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Abstract

A brief history of dynamo theory is presented, from its earliest beginnings, through the development
of successful kinematic models (those in which only the electrodynamic equations are solved), up to the
present time when fully magnetohydrodynamic simulations have successfully reproduced the main
features of the Earth's magnetic ®eld. A particular focus of this paper is the role of the solid inner core
of the Earth on the dynamics of its ¯uid core. Some new results are presented concerning the age and
topography of the inner core. # 1998 Elsevier Science Ltd. All rights reserved.

1. The kinematic geodynamo

Although it has been known for many centuries that the Earth is magnetic [1±3], the reason
for this, and for many puzzling features of the Earth's magnetic ®eld, have been convincingly
explained only during the present century. The key was the discovery in 1906 that the Earth
possesses a ¯uid core [4]. To be sure, the curious time scales of the ®eld, long compared with
those of the atmosphere and oceans, but short compared with geological processes, had
suggested to people like Halley [5] and Hansteen [6] that ¯uid motions within the Earth must
somehow be involved, but nothing was certain until 1906. The density of the ¯uid core,
deduced from seismological observations, ranges from 9904 kg mÿ3 at the top to 12166 kg mÿ3

at the bottom [7]. This suggests that it is largely composed of molten iron, compressed by the
136±329 GPa hydrostatic pressures created by the weight of the overlying mantle. Iron is a
good electrical conductor, and it was not long (1919) before Sir Joseph Larmor [8] proposed
that ¯uid motions in the core create the Earth's magnetism through self±excited dynamo
action.

Although today no one seriously doubts that Larmor's idea was correct, the development of
a geodynamo model soon encountered di�culties. A man±made dynamo is carefully
constructed to create electrical currents as e�ciently as possible; the naturally±occuring
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dynamo in the Earth operates in an almost spherical body of nearly homogeneous electrical
conductor, where short±circuiting of electrical currents is severe. The very di�erent character of
man±made and naturally±occuring dynamos became apparent in 1933, when Cowling [9]
published his famous theorem, that a dynamo cannot maintain an axisymmetric magnetic ®eld;
(see also [10]). This was a severe blow to theoreticians who had hoped that the predominantly
axisymmetric form of the observed geomagnetic ®eld pointed to the probable existence of
axisymmetric dynamo±created ®elds. The search for ¯uid dynamos became three±dimensional
(3D) and, therefore, far more di�cult, though there was a pervasive sentiment that perhaps
Cowling's theorem was the foretaste of a stronger result that would rule out self±excited ¯uid
dynamos completely, and in apparent con®rmation several other `anti±dynamo theorems' were
soon discovered [11, 12].
Optimists, such as Walter Elsasser and Sir Edward Bullard, held staunchly to the quest.

They independently argued [13, 14] that, although the energy budget of the core was tight,
sources existed, most probably thermal convection or motions induced by the luni±solar
precession, that would su�ce to power the geodynamo. They focussed research on the so±
called `kinematic dynamo problem', that of ®nding solutions to the electrodynamic equations
and boundary conditions alone. The former consist of the pre±Maxwell equations

@tB � ÿr � E �1�

m0J � r � B �2�

r � B � 0 �3�
and Ohm's law for a moving conductor

J � s�E� V� B�: �4�
Here @t=@/@t, B is magnetic ®eld, E is electric ®eld, J is electric current density, s is electrical
conductivity, and m0 is the permeability which, because of the high prevailing temperatures, is
taken to be that of free space (4p � 107 H mÿ1). The ¯uid velocity, V, is speci®ed and the
question is posed whether (1)±(4) admit solutions that are continuous at the surface of the
conductor with a source±free potential ®eld in the surrounding insulator, and which further are
self±excited, i.e. do not disappear with increasing time, t. Because the answer is, `No', for
axisymmetric B, the kinematic dynamo problem is a tough nut to crack. Though a linear
mathematical problem, it requires that 3D solutions be found to the `induction equation'

@tB � r � �V� B� � Zr2B; �5�
a vector partial di�erential equation that follows from (1)±(4). Here Z = 1/m0s11 m2 sÿ1 is the
`magnetic di�usivity' of the core. For further detail about the formulation and solution of the
kinematic dynamo problem, see for example [15, 16].
A few years after the publication of Bullard's paper [14], one of us (PHR) became a research

student at Cambridge University, and could occasionally interact with Bullard, then the
director of the National Physical Laboratory (NPL) at Teddington, England. It was clear that
Bullard hoped to obtain solutions numerically through the computing resources of NPL, then
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considered massive, though considerably less capable than a modest workstation is today.
Bullard aimed to solve the simple steady±state version of (5). Writing

V � RU; �6�
with a speci®ed U, he hoped to ®nd a real R such that

0 � Rr � �U� B� � Zr2B �7�
possesses nontrivial solutions. He developed a spectral approach, now known as the Bullard±
Gellman formalism [17], in which (5) was transformed into a set of ordinary di�erential
equations for the spherical harmonic components of B.
It was soon after this that one of us (PHR) was privileged to become Professor

Chandrasekhar's Research Associate. Chandrasekhar, or ``Chandra'' as he was generally called,
was at that time engaged in solving numerous ¯uid dynamic stability problems by variational
methods, an activity that led to the publication of his celebrated book [18]. He clearly saw (5)
as yet another linear stability problem: given a steady V, (5) poses an eigenvalue problem for
the growth rate l= @t of the ®eld:

lB � r � �V� B� � Zr2B �8�
Chandra also recognized that Bullard's hope of ®nding an R for which l = 0 might be forlorn.
He realized that the eigenvalue problem posed by (8) is not self±adjoint and therefore is
unlikely to possess real eigenvalues. He con®ded to one of us (PHR) that the search should not
be for an R, for which l is zero, but for an R for which Re(l) = 0.

Even Chandra, though seldom deterred by technical obstacles, was daunted by the di�culty
of solving (8), but he did ask an ingenious question that was potentially easier to answer [19]:
though all axisymmetric solutions of (5) must die away, is it possible to reduce Re(l) so greatly
that the decay is lengthened enough to make axisymmetric solutions again of geophysical
interest? Unfortunately, this idea did not work out well; Chandra's own research student,
George Backus, showed [20] that Re(l) could not be reduced by more than a factor of 4 below
the reciprocal of the free decay time, tZ=R2

1/p
2Z, in which ®elds decay when V= 0. Here R1 is

the radius of the core-mantle boundary (CMB), so that tZ is only of order 104 years, a short
time in comparison with the age of the geomagnetic ®eld, which is known from the study of
paleomagnetism to be not much less than that of the Earth (4.5 � 109 years). A related idea
did, however, work out well. Braginsky [21, 22] showed that, though the axisymmetric dynamo
fails, the `nearly' axisymmetric dynamo succeeds. Chandra was also very interested in what he
felt was the likelihood that MHD turbulence can regenerate magnetic ®eld.

Dynamo theory was turned round in 1958 by two independent demonstrations, both
essentially using asymptotic methods, of working spherical dynamos, one by Arvid
Herzenberg [23, 24] and one by George Backus [25]. Soon afterwards, two simple analytic
dynamos were created in cylindrical geometry [26, 27]. All these models were implausibly
arti®cial from the standpoint of geophysics, but eventually computers became powerful enough
to generate more realistic kinematic geodynamos, via the Bullard±Gellman spectral method [28±
31]. Most models assumed for simplicity that Earth's core is totally ¯uid, but in reality it has
been known since 1936 that a solid core lies at the center of the Earth [32].
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2. The magnetohydrodynamic geodynamo

As it became increasingly clear that the kinematic dynamo problem was `under control',
growing attention was paid to the magnetohydrodynamic (MHD) dynamo problem, in which
both B and V are sought, that self±consistently satisfy not only (5) and the related boundary
conditions but also the equations and boundary conditions of ¯uid motion. This coupled
MHD system is fully nonlinear, and is therefore much harder to solve than the induction
equation. Though one ingenious planar model was devised and partially solved by asymptotic
methods [33, 34], numerical integration is generally the only way forward. Fortunately,
developments in computer hardware and advances in numerical methods have met the greater
challenge presented by MHD dynamos.
The question of the energy source must be re-opened: What powers the geodynamo? Since

1963, compositional convection has gradually become the favored mechanism. Analysis of
seismological data indicates that the density, r, of the ¯uid core is less than it would be were it
predominantly made of iron at the prevailing pressure, P, and temperature, T, and that
therefore the ¯uid iron must be alloyed with lighter elements such as Sulfur, Silicon and
Oxygen. Both P and T increase with depth, but it is the increase in P that has the greater e�ect
on the phase of core material. Jacobs [35] suggested that this results in a phase change at the
inner core boundary (ICB), the material beneath being the solid inner core (SIC) and that
above being the ¯uid outer core (FOC). Verhoogen [36] observed that, as the Earth loses heat
to space and the core cools, the phase boundary (the ICB) must move upwards, releasing the
latent heat of solidi®cation at the ICB, which may su�ce to drive thermal convection in the
FOC. There is a density jump between phases at the ICB of Dr1600 kg mÿ3 [7], which is
much larger than would be expected from contraction on solidi®cation alone, and it would, in
any case, be very unusual for a ¯uid alloy to retain the same composition after freezing. A
more natural explanation is sketched in Fig. 1, where for simplicity the core is assumed to be a
binary alloy, and where the mass fraction, x, of light constituent is plotted against the
thermodynamic state, as represented (for simplicity, see above) by the pressure, P, alone. At
the surface of the ICB the composition of the FOC lies on the liquidus shown on the left, the
composition of the SIC then being that of the associated solidus. Solidi®cation results not only
in the release of latent heat at the ICB but also in the release of the light constituents, which
are possibly more important sources of buoyancy than latent heat, as Braginsky [37] ®rst
observed. Even in the absence of the latent heat source, the gravitational energy made available
as di�erentiation at the ICB continually brings the heavy constituents (mainly iron) ever closer
to the geocenter is amply su�cient to satisfy the energy requirements of the geodynamo over
the entire age of the Earth [38]. A model driven in this way is called a `gravitationally±powered
geodynamo'.
Because the thermal and compositional releases at each point of the ICB are both

proportional to the local rate of advance of the ICB, thermal and compositional buoyancy act
in concert. Until recently, all MHD geodynamo models lumped the two sources of buoyancy
together in a simple `temperature'; more precisely, if they have considered x at all, they have
regarded the real temperature, T, as a surrogate for it. They have also always ignored the
evolution of the Earth, supposing that the buoyancy sources act steadily. They have adopted
the Boussinesq approximation, in which all properties of the ¯uid are assumed uniform, except
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that the small changes in r created by T are included in the buoyancy force. The resulting
Boussinesq equations are then

r � V � 0; �9�

Fig. 1. Illustration of the basic idea of the gravitationally powered geodynamo. Conditions of phase equilibrium are

met at the boundary of the inner core, as indicated by the (x, P) plot at the bottom of the ®gure.
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@tV� V � rV� 2O� V � ÿrPÿ aTg� rÿ1J� B� nr2V; �10�

@tT� V � rT � kr2T� E: �11�
Here n is the kinematic viscosity, k is the thermal di�usivity, a is the coe�cient of thermal
expansion, g is the acceleration due to gravity, E represents volumetric heat sources (if any),
and O is the angular velocity of the reference frame (a constant, representative of the Earth's
mantle), 2O �V being the Coriolis acceleration, the associated centrifugal acceleration being
included in the reduced pressure P = (P/r) + 1/2O2r2, where r = vxv and x is vector distance
from the geocenter.

In 1952 Chandra [39] published a paper on Boussinesq convection in a self-gravitating (gAx)
sphere containing a uniform distribution of heat sources (E = constant). His solution was
elaborated by Backus [40] and Roberts [41]. Chandra [42] also initiated studies of convection in
a spherical annulus and of the e�ect of rotation on convection in a sphere [43]. His student
Bisshopp developed the latter topic [44], followed by Roberts [45, 46], Bisshopp and Niiler [47],
Busse [48] and Durney [49, 50]. All these were marginal convection studies. A systematic attack
on the nonlinear problem was undertaken by Zhang and Busse [51±54] with the special aim of
®nding a convectively±driven dynamo, in which they were successful. Before, however, they
could approach geophysically realistic parameter values, they experienced insuperable
truncation problems. They were also compelled to restrict themselves to solutions having an
oversimple time dependence, namely those that are steady in a frame rotating longitudinally
relative to the mantle. For these reasons, we shall consider here only our own integrations [55±
57] that, with one exception, are geophysically unexceptionable in their choice of parameter
values, and which do not prejudge the time±dependence of the solution.

The one exception is the kinematic viscosity, n, which from numerical necessity was too large
to be geophysically plausible. Although n for the core is very uncertain, most estimates of the
molecular viscosity do not exceed 10ÿ6 m2 sÿ1. Arguments that momentum transport is
enhanced by core turbulence generally estimate that a turbulent n will not exceed 1 m2 sÿ1. The
resulting Ekman number, E= n/2OR2

1, the appropriate dimensionless measure of core
viscosity, is less than 10ÿ9, which is still numerically unattainable. We were compelled to
assume that E= 10ÿ6, which means that n exceeds the most optimistic geophysical value by
three orders of magnitude. Whether E is 10ÿ6 or 10ÿ9, it is reasonable to suppose that the
e�ects of viscosity are small except in boundary layers at the ICB and CMB (and except
possibly in shear layers surrounding the tangent cylinder; see Section 3). In other words, our
unrealistic n does not necessarily detract from the applicability of our simulations to the Earth.

Our model was by no means the ®rst MHD dynamo. In addition to early models of
Busse [58, 59], Chandra's analysis of the rotating BeÂ nard layer [60, 18] was extended by
Childress and Soward [32] and Soward [33] to small, but ®nite, amplitude motions; they
showed analytically that these could maintain weak magnetic ®elds. Subsequent numerical
work by Fautrelle and Childress [61] and St Pierre [62] proved that they could also maintain a
strong ®eld. Nordlund et al. [63] constructed a further planar model. Gilman and Miller [64],
Gilman [65], Glatzmaier [66±68] and Kageyama et al. [69] integrated models in spherical
geometry. Although these were all converged numerical solutions, none approached
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geophysically realistic parameter values; indeed in most cases they were intended to simulate
the solar dynamo and not the geodynamo. Not surprisingly, none of the models produced
Earthlike magnetic ®elds.
The magnetic ®eld produced by our Boussinesq dynamo possesses several features

resembling the observed geomagnetic ®eld. Most remarkably, during the 50000 yr of simulated
time over which it was studied, the model underwent a polarity reversal similar to those that
the geomagnetic ®eld has experienced many times during the Earth's history [70]. There were
some other surprises, notably the important role played by the SIC in the dynamics of the
FOC, a feature shared by all our later simulations; see Section 3 below.
Next, we broke completely new ground [71, 72] by studying inhomogeneous models of the

core, ones that allow for the increase of r with depth, that include both thermal and
compositional buoyancy distinctly, and in which these are solely responsible for driving the
geodynamo, there being no other energy sources, such as radioactivity. In other words, the
models are evolutionary. The theory on which these models are based had previously been
developed in great detail by Braginsky and Roberts [73]. We may fairly claim that, with the
exception of n, our models do not contradict any ®rmly established geophysical fact that is
relevant to core MHD and the geodynamo. And the magnitude and harmonic structure of the
magnetic ®eld that the models create in fact resemble those of the present day geomagnetic
®eld, i.e. they are characteristic of the ®eld between reversals.

3. The inner core

Most early kinematic and MHD geodynamo simulations either left out the inner core
entirely, ®lling the vacant space with core ¯uid, or they included it not so much for geophysical
realism but in order to avoid numerical complications arising from the coordinate singularity
at the geocenter, r = 0. Bearing in mind that the SIC contains only 5% of the mass of the core
and 4% of its volume, its neglect appeared as a matter of little signi®cance. Also, if included, it
did not seem to matter much whether it was modeled by an insulator or a perfect conductor
(the simplest cases) rather than by a material of similar properties to the FOC. All that has
changed dramatically during the last 3 years.
It was early recognized that, being to free to turn in response to the torques to which the

FOC subjects it, the SIC must rotate at a slightly di�erent rate from the mantle. The ®rst
kinematic models that included an inner core [74] predicted relative motions of a little less than
0.18/yr, westward or eastward relative to the mantle, depending on the model. Arguments were
presented [75] that favored westward motion. In contrast, our simulations [55±57, 71, 72] were
unanimous in predicting variable eastward motion of typically 1±38/yr. These predictions have
recently been corroborated by an analyses of the seismic data by Song and Richards [76], later
corroborated by Su et al. [77].
We have recently [72] uncovered the dynamical reasons for the direction and magnitude of

inner core rotation. In summary, Coriolis forces tend to allow convection to carry heat away
from the rotation axis more e�ciently than parallel to it. In fact, apart from boundary layers,
the FOC outside the tangent cylinder is almost isentropic. The tangent cylinder is an imaginary
surface that touches the ICB at its equator and is parallel to O. Heat transport within the
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tangent cylinder is inhibited by rotation, and a temperature di�erence between ICB and CMB
large enough to overcome this obstacle has to develop. As a result, the ICB tends to be hotter
near its poles than at its equator. For the same reason, the convective circulations between the
ICB and CMB are upward near the rotation axis, the return downward ¯ow being further
from the axis. Coriolis forces de¯ect these motions westward near the CMB and eastward near
the ICB. In broad agreement with Le Chatelier's Principle, the SIC tends to respond by
moving in the same eastward dircetion as the ¯uid lying just above it. The main coupling that
brings this about is electromagnetic. The SIC acts in a similar way to the armature of a
synchronous motor, corotating with the ®elds threading it to the eastward moving ¯uid
immediately above it, and powered by the electric currents generated by the dynamo operating
in the FOC.
It has been suggested [77] that the viscous torque, Gn, on the ICB is also essential, but to

show that this is not so we repeated our integrations with stress±free conditions replacing no±
slip conditions on the ICB [72], and we found that the relative motion is unchanged in
direction and scarcely altered in magnitude. To understand this, suppose ®rst that the moment
of inertia, IC, of the SIC is zero and that n = 0. Then the SIC will continuously adjust its
angular velocity, OIC, to make the electromagnetic torque, GB , zero. If n$0 (still with IC=0),
OIC will adjust continuously to make GB+Gn=0. In this sense, GB and Gn always have the
same magnitude, as indeed we found in our numerical integrations. The situation is not
substantially changed when n is nonzero, but small. In particular, the ®elds on the ICB creating
GB are scarcely altered. Paradoxically, because the magnetic stresses are so much larger than
the viscous stresses, they must almost cancel when integrated over the ICB to create GB. Of
course, IC is, in reality, nonzero so that a phase lag exists between the cause, GB, and the
e�ect, OIC, but this is so short that IC=0 is a good approximation to geophysical reality, and
this was assumed in our original simulations [55±57].
Even in the simplest non±magnetic non±convecting (non-Earthlike) case where E is small, a

relative motion between the SIC and mantle establishes circulations in the FOC which are
driven by Ekman layers on the ICB and CMB, one of which draws in ¯uid from the bulk of
the FOC, the other pumping it out. These circulations are con®ned to the interior of the
tangent cylinder. The spatial gradients of the ¯ow are large in shear layers surrounding the
tangent cylinder, across which the ¯ow has to adjust from the circulations inside the cylinder
to stagnant conditions outside, stagnant because our reference frame moves with the mantle.
The solution of this complicated hydrodynamic problem was ®rst provided by Stewartson [78].
The e�ect on Stewartson's solution of a meridional ®eld having lines of force that cross the
tangent cylinder has been studied by Hollerbach [79] and Kleeorin et al. [80].
Our simulations have all shown that, despite the anticipated insigni®cance of the SIC, it and

its attendant tangent cylinder are decisive in determining the structure of the MHD convection
and the resulting dynamo. Hollerbach and Jones [81, 82] had earlier pointed out that the SIC
has an electromagnetic time constant, tIC=R2/p2Z, exceeding 103 years, which is somewhat
larger than typical overturning times of the FOC, which are at most a few hundred years.
(Here R is the mean radius of the SIC.) They argued that, since the ®eld threading the SIC
would have to invert itself during a polarity reversal at much the same time as the ®eld
everywhere else, the SIC would tend to inhibit such reversals. Our simulations have ful®lled
their expectations.
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Our most recent simulations [71, 72] have all been integrations of the evolutionary model

described in Section 2, in which buoyancy is provided at the ICB as heat (described by an

entropy perturbation, S) and as composition (described by the perturbed mass fraction of light

constituent, x). These sources are proportional to each other and to the rate at which the ICB

moves upwards through freezing. They are not however uniform over the ICB. Where the cold

convection currents created by the sources descend onto the ICB, the rate of freezing is

enhanced; where the hot rising ¯ows are initiated, the rate of advance of the ICB is slowed.

For these reasons, the radius R(y, f, t) of the ICB is a function of colatitude y and longitude

f, and the ICB therefore has `topography', h = RR.

Variations in rates of freezing do not produce the only or the largest topographies of the

ICB. First and foremost, since the inner core rotates at roughly the same angular velocity as

the Earth as a whole, it is ¯attened by centrifugal force. The resulting equatorial bulge has

been estimated to be about 3 km [83]. Second, as Bu�ett [84] has recently observed, the

inhomogeneities in mass distribution in the mantle distort the surfaces of constant gravitational

potential within the core. As a result, the conditions for phase equilibrium that de®ne the

surface of the inner core are met at varying distances from the geocenter. He estimates that for

this reason the otherwise spheroidal shape of the inner core surface could be distorted by as

much as 100 m. In what follows we shall ignore these two e�ects, and focus on the topography

created by the convection currents, which we regard as being superimposed on the those

produced by the other two mechanisms.

Consider ®rst the evolution of R(t), the spherical average of R. The net heat ¯ux from the

core to the mantle is not well known. Simulations of mantle convection [85] suggest that the

value we adopted (7.2 TW) is a reasonable guestimate. This exceeds the ¯ux of heat down the

adiabatic gradient, which is about 5 TW. The di�erence of 2.2 TW comes from the convective

heat ¯ux just below the CMB. We suppose that the entire heat ¯ux emerges uniformly over the

CMB. We ®nd that R then increases at an average rate of

_�R110ÿ11msÿ113 cm=century: �12�
The relative change in R over the 70000 years spanned by our anelastic simulation is only

about 10ÿ5; so we did not feel it necessary to adjust R in our integrations. If we assume the

volume of the SIC has always grown at the rate (12), the age of the inner core is

tIC �
�R

3 _�R
1109 yr; �13�

which is less than a quarter of the age of the Earth. This may, however, be too simplistic. The

actual age of the SIC would be determined by the thermal history of the Earth, especially the

the time-dependent heat ¯ow out of the core, though according to [86] this has not varied

greatly during the SIC's existence. More signi®cantly, the presence of radioactivity in the core

could create equally vigorous convection without requiring such a rapid growth of the SIC.

Perhaps, therefore, (13) should be regarded as a lower bound. Our estimate of tIC also relies

on facts about the composition and material properties of the core (such as the latent heat of

melting, which we took to be 106 J kgÿ1) that are very uncertain. Two other recent estimates of
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tIC derived from global energy balance models may be noted: 2.8 � 109 years (Bu�ett et al. [87])
and 1.7 � 109 years (Labrosse et al. [88]).
Consider now the evolution of the topography, h. This depends crucially on the time-

dependent convective planform at the ICB, especially the horizontal variation of speci®c
entropy (S). The actual conditions we apply at the ICB are [71, 72]

@R

@t
� ÿca @S

@r
� ÿcb @x

@r
� ÿcc @S

@t
ÿ cd

@x
@t
: �14�

The basic state and material properties used to construct the positive constants ca, cb, cc and
cd. are described in [71, 73]. The local topography at time t is then

h�y;f; t� � ÿccS�y;f; t� ÿ cdx�y;f; t�: �15�
In our simulation the non-axisymmetric part of the radial gradient of the entropy (which
determines the non-axisymmetric ¯uxes of latent heat and light constituent at the ICB and the
time rate of change of its topography) is dominated by the longitudinal wave number 2.
Fig. 2(a) shows a snapshot of our @h/@t as a function of y and f. This pattern drifts over the
ICB at a typical phase speed of 0.38/yr, westward relative to the mantle, i.e. at about 38/yr
relative to the SIC. Consequently, a place on the ICB where the surface elevation is growing
comparatively rapidly (i.e. where the local ¯uxes of latent heat and light constituent are
relatively large) changes in about 30 yr to a slowly growing area as the ¯uxes decrease there.
Correspondingly, a local high point in the surface elevation (low temperature) changes to a
local low point (high temperature) in the same time interval. As a result, the non-axisymmetric
growth rate [which is comparable with (12)] never has time to accumulate non-axisymmetric
topography greater than about a centimeter.
The situation is quite di�erent for the axisymmetric part of h, which is not `washed out' by

the westward phase velocity of the convection pattern. As noted in our explanation of the
inner core rotation, entropy on a spherical surface near the inner core boundary is greater in
the polar regions than in the equatorial region. The freezing condition therefore requires the
local topography, h, be less at the poles than at the equator. In our simulation the resulting
equator±pole di�erence in elevation is usually about 14 m. This is illustrated in a snapshot of h
shown in Fig. 2(b), which also brings out the high degree of axisymmetry of the inner core
topography.
Although our geodynamo simulations provide plausible explanations for observations like

the inner core super rotation and make predictions about inner core growth, they raise further
questions that merit investigation. Our models have assumed phase equilibrium on the inner
core boundary, i.e. that, as thermodynamic conditions change, freezing or melting occurs
instantaneously to maintain the boundary at the freezing point. No allowance has been made
for a ®nite time of relaxation to such a state. If that relaxation time were long compared with
the time scales of interest in our model, the inner core would behave as a solid. As Bu�ett [84]
has noted, the orientation of the inner core would then plausibly be gravitationally `locked' to
that of the mantle by the inner core topography created by mantle inhomogeneities. The
relative motion of core and mantle, which we predicted [55] and for which observational
evidence has been adduced [76, 77], would then probably not take place. At the opposite
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extreme, in which the melting±freezing relaxation time is short compared with time scales of
interest, the topography on the ICB created by mantle inhomogeneities would not lock the
inner core to the mantle, since that topography would, by melting in one area and freezing in
another, reform as fast as the inner core rotates relative to the mantle. Presumably the truth
lies somewhere between these two extremes, a question that it remains for the future decide.
The answer may lie in a curious fact: although we speak of a solid inner core, there are

compelling reasons for believing [89] that the top of the SIC is a mixed phase region of the
type that metallurgists often call a `mushy zone'. The mushy layer would not be uniform in
thickness, since rising ¯ow tends to melt mush, while descending ¯ow promotes its formation.

Fig. 2. (a) A snapshot of the local growth rate of the inner core, @h/@t. Solid (dashed) contours represent faster
(slower) growth rates; the maximum value is 1.4 � 10ÿ11 m sÿ1. (b) A snapshot of inner core topography, h. Solid

(dashed) contours represent greater (lesser) radius. The radius at the equator is about 14 m greater than that at the
poles. Equal area projections are used with the North (South) pole at the top (bottom) of the images.
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The result would be further enhancement of the equator±pole di�erence in surface elevation.
Loper [90] suggests that the organization of the ¯ow within the mushy layer by the overlying
meridional ¯ow may give the mush a preferred `fabric', that is preserved as the mush descends
relative to the ICB and solidi®es. He speculates that this might explain the observed seismic
anisotropy of the SIC [91, 92]. We may also expect that the existence of a mushy zone would
promote conditions of local thermodynamic equilibrium so inhibiting gravitational locking of
the SIC to the mantle. It is clear that geodynamo theory has advanced far since the days when
one of us (PHR) was indelibly and bene®cially a�ected by Chandra through discussion on
these and similar fascinating topics.
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