
45. Tn = - 1,2,3,

f n = n{0.67Hz), n = 1,2,3,
47. /0.50/ /1.00 = V 2 .
49. 80 Hz.
53. 11.
55. (a) D2 = 4.2sin(0.84* + Alt + 2.1);

(b) 8.4sin(0.84x + 2.1)cos(470- 
57. 315 Hz.
59. (a)

0.3
0.2

1  o-1Q 0 
-0.1 
-0.2 
-0.3

Dl. D1 +P2

~D(

61. n = 4,« = 8, and « = 12.

63. x = ± (« + | ) y  m, « = 0,1, 2, •••.

65. 5.2 km/s.
67. (3.0 X IO1)0.
69. 44°.
71. (a) 0.042 m;

(b) 0.55 radians.
73. The speed is greater in the less 

dense rod, by a factor of 
VZ5 = 1.6.

75. (a) 0.05 m;
0b) 2.25.

77. 0.69 m.
79. (a) ? = 0 s;

\
j Q 5 \yo,__n V

f (s)
0

*(m)

-10 -5 0 5
*(m)

4.0 m3
( } [ x -  2At)2 + 2.0 m2
(c) £ = 1.0 s, moving right;

15 A/  \
0>

------- 0-
10 -5 0 5

*(m)

4.0 m3
(x + 2.402 + 2.0 m2’

t = 1.0 s, moving left.

A/  V
j

81. (a) G: 784 Hz, 1180 Hz, B: 988 Hz, 
1480 Hz;

(b) 1.59;
(c) 1.26;
(d) 0.630.

83. 6.3 m from the end where the first 
pulse originated.

Ai
2/1- 1’

87. D(x, t) =
(3.5 cm) cos(0.10-7rx -  1.57rr), with 
x in cm and t in s.

89. 12 min.
93. speed = 0.50 m/s; direction 

of motion = +x, period = 2ir s, 
wavelength = tt m.

x (m)

CHAPTER 16
1. 340 m.
3. (a) 1.7 cm to 17 m;

(b) 2.3 X 10-5 m.
5. (a) 0.17 m;

(b) 11 m;
(c) 0.5%.

7. 41 m.
9. (a) 8%;

(b) 4%.
11. (a) 4.4 X 10-5 Pa;

0b) 4.4 X 10“3Pa.
13. (a) 5.3 m;

(b) 675 Hz;
(c) 3600 m/s;
(d) 1.0 X 10-13 m.

15. 63 dB.
17. (a) 109;

Cb) IO12.
19. 2.9 X 10“9J.
21. 124 dB.
23. (a) 9.4 X 10-6 W;

(b) 8.0 X 106 people. 
25. (a) 122dB,115dB;

(b) no.
27. 7 dB.
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29. (a) The higher frequency wave, 2.6; 

(b) 6.8.

31. (fl) 3.2 X  10“5m;

(b) 3.0 X  101 Pa.

33. 1.24 m.

35. (a) 69.2 Hz, 207 Hz, 346 Hz, 484 Hz;

(ib) 138 Hz, 277 Hz, 415 Hz, 553 Hz. 

37. 8.6 mm to 8.6 m.

39. (a) 0.18 m;

(b) 1.1 m;

(c) 440 Hz, 0.78 m.

41. -3.0% .

43. (a) 1.31 m;

Cb) 3 ,4 , 5, 6.

45. 3.65 cm, 7.09 cm, 10.3 cm, 13.4 cm,
16.3 cm, 19.0 cm.

47. 4.3 m, open.

49. 21.4 Hz, 42.8 Hz.

51. 3430 Hz, 10,300 Hz, 17,200 Hz, 
relatively sensitive frequencies.

53. ± 0 .5 0  Hz.

55. 346 Hz.

57. 10 beats/s.

59. (a) 221.5 Hz or 218.5 Hz;

(b) 1.4% increase, 1.3% decrease. 

61. (a) 1470 Hz;

(b) 1230 Hz.

63. (fl) 2430 Hz, 2420 Hz, difference of
10 Hz;

(b) 4310 H z, 3370 Hz, difference of 
940 Hz;

(c) 34,300 Hz, 4450 Hz, difference 
of 29,900 Hz;

(d) /source moving ~  /observer moving 
^object \

^sound J
= f  1 +

65.

67.

69.

71.

73.

77.

79.

81.
83.

(a) 1420 Hz, 1170 Hz;

0b) 1520 Hz, 1080 Hz;

(c) 1330 Hz, 1240 Hz.

3 Hz.

(a) Every 1.3 s;

(b) every 15 s.

8.9 cm /s.

(a) 93;

0b) 0.62°.

19 km.

(fl) 57 Hz, 69 Hz, 86 Hz, 110 Hz, 
170 Hz.

90 dB.

1 1 W.

85. 51 dB.

87. 1.07.

89. (a) 280 m /s, 57 N;

(ib) 0.19 m;

(c) 880 Hz, 1320 Hz.

91. 3 Hz.

93. 141 Hz, 422 Hz, 703 Hz, 984 Hz. 

95. 22 m /s.

97. (a) N o beats;

(b) 20 Hz;

(c) no beats.

55.2 kHz.

11.5 m.

2.3 Hz.

17 km /h.

(a) 3400 Hz;

99.

101.

103.

105.

107.

(b) 1.50 m;

(c) 0.10 m. 

109. (fl)
1 nl.Z,
1 nl.U 
fi 8

^  n ft 0.6
fi A /U.4 
fi 0u.z
0.0 - /

0.1 0.2 0.3 
x(m)

0.4 0.5

(b)

x (m)

CHAPTER 17

1. NAu = 0.548ATAg.

3. (a) 20°C;

(1b) 3500°F.

5. 102.9°F.

7. 0.08 m.

9. 1.6 X 10_6m for Super Invar™,
9.6 X 10-5 m for steel, steel is 
60 X  as much.

11. 981 k g/m 3.

13. —69°C.

15. 3.9 cm3.

17.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

51.

53.

55.

57.

59.

61.

63.

65.

67.

69.

71.

73.

75.

77.

79.

81.

83.

85.

(a) 5.0 X  10_5/C°;

(ib) copper.

(fl) 2.7 cm;

(b) 0.3 cm.

55 min.

3.0 X  107 N /m 2.

(fl) 27°C;

(b) 5500 N.

—459.67°F.

1.35 m3.

1.25 k g/m 3.

181°C.

(a) 22.8 m3;

(b) 1.88 atm.

1660 atm.

313°C.

3.49 atm.

—130°C.

7.0 min.

Ideal =  0.588 m3,

actual =  0.598 m3 (nonideal
behavior).

2.69 X  1025 m olecules/m 3.

4 X  10“17 Pa.

300 m olecules/cm 3.

19 m olecules/breath.

(fl) 71.2 torr;

(b) 180°C.

223 K.

(a) Low;

(b) 0.025%.

20%.

9.9 L, not advisable.

(a) 1100 kg;

(ib) 100 kg.

(fl) Lower;

(b) 0.36%.

1.1 X  1044 molecules.

3.34 nm.

13 h.

(fl) 0.66 X 103k g/m 3;

(b) -3% .

± 0.11 C°.
3.6 m.

3% increase.
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87.

3 103-
i 102.5 -
% 102-

1 101.5-
ufl 101 -
3
£

100.5 -  
100 h

1 1 1
= (4.92 X: lO-2)* + 100

10 20 30 
Temperature (°C)

40 50

Slope of the line: 4.92 X 10 2 ml/°C, 
relative /3: 492 X 10“6/°C,
P for the liquid: 501 X 10“6/°C, 
which liquid: glycerin.

CHAPTER 18_________________________

1. (a) 5.65 X 10“21 J;

0b) 3.7 X 103J.

3. 1.29.

5. 3.5 X 10- 9m /s.

7. (a) 4.5;

0b) 5.2.

9. V 5 .

13. (b) 5.6%.

15. 1.004.

17. (a) 493 m/s;

(b) 28 round trips/s.

19. Double the temperature.

21. (a) 710 m/s;

(b) 240 K;

(c) 650 m /s, 240 K, yes.

23. Vapor.

25. (a) Vapor;

(b) solid.

27. 3600 Pa.

29. 355 torr or 4.73 X 104 Pa or
0.466 atm.

31. 92° C.

33. 1.99 X 105 Pa or 1.97 atm.

35. 70 g.

37. 16.6°C.

39. (a) Slope = -5 .0 0  X 103K, 
y intercept = 24.9.

Let P0 = 1 Pa in this graph:
14 
13 

Q? 12 
^  11 
M 10

9

~ \ y - -5000jc ■+- 24.9 h

0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 
l/r(K-!)

41. (a) 3.1 X 106 Pa;

(b) 3.2 X 106 Pa.

43. (b) a = 0.365 N -m 4/m ol2,

b = 4.28 X 10-5 m3/m ol.

45. (a) 0.10 Pa;

(b) 3 X 107 Pa.

47. 2.1 X 10 7 m, stationary targets, 

effective radius of rH2 + /air •

49. (b) 4.7 X 107 s-1.

51. i .

53. 3.5 h, convection is much more 

important than diffusion.

55. (b) 4 X 10_11mol/s;

(c) 0.6 s.

57. 260 m /s, 3.7 X 10“22atm.

59. (a) 290 m/s;

(b) 9.5 m /s.

61. 50 cm.

63. Kinetic energy = 6.07 X 10-21 J, 

potential energy = 5.21 X 10- 25J, 

yes, potential energy can be 

neglected.

65. 0.07%.

67. 1.5 X 105K.

69. (a) 2800 Pa;

(b) 650 Pa.

71. 2 X 1013 m.

73. 0.36 kg.

75. (b) 4.6 X 109 Hz,

2.3 X 105 times larger.

77. 0.21.

CHAPTER 19_______________________

1. 10.7°C.

3. (a) 1.0 X 107 J;

(b) 2.9 kWh;

(c) $0.29 per day, no.

5. 4.2 X 105J,1.0 X 102 kcal.

7. 6.0 X 106J.

9. (a) 3.3 X 105 J;

(b) 56 min.

11. 6.9 min.

13. 39.9°C.

15. 2.3 X 103 J/kg-C°. 

17. 54 C°.

19. 0.31 kg.

21. (a) 5.1 X 105 J;

Cb) 1.5 X 105J.

23. 4700 kcal.

25. 360 m/s.

27. 1.5

0.5

A

■

c

0.0 1.0 2.0 3.0 
V(L)

29. (a) 0;

(b) -3 6 5  kJ.

31. (a) 480 J;

(b) 0;

(c) 480 J into gas.

33. (a) 4350 J;

(b) 4350 J;

(c) 0.

35. -4 .0  X 102 K.

37. 236 J.

39. (a) 3.0 X 101 J;

(b) 68 J;

(c) - 8 4  J;

(d) -1 1 4  J;

(e) -1 5  J.

{Vl -  b) (  1  1  
41. i?T lii7--------- r + a —  -  —  |.

f a  -  b) V^2 V

43. 43 C°.

45. 83.7 g/m ol, krypton.

47. 48 C°.

49. (a) 6230 J;

(b) 2490 J;

(c) 8720 J.

51. 0.457 atm, -39°C .

53. (a) 404 K, 195 K;

(b) -1 .5 9  X 104 J;

(c) 0;

(d) -1 .5 9  X 104J.
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55. (a)

V (m3)

ob) 209 K;

(c) G i—̂ 2 = o>
A£'i_̂ 2 =  -2480  J,
Wi_>2 = 2480 J,
02^3 = -3740  J,
A£ 2^ 3 =  -2240  J,
W2^ 3 = -1490  J,
<23^ i = 4720 J,
A E ^  =  4720 J,
W3^ i  = 0;

(d) Gcycle =  990 J,
A^cycle —
Wcyde = 990 J.

57. (a) 5.0 X 101 W;

Cb) 17 W.
59. 21 h.
61. (a) Ceramic: 14 W, shiny: 2.0 W; 

(ft) ceramic: 11 C°, shiny: 1.6 C°.
63. (fl) 1.73 X 1017 W;

(ft) 278 K or 5°C.
65. 28%.
67. (ft) 4.8 C°/s;

(c) 0.60 C°/cm.
69. 6.4 Cal.
71. 4 X 1015J.
73. 1 C°.
75. 3.6 kg.
77. 0.14 C°.
79. (fl) 800 W;

(b) 5.3 g.
81. 1.1 days.
83. (fl) 4.79 cm;

(b)

V (mL)

(c) Q = 4.99 J, AE = 0 ,W  = 4.99 J. 
85. 110°C.
87. 305 J.

89. (a) 1.9 X 105 J; 
(ft) 4.4 X 105 J;
(c )  P (atm)

1.0

91. 2200 J.

CHAPTER 20

V (m3)
2.2 4.1

1. 0.25.
3. 0.16.
5. 0.21.
7. (b) 0.55.
9. 0.74.

13. 1.4 X 1013 J/h.
15. 1400 m.
17. 660°C.
19. (a) 4.1 X 105 Pa, 2.1 X 105 Pa;

(ft) 34 L, 17 L;
(c) 2100 J;
(d) -1500  J;
(e) 600 J;

( / )  0.3.
21. 8.55.
23. 5.4.
25. (a) —4°C;

(ft) 29%.
27. (fl) 230 J;

(ib) 390 J.
29. (a) 3.1 X 104 J;

(ft) 2.7 min.
31. 91 L.
33. 0.20 J/K.
35. 5 X 104J/K.

37. 5.49 X 1 0 - ^ .
s

39. 9.3 J/K.
41. (fl) 93 ra J/K, yes;

(ft) -9 3  ra J/K, no; ra in kg (SI).
43. (fl) 1010 J/K;

(ft) 1020 J/K;
(c )  -9 .0  X 102J/K.

45. (a) Adiabatic;

(ft) ASadiabatic = 0,
^  ̂ isothermal — _  wi?ln2;

(c) A ̂ environment adiabatic — 0,
^^environment isothermal = nR\vi2.

47. (fl) A ll processes are reversible.

49‘ «Cy'

53. 2.1 X 105J.

55.

(6) a -
57. (fl) 2.47 X 10“23 J/K;

(ft) -9 .2  X 10-22 J/K;

(c) these are many orders of 
magnitude smaller, due to the 
relatively small number of 
microstates for the coins.

59. (a) 1.79 X 106 kWh;

(ft) 9.6 X 104 kW.

61. 12 MW.

63. (a) 0.41 mol;

(ft) 396 K;

(c) 810 J;

(d) -7 0 0  J;

(e) 810 J;

( / )  0.13;
(g) 0.24.

65. (a) 110 kg/s;

(ft) 9.3 X 107 gal/h.

67. (a) 18km3/days;

(ft) 120 km2.

69. (a) 0.19;

(ft) 0.23.

71. (a) 5.0 C°;

(ft) 72.8 J/kg-K .

73. 1700 J/K.

75. 57 W or 0.076 hp.

77. ^sterling =

In —r

, , 3 Th - T l

^ v j  + 2
Ŝterling ^Carnot-

79. (a)
T

(b) Wnet.
81. 16 kg.

83. 3.61 X 10“2J/K.
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CHAPTER 21 39.

1. 2.7 X IO-3 N.

3. 7200 N.

5. (4.9 X 10“14)%.

7. 4.88 cm.

9. -5 .8  X 108 C, 0.

11. (a) qi = q2 = \Q t,

(b) qi = 0, q2 = Qt •

13. FI = 0.53 N at 265°,

F2 = 0.33 N at 112°,

F3 = 0.26 N at 53°.

15. F = 2.96 X 107 N, away from 

center of square.

17. 1.0 X 1012 electrons.

79.
1.08 X 107

/ x jm d 3

(b) 0.2 ps.

21. 3.08 X 10“16 N west.

23. 1.10 X 107 N /C  up.

25. (172j)N /C .

27. 1.01 X 1014m /s2, opposite to the 

field.

29.

3 1 . ( - 4 . 7  X 1 0 11 i ) N / C

- ( 1 .6  X 10n j)N /C ;

or

5.0 X 1011 N /C  at 199°.

33. E  = 2.60 X 104N /C , away from 

the center.

4 kQxa
( 2 2X2 ’(xz -  azy

37.
A / I  1 x

„ H— tan —■

43. (a) Qy
27re0( /  + P)312 

45. 1.8 X 106 N /C , away from the wire. 

8Alz
47.

TTfiô 2 + 4z2)V 4 z2 +  2 f
vertical.

2A sin 00 ~ 
49. ---------- -^ i.

ATTEnR

51. (a)

53.

Atteq x(x2 + £2)1/2 

X (£i + [x -  (x2 + f2)1/2]j).

Q

55.

Attsqx(x + i )

Q(Xi irj)
Atteq(x2 + a2)3/2 

57. (a) (-3 .5  X 1015 m /s2) i

-  (1.41 X 1016 m /s2) j;

(b) 166° counterclockwise from the 

initial direction.

59. -2 3 ° .

Atteq mR

2ire0 V x 2 y2 y 

A - 3 2  A nsw ers to  O d d-N um bered  P roblem s

61. ( b ) 2^ ,  gQ

63. (a) 3.4 X IO”20 C;

(b) no;

(c )  8.5 X 10-26m-N;

(d) 2.5 X 10“26 J.

65. (a) 6 very small;

<» s #
67. (a) In the direction of the dipole. 

69. 3.5 X 109 C.

71. 6.8 X 105 C, negative.

73. 1.0 X 107 electrons.

75. 5.71 X 1013 C.

77. 1.6 m from Q2, 3.6 m  from Qx.

N/C (upwards).
[3.00 -  cos(13.9r)]2 

81. 5 X 10“9 C.

83. 8.0 X 10“9 C.

85. 18°.

87. Ea = 3.4 X 104 N /C , to the right; 

Eb = 2.3 X 104 N /C , to the left; 
Ec = 5.6 X 103 N /C , to the right; 

Ed = 3.4 X 103 N /C , to the left. 

89. -7 .6 6  X 10-6 C, unstable.

91. (a) 9.18 X 106 N /C , down;

(b) 1.63 X 10“4 C /m 2.

93. (a) ~^= = 7.07 cm;
V 2

(b) yes;

(c )  and (d)

% 6.0
0  4.5

1  3.0

,g l.5

& 0.0 
w

1
t%%

----- Ring
----- Point

10 20 30 
x  (cm)

40 50

(e) 37 cm. 

CHAPTER 22

1. (a) 31 N -m 2/C;

(b) 22 N • m2/C;

(c) 0.

3. (a) 0;

(b) 0, 0, 0, 0, EoS2, —E ^ 2.

5. 1.63 X 10“8 C.

7. (a) -1 .1  X 105 N • m2/C;

0b) 0.

9. -8 .3  X 10“7 C.

11. 4.3 X 10“5 C/m.

13. -8 .5 2  X 10“n  C.

15. (a) -2 .6  X 104 N /C  (toward wire);

(b) —8.6 X 104 N /C  (toward wire).



17. (a) -(1.9 X IO11 N/C-m)r;
(fo) -(1.1 X 108 N-m2/C )/r2 

+ (3.0 X 1011 N/C-m)r;
(c) (4.1 X 108 N*m2/C )/r2;
(rf) yes.

19.

21. (a) 5.5 X 107N/C (outward);

(ft) 0;
(c) 5.5 X 105 N/C (outward).

23. (a) -8 .0 0 /xC;
(fo) +1.90 AtC.

25. (a) 0;

(fo) — (outward, if both plates are 
£o
positive);

(c) same.
27. (a) 0;

( » %e0rz
(rfo-! + rl<r2)

(C) ----------2------5e0rz

(d)tri = o-2;

(e) ai  = 0, or place Q = -Air a i r2 
inside r i .

29. (fl) 0;
G ( 1

^  47T60

(c) —  rL
31. (fl)

(ft) <2 + 41 

( \ kq(c) ^

W 0;
, ,  Kq + 0 )
(«)------5----

, 3 _ r3

(tRq
33. (fl) — —, radially outward;

35.

37.

39.

41.

43.

45.

47.

ft) 0;
c) same for if A = 2ttR0(t.
a) 0;

2778o r
c) 0;

^ ( f  
a) 1.9 X 107 m/s; 
fo) 5.5 X 105 m/s.
N Pe r

а ) w
M pEr3°-
б) i ^ ’ 
c) 0;

v 3e0 4t780 
a) 0;

O
ft)

2500-7780 i?o 
pErf

a) ——  away from surface. 
2eo

a) 13 N (attractive); 
fo) 0.064 J. 
fl) 0;

p0(d -  x ) .
fo)--------------- 1;

eo
p0(rf + * ).  
-------------1.

eo

49.

c)

Q f2------- radially outward.4t780 ri
51. O = § g - d A  =  —477GMenc.
53. flf3e0.
55. 475 N • m2/C, 475 N • m2/C.
57. (fl) 0;

Q Q(ft) -̂ max 77£0 r\ 25778Q Tq
(c) no;
(1d) no.

59. (a) 1.1 X 10“19 C;
(fo) 3.5 X 1011 N/C.

61. (a) right;
6e0

ru\ 17 PEr0 1
54 ~8^~ ’

63. (fl) 0;
(fo) 5.65 X 105 N/C, right;
(c) 5.65 X 105 N/C, right; 
(rf) -5.00 X 10“6 C/m3;
(e) +5.00 X 10“6 C/m3.

65. (a) On inside surface of shell, 
(fo) r <  0.10 m,

(2.1 X 104\
E = j  N/C;

higher

V r2 
r > 0.10 m, E = 0.

67. —46N-m2/C, -4 .0  X 10-10 C.

CHAPTER 23___________________

1. -0.71 V.
3. 3280 V, plate B has 

potential.
5. 30 m.
7. 1.4 pC.
9. 1.2 cm, 46 nC.

11. (fl) 0;
(fo) -29.4 V;
(c) -29.4 V.

13. (a) -9 .6  X 108 V;
(fo) 9.6 X 108 V.

15. (a) They are equal;

17. (a) 10-20 kV;
(fo) 30 AtC/m2.

Q19. (fl) 

(ft)
Q

(c) Let V0 = V  at r = r0, and 
E0 = E  at r = r0:

/?o / ^0 1

23- w ^ inU ) +v,°;
(b)V0;

(c) no, from part (fl) V  —► -0 0  due 
to length of wire.

25. (a) 29 V;
(fo) -4 .6  X IO”18 J.

27. 0.34 J.
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29. 4.2 MV.
31. 9.64 X 105 m /s.
33. (fl) 0;

(b) Ex = 0,

E  = _ 0 _______* _____
51 4™„ (x2 +  R 2f /2

looks

like a dipole.

^ ( V W T 7 2 - V W T V 2).
ZEq

35.

37. 29 m /s. 

39.
0  , l x  + l  

In
87T8o£ \ x  — I ) '

41.

43.
45.

49.

51.

53.

55.
57.

- ^ - { R 2 -  2x 2) \ / ^ T 7 2 +
6 e0 3 e0

2 mm.
(a) 2.6 mV;
(ft) 1.8 mV;
(c) -1 .8  mV.
-7 .1  X 10-11 C /m 2 on jc = 0 plate, 
7.1 X 10-11 C /m 2 on other plate. 
( —2.5 y  +  3.5yz)i 

+ ( —2 y — 2.5* + 3.5*z)j 
+ (3.5xy)k.

, y. Q ( 1 (fl)

(b)

47re0 [ y \ / f  + y7 

0  (  i i.

59. (a)

(b)

-62 .5  kV. 
1.3 eV.

1 j Qi Qi QlQ3 Qi 0 4

) \  rX2 ris riA

Q1 Q3 ! 0 2  0 4 0 3 0 4 \

r23 '24 r34 /

( Q 1Q2 QlQ3 0 1 0 4

) V rl2 t"l3 1̂4

QlQs , Q2Q3 0 2 0 4

ns r13 >24

Q2Q5 Q3Q4 0 3  0 5

•* r* r35

0 4  0 5 ^

4̂5 7

77. v ^ e  e  ( V 3
2its0£ ttsq£ \  6

1 +
v s_ _ e

7TEq£ \  6
79. (fl) 1.2 MV;

(b) 1.8 kg.

lh, P E ( r l  r2 r\

( c ) ^ { r l  - r f ) ;  yes. 
ze0

83. E =
lirenR

radially outward.

85. (a) 23 kV;

W  ( *2 +  i?2)3’
(c) (2.3 X 105 N /C )i. 

87. (a) and (b)

x (cm)
89. (a) Point charge; 

4

3

^  2 
S*

1

0
0 1 2 3 4 5 6 7 8 9  

x (cm)

0b) 1.5 X KT11 C;
0.10

f  0.06 
* 0.04 

0.02 
0.00

Jy  = 0 .1 3 9 2 * - 0.03731

0.0 0.2 0.4 0.6 0.8 1.0
l/vtv-1)

(c) x  = -3 .7  cm.

61. (fl) 1.33 keV; CHAPTER 2 4

(ft) v j v v = 42.8. 1. 3.0 /jlF.
63. 250 MeV, same order of magnitude 3. 3.1 pF.

as observed values. 5. 56 /xF.
65. 1.11 X 105 m /s, 3.5 X 105 m /s. 7. 1.1 C.
67. 0.26 M V/m. 9. 83 days.
69. 600 V. 11. 130 m2.
71. 1.5 J. 13. 7.10 X 10“4F.
73. Yes, 2.0 pV. 15. 18 nC.
75. 1.03 X 106 m /s. 17. 5.8 X 104 V /m .

™  * 2 A c - 

(c) 0.01%, 10%.

21. 3600 pF, yes.

23. 1.5 fxF in series with the parallel 
combination of 2.0 fiF and 3.0 {jlF, 
2.8 V.

25. Add 11 /jlF connected in parallel.

27. Cmax = 1.94 X 10“8 F, all in
parallel, Cmin = 1.8 X 10-9 F, all in 
series.

29. (a) fC;

(b) Qi = Qi = \C V, Q3 = ICV,

Qt = l C V , ^  = V2 = \V ,

v3 = l v , v 4 = l v .

31- Ql = r Cl,C' V0, q 2 = -  C2 v0.
L-l T L*2 '-'l '-'2

33. (fl) Ql = 23 fjLC, Q2 = Qa = 46 /xC; 

{b)V1 = V2 = V3 = V4 = 2.9 V;

(c) 5.8 V.

35. 2.4 jjF.

37- (a)Cl + ^ ;
(ft) 0 !  = 8.40 X 10“4 C,

02 = 03 = 2.80 X 10“4 C.

39. C =  W 1 _ < ^ ) .
d \  2d J

41. 6.8 X 10“3 J.

43. 2.0 X 103 J.

45. 1.70 X 10-3 J.

3 R*

19. (fl) 0.22 fim <  x <  220 fim;

Rb
work done to enlarge cylinder;

(b)B = ln f e  < \
K ) U{ ( 3R* u

In

49. (fl) -

Cb)

charge moved to battery.

e0 A lV 20
2d(d -  ey

e0A tV 20
2(d -  t)2 

53. 2200 batteries, no. 

55. 1.1 X 10“4J.
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57. (a) 0.32 Atm2;

(ft) 59 megabytes.

59 . ^ { K 1 + K2).

61.
^ a k lk 2

(,dt K 2 + d1K 1) 

« 3 . ( a ) ^ [ l  + ( A : - l ) y ] ;

(6) ^

(C)

Id

67.

v W
2d

e0A

(K -  1), left.

« 4
69. £ air = 2.69 X 104 V/m, 

iSglass = 4.64 X 103V/m,
Gfree = 0.345 pC, Qind = 0.286 ijlC.

71. 43 fiF.
73. 15 V.

75. 840 V.

77. 3.76 X 10“9F, 0.221m2.

79. work done by the electric
2 K

field,

81.

83.

85.

87.

1.2.
(a) 25 J;

(b) 940 kW.

(a) Parallel;

(b) 7.7 pF to 35 pF.

5.15 pF.

<2i = 11 £iC, 02 = 13 AtC, 

G3 = 13/*C,Vi = 11V, 
V2 = 6.3 V, V3 = 5.2 V.

91.

93.

95.

2e0A

9 X 10-16 m, no.

(a) 0.27 fiC, 15 kV/m, 5.9 nF,
6.0 //J;

(ft) 0.85 fiC, 15 kV/m, 19 nF, 19 fiJ.

97. (a) 32 nF; 
(ft) 14 AtC; 
(c) 7.0 mm;

CHAPTER 25

1. 8.13 X 1018 electrons/s.
3. 5.5 X 10-11 A.
5. (a) 28 A;

(ft) 8.4 X 104 C.
7. 1.1 X 1021 electrons/min.
9. (a) 2.0 X 101 H;

(ft) 430 J.
11. 0.47 mm.
13. 0.64.
15. (a) Slope = 1/R, ^-intercept = 0; 

(ft) yes, R = 1.39 ft;
0.4
0.3
0.2
0.1
0.0

J v=. n nnn v

0 0.1 0.2 0.3 0.4 
V(V)

0.5 0.6

(c) 1.0 X 10 6 O • m, nichrome.
17. At 1/5.0 of its length, 2.0 ft, 8.0 0 . 
19. 2400° C.
21. V 2 .
23. 44.1°C.
25. One-quarter of the original.

27. - J -  ( -  -  -  
4-7TO- \r i  r2j

29. (a) 0.14 ti;
(ft) 0.60 A;
(c) VAi = 52 mV, V^u = 33 mV. 

31. 0.81 W.
33. 29 V.
35. (ft) As large as possible.
37. (a) 0.83 A;

(ft) 140 O.

73.

75.

89.

91.

0.055 kWh, 7.9 cents/month.
0.90 kWh = 3.2 X 106 J.
24 lightbulbs.
11 kW.
0.15 kg/s = 150mL/s.
0.12 A.
(a) oo;
(ft) 96 a  
(a) 930 V;
(ft) 3.9 A.
(a) 1.3 kW;
(ft) max = 2.6 kW, min = 0.
(a) 5.1 X 10-10 m/s;
(ft) 6.9 A /m 2;
(c) 1.2 X 10-7 V/m.
2.5 A /m 2, north.
35 m/s, delay time from stimulus to 
action.
11 hr.
1.8 m, it would generate 540 W of 
heat and could start a fire.
0.16 S.
(a) $35/month;
(ft) 1300 kg/year.
(a) -19%  change;
(ft) % change would be slightly 

less.
(a) 190 O;
(ft) 15 a
(a) 1500 W;
(ft)12 A.
2:1.
(a) 21 H;
(ft) 2.0 X 101 s.
(c) 0.17 cents.
36.0 m, 0.248 mm.
(a) 1200 W;
(ft) 100 W.
1.4 X 1012 protons.
(a) 3.1 kW;
(ft) 24 W;
(c) 15 W;
(d) 38 cents/month.
(a) $55/kWh;
(ft) $280/kWh, D-cells and AA-cells 

are 550 X and 2800 X , 
respectively, more expensive.

1.34 X io~4a
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93.
4lp
abir

41. (a)
R(5R'  +  31?) 

8(2?' +  R)  ’

95- /  =  1 “ ^

CHAPTER 26

1. (a) 5.93 V;

(fo) 5.99 V.

3. 0.060 ft.

5. 9.3 V.

7. (a) 2.60 kft;

(fo) 270 ft.

9. Connect nine 1.0-ft resistors in 
series with battery; then connect 
output voltage circuit across four 
consecutive resistors.

11. 0.3 ft.

13. 450 ft, 0.024.

15. Solder a 1.6-kft resistor in parallel 
with 480-ft resistor.

17. 120 ft.

19. %R.

21. R = r.

23. (a) Vieft decreases,

^middle increases, 

bright =  0;
(fo) /ieft decreases,

^middle increases, 

bright =
(c) terminal voltage increases;

(d) 8.5 V;

(e) 8.6 V.

25. (a) V\ and V2 increase, V3 and V4 
decrease;

(fo) I\ and I2 increase, /3 and /4 

decrease;

(c) increases;

(d) before: I x = 117 m A , I2 = 0, 

h  = h  = 59 mA;

after: I\ = 132 m A, 

h  =  h  =  h  =  44 m A , yes.

27. 0.38 A .

29. 0.

31. (a) 29 V;

(fo) 43 V, 73 V.

33. I\ =  0.68 A  left, I2 = 0.33 A  left. 

37. 0.70 A .

39. 0.17 A .

« i  

43. 1 - 1 5  M ft.

45. 5.0 ms.

47. 44 s.

49. (a) / , = ! ! ■  h  = h  =  h  w  1 3 R  3 R

( b ) h  =  h  =  - ^ ’ h  =  0;

51.

53.

55.

57.

59.

61.

63.

65.

67.

69.

(a) 8.0 V;

(fo) 14 V;

(c) 8.0 V;

(d) 4.8 fjuC.
29 fxA.
(a) Place in parallel with 0.22-mft 
shunt resistor;

(fo) place in series with 45-kft 
resistor.

100 kft.

V44 = 24 V, V27 = 15 V;

-15% , -15% .

0.960 m A , 4.8 V.

12 V.

Connect a 9.0-kft resistor in series 
with human body and battery.

2.5 V, 117 V.

92 kft.

R2R 3
71. («) p ,

Ki
(fo) 121 ft.

73. Terminal voltage of mercury 
cell (3.99 V ) is closer to 4.0 V  
than terminal voltage of dry cell 
(3.84 V).

75. 150 cells, 0.54 m2, connect in series; 
connect four such sets in parallel to 
total 600 cells and deliver 120 V.

77. Counterclockwise current: —24 V, 
clockwise current: +48 V.

79. 10.7 V.

83. 9.0 ft.

85. (fo) 1.39 V;

(c) 0.42 mV;

(id) no current from “working” 
battery is needed to “power” 
galvanometer.

87. 1.0 mV, 2.0 mV, 4.0 mV, 10.0 mV.

89. (a) 6.8 V, 15 pC;
(fo) 48 ais.

91. 200 M ft.
93. 4.5 ms.

Time (ms)

Time (ms)

CHAPTER 27

1. (fl) 8.5 N /m ;
(fo) 4.9 N /m .

3. 2.6 X 10“4N.
5. (a) South pole;

(fo) 3.41 A;
(c) 7.39 X 10“2N.

7. 2.13 N, 41.8° b e lo w  n e g a t iv e  y  a x is .  

9. ( —2 /r 6 o sin0o)j- 
13. 6.3 X 10“14 N, n o r th .

15. 1.8 T.
17. (a) Downward;

(fo) into page;
(c) right.

19. (fl) 0.031 m;
(fo) 3.8 X 10-7 s.

23. 1.8 m.
25. (0.78i -  l.Oj +  0.1k) X 10-15 N. 

27. .Lfinal =  2 ^initial •
29. (fl) Negative;

( P  + d 2N
(b )q B o^—

31. 1.3 X 108m /s, yes.
33. (a) 45°;

(fo) 2.3 X 10-3 m.
35. (fl) 2NIAB;

(fo) 0.
37. (a) 4.85 X  10_5m -N;

(fo) north.
39. (fl) ( - 4 .3  k) A *m 2;

(fo) (2.6i -  2.4j) m -N;
(c) - 2 .8  J.

41. 12%.
43. 39 fiA.
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45.

47.

49.

51.

53.

55.

57.

59.

(ft) 0.05 nm, about \  the size of a 
typical metal atom;

(c) 10 mV.

0.820 T.

70 u, 72 u, 73 u, and 74 u.

1.5 mm, 1.5 mm, 0.77 mm, 0.77 mm. 

?H, ^He.

2.4 T, upwards.

, n IB d( a ) ------ 1\
m

6 electrons.

(b)
IB d

-  f*kg ]t;

61.

63.

65.

67.

69.

71.

73.

75.

77.

ra

(c )  e a s t .

1.1 X  10-6 m / s ,  w e s t .

3.8 X  10-4 m • N.
mb(3a + b) ~11/2 

r\_3NIBa(a + b) J  '

They do not enter second tube, 12°

1.1 A , down.

7.3 X  10“3 T.

-6 .9  X 10“20J.

0.083 N, northerly and 68° above 
the horizontal.

(a) Downward;

(ft) 28 mT;

(c) 0.12 T.

CHAPTER 2 8

1. 0.37 mT, 7.4 times larger.

3. 0.15 N, toward other wire.

7. 0.12 mT, 82° above directly right. 

9. 3.8 X  10“5T, 17° below the 
horizontal to north.

11. (a) (2.0 X 10_5)(25 -  /)T ;

(b) (2.0 X 10_5)(25 +  I)  T.

15. Closer wire: 0.050 N /m , attractive, 
farther wire: 0.025 N /m , repulsive. 

17. 17 A , downward. 

fi0I  (  d — 2x
19' 2-n \ x ( d  -  x ) 11 

21. 4 6 .6 /iT .

LLnl
23. (b) - — » yes, looks like B  from  

v ' l ir y  3
long straight wire.

25. 0.160 A .

27. (a) 5.3 mT;

(ft) 3.2 mT;

(c) 1.8 mT.

29. (a) 0.554 m;

(b) 10.5 mT.

(b)

(c)

31. (a)
2ttR i

Polo _
2ttR 5

Polo ( R 3 ~  R 2
2ttR  \ R l  -  R l ) ’ 

(d) 0;

(e)

R (cm)

33. 3.6 X 10“6T.

35. 0.075 mq I /R .

IM)I (  1 1 \
37* I ^  +  Y 2 ) ’ int°  thC Page’

Trl(Rl + Rl)
( b ) -------- ----------, into the page.

39. (a) i;

41. (6 )

2ttR 2 \ \ J r 2 +  jc2 

(c) yes.

Mo I  (  d
\ \ J d 2 + y 2

k.

^ ta n (-7 r /« )
43. ( « ) ------- -—-------- , in t o  t h e  p a g e .

45. ^
Air

2itR

V ? T  /  V ^2 +  (6 -  A:)2

(fc -  x)y

• V(q -  y)2 + {b -
( a  -  > ) ( 6  -  ac)

V ( «  -  W  +
t(a -  y)

, out of

page.

47. (a) 16 A -m 2;

(ft) 13 m -N .

49. 2.4 T.

51. (F /£)m =  6.3 X  10“4 N /m  at 90°, 

(F/£)n =  3.7 X  10“4 N /m  at 300°, 

(F /£)P =  3.7 X  10-4 N /m  at 240°. 

53. 170 A .

55. (a) 2.7 X  10“6T;

(ft) 5.3 X  10-6 T;

(c) no, no N ew ton’s third-law-type 
of relationship;

(d) both 1.1 X  10_5N /m , yes, 
N ew ton’s third law holds.

Mo tj  
2

current coming toward you). 
NfxoIR2

57. -, to the left above sheet (with

61. (a)

1

63.

65.

67.

69.

71.

73.

75.

(.R2 + x 2f 2 (R2 +  (x -  R f f 2

(ft) 4.5 mT.
3 X  109A .

(a) 46 turns;

(ft) 0.83 mT;

(c) no.

Mo 1 V 5 .
—--------, into the page.

2ttcl

0.10 N, south.

3*
(c) 1.5 A .

-40 -30 -20 -10 0 10 20 30 40 
x (cm)

CHAPTER 2 9

1. - 4 6 0  V.

3. Counterclockwise.

5. 1.2 m m /s.
7. (a) 0.010 Wb;

(b) 55°;
(c) 5.8 mWb.

9. Counterclockwise.

11. (a) Clockwise;

(ft) 43 mV;

(c) 17 mA.

13. (a) 8.1 mJ;
(ft) 4.2 X  10“3 C°.

15. (a) 0.15 A;

(ft) 1.4 mW.
17. 8.81 C.

19. 21 /jJ .

21. 23 mV, 26 mV.

23. (a) 0;

(ft) 0.99 A , counterclockwise.
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H0Ia2 V
1 ' 2tTb(a + fo) ’
(c) clockwise;

Po I 2a4v
(d)

47T2b2(a + b)2R 
27. 1.0 m /s.
29. (a) 0.11 V;

(fo) 4.1 mA;
(c) 0.36 mN.

31. 0.39 m /s.
33. (a) Yes;

(fo) v0 e~B2ft/mR.

37. 57.2 loops.
41. 150 V.
43. 13 A.
45. (a) 2.4 kV;

(fo) 190 V.
47. 50,4.8 V.
49. (a) Step-up;

(fo) 3.5.
51. (a) R ;

53. 98 kW.
55. (fo) Clockwise;

(c) increase.

57. (a)

(6) g-BVt/mR

59. 10.1 mJ.
61. 0.6 nC.
63. (a) 41 kV;

(fo) 31 MW;
(c) 0.88 MW;
(d) 3.0 X 107W.

65. (a) Step-down;
(fo) 2.9 A;
(c) 0.29 A;
(d) 4.1 ft.

67. 46 mA, left to right through 
resistor.

69. 2.3 X 1017 electrons.
71. (a) 25 A;

(fo) 98 V;
(c) 600 W;
(d) 81%.

73. \Ba>l2.
77. B(oR, radially in toward axis. 

tTd2B2lv
79. (fl)

16p ’

(b) 16ppmg/B2-,
(c) 3.7 cm/s.

CHAPTER 30

1. (fl) 31.0 mH;
(fo) 3.79 V.
Po Ni N2 A 2 sin 6

3.
£

5. 12 V.
7. 0.566 H.
9. 11.3 V.

11. 46 m, 21 km, 0.70 kft 
15. 18.9 J.
17. 1.06 X 10“3 J /m 3.

Po N 2! 2 ii0N 2I 2h
19.

21.

8tr V
Vo I 2

477
In -

1677

23. 3.5 time constants.

* . ( f l ) g f ( l

(fo) 7.6 time constants. 
27. (fo) 6600 V.
29. (12V )e“f/8-2^s, 0 ,12 V. 
31. (fl) 0.16 nF;

(fo) 62 pH.
33. (c) (2 X 10“4)%.

35. ( f l ) ^ ;

(b ) lT .

3 7 . | l n ( | )  =  ( 0 .2 9 ) ~

39. 3300 Hz.
41.

Frequency (Hz)

43. (fl) R + R'-,
(fo) R ’.

45. (a) 2800 ft;
(fo) 660 Hz, 11 A. 

47. 2190 W.
49. (fl) 0.40 kft;

(fo) 75 ft.
51. 1600 Hz.

53. 240 Hz, voltages are out of phase. 
55. (fl) 0.124 A;

(fo) 5.02°;
(c) 14.8 W;
(d) 0.120 kV, 10.5 V.

57. 7.8 pF.
59. IqVq sin ojt sin (cot + </>).
61. 130 ft, 0.91.
63. 265 Hz, 324 W.
65. (fo) 130 ft.

67' T  T-2  i  \  2 | ;

2Lr2 + - ScJ J

(c) L -

69. 37 loops.
71. (fl) 0.040 H;

(fo) 28 mA;
(c) 16 pJ.

77. («) 

79.

(fo) 0,90° out of phase. 
83. 2.2 kHz.
85. 69 mH, 18 ft.
89. (a)

co L  —
<f> =  tan 1

R
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91. (a)

o)2LC ’
(d) V\ out = V l.

Vo
93. (a) —  sin cot;

R

(b )^ -s in ( (o t  -  |tt);

(c) —7- sin(atf +  577) 
X c

(d)

(f> = tan 1li?o>C------— I;
fl

coL

(e)

(f)

R

1 + | flwC
o)L

1

1 + | flwC -  jR-  
(oL

95. 0.14 H.
97. 54 mH, 22 H.
99. V 6 S / 0 =  2 .4/ 0.

101. (a) 7.1 kHz, Vrms;
(b) 0.90.

103. (b) For /  —► 0 A ->  1; 
for /  —» co, A 0;
(c) /  is in s-1:

log /

105.

< 0.6 
I 0.4 

0.2 
0

A
-—  r  =  o .m

—  r  =  m

0 0.5 1 1.5
O)/(O0

2.5

CHAPTER 31

1. 110kV /m -s.
3. 1.2 X 1015 V/m *s.

7. (ft) With i? in meters, for R  <  i?o, 

B0 = (6.3 X 10-11 T/m)/?;

5.7 X 10-14 T • m
for R > Rq, B q

(c)

R

R (cm)

9. 3.75 V /m .

11. (a) -k;
En .

13. 2.00 X 1010 Hz.

15. 5.00 X 102 s =  8.33 min.

17. (a) 3.00 X 105 m;

(ft) 34.1 cm;

(c) no.

19. (a) 261 s;

(ft) 1260 s.

21. 3.4krad/s.

23. 2.77 X 107 s.

25. 4.8 W /m 2, 42 V /m .

27. 4.50 /zJ.

29. 3.80 X 1026W.

31. (a) 5 cm2, yes;

(ft) 20 m2, yes;

(c) 100 m2, no.

33. (a) 2 X 108 ly;

(ft) 2000 times larger.

35. 8 X 106 m /s2.

37. 27 m2.

39. 16 cm.

41. 3.5 nH to 5.3 nH.

43. 6.25 X 10-4 V/m;

1.04 X 10-9 W /m 2.

45. 3 m.

47. 1.35 s.

49. 34 V /m , 0.11 juT.

51. Down, 2.2 juT, 650 V /m .

53. (a) 0.18 nJ;

(ft) 8.7 f iY /m ,  2.9 X 10“14T.

57. 4 X 1010W.

59. 5 nodes, 6.1 cm.

61. (a) +x;

(ft) /3 =  ac\

(c) —
c

63. (d) Both E and B rotate

counterclockwise.

z

E0

B0

CHAPTER 32

1.

3. 7°. 

7.

9. 37.6 cm.

11. 1.0 m.

13. 2.1 cm behind front surface of ball;

virtual, upright.

15. Concave, 5.3 cm.

17. -6 .0  m.

19. Convex, —32.0 cm.

21.

Mirror
far
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23. -3 .9  m.

25. (a) Convex;

(b) 20 cm behind mirror;

(c) -9 1  cm;

(d) —1.8 m.

27. (b)

87. A  =  1.5005, B  =  5740 nm2. 13. 21.3 cm, 64.7 cm.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

53.

55.

57.

59.

61.

63.

65.

67.

71.

73.

75.

77.

83.

85.

d0(m)

(c) 0.90 m;

(d) just beyond focal point. 

Because the image is inverted.

(a) 2.21 X 108 m /s ;

(b) 1.99 X 108 m /s ;

(c )  1.97 X 108 m /s.

8.33 min.

3 m .

35°.

38.6°.

2.6 cm.

4.4 m.

3.2 mm.

38.9°.

0.22°.

0.80°.

33.3°, diamond.

82.1 cm. 

n >  1.5.

(a) 2.3 fis;

(b) 17 ns. 

n >  1.72.

17.3 cm.

0.25 m, 0.50 m.

(a) 3.0 m, 4.4 m, 7.4 m;

(b) toward, away, toward.

3.80 m.

31 cm for real image, 15 cm for 
virtual image. 

d
n -  1

The light would totally internally 
reflect only if <  32.5°.

1.56
1.55
1.54
1.53
1.52
1.51
1.50

1.56 
1.55 
1.54 

s  1.53 
1.52 
1.51 
1.50

§
250 500 750 

A (nm)
1000 1250

, ,  _  C '7 A \S 1 rv ----L 1 c n  _y  — j . i u  Ar i i . j u

---------- 1---------- 1---------- 1-----------1----------
0.0 2.0 X 4.0 X 6.0 X 8.0 X 10.0 X 12.0 X 10-6 10-6 10-6 10-6 10-6 10-6

1/A2 (nm-2)

CHAPTER 33

1. (a)

(b) 
3. (a) 

(b) 
5. (a) 

(b)

(c)
(d) 

7. (a)

508 mm.

4.26 D, converging;

-1 4 .8  cm, diverging.

106 mm;

109 mm;

117 mm;

an object 0.513 m away. 

Virtual, upright, magnified;

(b) converging;

(c) 6.7 D.

9. (a) 0.02 m;

(b) 0.004 m.

11. 50 cm.

Position A

f x .
0  p ' V  f \

/

Position B

I
0

\

, N

15. (c) Real, upright; (d) real, upright. 
17. 0.107 m, 2.2 m.
19. (b) 182 cm; (c) 182 cm.
21. 18.5 cm beyond second lens, —0.651 X . 
23. (a) 7.14 cm beyond second lens;

(b) -0 .3 5 7 X; (c)
Lens A LensB

25. (a) 0.10 m to right of diverging 
lens; (b) -1 .0X ;
(c) Lens A

the size of object; 
Lens 1 Lens 2

W '  Fi "
o  F P P % i 2

(b) 29 cm beyond second lens, 0.46 
times the size of object.

29. 1.54.
31. 8.6 cm.
33. 34 cm.
35. //2 .8 .
37. I s.
39. 41 mm.
41. +2.5 D.
43. 41 cm, yes.
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45. (a) -1 .3  D;
(ft) 37 cm.

47. -2 4 .8  cm.
49. 18.4 cm, 1.00 m. 
51. 6.6 cm.
53. (fl) 13 cm;

(ft) 8.3 cm.
55. (fl) -2 3 4  cm;

(ft) 4.17X.
57. (a) - 6 6  cm;

(ft) 3.0 X.

CHAPTER 34

59.
61.
63.
65.
67.
69.
71.
73.
75.

4 cm, toward.
2.5 cm, 91 cm. 
- 2 6  X.
16 X.
3.7 m, 7.4 m. 
- 9 X .
8.0 X.
1.6 cm.
(fl) 754 X;
(b) 1.92 cm, 0.307 cm;
(c) 0.312 cm.

77. (a) 0.85 cm;
(ft) 250 X .

79. 410 X , 25 X .
81. 79.4 cm, 75.5 cm.
83. 6.450 m <  d0 <  oo.
85. 116 mm, 232 mm.
87. -1 9 .0  cm.
89. 3.1 cm, 25 cm.
91. (fl) 0.26 mm;

(ft) 0.47 mm;
(c) 1.3 mm;
(d) 0 .56X, 2 .7X.

93. 20.0 cm.
95. 47 m.
97. 2.8 X , 3.9 X , person with normal eye. 
99. 1.0 X .

101. +3.4 D .
103. - 1 9  X .

105. (fl) 28.6 cm;
(ft) 120 cm;
(c) 15 cm.

107. -6 .2  cm.
109. (a) - 1  / / ,  1;

(ft) 14 cm, yes, 
y-intercept =  1.03;

0.0 

-0.5

-1.0

-1.5

-2.0

-0 .0726 jc+ 1.01981

3. 3.9 /mi.
5. 0.2 mm.
7. 660 nm.
9. 3.5 cm.

11. Inverted, starts with central dark 
line, and every place there was 
bright fringe before is now dark 
fringe and vice versa.

13. 2.7 mm.
15. 2.94 mm.

21. In
3 +  2 V 2 c o s

2-77-d sin 6

0 5 10 15 20 25 30 35 40 
d{ (cm)

(c) /  =  — 1/slope.

3 +  2 V 2

23. 634 nm.
25. (a) 180 nm;

(ft) 361 nm, 541 nm.
27. (ft) 290 nm.
29. 8.68 /mi.
31. 113 nm, 225 nm.
35. 1.32.
37. (c) 571 nm.
39. 0.191 mm.
41. 80.1 /mi.
43. 0.3 mm.
45. (fl) 17 lm /W ;

(ft) 160 lamps.
47. (a) Constructive;

(ft) destructive.
49. 440 nm.

51. W ( * f ) .

53. (fl) 81.5 nm;
(ft) 0.130 /m i.

55. 6 =  sin-1 ^sin0i +

57. 340 nm, 170 nm.
59. Constructive: 90°, 270°; destructive: 

0°, 180°; exactly switched.
61. 240 nm.
63. 0.20 km.
65. 126 nm.

CHAPTER 35________________________

1. 37.3 mrad =  2.13°.

3. 2.35 m.

5. Entire pattern is shifted, with central 
maximum at 23° to the normal.

7. 4.8 cm.

9. 953 nm.
11. (a) 63°;

(ft) 30°.

13.
15.
17.
19.

0.15. 
d = 5 D. 
265 fringes. 
(a) 1.9 cm; 
(ft) 12 cm. 
0.255.21.

23. (fl) Ie = I0
1 + 2 cos 8

25. 1.5 X 1011 m.

27. 1.0 X 104 m.

29. 730 lines/m m , 88 lines/m m .

31. 0.40 /am, 0.50 /m i, 0.52 /m i, 0.62 /mi.

33. Two full orders, plus part o f a third 
order.

35. 556 nm.

37. 24°.

39. A2 >  600 nm overlap with 
A3 <  467 nm.

41. Ai =  614 nm, A2 =  899 nm.

43. 7 cm, 35 cm, second order.

45. (c) -3 2 ° , 0.9°.

47. (a) 16,000 and 32,000;

(ft) 26 pm, 13 pm.

49. 14.0°.

51. No.

53. 45°.

55. 61.2°.

57. (fl) 35.3°;

(ft) 63.4°.

59. 36.9°, smaller than both angles.

61. /  =  ^ s in 2(20),45°.

63. 28.8 /m i.

65. 580 nm.

67. 0.6 m.

69. 658 nm, 853 lines/cm .

71. (fl) 18 km;

(ft) 23", atmospheric distortions 
make it worse.

73. 5.79 X 105 lines/m .

75. 36.9°.

77. (a) 60°;

(ft) 71.6°;

(c) 84.3°.

79. 0.4 m.

81. 0.245 nm.

83. 110 m.

85. —0.17 mm.

87. U se 24 polarizers, each rotated 
3.75° from previous axis.

Answers to Odd-Numbered Problems A-41



CHAPTER 36

1. 72.5 m.

3. 1 .00 ,1 .00 ,1 .01 ,1 .02 ,1 .05 ,1 .09 ,1 .15 , 
1 .25,1 .40,1 .67,2 .29 ,7 .09.

8.00
7.00
6.00 

^  5.00
4.00
3.00
2.00 
1.00

0.20c 0.40c 0.60c 
V

0.80c 1.0c

5. 2.42 X 108 m / s .

7. 27 yr.

9. (6.97 X  10“8)%.

11. (a) 0.141c;

(fo) 0.140c.

13. (a) 3.4 yr;

(fo) 7.4 yr.

15. 0.894c.

17. Base: 0.30£, sides: 1.941. 

19. 0.65c.

21. (a) (820 m, 20 m, 0);

(fo) (2280 m , 20 m , 0). 

23. (a) 0.88c;

(fo )-0 .8 8 c .

25. (a) 0.97c;

(fo) 0.55c.

27. 0.93c at 35°.

(b)

29. (a) £0\ / 1 ~ ^  cosz 0;

tan0

- I ,
v i

tan- l

31. f t  -  f t  =  -  •

B is turned on first.

33. N ot possible in boy’s frame of 
reference.

35. (fl) -0.5% ;

(fo) -20% .

37. 0.95c.

39. 8.20 X 10“14J, 0.511 MeV.

41. 900 kg.

43. 1.00 M eV /c2, or 1.78 X  10“30kg. 

45. 9.0 X  1013 J, 9.2 X 109 kg.

47. 0.866c.

49. 1670 MeV, 2440 M eV /c.

51. 0.470c.

53. 0.32c.

55. 0.866c, 0.745c.

57. (a) 2.5 X 1019 J;

(fo) -2.4% .

59. 237.04832 u.

61. 240 MeV.

65. 230 MHz.

67. {a) 1.00 X  102 km/h;

(fo) 67 Hz.

69. 75 /as.

71. 8.0 X 10“8 s.

73. (a) 0.067c;

(fo) 0.070c.

- i75. (a) tan \ j ~ ^  ~  1;

(c) tan 1 —•> u = \ / c 2 + v2 .^  v

77. (a) 0.77 m /s;

(fo) 0.21 m.

79. 1.022 MeV.

83. (a) 4 X 109 kg/s;

(fo) 4 X 107 yr;

(c) 1 X 1013 yr.

85. 28.32 MeV.

87. (a) 2.86 X  10_18kg-m /s;

(fo) 0;

(c) 3.31 X  10_17k g-m /s.

89. 3 X  107 kg.

91. 0.987c.

93. 5.3 X 1021 J, 53 times as great. 

95. (a) 6.5 yr;

(fo) 2.3 ly.

99.

1.2
1.0

r- 0.8
O 0.6

S ' 0.4
0.2

0

i

-----Ch tssir.al
t

/
------ Relativistic /

f
— r  

*

0.2c

CHAPTER 3 7

0.4c 0.6c 
v

0.8c 1.0c

1. (fl) 10.6 fxm, far infrared; 

(fo) 829 nm, infrared;

(c) 0.69 mm, microwave;

(d) 1.06 mm, microwave. 

3. 5.4 X 10“20J, 0.34 eV.

5. (fo) 6.62 X 10“34 J-s.

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

51.

53.

55.

57.

59.

61.

63.

2.7 X 10“19 J <  E  <  4.9 X 10“19 J, 
1.7 eV  <  E  < 3.0 eV.

2 X 1013 Hz, 1 X 10-5 m.

7.2 X 1014 Hz.

3.05 X 10-27 m.

Copper and iron.

0.55 eV.

2.66 eV.

3.56 eV.

(a) 1.66 eV;

(fo) 3.03 eV.

(a) 1.66 eV;

(fo) 3.03 eV.

0.004, or 0.4%.

(fl) 2.43 pm;

(fo) 1.32 fm.

(fl) 8.8 X 10“6;

(fo) 0.049.

(a) 229 eV;

(fo) 0.165 nm.

1.65 MeV.

212 MeV, 5.86 fm.

1.772 MeV, 702 fm.

4.7 pm.

4.0 pm.

1840.

(a) 1.1 X 10-24 kg-m /s;

(fo) 1.2 X 106 m /s;

(c) 4.2 V.

590 m /s.

20.9 pm.

1.51 eV  

122 eV.

91.4 nm.

37.0 nm.

I?
s

o
-3 .4
-6 .0

-13.6

-54.4

Continuum

n = 2

-n = 1
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67. Yes: v = 7 X 10“3 c;
1 /7  = 0.99997.

69. 97.23 nm, 102.6 nm, 121.5 nm,
486.2 nm, 656.3 nm, 1875 nm. 

71. Yes.
73. 3.28 X 1015 Hz.
75. 5.3 X 1026 photons/s.
77. 6.2 X 1018 photons/s.
79. 0.244 MeV for both.
81. 28 fm.
83. 4.4 X 10“40, yes.
85. 2.25 V.
87. 9.0 N.
89. 1.2 nm.
91. (a)

0

(b)

0)
a  -8

-12

-6 .4  eV 
-6 .8  eV

-9 .0  eV

-11.5 eV

(ft) Ground state, 0.4 eV, 2.2 eV,
2.5 eV, 2.6 eV, 4.7 eV, 5.1 eV.

„  2.84 X 10165J 
93. (a) En — ’

rn = n \5 1 1  X 10-129 m);

(ft) no, because n «  1068 so An  = 1 
is negligible compared to n.

95. 1.0 X 10“8 N.

97. (a) (ft) 1.34 X 10“43s;

(c) (d) 4.05 X 10_35m.

99. (a) 6.0 X 10-3 m/s;
(ft) 1.2 X 10“7K.

101. (a)

W  A

© 3
2  2 
E-h

d  1
^ 0

/ .330CIK

/
/ /2700

/  /
>

0 400 800 1200 1600 2000 
A (nm)

(,b) 4.8 times more intense.

1/A (/^m-1)

(c )  1.2 X 10-6 V • m, -2 .31V ;

(d) 2.31 eV;

(e) 6.63 X 10-34 J • s.

CHAPTER 38_______________________

1. 2.8 X 10“7m.

3. 5.3 X 10“n m.

5. 4500 m /s.

7. 1.0 X 10“14.

9. A*electron ^  1.4 X 10“3 m,

A-̂ baseball — 9.3 X 10 m,

^ eleclron =  1.5 X 1029.
A^baseball

11. 1.3 X 10-54 kg.

13. (a) 10-7 eV;

(b) 1/108;

(c) 100 nm, 10-6 nm.

19. (a) A  sin[(2.6 X 109 m_1)x]

+ B  cos[(2.6 X 109 m_1)x]; 

(ft) A  sin[(4.7 X lO ^nT ^x]

+ 5  cos[(4.7 X 1012 m_1)x], 

21. 1.8 X 106 m/s.

23. (a) 46 nm;

(ft) 0.20 nm.

25. Ap  Ax «  h, which is consistent with 
the uncertainty principle.

27. #i = l: 0.094 eV,
(l.O nm_1/2) sin[(l.6 nm_1)x]; 

n = 2: 0.38 eV,
(l.O nm-ly/2) sin[(3.1 nm_1)x]; 

n = 3: 0.85 eV,
(l.O nm_1/2) sin[(4.7 nm_1)x]; 

n = 4: 1.5 eV,
(l.O nm_1/2) sin[(6.3 nm_1)x].

29. (a) 940 MeV;

(ft) 0.51 MeV;

(c) 0.51 MeV.

31. (a) 4.0 X 10“19eV;

(ft) 2 X 108;

(c )  1.4 X 10“10eV.

+  = [ ( - 1 ) ™ ^  c o s ( 2 f ) ,

"A AAA
WAAAAA

37. 0.020 nm.

39. 17 eV.

41. (a) 6.1%;

(ft) 93.9%.

43. (a) 12% decrease;

(b) 6.2% decrease.

45. (a) 32 MeV;

(ft) 57 fm;

(c) 1.4 X 107 m /s, 8.6 X 1020Hz,
7 X 109 yr.

47. 14 MeV.

49. 25 nm.

51. Ax = #i (the Bohr radius).

53. 0.23 MeV, 3.3 X 106m /s.

55. 27% decrease.

57.

0.34t2 j
• #

0.32I2 — *
\%

0.30f2 —

0.28£2 r i | | | | | | | | |
0 4 8 12 16 20 

n

59. (a) A<£ >  0 so </> ^ 0 exactly;

(ft) 4 s.
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61. (a)
1.0 - -

>,0.8- •

g 0.6- V|  0.4-
£ 0.2- • • -••

• Transmission T
• Reflection R

r - - n t-
4 6

-I
10

(ft) 10%: £ /t/0 = 0.146;
20%: E/U0 = 0.294;
50%: E/U0 = 0.787;
80%: £ /t/0 = 1.56.

CHAPTER 39______________________
1. 0,1,2,3,4,5,6.
3. 18 states, (3,0,0, -  \), (3, 0, 0, + §), 

( 3 ,1 ,-1 ,- i ) ,  (3 ,1 ,-1 ,+ i) , 
(3 ,1 ,0 ,-i) , (3 ,1,0,+ i),
(3 ,1 ,1 ,- I ) ,  (3 ,1 ,1 ,+ 1),
(3,2, -2 , -1 ) ,  (3,2, -2 ,+ |) ,  
( 3 ,2 , - l , - i ) , ( 3 ,2 , - l ,+ |) ,
(3,2, 0, -§), (3,2, 0, +!), 
(3 ,2 ,l ,- i ) ,(3 ,2 ,l ,+ i) ,
(3,2, 2, - \ ) ,  (3,2, 2, + |).

5. n >  6; ra£ = -5 , -4 , -3 , -2 , -1 ,
0,1, 2, 3, 4, 5; ms = -§> + §•

7. (fl) 7;
(ft) -0.278 eV;
(c) 4.72 X 10-34 J-s, 4;
(rf) -4 , -3 , -2 ,-1 ,0 ,1 ,2 , 3, 4.

11. n > l,  I = 6, mf = 2.

13. (a)- 1

29. (a) (1,0,0, - 1), (1,0,0, +\),
(2, 0, 0, -\), (2, 0, 0, +g, 
(2 ,1 ,-1 ,-1), (2 ,1 ,-1 ,+ 1);

(ft) (1,0,0,- |) ,  (1,0,0,+i),
(2, 0, 0 ,- |) ,  (2,0,0,+|), 
(2,1,- 1 , - |) ,  (2 ,1 ,-1 ,+ 1), 
(2 ,1,0,-i), (2,1,0,+1), 
(2 ,l , l ,- i ) ,(2 ,l , l ,+ |) ,
(3, 0, 0, - \ ) ,  (3,0, 0, +i),
(3 ,1 ,- 1 , - | ) .

31. n = 3,£ = 2.
33. (a) ls22s22p63s23p63d84s2;

(ft) 1 j 22s22p63523p63rf104s24p64rf105j1;
(c) ls22s22/763s23/3rf104s24/?64rf10- 

4 /145525 /?65rf106,s26 p65f36dlls2.
35. 5.75 X 10“13m, 115 keV.
39. 0.0383 nm, 1 nm.
41. 0.194 nm.
43. Chromium.
47. 2.9 X 10“4eV.
49. (a) 0.38 mm; (ft) 0.19 mm.
51. (a) |  ’ I ; (ft) I ’ I ; (c) |  ’ §;

CHAPTER 40

3
53.

55.

57.
59.
61.

63.

65.

67.
69.

71.
73.

75.
77.

(c) 13.1r0.

(a) 0.4 T;
(ft) 0.5 T.
4.7 X 10-4 rad; (a) 180 m;
(ft) 1.8 X 105 m.
634 nm.
3.7 X 104K.
(a) 1.56;
(ft) 1.36 X 10-10 m.
(a) ls22s22p63s23p63d54s2;
(ft) ls22s22 /3 s23 /3 d 104s24 / ;
(c) l ^ ^ p ^ ^ p ^ r f ^ s ^ p ^ r f ^ 2. 
(a) 2.5 X 1074;
(ft) 5.1 X 1074.
5.24r0.
(a) 45°, 90°, 135°;
(ft) 35.3°, 65.9°, 90°, 114.1°, 144.7°;
(c) 30°, 54.7°, 73.2°, 90°, 106.8°, 

125.3°, 150°;
(rf) 5.71°, 0.0573°, yes.
(b)K = - \U .
(a) Forbidden; (ft) allowed;
(c) forbidden; (rf) forbidden;
(e) allowed.
4, beryllium.
(a) 3 X 10“171, 1 X 10“202;
(ft) 1 X 10“8, 6 X 10-10;
(c) 7 X 1015, 4 X 1014;
(rf) 4 X 1022photons/s,

7 X 1023 photons/s.

1. 5.1 eV.
3. 4.7 eV.
5. 1.28 eV.
9. (a) 18.59 u;

(ft) 8.00 u;
(c) 0.9801 u.

11. 1.10 X 10-10m.
13. (a) 1.5 X 10“2eV, 0.082 mm; 

(ft) 3.0 X 10“2eV, 0.041mm;
(c) 4.6 X 10-2 eV, 0.027 mm.

15. (a) 6.86 u;
(ft) 1850 N/m, kCo/kn2 = 3.4.

17. 2.36 X 10“10m.
19. rniXi = m2x2.
21. 0.2826 nm.
23. 0.34 nm.
25. (ft) -6.9 eV;

(c) -11 eV;
(rf) -2.8%.

27. 9.0 X 1020.
29. (a) 6.96 eV;

(ft) 6.89 eV.
31. 1.6%.
33. 3.2 eV, 1.1 X 106m/s. 

h2N 2
39. (a)

(b)

32 mf2’ 
h2 (N + 1)

8 mi2 ’

43. 1.09 /mi.
45. (fl) 2N\

(ft) 6N;
(c) 6N;
(rf) 2N{2£ + 1).

47. 4 X 106.
49. 1.8 eV.
51. 8.6 mA.
53. (fl) 1.7 mA; (ft) 3.4 mA. 
55. (fl) 35 mA; (ft) 70 mA. 
57. 3700 Cl.
59. 0.21 mA.
61. JB + Jc = /E.
63. (fl) 3.1 X 104 K;

(ft) 930 K.
65.

U

1.4 eV\
__L A

1.6 eV
1

r0
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71.
73.
75.
77.
79.
81.
83.
85.

87.

67. (a) 0.9801 u;
(fo) 482 N /m , k HCi /k H2 = 0.8 

Yes, 1.09 /m i.
1100 J/m ol.
5.50 eV.
3 X  1025.
6.47 X  10-4 eV.
1.1 eV.
(a) 0.094 eV; (fo) 0.63 nm.
(a) 150 V  <  F  <  486 V;

(fo) 3.16 k n  <  2?load <  00 • 
(fl)

1.00-

T=  500K

2.00

2.00

2.00

1.00
E/Ef

2.00

CHAPTER 41

1. 0.149 u.
3. 0.85%.
5. 3727 M eV /c2.
7. (fo) 180 m; (c) 2.58 X  10“10m.
9. 30 MeV.

11. 6 X  1026 nucleons, no, mass of all 
nucleons is approximately the same.

13.
15.
17.

19.
21.
23.
25.

27.
29.
31.

33.
35.
37.
39.

41.
43.
45.
47.

49.
51.
53.
55.
57.
59.

61.
63.
65.
69.
71.
73.
75.

550 MeV.
7.94 MeV.
iiNa: 8.11 M eV /nucleon; 
f}Na: 8.06 M eV /nucleon.
(b) Yes, binding energy is positive. 
0.782 MeV.
2.6 X 10“12m.

(fl) J8“;
(b) 24N a -► gM g + (3~ + v,

5.52 MeV.
(fl) 2ijTh; (fo) 234.04367 u.
0.078 MeV.

(fl) iiS;
(fo) 31.97207 u.
0.862 MeV.
0.9612 MeV, 0.9612 MeV, 0 ,0 .
5.31 MeV.
(a) 1.5 X  10-10 yr-1;
(fo) 6.0 h.
0.16.
0.015625.
6.9 X 1019 nuclei.
(a) 3.59 X  1012 decays/s;
(fo) 3.58 X  1012 decays/s;
( c )  9.51 X  107 decays/s.
0.76 g.
2.30 X  1 0 -n g.
4.3 min.
2.98 X  10“2g.
35.4 d.
2i R a , 2i A c , 2igT h,2̂ R a ,2igRn;
9oTh, 29il

Nd = Nq(1 -  e~xt).
2.3 X 104 yr.
41 yr.
6.647i/2 .
(fo) 98.2%.
1 MeV.
(a) ^ylr;

23,jTh, 239lP a ,2g A c ,2i7oTh,2iR a .

(b)

( c )  The higher excited state.
77. 550 M eV, 2.5 X  1012J.
79. 2.243 MeV.
81. (fl) 2.4 X  105 yr;

(fo) no significant change, maximum  
age is on the order of 105 yr.

83. 5.49 X  10“4.

85. (a) 1.6%;
(fo) 0.66%.

87. 1.3 X  1021 yr.
89. 8.33 X  1016 nuclei,

600 s. 

CHAPTER 4 2

t (  s)

1* 13AI, /3 , ifSi.
3. Yes, because Q = 4.807 MeV.
5. 5.701 M eV released.
7. (a) Yes;

(fo) 20.8 MeV.
9. 4.730 MeV.

11. n +  14N —» U6C + p, 0.626 MeV. 
13. (a) The H e has picked up a neutron 

from the C;

(b) n6C;
(c) 1.856 MeV, exothermic.

15. 18.000938 u.
17. 0.671 MeV.
19. +  R 2f .
21. 10 cm.
23. 173.3 MeV.
25. 6 X 1018 fissions/s.
27. 0.34 g.
29. 5 X 10-5 kg.
31. 25 collisions.
33. 0.11.
35. 3000 eV.
39. (fl) 5.98 X 1023 M eV /g,

4.83 X 1023 M eV /g,
2.10 X 1024 M eV /g;

(fo) 5.13 X 1023 M eV /g; Eq. 42-9a  
gives about 17% more energy per 
gram, 42-9b gives about 6% less, 
and 42-9c gives about 4X more. 

41. 0.35 g.
43. 6100 kg/h .
45. 2.46 X 109 J, 50 times more than 

gasoline.
47. (fo) 26.73 MeV;

(c) 1.943 MeV, 2.218 MeV,
7.551 MeV, 7.296 MeV,
2.752 MeV, 4.966 MeV;

(d) larger Coulomb repulsion to 
overcome.

49. 4.0 Gy.
51. 220 rad.
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53. 280 counts/s.
55. 1.6 days.
57. (a) xgX e + pr  +  v\

(b) 31 d;
(c) 8 X 10-12 kg.

59. 8.3 X 10“7 Gy/d.
61. (a) 2gPo;

(b) radioactive, alpha and beta 
decay, 3.1 min;

(c) chemically reactive;
(d) 9.1 X 106 Bq, 4.0 X 104Bq.

63. 7.041 m, radio wave.
65. (fl) 126C;

(b) 5.701 MeV.
67. 1.0043:1.
69. 6.5 X 10-2 rem/yr.
71. 4.4 m.
73. (a) 920 kg;

(b) 3 X 106Ci.
75. (a) 3.7 X 1026W;

(b) 3.5 X 1038 protons/s;
(c) 1.1 X 10n yr.

77. 8 X 1012J.
79. (a) 3700 decays/s;

(b) 4.8 X 10_4Sv/yr, yes (13% of 
the background rate).

81. 121A MeV.
83. 79 yr.
85. 2mCi.

CHAPTER 43______________________

1. 5.59 GeV.
3. 2.0 T.
5. 13 MHz.
7. Alpha particles,

A-a ~  ^nucleon? ~  2rfnucle0n •
9. 5.5 T.

11. 1.8 X 10“19m.
15. 33.9 MeV.
17. 1879.2 MeV.
19. 67.5 MeV.
21. (a) 178.5 MeV;

(b) 128.6 MeV.
23. (a) Charge, strangeness;

(b) energy;
(c) baryon number, strangeness, 

spin.
25. (b) The photon exists for such a

short time that the uncertainty 
principle allows energy to not 
be conserved during the 
exchange.

27. 69.3 MeV.
29. K ao = 8.6 MeV, K n- = 57.4 MeV. 
31. 52.3 MeV.
33. 9keV.
35. 7.5 X 10“21 s.
37. (a) 700 eV;

(b) 70 MeV.
39. (a) uss;

(b) dss.
41. (a) Proton;

(b) 2
(c) K-
(d) Tr­
ie) D 5

43. cs.
45.

65. v/c = 1 -  (9.0 X 109). 
67.

5.0 t

47. (fl) 0.38 A;
(b) 1.0 X 102m /s.

49. 2.1 X 109 m, 7.1 s.
51. (fl) Possible, strong interaction;

(b) possible, strong interaction;
(c) possible, strong interaction;
(d) not possible, charge is not 

conserved;
(e) possible, weak interaction. 

55. 64.
57. (b) 1029K.
59. 798.7 MeV, 798.7 MeV.
61. 16 GeV, 7.8 X 10“17m.
63. Some possibilities:

ir- 
u d u u u u

TT~
u d

uu d  ddu u du  udd
p n p n

or [see Example 43-9b]
Tj-0 ,,-0  7r-

3.0 4.0 5.0 6.0 7.0 
* 0  s)

2.3 fi s,3.1%. 

CHAPTER 44

1. 3.1 ly.
3. 0.050", 20 pc.
5. Less than, a factor of 2.
7. 0.037.
9. 2 X 10-3 kg/m 3.

11. -0 .092  MeV, 7.366 MeV.
13. 1.83 X 109 kg/m 3, 3.33 X 105 times. 
15. Dx/D 2 = 0.15.
19. 540°.
21. 3.1 X 10-16 m.
23. 200 Mly.
25. (fl) 656 nm;

(b) 659 nm.
27. 0.0589 c.
31. 1.1 X 10“3m.
33. 6 nucleons/m3.
35. (a) 10“5 s;

(b) 10“7 s;
(c) 10“4 s.

37. (a) 6380 km, 20 km, 8.85 km;

(b) 700:2:1.

39. 8 X 1 0 9.

41. A: Temperature increases, 
luminosity stays the same, 
and size decreases;
B: Temperature stays the same, 
and luminosity and size decrease;
C: Temperature decreases, 
and luminosity and size increase.

43. 2 X 1028N.

45. ^480/^660 = 1-7.
47. 2 X 1016 K, hadron era.
49. (a) 13.93 MeV;

(b) 4.7 MeV;
(c) 5.5 X 1010 K.

51. Rmin = GM/c2.
53. ~  10-15 s.
55. Venus, Z>yenus/fosirius — 16. 

h2
57.

Aml/3 GMl/3 V4tt2
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Index
Note: The abbreviation defn means the 
page cited gives the definition of the 
term; fn  means the reference is in a 
footnote; pr  means it is found in a 
Problem or Q uestion;/f means “also the 
following pages.”

A  (atomic mass number), 1105 
Aberration: 

chromatic, 889 fn, 892,932 
of lenses, 891-92,929,931 
spherical, 843,857,891,892,932  

Absolute pressure, 345 
Absolute space, 953,957 
Absolute temperature scale, 457, 

464,469-70 
Absolute time, 953 
Absolute zero, 464,549 
Absorbed dose, 1148
Absorption lines, 936,1002,1081,1084-85 
Absorption spectra, 936,1002,1084 
Absorption wavelength, 1008 
Abundances, natural, 1105 
A c circuits, 664-65,677 fn, 790-803 
Ac generator, 766-67 
A c motor, 720
Accelerating reference frames, 85,88, 

155-56,300-2  
Acceleration, 24-42,60-62  

angular, 251-56,258-63  
average, 24-26 
centripetal, 120 f f  
constant, 28-29,62  
constant angular, 255 
Coriolis, 301-2 
cosmic, 1223 
in g ’s, 37
due to gravity, 34-39,87 fn, 92,143-45 
instantaneous, 27-28,60-61  
of the Moon, 121,140 
motion at constant, 28-39,62-71  
radial, 120//, 128 
related to force, 86-88 
tangential, 128-29,251-52  
uniform, 28-39,62-71  
variable, 39-43 

Accelerators, particle, 1165-71 
Accelerometer, 100 
Acceptor level, 1094 
Accommodation of eye, 883 
Accuracy, 3-5  

precision vs., 5 
Achromatic doublet, 892 
Achromatic lens, 892 
Actinides, 1054 
Action at a distance, 154,568 
Action potential, 670 
Action-reaction (Newton’s third law), 

89-91
Activation energy, 481,1075,1077 
Active galactic nuclei (AGN), 1197

Active solar heating, 550 
Activity, 1118 

and half-life, 1120 
source, 1147 

Addition of vectors, 52-58 
Addition of velocities: 

classical, 71-74 
relativistic, 970-71 

Adhesion, 360 
Adiabatic lapse rate, 525 pr  
Adiabatic processes, 508,514-15 
ADP, 1076-77 
AFM, 1039 
AGN, 1197 
Air bags, 31
Air cleaner, electrostatic, 645 pr
Air columns, vibrations of, 434-36
Air conditioners, 537-38
Air parcel, 525 pr
Air pollution, 551
Air resistance, 34-35,129-30
Airplane wing, 356-57
Airy disk, 929
Alkali metals, 1054
Allowed transitions, 1048-49,1080-81, 

1083,1084 
Alpha decay, 1111-14,1117 

and tunneling, 1038,1113 
Alpha particle (or ray), 1038,1111-14 
Alternating current (ac), 664-65,677 fn, 

796-803 
Alternators, 768 
AM radio, 830 
Amino acids, 1079 
Ammeter, 695-97,721 

digital, 695,697 
Amorphous solids, 1085 
Ampere, Andre, 654,737 
Ampere (A) (unit), 654,736 

operational definition of, 736 
Ampere’s law, 737-43,813-17  
Amplifiers, 1097 
Amplitude, 371,397,404 

intensity related to, 430 
pressure, 427 
of vibration, 371
of wave, 371,397,402,404,426,430,1019 

Amplitude modulation (AM), 830 
Analog information, 775 
Analog meters, 695-97,721  
Analyzer (of polarized light), 941 
Anderson, Carl, 1174 
Andromeda, 1196 
Aneroid barometer, 347 
Aneroid gauge, 347 
Angle, 7 fn,  249 

attack, 356
Brewster’s, 943,949 pr  
critical, 854 
of dip, 709
of incidence, 410,415,838,850  
phase, 373,405,800

polarizing, 943^14 
radian measure of, 249 
of reflection, 410,838 
of refraction, 415,850 
solid, 7 fn, 915 fn  

Angstrom (A) (unit), 17 pr, 852 fn  
Angular acceleration, 251-56,258-63  

constant, 255 
Angular displacement, 250,381 
Angular frequency, 373 
Angular magnification, 886 
Angular momentum, 285-89,291-300,1003 

in atoms, 1004,1046-49,1057-60 
conservation, law of, 285-89,297-98, 

1117
directional nature of, 288-89,291 f f  
nuclear, 1107 
of a particle, 291-92 
quantized in atoms, 1046-47 
quantized in molecules, 1080-81 
relation between torque and, 292-97 
total, 1059
and uncertainty principle, 1023 
vector, 288,291 

Angular position, 249,1023 
Angular quantities, 249 f f  

vector nature, 254 
Angular velocity, 250-55 

of precession, 299-300 
Anisotropy of CMB, 1214,1220 
Annihilation (e_e+, particle-antiparticle),

996,1175,1217 
Anode, 620
Antenna, 812,817,824,831,909  
Anthropic principle, 1225 
Anticodon, 1079 
Antilogarithm, A-3
Antimatter, 1175,1188,1190 pr (see also 

Antiparticle)
Antineutrino, 1115—16,1179 
Antineutron, 1175 
Antinodes, 412,433,434,435  
Antiparticle, 1116,1174-76,1179 (see also 

Antimatter)
Antiproton, 1164,1174-75 
Antiquark, 1179,1183 
Apparent brightness, 1197-98 
Apparent magnitude, 1228 pr  
Apparent weight, 148-49,350 
Apparent weightlessness, 148-49 
Approximations, 9-12 
Arago, F., 922 
Arches, 327-28 
Archimedes, 349-50 
Archimedes’ principle, 348-52 

and geology, 351 
Area, 9, A -l, inside back cover 

under a curve or graph, 169-71 
Arecibo, 931 
Aristotle, 2,84  
Armature, 720,766 
Arteriosclerosis, 359
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Artificial radioactivity, 1111 
A SA  number, 879 fn  
Associative property, 54 
Asteroids, 159 pr, 162 pr, 210 pr,

247 pr, 308 pr  
Astigmatism, 884,892,892 fn  
Astronomical telescope, 888-89 
Astrophysics, 1193-1225 
Asymptotic freedom, 1185 
ATLAS, 1170
Atmosphere, scattering of light by, 945 
Atmosphere (atm) (unit), 345 
Atmospheric pressure, 344-48 

decrease with altitude, 344 
Atom trap, 1013 pr, 1016 pr  
Atomic bomb, 1141,1144 
Atomic emission spectra, 936,1002 
Atomic force microscope (AFM), 1039 
Atomic mass, 455,1024-27  
Atomic mass number, 1105 
Atomic mass unit, 7,455 

unified, 1106 
Atomic number, 1052,1054-56,1105 
Atomic spectra, 1001-3,1006-8 
Atomic structure:

Bohr model of, 1003-9,1017,1044-46  
of complex atoms, 1052-54 
early models of, 1000-1 
of hydrogen atoms, 1045-51 
nuclear model of, 1001 
planetary model of, 1001 
quantum mechanics of, 1044-65 
shells and subshells in, 1053-54 

Atomic theory of matter, 455-56,559 
Atomic weight, 455 fh  
Atoms, 455-56,468-69,476-82,486-90, 

1000-10
angular momentum in, 1004,1046-49, 

1057-60 
binding energy in, 1006 
Bohr model of, 1003-9 
as cloud, 1045 
complex, 1052-54 
crystal lattice of, 1085 
and de Broglie’s hypothesis, 1009-10 
distance between, 456 
electric charge in, 561 
energy levels in, 1003-9,1046-47, 

1052-53,1055 
hydrogen,1002-10,1045-51 
ionization energy in, 1006-8 
neutral, 1106
probability distributions in, 1045, 

1049-51 
quantum mechanics of, 1044-65 
shells and subshells in, 1053-54 
vector model of, 1069 pr  
(see also Atomic structure; Kinetic 

theory)
ATP, 1076-77 
Attack angle, 356 
Attractive forces, 1074-75,1171 
A twood’s machine, 99,279 pr, 295 
Audible range, 425 
Aurora borealis, 717 
Autofocusing camera, 426 
Autoradiography, 1152 
Average acceleration, 24-26 
Average acceleration vector, 60

Average position, 1034 
Average speed, 20,480-82  
Average velocity, 20-22,60  
Average velocity vector, 60 
Avogadro, Amedeo, 468 
Avogadro’s hypothesis, 468 
Avogadro’s number, 468-69 
Axial vector, 254 fn  
Axis, instantaneous, 268 
Axis of rotation (defn), 249 
Axis of lens, 867 
Axon, 669-70

Back, forces in, 337 pr  
Back emf, 768-69 
Background radiation, cosmic

microwave, 1193,1213-15,1219, 
1220,1224 

Bainbridge-type mass spectrometer, 724 
Balance, human, 318 
Balance a car wheel, 296 
Ballistic galvanometer, 783 pr  
Ballistic pendulum, 226 
Balloons: 

helium, 467 
hot air, 454 

Balmer, J. J., 1002 
Balmer formula, 1002,1007 
Balmer series, 1002,1007-8 
Band gap, 1091-92 
Band spectra, 1080,1084-85 
Band theory of solids, 1090-92 

and doped semiconductors, 1094 
Banking of curves, 126-27 
Bar (unit), 345 
Bar codes, 1063 
Barn (bn) (unit), 1136 
Barometer, 347 
Barrel distortion, 892 
Barrier, Coulomb, 1038,1113,1200 
Barrier penetration, 1036-39,1113 
Barrier tunneling, 1036-39,1113 
Baryon, 1179-80,1183,1184,1222 

and quark theory, 1183,1184 
Baryon number, 1175,1179-80,1182-83,

1187,1217 
conservation of, 1175 

Base, nucleotide, 581,1078 
Base, of transistor, 1097 
Base bias voltage, 1097 
Base quantities, 7 
Base semiconductor, 1097 
Base units (defn), 7
Baseball, 82 pr, 163,303 pr, 310pr, 357, 

1023
Baseball curve, and Bernoulli’s principle, 

357
Basketball, 82 pr, 105 pr  
Battery, 609,652-53,655,658,678  

automobile, charging, 678 fn, 686-87 
chargers, inductive, 780 pr  

Beam splitter, 914 
Beams, 322,323-26 
Beat frequency, 438-39 
Beats, 438-39 
Becquerel, Henri, 1110 
Becquerel (Bq) (unit), 1147 
Bel (unit), 428

Bell, Alexander Graham, 428 
Bernoulli, Daniel, 354 
Bernoulli’s equation, 354-58 
Bernoulli’s principle, 354-57 
Beta decay, 1111,1114-16,1117,1121,1185 

inverse, 1202 
Beta particle (or ray), 1111,1114 (see also 

Electron)
Betatron, 782 pr  
Bethe, Hans, 1143
Biasing and bias voltage, 1095,1097 
Bicycle, 181 pr, 281 pr, 283 pr, 289,295, 

309 pr
Big Bang theory, 1188,1193,1212-25 
Big crunch, 1220,1221 
Bimetallic-strip thermometer, 457 
Binary system, 1203,1209 
Binding energy: 

in atoms, 1006
in molecules, 211 pr, 1073,1075,1077 
of nuclei, 1108-9 
in solids, 1086 
total, 985 pr, 1108 

Binding energy per nucleon (defn), 1108 
Binoculars, 855,889 
Binomial expansion, A -l, inside back 

cover
Biological damage by radiation, 1146-47 
Biological evolution, and entropy, 545 
Biot, Jean Baptiste, 743 
Biot-Savart law, 743^5  
B ismuth-strontium-calcium-copper oxide 

(BSCCO), 669 
Bits, 775 
Blackbody, 988
Blackbody radiation, 987-88,1198,1214 
Black holes, 156,160 pr, 161 pr, 1197,

1202,1203,1208-9,1221,1228 pr  
Blood flow, 353,357,359,361,366 pr,

453 pr
Blood-flow measurement,

electromagnetic, 453 pr, 765 
Blue sky, 945 
Blueshift, 1211 
Body fat, 368 pr
Bohr, Niels, 997,1003^, 1009,1017,

1024-25,1115 
Bohr magneton, 1057,1107 
Bohr model of atom, 1003-9,1017, 

1044-45,1046 
Bohr radius, 1005,1044,1045,1049-50 
Bohr theory, 1017,1044-45,1046 
Boiling, 485 (see also Phase, changes of) 
Boiling point, 457,485,503 
Boltzmann, Ludwig, 546 
Boltzmann constant, 468,547 
Boltzmann distribution, 1061 
Boltzmann factor, 1061,1088 
Bomb: 

atomic, 1141,1144 
fission, 1141 
fusion, 1144 
hydrogen, 1144 

Bond (defn), 1072-73 
covalent, 1072-73,1074,1085,1086 
dipole-dipole, 1077 
dipole-induced dipole, 1077 
hydrogen,1077-80 
ionic, 1073,1075,1085,1086
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Bond (icontinued) 
metallic, 1086 
molecular, 1071-74 
partially ionic and covalent, 1074 
in solids, 1085-86 
strong, 1072-74,1077-78,1085-86  
van der Waals, 1077-80,1086 
weak, 1077-80,1086 

Bond energy, 1072-73,1077 
Bond length, 1077,1099 pr  
Bonding: 

in molecules, 1071-74 
in solids, 1085-86 

Born, Max, 1017,1019 
Bose, Satyendranath, 1053 
Bose-Einstein statistics, 1087 fn  
Bosons, 1053, 1087/w, 1178,1179,

1183-86
Bottomness and bottom quark, 1119 fn, 

1182-83 
Bound charge, 641 
Bound state, 1035 
Boundary conditions, 1030,1035 
Bow wave, 443-44 
Box, rigid, 1030-34 
Boyle, Robert, 464 
Boyle’s law, 464,477 
Bragg, W. H., 939 
Bragg, W.L., 939,1017 
Bragg equation, 939 
Bragg peak, 1151 
Bragg scattering of X-rays, 1065 
Brahe, Tycho, 149 
Brake, hydraulic, 346 
Braking a car, 32,174,272-73  

LED lights to signal, 1096 
Branes, 1189 
Brayton cycle, 557 pr  
Breakdown voltage, 612 
Break-even (fusion), 1145 
Breaking point, 319 
Breaking the sound barrier, 444 
Breath, molecules in, 469 
Breeder reactor, 1140 
Bremsstrahlung, 1056 
Brewster, D., 943,949 pr  
Brewster’s angle and law, 943,

949 pr  
Bridge circuit, 704 pr  
Bridge-type full-wave rectifier,

1099 pr  
Bridges, 324-27,335 pr, 386 
Brightness, apparent, 1197-98 
British engineering system of units, 7 
Broglie, Louis de, 997,1009 
Bronchoscope, 856 
Brown, Robert, 455 
Brownian motion, 455 
Brunelleschi, Filippo, 328 
Brushes, 720,766 
BSCCO, 669 
Btu (unit), 497 
Bubble chamber, 1125,1174 
Bulk modulus, 319,321 
Buoyancy, 348-52 

center of, 364 pr  
Buoyant force, 348-49 
Burglar alarms, 992 
Burning (= fusion), 1200 fn

Cable television, 832 
Calculator errors, 4 
Calculator LCD display, 944 
Caloric, 497 
Calories (unit), 497 

relation to joule, 497 
Calorimeter, 501,1124,1125 
Calorimetry, 500-5 
Camera, digital and film, 878-82 

autofocusing, 426 
gamma, 1152 

Camera flash unit, 636 
Cancer, 1147,1150-51,1166 
Candela (cd) (unit), 915 
Cantilever, 315 
Capacitance, 629-42 

of axon, 670 
Capacitance bridge, 646 pr  
Capacitive reactance, 798-99 
Capacitor discharge, 690-91 
Capacitor microphone, 699 pr  
Capacitors, 628-42,1098 

charging of, 813-15 
in circuits, 633-35,687-92,

798-99 
energy stored in, 636-38 
as filters, 798-99 
reactance of, 798-99 
with R  or L, 687-92,793 f f  
in series and parallel, 633-35 
uses of, 799 

Capacity, 629-42,670  
Capillaries, 353,360 
Capillarity, 359-60 
Capture, electron, 1116 
Car:

battery charging, 686-7 
brake lights, 1096 
power needs, 203 
stopping of, 32,174,272-73  

Carbon (CNO) cycle, 1143,1161 pr  
Carbon dating, 1104,1122-24 
Carnot, N. L. Sadi, 533 
Carnot cycle, 533 
Carnot efficiency, 534 

and second law of thermodynamics, 
534-35 

Carnot engine, 533-35 
Carnot’s theorem, 535 
Carrier frequency, 830 
Carrier of force, 1171-73,1185 
Caruso, Enrico, 386 
Cassegrainian focus, 889 
CAT scan, 1153-54,1156 
Catalysts, 1077 
Cathedrals, 327 
Cathode, 620
Cathode ray tube (CRT), 620-21,723, 

831
Cathode rays, 620,721-22 {see also 

Electron)
Causal laws, 152 
Causality, 152 
Cavendish, Henry, 141,144 
CCD, 878 
CD player, 1063
CDs, 44 pr, 45 pr, 920 pr, 935,1063 
CDM model of universe, 1224 
CDMA cell phone, 832

Cell (biological): 
energy in, 1077 
radiation taken up by, 1147 

Cell (electric), 653,678 
Cell phone, 771,812,824,832  
Celsius temperature scale, 457-58 
Center of buoyancy, 364 pr  
Center of gravity (CG), 232 
Center of mass (CM), 230-36 

and angular momentum, 293 
and moment of inertia, 259,264, 

268-71 
and sport, 192,193 
and statics, 313
and translational motion, 234-36, 

268-9 
Centi- (prefix), 7 
Centigrade scale, 457-58 
Centiliter (cL) (unit), 7 
Centimeter (cm) (unit), 7 
Centipoise (cP) (unit), 358 
Centrifugal (pseudo) force, 123,300 
Centrifugal pump, 361 
Centrifugation, 122 
Centripetal acceleration, 120 f f  
Centripetal force, 122-24 
Cepheid variables, 1204,1226 pr 
CERN, 1168,1169,1186 
Cgs system of units, 7 
Chadwick, James, 1105,1162 pr 
Chain reaction, 1137-39,1141 
Chamberlain, Owen, 1175 
Chandrasekhar limit, 1201 
Change of phase (or state), 482-86, 

502-5
Characteristic expansion time, 1213 
Characteristic X-rays, 1055 
Charge, 506 f f  (see Electric charge) 
Charge, free and bound, 641 
Charge density, 596 
Charge-coupled device (CCD), 878 
Charging a battery, 678 fn, 686-87 
Charging by induction, 562-63 
Charles, Jacques, 464 
Charles’s law, 464 
Charm, 1179 fn,  1182-84 
Charmed quark, 1182 
Chemical bonds, 1072-80 
Chemical lasers, 1063 
Chemical reactions, rate of, 481 
Chemical shift, 1157 
Chernobyl, 1139
Chimney, and Bernoulli effect, 357 
Chip, computer, 16 pr, 1071,1094,1098 
Cholesterol, 359 
Chord, 23,250
Chromatic aberration, 889 fn, 892,932 
Chromatography, 490 
Chromodynamics, quantum (QCD), 

1173,1184-87 
Circle of confusion, 880,881 
Circuit, digital, 1097 
Circuit, electric (see Electric circuits) 
Circuit breaker, 662-63,694,747,776  
Circular apertures, 929-31 
Circular motion, 119-29 

nonuniform, 128-29 
uniform, 119-25 

Circulating pump, 361
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Classical physics (defn), 2,952,1018  
Clausius, R. J. E., 529,539 
Clausius equation of state, 487 
Clausius statement of second law of 

thermodynamics, 529,537 
Closed system {defn), 500 
Closed tube, 434
Cloud, electron, 1045,1051,1072-74 
Cloud chamber, 1125 
Cloud color, 945
Clusters, of galaxies, 1196,1220,1224 

of stars, 1196 
CM, 230-36 (see Center of mass)
CMB, 1193,1213-15,1219,1220,1224 
CMB anisotropy, 1214,1220,1224 
CMB uniformity, 1220 
CMOS, 647 pr, 878 
CNO cycle, 1143,1161 pr  
CO molecule, 1082 
Coal, energy in, vs. uranium, 1140 
Coating of lenses, optical, 913-14 
Coaxial cable, 740,789,825 
COBE, 1214 
Coefficient: 

of kinetic friction, 113-14 
of linear expansion, 459-63 
of performance (COP), 537,538 
of restitution, 243 pr  
of static friction, 113-14 
of viscosity, 358 
of volume expansion, 460,461 

Coherence, 906 
Coherent light, 906,1061,1064 
Cohesion, 360 
Coil (see Inductor)
Cold dark matter (CDM) model of 

universe, 1224 
Collector (of transistor), 1097 
Collider Detector at Fermilab (CDF), 

1125
Colliding beams, 1169-71 
Collimated beam, 1152/h, 1153 
Collimated gamma-ray detector, 1152 
Collision: 

completely inelastic, 225 
conservation of energy and momentum 

in, 217-19,222-29  
elastic, 222-25 
and impulse, 220-21 
inelastic, 222,225-27,238  
nuclear, 225,228-29 

Colloids, 340 
Colonoscope, 856 
Color: 

in digital camera, 878 
of light related to frequency and 

wavelength, 852-4,903,906,912  
of quarks, 1184-85 
of star, 988,1199 

Color charge, 1184-85 
Color force, 1185-86,1187 
Color-corrected lens, 892 
Coma, 892
Common logarithms, A-2-A -3  
Commutative property, 53,167,290  
Commutator, 720 
Compact disc (CD) player, 1063 
Compact disc (or disk), 44 pr, 45 pr, 920 pr, 

935,1063

Compass, magnetic, 707-8,709  
Complementarity, principle of, 997 
Complementary metal oxide

semiconductor (CMOS), 647 pr,
878

Complete circuit, 654 
Completely inelastic collisions, 225 
Complex atoms, 1052-56 
Complex quantities, 1019 fn,  1025 fn,

1028
Complex wave, 408,436 
Components of vector, 55-59 
Composite particles, 1178,1179,1183 
Composite wave, 408,436 
Composition resistors, 657 
Compound lenses, 892 
Compound microscope, 890-91 
Compound nucleus, 1136-37 
Compounds, 455 fn
Compression (longitudinal wave), 398,401 
Compressive stress, 321 
Compton, A. H., 994,1017,1138 
Compton effect, 994-95,996,1146 
Compton shift, 994 

derivation of, 995 
Compton wavelength, 994 
Computed tomography (CT), 1153-54, 

1156 
Computer: 

and digital information, 775 
disks, 775
hard drive, 253,775 
keyboard, 631 
memory, 644 pr 
monitor, 621,943 
printers, 582-83 

Computer chips, 16 pr, 1071,1094,1098 
Computer-assisted tomography (CAT), 

1153-54,1156 
Computerized axial tomography (CAT), 

1153-54,1156 
Concave mirror, 842,846-48,889  
Concentration gradient, 489,516 fn  
Concordance model, 1216 
Concrete, prestressed and reinforced,

323
Condensation, 484 
Condensed-matter physics, 1085-98 
Condenser microphone, 699 pr  
Condition, boundary, 1030,1035 
Conductance, 675 pr 
Conduction: 

charging by, 562-63 
electrical, 561,651-97 
of heat, 515-17,525 pr 
in nervous system, 669-70 

Conduction band, 1091-92 
Conduction current (defn), 816 
Conduction electrons, 561 
Conductivity: 

electrical, 659,668 
thermal, 515 

Conductors: 
charge of, 1094 
electric, 561,577,654 f f  
heat, 516
quantum theory of, 1091-92 

Cones, 882
Configuration, electron, 1053-54

Confinement: 
in fusion, 1145-46 
of quarks, 1185,1217 

Conical pendulum, 125 
Conservation of energy, 183 f f  189-201, 

506-7,1026,1112,1115,1117,1176 
in collisions, 222-25 

Conservation laws, 163,190 
of angular momentum, 285-89,297-98 
apparent violation of, in beta decay, 

1115
of baryon number, 1175,1187,1217 
and collisions, 217-19,222-29 
of electric charge, 560,1117,1175 
in elementary particle interactions,

1172,1175-76 
of energy, 189-201,506-7,1026,1112,

1115,1117,1176 
of lepton number, 1175-76,1187,1217 
of mechanical energy, 189-95 
of momentum, 217-29,1175-76  
in nuclear and particle physics, 1117, 

1175
in nuclear processes, 1115 
of nucleon number, 1117,1175-76,1180 
of strangeness, 1181 

Conservative field, 775 
Conservative forces, 184-85 
Conserved quantity, 163,190 
Constant acceleration, 28-29,62  
Constant angular acceleration, 255 
Constant, normalization, 1032 
Constants, values of: inside front cover 
Constant-volume gas thermometer, 458 
Constructive interference, 410-11,437, 

904 # 9 1 3 ,1 0 7 2  
Contact force, 84,92,95  
Contact lens, 885 
Continental drift, 351 
Continuity, equation of, 353 
Continuous laser, 1063 
Continuous spectrum, 935,988 
Continuous wave, 397 
Control rods, 1139 
Convection, 517
Conventional current (defn), 655 
Conventions, sign (geometric optics), 

845-46,849,871 
Converging lens, 866 f f  
Conversion factors, 8, inside front cover 
Converting units, 8-9  
Convex mirror, 842,848^-9 
Conveyor belt, 236-37,244 pr  
Coordinate axes, 19
Copenhagen interpretation of quantum 

mechanics, 1024 
Copier, electrostatic, 569,582-83 
Cord, tension in, 97 
Core, of reactor, 1139 
Coriolis acceleration, 301-2 
Coriolis force, 301 
Cornea, 883
Corona discharge, 612,645 pr  
Corrective lenses, 883-85 
Correspondence principle, 980,1009, 

1018
Cosmic acceleration, 1223 
Cosmic Background Explorer (COBE), 

1214
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Cosmic microwave background radiation 
(CMB), 1193,1213-15,1219,1220, 
1224

anisotropy of, 1214,1220,1224 
uniformity of, 1214,1220 

Cosmic rays, 1165 
Cosmological constant, 1223,1224 
Cosmological model, 1216-19,1224 
Cosmological principle, 1212 

perfect, 1213 
Cosmological redshift, 1211 
Cosmology, 1188,1193-1225 
Coulomb, Charles, 563 
Coulomb (C) (unit), 564,737 

operational definition of, 737 
Coulomb barrier, 1038,1113,1200 
Coulomb potential (defn), 613 
Coulomb’s law, 563-67,593-94,600,817, 

1076
vector form of, 567 

Counter emf, 768-70 
Counter torque, 769 
Counters, 1124-25
Covalent bond, 1072-73,1074,1085,1086
Creativity in science, 2-3
Credit card swipe, 776
Crick, F , 939
Critical angle, 854
Critical damping, 383
Critical density, of universe, 1221-22
Critical mass, 1138^11
Critical point, 483
Critical reaction, 1138-41
Critical temperature, 483,668
Cross product, vector, 289-91
Cross section, 1135-37
Crossed Polaroids, 941-42
CRT, 620-21,723,831
Crystal lattice, 456,1085
Crystallography, 939
CT scan, 1153-54,1156
Curie, Marie, 1017,1110
Curie, Pierre, 750,1110
Curie (Ci) (unit), 1147
Curie temperature, 746,750
Curie’s law, 750
Curl, A-12
Current, electric (see Electric current) 
Current, induced, 758-76,785 f f  
Current density, 666-68 
Current gain, 1097 
Current sensitivity, 695 
Curvature of field, 892 
Curvature of space, 155-56,1207-9,

1220-22
Curvature of universe (space-time), 

1207-9,1220-21 
Curves, banking of, 126-27 
Cutoff wavelength, 1055-56 
Cycle (defn), 371 
Cyclotron, 731 pr, 1166-67 
Cyclotron frequency, 715,1167 
Cygnus X -l, 1209

DAC, 706 pr
Damage, done by radiation, 1146-47 
Damping and damped harmonic motion, 

382-85

Dark energy, 1175,1219,1221-23 
Dark matter, 1189,1219,1221-23 
Dating, geological, 1123-24 
Dating, radioactive, 1122-24 
Daughter nucleus (defn), 1111 
Davisson, C. J., 998 
dB (unit), 428-31 
Dc (defn), 664 
Dc circuits, 677-97 
Dc generator, 767,768 
D c motor, 720
de Broglie, Louis, 997,1009,1017,1018 
de Broglie wavelength, 997-98,1009-10,

1019,1025,1165-66 
applied to atoms, 1009-10 

Debye (unit), 617 
Debye equation, 527 pr, 558 pr  
Decay, 1110 

alpha, 1038,1111-14,1117 
beta, 1111,1114-16,1117,1121,1185,1202 
of elementary particles, 1175-86 
exponential, 688-90,791,1118-19  
gamma, 1111,1116-17 
proton, 1179,1187-88 
radioactive, 1110-26 
rate of, 1118-20 
types of radioactive, 1111,1117 

Decay constant, 1117-18 
Decay series, 1121-22 
Deceleration, 26 
Decibels (dB) (unit), 428-31 
Declination, magnetic, 709 
Decommissioning nuclear power plant, 

1140
Decoupled photons, 1215,1219 
Dee, 1166-67
Defects of the eye, 883-85,892 
Defibrillator, heart, 638,692 fn  
Definite integrals, 41, A-7 
Degeneracy: 

electron, 1201 
neutron, 1202 

Degradation of energy, 545-46 
Degrees of freedom, 512-13 
Dehumidifier, 558 pr  
D el operator, 618 fn, A-12 
Delayed neutrons, 1139 
Delta particle, 1181 
Demagnetization, 749 
Demodulator, 831 
Dendrites, 669 
Density, 340^1  

charge, 596 
and floating, 351
probability, 1019,1028,1031,1036, 

1045,1048-49,1051,1072 
Density of occupied states, 1088 
Density of states, 1087-90 
Density of universe, 1221-22 
Depth of field, 880
Derivatives, 22-23,27, A-6, inside back 

cover 
partial, 189,406 

Derived quantities, 7 
Destructive interference, 410,437,904, 

913,914,1072 
Detection of radiation, 1124-26,1149 
Detectors, of particles and radiation, 

1124-26

Detergents and surface tension, 360 
Determinism, 152,1024-25 
Deuterium, 1105,1132,1138,1142-45 
Deuterium-tritium fusion (d-t), 1144-45 
Deuteron, 1132 
Dew point, 486 
Diagrams:

Feynman, 1172,1185 
force, 95
free-body, 95-96,102  
H -R , 1199,1204 
phase, 483
phasor, 800,907,925,937  
potential, energy, 1074-77 
PT,483
PV, 482-83,487,507 
ray, 844,849,871
for solving problems, 30,58,64,96,

102,125,166,198,229,261,314,571, 
849,871 

Diamagnetism, 749-50 
Diamond, 855 
Dielectric constant, 638 
Dielectric strength, 638 
Dielectrics, 638^0  

molecular description of, 640-42 
Diesel engine, 508,527 pr, 553 pr  
Differential cross section, 1136 
Differential equation (defn), 372 
Diffraction, 901,921-39,1062  

by circular opening, 929-30 
as distinguished from interference,

929
in double-slit experiment, 927-29 
of electrons, 998-9 
Fraunhofer, 922 fn  
Fresnel, 922 fh  
of light, 901,921-39 
as limit to resolution, 929-33 
by single slit, 922-27 
X-ray, 938-39 
of water waves, 416 

Diffraction factor, 928 
Diffraction grating, 933-35 

resolving power of, 937-38 
Diffraction limit of lens resolution, 

929-30 
Diffraction patterns, 922 

of circular opening, 929 
of single slit, 922-27 
X-ray, 938-39 

Diffraction spot or disk, 929-30 
Diffuse reflection, 839 
Diffusion, 489-90 

Fick’s law of, 489 
Diffusion constant, 489 
Diffusion equation, 489 
Diffusion time, 490 
Digital ammeter, 695,697 
Digital artifact, 878 
Digital camera, 878-82 
Digital circuits, 1097 
Digital information, 775 
Digital video disk (DVD) players, 1063 
Digital voltmeter, 695,697 
Digital zoom, 882
Digital-to-analog converter (DAC),

706 pr
Dilation, time, 960-64,970
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Dimensional analysis, 12-13,16 pr, 134 pr, 
135 pr, 418 pr, 1015 pr, 1228 pr, A-8 

Dimensions, 12-13 
Diodes, 1038,1095-96,1125 

forward-biased, 1095 
junction, 1097 
lasers, semiconductor, 1063 
light-emitting (LED), 1096 
photo-, 992,1096 
reverse-biased, 1095 
semiconductor, 1094-96 
tunnel, 1038 
zener, 1095 

Diopter (D) (unit), 868 
Dip, angle of, 709 
Dipole antenna, 817-18 
Dipole layer, 669 
Dipole-dipole bonds, 1077 
Dipole-induced dipole bonds, 1077 
Dipoles and dipole moments: 

of atoms, 1057-60 
electric, 576,579-80,617,641  
magnetic, 718-19,745 
of nuclei, 1107 

Dirac, P. A. M., 1017,1047,1087 fn, 1174 
Dirac equation, 1174 
Direct current (dc), 664 (see also Electric 

current)
Discharge, capacitor, 690-91 
Discharge, corona, 612,645 pr  
Discharge tube, 1002 
Discovery in science, 722 
Disintegration, 1110 
Disintegration energy (defn), 1112 
Disorder and order, 544-45 
Dispersion, 409,853 
Displacement, 20-21,371,380,404  

angular, 250,381 
resultant, 52-53 
vector, 20,52-54,59-60  
in vibrational motion, 371 
of wave, 404 ff, 1019 

Displacement current, 816 
Dissipative forces, 196-98 

energy conservation with, 197-99 
Dissociation energy, 1073 
Distance:

astronomical, 1194,1197,1199,1203-4 
image, 840,845,857,870-71  
object, 840,845,857,870-71 
relativity of, 964-70 

Distortion, by lenses, 892 
Distribution, probability: 

in atoms, 1019,1028,1031,1036,1045,
1048-49,1051 

in molecules, 1072 
Distributive property, 167,290 
Diver, 286 
Divergence, A-12 
Divergence theorem, A-12 
Diverging lens, 867 f f  
DNA, 581-82,936,939,1077-80,1147, 

1152
Domains, magnetic, 746 
Domes, 328 
Donor level, 1094 
Door opener, automatic, 992 
Doorbell, 747
Doping of semiconductors, 1093 f f

Doppler, J. C., 439 fn  
Doppler effect: 

for light, 443,978-80,1210  
for sound, 439-43 

Doppler flow meter, 442,453 pr  
Dose, 1147-50 

effective, 1148 
Dosimetry, 1147-50 
Dot (scalar) product, 167-68 
Double-slit experiment (electrons), 1018,

1019-20
Double-slit experiment (light), 903-6 

intensity in pattern, 906-9,927-29  
Down quark, 1182 
Drag force, 129-30,356,368 pr  
DRAM , 644 pr, 647 pr  
Drift velocity, 666-68,723,724  
Dry cell, 653 
Dry ice, 483
d-t (deuterium-tritium) fusion,

1144-45
Duality, wave-particle, 997-9,1009-10  
Dulong and Petit value, 513 
Dust, interstellar, 1196 
DVD player, 1063 
Dwarfs, white, 1197,1199,1201-2 
Dye lasers, 1063 
Dynamic lift, 356-57 
Dynamic random access memory 

(DRAM ), 644 pr, 647 pr 
Dynamics, 19,84 f f  

fluid, 352-61 
hydro-, 352
of rotational motion, 258 f f  
of uniform circular motion, 122-25 

Dynamo, 766-68 
Dyne (unit), 87 
Dynodes, 1124

Ear:
discomfort, altitude, 367 pr 
response of, 431 

Earth:
as concentric shells, 142-43, A-9-A-11  
estimating radius of, 11,15 pr  
as inertial frame, 85,137 pr, 145-46 
magnetic field and magnetic poles of, 

709
mass, radius, etc.: inside front cover 
mass determination, 144 
precession of axis, 303 pr  
rocks and earliest life, 1124 

Earthquake waves, 401,402,403,416 
Eccentricity, 150 
ECG, 609,621 
Echolocation, 400 
Eddy currents (electric), 770 
Eddy currents (fluids), 352 
Edison, Thomas, 620 
Effective cross section, 1135 
Effective dose, 1148 
Effective values, 664-65 
Efficiency, 203,531,534  

Carnot, 534 
and Otto cycle, 536 

Einstein, Albert, 155,455,513,952,954, 
957-58,961,969,989,1017,1141, 
1205-8,1223

Einstein cross, 1207 
Einstein ring, 1207 
EKG, 609,621 
Elapsed time, 20-21 
Elastic collisions, 222-25 
Elastic cross section, 1135 
Elastic limit, 319 
Elastic moduli, 319 

and speed of sound waves, 400 
Elastic potential energy, 188 f f  
Elastic region, 319 
Elastic scattering, 1135 
Elasticity, 318-22 
El Capitan, 77 pr, 363 pr  
Electric battery, 609,652-53,655,658, 

678
Electric car, 675 pr  
Electric cell, 653,678 
Electric charge, 560 f f  

in atom, 561 
bound and free, 641 
conservation of, 560,1117,1175 
continuous charge distributions, 572-75 
and Coulomb’s law, 563-67 
of electron, 564 
elementary, 564 
free, 641
induced, 562-63,641 
motion of, in electric field, 578-79 
motion of, in magnetic field, 714-17 
point (defn), 565 
quantization of, 564 
test, 568 
types of, 560 

Electric circuits, 654-5,662-5,677-97, 
790-803 

ac, 664-5,677 fn, 796-803 
complete, 654
containing capacitors, 633-35,687-92, 

798 f f  
dc, 677-97 
digital, 1097
impedance matching of, 802-3
induced, 758-76,785 f f
integrated, 1098
and Kirchhoff’s rules, 683-86
L C ,793-96
L R ;790-92
LRC,  795-803
open, 654
parallel, 633,663,680 
RC, 687-92 
rectifier, 1096 
resonant, 802 
series, 634,679 
time constants of, 688,791 

Electric conductivity, 659,668 
in nervous system, 669-70 

Electric current, 651,654-58,662-69,
683 f f

alternating (ac), 664-65,677 fn, 
796-803 

conduction (defn), 816 
conventional, 655 
density, 666-68 
direct (dc) (defn), 664 
displacement, 816 
eddy, 770 
hazards of, 692-94
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Electric current (continued) 
induced, 759 
leakage, 694
magnetic force on, 710-19 
microscopic view of, 666-68 
and Ohm’s law, 655-58 
peak, 664
produced by magnetic field, 759-60 
produces magnetic field, 710-13,746 
rms, 664-65
(see also Electric circuits)

Electric dipole, 576,579-80,617,641 
Electric energy, 607-9,619-20,636-38, 

660-62 
stored in capacitor, 636-38 
stored in electric field, 637-38 

Electric energy resources, 550 
Electric field, 568-83,591-600,610-12, 

617-19,775 
calculation of, 568-75,595-600,610-11, 

617-19 
and conductors, 577,655 fn  
continuous charge distributions,

572-75 
in dielectric, 639^0  
of and by dipole, 579-80 
in EM wave, 817-18 
energy stored in, 637-38 
and Gauss’s law, 591-600 
inside a wire, 668
motion of charged particle in, 578-79 
produced by changing magnetic field, 

759-60,773-75  
produces magnetic field, 813-16 
relation to electric potential, 610-12, 

617-19
Electric field lines, 575-76,616  
Electric flux, 592-93,814  
Electric force, 559,563-67,717  

Coulomb’s law for, 563-67 
and ionization, 1146 
in molecular biology, 581-82,1077-80  

Electric generator, 766-68 
Electric hazards, 692-94 
Electric motor, 720 

counter emf in, 768-69 
Electric plug, 693-94 
Electric potential, 607-18 

of dipole, 617
due to point charges, 612-15 
equipotential surfaces, 616-17 
relation to electric field, 610-12,

617-19
(see also Potential difference)

Electric potential energy, 607-10,619-20, 
636-38 

Electric power, 660-63 
in ac circuits, 665,790,792,797,798, 

801,802,803 
generation, 766-68 
in household circuits, 662-63 
and impedance matching, 802-3 
transmission of, 770-73 

Electric quadrupole, 589 pr  
Electric shielding, 577,740 
Electric shock, 692-94 
Electric stove burner, 660 
Electric vehicle, 675 pr 
Electrical grounding, 562,655

Electricity, 559-836 
hazards of, 692-94 

Electricity, static, 559 f f  
Electrocardiogram (ECG, EKG), 609,621 
Electrochemical series, 652 
Electrode, 653 
Electrolyte, 653 
Electromagnet, 747 
Electromagnetic energy, 1168 
Electromagnetic force, 155,717,1118, 

1171-73,1178-79,1186-88,1205  
Electromagnetic induction, 758 f f  
Electromagnetic oscillations, 793-96,

802
Electromagnetic pumping, 726 pr  
Electromagnetic spectrum, 823,852-54  
Electromagnetic (EM) waves, 817-32 

(see also Light)
Electrometer, 563 
Electromotive force (emf), 678-79, 

758-67,768 (see also Emf)
Electron: 

as beta particle, 1111,1114 
as cathode rays, 620,721 
charge on, 564,722-23  
cloud, 1045,1051,1072-74 
conduction, 561 
defined, 999 
discovery of, 721-23 
in double-slit experiment, 1019-20 
as elementary particle, 1175-76 
free, 561,1029,1086,1092 
mass of, 723,1107 
measurement of charge on, 723 
measurement of e/m,  722-23 
momentum of, 972 
motion of, in electric field, 578-79 
in pair production, 996 
path in magnetic field, 715 
photoelectron, 992 
speed of, 666-68 
spin, 746
wave nature, 1020 
wavelength of, 998 

Electron capture, 1116 
Electron cloud, 1045,1051,1072-74 
Electron configuration, 1053-54 
Electron degeneracy, 1201 
Electron diffraction, 998-99 
Electron gun, 621
Electron lepton number, 1176,1179,1183 
Electron microscope, 987,1000,1021, 

1038-39,1043 pr  
Electron neutrino, 1178,1179 
Electron sharing, 1072 
Electron spin, 746,1047,1058-60,1072  
Electron volt (eV) (unit), 619-20,1107 
Electrons, sea of, 1174 
Electronic circuits, 1095-98 
Electronic devices, 1093-98 
Electronic pacemakers, 692,787 
Electroscope, 562-63,652 fn  
Electrostatic air cleaner, 645 pr  
Electrostatic copier, 569,582-83 
Electrostatic force, 563-67,581-82,1077  

defined, 565
potential energy for, 607-8 

Electrostatic potential energy, 619-20 
Electrostatic unit (esu), 564 fn

Electrostatics, 560-642 
Electroweak force, 155,559 fn,  1186-88 
Electroweak theory, 1186-88 
Elementary charge, 564 
Elementary particle physics, 1164-89 
Elementary particles, 1164-89 
Elements, 455 fn, 1053-54 

in compound lenses, 892 
origin of in universe, 1201-2 
Periodic Table of, 1053-54, inside back 

cover 
production of, 1201-2 
transmutation of, 1111,1132-35 
transuranic, 1134 

Elevator and counterweight, 99 
Ellipse, 150
EM waves, 817-32 (see also Light)
Emf, 678-79,758-66,767,768  

back, 768-69 
counter, 768-69 
of generator, 766-69 
Hall, 723-24 
induced, 758-69,789 
motional, 765-66 
and photons, 1172 
RC  circuit with, 689 
series and parallel, 686-87 
sources of, 678,758-68  

Emission spectra, 987-88,1001-3,1005-8  
atomic, 936,1002 

Emission tomography, 1156 
Emissivity, 518 
Emitter (transistor), 1097 
Emulsion, photographic, 1125 
Endoergic reaction (defn), 1133 
Endoscopes, 856
Endothermic reaction (defn), 1133 
Energy, 163,172-76,183-200,222-29, 

265-69,505-7,607 f f  
activation, 481,1075,1077  
and ATP, 1076-77
binding, 985 pr, 1006,1073,1075,1077, 

1108-9 
bond, 1072-73,1077 
conservation of, 189-201,506-7,1026,

1112,1115,1117,1176 
dark, 1165,1175,1219,1222,1223 
degradation of, 545-46 
disintegration, 1112 
dissociation, 1073
electric, 607-9,619-20,636-38,660-63
in EM waves, 817,818,826-27,1168
equipartition of, 512-13
Fermi, 1087-89,1092
and first law of thermodynamics,

505-7 
geothermal, 550
gravitational potential, 186-88,191, 

194-95,199-201 
internal, 196,498-99 
ionic cohesive, 1086 
ionization, 1006,1008 
kinetic, 172-73,265-69,974-6  
and mass, 974-78 
mechanical, 189-95 
molecular kinetic, 478-79 
nuclear, 530 fn, 550,1131-59 
nucleotide, 1078 
photon, 989-93
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Energy (continued) 
potential, 186-89,607-10,619-20, 

636-38 (see also Electric potential; 
Potential energy) 

quantization of, 989,1003-9,1031 
reaction (defn), 1133 
relation to work, 172-76,186,197-99, 

265-67,978 
relativistic, 974-8 
rest, 974-76,1023
rotational, 265-67 and ff,  499,1080-82,

1084-85
in simple harmonic motion, 377-78
solar, 550
thermal, 196,498
threshold, 1134,1163 pr
total binding, 985 pr
transformation of, 196,201
translational kinetic, 172-74
unavailability of, 545-46
and uncertainty principle, 1022-23,1036
units of, 164,173,256
vacuum, 1223
vibrational, 377-78,499,1082-85  
zero-point, 1031,1036-37,1042 pr, 1083 

Energy bands, 1090-92 
Energy conservation, law of, 189-201,

506-7,1026,1112,1115,1117,1176 
Energy density: 

in electric field, 638,639 
in magnetic field, 790,826 

Energy gap, 1091-92 
Energy levels: 

in atoms, 1003-9,1046-48 
for fluorescence, 1060 
for lasers, 1061-64 
in molecules, 1080-85 
nuclear, 1116-17 
in solids, 1090-91 
in square well, 1031 

Energy states, in atoms, 1003-9 
Energy transfer, heat as, 497 
Engine: 

diesel, 508,527 pr, 553 pr  
internal combustion, 530-32,535-36 
power, 202-3 
steam, 530 

Enriched uranium, 1138 
Entire universe, 1216 
Entropy, 539-48 

and biological evolution, 545 
as order to disorder, 544-45 
and second law of thermodynamics, 

541—48 
as a state variable, 540 
statistical interpretation, 546-48 
and time’s arrow, 544 

Enzymes, 1077
Equally tempered chromatic scale, 431 
Equation of continuity, 353 
Equation of motion, 372 
Equation of state, 463 

Clausius, 487 
ideal gas, 466 
van der Waals, 486-87 

Equilibrium (defn), 204-5,311,312-13,317 
first condition for, 312 
force in, 312-13 
neutral, 205,317

second condition for, 313 
stable, 204-5,317  
static, 311-24 
thermal, 459 
unstable, 205,317 

Equilibrium distance, 1077,1099 pr  
Equilibrium position (vibrational 

motion), 370 
Equilibrium state, 463 
Equipartition of energy, 512-13 
Equipotential lines, 616-17 
Equipotential surface, 616-17 
Equivalence, principle of, 155-56,1205-6  
Erg (unit), 164 
Escape velocity, 201,1222 
Escher drawing, 206 pr  
Estimated uncertainty, 3 
Estimating, 9-12 
Eta (particle), 1179 
Ether, 954-57 
Euclidean space, 1207-8 
European Center for Nuclear Research 

(CERN), 1168,1169,1186 
Evaporation, 484 

and latent heat, 505 
Event, 958 f f  
Event horizon, 1209
Everest, Mt., 6 ,8,144,161 pr, 364 pr, 485 
Evolution: 

and entropy, 545 
stellar, 1200-3 

Exact differential, 506 fh  
Exchange particles (carriers of force), 

1171-73 
Excited state: 

of atom, 996,1005 f f  
of nucleon, 1181 
of nucleus, 1116-17 

Exclusion principle, 1052-53,1072,1087,
1089,1184,1201,1202 

Exoergic reaction (defn), 1133 
Exothermic reaction (defn), 1133 
Expansion: 

free, 510-11,542,548 
linear and volume, 318-21 
thermal, 459-62 
of universe, 1209-13,1221-23 

Expansions, mathematical, A-1 
Expansions, in waves, 398 
Exponential curves, 688-90,791,1118-19  
Exponential decay, 688-90,791,1118-19  
Exponents, A-1, inside back cover 
Exposure time, 879 
Extension cord, 663 
External force, 218,234 
Extragalactic (defn), 1196 
Extraterrestrials, possible communication 

with, 834 pr
Eye:

aberrations of, 892 
accommodation, 883 
defects of, 883-85,892 
far and near points of, 883 
lens of, 883 
normal (defn), 883 
resolution of, 930,932-33 
structure and function of, 882-85 

Eyeglass lenses, 883-85 
Eyepiece, 888

Fahrenheit temperature scale, 457-58 
Falling objects, 34-39 
Fallout, radioactive, 1141 
False-color image, 1154 
Fan-beam scanner, 1153-54 
Far field, 818 
Far point of eye, 883 
Farad (F) (unit of capacitance), 629 
Faraday, Michael, 154,568,758-60  
Faraday cage, 577 
Faraday’s law of induction, 760-61, 

773-74,817 
Farsightedness, 883,884 
Femtometer (fm) (unit), 1106 
Fermat’s principle, 864 pr  
Fermi, Enrico, 12,997,1018,1053,1087 fn, 

1115,1134,1138,1180-81 
Fermi (fm) (unit), 1106 
Fermi-Dirac probability function, 1088, 

1092
Fermi-Dirac statistics, 1087-90 
Fermi energy, 1087-90,1092 
Fermi factor, 1088 
Fermi gas, 1087 
Fermi level, 1087-90 
Fermi speed, 1089 
Fermi temperature, 1102 pr  
Fermilab, 1164,1168,1169 
Fermions, 1053, 1087,1184 
Ferromagnetism and ferromagnetic 

materials, 708,746-49 
Feynman, R., 1172 
Feynman diagram, 1172,1185 
Fiber optics, 855-56 
Fick’s law of diffusion, 489 
Fictitious (inertial) forces, 300-1 
Field, 154 

conservative and nonconservative, 775 
electric, 568-83,591-600,610-12, 

617-19,775 (see also Electric field) 
in elementary particles, 1171 
gravitational, 154,156,576,1205-9  
Higgs, 1186
magnetic, 707-17,733-50 (see also 

Magnetic field) 
vector, 575 

Film badge, 1125 
Film speed, 879 fn  
Filter circuit, 799,810 pr, 811 pr  
Fine structure, 1017,1044,1047,1060 
Fine structure constant, 1060 
Finite potential well, 1035-36 
First law of motion, 84-85 
First law of thermodynamics, 505-7 

applications, 507-11 
extended, 507 

Fission, 550 
nuclear, 1136-41 

Fission bomb, 1141 
Fission fragments, 1136—40 
Fitzgerald, G. F., 957 
Flasher unit, 691 
Flashlight, 659 
Flatness, 1220
Flavor (of elementary particles), 1177,

1184
Flavor oscillation, 1177 
Flip coil, 783 pr  
Floating, 351
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Flow: 
of fluids, 352-61 
laminar, 352
meter, Doppler, 442,453 pr  
streamline, 352 
in tubes, 353-55,357,358-59  
turbulent, 352,357 

Flow rate, 353 
Fluid dynamics, 352-61 
Fluids, 339-61 (see also Flow of fluids;

Gases; Liquids; Pressure) 
Fluorescence, 1060 
Fluorescent lightbulb, 1060 

ballast, 773 
Flux: 

electric, 592-93,814 
magnetic, 760 ff, 773-75,816,820  

Flying buttresses, 327 
Flywheel, 266,281 pr  
FM radio, 830-31,831 fn  
/-number, 879 
Focal length: 

of lens, 867-68,875,876-77,882,883 
of spherical mirror, 842^3,848  

Focal plane, 867
Focal point, 842-43,848,867-68,883 
Focus, 843
Focusing, of camera, 879-80 
Football kicks, 66,69  
Foot-candle (defn), 915 fn  
Foot-pounds (unit), 164 
Forbidden energy gap, 1091 
Forbidden transitions, 1049,1061 fn,

1083 fn, 1084 
Force, 83-102,155,184-85,215,234-35, 

1173,1188 
addition of, 95,143 
attractive, 1074—75,1171 
buoyant, 348-49 
centrifugal (pseudo), 123,300 
centripetal, 122-24 
color, 1185-86,1187 
conservative, 184-85 
contact, 84,92,95  
Coriolis, 301 
definition of, 87 
diagram, 95 
dissipative, 196-98 
drag, 129-30,356,368 pr  
electromagnetic, 155,717,1118, 

1171-73,1178-79,1186-88,1205  
electrostatic, 563-67,581-82,1077 
electroweak, 155,559 fn, 1188 
in equilibrium, 312-13 
exerted by inanimate object, 90 
external, 218,234 
fictitious, 300-1 
of friction, 85-87,113-19  
of gravity, 84,92-94,140-156,1173,

1188,1189,1193,1202,1205-9,1221,
1223 

impulsive, 221 
inertial, 300-1 
long-range, 1110,1205 
magnetic, 707,710-19 
measurement of, 84 
in muscles and joints, 278 pr, 315,330 pr, 

331 pr, 332 pr, 336 pr, 337 pr 
net, 85-88,95 f f

in Newton’s laws, 83-102,215,218, 
234-35 

nonconservative, 185 
normal, 92-94
nuclear, 155,212 pr, 1110,1115, 

1171-89,1205 
pseudoforce, 300-1
relation of momentum to, 215-16,218, 

220-21,235,236,972,974 
repulsive, 1074-75,1171 
resistive, 129-30 
restoring, 170,370 
short-range, 1110,1205 
strong nuclear, 155,1110,1134 fh, 

1171-89,1205 
types of, in nature, 155,559 fn, 1173,

1188 
units of, 87
van der Waals, 1077-80,1086 
velocity-dependent, 129-30 
viscous, 358-59
weak nuclear, 155,1110,1115,1173-89, 

1205
(see also Electric force; Magnetic force) 

Force diagrams, 95 
Force pumps, 348,361 
Forced oscillations, 385-87 
Forward biased diode, 1095 
Fossil-fuel power plants, 550 
Foucault, J., 902
Four-dimensional space-time, 967,1207
Fourier analysis, 436
Fourier integral, 408
Fourier’s theorem, 408
Fovea, 882
Fracture, 322-23
Frame of reference, 19,85,300-2,952 f f  

accelerating, 85,88,155-56,300-2  
inertial, 85 ,88,300,952 f f  
noninertial, 85,88,156,300-2,952  
rotating, 300-2
transformations between, 968-71 

Franklin, Benjamin, 560,600 
Franklin, Rosalind, 939 
Fraunhofer diffraction, 922 fn  
Free-body diagrams, 95-96,102  
Free charge, 641
Free-electron theory of metals, 1086-90 
Free electrons, 561,1029,1086,1092 
Free expansion, 510-11,542,548 
Free fall, 34-39,148
Free particle, and Schrodinger equation, 

1025-29
Freezing (see Phase, changes of)
Freezing point, 457 fn, 503 
Frequency, 121,253,371,397  

angular, 373
of audible sound, 425,431 
beat, 438-39 
of circular motion, 121 
collision, 494 pr  
cyclotron, 1167 
fundamental, 413,432,433-35  
infrasonic, 426 
of light, 823,853,854 
natural, 374,385,412 
resonant, 385,412-13 
of rotation, 253 
ultrasonic, 426,445

of vibration, 371,382,412 
of wave, 397 

Frequency modulation (FM), 830,
831 fn  

Fresnel,A.,922 
Fresnel diffraction, 922 fn  
Friction, 85,113—19 

coefficients of, 113-14 
force of, 85-87,113-19  
helping us to walk, 90 
kinetic, 113 f f  
rolling, 113,273-74 
static, 114,270 

Fringe shift, 956
Fringes, interference, 904-6,956,1065  
Frisch, Otto, 1136 
/-stop (defn), 879 
Fulcrum, 313
Full-scale current sensitivity, 695 
Full-wave rectifier, 1096,1099 pr  
Fundamental constants: inside front cover 
Fundamental frequency, 413,432,433-35  
Fundamental particles, 1178-79,1183,1186 
Fuse, 662-63 
Fusion, nuclear, 1141-46 

in stars, 1142-44,1200-1 
Fusion bomb, 1144 
Fusion reactor, 1144^16

g-factor, 1058
Galaxies, 1194-97,1209-12,1219,1220, 

1222-24
black hole at center of, 160 pr, 161 pr, 

1197,1209 
clusters of, 1196,1220,1224 
mass of, 1195 
origin of, 1220,1224 
redshift of, 1210-11 
superclusters of, 1196-97 

Galilean telescope, 887,887 fn, 889 
Galilean transformation, 968-69 
Galilean-Newtonian relativity, 952-54, 

968-69
Galileo, 2 ,18,34,51,62,84-85,346,348, 

380,457,825,839,887,887 fn, 952, 
968,1194 

Galvani, Luigi, 652 
Galvanometer, 695-96,721,783 pr  
Gamma camera, 1152 
Gamma decay, 1111,1116-17 
Gamma particle, 1111,1116-17,1146,

1171
Gamma ray, 1111,1116-17,1146,1171 
Gamow, George, 951,1214 
Gas constant, 466 
Gas laws, 463-65 
Gas lasers, 1063 
Gas vs. vapor, 483 
Gas-discharge tube, 1002 
Gases, 340,463-90 

adiabatic expansion of, 514-15 
Fermi, 1087 
ideal, 465-70,476 f f  
kinetic theory of, 476-90 
molar specific heats for, 511-12 
real, 482-87 

Gate, 1097
Gauge bosons, 1165,1178-79,1183-85
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Gauge pressure, 345 
Gauge theory, 1186 
Gauges, pressure, 347 
Gauss, K. F., 591 
Gauss (G) (unit), 712 
Gauss’s law, 591-600 

for magnetism, 816,817 
Gauss’s theorem, A-12 
Gay-Lussac, Joseph, 464 
Gay-Lussac’s law, 464,468,469  
Geiger counter, 627 pr, 1124 
Gell-Mann, M., 1182 
General motion, 230,267-74,292-93  
General theory of relativity, 155-56,1193, 

1205-7 
Generator: 

ac, 766-67 
dc, 767,768 
electric, 766-68 
emf of, 766-69 
Van de Graaff, 607,621 pr  

Genetic code, 1079 
Geodesic, 1207 
Geological dating, 1123-24 
Geometric optics, 838-91 
Geometry, A-2
Geosynchronous satellite, 147 
Geothermal energy, 550 
Germanium, 1093 
Germer, L. H., 998 
GFCI, 694,776 
Giants, red, 1197,1199,1201 
Glaser, D. A., 1125 
Glashow, S., 1186 
Glasses, eye, 883-85
Global positioning satellite (GPS), 16 pr, 

160 pr, 964 
Global System for Mobile

Communication (GSM), 832 
Global warming, 551 
Glueballs, 1185 /h  
Gluino, 1189
Gluons, 1165,1173,1178,1179,1183, 

1184-86 
Golf putt, 48 pr  
GPS, 16 pr, 160 pr, 964 
Gradient: 

concentration, 489,516 fn  
of electric potential, 618 
pressure, 359,516 fn  
temperature, 516 
velocity, 358 

Gradient operator (del), 618 fn  
Gram (g) (unit), 7,87  
Grand unified era, 1217 
Grand unified theories (GUT), 155, 

1187-88 
Graphical analysis, 40-43 
Grating, 933-38
Gravitation, universal law of, 139-43, 

199-201,564,1205 
Gravitational collapse, 1209 
Gravitational constant (G), 141 
Gravitational field, 154,156,576,1205-9  
Gravitational force, 84,92-94,140-43  

and ff,  155,1118,1173,1188,1193,
1202,1205-9,1223 

due to spherical mass distribution,
142-43, A-9-A-11

Gravitational lensing, 1206-7 
Gravitational mass, 155-56,1205-6 
Gravitational potential, 609,617 
Gravitational potential energy, 186-88, 

199-201 
and escape velocity, 201 

Gravitational redshift, 1211 
Gravitational slingshot effect, 246 pr  
Gravitino, 1189 
Graviton, 1173,1189 
Gravity, 3 4 -3 9 ,9 2 ,1 3 9 #  1173,1188,

1193.1202.1223 
acceleration of, 34-39,87 fn, 92,

143-45 
center of, 232
and curvature of space, 1205-9 
effect on light, 1206-7,1209 
force of, 84,92-94,140-56,1173,

1188,1189,1193,1202,1205-9,
1221.1223

free fall under, 34-39,148  
specific, 341 

Gravity anomalies, 144 
Gravity waves, 1224 
Gray (Gy) (unit), 1148 
Greek alphabet: inside front cover 
Grimaldi, F., 901,906 
Ground fault, 776
Ground fault circuit interrupter (GFCI), 

694,776 
Ground state, of atom, 1005 
Ground wire, 693,694 
Grounding, electrical, 562,655 
Groves, Leslie, 1141 
GSM, 832 
GUT, 155,1187-88 
Guth, A., 1219 
Gyration, radius of, 279 pr 
Gyromagnetic ratio, 1058 
Gyroscope, 299-300

/j-bar (h), 1022,1048 
Hadron era, 1217-18 
Hadrons, 1179,1182-85,1217 
Hahn, Otto, 1136 
Hair dryer, 665 
Hale telescope, 889 
Half-life, 1119-21 
Half-wave rectification, 1096 
Hall, E. H., 723
Hall effect, Hall emf, Hall field, Hall 

probe, 723-24,1094 
Hall voltage, 1094 
Hailey’s comet, 160 pr  
Halogens, 1054 
Hard drive, 253 
Harmonic motion: 

damped, 382-85 
forced, 386 
simple, 372-79 

Harmonic oscillator, 372-79,1036,
1042

Harmonic wave, 405 
Harmonics, 413,432-35 
Hazards, electric, 692-94 
Headlights, 609,661,677 
Hearing, 424-44 (see Sound) 

threshold of, 431

Heart, 361 
defibrillator, 638,648 pr, 692 
pacemaker, 692,787 

Heartbeats, number of, 12 
Heat, 196,496-528 

calorimetry, 500-5 
compared to work, 505 
conduction, 515-17 
convection, 517
distinguished from internal energy and 

temperature, 498 
as energy transfer, 497 
in first law of thermodynamics, 505-7 
of fusion, 502 
latent, 502-5
mechanical equivalent of, 497 
radiation, 517-20 
of vaporization, 502 

Heat capacity, 522pr (see also Specific heat) 
Heat conduction to skin, 525 pr  
Heat death, 546 
Heat engine, 529,530-32,1139 

Carnot, 533-35 
efficiency of, 531-32 
internal combustion, 530-31,532 
operating temperatures, 530 
steam, 530-31
temperature difference, 531 

Heat of fusion, 502 
Heat of vaporization, 502 
Heat pump, 536,538-39 
Heat reservoir, 508 
Heat transfer, 515-20 

conduction, 515-17 
convection, 517 
radiation, 517-20 

Heating element, 665 
Heavy elements, 1201-2 
Heavy water, 1138 
Heisenberg, W., 987,1017,1018 
Heisenberg uncertainty principle, 

1020-23,1036,1072 
and particle resonance, 1181 
and tunneling, 1113 

Helicopter drop, 51,70 
Helium, 1052,1108,1111,1133,1142 

lan d  11,483 
balloons, 467
primordial production of, 1218,1219 fn  
and stellar evolution, 1200-1 

Helium-neon laser, 1062 
Helmholtz coils, 756 pr  
Henry, Joseph, 758 
Henry (H) (unit), 786 
Hertz, Heinrich, 823 
Hertz (Hz) (unit of frequency), 253,371 
Hertzsprung-Russell diagram, 1199,

1204 
Higgs boson, 1186 
Higgs field, 1186
High-energy accelerators, 1165-71 
High-energy physics, 1165-89 
High-pass filter, 799,811 pr  
Highway curves, banked and unbanked, 

126-27 
Hiroshima, 1141
Holes (in semiconductors), 1091-94,1097 
Hologram and holography, 1064-65 
Homogeneous (universe), 1212
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Hooke, Robert, 318,910 fn  
H ooke’s law, 170,188,318,370  
Horizon, 1216 

event, 1209 
Horizontal (defn), 92 fn  
Horizontal range (defn), 68 
Horsepower, 202-3 
Hot air balloons, 454 
Hot wire, 693,694 
Household circuits, 662-63 
H -R  diagram, 1199,1204 
HST (see Hubble Space Telescope) 
Hubble, Edwin, 979,1196,1210 
Hubble age, 1213 
Hubble parameter, 1210,1213 
Hubble Space Telescope (HST), 930,1207, 

1211
Hubble Ultra Deep Field, 1211 
Hubble’s constant, 1210 
Hubble’s law, 1210,1213,1223 
Humidity, 485-86 
Huygens, G , 901 
Huygens’ principle, 901-3 
Hydraulic brake, 346 
Hydraulic lift, 346 
Hydraulic press, 364 pr  
Hydrodynamics, 352 
Hydroelectric power, 550 
Hydrogen atom:

Bohr theory of, 1003-9 
magnetic moment of, 719 
populations in, 1070 pr 
quantum mechanics of, 1045-51 
spectrum of, 936,1002-3 

Hydrogen bomb, 1141,1144 
Hydrogen bond, 581,1077,1079 
Hydrogen isotopes, 1105 
Hydrogen molecule, 1072-75,1080,1083 
Hydrogen-like atoms, 1004 fn, 1008,1010 
Hydrometer, 351 
Hyperopia, 883 
Hysteresis, 748-49 

hysteresis loop, 748

Ice skater, 284,286,309 pr  
Ideal gas, 465-70,476.#  1089 

kinetic theory of, 476-90,1089 
Ideal gas law, 465-66,482 

internal energy of, 498-99 
in terms of molecules, 468-69 

Ideal gas temperature scale, 469-70,534 
Identical (electrons), 1053 
Ignition: 

automobile, 609,772 
fusion, 1145 

ILC, 1170 
Illuminance, 915 
Image:

CAT scan, 1153-54,1156
false-color, 1154
formed by lens, 867 f f
formed by plane mirror, 838-41
formed by spherical mirror, 842-49,889
MRI, 1107,1158-59
NMR, 1107,1156-59
PET and SPECT, 1156
real, 840,844,869
seeing, 847,848,869

as tiny diffraction pattern, 929-30 
ultrasound, 445-46 
virtual, 840,870 

Image artifact, 878 
Image distance, 840,845,857,870-71  
Imaging, medical, 445-46,1107,1152-59  
Imbalance, rotational, 296-97 
Impedance, 798,800-3  
Impedance matching, 802-3 
Impulse, 220-21 
Impulsive forces, 221 
Inanimate object, force exerted by, 90 
Inch (in.) (unit), 6
Incidence, angle of, 410,415,838,850 
Incident waves, 410,4151 
Inclines, motion on, 101 
Incoherent source of light, 906 
Indefinite integrals, A -6-A -7  
Indeterminacy principle, 1021 (see 

Uncertainty principle)
Index of refraction, 850 

dependence on wavelength 
(dispersion), 853 

in Snell’s law, 851 
Induced current, 758-76,785 f f  
Induced electric charge, 562-63,641 
Induced emf, 758-66,789 

counter, 768-69 
in electric generator, 766-68 
in transformer, 770-73 

Inductance, 786-89 
in ac circuits, 790-803 
of coaxial cable, 789 
mutual, 786-87 
self-,788-89  

Induction: 
charging by, 562-63 
electromagnetic, 758 f f  
Faraday’s law of, 760-61,773-74,817  

Induction stove, 762 
Inductive battery charger, 780 pr  
Inductive reactance, 797 
Inductor, 788,1098 

in circuits, 790-803 
energy stored in, 790 
reactance of, 797 

Inelastic collisions, 222,225-29  
Inelastic scattering, 1135 
Inertia, 85 

moment of, 258-60 
Inertial confinement, 1145,1146 
Inertial forces, 300-1 
Inertial mass, 155,1205-6 
Inertial reference frame, 85,88,137 pr, 

300,952 f f  
Earth as, 85,137 pr, 145-46 
equivalence of all, 952-53,957 
transformations between, 968-71 

Infinitely deep square well potential, 
1030-34

Inflationary scenario, 1217,1219-21 
Infrared (IR) radiation, 823-24,852,936  
Infrasonic waves, 426 
Initial conditions, 373 
Inkjet printer, 583
In-phase waves, 411,904,910-14,933  
Instantaneous acceleration, 27-28,60-61  
Instantaneous acceleration vector, 60 
Instantaneous axis, 268

Instantaneous velocity, 22-24,60  
Instantaneous velocity vector, 60 
Insulators: 

electrical, 561,658,1091-92 
thermal, 516,1091-92 

Integrals, 39^3,169-70, A-6, A-7, A-12, 
A-13, inside back cover 

definite, A-7 
Fourier, 408 
indefinite, A-6, A-7 
line, 169 
surface, A-13 
volume, A-12 

Integrated circuits, 1098 
Integration by parts, 1034,1050, A-6, A-7 
Intensity, 402-3,427 f f  

in interference and diffraction 
patterns, 906-9,924-28  

of light, 915,1019 
of Poynting vector, 827 
of sound, 427-31 

Interference, 410-11,437-8,903-14  
constructive, 410-11,437,904,913,914, 

1072
destructive, 410,437,904,913,914,1072  
as distinguished from diffraction, 929 
of electrons, 1019-20,1072 
of light waves, 903-14,928-29 
of sound waves, 437-39 
by thin films, 909-14 
of water waves, 411 
wave-phenomenon, 903 
of waves on a string, 410 

Interference factor, 928 
Interference fringes, 904-6,956,1065 
Interference pattern: 

double-slit, 903-9,1019-20 
including diffraction, 927-29 

multiple slit, 933-36 
Interferometers, 914,954-57 
Intermodulation distortion, 408 fn  
Internal combustion engine, 530-31,532 
Internal conversion, 1117 
Internal energy, 196,498-99 

distinguished from heat and 
temperature, 498 

of an ideal gas, 498-99 
Internal reflection, total, 421 pr, 854-56 
Internal resistance, 678-79 
International Linear Collider (ILC),

1170
International Thermonuclear

Experimental Reactor (ITER), 1131, 
1146

Interpolation, A-3
Interstellar dust, 1196
Intrinsic luminosity, 1197,1204
Intrinsic semiconductor, 1091,1093
Invariant quantity, 977
Inverse square law, 140/f, 403,429,563-4
Inverted population, 1062-63
Ion (defn), 561
Ionic bonds, 1073,1075,1085,1086 
Ionic cohesive energy, 1086 
Ionization energy, 1006,1008 
Ionizing radiation (defn), 1146 
IR radiation, 823-24,852,936 
Irreversible process, 533 
Iris, 882
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ISO number, 879 fn  
Isobaric processes, 508 
Isochoric processes, 508 
Isolated system, 218,500 
Isomer, 1117 
Isotherm, 507
Isothermal processes, 507-8 
Isotopes, 725,1105-6,1110-11 

mean life of, 1119 fn, 1129 pr  
in medicine, 1151-52 
table of, A-14-A-17 

Isotropic (universe), 1212 
Isovolumetric (isochoric) process, 508 
ITER, 1131,1146 
Iterative technique, 1155

J  (total angular momentum), 1059 
J/iff particle, 1023,1183 
Jars and lids, 461,465 
Jeans, J., 988 
Jets (particle), 1164 
Jeweler’s loupe, 887 
Joints, 324 

method of, 325 
Joule, James Prescott, 497 
Joule (j) (unit), 164,173,256,619,620,661 

relation to calorie, 497 
Joyce, James, 1182 fn  
Jump start, 687 
Junction diode, 1097 
Junction rule, Kirchhoff’s, 684 f f  
Junction transistor, 1097 
Jupiter, moons of, 150,151,158 pr, 

159-60,825,887

K-capture, 1116 
K  lines, 1056
K  particle (kaon), 1179,1181 
Kant, Immanuel, 1196 
Kaon, 1179,1181 
Karate blow, 221 
Keck telescope, 889 
Kelvin (K) (unit), 464 
Kelvin temperature scale, 464,548-49 
Kelvin-Planck statement of the second 

law of thermodynamics, 532,535 
Kepler, Johannes, 149-50,887 fn  
Keplerian telescope, 887 fn,  888 
Kepler’s laws, 149-53,298 
Keyboard, computer, 631 
Kilo- (prefix), 7 
Kilocalorie (kcal) (unit), 497 
Kilogram (kg) (unit), 6,86,87  
Kilometer (km) (unit), 7 
Kilowatt-hour (kWh) (unit), 661 
Kinematics, 18^3,51-74,248-55  

for rotational motion, 248-55 
translational motion, 18-43,51-74  
for uniform circular motion, 119-22 
vector kinematics, 59-74 

Kinetic energy, 1 7 2 -7 5 ,1 8 9 #  265-69, 
974-76 

of CM, 268-69 
in collisions, 222-23,225-26  
and electric potential energy, 608 
of gas atoms and molecules, 478-79, 

498-99,512-13

molecular, relation to temperature, 
478-79,498-99,512-13  

of photon, 993 
relativistic, 974-78 
rotational, 265-69 
translational, 172-73 

Kinetic friction, 113 f f  
coefficient of, 113 

Kinetic theory, 455,476-90 
basic postulates, 477 
boiling, 485 
diffusion, 489-90 
evaporation, 484 
ideal gas, 476-82
kinetic energy near absolute zero, 480 
of latent heat, 505 
mean free path, 487-88 
molecular speeds, distribution of, 

480-82 
of real gases, 482-84 
van der Waals equation of state, 

486-87 
Kirchhoff, G. R., 683 
Kirchhoff’s rules, 683-86,816 fn  

junction rule, 684 f f  
loop rule, 684 f f

Ladder, forces on, 317,338 pr  
Lagrange, Joseph-Louis, 153 
Lagrange Point, 153 
Lambda (particle), 1179,1181 
Laminar flow, 352 
Land, Edwin, 940 
Lanthanides, 1054
Large Hadron Collider (LHC), 1168-70,

1189 
Laser printer, 583 
Lasers, 1061-64 

chemical, 1063 
gas, 1063
helium-neon, 1062 
surgery, 1064 

Latent heats, 502-5 
Lateral magnification, 845-46,871 
Lattice structure, 456,1085,1093,1097 
Laue, Max von, 939 
Law (defn), 3 (see proper name) 
Lawrence, E. O., 1166 
Lawson, J. D., 1145 
Lawson criterion, 1145 
L C  circuit, 793-96 
LC oscillation, 793-96 
LCD, 831,878^1,943-44 
Leakage current, 694 
LED, 1096 
Length:

focal, 842-43,848,867-68,875,876-77, 
882,883 

Planck, 13,1216 
proper, 965 
relativity of, 964-70 
standard of, 6,914 

Length contraction, 964-67,970 
Lens, 866-92 

achromatic, 892 
axis of, 867 
coating of, 913-14 
color-corrected, 892

combination of, 874-75 
compound, 892 
contact, 885 
converging, 866 f f  
corrective, 883-85 
cylindrical, 884 
diverging, 8 6 7 //  
of eye, 883 
eyeglass, 883-85 
eyepiece, 888
focal length of, 867,868,875,877 
magnetic, 1000 
magnification of, 871 
negative, 871 
normal, 882 
objective, 888,889,890 
ocular, 890 
positive, 871 
power of (diopters), 868 
resolution of, 881,929-32 
spherical, 858 
telephoto, 882 
thin (defn), 867 
wide-angle, 882,892 
zoom, 882 

Lens aberrations, 891-92,929,931 
Lens elements, 892 
Lensmaker’s equation, 876-77 
Lenz’s law, 761-64 
Lepton era, 1216,1218 
Lepton number, 1175-77,1179-80,1182, 

1187
Leptons, 1165,1171,1175-76,1178,1179, 

1182-83,1185-87,1189,1217  
Level: 

acceptor, 1094 
donor, 1094
energy (see Energy levels)
Fermi, 1087-90 
loudness, 431 
sound, 428-30 

Level range formula, 68-69 
Lever, 177 pr, 313 
Lever arm, 256 
LHC, 1168-70,1189 
Lids and jars, 461,465 
Lifetime, 1179 (see also Mean life)
Lift, dynamic, 356-57 
Light, 823,825-6,837-946  

coherent sources of, 906 
color of, and wavelength, 852-54,903, 

906,912 
dispersion of, 853
Doppler shift for, 443,978-80,1210  
as electromagnetic wave, 823-26 
frequencies of, 823,853,854 
gravitational deflection of, 1206-7, 

1209
incoherent sources of, 906
infrared (IR), 823,824,852,936,948 pr
intensity of, 915,1019
monochromatic (defn), 903
as particles, 902,989-97
photon (particle) theory of, 989-97
polarized, 940-43,949 pr
ray model of, 838 ff, 867 f f
scattering, 945
from sky, 945
spectrometer, 935-36
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Light (icontinued) 
speed of, 6,822,825-26,850,902,953,

957,975
total internal reflection of, 1038 
ultraviolet (UV), 823,824,852 
unpolarized (defn), 940 
velocity of, 6,822,825-26,850,902,953, 

951,915 
visible, 823,852-54 
wave, tunneling of, 1038 
wave theory of, 900-45 
wavelengths of, 823,852-54,903,906,

912
wave-particle duality of, 997 
white, 852-53
(see also Diffraction; Intensity; 

Interference; Reflection; Refraction) 
Light meter (photographic), 992 
Light pipe, 855 
Light rays, 838 # 8 6 7 #
Lightbulb, 651,653,656,657,660,704 pr, 

773,915,991 
fluorescent, 1060 

Light-emitting diode (LED), 1096 
Light-gathering power, 889 
Lightning, 425,662 
Lightning rod, 612 
Light-year (ly) (unit), 15 pr, 1194 
Linac, 1169 
Line integral, 169
Line spectrum, 935-36,1002 #  1017 
Line voltage, 665 
Linear accelerator, 1169 
Linear expansion (thermal), 459-61 

coefficient of, 459-60 
Linear momentum, 214-35 
Linear waves, 402 
Linearly polarized light, 940 #
Lines of force, 575-76,708 
Liquefaction, 463-66,476,482 
Liquid crystal, 340,483,943^4  
Liquid crystal display (LCD), SIS fit, 

943-44 
Liquid scintillators, 1125 
Liquid-drop model, 625 pr, 1136-37 
Liquid-in-glass thermometer, 457 
Liquids, 340 #  455-56 (see also Phase, 

changes of)
Lloyd’s mirror, 919 pr  
Logarithms, A -2-A -3, inside back cover 
Log table, A-3 
Longitudinal waves, 398 #  

and earthquakes, 401 
velocity of, 400-1 
(see also Sound waves)

Long-range force, 1110,1205 
Lookback time, 1197,1215 
Loop rule, Kirchhoff’s, 684 #
Lorentz, H. A., 957,1017
Lorentz equation, 717
Lorentz transformation, 969-71
Los Alamos laboratory, 1141
Loudness, 425,427,429 (see also Intensity)
Loudness control, 431
Loudness level, 431
Loudspeakers, 375,428-29,720-21,799  

concert time delay, 452 pr  
Loupe, jeweler’s, 887 
Low-pass filter, 799,811 pr

LR  circuit, 790-92 
L RC  circuit, 795-96,799-801 
Lumen (lm) (unit), 915 
Luminosity (stars and galaxies), 1197, 

1204
Luminous flux, 915
Luminous intensity, 915
Lyman series, 1002-3,1006,1007,1054

Mach, E., 443 fn  
Mach number, 443
Macroscopic description of a system, 454, 

456
Macroscopic properties, 454,456 
Macrostate of system, 546-47 
Madelung constant, 1085-86 
Magellanic clouds, 1196 fn  
Magnet, 707-9,746-47 

domains of, 746 
electro-, 747 
permanent, 746 
superconducting, 747 

Magnetic bottle, 1145 
Magnetic circuit breakers, 747 
Magnetic confinement, 1145 
Magnetic damping, 778 pr  
Magnetic declination, 709 
Magnetic deflection coils, 621 
Magnetic dipoles and magnetic dipole 

moments, 718-19,745,1057-59  
Magnetic domains, 746 
Magnetic field, 707-17,733-50  

of circular loop, 744-45 
definition of, 708 
determination of, 712-13,738-45 
direction of, 708,710,716  
of Earth, 709 
energy stored in, 790 
hysteresis, 748-49 
induces emf, 759-73 
motion of charged particle in, 714-17 
produced by changing electric field, 

813-16
produced by electric current, 710, 

741-42,143-46 (see also Ampere’s 
law)

produces electric field and current, 
773-75 

of solenoid, 741-42 
sources of, 733-51 
of straight wire, 711-12,734-35 
of toroid, 742 
uniform, 709 

Magnetic field lines, 708 
Magnetic flux, 760 #  773-75,816,820  
Magnetic force, 707,710-19 

on electric current, 710-14,718-19  
on moving electric charges, 714-17 

Magnetic induction, 710 (see also 
Magnetic field)

Magnetic lens, 1000 
Magnetic moment, 718-19,745 
Magnetic monopole, 708,1221 
Magnetic permeability, 734,748 
Magnetic poles, 707-9 

of Earth, 709 
Magnetic quantum number, 1046-47,

1057

Magnetic resonance imaging (MRI), 
1107,1158-59 

Magnetic susceptibility (defn), 749 
Magnetic tape and disks, 775 
Magnetism, 707-90 
Magnetization vector, 750 
Magnification: 

angular, 886 
lateral, 845^6,871  
of lens, 871
of lens combination, 874-75 
of magnifying glass, 885-87 
of microscope, 890-91,932,933,1000 
of mirror, 845
sign conventions for, 845-46,849,871  
of telescope, 888,931 
useful, 932-33,1000 

Magnifier, simple, 866,885-87 
Magnifying glass, 866,885-87  
Magnifying mirror, 848 
Magnifying power, 886 (see also 

Magnification) 
total, 888

Magnitude, apparent, of star, 1228 pr  
Magnitude of vector, 52 
Main sequence (stars), 1199-1201 
Majorana, Ettore, 1177 fn  
Majorana particles, 1177 
Manhattan Project, 1141 
Manometer, 346 
Marconi, Guglielmo, 829 
Mars, 150,151 
Mass, 6,86-88,155  

atomic, 455,1024-27 
center of, 230-33 
critical, 1138-41 
of electron, 723,1107 
of Galaxy, 1195
gravitational vs. inertial, 155,1205-6 
and luminosity, 1198 
molecular, 455,465 
of neutrinos, 1177-78 
nuclear, 1106-7 
of photon, 993 
precise definition of, 88 
reduced, 1081 
in relativity theory, 974 
rest, 974 
standard of, 6-7 
table of, 7 
units of, 6-7,87  
variable, systems of, 236-38 

Mass excess (defn), 1129 pr  
Mass number, 1105 
Mass spectrometer (spectrograph), 

724-25
Mass-energy, distribution in universe,

1221-23
Mass-energy transformation, 974-78 
Mathematical expansions, A -l  
Mathematical signs and symbols: inside 

front cover 
Mather, John, 1214 
Matter: 

anti-, 1175,1188,1190 pr  
dark, 1165,1189,1219,1222,1223 
passage of radiation through, 1146-47 
states of, 340,455-56  
wave nature of, 997-99,1009-10
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Matter waves, 997-99,1009-10,1019 f f  
Matter-antimatter problem, 1188 
Matter-dominated universe, 1218,1219 
Maxwell distribution of molecular 

speeds, 480-82,547,1145  
Maxwell, James Clerk, 480,813,817, 

819-20,822,823,953-54  
Maxwell’s equations, 813,817,819-22,

911 fn, 951,953,954,958,969  
differential form of, A-12-A-13 
in free space, A-13 

Maxwell’s preferred reference frame, 
953-54 

Mean free path, 487-88 
Mean life, 1119, 1129 pr, 1179 

of proton, 1188 
Measurements, 3-5 

of astronomical distances, 1194,1199, 
1203-4 

of charge on electron, 723 
electromagnetic, o f blood flow, 453 pr, 

765
of e/m,  722-23 
of force, 84
precision of, 3-5,1020-22  
of pressure, 346-48 
of radiation, 1147-50 
of speed of light, 825-26 
uncertainty in, 3-5,1020-23  

Mechanical advantage, 100,313,346 
Mechanical energy, 189-95 
Mechanical equivalent of heat, 497 
Mechanical oscillations, 369 
Mechanical waves, 395-416 
Mechanics, 18-445 (see also Motion) 

definition, 19 
Mediate, of forces, 1172 
Medical imaging, 445-46,1107,1152-59  
Meitner, Lise, 1018,1136 
Melting point, 503-5 (see also Phase, 

changes of)
Mendeleev, Dmitri, 1053 
Mercury barometer, 347 
Mercury-in-glass thermometer, 457-58 
Meson exchange, 1172-73 
Meson lifetime, 1023 
Mesons, 1172,1173,1175-76,1178-79, 

1180,1181,1183-84,1185  
Messenger RNA (m-RNA), 1079-80 
Metal detector, 770 
Metallic bond, 1086 
Metals: 

alkali, 1054
free-electron theory of, 1086-90 

Metastable state, 1061,1117 
Meter (m) (unit), 6 
Meters, electric, 695-97,721 

correction for resistance of, 697 
Metric (SI) multipliers: inside front cover 
Metric (SI) system, 7 
Mho (unit), 675 pr  
Michelson, A. A ,  826,914,954-57  
Michelson interferometer, 914,954-57 
Michelson-Morley experiment, 954-57 
Microampere (A ) (unit), 654 
Micrometer, 10—11 
Microphones: 

capacitor, 699 pr  
magnetic, 775

Microscope, 890-91,931-33 
atomic force, 1039 
compound, 890-91 
electron, 987,1000,1021,1038-39,

1043 pr
magnification of, 890-91,932,933,1000  
resolving power of, 932 
scanning tunneling electron (STM), 

1038-39,1043 pr  
useful magnification, 932-33, lOOOar 

Microscopic description of a system, 454, 
4 5 6 ,4 7 6 #

Microscopic properties, 454,456,476 f f  
Microstate of a system, 546 
Microwave background radiation, 

cosmic, 1193,1213-15,1219,1220,
1224

Microwaves, 824,1213-14 
Milliampere (mA) (unit), 654 
Millikan, R. A., 723,991 
Millikan oil-drop experiment, 723 
Millimeter (mm) (unit), 7 
Milky Way, 1194-95 
Mirage, 903
Mirror equation, 845-49 
Mirrors, 839-49 

aberrations of, 889 fn, 891-92 
concave, 842-49,889 
convex, 842,848^9  
focal length of, 842-43,848 
Lloyd’s, 919 pr  
plane, 838-42 
used in telescope, 889 

Missing orders, 948 pr  
Mr Tompkins in Wonderland (Gamow), 

951,982
MKS (meter-kilogram-second) system 

(defri),l 
mm-Hg (unit), 346 
Models, 2-3 
Moderator, 1138-39 
Modern physics (defn), 2,952 
Modulation: 

amplitude, 830 
frequency, 830,831 fn  

Moduli of elasticity, 319,400 
Molar specific heat, 511-13 
Mole (mol) (unit), 465 

volume of, for ideal gas, 465 
Molecular biology, electric force in, 

581-82,1077-80  
Molecular kinetic energy, 478-79,498-99, 

512-13 
Molecular mass, 455,465 
Molecular rotation, 1080-81,1083-85 
Molecular spectra, 1080-85 
Molecular speeds, 480-82 
Molecular vibration, 1082-85 
Molecular weight, 455 fn  
Molecules, 455,468-69,476-82,486-90,

1071-85 
bonding in, 1071-74 
polar, 561,579,1074 
potential energy diagrams for,

1074-77 
spectra of, 1080-85 
weak bonds between, 1077-80 

Moment arm, 256
Moment of a force about an axis, 256

Moment of inertia, 258-60 
determining, 263-65,382 
parallel-axis theorem, 264-65 
perpendicular-axis theorem, 265 

Momentum, 214-38 
angular, 285-89,291-300,1003 
center of mass (CM), 230-33 
in collisions, 217-29 
conservation of angular, 285-87, 

297-98
conservation of linear, 217-20,222-29,

235,1175-76 
linear, 214-38 
of photon, 993
relation of force to, 215-16,218, 

220-21,235,236,972,974  
relativistic, 971-73,977,978  
uncertainty in measurement of, 1021 

Monochromatic aberration, 892 
Monochromatic light (defn), 903 
Moon, 1194 

centripetal acceleration of, 121,140 
force on, 140,142 
work on, 167 

Morley, E.W., 954-57 
Morse Potential, 1102 pr  
Moseley, H. G. J., 1055 
Moseley plot, 1055 
Motion, 18-300,951-80  

of charged particle in electric field, 
578-79 

circular, 119-29
at constant acceleration, 28-39,

62-71 
damped, 382-85
description of (kinematics), 18-43, 

51-74 
in free fall, 34-39,148  
harmonic, 372-77,382-85  
on inclines, 101
Kepler’s laws of planetary, 149-53,298 
linear, 18-43
Newton’s laws of, 8 4 -9 1 ,9 5 -9 6 ,1 1 2 #  

215,218,234,235,259-63,292-93, 
972,1018,1024,1025 

nonuniform circular, 128-29 
oscillatory, 369 f f  
periodic (defn), 370 
projectile, 51,62-71 
rectilinear, 18-43 
and reference frames, 19 
relative, 71-74,951-80 
rolling, 267-73 
rotational, 248-302 
simple harmonic (SHM), 372-77 
translational, 18-239 
uniform circular, 119-25 
uniformly accelerated, 28-39 
at variable acceleration, 39-43 
vibrational, 369 f f  
of waves, 395-416 

Motion sensor, 448 pr 
Motional emf, 765-66 
Motor: 

ac, 720 
electric, 720 
back emf in, 768-69 

Mountaineering, 106 pr, 110 pr, 137 pr, 
182 pr
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Mt. Everest, 6,8,144,161 pr, 364 pr, 485 
MP3 player, 677 
MRI, 1107,1158-59 
m-RNA, 1079-80 
Mu meson (see Muon)
Multimeter, 696 
Multiplication factor, 1138-39 
Multiplication of vectors, 55,167-68, 

289-91
Muon, 1164,1175-76,1178,1179 
Muon lepton number, 1176-79,1183 
Muon neutrino, 1178,1179 
Muscles and joints, forces in, 278 pr, 315, 

330 pr, 331 pr, 332 pr, 336 pr, 337 pr  
Musical instruments, 413,422 pr, 424, 

431-36 
Musical scale, 431 
Mutation, 1147 
Mutual inductance, 786-87 
Myopia, 883

«-type semiconductor, 1093-96 
Nagasaki, 1141 
Natural abundances, 1105 
Natural frequency, 374,385,412 (see also 

Resonant frequency)
Natural logarithms, A-2
Natural radioactive background, 1114,1148
Natural radioactivity, 1111
Nd:YAG laser, 1063
Near field, 818
Near point, of eye, 883
Nearsightedness, 883,884-85
Nebulae, 1196
Negative, photographic, 878 fn  
Negative curvature, 1208,1221 
Negative electric charge (defn), 560,655 
Negative lens, 871 
Neon tubes, 1044 
Neptune, 150,152 
Neptunium, 1134 
Nerve pulse, 669-70,715 
Nervous system, electrical conduction in, 

669-70 
Net force, 85-88,95 / /
Net resistance, 679 
Neuron, 669 
Neutral atom, 1106 
Neutral equilibrium, 205,317 
Neutral wire, 694 
Neutrino flavor oscillation, 1177 
Neutrinos, 1114-16,1165,1175-79,1218 

mass of, 1177-78,1179 
types of, 1175-78 

Neutron, 561,1105,1165,1179 
delayed, 1139
in nuclear reactions, 1136-42 
role in fission, 1 1 3 6 #  
thermal, 1136 

Neutron activation analysis, 1163 pr  
Neutron cross section, 1136 
Neutron degeneracy, 1202 
Neutron number, 1105 
Neutron physics, 1134 
Neutron star, 287,1100 pr, 1197,1202 
Newton, Isaac, 18,85-86,89,139-40,155, 

568,889 fn, 902,910 fn, 952,1205, 
1208 fn

Newton (N) (unit), 87 
Newtonian focus, 889 
Newtonian mechanics, 83-156 
Newton’s first law of motion, 84-85 
Newton’s law of universal gravitation, 

139,140-43,199-201,564,1205  
Newton’s laws of motion, 84-91,95-96, 

112 #  215,218,234-35,259-63, 
292-93,972,1018,1024,1025 

Newton’s rings, 910-11 
Newton’s second law, 86-88,90,95-96,

215,218,234-35,953,972  
for rotation, 259-63,292-93 
for a system of particles, 234-35,

292-93 
Newton’s synthesis, 152 
Newton’s third law of motion, 89-91 
NMR, 1107,1156-59 
Noble gases, 1054,1086 
Nodes, 412,433,434,435  
Nonconductors, 561,638-42,658 
Nonconservative field, 775 
Nonconservative forces, 185 
Non-Euclidean space, 1207-8 
Noninductive winding, 788 
Noninertial reference frames, 85,88,156, 

300-2 
Nonlinear device, 1096 
Nonohmic device, 656 
Nonreflecting glass, 913-14 
Nonrelativistic quantum mechanics, 1026, 

1028
Nonuniform circular motion, 128-29 
Normal eye (defn), 883 
Normal force, 92-94 
Normal lens, 882
Normalization condition, 1026-27,

1029 fn, 1031-34 
Normalization constant, 1032 
North pole, Earth, 709 
North pole, of magnet, 708 
Nova, 1197,1203 
npn transistors, 1097 
n-type semiconductor, 1093-96 
Nuclear angular momentum, 1107 
Nuclear binding energy, 1108-9 
Nuclear collision, 225,227-29 
Nuclear decay, 976 
Nuclear energy, 530 fn, 550,1131-59 
Nuclear fission, 1136-41 
Nuclear forces, 155,212 pr, 1110,1115, 

1171-89,1205 
Nuclear fusion, 1141-46,1200-1 
Nuclear magnetic moments, 1107 
Nuclear magnetic resonance (NMR), 

1107,1156-59 
Nuclear magneton, 1107 
Nuclear masses, 1105 and f f  
Nuclear medicine, 1150-52 
Nuclear physics, 1104-64 
Nuclear power, 1139-41 
Nuclear power plants, 767,1139^40 
Nuclear radius, 1106 
Nuclear reactions, 1132-38 
Nuclear reactors, 1 138^ 1,1144^ 6  
Nuclear spin, 1107 
Nuclear structure, 1105-7 
Nuclear weapons testing, 1141 
Nucleon, 1105,1165,1186,1217-18

Nucleon number, conservation of, 1117, 
1175-76 

Nucleosynthesis, 1200-1,1218 
Nucleotide bases, 581,1078 
Nucleus, 1 1 0 5 #  

compound, 1136-37 
daughter and parent (defn), 1111 
half-lives of, 1117-21 
liquid-drop model of, 625 pr  
masses of, 1105-7
radioactive decay of unstable, 1110-24 
size of, 1106
structure and properties of, 1105-7 

Nuclide (defn), 1105 
Null result, 954,957,969 
Numerical integration, 40-43

Object distance, 840,845,857,870-71  
Objective lens, 888,889,890,932 
Observable universe, 1215-16 
Observations, 2,952 

and uncertainty, 1021 
Occhialini, G., 1173 
Occupied states, density of, 1088 
Oersted, H. C., 710 
Off-axis astigmatism, 892 
Ohm, G. S., 655 
Ohm (fl) (unit), 656 
Ohmmeter, 696,721 
Ohm’s law, 655-58,668,680,685  
Oil-drop experiment, 723 
Omega (particle), 1179 
One-dimensional Schrodinger equation, 

1025-37
One-dimensional wave equation, 407
Onnes, H. K., 668
Open circuit, 654
Open system, 500
Open tube, 434
Open-tube manometer, 346^17 
Operating temperatures, heat engines, 530 
Operational definitions, 7,737 
Oppenheimer, J. Robert, 1141 
Optical coating, 913-14 
Optical illusion, 851,903 
Optical instruments, 878-92,914,929-38  
Optical pumping, 1062 
Optical sound track, 992 
Optical tweezers, 105 pr, 829 
Optical zoom, 882 
Optics: 

fiber, 855-56 
geometric, 838-91 
physical, 900-45 

Orbital angular momentum, in atoms, 
1046^7,1059-60  

Orbital quantum number, 1046 
Order and disorder, 544-45 
Order of interference or diffraction

pattern, 904-6,933-34,936,939,948 pr  
Order-of-magnitude estimate, 9-12,102  
Organ pipe, 435 
Orion, 1196 
Oscillations, 369-89 

of air columns, 434-6 
damped harmonic motion, 382-85 
displacement, 371 
forced,385-87
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Oscillations (continued) 
mechanical, 369 
of molecules, 512-13 
of physical pendulum, 381-82 
simple harmonic motion (SHM), 

372-77 
as source of waves, 397 
of a spring, 370-71 
on strings, 412-14,431-33  
of torsion pendulum, 382 

Oscillator, simple harmonic, 372-79, 
1036,1042 

Oscilloscope, 620,621 
Osteoporosis, diagnosis of, 995 
Otto cycle, 535-36
Out-of-phase waves, 411,904,914,933  
Overdamped system, 383 
Overexposure, 879 
Overtones, 413,432,433

/7-type semiconductor, 1093-96 
Pacemaker, heart, 692,787 
Packet, wave, 1029 
Packing of atoms, 1085 
Page thickness, 10-11 
Pair production, 996 
Pantheon, dome of, 328 
Parabola, 51,71,326  
Parabolic mirror, 843 
Parallax, 1203-4 
Parallel-axis theorem, 264-65 
Parallel circuits, 633,663,680 
Parallel emf, 686-87
Parallelogram method of adding vectors, 

54
Paramagnetism, 749-50 
Paraxial rays (defn), 843 
Parent nucleus (defn), 1111 
Parsec (pc) (unit), 1204 
Partial derivatives, 189,406 
Partial ionic character, 1074 
Partial pressure, 485-86 
Partially polarized, 945 
Particle (defn), 19 
Particle accelerators, 1165-71 
Particle classification, 1178-80 
Particle detectors, 1096,1124-25,1164, 

1170
Particle exchange, 1171-73,1185 
Particle interactions, 1175 f f  
Particle physics, 1164-89 
Particle resonance, 1180-81 
Particles, elementary, 1164-89 
Particle-antiparticle pair, 1175 
Particulate pollution, 15 pr  
Pascal, Blaise, 341,346,363 pr  
Pascal (Pa) (unit of pressure), 341 
Pascal’s principle, 346 
Paschen series, 1003,1006,1007 
Passive solar heating, 550 
Pauli, Wolfgang, 1017,1018,1052,1115 
Pauli exclusion principle, 1052-53,1072,

1087,1089,1184,1201,1202 
PDA, 647 pr  
Peak current, 664 
Peak voltage, 664 
Peak widths, of diffraction grating, 

937-38

Peaks, tallest, 8 
Pendulum: 

ballistic, 226 
conical, 125 
physical, 381-82 
simple, 13,195,379-81 
torsion, 382 

Pendulum clock, 380 
Penetration, barrier, 1036-39,1113 
Penzias, Arno, 1213-14 
Percent uncertainty, 3-4,5 

and significant figures, 5 
Perfect cosmological principle, 1213 
Performance, coefficient of (COP), 537, 

538
Perfume atomizer, 356 
Period, 121,253,371,397 

of circular motion, 121 
of pendulums, 13,380, A-8 
of planets, 150-51 
of rotation, 253-54 
of vibration, 371 
of wave, 397 

Periodic motion, 370 f f  
Periodic Table, 1053-54,1105 fn,  inside 

back cover 
Periodic wave, 397 
Permeability, magnetic, 734,748 
Permittivity, 565,639 
Perpendicular-axis theorem, 265 
Personal digital assistant (PDA), 647 pr  
Perturbations, 152 
PET, 1156 
Phase: 

in ac circuit, 796-802 
changes of, 482-83,502-5  
of matter, 340,456 
of waves, 404,411,904,910-14,933  

Phase angle, 373,405,800 
Phase constant, 1028/rc, 1030 
Phase diagram, 483 
Phase shift, 911,913,914 
Phase transitions, 482-83,502-5  
Phase velocity, 404 
Phasor diagram: 

ac circuits, 800
interference and diffraction of light, 

907,925,937 
Phon (unit), 431 
Phosphor, 1124 
Phosphorescence, 1061 
Photino, 1189 
Photocathode, 1124 
Photocell, 626 pr, 990 
Photocell circuit, 990,992 
Photoconductivity, 582 
Photocopier, 569,582-83 
Photodiode, 992,1096 
Photoelectric effect, 989-92,996,1146 
Photographic emulsion, 1125 
Photographic film, 878,879 
Photomultiplier (PM) tube, 1124-25 
Photon, 989-97,1019,1053,1165,1171-72, 

1175,1178-79,1183,1217-19 
absorption of, 1060-61 
decoupled (early universe), 1215,1219 
and emf, 1172 
energy of, 993 
mass of, 993

mediation of (force), 1172 
momentum of, 993 
virtual, 1172 

Photon exchange, 1171-73 
Photon interactions, 996 
Photon theory of light, 989-97 
Photosynthesis, 993 
Photovoltaic (solar) cells, 550 
Physical pendulum, 381-82 
Physics: 

classical (defn), 2,952 
modern (defn), 2 ,952 

Pi meson, 1172-73,1179,1180,1183-85  
Piano tuner, 12
Pick-up nuclear reaction, 1160 pr 
Pin, structural, 323 
Pincushion distortion, 892 
Pion (see Pi meson)
Pipe, light, 855
Pipe, vibrating air columns in, 431 f f  
Pitch of a sound, 425 
Pixel, 878,881,943-4,1154  
Planck, Max, 989,1017 
Planck length, 13,1216 
Planck time, 16 pr, 1015 pr, 1188,1216 
Planck’s constant, 989,1022 
Planck’s quantum hypothesis,

988-89 
Plane: 

focal, 867 
mirror, 838-42
polarization of light by, 940-44 

Plane geometry, A-2 
Plane waves, 410,818,819,1028-29 
Plane-polarized light, 940 
Planetary motion, 149-53,298 
Planets, 149-53,158 pr, 247 pr,

309 pr  
Plasma, 340,1131,1145 
Plasma globe, 810 pr 
Plastic region, 319 
Plate tectonics, 351 
Plum-pudding model of atom, 1001 
Pluto, 150,152,1194 
Plutonium, 1134,1138,1140,1141 
PM tube, 1124-25 
pn  junction, 1094-96 
pn  junction diode, 1094-96,1125 
pn junction laser, 1063 
pnp  transistor, 1097 
Point: 

boiling, 457,485,503 
breaking, 319 
critical, 483 
dew, 486 
far, 883
focal, 842-43,848,867-68,883 
freezing, 457 fn, 503 
Lagrange, 153 
melting, 503-5 
near, 883 
sublimation, 483 
triple, 469,483 
turning, 204 

Point charge (defn), 565 
potential, 612-15 

Point particle, 19,96 
Point rule, Kirchhoff’s, 816 f f  
Poise (P) (unit), 358
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Poiseuille, J. L., 358 
Poiseuille’s equation, 358-59 
Poisson, Simeon, 922 
Polar molecules, 561,579,641,1073-74 
Polarization of light, 940^4,949 pr  

by absorption, 940-42 
plane, 940-44 
by reflection, 942-43 
of skylight, 945 

Polarizer, 941-44 
Polarizing angle, 943 
Polaroid, 940^2  
Pole vault, 183,192-93 
Poles, magnetic, 707-9 

of Earth, 709 
Pollution, 549-50 
Poloidal field, 1145 
Pool depth, apparent, 852 
Pope, Alexander, 1208 fn  
Population, inverted, 1062-63 
Position, 19 

angular, 249,1023 
average, 1035 
uncertainty in, 1021-23 

Position vector, 59-60,62  
Positive curvature, 1208,1221 
Positive electric charge (defn), 560 
Positive holes, 1093 
Positive lens, 871
Positron, 996,1116,1156,1165,1174-75  
Positron emission tomography (PET), 1156 
Post-and-beam construction, 321 
Potential (see Electric potential)
Potential difference, electric, 608 f f  (see 

also Electric potential; Voltage) 
Potential energy, 186-89 and f f  

diagrams, 204-5,1074-77  
elastic, 188,193,194,377-78  
electric, 607-10,619-20,636-38  
gravitational, 186-88,199-201 
in metal crystal, 1090 
for molecules, 1074-77,1082,1085-86 
for nucleus, 1038,1113 
related to force, 188-89 
in Schrodinger equation 1027,1028, 

1030-36
for square well and barriers, 1030-36 

Potential well, 1030-36 
Potentiometer, 705 pr  
Pound (lb) (unit), 87 
Powell, C. E, 1173 
Power, 201-3,660-65,801  

rating of an engine, 202-3 
Power, magnifying, 886 

total, 888
(see also Electric power)

Power factor (ac circuit), 801 
Power generation, 549-50,766-67  
Power of a lens, 868 
Power plants: 

fossil-fuel, 550 
nuclear, 767,1139-40 

Power reactor, 1139 
Power transmission, 770-73 
Powers of ten, 5 
Poynting, J. H., 826 fn  
Poynting vector, 826-27 
Precession, 299-300 

of Earth, 303 pr

Precipitator, 645 pr  
Precision, 5 
Presbyopia, 883 
Prescriptive laws, 3 
Pressure, 341-45 

absolute, 345 
atmospheric, 344-48 
in fluids, 341-45
in a gas, 345,463-65,478,482-87  
gauge, 345 
head,343 
hydraulic, 346 
measurement of, 346-48 
partial, 485
and Pascal’s principle, 346 
radiation, 828-29
units for and conversions, 341,345,347 
vapor, 484-85,491 

Pressure amplitude, 427,430-31 
Pressure cooker, 485,493 pr  
Pressure gauges, 347 
Pressure gradient, 359 
Pressure head, 343 
Pressure waves, 401,426 f f  
Prestressed concrete, 323 
Primary coil, 770
Princeton Plasma Physics Laboratory 

(PPPL), 1146 
Principal axis, 843 
Principal quantum number, 1 0 0 4 #  

1046^8  
Principia (Newton), 85,139 
Principle, 3 (see proper name)
Principle of correspondence, 980,1009, 

1018
Principle of complementarity, 997 
Principle of equipartition of energy, 

512-13
Principle of equivalence, 155-56,

1205-6
Principle of superposition, 407-9,436, 

565,569 
Printers, inkjet and laser, 583 
Prism, 852-53 
Prism binoculars, 855,889 
Probability:

and entropy, 546-48 
in kinetic theory, 476-82 
in nuclear decay, 1117 
in quantum mechanics, 1019,1020,

1024-25,1033,1045,1049-51,
1072-74 

Probability density (probability 
distribution): 

in atoms, 1019,1028,1031,1036,1045, 
1048^9,1051  

in molecules, 1072-74 
Probability function, Fermi-Dirac, 1088, 

1092
Problem-solving strategies, 30,58,64,96, 

102,125,166,198,229,261,314,504, 
551,571,685,716,740,763,849,871,
913 

Processes: 
isobaric, 508 
isochoric, 508 
isothermal, 507-8 
isovolumetric, 508
reversible and irreversible (defn), 533

Projectile, horizontal range of, 68-69 
Projectile motion, 51,62,71  

kinematic equations for (table), 64 
parabolic, 71 

Proper length, 965 
Proper time, 962,1191 pr  
Proportional limit, 318-19 
Proteins: 

shape of, 1080 
synthesis of, 1079-80 

Proton, 1 1 0 5 #  1132,1141-43,1151,1164, 
1165,1179 

decay of, 1179,1187-88 
mean life of, 1188 

Proton-antiproton collision, 1164 
Proton centers, 1151 
Proton decay, 1179,1187-88 
Proton-proton collision, 228-29 
Proton-proton cycle, 1142-43,1200 
Proton therapy, 1151 
Protostar, 1200 
Proxima Centauri, 1194 
Pseudoforce, 300-1 
Pseudovector, 254 fn  
Psi (in Schrodinger equation, defn),

1025-27 
/7-type semiconductor, 1093-96 
PT  diagram, 483 
Pulley, 99-100 
Pulse, wave, 396 
Pulsed laser, 1063 
Pulse-echo technique, 445^6,1158  
Pumps, 348,361 

centrifugal, 361 
heat, 538-39 

Pupil, 882
PV  diagrams, 482-83,487,507  
P waves, 401,403,416 
Pythagorean theorem, A-2, A-4

QCD, 1173,1184-87 
QED, 1172 
QF, 1148 
QSOs, 1197 
Quadratic equation, 36 
Quadratic formula, 38, A-1, inside back 

cover
Quadrupole, electric, 589 pr  
Quality factor (QF) of radiation, 1148 
Quality factor (Q-value) of a resonant 

system, 387,392 pr, 810 pr  
Quality of sound, 436 
Quantities, base and derived, 7 
Quantization: 

of angular momentum, 1004,1046-47 
of electric charge, 564 
of energy, 989,1003-9,1031 

Quantum chromodynamics (QCD), 1173,
1184-87

Quantum condition, Bohr’s, 1004,1010 
Quantum electrodynamics (QED),

1172
Quantum fluctuations, 1220 
Quantum hypothesis, Planck’s, 988-89 
Quantum mechanics, 1017-98 

of atoms, 1044-65
Copenhagen interpretation of, 1024 
of molecules and solids, 1071-98
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Quantum numbers, 989,1004-5,1031, 
1046-49,1052-53,1080-85  

principal, 1 0 0 4 #
Quantum (quanta) of energy, 989 
Quantum theory, 952,987-1010,1017-98 

of atoms, 1003-10,1044-65 
of blackbody radiation, 987-88 
of light, 987-97 
of specific heat, 513 

Quarks, 564 fn, 1107,1165,1171-73,1179, 
1182-85,1217-18 

confinement, 1185,1217 
Quartz oscillator, 450 pr  
Quasars (quasi-stellar objects, QSOs), 

1197,1207 (Fig.)
Quasistatic process (defn), 508 
Quintessence, 1223 
Q-value (disintegration energy), 1112 
Q-value (quality factor) of a resonant 

system, 387,392 pr, 810 pr 
Q-value (reaction energy), 1133

Rad (unit), 1148 
Rad equivalent man (rem), 1148 
Radar, 446 fn,  823 
Radial acceleration, 1 2 0 #  128 
Radial probability distribution, 1049-51 
Radian (rad), measure for angles, 

249-50 
Radiant flux, 915 
Radiation, electromagnetic: 

blackbody, 987-88,1198,1214 
cosmic microwave background, 1193, 

1213-15,1219,1220,1224 
emissivity of, 518 
gamma, 1111,1116-17,1146 
infrared (IR), 823-24,852,936 
microwave, 823-24 
seasons and, 519 
solar constant and, 519 
synchrotron, 1168 
thermal, 517-20 
ultraviolet (UV), 823-24,852 
X-ray, 823^ , 938-39,950 pr, 1056 (see 

also X-rays)
Radiation, nuclear: 

activity of, 1118,1120,1147 
alpha, 1111-14,1117 
beta, 1111,1114-16,1117,1202 
damage by, 1146-47 
detection of, 1124-26,1149 
dosimetry for, 1147-50 
gamma, 1111,1116-17,1146 
human exposure to, 1148-50 
ionizing (defn), 1146 
measurement of, 1147-50 
medical uses of, 1150-52 
types of, 1111,1117 

Radiation biology, 1150-52 
Radiation damage, 1146-47 
Radiation-dominated universe,

1218-19 
Radiation dosimetry, 1147-50 
Radiation era, 1218-19 
Radiation field, 818 
Radiation film badge, 1149 
Radiation pressure, 828-29 
Radiation sickness, 1149

Radiation therapy, 1150-51 
Radio, 829-32 
Radio waves, 823-24,931 
Radioactive background, natural, 1114, 

1148
Radioactive dating, 1122-24 
Radioactive decay, 1110-26 
Radioactive decay constant, 1117-18 
Radioactive decay law, 1118,1119 
Radioactive decay series, 1121-22 
Radioactive fallout, 1141 
Radioactive tracers, 1151-52 
Radioactive waste, 1139^1  
Radioactivity, 1104-26 

artificial (defn), 1111 
natural (defn), 1111 

Radiofrequency (RF) signal, 830,1157-58 
Radioisotope (defn), 1111 
Radionuclide (defn), 1111,1147 
Radiotelescope, 931 
Radius, of nuclei, 1106 
Radius of curvature (defn), 129 
Radius of Earth estimate, 11,15 pr  
Radius of gyration, 279 pr  
Radon, 1111,1148,1150 
Rainbow, 853
RAM (random access memory), 629,

644 pr  
Raman effect, 1016 
Ramp vs. stair analogy, 989 
Random access memory (RAM), 629,

644 pr
Range of projectile, 68-69 
Rapid estimating, 9-12 
Rapid transit system, 49 pr  
Rare-earth solid-state lasers, 1063 
Rarefactions, in waves, 398 
Rate of nuclear decay, 1117-21 
Ray, 410,838 # 8 6 7 #  

paraxial (defn), 843 
Ray diagram, 844,849,871 
Ray model of light, 838 #  867 f f  
Ray tracing, 838 #  867 f f  
Rayleigh, Lord, 930,988 
Rayleigh criterion, 930 
Rayleigh-Jeans theory, 988 
RBE, 1148 
RC  circuit, 687-92 
Reactance, 788,797,798 

capacitive, 798-99 
inductive, 797 
(see also Impedance)

Reaction energy, 1133 
Reaction time, 791 
Reactions: 

chain, 1137-39,1141 
chemical, rate of, 481 
endoergic, 1133 
endothermic, 1133 
exoergic, 1133 
exothermic, 1133 
nuclear, 1132-38 
slow-neutron, 1133 
subcritical, 1139,1141 
supercritical, 1139,1141 

Reactors, nuclear, 1138^1,1144-46  
Read/W rite head, 775 
Real image, 840,844,869 
Rearview mirror, curved, 849

Receivers, radio and television,
830-31 

Recoil, 220
Recombination epoch, 1219 
Rectifiers, 1096,1099 pr  
Recurrent novae, 1203 
Red giants, 1197,1199,1201 
Redshift, 443,979,1204,1210-11,1215 
Redshift parameter, 1211 
Reduced mass, 1081 
Reference frames, 19 ,85 ,3 0 0 -2 ,9 5 2 #  

accelerating, 85,88,155-56,300-2  
inertial, 8 5 ,88 ,3 0 0 ,9 5 2 #  
noninertial, 85,88,156,300-2,952  
rotating, 300-2
transformations between, 968-71 

Reflecting telescope, 889 
Reflection: 

angle of, 410,838 
diffuse, 839 
law of, 409-10,838 
and lens coating, 913 
of light, 837,838-42 
phase changes during, 909-14 
polarization by, 942-43 
specular, 839 
from thin films, 909-14 
total internal, 421 pr, 854-56 
of waves on a cord, 409 

Reflection coefficient, 1037,1043 pr  
Reflection grating, 933 
Reflectors, 865 pr  
Refracting telescope, 888 
Refraction, 415-16,850-92,902-3  

angle of, 415,850 
of earthquake waves, 416 
index of, 850 
law of, 415,851,902-3  
of light, 850-52,902-3  
and Snell’s law, 850-52 
at spherical surface, 856-58 
by thin lenses, 867-70 
of water waves, 415 

Refrigerators, 536-38 
coefficient of performance (COP) of, 

537
Regelation, 491 pr  
Reinforced concrete, 323 
Relative biological effectiveness (RBE), 

1148
Relative humidity, 485 
Relative motion, 71-74,951-80  
Relative permeability, 749 
Relative velocity, 71-74,959 #  968 #  
Relativistic addition of velocities, 970-71 
Relativistic energy, 974-78 
Relativistic mass, 974 
Relativistic momentum, 971-73,977 

derivation of, 972-73 
Relativity, Galilean-Newtonian, 952-54, 

968-69
Relativity, general theory of, 155-56,

1193,1205-7 
Relativity, special theory of, 951-80,1205 

constancy of speed of light, 957 
four-dimensional space-time, 967 
impact of, 980 
and length, 964-67 
and Lorentz transformation, 968-71
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Relativity, special theory of (continued) 
and mass, 974
mass-energy relation in, 974-78 
postulates of, 957-58 
simultaneity in, 958-59 
and time, 959-64,967 

Relativity principle, 952-53,957 f f  
Relay, 751 pr  
Rem (unit), 1148 
Repulsive forces, 1074-75,1171 
Research reactor, 1139 
Resistance and resistors, 656-58,661,796  

in ac circuit, 796 f f  
with capacitor, 687-92,795-802 
color code, 657 
and electric currents, 651 f f  
with inductor, 790-92,795-802  
internal, in battery, 678-79 
in LRC  circuit, 795-803 
of meter, 697 
net, 679
in series and parallel, 679-83 
shunt, 695
and superconductivity, 668-69 

Resistance thermometer, 660 
Resistive force, 129-30 
Resistivity, 658-60 

temperature coefficient of, 659-60 
Resistor, 657 

shunt, 695 
wire-wound, 657 

Resolution: 
of diffraction grating, 937-39 
of electron microscope, 1000 
of eye, 930,932-33 
of high-energy accelerators, 1165-66 
of lens, 881,929-32 
of light microscope, 932-33 
limits of, 929-32 
and pixels, 881 
of telescope, 931 
of vectors, 55-58 

Resolving power, 932,938 
Resonance, 385-87 

in ac circuit, 802 
elementary particle, 1180-81 
nuclear magnetic, 1107,1156-59 

Resonant frequency, 385,412-13,432-35, 
802

Resonant oscillation, 385-86 
Resonant peak, width of, 387 
Rest energy, 974-76,1023 
Rest mass, 974 
Resting potential, 669-70 
Restitution, coefficient of, 243 pr  
Restoring force, 170,370 
Resultant displacement, 52-53 
Resultant vector, 52-54,57-58  
Retentivity (magnetic), 749 
Retina, 882
Reverse-biased diode, 1095 
Reversible cycle, 533-35,540 
Reversible process, 533 
Revolutions per second (rev/s), 253 
Reynold’s number, 366 pr  
RF signal, 830,1157-58 
Rho (particle), 1179 
Ribosome, 1079 
Richards, R, 1214

Rifle recoil, 220
Right-hand rule, 254,710,711,714,716, 

735,763 
Rigid box, particle in, 1030-34 
Rigid object (defn), 249 

rotational motion of, 248-74,294-97 
translational motion of, 234-36,

268-70
Ripple voltage, 1096,1103 pr 
Rms (root-mean-square): 

current, 664-65 
speed,479-82 
voltage, 664-65 

RNA, 1079-80
Rock climbing, 106 pr, 110 pr, 137 pr,

182 pr
Rocket propulsion, 83,90,219,238  
Rocks, dating oldest Earth, 1124 
Roemer, Ole, 825 
Roentgen (R) (unit), 1148 
Roentgen, W. C., 938 
Roller coaster, 191,198 
Rolling friction, 113,273-74 
Rolling motion, 267-73 

instantaneous axis of, 268 
total kinetic energy, 268 
without slipping, 267-71 

Root-mean-square (rms) current,
664-65

Root-mean-square (rms) speed, 479-82 
Root-mean-square (rms) voltage,

664-65
Rotating reference frames, 300-2 
Rotation, 248-302 

axis of (defn), 249 
frequency of (defn), 253 
of rigid body, 248-74,294-97 

Rotational angular momentum quantum 
number, 1080-81,1084-85 

Rotational imbalance, 296-97 
Rotational inertia, 258,259-60 (see also 

Moment of inertia)
Rotational kinetic energy, 265-67 

molecular, 499,512-13 
Rotational motion, 248-302 
Rotational plus translational motion,

267-68
Rotational transitions, 1080-81 
Rotational work, 266 
Rotor, 720,768 
Rough calculations, 9-12 
Rubidium-strontium dating, 1128 pr  
Ruby laser, 1062 
Runway, 29 
Russell, Bertrand, 999 
Rutherford, Ernest, 1001,1106,1111, 

1132,1163 pr  
Rutherford’s model of the atom, 1001 
R-y alue, 517
Rydberg constant, 1002,1007 
Rydberg states, 1070 pr

S wave, 401
SAE, viscosity numbers, 358 fn  
Safety factor, 322
Sailboats, and Bernoulli’s principle, 357 
Salam,A., 1186 
Satellite dish, 831

Satellites, 139,146-49 
geosynchronous, 147 
global positioning, 16 pr, 160 pr, 964 

Saturated vapor pressure, 484 
Saturation (magnetic), 748 
Savart, Felix, 743 
Sawtooth oscillator, 691,706 pr  
Sawtooth voltage, 691 
Scalar (defn), 52 
Scalar components, 55 
Scalar (dot) product, 167-68 
Scalar quantities, 52 
Scale, musical, 431 
Scale factor of universe, 1211 
Scanner, fan-beam, 1153-54 
Scanning electron microscope (SEM), 

987,1000
Scanning tunneling electron microscope 

(STM), 1038-39,1043 pr  
Scattering: 

elastic, 1135 
of light, 945 
of X-rays, Bragg, 1065 

Schrodinger, Erwin, 987,1017,1018 
Schrodinger equation, 1025-36,1045-46, 

1082,1090 
Schwarzschild radius, 1209,1228 pr  
Scientific notation, 5 
Scintigram, 1152 
Scintillation counter, 1124 
Scintillator, 1124,1125,1152 
Scuba diving, 473 pr, 475 pr, 495 pr,

521 pr  
SDSS, 1224 
Sea of electrons, 1174 
Search coil, 783 pr  
Seasons, 519 
Second (s) (unit), 6
Second law of motion, 86-88,90,95-96,

215,218,234-35,953,972  
for rotation, 259-63,292-93  
for a system of particles, 234-35, 

292-93
Second law of thermodynamics, 529-48 

and Carnot efficiency, 534-35 
Clausius statement of, 529,537 
and efficiency, 531-32 
and entropy, 539^8,551  
general statement of, 543,544,548 
heat engine, 529,530-32 
and irreversible processes, 533 
Kelvin-Planck statement of, 532,535 
refrigerators, air conditioners, and heat 

pumps, 536-39 
reversible processes, 533 
and statistical interpretation of 

entropy, 546-48 
and time’s arrow, 544 

Secondary coil, 770 
Seesaw, 314 
Segre, Emilio, 1175 
Seismograph, 776
Selection rules, 1048^9,1080,1083,

1084
Self-inductance, 788-89 
Self-sustaining chain reaction, 1138^1  
SEM, 987,1000 
Semiconductor detector, 1125 
Semiconductor diode lasers, 1063
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Semiconductor diodes, 1094-96 
Semiconductor doping, 1093-94 
Semiconductors, 561,658,1091-98 

intrinsic, 1091,1093 
n and p  types, 1093-96 
resistivity of, 658 
silicon wafer, 1125 

Sensitivity, full-scale current, 695 
Sensitivity of meters, 696,697 
Separation of variables, 1027 
Series circuit, 634,679 
Series emf, 686-87 
Shear modulus, 319,321 
Shear stress, 321 
Shells, atomic, 1053 
Shielded cable, 740,789,825 
Shielding, electrical, 577,740 
SHM, see Simple harmonic motion 
SHO, see Simple harmonic oscillator 
Shock absorbers, 369,371,383 
Shock waves, 443-44 
Short circuit, 663 
Short-range forces, 1110,1205 
Shunt resistor, 695 
Shutter speed, 879,881 
SI (Systeme International) units, 7 
SI derived units: inside front cover 
Siemens (S) (unit), 675 pr 
Sievert (Sv) (unit), 1148 
Sigma (particle), 1179 
Sign conventions (geometric optics), 

845-46,849,871 
Significant figures, 4-5 

percent uncertainty vs., 5 
Silicon, 1 0 9 1 #
Silicon wafer semiconductor, 1125 
Simple harmonic motion (SHM), 372-79 

applied to pendulums, 379-82 
related to uniform circular motion,

379
sinusoidal nature of, 372 

Simple harmonic oscillator (SHO), 
372-79,1036,1042 pr 

acceleration of, 374 
energy in, 377-78,1042 pr  
molecular vibration as, 1082-83 
velocity and acceleration of, 374 

Simple machines: 
lever, 177 pr, 313 
pulley, 99-100 

Simple magnifier, 885-87 
Simple pendulum, 13,195,379-81 

with damping, 384 
Simultaneity, 958-60 
Single-lens reflex (SLR) camera, 882 
Single photon emission computed 

tomography (SPECT), 1156 
Single photon emission tomography 

(SPET), 1156 
Single-slit diffraction, 922-27 
Singularity, 1209 
Sinusoidal curve, 372 #
Sinusoidal traveling wave, 404-6 
Siphon, 362 pr, 368 pr  
Skater, 284,286,309 pr  
Skidding car, 126-27 
Skier, 112,117,149,183,211 pr  
Sky color, 945
Sky diver, 77 pr, 105 pr, 138 pr

SLAC, 1169 
Slepton, 1189
Slingshot effect, gravitational, 246 pr
Sloan Digital Sky Survey (SDSS), 1224
Slope, of a curve, 23
Slow-neutron reaction, 1133
SLR camera, 882
Slug (unit), 87
Smoke detector, 1114
Smoot, George, 1214
Snell, W., 851
Snell’s law, 851-52,856,876,902
SNIa (type la) supernovae, 1203,1204,1223
SN1987a, 1177,1202
Snowboarder, 51,133 pr
Soap bubble, 900,909,912-13
Soaps, 360
Sodium chloride, bonding in, 1073,

1075-76,1085 
Solar and Heliospheric Observatory 

(SOHO) satellite, 153 
Solar (photovoltaic) cell, 550 
Solar absorption spectrum, 936,1002 
Solar cell, 1096 
Solar constant, 519 
Solar energy, 550 
Solar neutrino problem, 1177 
Solar pressure, 828 
Solar sail, 829
Solenoid, 733,741^2,747,748-49,

788-89 
Solid angle, 7 fn, 915 fn  
Solid-state lighting, 1096 
Solid-state physics, 1085-98 
Solids, 318 ff, 340,455-56,1085-93 (see 

also Phase, changes of) 
amorphous, 1085 
band theory of, 1090-92 
bonding in, 1085-86 
energy levels in, 1090-92 
specific heats for, 513 

Solvay Conference, 1017 
Sonar, 444-45 
Sonic boom, 444 
Sonogram, 445 
Sound, 424-46 

audible range of, 425 
and beats, 438-39 
dBs of, 428-31 
Doppler effect of, 439-43 
ear’s response to, 431 
infrasonic, 426 
intensity of, 427-31 
interference of, 437-39 
level of, 428-31 
loudness of, 425,427,429 
loudness level of, 431 
mathematical representation of wave, 

426-27 
pitch of, 425
pressure amplitude of, 427,430-31
quality of, 436
shock waves of, 443-44
and sonic boom, 444
sound level of, 428-31
sources of, 431-36
speed of, 425-26,824
supersonic, 426,443-44
timbre of, 436

tone color of, 436 
ultrasonic, 425,445-46 

Sound barrier, 444 
Sound level, 428-31 
Sound spectrum, 436 
Sound track, optical, 992 
Sound waves, 424-46 (see also Sound) 
Sounding board, 433 
Sounding box, 433 
Soundings, 444 
Source activity, 1147 
Source of emf, 678,758-68 
South pole, Earth, 709 
South pole, of magnet, 708 
Space: 

absolute, 953,957
curvature of, 155-56,1207-9,1220-22 
Euclidean and non-Euclidean, 1207-8 
relativity of, 964-70 

Space-time (4-D), 967 
curvature of, 1207-9,1220-21 

Space-time interval, 967 
Space quantization, 1047 
Space shuttle, 139 
Space station, 131 pr, 149 
Space travel, 963 
Spark plug, 785 
Speaker wires, 659
Special theory of relativity, 951-80,1205 

(see also Relativity, special theory of) 
Specific gravity, 341,351 
Specific heat, 499-500 

for gases, 511-13 
for solids, 513 

SPECT, 1156 
Spectrometer: 

light, 935-36 
mass, 724-25 

Spectroscope and spectroscopy, 935-36, 
948 pr

Spectroscopic notation, 1059 
Spectrum, 934 

absorption, 936,1002,1084 
atomic emission, 936,1001-3,1006-8  
band, 1080,1084-85 
continuous, 935,988 
electromagnetic, 823,852-54 
emitted by hot object, 987-88 
line, 9 35 -36 ,1002#  1017 
molecular, 1080-85 
visible light, 852-54 
X-ray, 1054-56 

Specular reflection, 839 
Speed, 20 

average, 20,480-82  
of EM waves, 821-22,825 
Fermi, 1089 
instantaneous, 22 
of light (see separate entry below) 
molecular, 480-82 
most probable, 480-82 
rms (root-mean-square), 479,480,482 
of sound (see separate entry on next page) 
(see also Velocity)

Speed of light, 6,822,825-26,850,902,
953,957,975 

constancy of, 957 
measurement of, 825-26 
as ultimate speed, 974
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Speed of sound, 425-26 
infrasonic, 426 
supersonic, 426,443-44 

SPET, 1156
Spherical aberration, 843,891,892,929, 

932
Spherical lens, 858 
Spherical mirrors, image formed by, 

842-49,889,892 
Spherical shells, Earth, 142-43,

A-9-A-11  
Spherical wave, 403,410 
Spiderman, 179 pr  
Spin: 

boson, 1184 
down, 1047,1156-57 
electron, 746,1047,1058-60,1072  
fermion, 1184 
nuclear, 1107 
up, 1047,1156-57 

Spin angular momentum, 1047 
Spin quantum number, 1047 
Spin-echo technique, 1158 
Spin-orbit interaction, 1047,1060 
Spinning top, 299-300 
Spiral galaxy, 1196
Splitting of atomic energy levels, 1090, 

1156-57 
Spring:

potential energy of, 188,193-94,377-78 
vibration of, 370 f f  

Spring constant, 170,370 
Spring equation, 170,370 
Spring stiffness constant, 170,370 
Spyglass, 889 
Square wave, 409
Square well potential, infinitely deep, 

1030-34 
Squark, 1189
Stability, of particles, 1180-81 
Stable equilibrium, 204-5,317 
Stable nucleus, 1110 
Standard candle, 1204 
Standard conditions (STP), 466 
Standard length, 6,914 
Standard mass, 6 
Standard Model: 

cosmological, 1216-19 
elementary particles, 1165,1184-86 

Standard of time, 6 
Standard temperature and pressure 

(STP), 466 
Standards and units, 6-7 
Standing waves, 412-15 

fundamental frequency of, 413 
mathematical representation of, 414-15 
natural frequencies of, 412 
resonant frequencies of, 412-13 
and sources of sound, 431-35 

Stanford Linear Accelerator Center 
(SLAC), 1169 

Star clusters, 1196 
Stars: 1142-43,1194-1204 and f f  

black holes, 156,160 pr, 161 pr, 1197,
1202,1203,1208-9,1221,1228 pr  

clusters of, 1196 
color of, 988,1199 
distance to, 1203^  
evolution of, 1200-3

H -R  diagram, 1199,1201,1204 
magnitude of, 1228 pr  
neutron, 287,1100 pr, 1197,1202 
quasars, 1197,1207 (Fig.) 
red giants, 1197,1199,1201 
size of, 520
source of energy of, 1142-43,1200-2 
Sun (see Sun)
supernovae, 1177-78,1197,1201-4 
temperature of, 1198 
types of, 1197 a n d #  
variable, 1204
white dwarfs, 1197,1199,1201,1228 pr  

State: 
bound, 1035
changes of, 482-83,502-5  
energy, in atoms, 1003-9 
equation of, 463 

for an ideal gas, 466,468 
van der Waals, 486-87 

of matter, 340,456 
metastable, 1061,1117 
as physical condition of system, 454, 

463
of a system, 454 

State variable, 455,506,539,540  
Static electricity, 559-642 
Static equilibrium, 311-24 
Static friction, 114,270 

coefficient of, 113-14 
Statics, 311-28
Stationary states in atom, 1003-10 
Statistics:

Bose-Einstein, 1087 fn  
and entropy, 546-48 
Fermi-Dirac, 1087-90 

Stator, 768
Steady-state model of universe, 1213 
Steam engine, 528,530-31 
Steam power plants, 1140 
Stefan-Boltzmann constant, 518 
Stefan-Boltzmann law (or equation), 518, 

1198
Stellar evolution, 1200-3 
Stellar fusion, 1142-44 
Step-down transformer, 771 
Step-up transformer, 771 
Stereo, 689,831 fn  
Sterilization, 1151 
Stern-Gerlach experiment, 1058-59 
Stimulated emission, 1061-64 
Stirling cycle, 557 pr 
STM, 1038-39,1043 pr  
Stokes’s theorem, A-12-A-13 
Stopping a car, 32,174,272-73  
Stopping potential, 990 
Stopping voltage, 990 
Storage rings, 1169 
Stove, induction, 762 
STP, 466 
Strain, 320-21 
Strain gauge, 673 
Strange quark, 1182 
Strange particles, 1181,1182 
Strangeness, 1179 fn, 1181-82 

conservation of, 1181 
Strassman, Fritz, 1136 
Streamline (defn), 352 
Streamline flow, 352

Strength of materials, 319,322 
Stress, 320-21 

compressive, 321 
shear, 321 
tensile, 320-21 
thermal, 463 

String theories, 1189 
Stringed instruments, 413,432-33 
Strings, vibrating, 412-15,431-33 
Stripping nuclear reaction, 1160 pr  
Strong bonds, 1072-74,1077-78,

1085-86
Strong nuclear force, 155,1110,1134 fn, 

1171-89,1205 
and elementary particles, 1171-89 

Strongly interacting particles (defn), 
1179 

Structure: 
fine, 1017,1044,1047,1060 
of universe, 1219-20 

Struts, 324
Subcritical reactions, 1139,1141 
Sublimation, 483 
Sublimation point, 483 
Subshells, atomic, 1053,1054 
Subtraction of vectors, 54-55 
Suction, 348
Sun, 1142^3,1195,1197-1201  

energy source of, 1142-43,1200 
mass determination, 152 
surface temperature of, 988 

Sunglasses, polarized, 941,942 
Sunsets, 945 
Supercluster, 1196-97 
Superconducting magnets, 747 
Superconductivity, 668-69 
Supercritical reactions, 1139,1141 
Superdome (New Orleans, LA), 328 
Superfluidity, 483
Supernovae, 1177-78,1197,1201^  

as source of elements on Earth, 1201, 
1202

type la, 1203,1204,1223 
Superposition, principle of, 407,408-9, 

436,565,569,1141 pr 
Supersaturated air, 486 
Supersonic speed, 426,443 
Superstring theory, 1189 
Supersymmetry, 1189 
Surface area formulas, A -1, inside back 

cover
Surface charge density, 641 
Surface of last scattering, 1215 
Surface tension, 359-60 
Surface waves, 402,410 
Surfactants, 360 
Surge protector, 792 
Surgery, laser, 1064 
Suspension bridge, 326 
SUSYs, 1189 
SUV rollover, 308 pr
S wave, 401
Symmetry, 10,37,140,228,233,296,313, 

323,325,563 fn, 565,571,572,573, 
579,580,593,595,596,597,598,600, 
635,637,713,738,739,740,742,743, 
744,774,813,815,819,847,877,907,
972,997,1187,1189,1217 

Symmetry breaking, 1187,1217
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Synapse, 669 
Synchrocyclotron, 1167 
Synchrotron, 1168 
Synchrotron radiation, 1168 
Systeme International (SI), 7, inside front 

cover 
Systems, 98,454,500  

closed, 500 
isolated, 218,500 
open,500
as set of objects, 98,454 
of units, 7
of variable mass, 236-38

Tacoma Narrows Bridge, 386 
Tail-to-tip method of adding vectors, 

53-54
Tangential acceleration, 128-29,251-52 
Tape recorder, 749,775 
Tau lepton, 1176,1178,1179,1183 
Tau lepton number, 1176-77,1179,1183 
Tau neutrino, 1178,1179 
Technetium-99,1152 
Telephone, cell, 771,812,824,832 
Telephoto lens, 882 
Telescope(s), 887-89,930-31 

Arecibo, 931 
astronomical, 888-89 
Galilean, 887,887 fn,  889 
Hale, 889
Hubble Space (HST), 930,1207,1211 
Keck, 889
Keplerian, 887 fn, 888 
magnification of, 888 
reflecting, 889 
refracting, 888 
resolution of, 930-31 
space, 930,1207,1211 
terrestrial, 889 

Television, 621,830-32,943^4  
Temperature, 456-59,464,469,548-59  

absolute, 464,469-70,548-59  
Celsius (or centigrade), 457-58 
critical, 483 
Curie, 746,750
distinguished from heat and internal 

energy, 498 
Fahrenheit, 457-58 
Fermi, 1102 pr  
human body, 458,505 
ideal gas scale, 469-70,534 
Kelvin, 464,469-70,548^9  
molecular interpretation of, 476-80 
operating (of heat engine), 530 
relation to molecular kinetic energy,

478-79,498-99,512-13  
relation to molecular velocities, 476-82 
scales of, 457-58,464,469-70,534  
of star, 1198 
transition, 668 

Temperature coefficient of resistivity, 
658,659-60 

Tennis serve, 81 pr, 216,220 
Tensile strength, 322 
Tensile stress, 320-21 
Tension (stress), 320-21 
Tension in flexible cord, 97 
Terminal, of battery, 653,655

Terminal velocity, 35 fn, 129-30 
Terminal voltage, 678-79 
Terrestrial telescope, 889 
Tesla (T) (unit), 712 
Test charge, 568 
Testing, of ideas/theories, 2 
Tevatron, 1168,1169 
TFTR, 1145 
Theories (general), 3 
Theories of everything, 1189 
Thermal conductivity, 515 
Thermal contact, 459 
Thermal energy, 196,498 

distinguished from heat and 
temperature, 498 

transformation of electric to, 660 
(see also Internal energy)

Thermal equilibrium, 459 
Thermal expansion, 459-62 

anomalous behavior of water below 
4°C, 462 

coefficients of, 460 
linear expansion, 459-61 
volume expansion, 461-62 

Thermal neutron, 1136 
Thermal pollution, 549-50 
Thermal radiation, 519 
Thermal resistance, 517 
Thermal stress, 463 
Thermionic emission, 620 
Thermistor, 660
Thermodynamic probability, 547 
Thermodynamic temperature scale, 548^9  
Thermodynamics, 455,496-520,528-51  

first law of, 505-7 
second law of, 529-48 
third law of, 539 fn, 548^9  
zeroth law of, 459 

Thermography, 519 
Thermoluminescent dosimeter (TLD) 

badge, 1149 
Thermometers, 457-58 

bimetallic-strip, 457 
constant-volume gas, 458-59 
liquid-in-glass, 457
mercury-in-glass thermometer, 457-58 
resistance, 660 

Thermonuclear devices, 1144 
Thermonuclear runaway, 1203 
Thermos bottle, 521 pr  
Thermostat, 471 pr  
Thin lens equation, 870-73 
Thin lenses, 867-77 a n d #
Thin-film interference, 909-14 
Third law of motion, 89-91 
Third law of thermodynamics, 539 fn, 

548-49 
Thomson, G. P., 998 
Thomson, J. J., 722-23,998,999 
Thought experiment, 958 a n d #  

definition, 958 
Three Mile Island, 1139 
Three-dimensional waves, 402-3 
Three-phase ac, 803 
Three-way lightbulb, 704 pr  
Threshold energy, 1134,1163 pr  
Threshold of hearing, 431 
Threshold of pain, 431 
Thrust, 237

TIA, 357 
Tidal wave, 397 
Timbre, 436 
Time: 

absolute, 953
characteristic expansion, 1213 
lookback, 1215
Planck, 16 pr, 1015 pr, 1188,1216 
proper, 962,1191 pr 
relativity of, 958-64,967,968-71 
standard of, 6 

Time constant, 688,791,1119 
Time dilation, 960-64,970 
Time intervals, 6,21
Time-dependent Schrodinger equation, 

1027-28
Time-independent Schrodinger equation,

1025-27 
Time’s arrow, 544 
Tire pressure, 468 
Tire pressure gauge, 347 
Tokamak, 1145-46
Tokamak Fusion Test Reactor (TFTR), 

1145
Tomography, 1153-56 
Tone color, 436 
Toner, 583
Top, spinning, 299-300 
Top quark, 1164,1182 
Topness, 1183 
Topographic map, 617 
Toroid, 742,748 
Toroidal field, 1145 
Torque, 256-60 and #  290 #  

counter, 769 
on current loop, 718-19 
vector, 290 

Torr (unit), 346^7
Torricelli, Evangelista, 346,347-48,356
Torricelli’s theorem, 356
Torsion balance, 563
Torsion pendulum, 382
Total angular momentum, 1059
Total binding energy, 985 pr, 1108
Total cross section, 1135
Total internal reflection, 854-56,1038
Total magnifying power, 888
Total reaction cross reaction, 1135
Townsend, J. S., 723
Tracers, 1151-52
Traffic light, LED, 1096
Transfer-RNA (t-RNA), 1079-80
Transformation of energy, 196,201
Transformations:

Galilean, 968-69 
Lorentz, 969-71 

Transformer, 770-73,787  
Transformer equation, 771 
Transient ischemic attack (TIA), 357 
Transistors, 1094,1097-98 
Transition elements, 1054 
Transition temperature, 668 
Transitions, atoms and molecules, allowed 

and forbidden, 1048-49,1061 fn, 
1080-81,1083,1084 

Translational kinetic energy, 172-73 
Translational motion, 18-239 

and center of mass (CM), 234-36,
268-69
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Transmission coefficient, 1037,1143 pr  
Transmission electron microscope, 1000 
Transmission grating, 933 #
Transmission lines, 772-73,825 
Transmission of electricity, 772-73 
Transmutation of elements, 1111,1132-35 
Transuranic elements, 1134 
Transverse waves, 398 f f  

EM waves, 819 
and earthquakes, 401 
velocity of, 399 

Traveling sinusoidal wave, mathematical 
representation of, 404-6 

Triangle, on a curved surface, 1207 
Triangulation, 11,1203 fn  
Trigonometric functions and identities,

56,57, A -4-A -5, inside back cover 
Trigonometric table, A-5 
Triple point, 469,483 
Tritium, 1105,1129 pr, 1144-45 
Tritium dating, 1129 pr  
t-RNA, 1079-80 
Trough, 397 
Trusses, 324-27 
Tsunami, 397 
Tubes:

flow in, 353-55,357,358-59  
vibrating column of air in, 431 f f  

Tunnel diode, 1038 
Tunneling: 

of light wave, 1038 
through a barrier, 1036-39,1113 

Tlirbine, 549,767 
Turbulent flow, 352,357 
Turn signal, automobile, 691 
Turning points, 204 
Twin paradox, 963 
Two-dimensional waves, 402 
Tycho Brahe, 149
Type la  supernovae (SNIa), 1203,1204, 

1223
Tyrolean traverse, 106 pr, 338 pr

UA1 detector, 1173 
Ultimate speed, 974 
Ultimate strength, 319,322 
Ultracapacitors, 644 pr  
Ultracentrifuge, 122 
Ultrasonic frequencies, 426,445 
Ultrasonic waves, 426,442,445-46 
Ultrasound, 445 
Ultrasound imaging, 445-46 
Ultraviolet (UV) light, 823,824,852 
Unavailability of energy, 545-46 
Uncertainty (in measurements), 3-5,

1020-23 
estimated, 3 
percent, 3-4,5 

Uncertainty principle, 1020-23,1036, 
1072

and particle resonance, 1181 
and tunneling, 1113 

Underdamped system, 383 
Underexposure, 879 
Underwater vision, 885 
Unification distance, 1192 pr  
Unification scale, 1187 
Unified (basis of forces), 1186

Unified atomic mass units (u), 7,455, 
1106,1107 

Unified theories, grand (GUT), 155, 
1187-88

Uniform circular motion, 119-25 
dynamics of, 122-25 
kinematics of, 119-22 

Uniformly accelerated motion, 28 ff,
6 2 #

Uniformly accelerated rotational motion, 
255

Unit conversion, 8-9, inside front cover 
Unit vectors, 59 
Units of measurement, 6 

converting, 8-9, inside front cover 
prefixes, 7
in problem solving, 9,30,102  

Units and standards, 6-7  
Universal gas constant, 466 
Universal law of gravitation, 139,140^3, 

199-201,564,1205 
Universe: 

age of, 1188 fn, 1213 
Big Bang theory of, 1188,1212 f f  
CDM model of, 1224 
critical density of, 1221-22 
curvature of, 1207-8,1220-21 
entire, 1216
expanding, 1209-13,1221-23 
finite or infinite, 1194,1208-9,1213, 

1221
future of, 1221-23 
homogeneous, 1212 
inflationary scenario of, 1217,1219-21 
isotropic, 1212 
matter-dominated, 1219-21 
observable, 1215-16 
origin of elements in, 1201-2 
radiation-dominated, 1218-19 
Standard Model of, 1216-19 
steady-state model of, 1213 

Unobservable (universe), 1221 
Unpolarized light (defit), 941 
Unstable equilibrium, 205,317 
Unstable nucleus, 1 1 1 0 #
Up quark, 1182 
Uranium:

in dating, 1121-24 
enriched, 1138 
fission of, 1136-41 
in reactors, 1136-41 

Uranus, 150,152 
Useful magnification, 932-33 
UV light, 823,824,852

Vacuum energy, 1223 
Vacuum pump, 361 
Vacuum state, 1174-75,1220 
Valence, 1054 
Valence band, 1091-92 
Van de Graaff generator, 607,627 pr  
van der Waals, J. D., 486 
van der Waals bonds and forces, 1077-80, 

1086
van der Waals equation of state, 486-87
van der Waals gas, 487
Vapor (defn), 483 (see also Gases)
Vapor pressure, 484-85

Vaporization, latent heat of, 502,503, 
505

Variable acceleration, 39-43 
Variable mass systems, 236-38 
Variable stars, 1204 
Vector cross product, 289-90 
Vector displacement, 20,52-54,59-60  
Vector field, 575
Vector form of Coulomb’s law, 567 
Vector kinematics, 59-74 
Vector model (atoms), 1069 pr, 1070 pr  
Vector product, 289-90 
Vector sum, 52-58,95,143,217  
Vectors, 20,52-62,167-68,289-90  

addition of, 52-58 
angular momentum, 288,291 
average acceleration, 60 
components of, 55-59 
cross product, 289-90 
instantaneous acceleration, 60 
instantaneous velocity, 60 
kinematics, 59-74 
magnetization, 750 
multiplication of, 55,167-68,289-90  
multiplication, by a scalar, 55 
parrallelogram method of adding,

54
position, 59-60,62
Poynting, 826-27
pseudo-, 254 fn
resolution of, 55-58
resultant, 52-54,57-58
scalar (dot) product, 167-68
subtraction of, 54-55
sum, 52-58,95,143
tail-to-tip method of adding, 53-54
torque, 290
unit, 59
vector (cross) product, 289-90 

Velocity, 20-24,60  
addition of, 71-74,970-71  
angular, 250-55 
average, 20-22,60  
drift, 666-68,723,724  
escape, 201,1222 
of EM waves, 819-22 
gradient, 358 
instantaneous, 22-24,60  
of light, 6,822,825-26,850,902,953,

957,975 
molecular, and relation to 

temperature, 479-82 
phase, 404-5 
relative, 71-74
relativistic addition of, 970-71 
rms (root-mean-square velocity),

479-82 
of sound, 425 
supersonic, 426,443 
terminal, 35 fn, 129-30 
of waves, 397,399-401 

Velocity selector, 717 
Velocity-dependent forces, 129-30 
Ventricular fibrillation, 638,692 
Venturi meter, 357 
Venturi tube, 357 
Venus, 150,158 pr, 887 
Vertical (defn), 92 fh  
Vibrating strings, 412-15,431-33
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Vibration, 369-86 
of air columns, 434-36 
forced, 385-87
molecular, 499,512-13,1082-85  
as source of waves, 397 
of spring, 370 f f  
on strings, 412-14,431-3  
(see also Oscillations)

Vibrational energy, 377-78 
molecular, 499,513,1082-85 

Vibrational quantum number, 1083 
Vibrational transition, 1082-85 
Virtual image, 840,870 
Virtual particles, 1172 
Virtual photon, 1172 
Viscosity, 352,353 fn, 358-59 

coefficient of, 358 
Viscous force, 358-59 
Visible light, wavelengths of, 823,852-54 
Visible spectrum, 852-54 
Volt (V) (unit), 608 
Volt-Ohm-Meter/Volt-Ohm- 

Milliammeter (VOM), 696 
Volta, Alessandro, 608,629,652  
Voltage, 607,608 ff, 653 ff, 678 f f  

base bias, 1097 
bias, 1095 
breakdown, 612 
electric field related to, 610-11,

617-19 
Hall, 1094 
hazards of, 692-94 
measuring, 695-97 
peak,664 
ripple, 1096 
rms, 664
terminal, 678-79 
(see also Electric potential)

Voltage drop, 684 (see Voltage)
Voltage gain (defn), 1097 
Voltaic battery, 652 
Voltmeter, 695-97,721 

digital, 695,697 
Volume change under pressure, 321 
Volume expansion (thermal), 460, 

461-62 
coefficient of, 461 

Volume formulas, A -l, inside back cover 
Volume holograms, 1065 
Volume rate of flow, 353 
VOM, 696 
von Laue, Max, 939

W± particles, 1173,1178-80,1183, 
1185 

Walking, 90 
Water:

anomalous behavior below 4°C, 462
cohesion of, 360
density of, 340-41,351
dipole moment of, 617
and electric shock, 693
expansion of, 462
heavy, 1138
latent heats of, 503
molecule, 1074,1075
polar nature of, 561,579,617,1074
properties of: inside front cover

saturated vapor pressure, 484 
specific gravity of, 341,351 
thermal expansion of, 462 
triple point of, 469,483 

Watson, J., 939 
Watt, James, 202 fn  
Watt (W) (unit), 202,661 
Wave(s), 395-416,817 ff, 823 ff,

900-45
amplitude of, 371,397,402,404,426, 

430,1019 
bow, 443-44 
complex, 408,436 
composite, 408,436 
compression, 398,401 
continuous (defn), 397 
diffraction of, 416,901,921-39 
dispersion, 409,853 
displacement of, 404 f f  
earthquake, 401,402,403,416 
electromagnetic, 817-32 (see also 

Light) 
energy in, 402-3 
expansions in, 398 
frequency, 397 
front, 410,901
function, 1018-20,1025-37,1045,

1049-51 
gravity, 1224 
harmonic (defn), 405 
incident, 410,415 
infrasonic, 426 
in-phase, 411
intensity, 402-3,427-31,826-27  
interference of, 410-11,437-38,

903-14
light, 821-26,900-45,1038 (see also 

Light) 
linear, 402
longitudinal (defn), 398 
mathematical representation of, 404-6, 

426-27
of matter, 997-99,1009-10,1019//
mechanical, 395-416
motion of, 395-416
number, 404
one-dimensional, 402-3
out-of-phase, 411
P, 401,403,416
packet, 1029
period of, 397
periodic (defn), 397
phase of, 404,411
plane, 410,818,819,1028-29
power, 402
pressure, 401,426 f f
pulse, 396
radio, 823-24,931
rarefactions in, 398
reflection of, 409-10
refraction of, 415-16
S, 401
shock, 443-44 
sinusoidal traveling, 404-6 
sound, 424-46,824 
source of, oscillations as, 397 
speed of (see Speed of light; Speed of 

sound) 
spherical, 403,410

square, 409
standing, 412-15,431-35 
on a string, 412-15,431-33 
surface, 402,410 
three-dimensional, 402-3 
tidal, 397
transmission of, 409
transverse, 398 ff, 399,401,819,940
traveling, 404-6
two-dimensional, 402
and tunneling, 1038
types of, 398-99 (see also Light)
ultrasonic, 426,442,445-46
velocity of, 397,399-401,819-22
water, 395 f f
(see also Light)

Wave displacement, 404 ff, 1019 
Wave equation, 406-8,822  

Schrodinger, 1025-36,1045-46,1082, 
1090

Wave front, 410,901 
Wave function, 1018-20,1025-39 

for H atom, 1045,1046,1049-51,1072 
for square well, 1030-36 

Wave intensity, 402-3,427-31,826-27, 
906-9,924-29 

Wave motion (see Wave(s); Light; 
Sound)

Wave nature of electron, 1020 
Wave nature of matter, 997-99,

1009-10 
Wave number (defn), 404 
Wave packet, 1029 
Wave theory of light, 900-45 
Wave velocity, 397,399-401,819-22 

(see also Light; Sound)
Wave interference phenomenon, 903 
Wave-particle duality: 

of light, 997
of matter, 997-99,1009-10,1018-22  

Wavelength: 
absorption, 1008 
Compton, 994 
cutoff, 1055-56
de Broglie, 997-98,1009-10,1019,

1025,1165-66 
definition, 397
depending on index of refraction, 853, 

902
as limit to resolution, 932,1165-66 
of material particles, 997-9,1009-10 

Weak bonds, 1077-80,1086 
Weak charge, 1185 
Weak nuclear force, 155,1110,1115, 

1173-89,1205 
Weather, 302,525 pr 
Weber (Wb) (unit), 760 
Weight, 84,86,92-94,143  

as a force, 86,92 
force of gravity, 84,92-94,143  
mass compared to, 86,92 

Weightlessness, 148-49 
Weinberg, S., 1186 
Well, finite potential, 1035-36 
Well, infinite potential, 1030-34 
Wess, J., 1189
Wheatstone bridge, 704 pr 
Wheel balancing, 296 
Whirlpool galaxy, 1196
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White dwarfs, 1197,1199,1201,1228 pr 
White light, 852-53 
White-light holograms, 1065 
Whole-body dose, 1149 
Wide-angle lens, 882,892 
Width, of resonance, 1181 
Wien, W., 988
Wien’s displacement law, 988,1198 
Wien’s radiation theory, 988 
Wilkinson, D., 1214
Wilkinson Microwave Anisotropy Probe 

(WMAP), 1193,1214 
Wilson, Robert, 1168 fn, 1213-14 
Wind instruments, 433-36 
Wind power, 550 
Windings, 720 
Windshield wipers, 691 
Wing of an airplane, lift on, 356-57 
Wire, ground, 693,694 
Wire drift chamber, 1125,1164 
Wireless communication, 812,829-32 
Wire-wound resistors, 657 
WMAP, 1193,1214 
Work, 163-76,199,266,497,505-10  

to bring positive charges together,
613

compared to heat, 505 
defined, 164,169,505 f f  
done by a constant force, 164-66 
done by a gas, 508 f f  
done by a spring force, 170-71

done by a varying force, 168-71 
in first law of thermodynamics,

505-7
from heat engines, 530 f f  
and power, 201
relation to energy, 172-74,186-89,197, 

201,266 
rotational, 266 
units of, 164 

Work function, 990-91,1090 
Work-energy principle, 172-73,176,266, 

974,978 
energy conservation vs., 197 
general derivation of, 176 
as reformulation of Newton’s laws,

173
Working substance (defn), 530 
Wright, Thomas, 1194

Xerox (see Photocopier)
Xi (particle), 1179
X-rays, 823,824,938-39,1054-56,1117, 

1153-54 
and atomic number, 1054-56 
characteristic, 1055 
in electromagnetic spectrum, 823 
spectra, 1054-56 

X-ray crystallography, 939 
X-ray diffraction, 938-39 
X-ray scattering, 994-95

YBCO superconductor, 668 
Yerkes Observatory, 888 
Young, Thomas, 903,906 
Young’s double-slit experiment, 903-9, 

927-29,1019-20 
Young’s modulus, 319 
Yo-Yo, 271,281 pr  
Yttrium, barium, copper, oxygen 

superconductor (YBCO), 668 
Yukawa, Hideki, 1171-73 
Yukawa particle, 1171-73

Z (atomic number), 1052,1054-56,
1105

Z° particle, 1042 pr, 1173,1178-80,1183,
1185

Z-particle decay, 1173
Zeeman effect, 731 pr, 1047,1057,1059
Zener diode, 1095
Zero, absolute, temperature of, 464,

549
Zero-point energy, 1031,1036-37,

1042 pr, 1083 
Zeroth law of thermodynamics, 459 
Zoom, digital, 882 
Zoom lens, 882 
Zumino, B., 1189 
Zweig, G., 1182
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